xref: /illumos-gate/usr/src/uts/common/io/mwl/mwl.c (revision 7a15b0ec33c685e4e6b096454b077a52604acf9b)
1 /*
2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
8  * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer,
16  *    without modification.
17  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
19  *    redistribution must be conditioned upon including a substantially
20  *    similar Disclaimer requirement for further binary redistribution.
21  *
22  * NO WARRANTY
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
26  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
27  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
31  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGES.
34  */
35 
36 /*
37  * Copyright 2019 Joyent, Inc.
38  */
39 
40 /*
41  * Driver for the Marvell 88W8363 Wireless LAN controller.
42  */
43 #include <sys/stat.h>
44 #include <sys/dlpi.h>
45 #include <inet/common.h>
46 #include <inet/mi.h>
47 #include <sys/stream.h>
48 #include <sys/errno.h>
49 #include <sys/stropts.h>
50 #include <sys/stat.h>
51 #include <sys/sunddi.h>
52 #include <sys/strsubr.h>
53 #include <sys/strsun.h>
54 #include <sys/pci.h>
55 #include <sys/mac_provider.h>
56 #include <sys/mac_wifi.h>
57 #include <sys/net80211.h>
58 #include <inet/wifi_ioctl.h>
59 
60 #include "mwl_var.h"
61 
62 static int mwl_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd);
63 static int mwl_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd);
64 static int mwl_quiesce(dev_info_t *devinfo);
65 
66 DDI_DEFINE_STREAM_OPS(mwl_dev_ops, nulldev, nulldev, mwl_attach, mwl_detach,
67     nodev, NULL, D_MP, NULL, mwl_quiesce);
68 
69 static struct modldrv mwl_modldrv = {
70 	&mod_driverops,	/* Type of module.  This one is a driver */
71 	"Marvell 88W8363 WiFi driver v1.1",	/* short description */
72 	&mwl_dev_ops	/* driver specific ops */
73 };
74 
75 static struct modlinkage modlinkage = {
76 	MODREV_1, (void *)&mwl_modldrv, NULL
77 };
78 
79 static void *mwl_soft_state_p = NULL;
80 
81 static int	mwl_m_stat(void *,  uint_t, uint64_t *);
82 static int	mwl_m_start(void *);
83 static void	mwl_m_stop(void *);
84 static int	mwl_m_promisc(void *, boolean_t);
85 static int	mwl_m_multicst(void *, boolean_t, const uint8_t *);
86 static int	mwl_m_unicst(void *, const uint8_t *);
87 static mblk_t	*mwl_m_tx(void *, mblk_t *);
88 static void	mwl_m_ioctl(void *, queue_t *, mblk_t *);
89 static int	mwl_m_setprop(void *arg, const char *pr_name,
90 		    mac_prop_id_t wldp_pr_num,
91 		    uint_t wldp_length, const void *wldp_buf);
92 static int	mwl_m_getprop(void *arg, const char *pr_name,
93 		    mac_prop_id_t wldp_pr_num, uint_t wldp_length,
94 		    void *wldp_buf);
95 static void	mwl_m_propinfo(void *, const char *, mac_prop_id_t,
96     mac_prop_info_handle_t);
97 
98 static mac_callbacks_t mwl_m_callbacks = {
99 	MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
100 	mwl_m_stat,
101 	mwl_m_start,
102 	mwl_m_stop,
103 	mwl_m_promisc,
104 	mwl_m_multicst,
105 	mwl_m_unicst,
106 	mwl_m_tx,
107 	NULL,
108 	mwl_m_ioctl,
109 	NULL,
110 	NULL,
111 	NULL,
112 	mwl_m_setprop,
113 	mwl_m_getprop,
114 	mwl_m_propinfo
115 };
116 
117 #define	MWL_DBG_ATTACH		(1 << 0)
118 #define	MWL_DBG_DMA		(1 << 1)
119 #define	MWL_DBG_FW		(1 << 2)
120 #define	MWL_DBG_HW		(1 << 3)
121 #define	MWL_DBG_INTR		(1 << 4)
122 #define	MWL_DBG_RX		(1 << 5)
123 #define	MWL_DBG_TX		(1 << 6)
124 #define	MWL_DBG_CMD		(1 << 7)
125 #define	MWL_DBG_CRYPTO		(1 << 8)
126 #define	MWL_DBG_SR		(1 << 9)
127 #define	MWL_DBG_MSG		(1 << 10)
128 
129 uint32_t mwl_dbg_flags = 0x0;
130 
131 #ifdef DEBUG
132 #define	MWL_DBG	\
133 	mwl_debug
134 #else
135 #define	MWL_DBG(...) (void)(0)
136 #endif
137 
138 /*
139  * PIO access attributes for registers
140  */
141 static ddi_device_acc_attr_t mwl_reg_accattr = {
142 	DDI_DEVICE_ATTR_V0,
143 	DDI_STRUCTURE_LE_ACC,
144 	DDI_STRICTORDER_ACC,
145 	DDI_DEFAULT_ACC
146 };
147 
148 static ddi_device_acc_attr_t mwl_cmdbuf_accattr = {
149 	DDI_DEVICE_ATTR_V0,
150 	DDI_NEVERSWAP_ACC,
151 	DDI_STRICTORDER_ACC,
152 	DDI_DEFAULT_ACC
153 };
154 
155 /*
156  * DMA access attributes for descriptors and bufs: NOT to be byte swapped.
157  */
158 static ddi_device_acc_attr_t mwl_desc_accattr = {
159 	DDI_DEVICE_ATTR_V0,
160 	DDI_NEVERSWAP_ACC,
161 	DDI_STRICTORDER_ACC,
162 	DDI_DEFAULT_ACC
163 };
164 
165 static ddi_device_acc_attr_t mwl_buf_accattr = {
166 	DDI_DEVICE_ATTR_V0,
167 	DDI_NEVERSWAP_ACC,
168 	DDI_STRICTORDER_ACC,
169 	DDI_DEFAULT_ACC
170 };
171 
172 /*
173  * Describes the chip's DMA engine
174  */
175 static ddi_dma_attr_t mwl_dma_attr = {
176 	DMA_ATTR_V0,			/* dma_attr version */
177 	0x0000000000000000ull,		/* dma_attr_addr_lo */
178 	0xFFFFFFFF,			/* dma_attr_addr_hi */
179 	0x00000000FFFFFFFFull,		/* dma_attr_count_max */
180 	0x0000000000000001ull,		/* dma_attr_align */
181 	0x00000FFF,			/* dma_attr_burstsizes */
182 	0x00000001,			/* dma_attr_minxfer */
183 	0x000000000000FFFFull,		/* dma_attr_maxxfer */
184 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg */
185 	1,				/* dma_attr_sgllen */
186 	0x00000001,			/* dma_attr_granular */
187 	0				/* dma_attr_flags */
188 };
189 
190 /*
191  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
192  */
193 static const struct ieee80211_rateset mwl_rateset_11b =
194 	{ 4, { 2, 4, 11, 22 } };
195 
196 static const struct ieee80211_rateset mwl_rateset_11g =
197 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
198 
199 static int	mwl_alloc_dma_mem(dev_info_t *, ddi_dma_attr_t *, size_t,
200 		    ddi_device_acc_attr_t *, uint_t, uint_t,
201 		    struct dma_area *);
202 static void	mwl_free_dma_mem(struct dma_area *);
203 static int	mwl_alloc_cmdbuf(struct mwl_softc *);
204 static void	mwl_free_cmdbuf(struct mwl_softc *);
205 static int	mwl_alloc_rx_ring(struct mwl_softc *, int);
206 static void	mwl_free_rx_ring(struct mwl_softc *);
207 static int	mwl_alloc_tx_ring(struct mwl_softc *, struct mwl_tx_ring *,
208 		    int);
209 static void	mwl_free_tx_ring(struct mwl_softc *, struct mwl_tx_ring *);
210 static int	mwl_setupdma(struct mwl_softc *);
211 static void	mwl_txq_init(struct mwl_softc *, struct mwl_tx_ring *, int);
212 static int	mwl_tx_setup(struct mwl_softc *, int, int);
213 static int	mwl_setup_txq(struct mwl_softc *);
214 static int	mwl_fwload(struct mwl_softc *, void *);
215 static int	mwl_loadsym(ddi_modhandle_t, char *, char **, size_t *);
216 static void	mwlFwReset(struct mwl_softc *);
217 static void	mwlPokeSdramController(struct mwl_softc *, int);
218 static void	mwlTriggerPciCmd(struct mwl_softc *);
219 static int	mwlWaitFor(struct mwl_softc *, uint32_t);
220 static int	mwlSendBlock(struct mwl_softc *, int, const void *, size_t);
221 static int	mwlSendBlock2(struct mwl_softc *, const void *, size_t);
222 static void	mwlSendCmd(struct mwl_softc *);
223 static int	mwlExecuteCmd(struct mwl_softc *, unsigned short);
224 static int	mwlWaitForCmdComplete(struct mwl_softc *, uint16_t);
225 static void	dumpresult(struct mwl_softc *, int);
226 static int	mwlResetHalState(struct mwl_softc *);
227 static int	mwlGetPwrCalTable(struct mwl_softc *);
228 static int	mwlGetCalTable(struct mwl_softc *, uint8_t, uint8_t);
229 static int	mwlGetPwrCalTable(struct mwl_softc *);
230 static void	dumpcaldata(const char *, const uint8_t *, int);
231 static void	get2Ghz(MWL_HAL_CHANNELINFO *, const uint8_t *, int);
232 static void	get5Ghz(MWL_HAL_CHANNELINFO *, const uint8_t *, int);
233 static void	setmaxtxpow(struct mwl_hal_channel *, int, int);
234 static uint16_t	ieee2mhz(int);
235 static const char *
236 		mwlcmdname(int);
237 static int	mwl_gethwspecs(struct mwl_softc *);
238 static int	mwl_getchannels(struct mwl_softc *);
239 static void	getchannels(struct mwl_softc *, int, int *,
240 		    struct mwl_channel *);
241 static void	addchannels(struct mwl_channel *, int, int *,
242 		    const MWL_HAL_CHANNELINFO *, int);
243 static void	addht40channels(struct mwl_channel *, int, int *,
244 		    const MWL_HAL_CHANNELINFO *, int);
245 static const struct mwl_channel *
246 		findchannel(const struct mwl_channel *, int,
247 		    int, int);
248 static void	addchan(struct mwl_channel *, int, int, int, int);
249 
250 static int	mwl_chan_set(struct mwl_softc *, struct mwl_channel *);
251 static void	mwl_mapchan(MWL_HAL_CHANNEL *, const struct mwl_channel *);
252 static int	mwl_setcurchanrates(struct mwl_softc *);
253 const struct ieee80211_rateset *
254 		mwl_get_suprates(struct ieee80211com *,
255 		    const struct mwl_channel *);
256 static uint32_t	cvtChannelFlags(const MWL_HAL_CHANNEL *);
257 static const struct mwl_hal_channel *
258 		findhalchannel(const struct mwl_softc *,
259 		    const MWL_HAL_CHANNEL *);
260 enum ieee80211_phymode
261 		mwl_chan2mode(const struct mwl_channel *);
262 static int	mwl_map2regioncode(const struct mwl_regdomain *);
263 static int	mwl_startrecv(struct mwl_softc *);
264 static int	mwl_mode_init(struct mwl_softc *);
265 static void	mwl_hal_intrset(struct mwl_softc *, uint32_t);
266 static void	mwl_hal_getisr(struct mwl_softc *, uint32_t *);
267 static int	mwl_hal_sethwdma(struct mwl_softc *,
268 		    const struct mwl_hal_txrxdma *);
269 static int	mwl_hal_getchannelinfo(struct mwl_softc *, int, int,
270 		    const MWL_HAL_CHANNELINFO **);
271 static int	mwl_hal_setmac_locked(struct mwl_softc *,
272 		    const uint8_t [IEEE80211_ADDR_LEN]);
273 static int	mwl_hal_keyreset(struct mwl_softc *, const MWL_HAL_KEYVAL *,
274 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
275 static int	mwl_hal_keyset(struct mwl_softc *, const MWL_HAL_KEYVAL *,
276 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
277 static int	mwl_hal_newstation(struct mwl_softc *,
278 		    const uint8_t [IEEE80211_ADDR_LEN],
279 		    uint16_t, uint16_t, const MWL_HAL_PEERINFO *, int, int);
280 static int	mwl_hal_setantenna(struct mwl_softc *, MWL_HAL_ANTENNA, int);
281 static int	mwl_hal_setradio(struct mwl_softc *, int, MWL_HAL_PREAMBLE);
282 static int	mwl_hal_setwmm(struct mwl_softc *, int);
283 static int	mwl_hal_setchannel(struct mwl_softc *, const MWL_HAL_CHANNEL *);
284 static int	mwl_hal_settxpower(struct mwl_softc *, const MWL_HAL_CHANNEL *,
285 		    uint8_t);
286 static int	mwl_hal_settxrate(struct mwl_softc *, MWL_HAL_TXRATE_HANDLING,
287 		    const MWL_HAL_TXRATE *);
288 static int	mwl_hal_settxrate_auto(struct mwl_softc *,
289 		    const MWL_HAL_TXRATE *);
290 static int	mwl_hal_setrateadaptmode(struct mwl_softc *, uint16_t);
291 static int	mwl_hal_setoptimizationlevel(struct mwl_softc *, int);
292 static int	mwl_hal_setregioncode(struct mwl_softc *, int);
293 static int	mwl_hal_setassocid(struct mwl_softc *,
294 		    const uint8_t [IEEE80211_ADDR_LEN], uint16_t);
295 static int	mwl_setrates(struct ieee80211com *);
296 static int	mwl_hal_setrtsthreshold(struct mwl_softc *, int);
297 static int	mwl_hal_setcsmode(struct mwl_softc *, MWL_HAL_CSMODE);
298 static int	mwl_hal_setpromisc(struct mwl_softc *, int);
299 static int	mwl_hal_start(struct mwl_softc *);
300 static int	mwl_hal_setinframode(struct mwl_softc *);
301 static int	mwl_hal_stop(struct mwl_softc *);
302 static struct ieee80211_node *
303 		mwl_node_alloc(struct ieee80211com *);
304 static void	mwl_node_free(struct ieee80211_node *);
305 static int	mwl_key_alloc(struct ieee80211com *,
306 		    const struct ieee80211_key *,
307 		    ieee80211_keyix *, ieee80211_keyix *);
308 static int	mwl_key_delete(struct ieee80211com *,
309 		    const struct ieee80211_key *);
310 static int	mwl_key_set(struct ieee80211com *, const struct ieee80211_key *,
311 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
312 static void	mwl_setanywepkey(struct ieee80211com *,
313 		    const uint8_t [IEEE80211_ADDR_LEN]);
314 static void	mwl_setglobalkeys(struct ieee80211com *c);
315 static int	addgroupflags(MWL_HAL_KEYVAL *, const struct ieee80211_key *);
316 static void	mwl_hal_txstart(struct mwl_softc *, int);
317 static int	mwl_send(ieee80211com_t *, mblk_t *, uint8_t);
318 static void	mwl_next_scan(void *);
319 static MWL_HAL_PEERINFO *
320 		mkpeerinfo(MWL_HAL_PEERINFO *, const struct ieee80211_node *);
321 static uint32_t	get_rate_bitmap(const struct ieee80211_rateset *);
322 static int	mwl_newstate(struct ieee80211com *, enum ieee80211_state, int);
323 static int	cvtrssi(uint8_t);
324 static uint_t	mwl_intr(caddr_t, caddr_t);
325 static uint_t	mwl_softintr(caddr_t, caddr_t);
326 static void	mwl_tx_intr(struct mwl_softc *);
327 static void	mwl_rx_intr(struct mwl_softc *);
328 static int	mwl_init(struct mwl_softc *);
329 static void	mwl_stop(struct mwl_softc *);
330 static int	mwl_resume(struct mwl_softc *);
331 
332 
333 #ifdef DEBUG
334 static void
335 mwl_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (dbg_flags & mwl_dbg_flags) {
340 		va_start(args, fmt);
341 		vcmn_err(CE_CONT, fmt, args);
342 		va_end(args);
343 	}
344 }
345 #endif
346 
347 /*
348  * Allocate an DMA memory and a DMA handle for accessing it
349  */
350 static int
351 mwl_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr,
352     size_t memsize, ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
353     uint_t bind_flags, struct dma_area *dma_p)
354 {
355 	int err;
356 
357 	/*
358 	 * Allocate handle
359 	 */
360 	err = ddi_dma_alloc_handle(devinfo, dma_attr,
361 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
362 	if (err != DDI_SUCCESS) {
363 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
364 		    "failed to alloc handle\n");
365 		goto fail1;
366 	}
367 
368 	/*
369 	 * Allocate memory
370 	 */
371 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
372 	    alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
373 	    &dma_p->alength, &dma_p->acc_hdl);
374 	if (err != DDI_SUCCESS) {
375 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
376 		    "failed to alloc mem\n");
377 		goto fail2;
378 	}
379 
380 	/*
381 	 * Bind the two together
382 	 */
383 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
384 	    dma_p->mem_va, dma_p->alength, bind_flags,
385 	    DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
386 	if (err != DDI_DMA_MAPPED) {
387 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
388 		    "failed to bind handle\n");
389 		goto fail3;
390 	}
391 
392 	if (dma_p->ncookies != 1) {
393 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
394 		    "failed to alloc cookies\n");
395 		goto fail4;
396 	}
397 
398 	dma_p->nslots = ~0U;
399 	dma_p->size = ~0U;
400 	dma_p->token = ~0U;
401 	dma_p->offset = 0;
402 
403 	return (DDI_SUCCESS);
404 
405 fail4:
406 	(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
407 fail3:
408 	ddi_dma_mem_free(&dma_p->acc_hdl);
409 fail2:
410 	ddi_dma_free_handle(&dma_p->dma_hdl);
411 fail1:
412 	return (err);
413 }
414 
415 static void
416 mwl_free_dma_mem(struct dma_area *dma_p)
417 {
418 	if (dma_p->dma_hdl != NULL) {
419 		(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
420 		if (dma_p->acc_hdl != NULL) {
421 			ddi_dma_mem_free(&dma_p->acc_hdl);
422 			dma_p->acc_hdl = NULL;
423 		}
424 		ddi_dma_free_handle(&dma_p->dma_hdl);
425 		dma_p->ncookies = 0;
426 		dma_p->dma_hdl = NULL;
427 	}
428 }
429 
430 static int
431 mwl_alloc_cmdbuf(struct mwl_softc *sc)
432 {
433 	int err;
434 	size_t size;
435 
436 	size = MWL_CMDBUF_SIZE;
437 
438 	err = mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr, size,
439 	    &mwl_cmdbuf_accattr, DDI_DMA_CONSISTENT,
440 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
441 	    &sc->sc_cmd_dma);
442 	if (err != DDI_SUCCESS) {
443 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_cmdbuf(): "
444 		    "failed to alloc dma mem\n");
445 		return (DDI_FAILURE);
446 	}
447 
448 	sc->sc_cmd_mem = (uint16_t *)sc->sc_cmd_dma.mem_va;
449 	sc->sc_cmd_dmaaddr = sc->sc_cmd_dma.cookie.dmac_address;
450 
451 	return (DDI_SUCCESS);
452 }
453 
454 static void
455 mwl_free_cmdbuf(struct mwl_softc *sc)
456 {
457 	if (sc->sc_cmd_mem != NULL)
458 		mwl_free_dma_mem(&sc->sc_cmd_dma);
459 }
460 
461 static int
462 mwl_alloc_rx_ring(struct mwl_softc *sc, int count)
463 {
464 	struct mwl_rx_ring *ring;
465 	struct mwl_rxdesc *ds;
466 	struct mwl_rxbuf *bf;
467 	int i, err, datadlen;
468 
469 	ring = &sc->sc_rxring;
470 	ring->count = count;
471 	ring->cur = ring->next = 0;
472 	err = mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
473 	    count * sizeof (struct mwl_rxdesc),
474 	    &mwl_desc_accattr,
475 	    DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
476 	    &ring->rxdesc_dma);
477 	if (err) {
478 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_rxring(): "
479 		    "alloc tx ring failed, size %d\n",
480 		    (uint32_t)(count * sizeof (struct mwl_rxdesc)));
481 		return (DDI_FAILURE);
482 	}
483 
484 	MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_rx_ring(): "
485 	    "dma len = %d\n", (uint32_t)(ring->rxdesc_dma.alength));
486 	ring->desc = (struct mwl_rxdesc *)ring->rxdesc_dma.mem_va;
487 	ring->physaddr = ring->rxdesc_dma.cookie.dmac_address;
488 	bzero(ring->desc, count * sizeof (struct mwl_rxdesc));
489 
490 	datadlen = count * sizeof (struct mwl_rxbuf);
491 	ring->buf = (struct mwl_rxbuf *)kmem_zalloc(datadlen, KM_SLEEP);
492 	if (ring->buf == NULL) {
493 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_rxring(): "
494 		    "could not alloc rx ring data buffer\n");
495 		return (DDI_FAILURE);
496 	}
497 	bzero(ring->buf, count * sizeof (struct mwl_rxbuf));
498 
499 	/*
500 	 * Pre-allocate Rx buffers and populate Rx ring.
501 	 */
502 	for (i = 0; i < count; i++) {
503 		ds = &ring->desc[i];
504 		bf = &ring->buf[i];
505 		/* alloc DMA memory */
506 		(void) mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
507 		    sc->sc_dmabuf_size,
508 		    &mwl_buf_accattr,
509 		    DDI_DMA_STREAMING,
510 		    DDI_DMA_READ | DDI_DMA_STREAMING,
511 		    &bf->rxbuf_dma);
512 		bf->bf_mem = (uint8_t *)(bf->rxbuf_dma.mem_va);
513 		bf->bf_baddr = bf->rxbuf_dma.cookie.dmac_address;
514 		bf->bf_desc = ds;
515 		bf->bf_daddr = ring->physaddr + _PTRDIFF(ds, ring->desc);
516 	}
517 
518 	(void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
519 	    0,
520 	    ring->rxdesc_dma.alength,
521 	    DDI_DMA_SYNC_FORDEV);
522 
523 	return (0);
524 }
525 
526 static void
527 mwl_free_rx_ring(struct mwl_softc *sc)
528 {
529 	struct mwl_rx_ring *ring;
530 	struct mwl_rxbuf *bf;
531 	int i;
532 
533 	ring = &sc->sc_rxring;
534 
535 	if (ring->desc != NULL) {
536 		mwl_free_dma_mem(&ring->rxdesc_dma);
537 	}
538 
539 	if (ring->buf != NULL) {
540 		for (i = 0; i < ring->count; i++) {
541 			bf = &ring->buf[i];
542 			mwl_free_dma_mem(&bf->rxbuf_dma);
543 		}
544 		kmem_free(ring->buf,
545 		    (ring->count * sizeof (struct mwl_rxbuf)));
546 	}
547 }
548 
549 static int
550 mwl_alloc_tx_ring(struct mwl_softc *sc, struct mwl_tx_ring *ring,
551     int count)
552 {
553 	struct mwl_txdesc *ds;
554 	struct mwl_txbuf *bf;
555 	int i, err, datadlen;
556 
557 	ring->count = count;
558 	ring->queued = 0;
559 	ring->cur = ring->next = ring->stat = 0;
560 	err = mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
561 	    count * sizeof (struct mwl_txdesc), &mwl_desc_accattr,
562 	    DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
563 	    &ring->txdesc_dma);
564 	if (err) {
565 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_tx_ring(): "
566 		    "alloc tx ring failed, size %d\n",
567 		    (uint32_t)(count * sizeof (struct mwl_txdesc)));
568 		return (DDI_FAILURE);
569 	}
570 
571 	MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_tx_ring(): "
572 	    "dma len = %d\n", (uint32_t)(ring->txdesc_dma.alength));
573 	ring->desc = (struct mwl_txdesc *)ring->txdesc_dma.mem_va;
574 	ring->physaddr = ring->txdesc_dma.cookie.dmac_address;
575 	bzero(ring->desc, count * sizeof (struct mwl_txdesc));
576 
577 	datadlen = count * sizeof (struct mwl_txbuf);
578 	ring->buf = kmem_zalloc(datadlen, KM_SLEEP);
579 	if (ring->buf == NULL) {
580 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_tx_ring(): "
581 		    "could not alloc tx ring data buffer\n");
582 		return (DDI_FAILURE);
583 	}
584 	bzero(ring->buf, count * sizeof (struct mwl_txbuf));
585 
586 	for (i = 0; i < count; i++) {
587 		ds = &ring->desc[i];
588 		bf = &ring->buf[i];
589 		/* alloc DMA memory */
590 		(void) mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
591 		    sc->sc_dmabuf_size,
592 		    &mwl_buf_accattr,
593 		    DDI_DMA_STREAMING,
594 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
595 		    &bf->txbuf_dma);
596 		bf->bf_baddr = bf->txbuf_dma.cookie.dmac_address;
597 		bf->bf_mem = (uint8_t *)(bf->txbuf_dma.mem_va);
598 		bf->bf_daddr = ring->physaddr + _PTRDIFF(ds, ring->desc);
599 		bf->bf_desc = ds;
600 	}
601 
602 	(void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
603 	    0,
604 	    ring->txdesc_dma.alength,
605 	    DDI_DMA_SYNC_FORDEV);
606 
607 	return (0);
608 }
609 
610 /* ARGSUSED */
611 static void
612 mwl_free_tx_ring(struct mwl_softc *sc, struct mwl_tx_ring *ring)
613 {
614 	struct mwl_txbuf *bf;
615 	int i;
616 
617 	if (ring->desc != NULL) {
618 		mwl_free_dma_mem(&ring->txdesc_dma);
619 	}
620 
621 	if (ring->buf != NULL) {
622 		for (i = 0; i < ring->count; i++) {
623 			bf = &ring->buf[i];
624 			mwl_free_dma_mem(&bf->txbuf_dma);
625 		}
626 		kmem_free(ring->buf,
627 		    (ring->count * sizeof (struct mwl_txbuf)));
628 	}
629 }
630 
631 /*
632  * Inform the f/w about location of the tx/rx dma data structures
633  * and related state.  This cmd must be done immediately after a
634  * mwl_hal_gethwspecs call or the f/w will lockup.
635  */
636 static int
637 mwl_hal_sethwdma(struct mwl_softc *sc, const struct mwl_hal_txrxdma *dma)
638 {
639 	HostCmd_DS_SET_HW_SPEC *pCmd;
640 	int retval;
641 
642 	_CMD_SETUP(pCmd, HostCmd_DS_SET_HW_SPEC, HostCmd_CMD_SET_HW_SPEC);
643 	pCmd->WcbBase[0] = LE_32(dma->wcbBase[0]);
644 	pCmd->WcbBase[1] = LE_32(dma->wcbBase[1]);
645 	pCmd->WcbBase[2] = LE_32(dma->wcbBase[2]);
646 	pCmd->WcbBase[3] = LE_32(dma->wcbBase[3]);
647 	pCmd->TxWcbNumPerQueue = LE_32(dma->maxNumTxWcb);
648 	pCmd->NumTxQueues = LE_32(dma->maxNumWCB);
649 	pCmd->TotalRxWcb = LE_32(1);		/* XXX */
650 	pCmd->RxPdWrPtr = LE_32(dma->rxDescRead);
651 	/*
652 	 * pCmd->Flags = LE_32(SET_HW_SPEC_HOSTFORM_BEACON
653 	 * #ifdef MWL_HOST_PS_SUPPORT
654 	 * | SET_HW_SPEC_HOST_POWERSAVE
655 	 * #endif
656 	 * | SET_HW_SPEC_HOSTFORM_PROBERESP);
657 	 */
658 	pCmd->Flags = 0;
659 	/* disable multi-bss operation for A1-A4 parts */
660 	if (sc->sc_revs.mh_macRev < 5)
661 		pCmd->Flags |= LE_32(SET_HW_SPEC_DISABLEMBSS);
662 
663 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_HW_SPEC);
664 	if (retval == 0) {
665 		if (pCmd->Flags & LE_32(SET_HW_SPEC_DISABLEMBSS))
666 			sc->sc_hw_flags &= ~MHF_MBSS;
667 		else
668 			sc->sc_hw_flags |= MHF_MBSS;
669 	}
670 
671 	return (retval);
672 }
673 
674 /*
675  * Inform firmware of our tx/rx dma setup.  The BAR 0
676  * writes below are for compatibility with older firmware.
677  * For current firmware we send this information with a
678  * cmd block via mwl_hal_sethwdma.
679  */
680 static int
681 mwl_setupdma(struct mwl_softc *sc)
682 {
683 	int i, err;
684 
685 	sc->sc_hwdma.rxDescRead = sc->sc_rxring.physaddr;
686 	mwl_mem_write4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
687 	mwl_mem_write4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
688 
689 	for (i = 0; i < MWL_NUM_TX_QUEUES - MWL_NUM_ACK_QUEUES; i++) {
690 		struct mwl_tx_ring *txring = &sc->sc_txring[i];
691 		sc->sc_hwdma.wcbBase[i] = txring->physaddr;
692 		mwl_mem_write4(sc, sc->sc_hwspecs.wcbBase[i],
693 		    sc->sc_hwdma.wcbBase[i]);
694 	}
695 	sc->sc_hwdma.maxNumTxWcb = MWL_TX_RING_COUNT;
696 	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES - MWL_NUM_ACK_QUEUES;
697 
698 	err = mwl_hal_sethwdma(sc, &sc->sc_hwdma);
699 	if (err != 0) {
700 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_setupdma(): "
701 		    "unable to setup tx/rx dma; hal status %u\n", err);
702 		/* XXX */
703 	}
704 
705 	return (err);
706 }
707 
708 /* ARGSUSED */
709 static void
710 mwl_txq_init(struct mwl_softc *sc, struct mwl_tx_ring *txring, int qnum)
711 {
712 	struct mwl_txbuf *bf;
713 	struct mwl_txdesc *ds;
714 	int i;
715 
716 	txring->qnum = qnum;
717 	txring->txpri = 0;	/* XXX */
718 
719 	bf = txring->buf;
720 	ds = txring->desc;
721 	for (i = 0; i < MWL_TX_RING_COUNT - 1; i++) {
722 		bf++;
723 		ds->pPhysNext = bf->bf_daddr;
724 		ds++;
725 	}
726 	bf = txring->buf;
727 	ds->pPhysNext = LE_32(bf->bf_daddr);
728 }
729 
730 /*
731  * Setup a hardware data transmit queue for the specified
732  * access control.  We record the mapping from ac's
733  * to h/w queues for use by mwl_tx_start.
734  */
735 static int
736 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
737 {
738 #define	N(a)	(sizeof (a)/sizeof (a[0]))
739 	struct mwl_tx_ring *txring;
740 
741 	if (ac >= N(sc->sc_ac2q)) {
742 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_tx_setup(): "
743 		    "AC %u out of range, max %u!\n",
744 		    ac, (uint_t)N(sc->sc_ac2q));
745 		return (0);
746 	}
747 	if (mvtype >= MWL_NUM_TX_QUEUES) {
748 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_tx_setup(): "
749 		    "mvtype %u out of range, max %u!\n",
750 		    mvtype, MWL_NUM_TX_QUEUES);
751 		return (0);
752 	}
753 	txring = &sc->sc_txring[mvtype];
754 	mwl_txq_init(sc, txring, mvtype);
755 	sc->sc_ac2q[ac] = txring;
756 	return (1);
757 #undef N
758 }
759 
760 static int
761 mwl_setup_txq(struct mwl_softc *sc)
762 {
763 	int err = 0;
764 
765 	/* NB: insure BK queue is the lowest priority h/w queue */
766 	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
767 		MWL_DBG(MWL_DBG_DMA, "mwl: mwl_setup_txq(): "
768 		    "unable to setup xmit queue for %s traffic!\n",
769 		    mwl_wme_acnames[WME_AC_BK]);
770 		err = EIO;
771 		return (err);
772 	}
773 	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
774 	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
775 	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
776 		/*
777 		 * Not enough hardware tx queues to properly do WME;
778 		 * just punt and assign them all to the same h/w queue.
779 		 * We could do a better job of this if, for example,
780 		 * we allocate queues when we switch from station to
781 		 * AP mode.
782 		 */
783 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
784 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
785 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
786 	}
787 
788 	return (err);
789 }
790 
791 /*
792  * find mwl firmware module's "_start" "_end" symbols
793  * and get its size.
794  */
795 static int
796 mwl_loadsym(ddi_modhandle_t modp, char *sym, char **start, size_t *len)
797 {
798 	char start_sym[64];
799 	char end_sym[64];
800 	char *p, *end;
801 	int rv;
802 	size_t n;
803 
804 	(void) snprintf(start_sym, sizeof (start_sym), "%s_start", sym);
805 	(void) snprintf(end_sym, sizeof (end_sym), "%s_end", sym);
806 
807 	p = (char *)ddi_modsym(modp, start_sym, &rv);
808 	if (p == NULL || rv != 0) {
809 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadsym(): "
810 		    "mod %s: symbol %s not found\n", sym, start_sym);
811 		return (-1);
812 	}
813 
814 	end = (char *)ddi_modsym(modp, end_sym, &rv);
815 	if (end == NULL || rv != 0) {
816 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadsym(): "
817 		    "mod %s: symbol %s not found\n", sym, end_sym);
818 		return (-1);
819 	}
820 
821 	n = _PTRDIFF(end, p);
822 	*start = p;
823 	*len = n;
824 
825 	return (0);
826 }
827 
828 static void
829 mwlFwReset(struct mwl_softc *sc)
830 {
831 	if (mwl_ctl_read4(sc,  MACREG_REG_INT_CODE) == 0xffffffff) {
832 		MWL_DBG(MWL_DBG_FW, "mwl: mwlFWReset(): "
833 		    "device not present!\n");
834 		return;
835 	}
836 
837 	mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS, ISR_RESET);
838 	sc->sc_hw_flags &= ~MHF_FWHANG;
839 }
840 
841 static void
842 mwlPokeSdramController(struct mwl_softc *sc, int SDRAMSIZE_Addr)
843 {
844 	/* Set up sdram controller for superflyv2 */
845 	mwl_ctl_write4(sc, 0x00006014, 0x33);
846 	mwl_ctl_write4(sc, 0x00006018, 0xa3a2632);
847 	mwl_ctl_write4(sc, 0x00006010, SDRAMSIZE_Addr);
848 }
849 
850 static void
851 mwlTriggerPciCmd(struct mwl_softc *sc)
852 {
853 	(void) ddi_dma_sync(sc->sc_cmd_dma.dma_hdl,
854 	    0,
855 	    sc->sc_cmd_dma.alength,
856 	    DDI_DMA_SYNC_FORDEV);
857 
858 	mwl_ctl_write4(sc, MACREG_REG_GEN_PTR, sc->sc_cmd_dmaaddr);
859 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
860 
861 	mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0x00);
862 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
863 
864 	mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS,
865 	    MACREG_H2ARIC_BIT_DOOR_BELL);
866 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
867 }
868 
869 static int
870 mwlWaitFor(struct mwl_softc *sc, uint32_t val)
871 {
872 	int i;
873 
874 	for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
875 		DELAY(FW_CHECK_USECS);
876 		if (mwl_ctl_read4(sc, MACREG_REG_INT_CODE) == val)
877 			return (1);
878 	}
879 	return (0);
880 }
881 
882 /*
883  * Firmware block xmit when talking to the boot-rom.
884  */
885 static int
886 mwlSendBlock(struct mwl_softc *sc, int bsize, const void *data, size_t dsize)
887 {
888 	sc->sc_cmd_mem[0] = LE_16(HostCmd_CMD_CODE_DNLD);
889 	sc->sc_cmd_mem[1] = LE_16(bsize);
890 	(void) memcpy(&sc->sc_cmd_mem[4], data, dsize);
891 	mwlTriggerPciCmd(sc);
892 	/* XXX 2000 vs 200 */
893 	if (mwlWaitFor(sc, MACREG_INT_CODE_CMD_FINISHED)) {
894 		mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0);
895 		return (1);
896 	}
897 
898 	MWL_DBG(MWL_DBG_FW, "mwl: mwlSendBlock(): "
899 	    "timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
900 	    mwl_ctl_read4(sc, MACREG_REG_INT_CODE));
901 	return (0);
902 }
903 
904 /*
905  * Firmware block xmit when talking to the 1st-stage loader.
906  */
907 static int
908 mwlSendBlock2(struct mwl_softc *sc, const void *data, size_t dsize)
909 {
910 	(void) memcpy(&sc->sc_cmd_mem[0], data, dsize);
911 	mwlTriggerPciCmd(sc);
912 	if (mwlWaitFor(sc, MACREG_INT_CODE_CMD_FINISHED)) {
913 		mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0);
914 		return (1);
915 	}
916 
917 	MWL_DBG(MWL_DBG_FW, "mwl: mwlSendBlock2(): "
918 	    "timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
919 	    mwl_ctl_read4(sc, MACREG_REG_INT_CODE));
920 	return (0);
921 }
922 
923 /* ARGSUSED */
924 static int
925 mwl_fwload(struct mwl_softc *sc, void *fwargs)
926 {
927 	char *fwname = "mwlfw";
928 	char *fwbootname = "mwlboot";
929 	char *fwbinname = "mw88W8363fw";
930 	char *fwboot_index, *fw_index;
931 	uint8_t *fw, *fwboot;
932 	ddi_modhandle_t modfw;
933 	/* XXX get from firmware header */
934 	uint32_t FwReadySignature = HostCmd_SOFTAP_FWRDY_SIGNATURE;
935 	uint32_t OpMode = HostCmd_SOFTAP_MODE;
936 	const uint8_t *fp, *ep;
937 	size_t fw_size, fwboot_size;
938 	uint32_t blocksize, nbytes;
939 	int i, rv, err, ntries;
940 
941 	rv = err = 0;
942 	fw = fwboot = NULL;
943 	fw_index = fwboot_index = NULL;
944 
945 	modfw = ddi_modopen(fwname, KRTLD_MODE_FIRST, &rv);
946 	if (modfw == NULL) {
947 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
948 		    "module %s not found\n", fwname);
949 		err = -1;
950 		goto bad2;
951 	}
952 
953 	err = mwl_loadsym(modfw, fwbootname, &fwboot_index, &fwboot_size);
954 	if (err != 0) {
955 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
956 		    "could not get boot firmware\n");
957 		err = -1;
958 		goto bad2;
959 	}
960 
961 	err = mwl_loadsym(modfw, fwbinname, &fw_index, &fw_size);
962 	if (err != 0) {
963 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
964 		    "could not get firmware\n");
965 		err = -1;
966 		goto bad2;
967 	}
968 
969 	fwboot = (uint8_t *)kmem_alloc(fwboot_size, KM_SLEEP);
970 	if (fwboot == NULL) {
971 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadfirmware(): "
972 		    "failed to alloc boot firmware memory\n");
973 		err = -1;
974 		goto bad2;
975 	}
976 	(void) memcpy(fwboot, fwboot_index, fwboot_size);
977 
978 	fw = (uint8_t *)kmem_alloc(fw_size, KM_SLEEP);
979 	if (fw == NULL) {
980 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadfirmware(): "
981 		    "failed to alloc firmware memory\n");
982 		err = -1;
983 		goto bad2;
984 	}
985 	(void) memcpy(fw, fw_index, fw_size);
986 
987 	if (modfw != NULL)
988 		(void) ddi_modclose(modfw);
989 
990 	if (fw_size < 4) {
991 		MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
992 		    "could not load firmware image %s\n",
993 		    fwname);
994 		err = ENXIO;
995 		goto bad2;
996 	}
997 
998 	if (fw[0] == 0x01 && fw[1] == 0x00 &&
999 	    fw[2] == 0x00 && fw[3] == 0x00) {
1000 		/*
1001 		 * 2-stage load, get the boot firmware.
1002 		 */
1003 		if (fwboot == NULL) {
1004 			MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
1005 			    "could not load firmware image %s\n",
1006 			    fwbootname);
1007 			err = ENXIO;
1008 			goto bad2;
1009 		}
1010 	} else
1011 		fwboot = NULL;
1012 
1013 	mwlFwReset(sc);
1014 
1015 	mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_CLEAR_SEL,
1016 	    MACREG_A2HRIC_BIT_MASK);
1017 	mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_CAUSE, 0x00);
1018 	mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_MASK, 0x00);
1019 	mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_STATUS_MASK,
1020 	    MACREG_A2HRIC_BIT_MASK);
1021 	if (sc->sc_SDRAMSIZE_Addr != 0) {
1022 		/* Set up sdram controller for superflyv2 */
1023 		mwlPokeSdramController(sc, sc->sc_SDRAMSIZE_Addr);
1024 	}
1025 
1026 	MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
1027 	    "load %s firmware image (%u bytes)\n",
1028 	    fwname, (unsigned int)fw_size);
1029 
1030 	if (fwboot != NULL) {
1031 		/*
1032 		 * Do 2-stage load.  The 1st stage loader is setup
1033 		 * with the bootrom loader then we load the real
1034 		 * image using a different handshake. With this
1035 		 * mechanism the firmware is segmented into chunks
1036 		 * that have a CRC.  If a chunk is incorrect we'll
1037 		 * be told to retransmit.
1038 		 */
1039 		/* XXX assumes hlpimage fits in a block */
1040 		/* NB: zero size block indicates download is finished */
1041 		if (!mwlSendBlock(sc, fwboot_size, fwboot, fwboot_size) ||
1042 		    !mwlSendBlock(sc, 0, NULL, 0)) {
1043 			err = ETIMEDOUT;
1044 			goto bad;
1045 		}
1046 		DELAY(200 * FW_CHECK_USECS);
1047 		if (sc->sc_SDRAMSIZE_Addr != 0) {
1048 			/* Set up sdram controller for superflyv2 */
1049 			mwlPokeSdramController(sc, sc->sc_SDRAMSIZE_Addr);
1050 		}
1051 		nbytes = ntries = 0;		/* NB: silence compiler */
1052 		for (fp = fw, ep = fp + fw_size; fp < ep; ) {
1053 			mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0);
1054 			blocksize = mwl_ctl_read4(sc, MACREG_REG_SCRATCH);
1055 			if (blocksize == 0)	/* download complete */
1056 				break;
1057 			if (blocksize > 0x00000c00) {
1058 				err = EINVAL;
1059 				goto bad;
1060 			}
1061 			if ((blocksize & 0x1) == 0) {
1062 				/* block successfully downloaded, advance */
1063 				fp += nbytes;
1064 				ntries = 0;
1065 			} else {
1066 				if (++ntries > 2) {
1067 					/*
1068 					 * Guard against f/w telling us to
1069 					 * retry infinitely.
1070 					 */
1071 					err = ELOOP;
1072 					goto bad;
1073 				}
1074 				/* clear NAK bit/flag */
1075 				blocksize &= ~0x1;
1076 			}
1077 			if (blocksize > _PTRDIFF(ep, fp)) {
1078 				/* XXX this should not happen, what to do? */
1079 				blocksize = _PTRDIFF(ep, fp);
1080 			}
1081 			nbytes = blocksize;
1082 			if (!mwlSendBlock2(sc, fp, nbytes)) {
1083 				err = ETIMEDOUT;
1084 				goto bad;
1085 			}
1086 		}
1087 	} else {
1088 		for (fp = fw, ep = fp + fw_size; fp < ep; ) {
1089 			nbytes = _PTRDIFF(ep, fp);
1090 			if (nbytes > FW_DOWNLOAD_BLOCK_SIZE)
1091 				nbytes = FW_DOWNLOAD_BLOCK_SIZE;
1092 			if (!mwlSendBlock(sc, FW_DOWNLOAD_BLOCK_SIZE, fp,
1093 			    nbytes)) {
1094 				err = EIO;
1095 				goto bad;
1096 			}
1097 			fp += nbytes;
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * Wait for firmware to startup; we monitor the
1103 	 * INT_CODE register waiting for a signature to
1104 	 * written back indicating it's ready to go.
1105 	 */
1106 	sc->sc_cmd_mem[1] = 0;
1107 	/*
1108 	 * XXX WAR for mfg fw download
1109 	 */
1110 	if (OpMode != HostCmd_STA_MODE)
1111 		mwlTriggerPciCmd(sc);
1112 	for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
1113 		mwl_ctl_write4(sc, MACREG_REG_GEN_PTR, OpMode);
1114 		DELAY(FW_CHECK_USECS);
1115 		if (mwl_ctl_read4(sc, MACREG_REG_INT_CODE) ==
1116 		    FwReadySignature) {
1117 			mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0x00);
1118 			return (mwlResetHalState(sc));
1119 		}
1120 	}
1121 	MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
1122 	    "firmware download timeout\n");
1123 	return (ETIMEDOUT);
1124 bad:
1125 	mwlFwReset(sc);
1126 bad2:
1127 	if (fw != NULL)
1128 		kmem_free(fw, fw_size);
1129 	if (fwboot != NULL)
1130 		kmem_free(fwboot, fwboot_size);
1131 	fwboot = fw = NULL;
1132 	fwboot_index = fw_index = NULL;
1133 	if (modfw != NULL)
1134 		(void) ddi_modclose(modfw);
1135 	return (err);
1136 }
1137 
1138 /*
1139  * Low level firmware cmd block handshake support.
1140  */
1141 static void
1142 mwlSendCmd(struct mwl_softc *sc)
1143 {
1144 	(void) ddi_dma_sync(sc->sc_cmd_dma.dma_hdl,
1145 	    0,
1146 	    sc->sc_cmd_dma.alength,
1147 	    DDI_DMA_SYNC_FORDEV);
1148 
1149 	mwl_ctl_write4(sc, MACREG_REG_GEN_PTR, sc->sc_cmd_dmaaddr);
1150 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
1151 
1152 	mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS,
1153 	    MACREG_H2ARIC_BIT_DOOR_BELL);
1154 }
1155 
1156 static int
1157 mwlExecuteCmd(struct mwl_softc *sc, unsigned short cmd)
1158 {
1159 	if (mwl_ctl_read4(sc,  MACREG_REG_INT_CODE) == 0xffffffff) {
1160 		MWL_DBG(MWL_DBG_CMD, "mwl: mwlExecuteCmd(): "
1161 		    "device not present!\n");
1162 		return (EIO);
1163 	}
1164 	mwlSendCmd(sc);
1165 	if (!mwlWaitForCmdComplete(sc, 0x8000 | cmd)) {
1166 		MWL_DBG(MWL_DBG_CMD, "mwl: mwlExecuteCmd(): "
1167 		    "timeout waiting for f/w cmd %s\n", mwlcmdname(cmd));
1168 		return (ETIMEDOUT);
1169 	}
1170 	(void) ddi_dma_sync(sc->sc_cmd_dma.dma_hdl,
1171 	    0,
1172 	    sc->sc_cmd_dma.alength,
1173 	    DDI_DMA_SYNC_FORDEV);
1174 
1175 	MWL_DBG(MWL_DBG_CMD, "mwl: mwlExecuteCmd(): "
1176 	    "send cmd %s\n", mwlcmdname(cmd));
1177 
1178 	if (mwl_dbg_flags & MWL_DBG_CMD)
1179 		dumpresult(sc, 1);
1180 
1181 	return (0);
1182 }
1183 
1184 static int
1185 mwlWaitForCmdComplete(struct mwl_softc *sc, uint16_t cmdCode)
1186 {
1187 #define	MAX_WAIT_FW_COMPLETE_ITERATIONS	10000
1188 	int i;
1189 
1190 	for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) {
1191 		if (sc->sc_cmd_mem[0] == LE_16(cmdCode))
1192 			return (1);
1193 		DELAY(1 * 1000);
1194 	}
1195 	return (0);
1196 #undef MAX_WAIT_FW_COMPLETE_ITERATIONS
1197 }
1198 
1199 static const char *
1200 mwlcmdname(int cmd)
1201 {
1202 	static char buf[12];
1203 #define	CMD(x)	case HostCmd_CMD_##x: return #x
1204 	switch (cmd) {
1205 	CMD(CODE_DNLD);
1206 	CMD(GET_HW_SPEC);
1207 	CMD(SET_HW_SPEC);
1208 	CMD(MAC_MULTICAST_ADR);
1209 	CMD(802_11_GET_STAT);
1210 	CMD(MAC_REG_ACCESS);
1211 	CMD(BBP_REG_ACCESS);
1212 	CMD(RF_REG_ACCESS);
1213 	CMD(802_11_RADIO_CONTROL);
1214 	CMD(802_11_RF_TX_POWER);
1215 	CMD(802_11_RF_ANTENNA);
1216 	CMD(SET_BEACON);
1217 	CMD(SET_RF_CHANNEL);
1218 	CMD(SET_AID);
1219 	CMD(SET_INFRA_MODE);
1220 	CMD(SET_G_PROTECT_FLAG);
1221 	CMD(802_11_RTS_THSD);
1222 	CMD(802_11_SET_SLOT);
1223 	CMD(SET_EDCA_PARAMS);
1224 	CMD(802_11H_DETECT_RADAR);
1225 	CMD(SET_WMM_MODE);
1226 	CMD(HT_GUARD_INTERVAL);
1227 	CMD(SET_FIXED_RATE);
1228 	CMD(SET_LINKADAPT_CS_MODE);
1229 	CMD(SET_MAC_ADDR);
1230 	CMD(SET_RATE_ADAPT_MODE);
1231 	CMD(BSS_START);
1232 	CMD(SET_NEW_STN);
1233 	CMD(SET_KEEP_ALIVE);
1234 	CMD(SET_APMODE);
1235 	CMD(SET_SWITCH_CHANNEL);
1236 	CMD(UPDATE_ENCRYPTION);
1237 	CMD(BASTREAM);
1238 	CMD(SET_RIFS);
1239 	CMD(SET_N_PROTECT_FLAG);
1240 	CMD(SET_N_PROTECT_OPMODE);
1241 	CMD(SET_OPTIMIZATION_LEVEL);
1242 	CMD(GET_CALTABLE);
1243 	CMD(SET_MIMOPSHT);
1244 	CMD(GET_BEACON);
1245 	CMD(SET_REGION_CODE);
1246 	CMD(SET_POWERSAVESTATION);
1247 	CMD(SET_TIM);
1248 	CMD(GET_TIM);
1249 	CMD(GET_SEQNO);
1250 	CMD(DWDS_ENABLE);
1251 	CMD(AMPDU_RETRY_RATEDROP_MODE);
1252 	CMD(CFEND_ENABLE);
1253 	}
1254 	(void) snprintf(buf, sizeof (buf), "0x%x", cmd);
1255 	return (buf);
1256 #undef CMD
1257 }
1258 
1259 static void
1260 dumpresult(struct mwl_softc *sc, int showresult)
1261 {
1262 	const FWCmdHdr *h = (const FWCmdHdr *)sc->sc_cmd_mem;
1263 	int len;
1264 
1265 	len = LE_16(h->Length);
1266 #ifdef MWL_MBSS_SUPPORT
1267 	MWL_DBG(MWL_DBG_CMD, "mwl: mwl_dumpresult(): "
1268 	    "Cmd %s Length %d SeqNum %d MacId %d",
1269 	    mwlcmdname(LE_16(h->Cmd) & ~0x8000), len, h->SeqNum, h->MacId);
1270 #else
1271 	MWL_DBG(MWL_DBG_CMD, "mwl: mwl_dumpresult(): "
1272 	    "Cmd %s Length %d SeqNum %d",
1273 	    mwlcmdname(LE_16(h->Cmd) & ~0x8000), len, LE_16(h->SeqNum));
1274 #endif
1275 	if (showresult) {
1276 		const char *results[] =
1277 		    { "OK", "ERROR", "NOT_SUPPORT", "PENDING", "BUSY",
1278 		    "PARTIAL_DATA" };
1279 		int result = LE_16(h->Result);
1280 
1281 		if (result <= HostCmd_RESULT_PARTIAL_DATA)
1282 			MWL_DBG(MWL_DBG_CMD, "mwl: dumpresult(): "
1283 			    "Result %s", results[result]);
1284 		else
1285 			MWL_DBG(MWL_DBG_CMD, "mwl: dumpresult(): "
1286 			    "Result %d", result);
1287 	}
1288 }
1289 
1290 static int
1291 mwlGetCalTable(struct mwl_softc *sc, uint8_t annex, uint8_t index)
1292 {
1293 	HostCmd_FW_GET_CALTABLE *pCmd;
1294 	int retval;
1295 
1296 	_CMD_SETUP(pCmd, HostCmd_FW_GET_CALTABLE, HostCmd_CMD_GET_CALTABLE);
1297 	pCmd->annex = annex;
1298 	pCmd->index = index;
1299 	(void) memset(pCmd->calTbl, 0, sizeof (pCmd->calTbl));
1300 
1301 	retval = mwlExecuteCmd(sc, HostCmd_CMD_GET_CALTABLE);
1302 	if (retval == 0 &&
1303 	    pCmd->calTbl[0] != annex && annex != 0 && annex != 255)
1304 		retval = EIO;
1305 	return (retval);
1306 }
1307 
1308 /*
1309  * Construct channel info for 2.4GHz channels from cal data.
1310  */
1311 static void
1312 get2Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
1313 {
1314 	int i, j;
1315 
1316 	j = 0;
1317 	for (i = 0; i < len; i += 4) {
1318 		struct mwl_hal_channel *hc = &ci->channels[j];
1319 		hc->ieee = 1+j;
1320 		hc->freq = ieee2mhz(1+j);
1321 		(void) memcpy(hc->targetPowers, &table[i], 4);
1322 		setmaxtxpow(hc, 0, 4);
1323 		j++;
1324 	}
1325 	ci->nchannels = j;
1326 	ci->freqLow = ieee2mhz(1);
1327 	ci->freqHigh = ieee2mhz(j);
1328 }
1329 
1330 /*
1331  * Construct channel info for 5GHz channels from cal data.
1332  */
1333 static void
1334 get5Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
1335 {
1336 	int i, j, f, l, h;
1337 
1338 	l = 32000;
1339 	h = 0;
1340 	j = 0;
1341 	for (i = 0; i < len; i += 4) {
1342 		struct mwl_hal_channel *hc;
1343 
1344 		if (table[i] == 0)
1345 			continue;
1346 		f = 5000 + 5*table[i];
1347 		if (f < l)
1348 			l = f;
1349 		if (f > h)
1350 			h = f;
1351 		hc = &ci->channels[j];
1352 		hc->freq = (uint16_t)f;
1353 		hc->ieee = table[i];
1354 		(void) memcpy(hc->targetPowers, &table[i], 4);
1355 		setmaxtxpow(hc, 1, 4);	/* NB: col 1 is the freq, skip */
1356 		j++;
1357 	}
1358 	ci->nchannels = j;
1359 	ci->freqLow = (uint16_t)((l == 32000) ? 0 : l);
1360 	ci->freqHigh = (uint16_t)h;
1361 }
1362 
1363 /*
1364  * Calculate the max tx power from the channel's cal data.
1365  */
1366 static void
1367 setmaxtxpow(struct mwl_hal_channel *hc, int i, int maxix)
1368 {
1369 	hc->maxTxPow = hc->targetPowers[i];
1370 	for (i++; i < maxix; i++)
1371 		if (hc->targetPowers[i] > hc->maxTxPow)
1372 			hc->maxTxPow = hc->targetPowers[i];
1373 }
1374 
1375 static uint16_t
1376 ieee2mhz(int chan)
1377 {
1378 	if (chan == 14)
1379 		return (2484);
1380 	if (chan < 14)
1381 		return (2407 + chan * 5);
1382 	return (2512 + (chan - 15) * 20);
1383 }
1384 
1385 static void
1386 dumpcaldata(const char *name, const uint8_t *table, int n)
1387 {
1388 	int i;
1389 	MWL_DBG(MWL_DBG_HW, "\n%s:\n", name);
1390 	for (i = 0; i < n; i += 4)
1391 		MWL_DBG(MWL_DBG_HW, "[%2d] %3d %3d %3d %3d\n",
1392 		    i/4, table[i+0], table[i+1], table[i+2], table[i+3]);
1393 }
1394 
1395 static int
1396 mwlGetPwrCalTable(struct mwl_softc *sc)
1397 {
1398 	const uint8_t *data;
1399 	MWL_HAL_CHANNELINFO *ci;
1400 	int len;
1401 
1402 	/* NB: we hold the lock so it's ok to use cmdbuf */
1403 	data = ((const HostCmd_FW_GET_CALTABLE *) sc->sc_cmd_mem)->calTbl;
1404 	if (mwlGetCalTable(sc, 33, 0) == 0) {
1405 		len = (data[2] | (data[3] << 8)) - 12;
1406 		if (len > PWTAGETRATETABLE20M)
1407 			len = PWTAGETRATETABLE20M;
1408 		dumpcaldata("2.4G 20M", &data[12], len);
1409 		get2Ghz(&sc->sc_20M, &data[12], len);
1410 	}
1411 	if (mwlGetCalTable(sc, 34, 0) == 0) {
1412 		len = (data[2] | (data[3] << 8)) - 12;
1413 		if (len > PWTAGETRATETABLE40M)
1414 			len = PWTAGETRATETABLE40M;
1415 		dumpcaldata("2.4G 40M", &data[12], len);
1416 		ci = &sc->sc_40M;
1417 		get2Ghz(ci, &data[12], len);
1418 	}
1419 	if (mwlGetCalTable(sc, 35, 0) == 0) {
1420 		len = (data[2] | (data[3] << 8)) - 20;
1421 		if (len > PWTAGETRATETABLE20M_5G)
1422 			len = PWTAGETRATETABLE20M_5G;
1423 		dumpcaldata("5G 20M", &data[20], len);
1424 		get5Ghz(&sc->sc_20M_5G, &data[20], len);
1425 	}
1426 	if (mwlGetCalTable(sc, 36, 0) == 0) {
1427 		len = (data[2] | (data[3] << 8)) - 20;
1428 		if (len > PWTAGETRATETABLE40M_5G)
1429 			len = PWTAGETRATETABLE40M_5G;
1430 		dumpcaldata("5G 40M", &data[20], len);
1431 		ci = &sc->sc_40M_5G;
1432 		get5Ghz(ci, &data[20], len);
1433 	}
1434 	sc->sc_hw_flags |= MHF_CALDATA;
1435 	return (0);
1436 }
1437 
1438 /*
1439  * Reset internal state after a firmware download.
1440  */
1441 static int
1442 mwlResetHalState(struct mwl_softc *sc)
1443 {
1444 	int err = 0;
1445 
1446 	/*
1447 	 * Fetch cal data for later use.
1448 	 * XXX may want to fetch other stuff too.
1449 	 */
1450 	/* XXX check return */
1451 	if ((sc->sc_hw_flags & MHF_CALDATA) == 0)
1452 		err = mwlGetPwrCalTable(sc);
1453 	return (err);
1454 }
1455 
1456 #define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
1457 #define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
1458 
1459 static void
1460 addchan(struct mwl_channel *c, int freq, int flags, int ieee, int txpow)
1461 {
1462 	c->ic_freq = (uint16_t)freq;
1463 	c->ic_flags = flags;
1464 	c->ic_ieee = (uint8_t)ieee;
1465 	c->ic_minpower = 0;
1466 	c->ic_maxpower = 2*txpow;
1467 	c->ic_maxregpower = (uint8_t)txpow;
1468 }
1469 
1470 static const struct mwl_channel *
1471 findchannel(const struct mwl_channel chans[], int nchans,
1472     int freq, int flags)
1473 {
1474 	const struct mwl_channel *c;
1475 	int i;
1476 
1477 	for (i = 0; i < nchans; i++) {
1478 		c = &chans[i];
1479 		if (c->ic_freq == freq && c->ic_flags == flags)
1480 			return (c);
1481 	}
1482 	return (NULL);
1483 }
1484 
1485 static void
1486 addht40channels(struct mwl_channel chans[], int maxchans, int *nchans,
1487     const MWL_HAL_CHANNELINFO *ci, int flags)
1488 {
1489 	struct mwl_channel *c;
1490 	const struct mwl_channel *extc;
1491 	const struct mwl_hal_channel *hc;
1492 	int i;
1493 
1494 	c = &chans[*nchans];
1495 
1496 	flags &= ~IEEE80211_CHAN_HT;
1497 	for (i = 0; i < ci->nchannels; i++) {
1498 		/*
1499 		 * Each entry defines an HT40 channel pair; find the
1500 		 * extension channel above and the insert the pair.
1501 		 */
1502 		hc = &ci->channels[i];
1503 		extc = findchannel(chans, *nchans, hc->freq+20,
1504 		    flags | IEEE80211_CHAN_HT20);
1505 		if (extc != NULL) {
1506 			if (*nchans >= maxchans)
1507 				break;
1508 			addchan(c, hc->freq, flags | IEEE80211_CHAN_HT40U,
1509 			    hc->ieee, hc->maxTxPow);
1510 			c->ic_extieee = extc->ic_ieee;
1511 			c++, (*nchans)++;
1512 			if (*nchans >= maxchans)
1513 				break;
1514 			addchan(c, extc->ic_freq, flags | IEEE80211_CHAN_HT40D,
1515 			    extc->ic_ieee, hc->maxTxPow);
1516 			c->ic_extieee = hc->ieee;
1517 			c++, (*nchans)++;
1518 		}
1519 	}
1520 }
1521 
1522 static void
1523 addchannels(struct mwl_channel chans[], int maxchans, int *nchans,
1524     const MWL_HAL_CHANNELINFO *ci, int flags)
1525 {
1526 	struct mwl_channel *c;
1527 	int i;
1528 
1529 	c = &chans[*nchans];
1530 
1531 	for (i = 0; i < ci->nchannels; i++) {
1532 		const struct mwl_hal_channel *hc;
1533 
1534 		hc = &ci->channels[i];
1535 		if (*nchans >= maxchans)
1536 			break;
1537 		addchan(c, hc->freq, flags, hc->ieee, hc->maxTxPow);
1538 		c++, (*nchans)++;
1539 
1540 		if (flags == IEEE80211_CHAN_G || flags == IEEE80211_CHAN_HTG) {
1541 			/* g channel have a separate b-only entry */
1542 			if (*nchans >= maxchans)
1543 				break;
1544 			c[0] = c[-1];
1545 			c[-1].ic_flags = IEEE80211_CHAN_B;
1546 			c++, (*nchans)++;
1547 		}
1548 		if (flags == IEEE80211_CHAN_HTG) {
1549 			/* HT g channel have a separate g-only entry */
1550 			if (*nchans >= maxchans)
1551 				break;
1552 			c[-1].ic_flags = IEEE80211_CHAN_G;
1553 			c[0] = c[-1];
1554 			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
1555 			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
1556 			c++, (*nchans)++;
1557 		}
1558 		if (flags == IEEE80211_CHAN_HTA) {
1559 			/* HT a channel have a separate a-only entry */
1560 			if (*nchans >= maxchans)
1561 				break;
1562 			c[-1].ic_flags = IEEE80211_CHAN_A;
1563 			c[0] = c[-1];
1564 			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
1565 			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
1566 			c++, (*nchans)++;
1567 		}
1568 	}
1569 }
1570 
1571 static int
1572 mwl_hal_getchannelinfo(struct mwl_softc *sc, int band, int chw,
1573     const MWL_HAL_CHANNELINFO **ci)
1574 {
1575 	switch (band) {
1576 	case MWL_FREQ_BAND_2DOT4GHZ:
1577 		*ci = (chw == MWL_CH_20_MHz_WIDTH) ? &sc->sc_20M : &sc->sc_40M;
1578 		break;
1579 	case MWL_FREQ_BAND_5GHZ:
1580 		*ci = (chw == MWL_CH_20_MHz_WIDTH) ?
1581 		    &sc->sc_20M_5G : &sc->sc_40M_5G;
1582 		break;
1583 	default:
1584 		return (EINVAL);
1585 	}
1586 	return (((*ci)->freqLow == (*ci)->freqHigh) ? EINVAL : 0);
1587 }
1588 
1589 static void
1590 getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
1591     struct mwl_channel chans[])
1592 {
1593 	const MWL_HAL_CHANNELINFO *ci;
1594 
1595 	/*
1596 	 * Use the channel info from the hal to craft the
1597 	 * channel list.  Note that we pass back an unsorted
1598 	 * list; the caller is required to sort it for us
1599 	 * (if desired).
1600 	 */
1601 	*nchans = 0;
1602 	if (mwl_hal_getchannelinfo(sc,
1603 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
1604 		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
1605 	if (mwl_hal_getchannelinfo(sc,
1606 	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
1607 		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
1608 	if (mwl_hal_getchannelinfo(sc,
1609 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
1610 		addht40channels(chans, maxchans, nchans, ci,
1611 		    IEEE80211_CHAN_HTG);
1612 	if (mwl_hal_getchannelinfo(sc,
1613 	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
1614 		addht40channels(chans, maxchans, nchans, ci,
1615 		    IEEE80211_CHAN_HTA);
1616 }
1617 
1618 static int
1619 mwl_getchannels(struct mwl_softc *sc)
1620 {
1621 	/*
1622 	 * Use the channel info from the hal to craft the
1623 	 * channel list for net80211.  Note that we pass up
1624 	 * an unsorted list; net80211 will sort it for us.
1625 	 */
1626 	(void) memset(sc->sc_channels, 0, sizeof (sc->sc_channels));
1627 	sc->sc_nchans = 0;
1628 	getchannels(sc, IEEE80211_CHAN_MAX, &sc->sc_nchans, sc->sc_channels);
1629 
1630 	sc->sc_regdomain.regdomain = SKU_DEBUG;
1631 	sc->sc_regdomain.country = CTRY_DEFAULT;
1632 	sc->sc_regdomain.location = 'I';
1633 	sc->sc_regdomain.isocc[0] = ' ';	/* XXX? */
1634 	sc->sc_regdomain.isocc[1] = ' ';
1635 	return (sc->sc_nchans == 0 ? EIO : 0);
1636 }
1637 
1638 #undef IEEE80211_CHAN_HTA
1639 #undef IEEE80211_CHAN_HTG
1640 
1641 /*
1642  * Return "hw specs".  Note this must be the first
1643  * cmd MUST be done after a firmware download or the
1644  * f/w will lockup.
1645  * XXX move into the hal so driver doesn't need to be responsible
1646  */
1647 static int
1648 mwl_gethwspecs(struct mwl_softc *sc)
1649 {
1650 	struct mwl_hal_hwspec *hw;
1651 	HostCmd_DS_GET_HW_SPEC *pCmd;
1652 	int retval;
1653 
1654 	hw = &sc->sc_hwspecs;
1655 	_CMD_SETUP(pCmd, HostCmd_DS_GET_HW_SPEC, HostCmd_CMD_GET_HW_SPEC);
1656 	(void) memset(&pCmd->PermanentAddr[0], 0xff, IEEE80211_ADDR_LEN);
1657 	pCmd->ulFwAwakeCookie = LE_32((unsigned int)sc->sc_cmd_dmaaddr + 2048);
1658 
1659 	retval = mwlExecuteCmd(sc, HostCmd_CMD_GET_HW_SPEC);
1660 	if (retval == 0) {
1661 		IEEE80211_ADDR_COPY(hw->macAddr, pCmd->PermanentAddr);
1662 		hw->wcbBase[0] = LE_32(pCmd->WcbBase0) & 0x0000ffff;
1663 		hw->wcbBase[1] = LE_32(pCmd->WcbBase1[0]) & 0x0000ffff;
1664 		hw->wcbBase[2] = LE_32(pCmd->WcbBase1[1]) & 0x0000ffff;
1665 		hw->wcbBase[3] = LE_32(pCmd->WcbBase1[2]) & 0x0000ffff;
1666 		hw->rxDescRead = LE_32(pCmd->RxPdRdPtr)& 0x0000ffff;
1667 		hw->rxDescWrite = LE_32(pCmd->RxPdWrPtr)& 0x0000ffff;
1668 		hw->regionCode = LE_16(pCmd->RegionCode) & 0x00ff;
1669 		hw->fwReleaseNumber = LE_32(pCmd->FWReleaseNumber);
1670 		hw->maxNumWCB = LE_16(pCmd->NumOfWCB);
1671 		hw->maxNumMCAddr = LE_16(pCmd->NumOfMCastAddr);
1672 		hw->numAntennas = LE_16(pCmd->NumberOfAntenna);
1673 		hw->hwVersion = pCmd->Version;
1674 		hw->hostInterface = pCmd->HostIf;
1675 
1676 		sc->sc_revs.mh_macRev = hw->hwVersion;		/* XXX */
1677 		sc->sc_revs.mh_phyRev = hw->hostInterface;	/* XXX */
1678 	}
1679 
1680 	return (retval);
1681 }
1682 
1683 static int
1684 mwl_hal_setmac_locked(struct mwl_softc *sc,
1685     const uint8_t addr[IEEE80211_ADDR_LEN])
1686 {
1687 	HostCmd_DS_SET_MAC *pCmd;
1688 
1689 	_VCMD_SETUP(pCmd, HostCmd_DS_SET_MAC, HostCmd_CMD_SET_MAC_ADDR);
1690 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1691 #ifdef MWL_MBSS_SUPPORT
1692 	/* NB: already byte swapped */
1693 	pCmd->MacType = WL_MAC_TYPE_PRIMARY_CLIENT;
1694 #endif
1695 	return (mwlExecuteCmd(sc, HostCmd_CMD_SET_MAC_ADDR));
1696 }
1697 
1698 static void
1699 cvtPeerInfo(PeerInfo_t *to, const MWL_HAL_PEERINFO *from)
1700 {
1701 	to->LegacyRateBitMap = LE_32(from->LegacyRateBitMap);
1702 	to->HTRateBitMap = LE_32(from->HTRateBitMap);
1703 	to->CapInfo = LE_16(from->CapInfo);
1704 	to->HTCapabilitiesInfo = LE_16(from->HTCapabilitiesInfo);
1705 	to->MacHTParamInfo = from->MacHTParamInfo;
1706 	to->AddHtInfo.ControlChan = from->AddHtInfo.ControlChan;
1707 	to->AddHtInfo.AddChan = from->AddHtInfo.AddChan;
1708 	to->AddHtInfo.OpMode = LE_16(from->AddHtInfo.OpMode);
1709 	to->AddHtInfo.stbc = LE_16(from->AddHtInfo.stbc);
1710 }
1711 
1712 /* XXX station id must be in [0..63] */
1713 static int
1714 mwl_hal_newstation(struct mwl_softc *sc,
1715     const uint8_t addr[IEEE80211_ADDR_LEN], uint16_t aid, uint16_t sid,
1716     const MWL_HAL_PEERINFO *peer, int isQosSta, int wmeInfo)
1717 {
1718 	HostCmd_FW_SET_NEW_STN *pCmd;
1719 	int retval;
1720 
1721 	_VCMD_SETUP(pCmd, HostCmd_FW_SET_NEW_STN, HostCmd_CMD_SET_NEW_STN);
1722 	pCmd->AID = LE_16(aid);
1723 	pCmd->StnId = LE_16(sid);
1724 	pCmd->Action = LE_16(0);	/* SET */
1725 	if (peer != NULL) {
1726 		/* NB: must fix up byte order */
1727 		cvtPeerInfo(&pCmd->PeerInfo, peer);
1728 	}
1729 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1730 	pCmd->Qosinfo = (uint8_t)wmeInfo;
1731 	pCmd->isQosSta = (isQosSta != 0);
1732 
1733 	MWL_DBG(MWL_DBG_HW, "mwl: mwl_hal_newstation(): "
1734 	    "LegacyRateBitMap %x, CapInfo %x\n",
1735 	    pCmd->PeerInfo.LegacyRateBitMap, pCmd->PeerInfo.CapInfo);
1736 
1737 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_NEW_STN);
1738 	return (retval);
1739 }
1740 
1741 /*
1742  * Configure antenna use.
1743  * Takes effect immediately.
1744  * XXX tx antenna setting ignored
1745  * XXX rx antenna setting should always be 3 (for now)
1746  */
1747 static int
1748 mwl_hal_setantenna(struct mwl_softc *sc, MWL_HAL_ANTENNA dirSet, int ant)
1749 {
1750 	HostCmd_DS_802_11_RF_ANTENNA *pCmd;
1751 	int retval;
1752 
1753 	if (!(dirSet == WL_ANTENNATYPE_RX || dirSet == WL_ANTENNATYPE_TX))
1754 		return (EINVAL);
1755 
1756 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_ANTENNA,
1757 	    HostCmd_CMD_802_11_RF_ANTENNA);
1758 	pCmd->Action = LE_16(dirSet);
1759 	if (ant == 0)			/* default to all/both antennae */
1760 		ant = 3;
1761 	pCmd->AntennaMode = LE_16(ant);
1762 
1763 	retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RF_ANTENNA);
1764 	return (retval);
1765 }
1766 
1767 /*
1768  * Configure radio.
1769  * Takes effect immediately.
1770  * XXX preamble installed after set fixed rate cmd
1771  */
1772 static int
1773 mwl_hal_setradio(struct mwl_softc *sc, int onoff, MWL_HAL_PREAMBLE preamble)
1774 {
1775 	HostCmd_DS_802_11_RADIO_CONTROL *pCmd;
1776 	int retval;
1777 
1778 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RADIO_CONTROL,
1779 	    HostCmd_CMD_802_11_RADIO_CONTROL);
1780 	pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
1781 	if (onoff == 0)
1782 		pCmd->Control = 0;
1783 	else
1784 		pCmd->Control = LE_16(preamble);
1785 	pCmd->RadioOn = LE_16(onoff);
1786 
1787 	retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RADIO_CONTROL);
1788 	return (retval);
1789 }
1790 
1791 static int
1792 mwl_hal_setwmm(struct mwl_softc *sc, int onoff)
1793 {
1794 	HostCmd_FW_SetWMMMode *pCmd;
1795 	int retval;
1796 
1797 	_CMD_SETUP(pCmd, HostCmd_FW_SetWMMMode,
1798 	    HostCmd_CMD_SET_WMM_MODE);
1799 	pCmd->Action = LE_16(onoff);
1800 
1801 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_WMM_MODE);
1802 	return (retval);
1803 }
1804 
1805 /*
1806  * Convert public channel flags definition to a
1807  * value suitable for feeding to the firmware.
1808  * Note this includes byte swapping.
1809  */
1810 static uint32_t
1811 cvtChannelFlags(const MWL_HAL_CHANNEL *chan)
1812 {
1813 	uint32_t w;
1814 
1815 	/*
1816 	 * NB: f/w only understands FREQ_BAND_5GHZ, supplying the more
1817 	 * precise band info causes it to lockup (sometimes).
1818 	 */
1819 	w = (chan->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) ?
1820 	    FREQ_BAND_2DOT4GHZ : FREQ_BAND_5GHZ;
1821 	switch (chan->channelFlags.ChnlWidth) {
1822 	case MWL_CH_10_MHz_WIDTH:
1823 		w |= CH_10_MHz_WIDTH;
1824 		break;
1825 	case MWL_CH_20_MHz_WIDTH:
1826 		w |= CH_20_MHz_WIDTH;
1827 		break;
1828 	case MWL_CH_40_MHz_WIDTH:
1829 	default:
1830 		w |= CH_40_MHz_WIDTH;
1831 		break;
1832 	}
1833 	switch (chan->channelFlags.ExtChnlOffset) {
1834 	case MWL_EXT_CH_NONE:
1835 		w |= EXT_CH_NONE;
1836 		break;
1837 	case MWL_EXT_CH_ABOVE_CTRL_CH:
1838 		w |= EXT_CH_ABOVE_CTRL_CH;
1839 		break;
1840 	case MWL_EXT_CH_BELOW_CTRL_CH:
1841 		w |= EXT_CH_BELOW_CTRL_CH;
1842 		break;
1843 	}
1844 	return (LE_32(w));
1845 }
1846 
1847 static int
1848 mwl_hal_setchannel(struct mwl_softc *sc, const MWL_HAL_CHANNEL *chan)
1849 {
1850 	HostCmd_FW_SET_RF_CHANNEL *pCmd;
1851 	int retval;
1852 
1853 	_CMD_SETUP(pCmd, HostCmd_FW_SET_RF_CHANNEL, HostCmd_CMD_SET_RF_CHANNEL);
1854 	pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
1855 	pCmd->CurrentChannel = chan->channel;
1856 	pCmd->ChannelFlags = cvtChannelFlags(chan);	/* NB: byte-swapped */
1857 
1858 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_RF_CHANNEL);
1859 	return (retval);
1860 }
1861 
1862 static int
1863 mwl_hal_settxpower(struct mwl_softc *sc,
1864     const MWL_HAL_CHANNEL *c, uint8_t maxtxpow)
1865 {
1866 	HostCmd_DS_802_11_RF_TX_POWER *pCmd;
1867 	const struct mwl_hal_channel *hc;
1868 	int i = 0, retval;
1869 
1870 	hc = findhalchannel(sc, c);
1871 	if (hc == NULL) {
1872 		/* XXX temp while testing */
1873 		MWL_DBG(MWL_DBG_HW, "mwl: mwl_hal_settxpower(): "
1874 		    "no cal data for channel %u band %u width %u ext %u\n",
1875 		    c->channel, c->channelFlags.FreqBand,
1876 		    c->channelFlags.ChnlWidth, c->channelFlags.ExtChnlOffset);
1877 		return (EINVAL);
1878 	}
1879 
1880 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
1881 	    HostCmd_CMD_802_11_RF_TX_POWER);
1882 	pCmd->Action = LE_16(HostCmd_ACT_GEN_SET_LIST);
1883 	/* NB: 5Ghz cal data have the channel # in [0]; don't truncate */
1884 	if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ)
1885 		pCmd->PowerLevelList[i++] = LE_16(hc->targetPowers[0]);
1886 	for (; i < 4; i++) {
1887 		uint16_t pow = hc->targetPowers[i];
1888 		if (pow > maxtxpow)
1889 			pow = maxtxpow;
1890 		pCmd->PowerLevelList[i] = LE_16(pow);
1891 	}
1892 	retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RF_TX_POWER);
1893 	return (retval);
1894 }
1895 
1896 #define	RATEVAL(r)	((r) &~ RATE_MCS)
1897 #define	RATETYPE(r)	(((r) & RATE_MCS) ? HT_RATE_TYPE : LEGACY_RATE_TYPE)
1898 
1899 static int
1900 mwl_hal_settxrate(struct mwl_softc *sc, MWL_HAL_TXRATE_HANDLING handling,
1901     const MWL_HAL_TXRATE *rate)
1902 {
1903 	HostCmd_FW_USE_FIXED_RATE *pCmd;
1904 	FIXED_RATE_ENTRY *fp;
1905 	int retval, i, n;
1906 
1907 	_VCMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
1908 	    HostCmd_CMD_SET_FIXED_RATE);
1909 
1910 	pCmd->MulticastRate = RATEVAL(rate->McastRate);
1911 	pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
1912 	/* NB: no rate type field */
1913 	pCmd->ManagementRate = RATEVAL(rate->MgtRate);
1914 	(void) memset(pCmd->FixedRateTable, 0, sizeof (pCmd->FixedRateTable));
1915 	if (handling == RATE_FIXED) {
1916 		pCmd->Action = LE_32(HostCmd_ACT_GEN_SET);
1917 		pCmd->AllowRateDrop = LE_32(FIXED_RATE_WITHOUT_AUTORATE_DROP);
1918 		fp = pCmd->FixedRateTable;
1919 		fp->FixedRate =
1920 		    LE_32(RATEVAL(rate->RateSeries[0].Rate));
1921 		fp->FixRateTypeFlags.FixRateType =
1922 		    LE_32(RATETYPE(rate->RateSeries[0].Rate));
1923 		pCmd->EntryCount = LE_32(1);
1924 	} else if (handling == RATE_FIXED_DROP) {
1925 		pCmd->Action = LE_32(HostCmd_ACT_GEN_SET);
1926 		pCmd->AllowRateDrop = LE_32(FIXED_RATE_WITH_AUTO_RATE_DROP);
1927 		n = 0;
1928 		fp = pCmd->FixedRateTable;
1929 		for (i = 0; i < 4; i++) {
1930 			if (rate->RateSeries[0].TryCount == 0)
1931 				break;
1932 			fp->FixRateTypeFlags.FixRateType =
1933 			    LE_32(RATETYPE(rate->RateSeries[i].Rate));
1934 			fp->FixedRate =
1935 			    LE_32(RATEVAL(rate->RateSeries[i].Rate));
1936 			fp->FixRateTypeFlags.RetryCountValid =
1937 			    LE_32(RETRY_COUNT_VALID);
1938 			fp->RetryCount =
1939 			    LE_32(rate->RateSeries[i].TryCount-1);
1940 			n++;
1941 		}
1942 		pCmd->EntryCount = LE_32(n);
1943 	} else
1944 		pCmd->Action = LE_32(HostCmd_ACT_NOT_USE_FIXED_RATE);
1945 
1946 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_FIXED_RATE);
1947 	return (retval);
1948 }
1949 
1950 static int
1951 mwl_hal_settxrate_auto(struct mwl_softc *sc, const MWL_HAL_TXRATE *rate)
1952 {
1953 	HostCmd_FW_USE_FIXED_RATE *pCmd;
1954 	int retval;
1955 
1956 	_CMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
1957 	    HostCmd_CMD_SET_FIXED_RATE);
1958 
1959 	pCmd->MulticastRate = RATEVAL(rate->McastRate);
1960 	pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
1961 	/* NB: no rate type field */
1962 	pCmd->ManagementRate = RATEVAL(rate->MgtRate);
1963 	(void) memset(pCmd->FixedRateTable, 0, sizeof (pCmd->FixedRateTable));
1964 	pCmd->Action = LE_32(HostCmd_ACT_NOT_USE_FIXED_RATE);
1965 
1966 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_FIXED_RATE);
1967 	return (retval);
1968 }
1969 
1970 #undef RATEVAL
1971 #undef RATETYPE
1972 
1973 /* XXX 0 = indoor, 1 = outdoor */
1974 static int
1975 mwl_hal_setrateadaptmode(struct mwl_softc *sc, uint16_t mode)
1976 {
1977 	HostCmd_DS_SET_RATE_ADAPT_MODE *pCmd;
1978 	int retval;
1979 
1980 	_CMD_SETUP(pCmd, HostCmd_DS_SET_RATE_ADAPT_MODE,
1981 	    HostCmd_CMD_SET_RATE_ADAPT_MODE);
1982 	pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
1983 	pCmd->RateAdaptMode = LE_16(mode);
1984 
1985 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_RATE_ADAPT_MODE);
1986 	return (retval);
1987 }
1988 
1989 static int
1990 mwl_hal_setoptimizationlevel(struct mwl_softc *sc, int level)
1991 {
1992 	HostCmd_FW_SET_OPTIMIZATION_LEVEL *pCmd;
1993 	int retval;
1994 
1995 	_CMD_SETUP(pCmd, HostCmd_FW_SET_OPTIMIZATION_LEVEL,
1996 	    HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1997 	pCmd->OptLevel = (uint8_t)level;
1998 
1999 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
2000 	return (retval);
2001 }
2002 
2003 /*
2004  * Set the region code that selects the radar bin'ing agorithm.
2005  */
2006 static int
2007 mwl_hal_setregioncode(struct mwl_softc *sc, int regionCode)
2008 {
2009 	HostCmd_SET_REGIONCODE_INFO *pCmd;
2010 	int retval;
2011 
2012 	_CMD_SETUP(pCmd, HostCmd_SET_REGIONCODE_INFO,
2013 	    HostCmd_CMD_SET_REGION_CODE);
2014 	/* XXX map pseudo-codes to fw codes */
2015 	switch (regionCode) {
2016 	case DOMAIN_CODE_ETSI_131:
2017 		pCmd->regionCode = LE_16(DOMAIN_CODE_ETSI);
2018 		break;
2019 	default:
2020 		pCmd->regionCode = LE_16(regionCode);
2021 		break;
2022 	}
2023 
2024 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_REGION_CODE);
2025 	return (retval);
2026 }
2027 
2028 static int
2029 mwl_hal_setassocid(struct mwl_softc *sc,
2030     const uint8_t bssId[IEEE80211_ADDR_LEN], uint16_t assocId)
2031 {
2032 	HostCmd_FW_SET_AID *pCmd = (HostCmd_FW_SET_AID *) &sc->sc_cmd_mem[0];
2033 	int retval;
2034 
2035 	_VCMD_SETUP(pCmd, HostCmd_FW_SET_AID, HostCmd_CMD_SET_AID);
2036 	pCmd->AssocID = LE_16(assocId);
2037 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], bssId);
2038 
2039 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_AID);
2040 	return (retval);
2041 }
2042 
2043 /*
2044  * Inform firmware of tx rate parameters.  Called whenever
2045  * user-settable params change and after a channel change.
2046  */
2047 static int
2048 mwl_setrates(struct ieee80211com *ic)
2049 {
2050 	struct mwl_softc *sc = (struct mwl_softc *)ic;
2051 	MWL_HAL_TXRATE rates;
2052 
2053 	const struct ieee80211_rateset *rs;
2054 	rs = &ic->ic_bss->in_rates;
2055 
2056 	/*
2057 	 * Update the h/w rate map.
2058 	 * NB: 0x80 for MCS is passed through unchanged
2059 	 */
2060 	(void) memset(&rates, 0, sizeof (rates));
2061 	/* rate used to send management frames */
2062 	rates.MgtRate = rs->ir_rates[0] & IEEE80211_RATE_VAL;
2063 	/* rate used to send multicast frames */
2064 	rates.McastRate = rates.MgtRate;
2065 
2066 	return (mwl_hal_settxrate(sc, RATE_AUTO, &rates));
2067 }
2068 
2069 /*
2070  * Set packet size threshold for implicit use of RTS.
2071  * Takes effect immediately.
2072  * XXX packet length > threshold =>'s RTS
2073  */
2074 static int
2075 mwl_hal_setrtsthreshold(struct mwl_softc *sc, int threshold)
2076 {
2077 	HostCmd_DS_802_11_RTS_THSD *pCmd;
2078 	int retval;
2079 
2080 	_VCMD_SETUP(pCmd, HostCmd_DS_802_11_RTS_THSD,
2081 	    HostCmd_CMD_802_11_RTS_THSD);
2082 	pCmd->Action  = LE_16(HostCmd_ACT_GEN_SET);
2083 	pCmd->Threshold = LE_16(threshold);
2084 
2085 	retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RTS_THSD);
2086 	return (retval);
2087 }
2088 
2089 static int
2090 mwl_hal_setcsmode(struct mwl_softc *sc, MWL_HAL_CSMODE csmode)
2091 {
2092 	HostCmd_DS_SET_LINKADAPT_CS_MODE *pCmd;
2093 	int retval;
2094 
2095 	_CMD_SETUP(pCmd, HostCmd_DS_SET_LINKADAPT_CS_MODE,
2096 	    HostCmd_CMD_SET_LINKADAPT_CS_MODE);
2097 	pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
2098 	pCmd->CSMode = LE_16(csmode);
2099 
2100 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_LINKADAPT_CS_MODE);
2101 	return (retval);
2102 }
2103 
2104 static int
2105 mwl_hal_setpromisc(struct mwl_softc *sc, int ena)
2106 {
2107 	uint32_t v;
2108 
2109 	v = mwl_ctl_read4(sc, MACREG_REG_PROMISCUOUS);
2110 	mwl_ctl_write4(sc, MACREG_REG_PROMISCUOUS, ena ? v | 1 : v & ~1);
2111 
2112 	return (0);
2113 }
2114 
2115 static int
2116 mwl_hal_start(struct mwl_softc *sc)
2117 {
2118 	HostCmd_DS_BSS_START *pCmd;
2119 	int retval;
2120 
2121 	_VCMD_SETUP(pCmd, HostCmd_DS_BSS_START, HostCmd_CMD_BSS_START);
2122 	pCmd->Enable = LE_32(HostCmd_ACT_GEN_ON);
2123 
2124 	retval = mwlExecuteCmd(sc, HostCmd_CMD_BSS_START);
2125 	return (retval);
2126 }
2127 
2128 /*
2129  * Enable sta-mode operation (disables beacon frame xmit).
2130  */
2131 static int
2132 mwl_hal_setinframode(struct mwl_softc *sc)
2133 {
2134 	HostCmd_FW_SET_INFRA_MODE *pCmd;
2135 	int retval;
2136 
2137 	_VCMD_SETUP(pCmd, HostCmd_FW_SET_INFRA_MODE,
2138 	    HostCmd_CMD_SET_INFRA_MODE);
2139 
2140 	retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_INFRA_MODE);
2141 	return (retval);
2142 }
2143 
2144 static int
2145 mwl_hal_stop(struct mwl_softc *sc)
2146 {
2147 	HostCmd_DS_BSS_START *pCmd;
2148 	int retval;
2149 
2150 	_VCMD_SETUP(pCmd, HostCmd_DS_BSS_START,
2151 	    HostCmd_CMD_BSS_START);
2152 	pCmd->Enable = LE_32(HostCmd_ACT_GEN_OFF);
2153 	retval = mwlExecuteCmd(sc, HostCmd_CMD_BSS_START);
2154 
2155 	return (retval);
2156 }
2157 
2158 static int
2159 mwl_hal_keyset(struct mwl_softc *sc, const MWL_HAL_KEYVAL *kv,
2160     const uint8_t mac[IEEE80211_ADDR_LEN])
2161 {
2162 	HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
2163 	int retval;
2164 
2165 	_VCMD_SETUP(pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
2166 	    HostCmd_CMD_UPDATE_ENCRYPTION);
2167 	if (kv->keyFlags & (KEY_FLAG_TXGROUPKEY|KEY_FLAG_RXGROUPKEY))
2168 		pCmd->ActionType = LE_32(EncrActionTypeSetGroupKey);
2169 	else
2170 		pCmd->ActionType = LE_32(EncrActionTypeSetKey);
2171 	pCmd->KeyParam.Length = LE_16(sizeof (pCmd->KeyParam));
2172 	pCmd->KeyParam.KeyTypeId = LE_16(kv->keyTypeId);
2173 	pCmd->KeyParam.KeyInfo = LE_32(kv->keyFlags);
2174 	pCmd->KeyParam.KeyIndex = LE_32(kv->keyIndex);
2175 	/* NB: includes TKIP MIC keys */
2176 	(void) memcpy(&pCmd->KeyParam.Key, &kv->key, kv->keyLen);
2177 	switch (kv->keyTypeId) {
2178 	case KEY_TYPE_ID_WEP:
2179 		pCmd->KeyParam.KeyLen = LE_16(kv->keyLen);
2180 		break;
2181 	case KEY_TYPE_ID_TKIP:
2182 		pCmd->KeyParam.KeyLen = LE_16(sizeof (TKIP_TYPE_KEY));
2183 		pCmd->KeyParam.Key.TkipKey.TkipRsc.low =
2184 		    LE_16(kv->key.tkip.rsc.low);
2185 		pCmd->KeyParam.Key.TkipKey.TkipRsc.high =
2186 		    LE_32(kv->key.tkip.rsc.high);
2187 		pCmd->KeyParam.Key.TkipKey.TkipTsc.low =
2188 		    LE_16(kv->key.tkip.tsc.low);
2189 		pCmd->KeyParam.Key.TkipKey.TkipTsc.high =
2190 		    LE_32(kv->key.tkip.tsc.high);
2191 		break;
2192 	case KEY_TYPE_ID_AES:
2193 		pCmd->KeyParam.KeyLen = LE_16(sizeof (AES_TYPE_KEY));
2194 		break;
2195 	}
2196 #ifdef MWL_MBSS_SUPPORT
2197 	IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
2198 #else
2199 	IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
2200 #endif
2201 
2202 	retval = mwlExecuteCmd(sc, HostCmd_CMD_UPDATE_ENCRYPTION);
2203 	return (retval);
2204 }
2205 
2206 static int
2207 mwl_hal_keyreset(struct mwl_softc *sc, const MWL_HAL_KEYVAL *kv,
2208     const uint8_t mac[IEEE80211_ADDR_LEN])
2209 {
2210 	HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
2211 	int retval;
2212 
2213 	_VCMD_SETUP(pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
2214 	    HostCmd_CMD_UPDATE_ENCRYPTION);
2215 	pCmd->ActionType = LE_16(EncrActionTypeRemoveKey);
2216 	pCmd->KeyParam.Length = LE_16(sizeof (pCmd->KeyParam));
2217 	pCmd->KeyParam.KeyTypeId = LE_16(kv->keyTypeId);
2218 	pCmd->KeyParam.KeyInfo = LE_32(kv->keyFlags);
2219 	pCmd->KeyParam.KeyIndex = LE_32(kv->keyIndex);
2220 #ifdef MWL_MBSS_SUPPORT
2221 	IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
2222 #else
2223 	IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
2224 #endif
2225 	retval = mwlExecuteCmd(sc, HostCmd_CMD_UPDATE_ENCRYPTION);
2226 	return (retval);
2227 }
2228 
2229 /* ARGSUSED */
2230 static struct ieee80211_node *
2231 mwl_node_alloc(struct ieee80211com *ic)
2232 {
2233 	struct mwl_node *mn;
2234 
2235 	mn = kmem_zalloc(sizeof (struct mwl_node), KM_SLEEP);
2236 	if (mn == NULL) {
2237 		/* XXX stat+msg */
2238 		MWL_DBG(MWL_DBG_MSG, "mwl: mwl_node_alloc(): "
2239 		    "alloc node failed\n");
2240 		return (NULL);
2241 	}
2242 	return (&mn->mn_node);
2243 }
2244 
2245 static void
2246 mwl_node_free(struct ieee80211_node *ni)
2247 {
2248 	struct ieee80211com *ic = ni->in_ic;
2249 	struct mwl_node *mn = MWL_NODE(ni);
2250 
2251 	if (mn->mn_staid != 0) {
2252 		// mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2253 		// delstaid(sc, mn->mn_staid);
2254 		mn->mn_staid = 0;
2255 	}
2256 	ic->ic_node_cleanup(ni);
2257 	kmem_free(ni, sizeof (struct mwl_node));
2258 }
2259 
2260 /*
2261  * Allocate a key cache slot for a unicast key.  The
2262  * firmware handles key allocation and every station is
2263  * guaranteed key space so we are always successful.
2264  */
2265 static int
2266 mwl_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
2267     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2268 {
2269 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
2270 	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
2271 		if (!(&ic->ic_nw_keys[0] <= k &&
2272 		    k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
2273 			/* should not happen */
2274 			MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_alloc(): "
2275 			    "bogus group key\n");
2276 			return (0);
2277 		}
2278 		/* give the caller what they requested */
2279 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
2280 		MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_alloc(): "
2281 		    "alloc GROUP key keyix %x, rxkeyix %x\n",
2282 		    *keyix, *rxkeyix);
2283 	} else {
2284 		/*
2285 		 * Firmware handles key allocation.
2286 		 */
2287 		*keyix = *rxkeyix = 0;
2288 		MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_alloc(): "
2289 		    "reset key index in key allocation\n");
2290 	}
2291 
2292 	return (1);
2293 }
2294 
2295 /*
2296  * Delete a key entry allocated by mwl_key_alloc.
2297  */
2298 static int
2299 mwl_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2300 {
2301 	struct mwl_softc *sc = (struct mwl_softc *)ic;
2302 	MWL_HAL_KEYVAL hk;
2303 	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
2304 	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2305 
2306 	(void) memset(&hk, 0, sizeof (hk));
2307 	hk.keyIndex = k->wk_keyix;
2308 	switch (k->wk_cipher->ic_cipher) {
2309 	case IEEE80211_CIPHER_WEP:
2310 		hk.keyTypeId = KEY_TYPE_ID_WEP;
2311 		break;
2312 	case IEEE80211_CIPHER_TKIP:
2313 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
2314 		break;
2315 	case IEEE80211_CIPHER_AES_CCM:
2316 		hk.keyTypeId = KEY_TYPE_ID_AES;
2317 		break;
2318 	default:
2319 		/* XXX should not happen */
2320 		MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_delete(): "
2321 		    "unknown cipher %d\n", k->wk_cipher->ic_cipher);
2322 		return (0);
2323 	}
2324 	return (mwl_hal_keyreset(sc, &hk, bcastaddr) == 0);
2325 }
2326 
2327 /*
2328  * Set the key cache contents for the specified key.  Key cache
2329  * slot(s) must already have been allocated by mwl_key_alloc.
2330  */
2331 /* ARGSUSED */
2332 static int
2333 mwl_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2334     const uint8_t mac[IEEE80211_ADDR_LEN])
2335 {
2336 #define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
2337 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
2338 #define	IEEE80211_IS_STATICKEY(k) \
2339 	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
2340 	(GRPXMIT|IEEE80211_KEY_RECV))
2341 	struct mwl_softc *sc = (struct mwl_softc *)ic;
2342 	const struct ieee80211_cipher *cip = k->wk_cipher;
2343 	const uint8_t *macaddr;
2344 	MWL_HAL_KEYVAL hk;
2345 
2346 	(void) memset(&hk, 0, sizeof (hk));
2347 	hk.keyIndex = k->wk_keyix;
2348 	switch (cip->ic_cipher) {
2349 	case IEEE80211_CIPHER_WEP:
2350 		hk.keyTypeId = KEY_TYPE_ID_WEP;
2351 		hk.keyLen = k->wk_keylen;
2352 		if (k->wk_keyix == ic->ic_def_txkey)
2353 			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
2354 		if (!IEEE80211_IS_STATICKEY(k)) {
2355 			/* NB: WEP is never used for the PTK */
2356 			(void) addgroupflags(&hk, k);
2357 		}
2358 		break;
2359 	case IEEE80211_CIPHER_TKIP:
2360 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
2361 		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
2362 		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
2363 		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
2364 		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
2365 		if (!addgroupflags(&hk, k))
2366 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
2367 		break;
2368 	case IEEE80211_CIPHER_AES_CCM:
2369 		hk.keyTypeId = KEY_TYPE_ID_AES;
2370 		hk.keyLen = k->wk_keylen;
2371 		if (!addgroupflags(&hk, k))
2372 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
2373 		break;
2374 	default:
2375 		/* XXX should not happen */
2376 		MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_set(): "
2377 		    "unknown cipher %d\n",
2378 		    k->wk_cipher->ic_cipher);
2379 		return (0);
2380 	}
2381 	/*
2382 	 * NB: tkip mic keys get copied here too; the layout
2383 	 * just happens to match that in ieee80211_key.
2384 	 */
2385 	(void) memcpy(hk.key.aes, k->wk_key, hk.keyLen);
2386 
2387 	/*
2388 	 * Locate address of sta db entry for writing key;
2389 	 * the convention unfortunately is somewhat different
2390 	 * than how net80211, hostapd, and wpa_supplicant think.
2391 	 */
2392 
2393 	/*
2394 	 * NB: keys plumbed before the sta reaches AUTH state
2395 	 * will be discarded or written to the wrong sta db
2396 	 * entry because iv_bss is meaningless.  This is ok
2397 	 * (right now) because we handle deferred plumbing of
2398 	 * WEP keys when the sta reaches AUTH state.
2399 	 */
2400 	macaddr = ic->ic_bss->in_bssid;
2401 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
2402 		/* XXX plumb to local sta db too for static key wep */
2403 		(void) mwl_hal_keyset(sc, &hk, ic->ic_macaddr);
2404 	}
2405 	return (mwl_hal_keyset(sc, &hk, macaddr) == 0);
2406 #undef IEEE80211_IS_STATICKEY
2407 #undef GRPXMIT
2408 }
2409 
2410 /*
2411  * Plumb any static WEP key for the station.  This is
2412  * necessary as we must propagate the key from the
2413  * global key table of the vap to each sta db entry.
2414  */
2415 static void
2416 mwl_setanywepkey(struct ieee80211com *ic, const uint8_t mac[IEEE80211_ADDR_LEN])
2417 {
2418 	if ((ic->ic_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
2419 	    IEEE80211_F_PRIVACY &&
2420 	    ic->ic_def_txkey != IEEE80211_KEYIX_NONE &&
2421 	    ic->ic_nw_keys[ic->ic_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
2422 		(void) mwl_key_set(ic, &ic->ic_nw_keys[ic->ic_def_txkey], mac);
2423 }
2424 
2425 static void
2426 mwl_setglobalkeys(struct ieee80211com *ic)
2427 {
2428 	struct ieee80211_key *wk;
2429 
2430 	wk = &ic->ic_nw_keys[0];
2431 	for (; wk < &ic->ic_nw_keys[IEEE80211_WEP_NKID]; wk++)
2432 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
2433 			(void) mwl_key_set(ic, wk, ic->ic_macaddr);
2434 }
2435 
2436 static int
2437 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
2438 {
2439 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2440 		if (k->wk_flags & IEEE80211_KEY_XMIT)
2441 			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
2442 		if (k->wk_flags & IEEE80211_KEY_RECV)
2443 			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
2444 		return (1);
2445 	} else
2446 		return (0);
2447 }
2448 
2449 /*
2450  * Set/change channels.
2451  */
2452 static int
2453 mwl_chan_set(struct mwl_softc *sc, struct mwl_channel *chan)
2454 {
2455 	MWL_HAL_CHANNEL hchan;
2456 	int maxtxpow;
2457 
2458 	MWL_DBG(MWL_DBG_HW, "mwl: mwl_chan_set(): "
2459 	    "chan %u MHz/flags 0x%x\n",
2460 	    chan->ic_freq, chan->ic_flags);
2461 
2462 	/*
2463 	 * Convert to a HAL channel description with
2464 	 * the flags constrained to reflect the current
2465 	 * operating mode.
2466 	 */
2467 	mwl_mapchan(&hchan, chan);
2468 	mwl_hal_intrset(sc, 0);		/* disable interrupts */
2469 
2470 	(void) mwl_hal_setchannel(sc, &hchan);
2471 	/*
2472 	 * Tx power is cap'd by the regulatory setting and
2473 	 * possibly a user-set limit.  We pass the min of
2474 	 * these to the hal to apply them to the cal data
2475 	 * for this channel.
2476 	 * XXX min bound?
2477 	 */
2478 	maxtxpow = 2 * chan->ic_maxregpower;
2479 	if (maxtxpow > 100)
2480 		maxtxpow = 100;
2481 	(void) mwl_hal_settxpower(sc, &hchan, maxtxpow / 2);
2482 	/* NB: potentially change mcast/mgt rates */
2483 	(void) mwl_setcurchanrates(sc);
2484 
2485 	sc->sc_curchan = hchan;
2486 	mwl_hal_intrset(sc, sc->sc_imask);
2487 
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Convert net80211 channel to a HAL channel.
2493  */
2494 static void
2495 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct mwl_channel *chan)
2496 {
2497 	hc->channel = chan->ic_ieee;
2498 
2499 	*(uint32_t *)&hc->channelFlags = 0;
2500 	if (((chan)->ic_flags & IEEE80211_CHAN_2GHZ) != 0)
2501 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
2502 	else if (((chan)->ic_flags & IEEE80211_CHAN_5GHZ) != 0)
2503 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
2504 	if (((chan)->ic_flags & IEEE80211_CHAN_HT40) != 0) {
2505 		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
2506 		if (((chan)->ic_flags & IEEE80211_CHAN_HT40U) != 0)
2507 			hc->channelFlags.ExtChnlOffset =
2508 			    MWL_EXT_CH_ABOVE_CTRL_CH;
2509 		else
2510 			hc->channelFlags.ExtChnlOffset =
2511 			    MWL_EXT_CH_BELOW_CTRL_CH;
2512 	} else
2513 		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
2514 	/* XXX 10MHz channels */
2515 }
2516 
2517 /*
2518  * Return the phy mode for with the specified channel.
2519  */
2520 enum ieee80211_phymode
2521 mwl_chan2mode(const struct mwl_channel *chan)
2522 {
2523 
2524 	if (IEEE80211_IS_CHAN_HTA(chan))
2525 		return (IEEE80211_MODE_11NA);
2526 	else if (IEEE80211_IS_CHAN_HTG(chan))
2527 		return (IEEE80211_MODE_11NG);
2528 	else if (IEEE80211_IS_CHAN_108G(chan))
2529 		return (IEEE80211_MODE_TURBO_G);
2530 	else if (IEEE80211_IS_CHAN_ST(chan))
2531 		return (IEEE80211_MODE_STURBO_A);
2532 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2533 		return (IEEE80211_MODE_TURBO_A);
2534 	else if (IEEE80211_IS_CHAN_HALF(chan))
2535 		return (IEEE80211_MODE_HALF);
2536 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2537 		return (IEEE80211_MODE_QUARTER);
2538 	else if (IEEE80211_IS_CHAN_A(chan))
2539 		return (IEEE80211_MODE_11A);
2540 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2541 		return (IEEE80211_MODE_11G);
2542 	else if (IEEE80211_IS_CHAN_B(chan))
2543 		return (IEEE80211_MODE_11B);
2544 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2545 		return (IEEE80211_MODE_FH);
2546 
2547 	/* NB: should not get here */
2548 	MWL_DBG(MWL_DBG_HW, "mwl: mwl_chan2mode(): "
2549 	    "cannot map channel to mode; freq %u flags 0x%x\n",
2550 	    chan->ic_freq, chan->ic_flags);
2551 	return (IEEE80211_MODE_11B);
2552 }
2553 
2554 /* XXX inline or eliminate? */
2555 const struct ieee80211_rateset *
2556 mwl_get_suprates(struct ieee80211com *ic, const struct mwl_channel *c)
2557 {
2558 	/* XXX does this work for 11ng basic rates? */
2559 	return (&ic->ic_sup_rates[mwl_chan2mode(c)]);
2560 }
2561 
2562 /*
2563  * Inform firmware of tx rate parameters.
2564  * Called after a channel change.
2565  */
2566 static int
2567 mwl_setcurchanrates(struct mwl_softc *sc)
2568 {
2569 	struct ieee80211com *ic = &sc->sc_ic;
2570 	const struct ieee80211_rateset *rs;
2571 	MWL_HAL_TXRATE rates;
2572 
2573 	(void) memset(&rates, 0, sizeof (rates));
2574 	rs = mwl_get_suprates(ic, sc->sc_cur_chan);
2575 	/* rate used to send management frames */
2576 	rates.MgtRate = rs->ir_rates[0] & IEEE80211_RATE_VAL;
2577 	/* rate used to send multicast frames */
2578 	rates.McastRate = rates.MgtRate;
2579 
2580 	return (mwl_hal_settxrate_auto(sc, &rates));
2581 }
2582 
2583 static const struct mwl_hal_channel *
2584 findhalchannel(const struct mwl_softc *sc, const MWL_HAL_CHANNEL *c)
2585 {
2586 	const struct mwl_hal_channel *hc;
2587 	const MWL_HAL_CHANNELINFO *ci;
2588 	int chan = c->channel, i;
2589 
2590 	if (c->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) {
2591 		i = chan - 1;
2592 		if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
2593 			ci = &sc->sc_40M;
2594 			if (c->channelFlags.ExtChnlOffset ==
2595 			    MWL_EXT_CH_BELOW_CTRL_CH)
2596 				i -= 4;
2597 		} else
2598 			ci = &sc->sc_20M;
2599 		/* 2.4G channel table is directly indexed */
2600 		hc = ((unsigned)i < ci->nchannels) ? &ci->channels[i] : NULL;
2601 	} else if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ) {
2602 		if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
2603 			ci = &sc->sc_40M_5G;
2604 			if (c->channelFlags.ExtChnlOffset ==
2605 			    MWL_EXT_CH_BELOW_CTRL_CH)
2606 				chan -= 4;
2607 		} else
2608 			ci = &sc->sc_20M_5G;
2609 		/* 5GHz channel table is sparse and must be searched */
2610 		for (i = 0; i < ci->nchannels; i++)
2611 			if (ci->channels[i].ieee == chan)
2612 				break;
2613 		hc = (i < ci->nchannels) ? &ci->channels[i] : NULL;
2614 	} else
2615 		hc = NULL;
2616 	return (hc);
2617 }
2618 
2619 /*
2620  * Map SKU+country code to region code for radar bin'ing.
2621  */
2622 static int
2623 mwl_map2regioncode(const struct mwl_regdomain *rd)
2624 {
2625 	switch (rd->regdomain) {
2626 	case SKU_FCC:
2627 	case SKU_FCC3:
2628 		return (DOMAIN_CODE_FCC);
2629 	case SKU_CA:
2630 		return (DOMAIN_CODE_IC);
2631 	case SKU_ETSI:
2632 	case SKU_ETSI2:
2633 	case SKU_ETSI3:
2634 		if (rd->country == CTRY_SPAIN)
2635 			return (DOMAIN_CODE_SPAIN);
2636 		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
2637 			return (DOMAIN_CODE_FRANCE);
2638 		/* XXX force 1.3.1 radar type */
2639 		return (DOMAIN_CODE_ETSI_131);
2640 	case SKU_JAPAN:
2641 		return (DOMAIN_CODE_MKK);
2642 	case SKU_ROW:
2643 		return (DOMAIN_CODE_DGT);	/* Taiwan */
2644 	case SKU_APAC:
2645 	case SKU_APAC2:
2646 	case SKU_APAC3:
2647 		return (DOMAIN_CODE_AUS);	/* Australia */
2648 	}
2649 	/* XXX KOREA? */
2650 	return (DOMAIN_CODE_FCC);			/* XXX? */
2651 }
2652 
2653 /*
2654  * Setup the rx data structures.  This should only be
2655  * done once or we may get out of sync with the firmware.
2656  */
2657 static int
2658 mwl_startrecv(struct mwl_softc *sc)
2659 {
2660 	struct mwl_rx_ring *ring;
2661 	struct mwl_rxdesc *ds;
2662 	struct mwl_rxbuf *bf, *prev;
2663 
2664 	int i;
2665 
2666 	ring = &sc->sc_rxring;
2667 	bf = ring->buf;
2668 
2669 	prev = NULL;
2670 	for (i = 0; i < MWL_RX_RING_COUNT; i++, bf++) {
2671 		ds = bf->bf_desc;
2672 		/*
2673 		 * NB: DMA buffer contents is known to be unmodified
2674 		 * so there's no need to flush the data cache.
2675 		 */
2676 
2677 		/*
2678 		 * Setup descriptor.
2679 		 */
2680 		ds->QosCtrl = 0;
2681 		ds->RSSI = 0;
2682 		ds->Status = EAGLE_RXD_STATUS_IDLE;
2683 		ds->Channel = 0;
2684 		ds->PktLen = LE_16(MWL_AGGR_SIZE);
2685 		ds->SQ2 = 0;
2686 		ds->pPhysBuffData = LE_32(bf->bf_baddr);
2687 		/* NB: don't touch pPhysNext, set once */
2688 		ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2689 
2690 		(void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
2691 		    i * sizeof (struct mwl_rxdesc),
2692 		    sizeof (struct mwl_rxdesc),
2693 		    DDI_DMA_SYNC_FORDEV);
2694 
2695 		if (prev != NULL) {
2696 			ds = prev->bf_desc;
2697 			ds->pPhysNext = LE_32(bf->bf_daddr);
2698 		}
2699 		prev = bf;
2700 	}
2701 
2702 	if (prev != NULL) {
2703 		ds = prev->bf_desc;
2704 		ds->pPhysNext = ring->physaddr;
2705 	}
2706 
2707 	/* set filters, etc. */
2708 	(void) mwl_mode_init(sc);
2709 
2710 	return (0);
2711 }
2712 
2713 static int
2714 mwl_mode_init(struct mwl_softc *sc)
2715 {
2716 	/*
2717 	 * NB: Ignore promisc in hostap mode; it's set by the
2718 	 * bridge.  This is wrong but we have no way to
2719 	 * identify internal requests (from the bridge)
2720 	 * versus external requests such as for tcpdump.
2721 	 */
2722 	/* mwl_setmcastfilter - not support now */
2723 	(void) mwl_hal_setpromisc(sc, 0);
2724 
2725 	return (0);
2726 }
2727 
2728 /*
2729  * Kick the firmware to tell it there are new tx descriptors
2730  * for processing.  The driver says what h/w q has work in
2731  * case the f/w ever gets smarter.
2732  */
2733 /* ARGSUSED */
2734 static void
2735 mwl_hal_txstart(struct mwl_softc *sc, int qnum)
2736 {
2737 
2738 	mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS,
2739 	    MACREG_H2ARIC_BIT_PPA_READY);
2740 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
2741 }
2742 
2743 static int
2744 mwl_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2745 {
2746 	struct mwl_softc *sc = (struct mwl_softc *)ic;
2747 	struct mwl_tx_ring *ring;
2748 	struct mwl_txdesc *ds;
2749 	struct mwl_txbuf *bf;
2750 	struct ieee80211_frame *wh, *wh1;
2751 	struct ieee80211_node *ni = NULL;
2752 
2753 	int err, off;
2754 	int mblen, pktlen, hdrlen;
2755 	mblk_t *m, *m0;
2756 	uint8_t *addr_4, *txbuf;
2757 	uint16_t *pfwlen;
2758 
2759 	MWL_TXLOCK(sc);
2760 
2761 	err = DDI_SUCCESS;
2762 	if (!MWL_IS_RUNNING(sc) || MWL_IS_SUSPEND(sc)) {
2763 		err = ENXIO;
2764 		goto fail1;
2765 	}
2766 
2767 	ring = &sc->sc_txring[1];
2768 	if (ring->queued > 15) {
2769 		MWL_DBG(MWL_DBG_TX, "mwl: mwl_send(): "
2770 		    "no txbuf, %d\n", ring->queued);
2771 		sc->sc_need_sched = 1;
2772 		sc->sc_tx_nobuf++;
2773 		err = ENOMEM;
2774 		goto fail1;
2775 	}
2776 
2777 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2778 	if (m == NULL) {
2779 		MWL_DBG(MWL_DBG_TX, "mwl: mwl_send():"
2780 		    "can't alloc mblk.\n");
2781 		err = DDI_FAILURE;
2782 		goto fail1;
2783 	}
2784 
2785 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2786 		mblen = MBLKL(m0);
2787 		(void) bcopy(m0->b_rptr, m->b_rptr + off, mblen);
2788 		off += mblen;
2789 	}
2790 	m->b_wptr += off;
2791 
2792 	wh = (struct ieee80211_frame *)m->b_rptr;
2793 	ni = ieee80211_find_txnode(ic, wh->i_addr1);
2794 	if (ni == NULL) {
2795 		err = DDI_FAILURE;
2796 		sc->sc_tx_err++;
2797 		goto fail2;
2798 	}
2799 
2800 	hdrlen = sizeof (*wh);
2801 	pktlen = msgdsize(m);
2802 
2803 	(void) ieee80211_encap(ic, m, ni);
2804 
2805 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2806 		const struct ieee80211_cipher *cip;
2807 		struct ieee80211_key *k;
2808 		k = ieee80211_crypto_encap(ic, m);
2809 		if (k == NULL) {
2810 			sc->sc_tx_err++;
2811 			err = DDI_FAILURE;
2812 			goto fail3;
2813 		}
2814 
2815 		/*
2816 		 * Adjust the packet length for the crypto additions
2817 		 * done during encap and any other bits that the f/w
2818 		 * will add later on.
2819 		 */
2820 		cip = k->wk_cipher;
2821 		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
2822 		/* packet header may have moved, reset our local pointer */
2823 		wh = (struct ieee80211_frame *)m->b_rptr;
2824 	}
2825 
2826 	ds = &ring->desc[ring->cur];
2827 	bf = &ring->buf[ring->cur];
2828 
2829 	bf->bf_node = ieee80211_ref_node(ni);
2830 	txbuf = (uint8_t *)bf->bf_mem;
2831 
2832 	/*
2833 	 * inject FW specific fields into the 802.11 frame
2834 	 *
2835 	 *  2   bytes FW len (inject)
2836 	 *  24 bytes 802.11 frame header
2837 	 *  6   bytes addr4 (inject)
2838 	 *  n   bytes 802.11 frame body
2839 	 */
2840 	pfwlen = (uint16_t *)txbuf;
2841 	*pfwlen = pktlen - hdrlen;
2842 	wh1 = (struct ieee80211_frame *)(txbuf + 2);
2843 	bcopy(wh, wh1, sizeof (struct ieee80211_frame));
2844 	addr_4 = txbuf + (sizeof (struct ieee80211_frame) + sizeof (uint16_t));
2845 	(void) memset(addr_4, 0, 6);
2846 	bcopy(m->b_rptr + sizeof (struct ieee80211_frame), txbuf + 32, *pfwlen);
2847 	pktlen += 8;
2848 
2849 	(void) ddi_dma_sync(bf->txbuf_dma.dma_hdl,
2850 	    0,
2851 	    pktlen,
2852 	    DDI_DMA_SYNC_FORDEV);
2853 
2854 	ds->QosCtrl = 0;
2855 	ds->PktLen = (uint16_t)pktlen;
2856 	ds->PktPtr = bf->bf_baddr;
2857 	ds->Status = LE_32(EAGLE_TXD_STATUS_FW_OWNED);
2858 	ds->Format = 0;
2859 	ds->pad = 0;
2860 	ds->ack_wcb_addr = 0;
2861 	ds->TxPriority = 1;
2862 
2863 	MWL_DBG(MWL_DBG_TX, "mwl: mwl_send(): "
2864 	    "tx desc Status %x, DataRate %x, TxPriority %x, QosCtrl %x, "
2865 	    "PktLen %x, SapPktInfo %x, Format %x, Pad %x, ack_wcb_addr %x\n",
2866 	    ds->Status, ds->DataRate, ds->TxPriority, ds->QosCtrl, ds->PktLen,
2867 	    ds->SapPktInfo, ds->Format, ds->pad, ds->ack_wcb_addr);
2868 
2869 	(void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
2870 	    ring->cur * sizeof (struct mwl_txdesc),
2871 	    sizeof (struct mwl_txdesc),
2872 	    DDI_DMA_SYNC_FORDEV);
2873 
2874 	MWL_DBG(MWL_DBG_TX, "mwl: mwl_send(): "
2875 	    "pktlen = %u, slot = %u, queued = %x\n",
2876 	    mblen, ring->cur, ring->queued);
2877 
2878 	ring->queued++;
2879 	ring->cur = (ring->cur + 1) % MWL_TX_RING_COUNT;
2880 
2881 	/*
2882 	 * NB: We don't need to lock against tx done because
2883 	 * this just prods the firmware to check the transmit
2884 	 * descriptors.  The firmware will also start fetching
2885 	 * descriptors by itself if it notices new ones are
2886 	 * present when it goes to deliver a tx done interrupt
2887 	 * to the host. So if we race with tx done processing
2888 	 * it's ok.  Delivering the kick here rather than in
2889 	 * mwl_tx_start is an optimization to avoid poking the
2890 	 * firmware for each packet.
2891 	 *
2892 	 * NB: the queue id isn't used so 0 is ok.
2893 	 */
2894 	mwl_hal_txstart(sc, 0);
2895 
2896 	ic->ic_stats.is_tx_frags++;
2897 	ic->ic_stats.is_tx_bytes += pktlen;
2898 
2899 fail3:
2900 	ieee80211_free_node(ni);
2901 fail2:
2902 	freemsg(m);
2903 fail1:
2904 	if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
2905 	    err == DDI_SUCCESS)
2906 		freemsg(mp);
2907 	MWL_TXUNLOCK(sc);
2908 	return (err);
2909 }
2910 
2911 /*
2912  * This function is called periodically (every 200ms) during scanning to
2913  * switch from one channel to another.
2914  */
2915 static void
2916 mwl_next_scan(void *arg)
2917 {
2918 	struct mwl_softc *sc = (struct mwl_softc *)arg;
2919 	struct ieee80211com *ic = &sc->sc_ic;
2920 
2921 	if (ic->ic_state == IEEE80211_S_SCAN)
2922 		(void) ieee80211_next_scan(ic);
2923 
2924 	sc->sc_scan_id = 0;
2925 }
2926 
2927 /*
2928  * Convert a legacy rate set to a firmware bitmask.
2929  */
2930 static uint32_t
2931 get_rate_bitmap(const struct ieee80211_rateset *rs)
2932 {
2933 	uint32_t rates;
2934 	int i;
2935 
2936 	rates = 0;
2937 	for (i = 0; i < rs->ir_nrates; i++)
2938 		switch (rs->ir_rates[i] & IEEE80211_RATE_VAL) {
2939 		case 2:	  rates |= 0x001; break;
2940 		case 4:	  rates |= 0x002; break;
2941 		case 11:  rates |= 0x004; break;
2942 		case 22:  rates |= 0x008; break;
2943 		case 44:  rates |= 0x010; break;
2944 		case 12:  rates |= 0x020; break;
2945 		case 18:  rates |= 0x040; break;
2946 		case 24:  rates |= 0x080; break;
2947 		case 36:  rates |= 0x100; break;
2948 		case 48:  rates |= 0x200; break;
2949 		case 72:  rates |= 0x400; break;
2950 		case 96:  rates |= 0x800; break;
2951 		case 108: rates |= 0x1000; break;
2952 		}
2953 	return (rates);
2954 }
2955 
2956 /*
2957  * Craft station database entry for station.
2958  * NB: use host byte order here, the hal handles byte swapping.
2959  */
2960 static MWL_HAL_PEERINFO *
2961 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
2962 {
2963 	(void) memset(pi, 0, sizeof (*pi));
2964 	pi->LegacyRateBitMap = get_rate_bitmap(&ni->in_rates);
2965 	pi->CapInfo = ni->in_capinfo;
2966 	return (pi);
2967 }
2968 
2969 static int
2970 mwl_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2971 {
2972 	struct mwl_softc *sc = (struct mwl_softc *)ic;
2973 	enum ieee80211_state ostate;
2974 	struct ieee80211_channel *ic_chan;
2975 	struct ieee80211_node *ni = NULL;
2976 	MWL_HAL_PEERINFO pi;
2977 	uint32_t chan;
2978 
2979 	if (sc->sc_scan_id != 0) {
2980 		(void) untimeout(sc->sc_scan_id);
2981 		sc->sc_scan_id = 0;
2982 	}
2983 
2984 	MWL_GLOCK(sc);
2985 
2986 	ostate = ic->ic_state;
2987 	MWL_DBG(MWL_DBG_MSG, "mwl: mwl_newstate(): "
2988 	    "ostate %x -> nstate %x\n",
2989 	    ostate, nstate);
2990 
2991 	switch (nstate) {
2992 	case IEEE80211_S_INIT:
2993 		break;
2994 	case IEEE80211_S_SCAN:
2995 		if (ostate != IEEE80211_S_INIT) {
2996 			ic_chan = ic->ic_curchan;
2997 			chan = ieee80211_chan2ieee(ic, ic_chan);
2998 			if (chan != 0 && chan != IEEE80211_CHAN_ANY) {
2999 				sc->sc_cur_chan =
3000 				    &sc->sc_channels[3 * chan - 2];
3001 				MWL_DBG(MWL_DBG_MSG, "mwl: mwl_newstate(): "
3002 				    "chan num is %u, sc chan is %u\n",
3003 				    chan, sc->sc_cur_chan->ic_ieee);
3004 				(void) mwl_chan_set(sc, sc->sc_cur_chan);
3005 			}
3006 		}
3007 		sc->sc_scan_id = timeout(mwl_next_scan, (void *)sc,
3008 		    drv_usectohz(250000));
3009 		break;
3010 	case IEEE80211_S_AUTH:
3011 		ic_chan = ic->ic_curchan;
3012 		chan = ieee80211_chan2ieee(ic, ic_chan);
3013 		sc->sc_cur_chan = &sc->sc_channels[3 * chan - 2];
3014 		MWL_DBG(MWL_DBG_MSG, "mwl: mwl_newstate(): "
3015 		    "chan num is %u, sc chan is %u\n",
3016 		    chan, sc->sc_cur_chan->ic_ieee);
3017 		(void) mwl_chan_set(sc, sc->sc_cur_chan);
3018 		ni = ic->ic_bss;
3019 		(void) mwl_hal_newstation(sc, ic->ic_macaddr, 0, 0, NULL, 0, 0);
3020 		mwl_setanywepkey(ic, ni->in_macaddr);
3021 		break;
3022 	case IEEE80211_S_ASSOC:
3023 		break;
3024 	case IEEE80211_S_RUN:
3025 		ni = ic->ic_bss;
3026 		(void) mwl_hal_newstation(sc,
3027 		    ic->ic_macaddr, 0, 0, mkpeerinfo(&pi, ni), 0, 0);
3028 		mwl_setglobalkeys(ic);
3029 		(void) mwl_hal_setassocid(sc,
3030 		    ic->ic_bss->in_bssid, ic->ic_bss->in_associd);
3031 		(void) mwl_setrates(ic);
3032 		(void) mwl_hal_setrtsthreshold(sc, ic->ic_rtsthreshold);
3033 		(void) mwl_hal_setcsmode(sc, CSMODE_AUTO_ENA);
3034 		break;
3035 	default:
3036 		break;
3037 	}
3038 
3039 	MWL_GUNLOCK(sc);
3040 
3041 	return (sc->sc_newstate(ic, nstate, arg));
3042 }
3043 
3044 /*
3045  * Set the interrupt mask.
3046  */
3047 static void
3048 mwl_hal_intrset(struct mwl_softc *sc, uint32_t mask)
3049 {
3050 	mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_MASK, 0);
3051 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
3052 
3053 	sc->sc_hal_imask = mask;
3054 	mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_MASK, mask);
3055 	(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
3056 }
3057 
3058 /*
3059  * Return the current ISR setting and clear the cause.
3060  */
3061 static void
3062 mwl_hal_getisr(struct mwl_softc *sc, uint32_t *status)
3063 {
3064 	uint32_t cause;
3065 
3066 	cause = mwl_ctl_read4(sc, MACREG_REG_A2H_INTERRUPT_CAUSE);
3067 	if (cause == 0xffffffff) {	/* card removed */
3068 		cause = 0;
3069 	} else if (cause != 0) {
3070 		/* clear cause bits */
3071 		mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_CAUSE,
3072 		    cause & ~sc->sc_hal_imask);
3073 		(void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
3074 		cause &= sc->sc_hal_imask;
3075 	}
3076 	*status = cause;
3077 }
3078 
3079 static void
3080 mwl_tx_intr(struct mwl_softc *sc)
3081 {
3082 	struct ieee80211com *ic = &sc->sc_ic;
3083 	struct mwl_tx_ring *ring;
3084 	struct mwl_txdesc *ds;
3085 
3086 	uint32_t status;
3087 
3088 	MWL_TXLOCK(sc);
3089 
3090 	ring = &sc->sc_txring[1];
3091 
3092 	if (!(ring->queued)) {
3093 		MWL_TXUNLOCK(sc);
3094 		return;
3095 	}
3096 
3097 	(void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
3098 	    0,
3099 	    ring->txdesc_dma.alength,
3100 	    DDI_DMA_SYNC_FORCPU);
3101 
3102 	for (;;) {
3103 		ds = &ring->desc[ring->next];
3104 
3105 		status = LE_32(ds->Status);
3106 
3107 		if (status & LE_32(EAGLE_TXD_STATUS_FW_OWNED)) {
3108 			break;
3109 		}
3110 
3111 		if (status == LE_32(EAGLE_TXD_STATUS_IDLE)) {
3112 			break;
3113 		}
3114 
3115 		MWL_DBG(MWL_DBG_TX, "mwl: mwl_tx_intr(): "
3116 		    "recv tx desc status %x, datarate %x, txpriority %x, "
3117 		    "QosCtrl %x, pktLen %x, SapPktInfo %x, Format %x, "
3118 		    "pad %x, ack_wcb_addr %x\n",
3119 		    ds->Status, ds->DataRate, ds->TxPriority,
3120 		    ds->QosCtrl, ds->PktLen, ds->SapPktInfo,
3121 		    ds->Format, ds->pad, ds->ack_wcb_addr);
3122 
3123 		/* descriptor is no longer valid */
3124 		ds->Status = LE_32(EAGLE_TXD_STATUS_IDLE);
3125 
3126 		(void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
3127 		    ring->next * sizeof (struct mwl_txdesc),
3128 		    sizeof (struct mwl_txdesc),
3129 		    DDI_DMA_SYNC_FORDEV);
3130 
3131 		ring->queued--;
3132 		ring->next = (ring->next + 1) % MWL_TX_RING_COUNT;
3133 		MWL_DBG(MWL_DBG_TX, "mwl: mwl_tx_intr(): "
3134 		    " tx done idx=%u, queued= %d\n",
3135 		    ring->next, ring->queued);
3136 
3137 		if (sc->sc_need_sched &&
3138 		    (ring->queued < MWL_TX_RING_COUNT)) {
3139 			sc->sc_need_sched = 0;
3140 			mac_tx_update(ic->ic_mach);
3141 		}
3142 
3143 	}
3144 
3145 	MWL_TXUNLOCK(sc);
3146 }
3147 
3148 /*
3149  * Convert hardware signal strength to rssi.  The value
3150  * provided by the device has the noise floor added in;
3151  * we need to compensate for this but we don't have that
3152  * so we use a fixed value.
3153  *
3154  * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
3155  * offset is already set as part of the initial gain.  This
3156  * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
3157  */
3158 static int
3159 cvtrssi(uint8_t ssi)
3160 {
3161 	int rssi = (int)ssi + 8;
3162 	/* XXX hack guess until we have a real noise floor */
3163 	rssi = 2 * (87 - rssi);	/* NB: .5 dBm units */
3164 	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
3165 }
3166 
3167 static void
3168 mwl_rx_intr(struct mwl_softc *sc)
3169 {
3170 	struct ieee80211com	*ic = &sc->sc_ic;
3171 	struct mwl_rx_ring *ring;
3172 	struct ieee80211_node	*ni;
3173 	struct ieee80211_frame *wh;
3174 
3175 	struct mwl_rxbuf *bf;
3176 	struct mwl_rxdesc *ds;
3177 	mblk_t	*mp0;
3178 
3179 	int ntodo, len, rssi;
3180 	uint8_t *data, status;
3181 
3182 	MWL_RXLOCK(sc);
3183 
3184 	ring = &sc->sc_rxring;
3185 	for (ntodo = MWL_RX_RING_COUNT; ntodo > 0; ntodo--) {
3186 		bf = &ring->buf[ring->cur];
3187 		ds = bf->bf_desc;
3188 		data = bf->bf_mem;
3189 
3190 		(void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
3191 		    ring->cur * sizeof (struct mwl_rxdesc),
3192 		    sizeof (struct mwl_rxdesc),
3193 		    DDI_DMA_SYNC_FORCPU);
3194 
3195 		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
3196 			break;
3197 
3198 		status = ds->Status;
3199 		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
3200 			MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_rx_intr(): "
3201 			    "rx decrypt error\n");
3202 			sc->sc_rx_err++;
3203 		}
3204 
3205 		/*
3206 		 * Sync the data buffer.
3207 		 */
3208 		len = LE_16(ds->PktLen);
3209 
3210 		(void) ddi_dma_sync(bf->rxbuf_dma.dma_hdl,
3211 		    0,
3212 		    bf->rxbuf_dma.alength,
3213 		    DDI_DMA_SYNC_FORCPU);
3214 
3215 		if (len < 32 || len > sc->sc_dmabuf_size) {
3216 			MWL_DBG(MWL_DBG_RX, "mwl: mwl_rx_intr(): "
3217 			    "packet len error %d\n", len);
3218 			sc->sc_rx_err++;
3219 			goto rxnext;
3220 		}
3221 
3222 		mp0 = allocb(sc->sc_dmabuf_size, BPRI_MED);
3223 		if (mp0 == NULL) {
3224 			MWL_DBG(MWL_DBG_RX, "mwl: mwl_rx_intr(): "
3225 			    "alloc mblk error\n");
3226 			sc->sc_rx_nobuf++;
3227 			goto rxnext;
3228 		}
3229 		bcopy(data+ 2, mp0->b_wptr, 24);
3230 		mp0->b_wptr += 24;
3231 		bcopy(data + 32, mp0->b_wptr, len - 32);
3232 		mp0->b_wptr += (len - 32);
3233 
3234 		wh = (struct ieee80211_frame *)mp0->b_rptr;
3235 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3236 		    IEEE80211_FC0_TYPE_CTL) {
3237 			freemsg(mp0);
3238 			goto rxnext;
3239 		}
3240 
3241 		/*
3242 		 * The f/w strips WEP header but doesn't clear
3243 		 * the WEP bit; mark the packet with M_WEP so
3244 		 * net80211 will treat the data as decrypted.
3245 		 * While here also clear the PWR_MGT bit since
3246 		 * power save is handled by the firmware and
3247 		 * passing this up will potentially cause the
3248 		 * upper layer to put a station in power save
3249 		 * (except when configured with MWL_HOST_PS_SUPPORT).
3250 		 */
3251 #ifdef MWL_HOST_PS_SUPPORT
3252 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3253 #else
3254 		wh->i_fc[1] &= ~(IEEE80211_FC1_WEP | IEEE80211_FC1_PWR_MGT);
3255 #endif
3256 
3257 		/* calculate rssi early so we can re-use for each aggregate */
3258 		rssi = cvtrssi(ds->RSSI);
3259 
3260 		ni = ieee80211_find_rxnode(ic, wh);
3261 
3262 		/* send the frame to the 802.11 layer */
3263 		(void) ieee80211_input(ic, mp0, ni, rssi, 0);
3264 		ieee80211_free_node(ni);
3265 rxnext:
3266 		/*
3267 		 * Setup descriptor.
3268 		 */
3269 		ds->QosCtrl = 0;
3270 		ds->RSSI = 0;
3271 		ds->Status = EAGLE_RXD_STATUS_IDLE;
3272 		ds->Channel = 0;
3273 		ds->PktLen = LE_16(MWL_AGGR_SIZE);
3274 		ds->SQ2 = 0;
3275 		ds->pPhysBuffData = bf->bf_baddr;
3276 		/* NB: don't touch pPhysNext, set once */
3277 		ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
3278 
3279 		(void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
3280 		    ring->cur * sizeof (struct mwl_rxdesc),
3281 		    sizeof (struct mwl_rxdesc),
3282 		    DDI_DMA_SYNC_FORDEV);
3283 
3284 		/* NB: ignore ENOMEM so we process more descriptors */
3285 		ring->cur = (ring->cur + 1) % MWL_RX_RING_COUNT;
3286 	}
3287 
3288 	MWL_RXUNLOCK(sc);
3289 }
3290 
3291 /*ARGSUSED*/
3292 static uint_t
3293 mwl_softintr(caddr_t data, caddr_t unused)
3294 {
3295 	struct mwl_softc *sc = (struct mwl_softc *)data;
3296 
3297 	/*
3298 	 * Check if the soft interrupt is triggered by another
3299 	 * driver at the same level.
3300 	 */
3301 	MWL_GLOCK(sc);
3302 	if (sc->sc_rx_pend) {
3303 		sc->sc_rx_pend = 0;
3304 		MWL_GUNLOCK(sc);
3305 		mwl_rx_intr(sc);
3306 		return (DDI_INTR_CLAIMED);
3307 	}
3308 	MWL_GUNLOCK(sc);
3309 
3310 	return (DDI_INTR_UNCLAIMED);
3311 }
3312 
3313 /*ARGSUSED*/
3314 static uint_t
3315 mwl_intr(caddr_t arg, caddr_t unused)
3316 {
3317 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3318 	uint32_t status;
3319 
3320 	MWL_GLOCK(sc);
3321 
3322 	if (!MWL_IS_RUNNING(sc) || MWL_IS_SUSPEND(sc)) {
3323 		MWL_GUNLOCK(sc);
3324 		return (DDI_INTR_UNCLAIMED);
3325 	}
3326 
3327 	/*
3328 	 * Figure out the reason(s) for the interrupt.
3329 	 */
3330 	mwl_hal_getisr(sc, &status);		/* NB: clears ISR too */
3331 	if (status == 0) {
3332 		MWL_GUNLOCK(sc);
3333 		return (DDI_INTR_UNCLAIMED);
3334 	}
3335 
3336 	if (status & MACREG_A2HRIC_BIT_RX_RDY) {
3337 		sc->sc_rx_pend = 1;
3338 		(void) ddi_intr_trigger_softint(sc->sc_softintr_hdl, NULL);
3339 	}
3340 	if (status & MACREG_A2HRIC_BIT_TX_DONE) {
3341 		mwl_tx_intr(sc);
3342 	}
3343 	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG) {
3344 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3345 		    "ba watchdog\n");
3346 	}
3347 	if (status & MACREG_A2HRIC_BIT_OPC_DONE) {
3348 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3349 		    "opc done\n");
3350 	}
3351 	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
3352 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3353 		    "mac event\n");
3354 	}
3355 	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
3356 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3357 		    "ICV error\n");
3358 	}
3359 	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
3360 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3361 		    "queue empty\n");
3362 	}
3363 	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
3364 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3365 		    "queue full\n");
3366 	}
3367 	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
3368 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3369 		    "radar detect\n");
3370 	}
3371 	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
3372 		MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3373 		    "chan switch\n");
3374 	}
3375 
3376 	MWL_GUNLOCK(sc);
3377 
3378 	return (DDI_INTR_CLAIMED);
3379 }
3380 
3381 static int
3382 mwl_init(struct mwl_softc *sc)
3383 {
3384 	struct ieee80211com *ic = &sc->sc_ic;
3385 	int err = 0;
3386 
3387 	mwl_hal_intrset(sc, 0);
3388 
3389 	sc->sc_txantenna = 0;		/* h/w default */
3390 	sc->sc_rxantenna = 0;		/* h/w default */
3391 
3392 	err = mwl_hal_setantenna(sc, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
3393 	if (err != 0) {
3394 		MWL_DBG(MWL_DBG_HW, "mwl: mwl_init(): "
3395 		    "could not set rx antenna\n");
3396 		goto fail;
3397 	}
3398 
3399 	err = mwl_hal_setantenna(sc, WL_ANTENNATYPE_TX, sc->sc_txantenna);
3400 	if (err != 0) {
3401 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3402 		    "could not set tx antenna\n");
3403 		goto fail;
3404 	}
3405 
3406 	err = mwl_hal_setradio(sc, 1, WL_AUTO_PREAMBLE);
3407 	if (err != 0) {
3408 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3409 		    "could not set radio\n");
3410 		goto fail;
3411 	}
3412 
3413 	err = mwl_hal_setwmm(sc, (ic->ic_flags & IEEE80211_F_WME) != 0);
3414 	if (err != 0) {
3415 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3416 		    "could not set wme\n");
3417 		goto fail;
3418 	}
3419 
3420 	/* select default channel */
3421 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
3422 	ic->ic_curchan = ic->ic_ibss_chan;
3423 	sc->sc_cur_chan = &sc->sc_channels[1];
3424 
3425 	err = mwl_chan_set(sc, sc->sc_cur_chan);
3426 	if (err != 0) {
3427 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3428 		    "could not set wme\n");
3429 		goto fail;
3430 	}
3431 
3432 	err = mwl_hal_setrateadaptmode(sc, 0);
3433 	if (err != 0) {
3434 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3435 		    "could not set rate adapt mode\n");
3436 		goto fail;
3437 	}
3438 
3439 	err = mwl_hal_setoptimizationlevel(sc,
3440 	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
3441 	if (err != 0) {
3442 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3443 		    "could not set optimization level\n");
3444 		goto fail;
3445 	}
3446 
3447 	err = mwl_hal_setregioncode(sc, mwl_map2regioncode(&sc->sc_regdomain));
3448 	if (err != 0) {
3449 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3450 		    "could not set regioncode\n");
3451 		goto fail;
3452 	}
3453 
3454 	err = mwl_startrecv(sc);
3455 	if (err != 0) {
3456 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3457 		    "could not set start recv logic\n");
3458 		goto fail;
3459 	}
3460 
3461 	/*
3462 	 * Enable interrupts.
3463 	 */
3464 	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
3465 	    | MACREG_A2HRIC_BIT_TX_DONE
3466 	    | MACREG_A2HRIC_BIT_OPC_DONE
3467 	    | MACREG_A2HRIC_BIT_ICV_ERROR
3468 	    | MACREG_A2HRIC_BIT_RADAR_DETECT
3469 	    | MACREG_A2HRIC_BIT_CHAN_SWITCH
3470 	    | MACREG_A2HRIC_BIT_BA_WATCHDOG
3471 	    | MACREQ_A2HRIC_BIT_TX_ACK;
3472 
3473 	mwl_hal_intrset(sc, sc->sc_imask);
3474 
3475 	err = mwl_hal_start(sc);
3476 	if (err != 0) {
3477 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3478 		    "could not get hal start\n");
3479 		goto fail;
3480 	}
3481 
3482 	err = mwl_hal_setinframode(sc);
3483 	if (err != 0) {
3484 		MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3485 		    "could not set infra mode\n");
3486 		goto fail;
3487 	}
3488 
3489 fail:
3490 	return (err);
3491 }
3492 
3493 static int
3494 mwl_resume(struct mwl_softc *sc)
3495 {
3496 	int qid, err = 0;
3497 
3498 	err = mwl_fwload(sc, NULL);
3499 	if (err != 0) {
3500 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3501 		    "failed to load fw\n");
3502 		goto fail;
3503 	}
3504 
3505 	err = mwl_gethwspecs(sc);
3506 	if (err != 0) {
3507 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3508 		    "failed to get hw spec\n");
3509 		goto fail;
3510 	}
3511 
3512 	err = mwl_alloc_rx_ring(sc, MWL_RX_RING_COUNT);
3513 	if (err != 0) {
3514 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3515 		    "could not alloc cmd dma buffer\n");
3516 		goto fail;
3517 	}
3518 
3519 	for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++) {
3520 		err = mwl_alloc_tx_ring(sc,
3521 		    &sc->sc_txring[qid], MWL_TX_RING_COUNT);
3522 		if (err != 0) {
3523 			MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3524 			    "could not alloc tx ring %d\n", qid);
3525 			goto fail;
3526 		}
3527 	}
3528 
3529 	err = mwl_setupdma(sc);
3530 	if (err != 0) {
3531 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3532 		    "could not setup dma\n");
3533 		goto fail;
3534 	}
3535 
3536 	err = mwl_setup_txq(sc);
3537 	if (err != 0) {
3538 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3539 		    "could not setup txq\n");
3540 		goto fail;
3541 	}
3542 
3543 fail:
3544 	return (err);
3545 }
3546 
3547 static void
3548 mwl_stop(struct mwl_softc *sc)
3549 {
3550 	int err;
3551 
3552 	/* by pass if it's quiesced */
3553 	if (!MWL_IS_QUIESCE(sc))
3554 		MWL_GLOCK(sc);
3555 
3556 	err = mwl_hal_stop(sc);
3557 	if (err != 0) {
3558 		MWL_DBG(MWL_DBG_HW, "mwl: mwl_stop(): "
3559 		    "could not stop hw\n");
3560 	}
3561 
3562 	/* by pass if it's quiesced */
3563 	if (!MWL_IS_QUIESCE(sc))
3564 		MWL_GUNLOCK(sc);
3565 }
3566 
3567 static int
3568 mwl_m_stat(void *arg, uint_t stat, uint64_t *val)
3569 {
3570 	struct mwl_softc *sc  = (struct mwl_softc *)arg;
3571 	struct ieee80211com *ic = &sc->sc_ic;
3572 	struct ieee80211_node *ni = NULL;
3573 	struct ieee80211_rateset *rs = NULL;
3574 
3575 	MWL_GLOCK(sc);
3576 	switch (stat) {
3577 	case MAC_STAT_IFSPEED:
3578 		ni = ic->ic_bss;
3579 		rs = &ni->in_rates;
3580 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
3581 		    (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
3582 		    : ic->ic_fixed_rate) / 2 * 1000000;
3583 		break;
3584 	case MAC_STAT_NOXMTBUF:
3585 		*val = sc->sc_tx_nobuf;
3586 		break;
3587 	case MAC_STAT_NORCVBUF:
3588 		*val = sc->sc_rx_nobuf;
3589 		break;
3590 	case MAC_STAT_IERRORS:
3591 		*val = sc->sc_rx_err;
3592 		break;
3593 	case MAC_STAT_RBYTES:
3594 		*val = ic->ic_stats.is_rx_bytes;
3595 		break;
3596 	case MAC_STAT_IPACKETS:
3597 		*val = ic->ic_stats.is_rx_frags;
3598 		break;
3599 	case MAC_STAT_OBYTES:
3600 		*val = ic->ic_stats.is_tx_bytes;
3601 		break;
3602 	case MAC_STAT_OPACKETS:
3603 		*val = ic->ic_stats.is_tx_frags;
3604 		break;
3605 	case MAC_STAT_OERRORS:
3606 	case WIFI_STAT_TX_FAILED:
3607 		*val = sc->sc_tx_err;
3608 		break;
3609 	case WIFI_STAT_TX_RETRANS:
3610 		*val = sc->sc_tx_retries;
3611 		break;
3612 	case WIFI_STAT_FCS_ERRORS:
3613 	case WIFI_STAT_WEP_ERRORS:
3614 	case WIFI_STAT_TX_FRAGS:
3615 	case WIFI_STAT_MCAST_TX:
3616 	case WIFI_STAT_RTS_SUCCESS:
3617 	case WIFI_STAT_RTS_FAILURE:
3618 	case WIFI_STAT_ACK_FAILURE:
3619 	case WIFI_STAT_RX_FRAGS:
3620 	case WIFI_STAT_MCAST_RX:
3621 	case WIFI_STAT_RX_DUPS:
3622 		MWL_GUNLOCK(sc);
3623 		return (ieee80211_stat(ic, stat, val));
3624 	default:
3625 		MWL_GUNLOCK(sc);
3626 		return (ENOTSUP);
3627 	}
3628 
3629 	MWL_GUNLOCK(sc);
3630 	return (0);
3631 }
3632 
3633 static int
3634 mwl_m_start(void *arg)
3635 {
3636 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3637 	struct ieee80211com *ic = &sc->sc_ic;
3638 	int err;
3639 
3640 	err = mwl_init(sc);
3641 	if (err != DDI_SUCCESS) {
3642 		MWL_DBG(MWL_DBG_HW, "mwl: mwl_m_start():"
3643 		    "Hardware initialization failed\n");
3644 		goto fail1;
3645 	}
3646 
3647 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3648 
3649 	MWL_GLOCK(sc);
3650 	sc->sc_flags |= MWL_F_RUNNING;
3651 	MWL_GUNLOCK(sc);
3652 
3653 	return (0);
3654 fail1:
3655 	mwl_stop(sc);
3656 	return (err);
3657 }
3658 
3659 static void
3660 mwl_m_stop(void *arg)
3661 {
3662 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3663 
3664 	mwl_stop(sc);
3665 
3666 	ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
3667 
3668 	MWL_GLOCK(sc);
3669 	sc->sc_flags &= ~MWL_F_RUNNING;
3670 	MWL_GUNLOCK(sc);
3671 }
3672 
3673 /*ARGSUSED*/
3674 static int
3675 mwl_m_promisc(void *arg, boolean_t on)
3676 {
3677 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3678 	int err;
3679 
3680 	err = mwl_hal_setpromisc(sc, on);
3681 
3682 	return (err);
3683 }
3684 
3685 /*ARGSUSED*/
3686 static int
3687 mwl_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
3688 {
3689 	return (ENOTSUP);
3690 }
3691 
3692 /*ARGSUSED*/
3693 static int
3694 mwl_m_unicst(void *arg, const uint8_t *macaddr)
3695 {
3696 	return (ENOTSUP);
3697 }
3698 
3699 static mblk_t *
3700 mwl_m_tx(void *arg, mblk_t *mp)
3701 {
3702 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3703 	struct ieee80211com *ic = &sc->sc_ic;
3704 	mblk_t *next;
3705 
3706 	if (MWL_IS_SUSPEND(sc)) {
3707 		freemsgchain(mp);
3708 		return (NULL);
3709 	}
3710 
3711 	/*
3712 	 * No data frames go out unless we're associated; this
3713 	 * should not happen as the 802.11 layer does not enable
3714 	 * the xmit queue until we enter the RUN state.
3715 	 */
3716 	if (ic->ic_state != IEEE80211_S_RUN) {
3717 		MWL_DBG(MWL_DBG_TX, "mwl: mwl_m_tx(): "
3718 		    "discard, state %u\n", ic->ic_state);
3719 		freemsgchain(mp);
3720 		return (NULL);
3721 	}
3722 
3723 	while (mp != NULL) {
3724 		next = mp->b_next;
3725 		mp->b_next = NULL;
3726 		if (mwl_send(ic, mp, IEEE80211_FC0_TYPE_DATA) !=
3727 		    DDI_SUCCESS) {
3728 			mp->b_next = next;
3729 			break;
3730 		}
3731 		mp = next;
3732 	}
3733 	return (mp);
3734 }
3735 
3736 static void
3737 mwl_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
3738 {
3739 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3740 	struct ieee80211com *ic = &sc->sc_ic;
3741 	int err;
3742 
3743 	err = ieee80211_ioctl(ic, wq, mp);
3744 	if (err == ENETRESET) {
3745 		if (ic->ic_des_esslen) {
3746 			if (MWL_IS_RUNNING(sc)) {
3747 				(void) mwl_init(sc);
3748 				(void) ieee80211_new_state(ic,
3749 				    IEEE80211_S_SCAN, -1);
3750 			}
3751 		}
3752 	}
3753 }
3754 
3755 /*
3756  * Call back function for get/set proporty
3757  */
3758 static int
3759 mwl_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3760     uint_t wldp_length, void *wldp_buf)
3761 {
3762 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3763 	int err = 0;
3764 
3765 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
3766 	    wldp_length, wldp_buf);
3767 
3768 	return (err);
3769 }
3770 
3771 static void
3772 mwl_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3773     mac_prop_info_handle_t prh)
3774 {
3775 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3776 
3777 	ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
3778 }
3779 
3780 static int
3781 mwl_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3782     uint_t wldp_length, const void *wldp_buf)
3783 {
3784 	struct mwl_softc *sc = (struct mwl_softc *)arg;
3785 	ieee80211com_t *ic = &sc->sc_ic;
3786 	int err;
3787 
3788 	err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
3789 	    wldp_buf);
3790 	if (err == ENETRESET) {
3791 		if (ic->ic_des_esslen) {
3792 			if (MWL_IS_RUNNING(sc)) {
3793 				(void) mwl_init(sc);
3794 				(void) ieee80211_new_state(ic,
3795 				    IEEE80211_S_SCAN, -1);
3796 			}
3797 		}
3798 		err = 0;
3799 	}
3800 	return (err);
3801 }
3802 
3803 static int
3804 mwl_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3805 {
3806 	struct mwl_softc *sc;
3807 	struct ieee80211com *ic;
3808 	int i, err, qid, instance;
3809 	int intr_type, intr_count, intr_actual;
3810 	char strbuf[32];
3811 	uint8_t csz;
3812 	uint16_t vendor_id, device_id, command;
3813 
3814 	wifi_data_t wd = { 0 };
3815 	mac_register_t *macp;
3816 
3817 	switch (cmd) {
3818 	case DDI_ATTACH:
3819 		break;
3820 	case DDI_RESUME:
3821 		sc = ddi_get_soft_state(mwl_soft_state_p,
3822 		    ddi_get_instance(devinfo));
3823 		ASSERT(sc != NULL);
3824 		MWL_GLOCK(sc);
3825 		sc->sc_flags &= ~MWL_F_SUSPEND;
3826 		MWL_GUNLOCK(sc);
3827 		if (mwl_resume(sc) != 0) {
3828 			MWL_DBG(MWL_DBG_SR, "mwl: mwl_attach(): "
3829 			    "failed to resume\n");
3830 			return (DDI_FAILURE);
3831 		}
3832 		if (MWL_IS_RUNNING(sc)) {
3833 			(void) mwl_init(sc);
3834 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
3835 		}
3836 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_attach(): "
3837 		    "resume now\n");
3838 		return (DDI_SUCCESS);
3839 	default:
3840 		return (DDI_FAILURE);
3841 	}
3842 
3843 	instance = ddi_get_instance(devinfo);
3844 	if (ddi_soft_state_zalloc(mwl_soft_state_p,
3845 	    ddi_get_instance(devinfo)) != DDI_SUCCESS) {
3846 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3847 		    "Unable to alloc soft state\n");
3848 		return (DDI_FAILURE);
3849 	}
3850 
3851 	sc = ddi_get_soft_state(mwl_soft_state_p, ddi_get_instance(devinfo));
3852 	ic = &sc->sc_ic;
3853 	sc->sc_dev = devinfo;
3854 
3855 	/* PCI configuration space */
3856 	err = ddi_regs_map_setup(devinfo, 0, (caddr_t *)&sc->sc_cfg_base, 0, 0,
3857 	    &mwl_reg_accattr, &sc->sc_cfg_handle);
3858 	if (err != DDI_SUCCESS) {
3859 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3860 		    "ddi_regs_map_setup() failed");
3861 		goto attach_fail0;
3862 	}
3863 	csz = ddi_get8(sc->sc_cfg_handle,
3864 	    (uint8_t *)(sc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
3865 	if (!csz)
3866 		csz = 16;
3867 	sc->sc_cachelsz = csz << 2;
3868 	sc->sc_dmabuf_size = roundup(IEEE80211_MAX_LEN, sc->sc_cachelsz);
3869 	vendor_id = ddi_get16(sc->sc_cfg_handle,
3870 	    (uint16_t *)(sc->sc_cfg_base + PCI_CONF_VENID));
3871 	device_id = ddi_get16(sc->sc_cfg_handle,
3872 	    (uint16_t *)(sc->sc_cfg_base + PCI_CONF_DEVID));
3873 	MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3874 	    "vendor 0x%x, device id 0x%x, cache size %d\n",
3875 	    vendor_id, device_id, csz);
3876 
3877 	/*
3878 	 * Enable response to memory space accesses,
3879 	 * and enabe bus master.
3880 	 */
3881 	command = PCI_COMM_MAE | PCI_COMM_ME;
3882 	ddi_put16(sc->sc_cfg_handle,
3883 	    (uint16_t *)((uintptr_t)(sc->sc_cfg_base) + PCI_CONF_COMM),
3884 	    command);
3885 	ddi_put8(sc->sc_cfg_handle,
3886 	    (uint8_t *)(sc->sc_cfg_base + PCI_CONF_LATENCY_TIMER), 0xa8);
3887 	ddi_put8(sc->sc_cfg_handle,
3888 	    (uint8_t *)(sc->sc_cfg_base + PCI_CONF_ILINE), 0x10);
3889 
3890 	/* BAR0 */
3891 	err = ddi_regs_map_setup(devinfo, 1,
3892 	    &sc->sc_mem_base, 0, 0, &mwl_reg_accattr, &sc->sc_mem_handle);
3893 	if (err != DDI_SUCCESS) {
3894 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3895 		    "i/o space failed");
3896 		goto attach_fail1;
3897 	}
3898 
3899 	/* BAR1 */
3900 	err = ddi_regs_map_setup(devinfo, 2,
3901 	    &sc->sc_io_base, 0, 0, &mwl_reg_accattr, &sc->sc_io_handle);
3902 	if (err != DDI_SUCCESS) {
3903 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3904 		    "memory space failed");
3905 		goto attach_fail2;
3906 	}
3907 
3908 	MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3909 	    "PCI configuration is done successfully\n");
3910 
3911 	/*
3912 	 * Alloc cmd DMA buffer for firmware download
3913 	 */
3914 	err = mwl_alloc_cmdbuf(sc);
3915 	if (err != 0) {
3916 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3917 		    "could not alloc cmd dma buffer\n");
3918 		goto attach_fail3;
3919 	}
3920 
3921 	sc->sc_imask = 0;
3922 	sc->sc_hw_flags = 0;
3923 	sc->sc_flags = 0;
3924 
3925 	/*
3926 	 * Some cards have SDRAM.  When loading firmware we need
3927 	 * to reset the SDRAM controller prior to doing this.
3928 	 * When the SDRAMSIZE is non-zero we do that work in
3929 	 * mwl_hal_fwload.
3930 	 */
3931 	switch (device_id) {
3932 	case 0x2a02:		/* CB82 */
3933 	case 0x2a03:		/* CB85 */
3934 	case 0x2a08:		/* MC85_B1 */
3935 	case 0x2a0b:		/* CB85AP */
3936 	case 0x2a24:
3937 		sc->sc_SDRAMSIZE_Addr = 0x40fe70b7;	/* 8M SDRAM */
3938 		break;
3939 	case 0x2a04:		/* MC85 */
3940 		sc->sc_SDRAMSIZE_Addr = 0x40fc70b7;	/* 16M SDRAM */
3941 		break;
3942 	default:
3943 		break;
3944 	}
3945 
3946 	err = mwl_fwload(sc, NULL);
3947 	if (err != 0) {
3948 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3949 		    "firmware download failed\n");
3950 		goto attach_fail4;
3951 	}
3952 
3953 	MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3954 	    "firmware download successfully\n");
3955 
3956 	err = mwl_gethwspecs(sc);
3957 	if (err != 0) {
3958 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3959 		    "failed to get hw spec\n");
3960 		goto attach_fail4;
3961 	}
3962 
3963 	err = mwl_getchannels(sc);
3964 	if (err != 0) {
3965 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3966 		    "failed to get channels\n");
3967 		goto attach_fail4;
3968 	}
3969 
3970 	/*
3971 	 * Alloc rx DMA buffer
3972 	 */
3973 	err = mwl_alloc_rx_ring(sc, MWL_RX_RING_COUNT);
3974 	if (err != 0) {
3975 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3976 		    "could not alloc cmd dma buffer\n");
3977 		goto attach_fail5;
3978 	}
3979 
3980 	/*
3981 	 * Alloc rx DMA buffer
3982 	 */
3983 	for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++) {
3984 		err = mwl_alloc_tx_ring(sc,
3985 		    &sc->sc_txring[qid], MWL_TX_RING_COUNT);
3986 		if (err != 0) {
3987 			MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3988 			    "could not alloc tx ring %d\n", qid);
3989 			goto attach_fail6;
3990 		}
3991 	}
3992 
3993 	err = mwl_setupdma(sc);
3994 	if (err != 0) {
3995 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3996 		    "could not setup dma\n");
3997 		goto attach_fail6;
3998 	}
3999 
4000 	err = mwl_setup_txq(sc);
4001 	if (err != 0) {
4002 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4003 		    "could not setup txq\n");
4004 		goto attach_fail6;
4005 	}
4006 
4007 	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr);
4008 	MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4009 	    "mwl MAC:%2x:%2x:%2x:%2x:%2x:%2x\n",
4010 	    ic->ic_macaddr[0],
4011 	    ic->ic_macaddr[1],
4012 	    ic->ic_macaddr[2],
4013 	    ic->ic_macaddr[3],
4014 	    ic->ic_macaddr[4],
4015 	    ic->ic_macaddr[5]);
4016 
4017 	err = mwl_hal_setmac_locked(sc, ic->ic_macaddr);
4018 	if (err != 0) {			/* NB: mwl_setupdma prints msg */
4019 		MWL_DBG(MWL_DBG_ATTACH, "mwl: attach(): "
4020 		    "could not set mac\n");
4021 		goto attach_fail6;
4022 	}
4023 
4024 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, NULL);
4025 	mutex_init(&sc->sc_rxlock, NULL, MUTEX_DRIVER, NULL);
4026 	mutex_init(&sc->sc_txlock, NULL, MUTEX_DRIVER, NULL);
4027 
4028 
4029 	/* set supported rates */
4030 	ic->ic_sup_rates[IEEE80211_MODE_11B] = mwl_rateset_11b;
4031 	ic->ic_sup_rates[IEEE80211_MODE_11G] = mwl_rateset_11g;
4032 
4033 	/* set supported .11b and .11g channels (1 through 14) */
4034 	for (i = 1; i <= 14; i++) {
4035 		ic->ic_sup_channels[i].ich_freq =
4036 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
4037 		ic->ic_sup_channels[i].ich_flags =
4038 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
4039 	}
4040 
4041 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
4042 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
4043 	ic->ic_state = IEEE80211_S_INIT;
4044 
4045 	/* set device capabilities */
4046 	ic->ic_caps =
4047 	    IEEE80211_C_TXPMGT |	/* tx power management */
4048 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
4049 	    IEEE80211_C_SHSLOT;		/* short slot time supported */
4050 
4051 	/* WPA/WPA2 support */
4052 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
4053 
4054 	/* Enable hardware encryption */
4055 	ic->ic_caps |= IEEE80211_C_WEP | IEEE80211_C_TKIP | IEEE80211_C_AES_CCM;
4056 
4057 	ic->ic_xmit = mwl_send;
4058 
4059 	ieee80211_attach(ic);
4060 
4061 	/* register WPA door */
4062 	ieee80211_register_door(ic, ddi_driver_name(devinfo),
4063 	    ddi_get_instance(devinfo));
4064 
4065 	/* override state transition machine */
4066 	sc->sc_newstate = ic->ic_newstate;
4067 	ic->ic_newstate = mwl_newstate;
4068 	ic->ic_node_alloc = mwl_node_alloc;
4069 	ic->ic_node_free = mwl_node_free;
4070 	ic->ic_crypto.cs_max_keyix = 0;
4071 	ic->ic_crypto.cs_key_alloc = mwl_key_alloc;
4072 	ic->ic_crypto.cs_key_delete = mwl_key_delete;
4073 	ic->ic_crypto.cs_key_set = mwl_key_set;
4074 
4075 	ieee80211_media_init(ic);
4076 
4077 	ic->ic_def_txkey = 0;
4078 
4079 	err = mwl_hal_newstation(sc, ic->ic_macaddr, 0, 0, NULL, 0, 0);
4080 	if (err != 0) {
4081 		MWL_DBG(MWL_DBG_ATTACH, "mwl: attach(): "
4082 		    "could not create new station\n");
4083 		goto attach_fail7;
4084 	}
4085 
4086 	IEEE80211_ADDR_COPY(ic->ic_bss->in_bssid, ic->ic_macaddr);
4087 	// mwl_setglobalkeys(ic);
4088 
4089 	err = ddi_intr_get_supported_types(devinfo, &intr_type);
4090 	if ((err != DDI_SUCCESS) || (!(intr_type & DDI_INTR_TYPE_FIXED))) {
4091 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4092 		    "fixed type interrupt is not supported\n");
4093 		goto attach_fail7;
4094 	}
4095 
4096 	err = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &intr_count);
4097 	if ((err != DDI_SUCCESS) || (intr_count != 1)) {
4098 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4099 		    "no fixed interrupts\n");
4100 		goto attach_fail7;
4101 	}
4102 
4103 	sc->sc_intr_htable = kmem_zalloc(sizeof (ddi_intr_handle_t), KM_SLEEP);
4104 
4105 	err = ddi_intr_alloc(devinfo, sc->sc_intr_htable,
4106 	    DDI_INTR_TYPE_FIXED, 0, intr_count, &intr_actual, 0);
4107 	if ((err != DDI_SUCCESS) || (intr_actual != 1)) {
4108 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4109 		    "ddi_intr_alloc() failed 0x%x\n", err);
4110 		goto attach_fail8;
4111 	}
4112 
4113 	err = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
4114 	if (err != DDI_SUCCESS) {
4115 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4116 		    "ddi_intr_get_pri() failed 0x%x\n", err);
4117 		goto attach_fail9;
4118 	}
4119 
4120 	err = ddi_intr_add_softint(devinfo, &sc->sc_softintr_hdl,
4121 	    DDI_INTR_SOFTPRI_MAX, mwl_softintr, (caddr_t)sc);
4122 	if (err != DDI_SUCCESS) {
4123 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4124 		    "ddi_add_softintr() failed");
4125 		goto attach_fail9;
4126 	}
4127 
4128 	err = ddi_intr_add_handler(sc->sc_intr_htable[0], mwl_intr,
4129 	    (caddr_t)sc, NULL);
4130 	if (err != DDI_SUCCESS) {
4131 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4132 		    "ddi_intr_addr_handle() failed\n");
4133 		goto attach_fail10;
4134 	}
4135 
4136 	err = ddi_intr_enable(sc->sc_intr_htable[0]);
4137 	if (err != DDI_SUCCESS) {
4138 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4139 		    "ddi_intr_enable() failed\n");
4140 		goto attach_fail11;
4141 	}
4142 
4143 	/*
4144 	 * Provide initial settings for the WiFi plugin; whenever this
4145 	 * information changes, we need to call mac_plugindata_update()
4146 	 */
4147 	wd.wd_opmode = ic->ic_opmode;
4148 	wd.wd_secalloc = WIFI_SEC_NONE;
4149 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
4150 
4151 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
4152 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4153 		    "MAC version mismatch\n");
4154 		goto attach_fail12;
4155 	}
4156 
4157 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
4158 	macp->m_driver		= sc;
4159 	macp->m_dip		= devinfo;
4160 	macp->m_src_addr	= ic->ic_macaddr;
4161 	macp->m_callbacks	= &mwl_m_callbacks;
4162 	macp->m_min_sdu		= 0;
4163 	macp->m_max_sdu		= IEEE80211_MTU;
4164 	macp->m_pdata		= &wd;
4165 	macp->m_pdata_size	= sizeof (wd);
4166 
4167 	err = mac_register(macp, &ic->ic_mach);
4168 	mac_free(macp);
4169 	if (err != 0) {
4170 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4171 		    "mac_register err %x\n", err);
4172 		goto attach_fail12;
4173 	}
4174 
4175 	/*
4176 	 * Create minor node of type DDI_NT_NET_WIFI
4177 	 */
4178 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
4179 	    "mwl", instance);
4180 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
4181 	    instance + 1, DDI_NT_NET_WIFI, 0);
4182 	if (err != 0) {
4183 		MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4184 		    "create minor node error\n");
4185 		goto attach_fail13;
4186 	}
4187 
4188 	/*
4189 	 * Notify link is down now
4190 	 */
4191 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
4192 
4193 	MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4194 	    "driver attach successfully\n");
4195 	return (DDI_SUCCESS);
4196 
4197 attach_fail13:
4198 	(void) mac_disable(ic->ic_mach);
4199 	(void) mac_unregister(ic->ic_mach);
4200 attach_fail12:
4201 	(void) ddi_intr_disable(sc->sc_intr_htable[0]);
4202 attach_fail11:
4203 	(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
4204 attach_fail10:
4205 	(void) ddi_intr_remove_softint(sc->sc_softintr_hdl);
4206 	sc->sc_softintr_hdl = NULL;
4207 attach_fail9:
4208 	(void) ddi_intr_free(sc->sc_intr_htable[0]);
4209 attach_fail8:
4210 	kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
4211 attach_fail7:
4212 	mutex_destroy(&sc->sc_txlock);
4213 	mutex_destroy(&sc->sc_rxlock);
4214 	mutex_destroy(&sc->sc_glock);
4215 attach_fail6:
4216 	while (--qid >= 0)
4217 		mwl_free_tx_ring(sc, &sc->sc_txring[qid]);
4218 attach_fail5:
4219 	mwl_free_rx_ring(sc);
4220 attach_fail4:
4221 	mwl_free_cmdbuf(sc);
4222 attach_fail3:
4223 	ddi_regs_map_free(&sc->sc_mem_handle);
4224 attach_fail2:
4225 	ddi_regs_map_free(&sc->sc_io_handle);
4226 attach_fail1:
4227 	ddi_regs_map_free(&sc->sc_cfg_handle);
4228 attach_fail0:
4229 	ddi_soft_state_free(mwl_soft_state_p, ddi_get_instance(devinfo));
4230 	return (DDI_FAILURE);
4231 }
4232 
4233 static int32_t
4234 mwl_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
4235 {
4236 	struct mwl_softc *sc;
4237 	int qid;
4238 
4239 	sc = ddi_get_soft_state(mwl_soft_state_p, ddi_get_instance(devinfo));
4240 	ASSERT(sc != NULL);
4241 
4242 	switch (cmd) {
4243 	case DDI_DETACH:
4244 		break;
4245 	case DDI_SUSPEND:
4246 		if (MWL_IS_RUNNING(sc))
4247 			mwl_stop(sc);
4248 		for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++)
4249 			mwl_free_tx_ring(sc, &sc->sc_txring[qid]);
4250 		mwl_free_rx_ring(sc);
4251 		MWL_GLOCK(sc);
4252 		sc->sc_flags |= MWL_F_SUSPEND;
4253 		MWL_GUNLOCK(sc);
4254 		MWL_DBG(MWL_DBG_SR, "mwl: mwl_detach(): "
4255 		    "suspend now\n");
4256 		return (DDI_SUCCESS);
4257 	default:
4258 		return (DDI_FAILURE);
4259 	}
4260 
4261 	if (mac_disable(sc->sc_ic.ic_mach) != 0)
4262 		return (DDI_FAILURE);
4263 
4264 	/*
4265 	 * Unregister from the MAC layer subsystem
4266 	 */
4267 	(void) mac_unregister(sc->sc_ic.ic_mach);
4268 
4269 	(void) ddi_intr_remove_softint(sc->sc_softintr_hdl);
4270 	sc->sc_softintr_hdl = NULL;
4271 	(void) ddi_intr_disable(sc->sc_intr_htable[0]);
4272 	(void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
4273 	(void) ddi_intr_free(sc->sc_intr_htable[0]);
4274 	kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
4275 
4276 	/*
4277 	 * detach ieee80211 layer
4278 	 */
4279 	ieee80211_detach(&sc->sc_ic);
4280 
4281 
4282 	for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++)
4283 		mwl_free_tx_ring(sc, &sc->sc_txring[qid]);
4284 	mwl_free_rx_ring(sc);
4285 	mwl_free_cmdbuf(sc);
4286 
4287 	mutex_destroy(&sc->sc_txlock);
4288 	mutex_destroy(&sc->sc_rxlock);
4289 	mutex_destroy(&sc->sc_glock);
4290 
4291 	ddi_regs_map_free(&sc->sc_mem_handle);
4292 	ddi_regs_map_free(&sc->sc_io_handle);
4293 	ddi_regs_map_free(&sc->sc_cfg_handle);
4294 
4295 	ddi_remove_minor_node(devinfo, NULL);
4296 	ddi_soft_state_free(mwl_soft_state_p, ddi_get_instance(devinfo));
4297 
4298 	MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_detach(): "
4299 	    "detach successfully\n");
4300 	return (DDI_SUCCESS);
4301 }
4302 
4303 /*
4304  * quiesce(9E) entry point.
4305  *
4306  * This function is called when the system is single-threaded at high
4307  * PIL with preemption disabled. Therefore, this function must not be
4308  * blocked.
4309  *
4310  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4311  * DDI_FAILURE indicates an error condition and should almost never happen.
4312  */
4313 int
4314 mwl_quiesce(dev_info_t *dip)
4315 {
4316 	struct mwl_softc *sc;
4317 
4318 	sc = ddi_get_soft_state(mwl_soft_state_p, ddi_get_instance(dip));
4319 	if (sc == NULL)
4320 		return (DDI_FAILURE);
4321 
4322 #ifdef DEBUG
4323 	mwl_dbg_flags = 0;
4324 #endif
4325 
4326 	/*
4327 	 * No more blocking is allowed while we are in quiesce(9E) entry point
4328 	 */
4329 	sc->sc_flags |= MWL_F_QUIESCE;
4330 
4331 	/*
4332 	 * Disable all interrupts
4333 	 */
4334 	mwl_stop(sc);
4335 	return (DDI_SUCCESS);
4336 }
4337 
4338 int
4339 _init(void)
4340 {
4341 	int status;
4342 
4343 	status = ddi_soft_state_init(&mwl_soft_state_p,
4344 	    sizeof (struct mwl_softc), 1);
4345 	if (status != 0)
4346 		return (status);
4347 
4348 	mac_init_ops(&mwl_dev_ops, "mwl");
4349 	status = mod_install(&modlinkage);
4350 	if (status != 0) {
4351 		mac_fini_ops(&mwl_dev_ops);
4352 		ddi_soft_state_fini(&mwl_soft_state_p);
4353 	}
4354 	return (status);
4355 }
4356 
4357 int
4358 _info(struct modinfo *modinfop)
4359 {
4360 	return (mod_info(&modlinkage, modinfop));
4361 }
4362 
4363 int
4364 _fini(void)
4365 {
4366 	int status;
4367 
4368 	status = mod_remove(&modlinkage);
4369 	if (status == 0) {
4370 		mac_fini_ops(&mwl_dev_ops);
4371 		ddi_soft_state_fini(&mwl_soft_state_p);
4372 	}
4373 	return (status);
4374 }
4375