xref: /illumos-gate/usr/src/uts/common/io/mem.c (revision 222c5bce8762079550e5ccd485a12de1fff5a82e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Memory special file
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/user.h>
35 #include <sys/buf.h>
36 #include <sys/systm.h>
37 #include <sys/cred.h>
38 #include <sys/vm.h>
39 #include <sys/uio.h>
40 #include <sys/mman.h>
41 #include <sys/kmem.h>
42 #include <vm/seg.h>
43 #include <vm/page.h>
44 #include <sys/stat.h>
45 #include <sys/vmem.h>
46 #include <sys/memlist.h>
47 #include <sys/bootconf.h>
48 
49 #include <vm/seg_vn.h>
50 #include <vm/seg_dev.h>
51 #include <vm/seg_kmem.h>
52 #include <vm/seg_kp.h>
53 #include <vm/seg_kpm.h>
54 #include <vm/hat.h>
55 
56 #include <sys/conf.h>
57 #include <sys/mem.h>
58 #include <sys/types.h>
59 #include <sys/conf.h>
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/errno.h>
63 #include <sys/modctl.h>
64 #include <sys/memlist.h>
65 #include <sys/ddi.h>
66 #include <sys/sunddi.h>
67 #include <sys/debug.h>
68 #include <sys/fm/protocol.h>
69 
70 #if defined(__sparc)
71 extern int cpu_get_mem_name(uint64_t, uint64_t *, uint64_t, char *, int, int *);
72 extern int cpu_get_mem_info(uint64_t, uint64_t, uint64_t *, uint64_t *,
73     uint64_t *, int *, int *, int *);
74 extern size_t cpu_get_name_bufsize(void);
75 extern int cpu_get_mem_sid(char *, char *, int, int *);
76 extern int cpu_get_mem_addr(char *, char *, uint64_t, uint64_t *);
77 #elif defined(__x86)
78 #include <sys/cpu_module.h>
79 #endif	/* __sparc */
80 
81 /*
82  * Turn a byte length into a pagecount.  The DDI btop takes a
83  * 32-bit size on 32-bit machines, this handles 64-bit sizes for
84  * large physical-memory 32-bit machines.
85  */
86 #define	BTOP(x)	((pgcnt_t)((x) >> _pageshift))
87 
88 static kmutex_t mm_lock;
89 static caddr_t mm_map;
90 
91 static dev_info_t *mm_dip;	/* private copy of devinfo pointer */
92 
93 static int mm_kmem_io_access;
94 
95 static int mm_kstat_update(kstat_t *ksp, int rw);
96 static int mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
97 
98 static int mm_read_mem_name(intptr_t data, mem_name_t *mem_name);
99 static int mm_read_mem_page(intptr_t data, mem_page_t *mpage);
100 static int mm_get_mem_fmri(mem_page_t *mpage, nvlist_t **nvl);
101 static int mm_get_paddr(nvlist_t *nvl, uint64_t *paddr);
102 
103 /*ARGSUSED1*/
104 static int
105 mm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
106 {
107 	int i;
108 	struct mem_minor {
109 		char *name;
110 		minor_t minor;
111 		int privonly;
112 		const char *rdpriv;
113 		const char *wrpriv;
114 		mode_t priv_mode;
115 	} mm[] = {
116 		{ "mem",	M_MEM,		0,	NULL,	"all",	0640 },
117 		{ "kmem",	M_KMEM,		0,	NULL,	"all",	0640 },
118 		{ "allkmem",	M_ALLKMEM,	0,	"all",	"all",	0600 },
119 		{ "null",	M_NULL,	PRIVONLY_DEV,	NULL,	NULL,	0666 },
120 		{ "zero",	M_ZERO, PRIVONLY_DEV,	NULL,	NULL,	0666 },
121 	};
122 	kstat_t *ksp;
123 
124 	mutex_init(&mm_lock, NULL, MUTEX_DEFAULT, NULL);
125 	mm_map = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
126 
127 	for (i = 0; i < (sizeof (mm) / sizeof (mm[0])); i++) {
128 		if (ddi_create_priv_minor_node(devi, mm[i].name, S_IFCHR,
129 		    mm[i].minor, DDI_PSEUDO, mm[i].privonly,
130 		    mm[i].rdpriv, mm[i].wrpriv, mm[i].priv_mode) ==
131 		    DDI_FAILURE) {
132 			ddi_remove_minor_node(devi, NULL);
133 			return (DDI_FAILURE);
134 		}
135 	}
136 
137 	mm_dip = devi;
138 
139 	ksp = kstat_create("mm", 0, "phys_installed", "misc",
140 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
141 	if (ksp != NULL) {
142 		ksp->ks_update = mm_kstat_update;
143 		ksp->ks_snapshot = mm_kstat_snapshot;
144 		ksp->ks_lock = &mm_lock; /* XXX - not really needed */
145 		kstat_install(ksp);
146 	}
147 
148 	mm_kmem_io_access = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
149 	    "kmem_io_access", 0);
150 
151 	return (DDI_SUCCESS);
152 }
153 
154 /*ARGSUSED*/
155 static int
156 mm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
157 {
158 	register int error;
159 
160 	switch (infocmd) {
161 	case DDI_INFO_DEVT2DEVINFO:
162 		*result = (void *)mm_dip;
163 		error = DDI_SUCCESS;
164 		break;
165 	case DDI_INFO_DEVT2INSTANCE:
166 		*result = (void *)0;
167 		error = DDI_SUCCESS;
168 		break;
169 	default:
170 		error = DDI_FAILURE;
171 	}
172 	return (error);
173 }
174 
175 /*ARGSUSED1*/
176 static int
177 mmopen(dev_t *devp, int flag, int typ, struct cred *cred)
178 {
179 	switch (getminor(*devp)) {
180 	case M_NULL:
181 	case M_ZERO:
182 	case M_MEM:
183 	case M_KMEM:
184 	case M_ALLKMEM:
185 		/* standard devices */
186 		break;
187 
188 	default:
189 		/* Unsupported or unknown type */
190 		return (EINVAL);
191 	}
192 	return (0);
193 }
194 
195 struct pollhead	mm_pollhd;
196 
197 /*ARGSUSED*/
198 static int
199 mmchpoll(dev_t dev, short events, int anyyet, short *reventsp,
200     struct pollhead **phpp)
201 {
202 	switch (getminor(dev)) {
203 	case M_NULL:
204 	case M_ZERO:
205 	case M_MEM:
206 	case M_KMEM:
207 	case M_ALLKMEM:
208 		*reventsp = events & (POLLIN | POLLOUT | POLLPRI | POLLRDNORM |
209 		    POLLWRNORM | POLLRDBAND | POLLWRBAND);
210 		/*
211 		 * A non NULL pollhead pointer should be returned in case
212 		 * user polls for 0 events.
213 		 */
214 		*phpp = !anyyet && !*reventsp ?
215 		    &mm_pollhd : (struct pollhead *)NULL;
216 		return (0);
217 	default:
218 		/* no other devices currently support polling */
219 		return (ENXIO);
220 	}
221 }
222 
223 static int
224 mmpropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags,
225     char *name, caddr_t valuep, int *lengthp)
226 {
227 	/*
228 	 * implement zero size to reduce overhead (avoid two failing
229 	 * property lookups per stat).
230 	 */
231 	return (ddi_prop_op_size(dev, dip, prop_op,
232 	    flags, name, valuep, lengthp, 0));
233 }
234 
235 static int
236 mmio(struct uio *uio, enum uio_rw rw, pfn_t pfn, off_t pageoff, int allowio)
237 {
238 	int error = 0;
239 	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
240 	    (size_t)uio->uio_iov->iov_len);
241 
242 	mutex_enter(&mm_lock);
243 	hat_devload(kas.a_hat, mm_map, PAGESIZE, pfn,
244 	    (uint_t)(rw == UIO_READ ? PROT_READ : PROT_READ | PROT_WRITE),
245 	    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
246 
247 	if (!pf_is_memory(pfn)) {
248 		if (allowio) {
249 			size_t c = uio->uio_iov->iov_len;
250 
251 			if (ddi_peekpokeio(NULL, uio, rw,
252 			    (caddr_t)(uintptr_t)uio->uio_loffset, c,
253 			    sizeof (int32_t)) != DDI_SUCCESS)
254 				error = EFAULT;
255 		} else
256 			error = EIO;
257 	} else
258 		error = uiomove(&mm_map[pageoff], nbytes, rw, uio);
259 
260 	hat_unload(kas.a_hat, mm_map, PAGESIZE, HAT_UNLOAD_UNLOCK);
261 	mutex_exit(&mm_lock);
262 	return (error);
263 }
264 
265 static int
266 mmpagelock(struct as *as, caddr_t va)
267 {
268 	struct seg *seg;
269 	int i;
270 
271 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
272 	seg = as_segat(as, va);
273 	i = (seg != NULL)? SEGOP_CAPABLE(seg, S_CAPABILITY_NOMINFLT) : 0;
274 	AS_LOCK_EXIT(as, &as->a_lock);
275 
276 	return (i);
277 }
278 
279 #ifdef	__sparc
280 
281 #define	NEED_LOCK_KVADDR(kva)	mmpagelock(&kas, kva)
282 
283 #else	/* __i386, __amd64 */
284 
285 #define	NEED_LOCK_KVADDR(va)	0
286 
287 #endif	/* __sparc */
288 
289 /*ARGSUSED3*/
290 static int
291 mmrw(dev_t dev, struct uio *uio, enum uio_rw rw, cred_t *cred)
292 {
293 	pfn_t v;
294 	struct iovec *iov;
295 	int error = 0;
296 	size_t c;
297 	ssize_t oresid = uio->uio_resid;
298 	minor_t minor = getminor(dev);
299 
300 	while (uio->uio_resid > 0 && error == 0) {
301 		iov = uio->uio_iov;
302 		if (iov->iov_len == 0) {
303 			uio->uio_iov++;
304 			uio->uio_iovcnt--;
305 			if (uio->uio_iovcnt < 0)
306 				panic("mmrw");
307 			continue;
308 		}
309 		switch (minor) {
310 
311 		case M_MEM:
312 			memlist_read_lock();
313 			if (!address_in_memlist(phys_install,
314 			    (uint64_t)uio->uio_loffset, 1)) {
315 				memlist_read_unlock();
316 				error = EFAULT;
317 				break;
318 			}
319 			memlist_read_unlock();
320 
321 			v = BTOP((u_offset_t)uio->uio_loffset);
322 			error = mmio(uio, rw, v,
323 			    uio->uio_loffset & PAGEOFFSET, 0);
324 			break;
325 
326 		case M_KMEM:
327 		case M_ALLKMEM:
328 			{
329 			page_t **ppp;
330 			caddr_t vaddr = (caddr_t)uio->uio_offset;
331 			int try_lock = NEED_LOCK_KVADDR(vaddr);
332 			int locked = 0;
333 
334 			if ((error = plat_mem_do_mmio(uio, rw)) != ENOTSUP)
335 				break;
336 
337 			/*
338 			 * If vaddr does not map a valid page, as_pagelock()
339 			 * will return failure. Hence we can't check the
340 			 * return value and return EFAULT here as we'd like.
341 			 * seg_kp and seg_kpm do not properly support
342 			 * as_pagelock() for this context so we avoid it
343 			 * using the try_lock set check above.  Some day when
344 			 * the kernel page locking gets redesigned all this
345 			 * muck can be cleaned up.
346 			 */
347 			if (try_lock)
348 				locked = (as_pagelock(&kas, &ppp, vaddr,
349 				    PAGESIZE, S_WRITE) == 0);
350 
351 			v = hat_getpfnum(kas.a_hat,
352 			    (caddr_t)(uintptr_t)uio->uio_loffset);
353 			if (v == PFN_INVALID) {
354 				if (locked)
355 					as_pageunlock(&kas, ppp, vaddr,
356 					    PAGESIZE, S_WRITE);
357 				error = EFAULT;
358 				break;
359 			}
360 
361 			error = mmio(uio, rw, v, uio->uio_loffset & PAGEOFFSET,
362 			    minor == M_ALLKMEM || mm_kmem_io_access);
363 			if (locked)
364 				as_pageunlock(&kas, ppp, vaddr, PAGESIZE,
365 				    S_WRITE);
366 			}
367 
368 			break;
369 
370 		case M_ZERO:
371 			if (rw == UIO_READ) {
372 				label_t ljb;
373 
374 				if (on_fault(&ljb)) {
375 					no_fault();
376 					error = EFAULT;
377 					break;
378 				}
379 				uzero(iov->iov_base, iov->iov_len);
380 				no_fault();
381 				uio->uio_resid -= iov->iov_len;
382 				uio->uio_loffset += iov->iov_len;
383 				break;
384 			}
385 			/* else it's a write, fall through to NULL case */
386 			/*FALLTHROUGH*/
387 
388 		case M_NULL:
389 			if (rw == UIO_READ)
390 				return (0);
391 			c = iov->iov_len;
392 			iov->iov_base += c;
393 			iov->iov_len -= c;
394 			uio->uio_loffset += c;
395 			uio->uio_resid -= c;
396 			break;
397 
398 		}
399 	}
400 	return (uio->uio_resid == oresid ? error : 0);
401 }
402 
403 static int
404 mmread(dev_t dev, struct uio *uio, cred_t *cred)
405 {
406 	return (mmrw(dev, uio, UIO_READ, cred));
407 }
408 
409 static int
410 mmwrite(dev_t dev, struct uio *uio, cred_t *cred)
411 {
412 	return (mmrw(dev, uio, UIO_WRITE, cred));
413 }
414 
415 /*
416  * Private ioctl for libkvm to support kvm_physaddr().
417  * Given an address space and a VA, compute the PA.
418  */
419 static int
420 mmioctl_vtop(intptr_t data)
421 {
422 #ifdef _SYSCALL32
423 	mem_vtop32_t vtop32;
424 #endif
425 	mem_vtop_t mem_vtop;
426 	proc_t *p;
427 	pfn_t pfn = (pfn_t)PFN_INVALID;
428 	pid_t pid = 0;
429 	struct as *as;
430 	struct seg *seg;
431 
432 	if (get_udatamodel() == DATAMODEL_NATIVE) {
433 		if (copyin((void *)data, &mem_vtop, sizeof (mem_vtop_t)))
434 			return (EFAULT);
435 	}
436 #ifdef _SYSCALL32
437 	else {
438 		if (copyin((void *)data, &vtop32, sizeof (mem_vtop32_t)))
439 			return (EFAULT);
440 		mem_vtop.m_as = (struct as *)(uintptr_t)vtop32.m_as;
441 		mem_vtop.m_va = (void *)(uintptr_t)vtop32.m_va;
442 
443 		if (mem_vtop.m_as != NULL)
444 			return (EINVAL);
445 	}
446 #endif
447 
448 	if (mem_vtop.m_as == &kas) {
449 		pfn = hat_getpfnum(kas.a_hat, mem_vtop.m_va);
450 	} else {
451 		if (mem_vtop.m_as == NULL) {
452 			/*
453 			 * Assume the calling process's address space if the
454 			 * caller didn't specify one.
455 			 */
456 			p = curthread->t_procp;
457 			if (p == NULL)
458 				return (EIO);
459 			mem_vtop.m_as = p->p_as;
460 		}
461 
462 		mutex_enter(&pidlock);
463 		for (p = practive; p != NULL; p = p->p_next) {
464 			if (p->p_as == mem_vtop.m_as) {
465 				pid = p->p_pid;
466 				break;
467 			}
468 		}
469 		mutex_exit(&pidlock);
470 		if (p == NULL)
471 			return (EIO);
472 		p = sprlock(pid);
473 		if (p == NULL)
474 			return (EIO);
475 		as = p->p_as;
476 		if (as == mem_vtop.m_as) {
477 			mutex_exit(&p->p_lock);
478 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
479 			for (seg = AS_SEGFIRST(as); seg != NULL;
480 			    seg = AS_SEGNEXT(as, seg))
481 				if ((uintptr_t)mem_vtop.m_va -
482 				    (uintptr_t)seg->s_base < seg->s_size)
483 					break;
484 			if (seg != NULL)
485 				pfn = hat_getpfnum(as->a_hat, mem_vtop.m_va);
486 			AS_LOCK_EXIT(as, &as->a_lock);
487 			mutex_enter(&p->p_lock);
488 		}
489 		sprunlock(p);
490 	}
491 	mem_vtop.m_pfn = pfn;
492 	if (pfn == PFN_INVALID)
493 		return (EIO);
494 
495 	if (get_udatamodel() == DATAMODEL_NATIVE) {
496 		if (copyout(&mem_vtop, (void *)data, sizeof (mem_vtop_t)))
497 			return (EFAULT);
498 	}
499 #ifdef _SYSCALL32
500 	else {
501 		vtop32.m_pfn = mem_vtop.m_pfn;
502 		if (copyout(&vtop32, (void *)data, sizeof (mem_vtop32_t)))
503 			return (EFAULT);
504 	}
505 #endif
506 
507 	return (0);
508 }
509 
510 /*
511  * Given a PA, execute the given page retire command on it.
512  */
513 static int
514 mmioctl_page_retire(int cmd, intptr_t data)
515 {
516 	extern int page_retire_test(void);
517 	uint64_t pa;
518 
519 	if (copyin((void *)data, &pa, sizeof (uint64_t))) {
520 		return (EFAULT);
521 	}
522 
523 	switch (cmd) {
524 	case MEM_PAGE_ISRETIRED:
525 		return (page_retire_check(pa, NULL));
526 
527 	case MEM_PAGE_UNRETIRE:
528 		return (page_unretire(pa));
529 
530 	case MEM_PAGE_RETIRE:
531 		return (page_retire(pa, PR_FMA));
532 
533 	case MEM_PAGE_RETIRE_MCE:
534 		return (page_retire(pa, PR_MCE));
535 
536 	case MEM_PAGE_RETIRE_UE:
537 		return (page_retire(pa, PR_UE));
538 
539 	case MEM_PAGE_GETERRORS:
540 		{
541 			uint64_t page_errors;
542 			int rc = page_retire_check(pa, &page_errors);
543 			if (copyout(&page_errors, (void *)data,
544 			    sizeof (uint64_t))) {
545 				return (EFAULT);
546 			}
547 			return (rc);
548 		}
549 
550 	case MEM_PAGE_RETIRE_TEST:
551 		return (page_retire_test());
552 
553 	}
554 
555 	return (EINVAL);
556 }
557 
558 /*
559  * Given a mem-scheme FMRI for a page, execute the given page retire
560  * command on it.
561  */
562 static int
563 mmioctl_page_fmri_retire(int cmd, intptr_t data)
564 {
565 	mem_page_t mpage;
566 	uint64_t pa;
567 	nvlist_t *nvl;
568 	int err;
569 
570 	if ((err = mm_read_mem_page(data, &mpage)) < 0)
571 		return (err);
572 
573 	if ((err = mm_get_mem_fmri(&mpage, &nvl)) != 0)
574 		return (err);
575 
576 	if ((err = mm_get_paddr(nvl, &pa)) != 0) {
577 		nvlist_free(nvl);
578 		return (err);
579 	}
580 
581 	nvlist_free(nvl);
582 
583 	switch (cmd) {
584 	case MEM_PAGE_FMRI_ISRETIRED:
585 		return (page_retire_check(pa, NULL));
586 
587 	case MEM_PAGE_FMRI_RETIRE:
588 		return (page_retire(pa, PR_FMA));
589 
590 	case MEM_PAGE_FMRI_UNRETIRE:
591 		return (page_unretire(pa));
592 	}
593 
594 	return (EINVAL);
595 }
596 
597 #ifdef __sparc
598 /*
599  * Given a syndrome, syndrome type, and address return the
600  * associated memory name in the provided data buffer.
601  */
602 static int
603 mmioctl_get_mem_name(intptr_t data)
604 {
605 	mem_name_t mem_name;
606 	void *buf;
607 	size_t bufsize;
608 	int len, err;
609 
610 	if ((bufsize = cpu_get_name_bufsize()) == 0)
611 		return (ENOTSUP);
612 
613 	if ((err = mm_read_mem_name(data, &mem_name)) < 0)
614 		return (err);
615 
616 	buf = kmem_alloc(bufsize, KM_SLEEP);
617 
618 	/*
619 	 * Call into cpu specific code to do the lookup.
620 	 */
621 	if ((err = cpu_get_mem_name(mem_name.m_synd, mem_name.m_type,
622 	    mem_name.m_addr, buf, bufsize, &len)) != 0) {
623 		kmem_free(buf, bufsize);
624 		return (err);
625 	}
626 
627 	if (len >= mem_name.m_namelen) {
628 		kmem_free(buf, bufsize);
629 		return (ENAMETOOLONG);
630 	}
631 
632 	if (copyoutstr(buf, (char *)mem_name.m_name,
633 	    mem_name.m_namelen, NULL) != 0) {
634 		kmem_free(buf, bufsize);
635 		return (EFAULT);
636 	}
637 
638 	kmem_free(buf, bufsize);
639 	return (0);
640 }
641 
642 /*
643  * Given a syndrome and address return information about the associated memory.
644  */
645 static int
646 mmioctl_get_mem_info(intptr_t data)
647 {
648 	mem_info_t mem_info;
649 	int err;
650 
651 	if (copyin((void *)data, &mem_info, sizeof (mem_info_t)))
652 		return (EFAULT);
653 
654 	if ((err = cpu_get_mem_info(mem_info.m_synd, mem_info.m_addr,
655 	    &mem_info.m_mem_size, &mem_info.m_seg_size, &mem_info.m_bank_size,
656 	    &mem_info.m_segments, &mem_info.m_banks, &mem_info.m_mcid)) != 0)
657 		return (err);
658 
659 	if (copyout(&mem_info, (void *)data, sizeof (mem_info_t)) != 0)
660 		return (EFAULT);
661 
662 	return (0);
663 }
664 
665 /*
666  * Given a memory name, return its associated serial id
667  */
668 static int
669 mmioctl_get_mem_sid(intptr_t data)
670 {
671 	mem_name_t mem_name;
672 	void *buf;
673 	void *name;
674 	size_t	name_len;
675 	size_t bufsize;
676 	int len, err;
677 
678 	if ((bufsize = cpu_get_name_bufsize()) == 0)
679 		return (ENOTSUP);
680 
681 	if ((err = mm_read_mem_name(data, &mem_name)) < 0)
682 		return (err);
683 
684 	buf = kmem_alloc(bufsize, KM_SLEEP);
685 
686 	if (mem_name.m_namelen > 1024)
687 		mem_name.m_namelen = 1024; /* cap at 1024 bytes */
688 
689 	name = kmem_alloc(mem_name.m_namelen, KM_SLEEP);
690 
691 	if ((err = copyinstr((char *)mem_name.m_name, (char *)name,
692 	    mem_name.m_namelen, &name_len)) != 0) {
693 		kmem_free(buf, bufsize);
694 		kmem_free(name, mem_name.m_namelen);
695 		return (err);
696 	}
697 
698 	/*
699 	 * Call into cpu specific code to do the lookup.
700 	 */
701 	if ((err = cpu_get_mem_sid(name, buf, bufsize, &len)) != 0) {
702 		kmem_free(buf, bufsize);
703 		kmem_free(name, mem_name.m_namelen);
704 		return (err);
705 	}
706 
707 	if (len > mem_name.m_sidlen) {
708 		kmem_free(buf, bufsize);
709 		kmem_free(name, mem_name.m_namelen);
710 		return (ENAMETOOLONG);
711 	}
712 
713 	if (copyoutstr(buf, (char *)mem_name.m_sid,
714 	    mem_name.m_sidlen, NULL) != 0) {
715 		kmem_free(buf, bufsize);
716 		kmem_free(name, mem_name.m_namelen);
717 		return (EFAULT);
718 	}
719 
720 	kmem_free(buf, bufsize);
721 	kmem_free(name, mem_name.m_namelen);
722 	return (0);
723 }
724 #endif	/* __sparc */
725 
726 /*
727  * Private ioctls for
728  *	libkvm to support kvm_physaddr().
729  *	FMA support for page_retire() and memory attribute information.
730  */
731 /*ARGSUSED*/
732 static int
733 mmioctl(dev_t dev, int cmd, intptr_t data, int flag, cred_t *cred, int *rvalp)
734 {
735 	if ((cmd == MEM_VTOP && getminor(dev) != M_KMEM) ||
736 	    (cmd != MEM_VTOP && getminor(dev) != M_MEM))
737 		return (ENXIO);
738 
739 	switch (cmd) {
740 	case MEM_VTOP:
741 		return (mmioctl_vtop(data));
742 
743 	case MEM_PAGE_RETIRE:
744 	case MEM_PAGE_ISRETIRED:
745 	case MEM_PAGE_UNRETIRE:
746 	case MEM_PAGE_RETIRE_MCE:
747 	case MEM_PAGE_RETIRE_UE:
748 	case MEM_PAGE_GETERRORS:
749 	case MEM_PAGE_RETIRE_TEST:
750 		return (mmioctl_page_retire(cmd, data));
751 
752 	case MEM_PAGE_FMRI_RETIRE:
753 	case MEM_PAGE_FMRI_ISRETIRED:
754 	case MEM_PAGE_FMRI_UNRETIRE:
755 		return (mmioctl_page_fmri_retire(cmd, data));
756 
757 #ifdef __sparc
758 	case MEM_NAME:
759 		return (mmioctl_get_mem_name(data));
760 
761 	case MEM_INFO:
762 		return (mmioctl_get_mem_info(data));
763 
764 	case MEM_SID:
765 		return (mmioctl_get_mem_sid(data));
766 #else
767 	case MEM_NAME:
768 	case MEM_INFO:
769 	case MEM_SID:
770 		return (ENOTSUP);
771 #endif	/* __sparc */
772 	}
773 	return (ENXIO);
774 }
775 
776 /*ARGSUSED2*/
777 static int
778 mmmmap(dev_t dev, off_t off, int prot)
779 {
780 	pfn_t pf;
781 	struct memlist *pmem;
782 	minor_t minor = getminor(dev);
783 
784 	switch (minor) {
785 	case M_MEM:
786 		pf = btop(off);
787 		memlist_read_lock();
788 		for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
789 			if (pf >= BTOP(pmem->address) &&
790 			    pf < BTOP(pmem->address + pmem->size)) {
791 				memlist_read_unlock();
792 				return (impl_obmem_pfnum(pf));
793 			}
794 		}
795 		memlist_read_unlock();
796 		break;
797 
798 	case M_KMEM:
799 	case M_ALLKMEM:
800 		/* no longer supported with KPR */
801 		return (-1);
802 
803 	case M_ZERO:
804 		/*
805 		 * We shouldn't be mmap'ing to /dev/zero here as
806 		 * mmsegmap() should have already converted
807 		 * a mapping request for this device to a mapping
808 		 * using seg_vn for anonymous memory.
809 		 */
810 		break;
811 
812 	}
813 	return (-1);
814 }
815 
816 /*
817  * This function is called when a memory device is mmap'ed.
818  * Set up the mapping to the correct device driver.
819  */
820 static int
821 mmsegmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
822     uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred)
823 {
824 	struct segvn_crargs vn_a;
825 	struct segdev_crargs dev_a;
826 	int error;
827 	minor_t minor;
828 	off_t i;
829 
830 	minor = getminor(dev);
831 
832 	as_rangelock(as);
833 	/*
834 	 * No need to worry about vac alignment on /dev/zero
835 	 * since this is a "clone" object that doesn't yet exist.
836 	 */
837 	error = choose_addr(as, addrp, len, off,
838 	    (minor == M_MEM) || (minor == M_KMEM), flags);
839 	if (error != 0) {
840 		as_rangeunlock(as);
841 		return (error);
842 	}
843 
844 	switch (minor) {
845 	case M_MEM:
846 		/* /dev/mem cannot be mmap'ed with MAP_PRIVATE */
847 		if ((flags & MAP_TYPE) != MAP_SHARED) {
848 			as_rangeunlock(as);
849 			return (EINVAL);
850 		}
851 
852 		/*
853 		 * Check to ensure that the entire range is
854 		 * legal and we are not trying to map in
855 		 * more than the device will let us.
856 		 */
857 		for (i = 0; i < len; i += PAGESIZE) {
858 			if (mmmmap(dev, off + i, maxprot) == -1) {
859 				as_rangeunlock(as);
860 				return (ENXIO);
861 			}
862 		}
863 
864 		/*
865 		 * Use seg_dev segment driver for /dev/mem mapping.
866 		 */
867 		dev_a.mapfunc = mmmmap;
868 		dev_a.dev = dev;
869 		dev_a.offset = off;
870 		dev_a.type = (flags & MAP_TYPE);
871 		dev_a.prot = (uchar_t)prot;
872 		dev_a.maxprot = (uchar_t)maxprot;
873 		dev_a.hat_attr = 0;
874 
875 		/*
876 		 * Make /dev/mem mappings non-consistent since we can't
877 		 * alias pages that don't have page structs behind them,
878 		 * such as kernel stack pages. If someone mmap()s a kernel
879 		 * stack page and if we give him a tte with cv, a line from
880 		 * that page can get into both pages of the spitfire d$.
881 		 * But snoop from another processor will only invalidate
882 		 * the first page. This later caused kernel (xc_attention)
883 		 * to go into an infinite loop at pil 13 and no interrupts
884 		 * could come in. See 1203630.
885 		 *
886 		 */
887 		dev_a.hat_flags = HAT_LOAD_NOCONSIST;
888 		dev_a.devmap_data = NULL;
889 
890 		error = as_map(as, *addrp, len, segdev_create, &dev_a);
891 		break;
892 
893 	case M_ZERO:
894 		/*
895 		 * Use seg_vn segment driver for /dev/zero mapping.
896 		 * Passing in a NULL amp gives us the "cloning" effect.
897 		 */
898 		vn_a.vp = NULL;
899 		vn_a.offset = 0;
900 		vn_a.type = (flags & MAP_TYPE);
901 		vn_a.prot = prot;
902 		vn_a.maxprot = maxprot;
903 		vn_a.flags = flags & ~MAP_TYPE;
904 		vn_a.cred = cred;
905 		vn_a.amp = NULL;
906 		vn_a.szc = 0;
907 		vn_a.lgrp_mem_policy_flags = 0;
908 		error = as_map(as, *addrp, len, segvn_create, &vn_a);
909 		break;
910 
911 	case M_KMEM:
912 	case M_ALLKMEM:
913 		/* No longer supported with KPR. */
914 		error = ENXIO;
915 		break;
916 
917 	case M_NULL:
918 		/*
919 		 * Use seg_dev segment driver for /dev/null mapping.
920 		 */
921 		dev_a.mapfunc = mmmmap;
922 		dev_a.dev = dev;
923 		dev_a.offset = off;
924 		dev_a.type = 0;		/* neither PRIVATE nor SHARED */
925 		dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
926 		dev_a.hat_attr = 0;
927 		dev_a.hat_flags = 0;
928 		error = as_map(as, *addrp, len, segdev_create, &dev_a);
929 		break;
930 
931 	default:
932 		error = ENXIO;
933 	}
934 
935 	as_rangeunlock(as);
936 	return (error);
937 }
938 
939 static struct cb_ops mm_cb_ops = {
940 	mmopen,			/* open */
941 	nulldev,		/* close */
942 	nodev,			/* strategy */
943 	nodev,			/* print */
944 	nodev,			/* dump */
945 	mmread,			/* read */
946 	mmwrite,		/* write */
947 	mmioctl,		/* ioctl */
948 	nodev,			/* devmap */
949 	mmmmap,			/* mmap */
950 	mmsegmap,		/* segmap */
951 	mmchpoll,		/* poll */
952 	mmpropop,		/* prop_op */
953 	0,			/* streamtab  */
954 	D_NEW | D_MP | D_64BIT | D_U64BIT
955 };
956 
957 static struct dev_ops mm_ops = {
958 	DEVO_REV,		/* devo_rev, */
959 	0,			/* refcnt  */
960 	mm_info,		/* get_dev_info */
961 	nulldev,		/* identify */
962 	nulldev,		/* probe */
963 	mm_attach,		/* attach */
964 	nodev,			/* detach */
965 	nodev,			/* reset */
966 	&mm_cb_ops,		/* driver operations */
967 	(struct bus_ops *)0	/* bus operations */
968 };
969 
970 static struct modldrv modldrv = {
971 	&mod_driverops, "memory driver %I%", &mm_ops,
972 };
973 
974 static struct modlinkage modlinkage = {
975 	MODREV_1, &modldrv, NULL
976 };
977 
978 int
979 _init(void)
980 {
981 	return (mod_install(&modlinkage));
982 }
983 
984 int
985 _info(struct modinfo *modinfop)
986 {
987 	return (mod_info(&modlinkage, modinfop));
988 }
989 
990 int
991 _fini(void)
992 {
993 	return (mod_remove(&modlinkage));
994 }
995 
996 static int
997 mm_kstat_update(kstat_t *ksp, int rw)
998 {
999 	struct memlist *pmem;
1000 	uint_t count;
1001 
1002 	if (rw == KSTAT_WRITE)
1003 		return (EACCES);
1004 
1005 	count = 0;
1006 	memlist_read_lock();
1007 	for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
1008 		count++;
1009 	}
1010 	memlist_read_unlock();
1011 
1012 	ksp->ks_ndata = count;
1013 	ksp->ks_data_size = count * 2 * sizeof (uint64_t);
1014 
1015 	return (0);
1016 }
1017 
1018 static int
1019 mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
1020 {
1021 	struct memlist *pmem;
1022 	struct memunit {
1023 		uint64_t address;
1024 		uint64_t size;
1025 	} *kspmem;
1026 
1027 	if (rw == KSTAT_WRITE)
1028 		return (EACCES);
1029 
1030 	ksp->ks_snaptime = gethrtime();
1031 
1032 	kspmem = (struct memunit *)buf;
1033 	memlist_read_lock();
1034 	for (pmem = phys_install; pmem != NULL; pmem = pmem->next, kspmem++) {
1035 		if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
1036 			break;
1037 		kspmem->address = pmem->address;
1038 		kspmem->size = pmem->size;
1039 	}
1040 	memlist_read_unlock();
1041 
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Read a mem_name_t from user-space and store it in the mem_name_t
1047  * pointed to by the mem_name argument.
1048  */
1049 static int
1050 mm_read_mem_name(intptr_t data, mem_name_t *mem_name)
1051 {
1052 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1053 		if (copyin((void *)data, mem_name, sizeof (mem_name_t)))
1054 			return (EFAULT);
1055 	}
1056 #ifdef	_SYSCALL32
1057 	else {
1058 		mem_name32_t mem_name32;
1059 
1060 		if (copyin((void *)data, &mem_name32, sizeof (mem_name32_t)))
1061 			return (EFAULT);
1062 		mem_name->m_addr = mem_name32.m_addr;
1063 		mem_name->m_synd = mem_name32.m_synd;
1064 		mem_name->m_type[0] = mem_name32.m_type[0];
1065 		mem_name->m_type[1] = mem_name32.m_type[1];
1066 		mem_name->m_name = (caddr_t)(uintptr_t)mem_name32.m_name;
1067 		mem_name->m_namelen = (size_t)mem_name32.m_namelen;
1068 		mem_name->m_sid = (caddr_t)(uintptr_t)mem_name32.m_sid;
1069 		mem_name->m_sidlen = (size_t)mem_name32.m_sidlen;
1070 	}
1071 #endif	/* _SYSCALL32 */
1072 
1073 	return (0);
1074 }
1075 
1076 /*
1077  * Read a mem_page_t from user-space and store it in the mem_page_t
1078  * pointed to by the mpage argument.
1079  */
1080 static int
1081 mm_read_mem_page(intptr_t data, mem_page_t *mpage)
1082 {
1083 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1084 		if (copyin((void *)data, mpage, sizeof (mem_page_t)) != 0)
1085 			return (EFAULT);
1086 	}
1087 #ifdef _SYSCALL32
1088 	else {
1089 		mem_page32_t	mpage32;
1090 
1091 		if (copyin((void *)data, &mpage32, sizeof (mem_page32_t)) != 0)
1092 			return (EFAULT);
1093 
1094 		mpage->m_fmri = (caddr_t)(uintptr_t)mpage32.m_fmri;
1095 		mpage->m_fmrisz = mpage32.m_fmrisz;
1096 	}
1097 #endif	/* _SYSCALL32 */
1098 
1099 	return (0);
1100 }
1101 
1102 /*
1103  * Expand an FMRI from a mem_page_t.
1104  */
1105 static int
1106 mm_get_mem_fmri(mem_page_t *mpage, nvlist_t **nvl)
1107 {
1108 	char *buf;
1109 	int err;
1110 
1111 	if (mpage->m_fmri == NULL || mpage->m_fmrisz > MEM_FMRI_MAX_BUFSIZE)
1112 		return (EINVAL);
1113 
1114 	buf = kmem_alloc(mpage->m_fmrisz, KM_SLEEP);
1115 	if (copyin(mpage->m_fmri, buf, mpage->m_fmrisz) != 0) {
1116 		kmem_free(buf, mpage->m_fmrisz);
1117 		return (EFAULT);
1118 	}
1119 
1120 	err = nvlist_unpack(buf, mpage->m_fmrisz, nvl, KM_SLEEP);
1121 	kmem_free(buf, mpage->m_fmrisz);
1122 
1123 	return (err);
1124 }
1125 
1126 static int
1127 mm_get_paddr(nvlist_t *nvl, uint64_t *paddr)
1128 {
1129 	uint8_t version;
1130 	uint64_t pa;
1131 	char *scheme;
1132 	int err;
1133 #ifdef __sparc
1134 	uint64_t offset;
1135 	char *unum;
1136 	char **serids;
1137 	uint_t nserids;
1138 #endif
1139 
1140 	/* Verify FMRI scheme name and version number */
1141 	if ((nvlist_lookup_string(nvl, FM_FMRI_SCHEME, &scheme) != 0) ||
1142 	    (strcmp(scheme, FM_FMRI_SCHEME_MEM) != 0) ||
1143 	    (nvlist_lookup_uint8(nvl, FM_VERSION, &version) != 0) ||
1144 	    version > FM_MEM_SCHEME_VERSION) {
1145 		return (EINVAL);
1146 	}
1147 
1148 	/*
1149 	 * There are two ways a physical address can be  obtained from a mem
1150 	 * scheme FMRI.  One way is to use the "offset" and  "serial"
1151 	 * members, if they are present, together with the "unum" member to
1152 	 * calculate a physical address.  This is the preferred way since
1153 	 * it is independent of possible changes to the programming of
1154 	 * underlying hardware registers that may change the physical address.
1155 	 * If the "offset" member is not present, then the address is
1156 	 * retrieved from the "physaddr" member.
1157 	 */
1158 #if defined(__sparc)
1159 	if (nvlist_lookup_uint64(nvl, FM_FMRI_MEM_OFFSET, &offset) != 0) {
1160 		if (nvlist_lookup_uint64(nvl, FM_FMRI_MEM_PHYSADDR, &pa) !=
1161 		    0) {
1162 			return (EINVAL);
1163 		}
1164 	} else if (nvlist_lookup_string(nvl, FM_FMRI_MEM_UNUM, &unum) != 0 ||
1165 	    nvlist_lookup_string_array(nvl, FM_FMRI_MEM_SERIAL_ID, &serids,
1166 	    &nserids) != 0) {
1167 		return (EINVAL);
1168 	} else {
1169 		err = cpu_get_mem_addr(unum, serids[0], offset, &pa);
1170 		if (err != 0) {
1171 			if (err == ENOTSUP) {
1172 				/* Fall back to physaddr */
1173 				if (nvlist_lookup_uint64(nvl,
1174 				    FM_FMRI_MEM_PHYSADDR, &pa) != 0)
1175 					return (EINVAL);
1176 			} else
1177 				return (err);
1178 		}
1179 	}
1180 #elif defined(__x86)
1181 	if ((err = cmi_mc_unumtopa(NULL, nvl, &pa)) != CMI_SUCCESS &&
1182 	    err != CMIERR_MC_PARTIALUNUMTOPA)
1183 		return (EINVAL);
1184 #else
1185 #error "port me"
1186 #endif /* __sparc */
1187 
1188 	*paddr = pa;
1189 	return (0);
1190 }
1191