1 /* 2 * megaraid_sas.c: source for mega_sas driver 3 * 4 * MegaRAID device driver for SAS controllers 5 * Copyright (c) 2005-2008, LSI Logic Corporation. 6 * All rights reserved. 7 * 8 * Version: 9 * Author: 10 * Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com> 11 * Seokmann Ju 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright notice, 17 * this list of conditions and the following disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above copyright notice, 20 * this list of conditions and the following disclaimer in the documentation 21 * and/or other materials provided with the distribution. 22 * 23 * 3. Neither the name of the author nor the names of its contributors may be 24 * used to endorse or promote products derived from this software without 25 * specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 35 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 36 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 37 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 38 * DAMAGE. 39 */ 40 41 /* 42 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 43 * Use is subject to license terms. 44 */ 45 46 #include <sys/types.h> 47 #include <sys/param.h> 48 #include <sys/file.h> 49 #include <sys/errno.h> 50 #include <sys/open.h> 51 #include <sys/cred.h> 52 #include <sys/modctl.h> 53 #include <sys/conf.h> 54 #include <sys/devops.h> 55 #include <sys/cmn_err.h> 56 #include <sys/kmem.h> 57 #include <sys/stat.h> 58 #include <sys/mkdev.h> 59 #include <sys/pci.h> 60 #include <sys/scsi/scsi.h> 61 #include <sys/ddi.h> 62 #include <sys/sunddi.h> 63 #include <sys/atomic.h> 64 #include <sys/signal.h> 65 66 #include "megaraid_sas.h" 67 68 /* 69 * FMA header files 70 */ 71 #include <sys/ddifm.h> 72 #include <sys/fm/protocol.h> 73 #include <sys/fm/util.h> 74 #include <sys/fm/io/ddi.h> 75 76 /* 77 * Local static data 78 */ 79 static void *megasas_state = NULL; 80 static int debug_level_g = CL_ANN; 81 82 #pragma weak scsi_hba_open 83 #pragma weak scsi_hba_close 84 #pragma weak scsi_hba_ioctl 85 86 static ddi_dma_attr_t megasas_generic_dma_attr = { 87 DMA_ATTR_V0, /* dma_attr_version */ 88 0, /* low DMA address range */ 89 0xFFFFFFFFU, /* high DMA address range */ 90 0xFFFFFFFFU, /* DMA counter register */ 91 8, /* DMA address alignment */ 92 0x07, /* DMA burstsizes */ 93 1, /* min DMA size */ 94 0xFFFFFFFFU, /* max DMA size */ 95 0xFFFFFFFFU, /* segment boundary */ 96 MEGASAS_MAX_SGE_CNT, /* dma_attr_sglen */ 97 512, /* granularity of device */ 98 0 /* bus specific DMA flags */ 99 }; 100 101 int32_t megasas_max_cap_maxxfer = 0x1000000; 102 103 /* 104 * cb_ops contains base level routines 105 */ 106 static struct cb_ops megasas_cb_ops = { 107 megasas_open, /* open */ 108 megasas_close, /* close */ 109 nodev, /* strategy */ 110 nodev, /* print */ 111 nodev, /* dump */ 112 nodev, /* read */ 113 nodev, /* write */ 114 megasas_ioctl, /* ioctl */ 115 nodev, /* devmap */ 116 nodev, /* mmap */ 117 nodev, /* segmap */ 118 nochpoll, /* poll */ 119 nodev, /* cb_prop_op */ 120 0, /* streamtab */ 121 D_NEW | D_HOTPLUG, /* cb_flag */ 122 CB_REV, /* cb_rev */ 123 nodev, /* cb_aread */ 124 nodev /* cb_awrite */ 125 }; 126 127 /* 128 * dev_ops contains configuration routines 129 */ 130 static struct dev_ops megasas_ops = { 131 DEVO_REV, /* rev, */ 132 0, /* refcnt */ 133 megasas_getinfo, /* getinfo */ 134 nulldev, /* identify */ 135 nulldev, /* probe */ 136 megasas_attach, /* attach */ 137 megasas_detach, /* detach */ 138 megasas_reset, /* reset */ 139 &megasas_cb_ops, /* char/block ops */ 140 NULL, /* bus ops */ 141 NULL, /* power */ 142 ddi_quiesce_not_supported, /* devo_quiesce */ 143 }; 144 145 char _depends_on[] = "misc/scsi"; 146 147 static struct modldrv modldrv = { 148 &mod_driverops, /* module type - driver */ 149 MEGASAS_VERSION, 150 &megasas_ops, /* driver ops */ 151 }; 152 153 static struct modlinkage modlinkage = { 154 MODREV_1, /* ml_rev - must be MODREV_1 */ 155 &modldrv, /* ml_linkage */ 156 NULL /* end of driver linkage */ 157 }; 158 159 static struct ddi_device_acc_attr endian_attr = { 160 DDI_DEVICE_ATTR_V0, 161 DDI_STRUCTURE_LE_ACC, 162 DDI_STRICTORDER_ACC 163 }; 164 165 166 /* 167 * ************************************************************************** * 168 * * 169 * common entry points - for loadable kernel modules * 170 * * 171 * ************************************************************************** * 172 */ 173 174 /* 175 * _init - initialize a loadable module 176 * @void 177 * 178 * The driver should perform any one-time resource allocation or data 179 * initialization during driver loading in _init(). For example, the driver 180 * should initialize any mutexes global to the driver in this routine. 181 * The driver should not, however, use _init() to allocate or initialize 182 * anything that has to do with a particular instance of the device. 183 * Per-instance initialization must be done in attach(). 184 */ 185 int 186 _init(void) 187 { 188 int ret; 189 190 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 191 192 ret = ddi_soft_state_init(&megasas_state, 193 sizeof (struct megasas_instance), 0); 194 195 if (ret != 0) { 196 con_log(CL_ANN, (CE_WARN, "megaraid: could not init state")); 197 return (ret); 198 } 199 200 if ((ret = scsi_hba_init(&modlinkage)) != 0) { 201 con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba")); 202 ddi_soft_state_fini(&megasas_state); 203 return (ret); 204 } 205 206 ret = mod_install(&modlinkage); 207 208 if (ret != 0) { 209 con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed")); 210 scsi_hba_fini(&modlinkage); 211 ddi_soft_state_fini(&megasas_state); 212 } 213 214 return (ret); 215 } 216 217 /* 218 * _info - returns information about a loadable module. 219 * @void 220 * 221 * _info() is called to return module information. This is a typical entry 222 * point that does predefined role. It simply calls mod_info(). 223 */ 224 int 225 _info(struct modinfo *modinfop) 226 { 227 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 228 229 return (mod_info(&modlinkage, modinfop)); 230 } 231 232 /* 233 * _fini - prepare a loadable module for unloading 234 * @void 235 * 236 * In _fini(), the driver should release any resources that were allocated in 237 * _init(). The driver must remove itself from the system module list. 238 */ 239 int 240 _fini(void) 241 { 242 int ret; 243 244 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 245 246 if ((ret = mod_remove(&modlinkage)) != 0) 247 return (ret); 248 249 scsi_hba_fini(&modlinkage); 250 251 ddi_soft_state_fini(&megasas_state); 252 253 return (ret); 254 } 255 256 257 /* 258 * ************************************************************************** * 259 * * 260 * common entry points - for autoconfiguration * 261 * * 262 * ************************************************************************** * 263 */ 264 /* 265 * attach - adds a device to the system as part of initialization 266 * @dip: 267 * @cmd: 268 * 269 * The kernel calls a driver's attach() entry point to attach an instance of 270 * a device (for MegaRAID, it is instance of a controller) or to resume 271 * operation for an instance of a device that has been suspended or has been 272 * shut down by the power management framework 273 * The attach() entry point typically includes the following types of 274 * processing: 275 * - allocate a soft-state structure for the device instance (for MegaRAID, 276 * controller instance) 277 * - initialize per-instance mutexes 278 * - initialize condition variables 279 * - register the device's interrupts (for MegaRAID, controller's interrupts) 280 * - map the registers and memory of the device instance (for MegaRAID, 281 * controller instance) 282 * - create minor device nodes for the device instance (for MegaRAID, 283 * controller instance) 284 * - report that the device instance (for MegaRAID, controller instance) has 285 * attached 286 */ 287 static int 288 megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 289 { 290 int instance_no; 291 int nregs; 292 uint8_t added_isr_f = 0; 293 uint8_t added_soft_isr_f = 0; 294 uint8_t create_devctl_node_f = 0; 295 uint8_t create_scsi_node_f = 0; 296 uint8_t create_ioc_node_f = 0; 297 uint8_t tran_alloc_f = 0; 298 uint8_t irq; 299 uint16_t vendor_id; 300 uint16_t device_id; 301 uint16_t subsysvid; 302 uint16_t subsysid; 303 uint16_t command; 304 305 scsi_hba_tran_t *tran; 306 ddi_dma_attr_t tran_dma_attr; 307 struct megasas_instance *instance; 308 309 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 310 311 /* CONSTCOND */ 312 ASSERT(NO_COMPETING_THREADS); 313 314 instance_no = ddi_get_instance(dip); 315 316 /* 317 * Since we know that some instantiations of this device can be 318 * plugged into slave-only SBus slots, check to see whether this is 319 * one such. 320 */ 321 if (ddi_slaveonly(dip) == DDI_SUCCESS) { 322 con_log(CL_ANN, (CE_WARN, 323 "mega%d: Device in slave-only slot, unused", instance_no)); 324 return (DDI_FAILURE); 325 } 326 327 switch (cmd) { 328 case DDI_ATTACH: 329 con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH")); 330 /* allocate the soft state for the instance */ 331 if (ddi_soft_state_zalloc(megasas_state, instance_no) 332 != DDI_SUCCESS) { 333 con_log(CL_ANN, (CE_WARN, 334 "mega%d: Failed to allocate soft state", 335 instance_no)); 336 337 return (DDI_FAILURE); 338 } 339 340 instance = (struct megasas_instance *)ddi_get_soft_state 341 (megasas_state, instance_no); 342 343 if (instance == NULL) { 344 con_log(CL_ANN, (CE_WARN, 345 "mega%d: Bad soft state", instance_no)); 346 347 ddi_soft_state_free(megasas_state, instance_no); 348 349 return (DDI_FAILURE); 350 } 351 352 bzero((caddr_t)instance, 353 sizeof (struct megasas_instance)); 354 355 instance->func_ptr = kmem_zalloc( 356 sizeof (struct megasas_func_ptr), KM_SLEEP); 357 ASSERT(instance->func_ptr); 358 359 /* Setup the PCI configuration space handles */ 360 if (pci_config_setup(dip, &instance->pci_handle) != 361 DDI_SUCCESS) { 362 con_log(CL_ANN, (CE_WARN, 363 "mega%d: pci config setup failed ", 364 instance_no)); 365 366 kmem_free(instance->func_ptr, 367 sizeof (struct megasas_func_ptr)); 368 ddi_soft_state_free(megasas_state, instance_no); 369 370 return (DDI_FAILURE); 371 } 372 373 if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) { 374 con_log(CL_ANN, (CE_WARN, 375 "megaraid: failed to get registers.")); 376 377 pci_config_teardown(&instance->pci_handle); 378 kmem_free(instance->func_ptr, 379 sizeof (struct megasas_func_ptr)); 380 ddi_soft_state_free(megasas_state, instance_no); 381 382 return (DDI_FAILURE); 383 } 384 385 vendor_id = pci_config_get16(instance->pci_handle, 386 PCI_CONF_VENID); 387 device_id = pci_config_get16(instance->pci_handle, 388 PCI_CONF_DEVID); 389 390 subsysvid = pci_config_get16(instance->pci_handle, 391 PCI_CONF_SUBVENID); 392 subsysid = pci_config_get16(instance->pci_handle, 393 PCI_CONF_SUBSYSID); 394 395 pci_config_put16(instance->pci_handle, PCI_CONF_COMM, 396 (pci_config_get16(instance->pci_handle, 397 PCI_CONF_COMM) | PCI_COMM_ME)); 398 irq = pci_config_get8(instance->pci_handle, 399 PCI_CONF_ILINE); 400 401 con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: " 402 "0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n", 403 instance_no, vendor_id, device_id, subsysvid, 404 subsysid, irq, MEGASAS_VERSION)); 405 406 /* enable bus-mastering */ 407 command = pci_config_get16(instance->pci_handle, 408 PCI_CONF_COMM); 409 410 if (!(command & PCI_COMM_ME)) { 411 command |= PCI_COMM_ME; 412 413 pci_config_put16(instance->pci_handle, 414 PCI_CONF_COMM, command); 415 416 con_log(CL_ANN, (CE_CONT, "megaraid%d: " 417 "enable bus-mastering\n", instance_no)); 418 } else { 419 con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: " 420 "bus-mastering already set\n", instance_no)); 421 } 422 423 /* initialize function pointers */ 424 if ((device_id == PCI_DEVICE_ID_LSI_1078) || 425 (device_id == PCI_DEVICE_ID_LSI_1078DE)) { 426 con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: " 427 "1078R/DE detected\n", instance_no)); 428 instance->func_ptr->read_fw_status_reg = 429 read_fw_status_reg_ppc; 430 instance->func_ptr->issue_cmd = issue_cmd_ppc; 431 instance->func_ptr->issue_cmd_in_sync_mode = 432 issue_cmd_in_sync_mode_ppc; 433 instance->func_ptr->issue_cmd_in_poll_mode = 434 issue_cmd_in_poll_mode_ppc; 435 instance->func_ptr->enable_intr = 436 enable_intr_ppc; 437 instance->func_ptr->disable_intr = 438 disable_intr_ppc; 439 instance->func_ptr->intr_ack = intr_ack_ppc; 440 } else { 441 con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: " 442 "1064/8R detected\n", instance_no)); 443 instance->func_ptr->read_fw_status_reg = 444 read_fw_status_reg_xscale; 445 instance->func_ptr->issue_cmd = 446 issue_cmd_xscale; 447 instance->func_ptr->issue_cmd_in_sync_mode = 448 issue_cmd_in_sync_mode_xscale; 449 instance->func_ptr->issue_cmd_in_poll_mode = 450 issue_cmd_in_poll_mode_xscale; 451 instance->func_ptr->enable_intr = 452 enable_intr_xscale; 453 instance->func_ptr->disable_intr = 454 disable_intr_xscale; 455 instance->func_ptr->intr_ack = 456 intr_ack_xscale; 457 } 458 459 instance->baseaddress = pci_config_get32( 460 instance->pci_handle, PCI_CONF_BASE0); 461 instance->baseaddress &= 0x0fffc; 462 463 instance->dip = dip; 464 instance->vendor_id = vendor_id; 465 instance->device_id = device_id; 466 instance->subsysvid = subsysvid; 467 instance->subsysid = subsysid; 468 469 /* Initialize FMA */ 470 instance->fm_capabilities = ddi_prop_get_int( 471 DDI_DEV_T_ANY, instance->dip, DDI_PROP_DONTPASS, 472 "fm-capable", DDI_FM_EREPORT_CAPABLE | 473 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE 474 | DDI_FM_ERRCB_CAPABLE); 475 476 megasas_fm_init(instance); 477 478 /* setup the mfi based low level driver */ 479 if (init_mfi(instance) != DDI_SUCCESS) { 480 con_log(CL_ANN, (CE_WARN, "megaraid: " 481 "could not initialize the low level driver")); 482 483 goto fail_attach; 484 } 485 486 /* 487 * Allocate the interrupt blocking cookie. 488 * It represents the information the framework 489 * needs to block interrupts. This cookie will 490 * be used by the locks shared accross our ISR. 491 * These locks must be initialized before we 492 * register our ISR. 493 * ddi_add_intr(9F) 494 */ 495 if (ddi_get_iblock_cookie(dip, 0, 496 &instance->iblock_cookie) != DDI_SUCCESS) { 497 498 goto fail_attach; 499 } 500 501 if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH, 502 &instance->soft_iblock_cookie) != DDI_SUCCESS) { 503 504 goto fail_attach; 505 } 506 507 /* 508 * Initialize the driver mutexes common to 509 * normal/high level isr 510 */ 511 if (ddi_intr_hilevel(dip, 0)) { 512 instance->isr_level = HIGH_LEVEL_INTR; 513 mutex_init(&instance->cmd_pool_mtx, 514 "cmd_pool_mtx", MUTEX_DRIVER, 515 instance->soft_iblock_cookie); 516 mutex_init(&instance->cmd_pend_mtx, 517 "cmd_pend_mtx", MUTEX_DRIVER, 518 instance->soft_iblock_cookie); 519 } else { 520 /* 521 * Initialize the driver mutexes 522 * specific to soft-isr 523 */ 524 instance->isr_level = NORMAL_LEVEL_INTR; 525 mutex_init(&instance->cmd_pool_mtx, 526 "cmd_pool_mtx", MUTEX_DRIVER, 527 instance->iblock_cookie); 528 mutex_init(&instance->cmd_pend_mtx, 529 "cmd_pend_mtx", MUTEX_DRIVER, 530 instance->iblock_cookie); 531 } 532 533 mutex_init(&instance->completed_pool_mtx, 534 "completed_pool_mtx", MUTEX_DRIVER, 535 instance->iblock_cookie); 536 mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx", 537 MUTEX_DRIVER, instance->iblock_cookie); 538 mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx", 539 MUTEX_DRIVER, instance->iblock_cookie); 540 mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx", 541 MUTEX_DRIVER, instance->iblock_cookie); 542 543 cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL); 544 cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL); 545 546 INIT_LIST_HEAD(&instance->completed_pool_list); 547 548 /* Register our isr. */ 549 if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr, 550 (caddr_t)instance) != DDI_SUCCESS) { 551 con_log(CL_ANN, (CE_WARN, 552 " ISR did not register")); 553 554 goto fail_attach; 555 } 556 557 added_isr_f = 1; 558 559 /* Register our soft-isr for highlevel interrupts. */ 560 if (instance->isr_level == HIGH_LEVEL_INTR) { 561 if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH, 562 &instance->soft_intr_id, NULL, NULL, 563 megasas_softintr, (caddr_t)instance) != 564 DDI_SUCCESS) { 565 con_log(CL_ANN, (CE_WARN, 566 " Software ISR did not register")); 567 568 goto fail_attach; 569 } 570 571 added_soft_isr_f = 1; 572 } 573 574 /* Allocate a transport structure */ 575 tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP); 576 577 if (tran == NULL) { 578 con_log(CL_ANN, (CE_WARN, 579 "scsi_hba_tran_alloc failed")); 580 goto fail_attach; 581 } 582 583 tran_alloc_f = 1; 584 585 instance->tran = tran; 586 587 tran->tran_hba_private = instance; 588 tran->tran_tgt_private = NULL; 589 tran->tran_tgt_init = megasas_tran_tgt_init; 590 tran->tran_tgt_probe = scsi_hba_probe; 591 tran->tran_tgt_free = (void (*)())NULL; 592 tran->tran_init_pkt = megasas_tran_init_pkt; 593 tran->tran_start = megasas_tran_start; 594 tran->tran_abort = megasas_tran_abort; 595 tran->tran_reset = megasas_tran_reset; 596 tran->tran_bus_reset = megasas_tran_bus_reset; 597 tran->tran_getcap = megasas_tran_getcap; 598 tran->tran_setcap = megasas_tran_setcap; 599 tran->tran_destroy_pkt = megasas_tran_destroy_pkt; 600 tran->tran_dmafree = megasas_tran_dmafree; 601 tran->tran_sync_pkt = megasas_tran_sync_pkt; 602 tran->tran_reset_notify = NULL; 603 tran->tran_quiesce = megasas_tran_quiesce; 604 tran->tran_unquiesce = megasas_tran_unquiesce; 605 606 tran_dma_attr = megasas_generic_dma_attr; 607 tran_dma_attr.dma_attr_sgllen = instance->max_num_sge; 608 609 /* Attach this instance of the hba */ 610 if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0) 611 != DDI_SUCCESS) { 612 con_log(CL_ANN, (CE_WARN, 613 "scsi_hba_attach failed\n")); 614 615 goto fail_attach; 616 } 617 618 /* create devctl node for cfgadm command */ 619 if (ddi_create_minor_node(dip, "devctl", 620 S_IFCHR, INST2DEVCTL(instance_no), 621 DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) { 622 con_log(CL_ANN, (CE_WARN, 623 "megaraid: failed to create devctl node.")); 624 625 goto fail_attach; 626 } 627 628 create_devctl_node_f = 1; 629 630 /* create scsi node for cfgadm command */ 631 if (ddi_create_minor_node(dip, "scsi", S_IFCHR, 632 INST2SCSI(instance_no), 633 DDI_NT_SCSI_ATTACHMENT_POINT, 0) == 634 DDI_FAILURE) { 635 con_log(CL_ANN, (CE_WARN, 636 "megaraid: failed to create scsi node.")); 637 638 goto fail_attach; 639 } 640 641 create_scsi_node_f = 1; 642 643 (void) sprintf(instance->iocnode, "%d:lsirdctl", 644 instance_no); 645 646 /* 647 * Create a node for applications 648 * for issuing ioctl to the driver. 649 */ 650 if (ddi_create_minor_node(dip, instance->iocnode, 651 S_IFCHR, INST2LSIRDCTL(instance_no), 652 DDI_PSEUDO, 0) == DDI_FAILURE) { 653 con_log(CL_ANN, (CE_WARN, 654 "megaraid: failed to create ioctl node.")); 655 656 goto fail_attach; 657 } 658 659 create_ioc_node_f = 1; 660 661 /* enable interrupt */ 662 instance->func_ptr->enable_intr(instance); 663 664 /* initiate AEN */ 665 if (start_mfi_aen(instance)) { 666 con_log(CL_ANN, (CE_WARN, 667 "megaraid: failed to initiate AEN.")); 668 goto fail_initiate_aen; 669 } 670 671 con_log(CL_DLEVEL1, (CE_NOTE, 672 "AEN started for instance %d.", instance_no)); 673 674 /* Finally! We are on the air. */ 675 ddi_report_dev(dip); 676 677 if (megasas_check_acc_handle(instance->regmap_handle) != 678 DDI_SUCCESS) { 679 goto fail_attach; 680 } 681 if (megasas_check_acc_handle(instance->pci_handle) != 682 DDI_SUCCESS) { 683 goto fail_attach; 684 } 685 break; 686 case DDI_PM_RESUME: 687 con_log(CL_ANN, (CE_NOTE, 688 "megasas: DDI_PM_RESUME")); 689 break; 690 case DDI_RESUME: 691 con_log(CL_ANN, (CE_NOTE, 692 "megasas: DDI_RESUME")); 693 break; 694 default: 695 con_log(CL_ANN, (CE_WARN, 696 "megasas: invalid attach cmd=%x", cmd)); 697 return (DDI_FAILURE); 698 } 699 700 return (DDI_SUCCESS); 701 702 fail_initiate_aen: 703 fail_attach: 704 if (create_devctl_node_f) { 705 ddi_remove_minor_node(dip, "devctl"); 706 } 707 708 if (create_scsi_node_f) { 709 ddi_remove_minor_node(dip, "scsi"); 710 } 711 712 if (create_ioc_node_f) { 713 ddi_remove_minor_node(dip, instance->iocnode); 714 } 715 716 if (tran_alloc_f) { 717 scsi_hba_tran_free(tran); 718 } 719 720 721 if (added_soft_isr_f) { 722 ddi_remove_softintr(instance->soft_intr_id); 723 } 724 725 if (added_isr_f) { 726 ddi_remove_intr(dip, 0, instance->iblock_cookie); 727 } 728 729 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 730 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 731 732 megasas_fm_fini(instance); 733 734 pci_config_teardown(&instance->pci_handle); 735 736 ddi_soft_state_free(megasas_state, instance_no); 737 738 con_log(CL_ANN, (CE_NOTE, 739 "megasas: return failure from mega_attach\n")); 740 741 return (DDI_FAILURE); 742 } 743 744 /* 745 * getinfo - gets device information 746 * @dip: 747 * @cmd: 748 * @arg: 749 * @resultp: 750 * 751 * The system calls getinfo() to obtain configuration information that only 752 * the driver knows. The mapping of minor numbers to device instance is 753 * entirely under the control of the driver. The system sometimes needs to ask 754 * the driver which device a particular dev_t represents. 755 * Given the device number return the devinfo pointer from the scsi_device 756 * structure. 757 */ 758 /*ARGSUSED*/ 759 static int 760 megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp) 761 { 762 int rval; 763 int megasas_minor = getminor((dev_t)arg); 764 765 struct megasas_instance *instance; 766 767 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 768 769 switch (cmd) { 770 case DDI_INFO_DEVT2DEVINFO: 771 instance = (struct megasas_instance *) 772 ddi_get_soft_state(megasas_state, 773 MINOR2INST(megasas_minor)); 774 775 if (instance == NULL) { 776 *resultp = NULL; 777 rval = DDI_FAILURE; 778 } else { 779 *resultp = instance->dip; 780 rval = DDI_SUCCESS; 781 } 782 break; 783 case DDI_INFO_DEVT2INSTANCE: 784 *resultp = (void *)instance; 785 rval = DDI_SUCCESS; 786 break; 787 default: 788 *resultp = NULL; 789 rval = DDI_FAILURE; 790 } 791 792 return (rval); 793 } 794 795 /* 796 * detach - detaches a device from the system 797 * @dip: pointer to the device's dev_info structure 798 * @cmd: type of detach 799 * 800 * A driver's detach() entry point is called to detach an instance of a device 801 * that is bound to the driver. The entry point is called with the instance of 802 * the device node to be detached and with DDI_DETACH, which is specified as 803 * the cmd argument to the entry point. 804 * This routine is called during driver unload. We free all the allocated 805 * resources and call the corresponding LLD so that it can also release all 806 * its resources. 807 */ 808 static int 809 megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 810 { 811 int instance_no; 812 813 struct megasas_instance *instance; 814 815 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 816 817 /* CONSTCOND */ 818 ASSERT(NO_COMPETING_THREADS); 819 820 instance_no = ddi_get_instance(dip); 821 822 instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state, 823 instance_no); 824 825 if (!instance) { 826 con_log(CL_ANN, (CE_WARN, 827 "megasas:%d could not get instance in detach", 828 instance_no)); 829 830 return (DDI_FAILURE); 831 } 832 833 con_log(CL_ANN, (CE_NOTE, 834 "megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n", 835 instance_no, instance->vendor_id, instance->device_id, 836 instance->subsysvid, instance->subsysid)); 837 838 switch (cmd) { 839 case DDI_DETACH: 840 con_log(CL_ANN, (CE_NOTE, 841 "megasas_detach: DDI_DETACH\n")); 842 843 if (scsi_hba_detach(dip) != DDI_SUCCESS) { 844 con_log(CL_ANN, (CE_WARN, 845 "megasas:%d failed to detach", 846 instance_no)); 847 848 return (DDI_FAILURE); 849 } 850 851 scsi_hba_tran_free(instance->tran); 852 853 if (abort_aen_cmd(instance, instance->aen_cmd)) { 854 con_log(CL_ANN, (CE_WARN, "megasas_detach: " 855 "failed to abort prevous AEN command\n")); 856 857 return (DDI_FAILURE); 858 } 859 860 instance->func_ptr->disable_intr(instance); 861 862 if (instance->isr_level == HIGH_LEVEL_INTR) { 863 ddi_remove_softintr(instance->soft_intr_id); 864 } 865 866 ddi_remove_intr(dip, 0, instance->iblock_cookie); 867 868 free_space_for_mfi(instance); 869 870 megasas_fm_fini(instance); 871 872 pci_config_teardown(&instance->pci_handle); 873 874 kmem_free(instance->func_ptr, 875 sizeof (struct megasas_func_ptr)); 876 877 ddi_soft_state_free(megasas_state, instance_no); 878 break; 879 case DDI_PM_SUSPEND: 880 con_log(CL_ANN, (CE_NOTE, 881 "megasas_detach: DDI_PM_SUSPEND\n")); 882 883 break; 884 case DDI_SUSPEND: 885 con_log(CL_ANN, (CE_NOTE, 886 "megasas_detach: DDI_SUSPEND\n")); 887 888 break; 889 default: 890 con_log(CL_ANN, (CE_WARN, 891 "invalid detach command:0x%x", cmd)); 892 return (DDI_FAILURE); 893 } 894 895 return (DDI_SUCCESS); 896 } 897 898 /* 899 * ************************************************************************** * 900 * * 901 * common entry points - for character driver types * 902 * * 903 * ************************************************************************** * 904 */ 905 /* 906 * open - gets access to a device 907 * @dev: 908 * @openflags: 909 * @otyp: 910 * @credp: 911 * 912 * Access to a device by one or more application programs is controlled 913 * through the open() and close() entry points. The primary function of 914 * open() is to verify that the open request is allowed. 915 */ 916 static int 917 megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp) 918 { 919 int rval = 0; 920 921 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 922 923 /* Check root permissions */ 924 if (drv_priv(credp) != 0) { 925 con_log(CL_ANN, (CE_WARN, 926 "megaraid: Non-root ioctl access tried!")); 927 return (EPERM); 928 } 929 930 /* Verify we are being opened as a character device */ 931 if (otyp != OTYP_CHR) { 932 con_log(CL_ANN, (CE_WARN, 933 "megaraid: ioctl node must be a char node\n")); 934 return (EINVAL); 935 } 936 937 if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev))) 938 == NULL) { 939 return (ENXIO); 940 } 941 942 if (scsi_hba_open) { 943 rval = scsi_hba_open(dev, openflags, otyp, credp); 944 } 945 946 return (rval); 947 } 948 949 /* 950 * close - gives up access to a device 951 * @dev: 952 * @openflags: 953 * @otyp: 954 * @credp: 955 * 956 * close() should perform any cleanup necessary to finish using the minor 957 * device, and prepare the device (and driver) to be opened again. 958 */ 959 static int 960 megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp) 961 { 962 int rval = 0; 963 964 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 965 966 /* no need for locks! */ 967 968 if (scsi_hba_close) { 969 rval = scsi_hba_close(dev, openflags, otyp, credp); 970 } 971 972 return (rval); 973 } 974 975 /* 976 * ioctl - performs a range of I/O commands for character drivers 977 * @dev: 978 * @cmd: 979 * @arg: 980 * @mode: 981 * @credp: 982 * @rvalp: 983 * 984 * ioctl() routine must make sure that user data is copied into or out of the 985 * kernel address space explicitly using copyin(), copyout(), ddi_copyin(), 986 * and ddi_copyout(), as appropriate. 987 * This is a wrapper routine to serialize access to the actual ioctl routine. 988 * ioctl() should return 0 on success, or the appropriate error number. The 989 * driver may also set the value returned to the calling process through rvalp. 990 */ 991 static int 992 megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 993 int *rvalp) 994 { 995 int rval = 0; 996 997 struct megasas_instance *instance; 998 struct megasas_ioctl ioctl; 999 struct megasas_aen aen; 1000 1001 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1002 1003 instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev))); 1004 1005 if (instance == NULL) { 1006 /* invalid minor number */ 1007 con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found.")); 1008 return (ENXIO); 1009 } 1010 1011 switch ((uint_t)cmd) { 1012 case MEGASAS_IOCTL_FIRMWARE: 1013 if (ddi_copyin((void *) arg, &ioctl, 1014 sizeof (struct megasas_ioctl), mode)) { 1015 con_log(CL_ANN, (CE_WARN, "megasas_ioctl: " 1016 "ERROR IOCTL copyin")); 1017 return (EFAULT); 1018 } 1019 1020 if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) { 1021 rval = handle_drv_ioctl(instance, &ioctl, mode); 1022 } else { 1023 rval = handle_mfi_ioctl(instance, &ioctl, mode); 1024 } 1025 1026 if (ddi_copyout((void *) &ioctl, (void *)arg, 1027 (sizeof (struct megasas_ioctl) - 1), mode)) { 1028 con_log(CL_ANN, (CE_WARN, 1029 "megasas_ioctl: copy_to_user failed\n")); 1030 rval = 1; 1031 } 1032 1033 break; 1034 case MEGASAS_IOCTL_AEN: 1035 if (ddi_copyin((void *) arg, &aen, 1036 sizeof (struct megasas_aen), mode)) { 1037 con_log(CL_ANN, (CE_WARN, 1038 "megasas_ioctl: ERROR AEN copyin")); 1039 return (EFAULT); 1040 } 1041 1042 rval = handle_mfi_aen(instance, &aen); 1043 1044 if (ddi_copyout((void *) &aen, (void *)arg, 1045 sizeof (struct megasas_aen), mode)) { 1046 con_log(CL_ANN, (CE_WARN, 1047 "megasas_ioctl: copy_to_user failed\n")); 1048 rval = 1; 1049 } 1050 1051 break; 1052 default: 1053 rval = scsi_hba_ioctl(dev, cmd, arg, 1054 mode, credp, rvalp); 1055 1056 con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: " 1057 "scsi_hba_ioctl called, ret = %x.", rval)); 1058 } 1059 1060 return (rval); 1061 } 1062 1063 /* 1064 * ************************************************************************** * 1065 * * 1066 * common entry points - for block driver types * 1067 * * 1068 * ************************************************************************** * 1069 */ 1070 /* 1071 * reset - TBD 1072 * @dip: 1073 * @cmd: 1074 * 1075 * TBD 1076 */ 1077 /*ARGSUSED*/ 1078 static int 1079 megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd) 1080 { 1081 int instance_no; 1082 1083 struct megasas_instance *instance; 1084 1085 instance_no = ddi_get_instance(dip); 1086 instance = (struct megasas_instance *)ddi_get_soft_state 1087 (megasas_state, instance_no); 1088 1089 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1090 1091 if (!instance) { 1092 con_log(CL_ANN, (CE_WARN, 1093 "megaraid:%d could not get adapter in reset", 1094 instance_no)); 1095 return (DDI_FAILURE); 1096 } 1097 1098 con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..", 1099 instance_no)); 1100 1101 flush_cache(instance); 1102 1103 return (DDI_SUCCESS); 1104 } 1105 1106 1107 /* 1108 * ************************************************************************** * 1109 * * 1110 * entry points (SCSI HBA) * 1111 * * 1112 * ************************************************************************** * 1113 */ 1114 /* 1115 * tran_tgt_init - initialize a target device instance 1116 * @hba_dip: 1117 * @tgt_dip: 1118 * @tran: 1119 * @sd: 1120 * 1121 * The tran_tgt_init() entry point enables the HBA to allocate and initialize 1122 * any per-target resources. tran_tgt_init() also enables the HBA to qualify 1123 * the device's address as valid and supportable for that particular HBA. 1124 * By returning DDI_FAILURE, the instance of the target driver for that device 1125 * is not probed or attached. 1126 */ 1127 /*ARGSUSED*/ 1128 static int 1129 megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 1130 scsi_hba_tran_t *tran, struct scsi_device *sd) 1131 { 1132 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1133 1134 return (DDI_SUCCESS); 1135 } 1136 1137 /* 1138 * tran_init_pkt - allocate & initialize a scsi_pkt structure 1139 * @ap: 1140 * @pkt: 1141 * @bp: 1142 * @cmdlen: 1143 * @statuslen: 1144 * @tgtlen: 1145 * @flags: 1146 * @callback: 1147 * 1148 * The tran_init_pkt() entry point allocates and initializes a scsi_pkt 1149 * structure and DMA resources for a target driver request. The 1150 * tran_init_pkt() entry point is called when the target driver calls the 1151 * SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point 1152 * is a request to perform one or more of three possible services: 1153 * - allocation and initialization of a scsi_pkt structure 1154 * - allocation of DMA resources for data transfer 1155 * - reallocation of DMA resources for the next portion of the data transfer 1156 */ 1157 static struct scsi_pkt * 1158 megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt, 1159 struct buf *bp, int cmdlen, int statuslen, int tgtlen, 1160 int flags, int (*callback)(), caddr_t arg) 1161 { 1162 struct scsa_cmd *acmd; 1163 struct megasas_instance *instance; 1164 struct scsi_pkt *new_pkt; 1165 1166 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1167 1168 instance = ADDR2MEGA(ap); 1169 1170 /* step #1 : pkt allocation */ 1171 if (pkt == NULL) { 1172 pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen, 1173 tgtlen, sizeof (struct scsa_cmd), callback, arg); 1174 if (pkt == NULL) { 1175 return (NULL); 1176 } 1177 1178 acmd = PKT2CMD(pkt); 1179 1180 /* 1181 * Initialize the new pkt - we redundantly initialize 1182 * all the fields for illustrative purposes. 1183 */ 1184 acmd->cmd_pkt = pkt; 1185 acmd->cmd_flags = 0; 1186 acmd->cmd_scblen = statuslen; 1187 acmd->cmd_cdblen = cmdlen; 1188 acmd->cmd_dmahandle = NULL; 1189 acmd->cmd_ncookies = 0; 1190 acmd->cmd_cookie = 0; 1191 acmd->cmd_cookiecnt = 0; 1192 acmd->cmd_nwin = 0; 1193 1194 pkt->pkt_address = *ap; 1195 pkt->pkt_comp = (void (*)())NULL; 1196 pkt->pkt_flags = 0; 1197 pkt->pkt_time = 0; 1198 pkt->pkt_resid = 0; 1199 pkt->pkt_state = 0; 1200 pkt->pkt_statistics = 0; 1201 pkt->pkt_reason = 0; 1202 new_pkt = pkt; 1203 } else { 1204 acmd = PKT2CMD(pkt); 1205 new_pkt = NULL; 1206 } 1207 1208 /* step #2 : dma allocation/move */ 1209 if (bp && bp->b_bcount != 0) { 1210 if (acmd->cmd_dmahandle == NULL) { 1211 if (megasas_dma_alloc(instance, pkt, bp, flags, 1212 callback) == -1) { 1213 if (new_pkt) { 1214 scsi_hba_pkt_free(ap, new_pkt); 1215 } 1216 1217 return ((struct scsi_pkt *)NULL); 1218 } 1219 } else { 1220 if (megasas_dma_move(instance, pkt, bp) == -1) { 1221 return ((struct scsi_pkt *)NULL); 1222 } 1223 } 1224 } 1225 1226 return (pkt); 1227 } 1228 1229 /* 1230 * tran_start - transport a SCSI command to the addressed target 1231 * @ap: 1232 * @pkt: 1233 * 1234 * The tran_start() entry point for a SCSI HBA driver is called to transport a 1235 * SCSI command to the addressed target. The SCSI command is described 1236 * entirely within the scsi_pkt structure, which the target driver allocated 1237 * through the HBA driver's tran_init_pkt() entry point. If the command 1238 * involves a data transfer, DMA resources must also have been allocated for 1239 * the scsi_pkt structure. 1240 * 1241 * Return Values : 1242 * TRAN_BUSY - request queue is full, no more free scbs 1243 * TRAN_ACCEPT - pkt has been submitted to the instance 1244 */ 1245 static int 1246 megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt) 1247 { 1248 uchar_t cmd_done = 0; 1249 1250 struct megasas_instance *instance = ADDR2MEGA(ap); 1251 struct megasas_cmd *cmd; 1252 1253 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x", 1254 __func__, __LINE__, pkt->pkt_cdbp[0])); 1255 1256 pkt->pkt_reason = CMD_CMPLT; 1257 *pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */ 1258 1259 cmd = build_cmd(instance, ap, pkt, &cmd_done); 1260 1261 /* 1262 * Check if the command is already completed by the mega_build_cmd() 1263 * routine. In which case the busy_flag would be clear and scb will be 1264 * NULL and appropriate reason provided in pkt_reason field 1265 */ 1266 if (cmd_done) { 1267 if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && pkt->pkt_comp) { 1268 (*pkt->pkt_comp)(pkt); 1269 } 1270 pkt->pkt_reason = CMD_CMPLT; 1271 pkt->pkt_scbp[0] = STATUS_GOOD; 1272 pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET 1273 | STATE_SENT_CMD; 1274 return (TRAN_ACCEPT); 1275 } 1276 1277 if (cmd == NULL) { 1278 return (TRAN_BUSY); 1279 } 1280 1281 if ((pkt->pkt_flags & FLAG_NOINTR) == 0) { 1282 if (instance->fw_outstanding > instance->max_fw_cmds) { 1283 con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy")); 1284 return_mfi_pkt(instance, cmd); 1285 return (TRAN_BUSY); 1286 } 1287 1288 /* Syncronize the Cmd frame for the controller */ 1289 (void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0, 1290 DDI_DMA_SYNC_FORDEV); 1291 1292 instance->func_ptr->issue_cmd(cmd, instance); 1293 1294 } else { 1295 struct megasas_header *hdr = &cmd->frame->hdr; 1296 1297 cmd->sync_cmd = MEGASAS_TRUE; 1298 1299 instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd); 1300 1301 pkt->pkt_reason = CMD_CMPLT; 1302 pkt->pkt_statistics = 0; 1303 pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS; 1304 1305 switch (hdr->cmd_status) { 1306 case MFI_STAT_OK: 1307 pkt->pkt_scbp[0] = STATUS_GOOD; 1308 break; 1309 1310 case MFI_STAT_SCSI_DONE_WITH_ERROR: 1311 1312 pkt->pkt_reason = CMD_CMPLT; 1313 pkt->pkt_statistics = 0; 1314 1315 ((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1; 1316 break; 1317 1318 case MFI_STAT_DEVICE_NOT_FOUND: 1319 pkt->pkt_reason = CMD_DEV_GONE; 1320 pkt->pkt_statistics = STAT_DISCON; 1321 break; 1322 1323 default: 1324 ((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1; 1325 } 1326 1327 return_mfi_pkt(instance, cmd); 1328 (void) megasas_common_check(instance, cmd); 1329 1330 if (pkt->pkt_comp) { 1331 (*pkt->pkt_comp)(pkt); 1332 } 1333 1334 } 1335 1336 return (TRAN_ACCEPT); 1337 } 1338 1339 /* 1340 * tran_abort - Abort any commands that are currently in transport 1341 * @ap: 1342 * @pkt: 1343 * 1344 * The tran_abort() entry point for a SCSI HBA driver is called to abort any 1345 * commands that are currently in transport for a particular target. This entry 1346 * point is called when a target driver calls scsi_abort(). The tran_abort() 1347 * entry point should attempt to abort the command denoted by the pkt 1348 * parameter. If the pkt parameter is NULL, tran_abort() should attempt to 1349 * abort all outstanding commands in the transport layer for the particular 1350 * target or logical unit. 1351 */ 1352 /*ARGSUSED*/ 1353 static int 1354 megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt) 1355 { 1356 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1357 1358 /* aborting command not supported by H/W */ 1359 1360 return (DDI_FAILURE); 1361 } 1362 1363 /* 1364 * tran_reset - reset either the SCSI bus or target 1365 * @ap: 1366 * @level: 1367 * 1368 * The tran_reset() entry point for a SCSI HBA driver is called to reset either 1369 * the SCSI bus or a particular SCSI target device. This entry point is called 1370 * when a target driver calls scsi_reset(). The tran_reset() entry point must 1371 * reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the 1372 * particular target or logical unit must be reset. 1373 */ 1374 /*ARGSUSED*/ 1375 static int 1376 megasas_tran_reset(struct scsi_address *ap, int level) 1377 { 1378 struct megasas_instance *instance = ADDR2MEGA(ap); 1379 1380 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1381 1382 if (wait_for_outstanding(instance)) { 1383 return (DDI_FAILURE); 1384 } else { 1385 return (DDI_SUCCESS); 1386 } 1387 } 1388 1389 /* 1390 * tran_bus_reset - reset the SCSI bus 1391 * @dip: 1392 * @level: 1393 * 1394 * The tran_bus_reset() vector in the scsi_hba_tran structure should be 1395 * initialized during the HBA driver's attach(). The vector should point to 1396 * an HBA entry point that is to be called when a user initiates a bus reset. 1397 * Implementation is hardware specific. If the HBA driver cannot reset the 1398 * SCSI bus without affecting the targets, the driver should fail RESET_BUS 1399 * or not initialize this vector. 1400 */ 1401 /*ARGSUSED*/ 1402 static int 1403 megasas_tran_bus_reset(dev_info_t *dip, int level) 1404 { 1405 int instance_no = ddi_get_instance(dip); 1406 1407 struct megasas_instance *instance = ddi_get_soft_state(megasas_state, 1408 instance_no); 1409 1410 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1411 1412 if (wait_for_outstanding(instance)) { 1413 return (DDI_FAILURE); 1414 } else { 1415 return (DDI_SUCCESS); 1416 } 1417 } 1418 1419 /* 1420 * tran_getcap - get one of a set of SCSA-defined capabilities 1421 * @ap: 1422 * @cap: 1423 * @whom: 1424 * 1425 * The target driver can request the current setting of the capability for a 1426 * particular target by setting the whom parameter to nonzero. A whom value of 1427 * zero indicates a request for the current setting of the general capability 1428 * for the SCSI bus or for adapter hardware. The tran_getcap() should return -1 1429 * for undefined capabilities or the current value of the requested capability. 1430 */ 1431 /*ARGSUSED*/ 1432 static int 1433 megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom) 1434 { 1435 int rval = 0; 1436 1437 struct megasas_instance *instance = ADDR2MEGA(ap); 1438 1439 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1440 1441 /* we do allow inquiring about capabilities for other targets */ 1442 if (cap == NULL) { 1443 return (-1); 1444 } 1445 1446 switch (scsi_hba_lookup_capstr(cap)) { 1447 case SCSI_CAP_DMA_MAX: 1448 /* Limit to 16MB max transfer */ 1449 rval = megasas_max_cap_maxxfer; 1450 break; 1451 case SCSI_CAP_MSG_OUT: 1452 rval = 1; 1453 break; 1454 case SCSI_CAP_DISCONNECT: 1455 rval = 0; 1456 break; 1457 case SCSI_CAP_SYNCHRONOUS: 1458 rval = 0; 1459 break; 1460 case SCSI_CAP_WIDE_XFER: 1461 rval = 1; 1462 break; 1463 case SCSI_CAP_TAGGED_QING: 1464 rval = 1; 1465 break; 1466 case SCSI_CAP_UNTAGGED_QING: 1467 rval = 1; 1468 break; 1469 case SCSI_CAP_PARITY: 1470 rval = 1; 1471 break; 1472 case SCSI_CAP_INITIATOR_ID: 1473 rval = instance->init_id; 1474 break; 1475 case SCSI_CAP_ARQ: 1476 rval = 1; 1477 break; 1478 case SCSI_CAP_LINKED_CMDS: 1479 rval = 0; 1480 break; 1481 case SCSI_CAP_RESET_NOTIFICATION: 1482 rval = 1; 1483 break; 1484 case SCSI_CAP_GEOMETRY: 1485 rval = -1; 1486 1487 break; 1488 default: 1489 con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x", 1490 scsi_hba_lookup_capstr(cap))); 1491 rval = -1; 1492 break; 1493 } 1494 1495 return (rval); 1496 } 1497 1498 /* 1499 * tran_setcap - set one of a set of SCSA-defined capabilities 1500 * @ap: 1501 * @cap: 1502 * @value: 1503 * @whom: 1504 * 1505 * The target driver might request that the new value be set for a particular 1506 * target by setting the whom parameter to nonzero. A whom value of zero 1507 * means that request is to set the new value for the SCSI bus or for adapter 1508 * hardware in general. 1509 * The tran_setcap() should return the following values as appropriate: 1510 * - -1 for undefined capabilities 1511 * - 0 if the HBA driver cannot set the capability to the requested value 1512 * - 1 if the HBA driver is able to set the capability to the requested value 1513 */ 1514 /*ARGSUSED*/ 1515 static int 1516 megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom) 1517 { 1518 int rval = 1; 1519 1520 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1521 1522 /* We don't allow setting capabilities for other targets */ 1523 if (cap == NULL || whom == 0) { 1524 return (-1); 1525 } 1526 1527 switch (scsi_hba_lookup_capstr(cap)) { 1528 case SCSI_CAP_DMA_MAX: 1529 case SCSI_CAP_MSG_OUT: 1530 case SCSI_CAP_PARITY: 1531 case SCSI_CAP_LINKED_CMDS: 1532 case SCSI_CAP_RESET_NOTIFICATION: 1533 case SCSI_CAP_DISCONNECT: 1534 case SCSI_CAP_SYNCHRONOUS: 1535 case SCSI_CAP_UNTAGGED_QING: 1536 case SCSI_CAP_WIDE_XFER: 1537 case SCSI_CAP_INITIATOR_ID: 1538 case SCSI_CAP_ARQ: 1539 /* 1540 * None of these are settable via 1541 * the capability interface. 1542 */ 1543 break; 1544 case SCSI_CAP_TAGGED_QING: 1545 rval = 1; 1546 break; 1547 case SCSI_CAP_SECTOR_SIZE: 1548 rval = 1; 1549 break; 1550 1551 case SCSI_CAP_TOTAL_SECTORS: 1552 rval = 1; 1553 break; 1554 default: 1555 rval = -1; 1556 break; 1557 } 1558 1559 return (rval); 1560 } 1561 1562 /* 1563 * tran_destroy_pkt - deallocate scsi_pkt structure 1564 * @ap: 1565 * @pkt: 1566 * 1567 * The tran_destroy_pkt() entry point is the HBA driver function that 1568 * deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is 1569 * called when the target driver calls scsi_destroy_pkt(). The 1570 * tran_destroy_pkt() entry point must free any DMA resources that have been 1571 * allocated for the packet. An implicit DMA synchronization occurs if the 1572 * DMA resources are freed and any cached data remains after the completion 1573 * of the transfer. 1574 */ 1575 static void 1576 megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 1577 { 1578 struct scsa_cmd *acmd = PKT2CMD(pkt); 1579 1580 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1581 1582 if (acmd->cmd_flags & CFLAG_DMAVALID) { 1583 acmd->cmd_flags &= ~CFLAG_DMAVALID; 1584 1585 (void) ddi_dma_unbind_handle(acmd->cmd_dmahandle); 1586 1587 ddi_dma_free_handle(&acmd->cmd_dmahandle); 1588 1589 acmd->cmd_dmahandle = NULL; 1590 } 1591 1592 /* free the pkt */ 1593 scsi_hba_pkt_free(ap, pkt); 1594 } 1595 1596 /* 1597 * tran_dmafree - deallocates DMA resources 1598 * @ap: 1599 * @pkt: 1600 * 1601 * The tran_dmafree() entry point deallocates DMAQ resources that have been 1602 * allocated for a scsi_pkt structure. The tran_dmafree() entry point is 1603 * called when the target driver calls scsi_dmafree(). The tran_dmafree() must 1604 * free only DMA resources allocated for a scsi_pkt structure, not the 1605 * scsi_pkt itself. When DMA resources are freed, a DMA synchronization is 1606 * implicitly performed. 1607 */ 1608 /*ARGSUSED*/ 1609 static void 1610 megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt) 1611 { 1612 register struct scsa_cmd *acmd = PKT2CMD(pkt); 1613 1614 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1615 1616 if (acmd->cmd_flags & CFLAG_DMAVALID) { 1617 acmd->cmd_flags &= ~CFLAG_DMAVALID; 1618 1619 (void) ddi_dma_unbind_handle(acmd->cmd_dmahandle); 1620 1621 ddi_dma_free_handle(&acmd->cmd_dmahandle); 1622 1623 acmd->cmd_dmahandle = NULL; 1624 } 1625 } 1626 1627 /* 1628 * tran_sync_pkt - synchronize the DMA object allocated 1629 * @ap: 1630 * @pkt: 1631 * 1632 * The tran_sync_pkt() entry point synchronizes the DMA object allocated for 1633 * the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt() 1634 * entry point is called when the target driver calls scsi_sync_pkt(). If the 1635 * data transfer direction is a DMA read from device to memory, tran_sync_pkt() 1636 * must synchronize the CPU's view of the data. If the data transfer direction 1637 * is a DMA write from memory to device, tran_sync_pkt() must synchronize the 1638 * device's view of the data. 1639 */ 1640 /*ARGSUSED*/ 1641 static void 1642 megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 1643 { 1644 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1645 1646 /* 1647 * following 'ddi_dma_sync()' API call 1648 * already called for each I/O in the ISR 1649 */ 1650 #if 0 1651 int i; 1652 1653 register struct scsa_cmd *acmd = PKT2CMD(pkt); 1654 1655 if (acmd->cmd_flags & CFLAG_DMAVALID) { 1656 (void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset, 1657 acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ? 1658 DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU); 1659 } 1660 #endif 1661 } 1662 1663 /*ARGSUSED*/ 1664 static int 1665 megasas_tran_quiesce(dev_info_t *dip) 1666 { 1667 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1668 1669 return (1); 1670 } 1671 1672 /*ARGSUSED*/ 1673 static int 1674 megasas_tran_unquiesce(dev_info_t *dip) 1675 { 1676 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1677 1678 return (1); 1679 } 1680 1681 /* 1682 * megasas_isr(caddr_t) 1683 * 1684 * The Interrupt Service Routine 1685 * 1686 * Collect status for all completed commands and do callback 1687 * 1688 */ 1689 static uint_t 1690 megasas_isr(struct megasas_instance *instance) 1691 { 1692 int need_softintr; 1693 uint32_t producer; 1694 uint32_t consumer; 1695 uint32_t context; 1696 1697 struct megasas_cmd *cmd; 1698 1699 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1700 1701 ASSERT(instance); 1702 if (!instance->func_ptr->intr_ack(instance)) { 1703 return (DDI_INTR_UNCLAIMED); 1704 } 1705 1706 (void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle, 1707 0, 0, DDI_DMA_SYNC_FORCPU); 1708 1709 if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle) 1710 != DDI_SUCCESS) { 1711 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 1712 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 1713 return (DDI_INTR_UNCLAIMED); 1714 } 1715 1716 producer = *instance->producer; 1717 consumer = *instance->consumer; 1718 1719 con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ", 1720 producer, consumer)); 1721 1722 mutex_enter(&instance->completed_pool_mtx); 1723 1724 while (consumer != producer) { 1725 context = instance->reply_queue[consumer]; 1726 cmd = instance->cmd_list[context]; 1727 mlist_add_tail(&cmd->list, &instance->completed_pool_list); 1728 1729 consumer++; 1730 if (consumer == (instance->max_fw_cmds + 1)) { 1731 consumer = 0; 1732 } 1733 } 1734 1735 mutex_exit(&instance->completed_pool_mtx); 1736 1737 *instance->consumer = consumer; 1738 (void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle, 1739 0, 0, DDI_DMA_SYNC_FORDEV); 1740 1741 if (instance->softint_running) { 1742 need_softintr = 0; 1743 } else { 1744 need_softintr = 1; 1745 } 1746 1747 if (instance->isr_level == HIGH_LEVEL_INTR) { 1748 if (need_softintr) { 1749 ddi_trigger_softintr(instance->soft_intr_id); 1750 } 1751 } else { 1752 /* 1753 * Not a high-level interrupt, therefore call the soft level 1754 * interrupt explicitly 1755 */ 1756 (void) megasas_softintr(instance); 1757 } 1758 1759 return (DDI_INTR_CLAIMED); 1760 } 1761 1762 1763 /* 1764 * ************************************************************************** * 1765 * * 1766 * libraries * 1767 * * 1768 * ************************************************************************** * 1769 */ 1770 /* 1771 * get_mfi_pkt : Get a command from the free pool 1772 */ 1773 static struct megasas_cmd * 1774 get_mfi_pkt(struct megasas_instance *instance) 1775 { 1776 mlist_t *head = &instance->cmd_pool_list; 1777 struct megasas_cmd *cmd = NULL; 1778 1779 mutex_enter(&instance->cmd_pool_mtx); 1780 ASSERT(mutex_owned(&instance->cmd_pool_mtx)); 1781 1782 if (!mlist_empty(head)) { 1783 cmd = mlist_entry(head->next, struct megasas_cmd, list); 1784 mlist_del_init(head->next); 1785 } 1786 if (cmd != NULL) 1787 cmd->pkt = NULL; 1788 mutex_exit(&instance->cmd_pool_mtx); 1789 1790 return (cmd); 1791 } 1792 1793 /* 1794 * return_mfi_pkt : Return a cmd to free command pool 1795 */ 1796 static void 1797 return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd) 1798 { 1799 mutex_enter(&instance->cmd_pool_mtx); 1800 ASSERT(mutex_owned(&instance->cmd_pool_mtx)); 1801 1802 mlist_add(&cmd->list, &instance->cmd_pool_list); 1803 1804 mutex_exit(&instance->cmd_pool_mtx); 1805 } 1806 1807 /* 1808 * destroy_mfi_frame_pool 1809 */ 1810 static void 1811 destroy_mfi_frame_pool(struct megasas_instance *instance) 1812 { 1813 int i; 1814 uint32_t max_cmd = instance->max_fw_cmds; 1815 1816 struct megasas_cmd *cmd; 1817 1818 /* return all frames to pool */ 1819 for (i = 0; i < max_cmd; i++) { 1820 1821 cmd = instance->cmd_list[i]; 1822 1823 if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED) 1824 (void) mega_free_dma_obj(instance, cmd->frame_dma_obj); 1825 1826 cmd->frame_dma_obj_status = DMA_OBJ_FREED; 1827 } 1828 1829 } 1830 1831 /* 1832 * create_mfi_frame_pool 1833 */ 1834 static int 1835 create_mfi_frame_pool(struct megasas_instance *instance) 1836 { 1837 int i = 0; 1838 int cookie_cnt; 1839 uint16_t max_cmd; 1840 uint16_t sge_sz; 1841 uint32_t sgl_sz; 1842 uint32_t tot_frame_size; 1843 1844 struct megasas_cmd *cmd; 1845 1846 max_cmd = instance->max_fw_cmds; 1847 1848 sge_sz = sizeof (struct megasas_sge64); 1849 1850 /* calculated the number of 64byte frames required for SGL */ 1851 sgl_sz = sge_sz * instance->max_num_sge; 1852 tot_frame_size = sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH; 1853 1854 con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: " 1855 "sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size)); 1856 1857 while (i < max_cmd) { 1858 cmd = instance->cmd_list[i]; 1859 1860 cmd->frame_dma_obj.size = tot_frame_size; 1861 cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr; 1862 cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 1863 cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 1864 cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1; 1865 cmd->frame_dma_obj.dma_attr.dma_attr_align = 64; 1866 1867 1868 cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj); 1869 1870 if (cookie_cnt == -1 || cookie_cnt > 1) { 1871 con_log(CL_ANN, (CE_WARN, 1872 "create_mfi_frame_pool: could not alloc.")); 1873 return (DDI_FAILURE); 1874 } 1875 1876 bzero(cmd->frame_dma_obj.buffer, tot_frame_size); 1877 1878 cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED; 1879 cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer; 1880 cmd->frame_phys_addr = 1881 cmd->frame_dma_obj.dma_cookie[0].dmac_address; 1882 1883 cmd->sense = (uint8_t *)(((unsigned long) 1884 cmd->frame_dma_obj.buffer) + 1885 tot_frame_size - SENSE_LENGTH); 1886 cmd->sense_phys_addr = 1887 cmd->frame_dma_obj.dma_cookie[0].dmac_address + 1888 tot_frame_size - SENSE_LENGTH; 1889 1890 if (!cmd->frame || !cmd->sense) { 1891 con_log(CL_ANN, (CE_NOTE, 1892 "megasas: pci_pool_alloc failed \n")); 1893 1894 return (-ENOMEM); 1895 } 1896 1897 cmd->frame->io.context = cmd->index; 1898 i++; 1899 1900 con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x", 1901 cmd->frame->io.context, cmd->frame_phys_addr)); 1902 } 1903 1904 return (DDI_SUCCESS); 1905 } 1906 1907 /* 1908 * free_additional_dma_buffer 1909 */ 1910 static void 1911 free_additional_dma_buffer(struct megasas_instance *instance) 1912 { 1913 if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) { 1914 (void) mega_free_dma_obj(instance, 1915 instance->mfi_internal_dma_obj); 1916 instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED; 1917 } 1918 1919 if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) { 1920 (void) mega_free_dma_obj(instance, 1921 instance->mfi_evt_detail_obj); 1922 instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED; 1923 } 1924 } 1925 1926 /* 1927 * alloc_additional_dma_buffer 1928 */ 1929 static int 1930 alloc_additional_dma_buffer(struct megasas_instance *instance) 1931 { 1932 uint32_t reply_q_sz; 1933 uint32_t internal_buf_size = PAGESIZE*2; 1934 1935 /* max cmds plus 1 + producer & consumer */ 1936 reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2); 1937 1938 instance->mfi_internal_dma_obj.size = internal_buf_size; 1939 instance->mfi_internal_dma_obj.dma_attr = megasas_generic_dma_attr; 1940 instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 1941 instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max = 1942 0xFFFFFFFFU; 1943 instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen = 1; 1944 1945 if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj) 1946 != 1) { 1947 con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q")); 1948 return (DDI_FAILURE); 1949 } 1950 1951 bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size); 1952 1953 instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED; 1954 1955 instance->producer = (uint32_t *)((unsigned long) 1956 instance->mfi_internal_dma_obj.buffer); 1957 instance->consumer = (uint32_t *)((unsigned long) 1958 instance->mfi_internal_dma_obj.buffer + 4); 1959 instance->reply_queue = (uint32_t *)((unsigned long) 1960 instance->mfi_internal_dma_obj.buffer + 8); 1961 instance->internal_buf = (caddr_t)(((unsigned long) 1962 instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8); 1963 instance->internal_buf_dmac_add = 1964 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 1965 reply_q_sz; 1966 instance->internal_buf_size = internal_buf_size - 1967 (reply_q_sz + 8); 1968 1969 /* allocate evt_detail */ 1970 instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail); 1971 instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr; 1972 instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 1973 instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 1974 instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1; 1975 instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1; 1976 1977 if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) { 1978 con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: " 1979 "could not data transfer buffer alloc.")); 1980 return (DDI_FAILURE); 1981 } 1982 1983 bzero(instance->mfi_evt_detail_obj.buffer, 1984 sizeof (struct megasas_evt_detail)); 1985 1986 instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED; 1987 1988 return (DDI_SUCCESS); 1989 } 1990 1991 /* 1992 * free_space_for_mfi 1993 */ 1994 static void 1995 free_space_for_mfi(struct megasas_instance *instance) 1996 { 1997 int i; 1998 uint32_t max_cmd = instance->max_fw_cmds; 1999 2000 /* already freed */ 2001 if (instance->cmd_list == NULL) { 2002 return; 2003 } 2004 2005 free_additional_dma_buffer(instance); 2006 2007 /* first free the MFI frame pool */ 2008 destroy_mfi_frame_pool(instance); 2009 2010 /* free all the commands in the cmd_list */ 2011 for (i = 0; i < instance->max_fw_cmds; i++) { 2012 kmem_free(instance->cmd_list[i], 2013 sizeof (struct megasas_cmd)); 2014 2015 instance->cmd_list[i] = NULL; 2016 } 2017 2018 /* free the cmd_list buffer itself */ 2019 kmem_free(instance->cmd_list, 2020 sizeof (struct megasas_cmd *) * max_cmd); 2021 2022 instance->cmd_list = NULL; 2023 2024 INIT_LIST_HEAD(&instance->cmd_pool_list); 2025 } 2026 2027 /* 2028 * alloc_space_for_mfi 2029 */ 2030 static int 2031 alloc_space_for_mfi(struct megasas_instance *instance) 2032 { 2033 int i; 2034 uint32_t max_cmd; 2035 size_t sz; 2036 2037 struct megasas_cmd *cmd; 2038 2039 max_cmd = instance->max_fw_cmds; 2040 sz = sizeof (struct megasas_cmd *) * max_cmd; 2041 2042 /* 2043 * instance->cmd_list is an array of struct megasas_cmd pointers. 2044 * Allocate the dynamic array first and then allocate individual 2045 * commands. 2046 */ 2047 instance->cmd_list = kmem_zalloc(sz, KM_SLEEP); 2048 ASSERT(instance->cmd_list); 2049 2050 for (i = 0; i < max_cmd; i++) { 2051 instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd), 2052 KM_SLEEP); 2053 ASSERT(instance->cmd_list[i]); 2054 } 2055 2056 INIT_LIST_HEAD(&instance->cmd_pool_list); 2057 2058 /* add all the commands to command pool (instance->cmd_pool) */ 2059 for (i = 0; i < max_cmd; i++) { 2060 cmd = instance->cmd_list[i]; 2061 cmd->index = i; 2062 2063 mlist_add_tail(&cmd->list, &instance->cmd_pool_list); 2064 } 2065 2066 /* create a frame pool and assign one frame to each cmd */ 2067 if (create_mfi_frame_pool(instance)) { 2068 con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n")); 2069 return (DDI_FAILURE); 2070 } 2071 2072 /* create a frame pool and assign one frame to each cmd */ 2073 if (alloc_additional_dma_buffer(instance)) { 2074 con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n")); 2075 return (DDI_FAILURE); 2076 } 2077 2078 return (DDI_SUCCESS); 2079 } 2080 2081 /* 2082 * get_ctrl_info 2083 */ 2084 static int 2085 get_ctrl_info(struct megasas_instance *instance, 2086 struct megasas_ctrl_info *ctrl_info) 2087 { 2088 int ret = 0; 2089 2090 struct megasas_cmd *cmd; 2091 struct megasas_dcmd_frame *dcmd; 2092 struct megasas_ctrl_info *ci; 2093 2094 cmd = get_mfi_pkt(instance); 2095 2096 if (!cmd) { 2097 con_log(CL_ANN, (CE_WARN, 2098 "Failed to get a cmd for ctrl info\n")); 2099 return (DDI_FAILURE); 2100 } 2101 2102 dcmd = &cmd->frame->dcmd; 2103 2104 ci = (struct megasas_ctrl_info *)instance->internal_buf; 2105 2106 if (!ci) { 2107 con_log(CL_ANN, (CE_WARN, 2108 "Failed to alloc mem for ctrl info\n")); 2109 return_mfi_pkt(instance, cmd); 2110 return (DDI_FAILURE); 2111 } 2112 2113 (void) memset(ci, 0, sizeof (struct megasas_ctrl_info)); 2114 2115 /* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */ 2116 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 2117 2118 dcmd->cmd = MFI_CMD_OP_DCMD; 2119 dcmd->cmd_status = MFI_CMD_STATUS_POLL_MODE; 2120 dcmd->sge_count = 1; 2121 dcmd->flags = MFI_FRAME_DIR_READ; 2122 dcmd->timeout = 0; 2123 dcmd->data_xfer_len = sizeof (struct megasas_ctrl_info); 2124 dcmd->opcode = MR_DCMD_CTRL_GET_INFO; 2125 dcmd->sgl.sge32[0].phys_addr = instance->internal_buf_dmac_add; 2126 dcmd->sgl.sge32[0].length = sizeof (struct megasas_ctrl_info); 2127 2128 cmd->frame_count = 1; 2129 2130 if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) { 2131 ret = 0; 2132 (void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info)); 2133 } else { 2134 con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n")); 2135 ret = -1; 2136 } 2137 2138 return_mfi_pkt(instance, cmd); 2139 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) { 2140 ret = -1; 2141 } 2142 2143 return (ret); 2144 } 2145 2146 /* 2147 * abort_aen_cmd 2148 */ 2149 static int 2150 abort_aen_cmd(struct megasas_instance *instance, 2151 struct megasas_cmd *cmd_to_abort) 2152 { 2153 int ret = 0; 2154 2155 struct megasas_cmd *cmd; 2156 struct megasas_abort_frame *abort_fr; 2157 2158 cmd = get_mfi_pkt(instance); 2159 2160 if (!cmd) { 2161 con_log(CL_ANN, (CE_WARN, 2162 "Failed to get a cmd for ctrl info\n")); 2163 return (DDI_FAILURE); 2164 } 2165 2166 abort_fr = &cmd->frame->abort; 2167 2168 /* prepare and issue the abort frame */ 2169 abort_fr->cmd = MFI_CMD_OP_ABORT; 2170 abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE; 2171 abort_fr->flags = 0; 2172 abort_fr->abort_context = cmd_to_abort->index; 2173 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr; 2174 abort_fr->abort_mfi_phys_addr_hi = 0; 2175 2176 instance->aen_cmd->abort_aen = 1; 2177 2178 cmd->sync_cmd = MEGASAS_TRUE; 2179 cmd->frame_count = 1; 2180 2181 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 2182 con_log(CL_ANN, (CE_WARN, 2183 "abort_aen_cmd: issue_cmd_in_sync_mode failed\n")); 2184 ret = -1; 2185 } else { 2186 ret = 0; 2187 } 2188 2189 instance->aen_cmd->abort_aen = 1; 2190 instance->aen_cmd = 0; 2191 2192 return_mfi_pkt(instance, cmd); 2193 (void) megasas_common_check(instance, cmd); 2194 2195 return (ret); 2196 } 2197 2198 /* 2199 * init_mfi 2200 */ 2201 static int 2202 init_mfi(struct megasas_instance *instance) 2203 { 2204 off_t reglength; 2205 struct megasas_cmd *cmd; 2206 struct megasas_ctrl_info ctrl_info; 2207 struct megasas_init_frame *init_frame; 2208 struct megasas_init_queue_info *initq_info; 2209 2210 if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, ®length) 2211 != DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) { 2212 return (DDI_FAILURE); 2213 } 2214 2215 if (reglength > DEFAULT_MFI_MEM_SZ) { 2216 reglength = DEFAULT_MFI_MEM_SZ; 2217 con_log(CL_DLEVEL1, (CE_NOTE, 2218 "mega: register length to map is 0x%lx bytes", reglength)); 2219 } 2220 2221 if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO, 2222 &instance->regmap, 0, reglength, &endian_attr, 2223 &instance->regmap_handle) != DDI_SUCCESS) { 2224 con_log(CL_ANN, (CE_NOTE, 2225 "megaraid: couldn't map control registers")); 2226 2227 goto fail_mfi_reg_setup; 2228 } 2229 2230 /* we expect the FW state to be READY */ 2231 if (mfi_state_transition_to_ready(instance)) { 2232 con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready")); 2233 goto fail_ready_state; 2234 } 2235 2236 /* get various operational parameters from status register */ 2237 instance->max_num_sge = 2238 (instance->func_ptr->read_fw_status_reg(instance) & 2239 0xFF0000) >> 0x10; 2240 /* 2241 * Reduce the max supported cmds by 1. This is to ensure that the 2242 * reply_q_sz (1 more than the max cmd that driver may send) 2243 * does not exceed max cmds that the FW can support 2244 */ 2245 instance->max_fw_cmds = 2246 instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF; 2247 instance->max_fw_cmds = instance->max_fw_cmds - 1; 2248 2249 instance->max_num_sge = 2250 (instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ? 2251 MEGASAS_MAX_SGE_CNT : instance->max_num_sge; 2252 2253 /* create a pool of commands */ 2254 if (alloc_space_for_mfi(instance)) 2255 goto fail_alloc_fw_space; 2256 2257 /* disable interrupt for initial preparation */ 2258 instance->func_ptr->disable_intr(instance); 2259 2260 /* 2261 * Prepare a init frame. Note the init frame points to queue info 2262 * structure. Each frame has SGL allocated after first 64 bytes. For 2263 * this frame - since we don't need any SGL - we use SGL's space as 2264 * queue info structure 2265 */ 2266 cmd = get_mfi_pkt(instance); 2267 2268 init_frame = (struct megasas_init_frame *)cmd->frame; 2269 initq_info = (struct megasas_init_queue_info *) 2270 ((unsigned long)init_frame + 64); 2271 2272 (void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE); 2273 (void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info)); 2274 2275 initq_info->init_flags = 0; 2276 2277 initq_info->reply_queue_entries = instance->max_fw_cmds + 1; 2278 2279 initq_info->producer_index_phys_addr_hi = 0; 2280 initq_info->producer_index_phys_addr_lo = 2281 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address; 2282 2283 initq_info->consumer_index_phys_addr_hi = 0; 2284 initq_info->consumer_index_phys_addr_lo = 2285 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4; 2286 2287 initq_info->reply_queue_start_phys_addr_hi = 0; 2288 initq_info->reply_queue_start_phys_addr_lo = 2289 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8; 2290 2291 init_frame->cmd = MFI_CMD_OP_INIT; 2292 init_frame->cmd_status = MFI_CMD_STATUS_POLL_MODE; 2293 init_frame->flags = 0; 2294 init_frame->queue_info_new_phys_addr_lo = 2295 cmd->frame_phys_addr + 64; 2296 init_frame->queue_info_new_phys_addr_hi = 0; 2297 2298 init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info); 2299 2300 cmd->frame_count = 1; 2301 2302 /* issue the init frame in polled mode */ 2303 if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) { 2304 con_log(CL_ANN, (CE_WARN, "failed to init firmware")); 2305 goto fail_fw_init; 2306 } 2307 2308 return_mfi_pkt(instance, cmd); 2309 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) { 2310 goto fail_fw_init; 2311 } 2312 2313 /* gather misc FW related information */ 2314 if (!get_ctrl_info(instance, &ctrl_info)) { 2315 instance->max_sectors_per_req = ctrl_info.max_request_size; 2316 con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d", 2317 ctrl_info.product_name, ctrl_info.ld_present_count)); 2318 } else { 2319 instance->max_sectors_per_req = instance->max_num_sge * 2320 PAGESIZE / 512; 2321 } 2322 2323 if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) { 2324 goto fail_fw_init; 2325 } 2326 2327 return (0); 2328 2329 fail_fw_init: 2330 fail_alloc_fw_space: 2331 2332 free_space_for_mfi(instance); 2333 2334 fail_ready_state: 2335 ddi_regs_map_free(&instance->regmap_handle); 2336 2337 fail_mfi_reg_setup: 2338 return (DDI_FAILURE); 2339 } 2340 2341 /* 2342 * mfi_state_transition_to_ready : Move the FW to READY state 2343 * 2344 * @reg_set : MFI register set 2345 */ 2346 static int 2347 mfi_state_transition_to_ready(struct megasas_instance *instance) 2348 { 2349 int i; 2350 uint8_t max_wait; 2351 uint32_t fw_ctrl; 2352 uint32_t fw_state; 2353 uint32_t cur_state; 2354 2355 fw_state = 2356 instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK; 2357 con_log(CL_ANN1, (CE_NOTE, 2358 "mfi_state_transition_to_ready:FW state = 0x%x", fw_state)); 2359 2360 while (fw_state != MFI_STATE_READY) { 2361 con_log(CL_ANN, (CE_NOTE, 2362 "mfi_state_transition_to_ready:FW state%x", fw_state)); 2363 2364 switch (fw_state) { 2365 case MFI_STATE_FAULT: 2366 con_log(CL_ANN, (CE_NOTE, 2367 "megasas: FW in FAULT state!!")); 2368 2369 return (-ENODEV); 2370 case MFI_STATE_WAIT_HANDSHAKE: 2371 /* set the CLR bit in IMR0 */ 2372 con_log(CL_ANN, (CE_NOTE, 2373 "megasas: FW waiting for HANDSHAKE")); 2374 /* 2375 * PCI_Hot Plug: MFI F/W requires 2376 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG) 2377 * to be set 2378 */ 2379 /* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */ 2380 WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE | 2381 MFI_INIT_HOTPLUG, instance); 2382 2383 max_wait = 2; 2384 cur_state = MFI_STATE_WAIT_HANDSHAKE; 2385 break; 2386 case MFI_STATE_BOOT_MESSAGE_PENDING: 2387 /* set the CLR bit in IMR0 */ 2388 con_log(CL_ANN, (CE_NOTE, 2389 "megasas: FW state boot message pending")); 2390 /* 2391 * PCI_Hot Plug: MFI F/W requires 2392 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG) 2393 * to be set 2394 */ 2395 WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance); 2396 2397 max_wait = 10; 2398 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; 2399 break; 2400 case MFI_STATE_OPERATIONAL: 2401 /* bring it to READY state; assuming max wait 2 secs */ 2402 instance->func_ptr->disable_intr(instance); 2403 con_log(CL_ANN1, (CE_NOTE, 2404 "megasas: FW in OPERATIONAL state")); 2405 /* 2406 * PCI_Hot Plug: MFI F/W requires 2407 * (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT) 2408 * to be set 2409 */ 2410 /* WR_IB_DOORBELL(MFI_INIT_READY, instance); */ 2411 WR_IB_DOORBELL(MFI_RESET_FLAGS, instance); 2412 2413 max_wait = 10; 2414 cur_state = MFI_STATE_OPERATIONAL; 2415 break; 2416 case MFI_STATE_UNDEFINED: 2417 /* this state should not last for more than 2 seconds */ 2418 con_log(CL_ANN, (CE_NOTE, "FW state undefined\n")); 2419 2420 max_wait = 2; 2421 cur_state = MFI_STATE_UNDEFINED; 2422 break; 2423 case MFI_STATE_BB_INIT: 2424 max_wait = 2; 2425 cur_state = MFI_STATE_BB_INIT; 2426 break; 2427 case MFI_STATE_FW_INIT: 2428 max_wait = 2; 2429 cur_state = MFI_STATE_FW_INIT; 2430 break; 2431 case MFI_STATE_DEVICE_SCAN: 2432 max_wait = 10; 2433 cur_state = MFI_STATE_DEVICE_SCAN; 2434 break; 2435 default: 2436 con_log(CL_ANN, (CE_NOTE, 2437 "megasas: Unknown state 0x%x\n", fw_state)); 2438 return (-ENODEV); 2439 } 2440 2441 /* the cur_state should not last for more than max_wait secs */ 2442 for (i = 0; i < (max_wait * MILLISEC); i++) { 2443 /* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */ 2444 fw_state = 2445 instance->func_ptr->read_fw_status_reg(instance) & 2446 MFI_STATE_MASK; 2447 2448 if (fw_state == cur_state) { 2449 delay(1 * drv_usectohz(MILLISEC)); 2450 } else { 2451 break; 2452 } 2453 } 2454 2455 /* return error if fw_state hasn't changed after max_wait */ 2456 if (fw_state == cur_state) { 2457 con_log(CL_ANN, (CE_NOTE, 2458 "FW state hasn't changed in %d secs\n", max_wait)); 2459 return (-ENODEV); 2460 } 2461 }; 2462 2463 fw_ctrl = RD_IB_DOORBELL(instance); 2464 2465 con_log(CL_ANN1, (CE_NOTE, 2466 "mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl)); 2467 2468 /* 2469 * Write 0xF to the doorbell register to do the following. 2470 * - Abort all outstanding commands (bit 0). 2471 * - Transition from OPERATIONAL to READY state (bit 1). 2472 * - Discard (possible) low MFA posted in 64-bit mode (bit-2). 2473 * - Set to release FW to continue running (i.e. BIOS handshake 2474 * (bit 3). 2475 */ 2476 WR_IB_DOORBELL(0xF, instance); 2477 2478 if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) { 2479 return (-ENODEV); 2480 } 2481 return (0); 2482 } 2483 2484 /* 2485 * get_seq_num 2486 */ 2487 static int 2488 get_seq_num(struct megasas_instance *instance, 2489 struct megasas_evt_log_info *eli) 2490 { 2491 int ret = 0; 2492 2493 dma_obj_t dcmd_dma_obj; 2494 struct megasas_cmd *cmd; 2495 struct megasas_dcmd_frame *dcmd; 2496 2497 cmd = get_mfi_pkt(instance); 2498 2499 if (!cmd) { 2500 cmn_err(CE_WARN, "megasas: failed to get a cmd\n"); 2501 return (-ENOMEM); 2502 } 2503 2504 dcmd = &cmd->frame->dcmd; 2505 2506 /* allocate the data transfer buffer */ 2507 dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info); 2508 dcmd_dma_obj.dma_attr = megasas_generic_dma_attr; 2509 dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 2510 dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 2511 dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1; 2512 dcmd_dma_obj.dma_attr.dma_attr_align = 1; 2513 2514 if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) { 2515 con_log(CL_ANN, (CE_WARN, 2516 "get_seq_num: could not data transfer buffer alloc.")); 2517 return (DDI_FAILURE); 2518 } 2519 2520 (void) memset(dcmd_dma_obj.buffer, 0, 2521 sizeof (struct megasas_evt_log_info)); 2522 2523 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 2524 2525 dcmd->cmd = MFI_CMD_OP_DCMD; 2526 dcmd->cmd_status = 0; 2527 dcmd->sge_count = 1; 2528 dcmd->flags = MFI_FRAME_DIR_READ; 2529 dcmd->timeout = 0; 2530 dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info); 2531 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO; 2532 dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info); 2533 dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address; 2534 2535 cmd->sync_cmd = MEGASAS_TRUE; 2536 cmd->frame_count = 1; 2537 2538 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 2539 cmn_err(CE_WARN, "get_seq_num: " 2540 "failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n"); 2541 ret = -1; 2542 } else { 2543 /* copy the data back into callers buffer */ 2544 bcopy(dcmd_dma_obj.buffer, eli, 2545 sizeof (struct megasas_evt_log_info)); 2546 ret = 0; 2547 } 2548 2549 if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS) 2550 ret = -1; 2551 2552 return_mfi_pkt(instance, cmd); 2553 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) { 2554 ret = -1; 2555 } 2556 return (ret); 2557 } 2558 2559 /* 2560 * start_mfi_aen 2561 */ 2562 static int 2563 start_mfi_aen(struct megasas_instance *instance) 2564 { 2565 int ret = 0; 2566 2567 struct megasas_evt_log_info eli; 2568 union megasas_evt_class_locale class_locale; 2569 2570 /* get the latest sequence number from FW */ 2571 (void) memset(&eli, 0, sizeof (struct megasas_evt_log_info)); 2572 2573 if (get_seq_num(instance, &eli)) { 2574 cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n"); 2575 return (-1); 2576 } 2577 2578 /* register AEN with FW for latest sequence number plus 1 */ 2579 class_locale.members.reserved = 0; 2580 class_locale.members.locale = MR_EVT_LOCALE_ALL; 2581 class_locale.members.class = MR_EVT_CLASS_CRITICAL; 2582 2583 ret = register_mfi_aen(instance, eli.newest_seq_num + 1, 2584 class_locale.word); 2585 2586 if (ret) { 2587 cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n"); 2588 return (-1); 2589 } 2590 2591 return (ret); 2592 } 2593 2594 /* 2595 * flush_cache 2596 */ 2597 static void 2598 flush_cache(struct megasas_instance *instance) 2599 { 2600 struct megasas_cmd *cmd; 2601 struct megasas_dcmd_frame *dcmd; 2602 2603 if (!(cmd = get_mfi_pkt(instance))) 2604 return; 2605 2606 dcmd = &cmd->frame->dcmd; 2607 2608 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 2609 2610 dcmd->cmd = MFI_CMD_OP_DCMD; 2611 dcmd->cmd_status = 0x0; 2612 dcmd->sge_count = 0; 2613 dcmd->flags = MFI_FRAME_DIR_NONE; 2614 dcmd->timeout = 0; 2615 dcmd->data_xfer_len = 0; 2616 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH; 2617 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; 2618 2619 cmd->frame_count = 1; 2620 2621 if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) { 2622 cmn_err(CE_WARN, 2623 "flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n"); 2624 } 2625 con_log(CL_DLEVEL1, (CE_NOTE, "done")); 2626 return_mfi_pkt(instance, cmd); 2627 (void) megasas_common_check(instance, cmd); 2628 } 2629 2630 /* 2631 * service_mfi_aen- Completes an AEN command 2632 * @instance: Adapter soft state 2633 * @cmd: Command to be completed 2634 * 2635 */ 2636 static void 2637 service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) 2638 { 2639 uint32_t seq_num; 2640 struct megasas_evt_detail *evt_detail = 2641 (struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer; 2642 2643 cmd->cmd_status = cmd->frame->io.cmd_status; 2644 2645 if (cmd->cmd_status == ENODATA) { 2646 cmd->cmd_status = 0; 2647 } 2648 2649 /* 2650 * log the MFI AEN event to the sysevent queue so that 2651 * application will get noticed 2652 */ 2653 if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS", 2654 NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) { 2655 int instance_no = ddi_get_instance(instance->dip); 2656 con_log(CL_ANN, (CE_WARN, 2657 "mega%d: Failed to log AEN event", instance_no)); 2658 } 2659 2660 /* get copy of seq_num and class/locale for re-registration */ 2661 seq_num = evt_detail->seq_num; 2662 seq_num++; 2663 (void) memset(instance->mfi_evt_detail_obj.buffer, 0, 2664 sizeof (struct megasas_evt_detail)); 2665 2666 cmd->frame->dcmd.cmd_status = 0x0; 2667 cmd->frame->dcmd.mbox.w[0] = seq_num; 2668 2669 instance->aen_seq_num = seq_num; 2670 2671 cmd->frame_count = 1; 2672 2673 /* Issue the aen registration frame */ 2674 instance->func_ptr->issue_cmd(cmd, instance); 2675 } 2676 2677 /* 2678 * complete_cmd_in_sync_mode - Completes an internal command 2679 * @instance: Adapter soft state 2680 * @cmd: Command to be completed 2681 * 2682 * The issue_cmd_in_sync_mode() function waits for a command to complete 2683 * after it issues a command. This function wakes up that waiting routine by 2684 * calling wake_up() on the wait queue. 2685 */ 2686 static void 2687 complete_cmd_in_sync_mode(struct megasas_instance *instance, 2688 struct megasas_cmd *cmd) 2689 { 2690 cmd->cmd_status = cmd->frame->io.cmd_status; 2691 2692 cmd->sync_cmd = MEGASAS_FALSE; 2693 2694 if (cmd->cmd_status == ENODATA) { 2695 cmd->cmd_status = 0; 2696 } 2697 2698 cv_broadcast(&instance->int_cmd_cv); 2699 } 2700 2701 /* 2702 * megasas_softintr - The Software ISR 2703 * @param arg : HBA soft state 2704 * 2705 * called from high-level interrupt if hi-level interrupt are not there, 2706 * otherwise triggered as a soft interrupt 2707 */ 2708 static uint_t 2709 megasas_softintr(struct megasas_instance *instance) 2710 { 2711 struct scsi_pkt *pkt; 2712 struct scsa_cmd *acmd; 2713 struct megasas_cmd *cmd; 2714 struct mlist_head *pos, *next; 2715 mlist_t process_list; 2716 struct megasas_header *hdr; 2717 struct scsi_arq_status *arqstat; 2718 2719 con_log(CL_ANN1, (CE_CONT, "megasas_softintr called")); 2720 2721 ASSERT(instance); 2722 mutex_enter(&instance->completed_pool_mtx); 2723 2724 if (mlist_empty(&instance->completed_pool_list)) { 2725 mutex_exit(&instance->completed_pool_mtx); 2726 return (DDI_INTR_UNCLAIMED); 2727 } 2728 2729 instance->softint_running = 1; 2730 2731 INIT_LIST_HEAD(&process_list); 2732 mlist_splice(&instance->completed_pool_list, &process_list); 2733 INIT_LIST_HEAD(&instance->completed_pool_list); 2734 2735 mutex_exit(&instance->completed_pool_mtx); 2736 2737 /* perform all callbacks first, before releasing the SCBs */ 2738 mlist_for_each_safe(pos, next, &process_list) { 2739 cmd = mlist_entry(pos, struct megasas_cmd, list); 2740 2741 /* syncronize the Cmd frame for the controller */ 2742 (void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 2743 0, 0, DDI_DMA_SYNC_FORCPU); 2744 2745 if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) != 2746 DDI_SUCCESS) { 2747 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 2748 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 2749 return (DDI_INTR_UNCLAIMED); 2750 } 2751 2752 hdr = &cmd->frame->hdr; 2753 2754 /* remove the internal command from the process list */ 2755 mlist_del_init(&cmd->list); 2756 2757 switch (hdr->cmd) { 2758 case MFI_CMD_OP_PD_SCSI: 2759 case MFI_CMD_OP_LD_SCSI: 2760 case MFI_CMD_OP_LD_READ: 2761 case MFI_CMD_OP_LD_WRITE: 2762 /* 2763 * MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI 2764 * could have been issued either through an 2765 * IO path or an IOCTL path. If it was via IOCTL, 2766 * we will send it to internal completion. 2767 */ 2768 if (cmd->sync_cmd == MEGASAS_TRUE) { 2769 complete_cmd_in_sync_mode(instance, cmd); 2770 break; 2771 } 2772 2773 /* regular commands */ 2774 acmd = cmd->cmd; 2775 pkt = CMD2PKT(acmd); 2776 2777 if (acmd->cmd_flags & CFLAG_DMAVALID) { 2778 if (acmd->cmd_flags & CFLAG_CONSISTENT) { 2779 (void) ddi_dma_sync(acmd->cmd_dmahandle, 2780 acmd->cmd_dma_offset, 2781 acmd->cmd_dma_len, 2782 DDI_DMA_SYNC_FORCPU); 2783 } 2784 } 2785 2786 pkt->pkt_reason = CMD_CMPLT; 2787 pkt->pkt_statistics = 0; 2788 pkt->pkt_state = STATE_GOT_BUS 2789 | STATE_GOT_TARGET | STATE_SENT_CMD 2790 | STATE_XFERRED_DATA | STATE_GOT_STATUS; 2791 2792 con_log(CL_ANN1, (CE_CONT, 2793 "CDB[0] = %x completed for %s: size %lx context %x", 2794 pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"), 2795 acmd->cmd_dmacount, hdr->context)); 2796 2797 if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) { 2798 struct scsi_inquiry *inq; 2799 2800 if (acmd->cmd_dmacount != 0) { 2801 bp_mapin(acmd->cmd_buf); 2802 inq = (struct scsi_inquiry *) 2803 acmd->cmd_buf->b_un.b_addr; 2804 2805 /* don't expose physical drives to OS */ 2806 if (acmd->islogical && 2807 (hdr->cmd_status == MFI_STAT_OK)) { 2808 display_scsi_inquiry( 2809 (caddr_t)inq); 2810 } else if ((hdr->cmd_status == 2811 MFI_STAT_OK) && inq->inq_dtype == 2812 DTYPE_DIRECT) { 2813 2814 display_scsi_inquiry( 2815 (caddr_t)inq); 2816 2817 /* for physical disk */ 2818 hdr->cmd_status = 2819 MFI_STAT_DEVICE_NOT_FOUND; 2820 } 2821 } 2822 } 2823 2824 switch (hdr->cmd_status) { 2825 case MFI_STAT_OK: 2826 pkt->pkt_scbp[0] = STATUS_GOOD; 2827 break; 2828 case MFI_STAT_LD_CC_IN_PROGRESS: 2829 case MFI_STAT_LD_RECON_IN_PROGRESS: 2830 /* SJ - these are not correct way */ 2831 pkt->pkt_scbp[0] = STATUS_GOOD; 2832 break; 2833 case MFI_STAT_LD_INIT_IN_PROGRESS: 2834 con_log(CL_ANN, 2835 (CE_WARN, "Initialization in Progress")); 2836 pkt->pkt_reason = CMD_TRAN_ERR; 2837 2838 break; 2839 case MFI_STAT_SCSI_DONE_WITH_ERROR: 2840 con_log(CL_ANN1, (CE_CONT, "scsi_done error")); 2841 2842 pkt->pkt_reason = CMD_CMPLT; 2843 ((struct scsi_status *) 2844 pkt->pkt_scbp)->sts_chk = 1; 2845 2846 if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) { 2847 2848 con_log(CL_ANN, 2849 (CE_WARN, "TEST_UNIT_READY fail")); 2850 2851 } else { 2852 pkt->pkt_state |= STATE_ARQ_DONE; 2853 arqstat = (void *)(pkt->pkt_scbp); 2854 arqstat->sts_rqpkt_reason = CMD_CMPLT; 2855 arqstat->sts_rqpkt_resid = 0; 2856 arqstat->sts_rqpkt_state |= 2857 STATE_GOT_BUS | STATE_GOT_TARGET 2858 | STATE_SENT_CMD 2859 | STATE_XFERRED_DATA; 2860 *(uint8_t *)&arqstat->sts_rqpkt_status = 2861 STATUS_GOOD; 2862 2863 bcopy(cmd->sense, 2864 &(arqstat->sts_sensedata), 2865 acmd->cmd_scblen - 2866 offsetof(struct scsi_arq_status, 2867 sts_sensedata)); 2868 } 2869 break; 2870 case MFI_STAT_LD_OFFLINE: 2871 case MFI_STAT_DEVICE_NOT_FOUND: 2872 con_log(CL_ANN1, (CE_CONT, 2873 "device not found error")); 2874 pkt->pkt_reason = CMD_DEV_GONE; 2875 pkt->pkt_statistics = STAT_DISCON; 2876 break; 2877 case MFI_STAT_LD_LBA_OUT_OF_RANGE: 2878 pkt->pkt_state |= STATE_ARQ_DONE; 2879 pkt->pkt_reason = CMD_CMPLT; 2880 ((struct scsi_status *) 2881 pkt->pkt_scbp)->sts_chk = 1; 2882 2883 arqstat = (void *)(pkt->pkt_scbp); 2884 arqstat->sts_rqpkt_reason = CMD_CMPLT; 2885 arqstat->sts_rqpkt_resid = 0; 2886 arqstat->sts_rqpkt_state |= STATE_GOT_BUS 2887 | STATE_GOT_TARGET | STATE_SENT_CMD 2888 | STATE_XFERRED_DATA; 2889 *(uint8_t *)&arqstat->sts_rqpkt_status = 2890 STATUS_GOOD; 2891 2892 arqstat->sts_sensedata.es_valid = 1; 2893 arqstat->sts_sensedata.es_key = 2894 KEY_ILLEGAL_REQUEST; 2895 arqstat->sts_sensedata.es_class = 2896 CLASS_EXTENDED_SENSE; 2897 2898 /* 2899 * LOGICAL BLOCK ADDRESS OUT OF RANGE: 2900 * ASC: 0x21h; ASCQ: 0x00h; 2901 */ 2902 arqstat->sts_sensedata.es_add_code = 0x21; 2903 arqstat->sts_sensedata.es_qual_code = 0x00; 2904 2905 break; 2906 2907 default: 2908 con_log(CL_ANN, (CE_CONT, "Unknown status!")); 2909 pkt->pkt_reason = CMD_TRAN_ERR; 2910 2911 break; 2912 } 2913 2914 atomic_add_16(&instance->fw_outstanding, (-1)); 2915 2916 return_mfi_pkt(instance, cmd); 2917 2918 (void) megasas_common_check(instance, cmd); 2919 2920 if (acmd->cmd_dmahandle) { 2921 if (megasas_check_dma_handle( 2922 acmd->cmd_dmahandle) != DDI_SUCCESS) { 2923 ddi_fm_service_impact(instance->dip, 2924 DDI_SERVICE_UNAFFECTED); 2925 pkt->pkt_reason = CMD_TRAN_ERR; 2926 pkt->pkt_statistics = 0; 2927 } 2928 } 2929 2930 /* Call the callback routine */ 2931 if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && 2932 pkt->pkt_comp) { 2933 (*pkt->pkt_comp)(pkt); 2934 } 2935 2936 break; 2937 case MFI_CMD_OP_SMP: 2938 case MFI_CMD_OP_STP: 2939 complete_cmd_in_sync_mode(instance, cmd); 2940 break; 2941 case MFI_CMD_OP_DCMD: 2942 /* see if got an event notification */ 2943 if (cmd->frame->dcmd.opcode == 2944 MR_DCMD_CTRL_EVENT_WAIT) { 2945 if ((instance->aen_cmd == cmd) && 2946 (instance->aen_cmd->abort_aen)) { 2947 con_log(CL_ANN, (CE_WARN, 2948 "megasas_softintr: " 2949 "aborted_aen returned")); 2950 } else { 2951 service_mfi_aen(instance, cmd); 2952 2953 atomic_add_16(&instance->fw_outstanding, 2954 (-1)); 2955 } 2956 } else { 2957 complete_cmd_in_sync_mode(instance, cmd); 2958 } 2959 2960 break; 2961 case MFI_CMD_OP_ABORT: 2962 con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete")); 2963 /* 2964 * MFI_CMD_OP_ABORT successfully completed 2965 * in the synchronous mode 2966 */ 2967 complete_cmd_in_sync_mode(instance, cmd); 2968 break; 2969 default: 2970 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 2971 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 2972 2973 if (cmd->pkt != NULL) { 2974 pkt = cmd->pkt; 2975 if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && 2976 pkt->pkt_comp) { 2977 (*pkt->pkt_comp)(pkt); 2978 } 2979 } 2980 con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!")); 2981 break; 2982 } 2983 } 2984 2985 instance->softint_running = 0; 2986 2987 return (DDI_INTR_CLAIMED); 2988 } 2989 2990 /* 2991 * mega_alloc_dma_obj 2992 * 2993 * Allocate the memory and other resources for an dma object. 2994 */ 2995 static int 2996 mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj) 2997 { 2998 int i; 2999 size_t alen = 0; 3000 uint_t cookie_cnt; 3001 3002 i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr, 3003 DDI_DMA_SLEEP, NULL, &obj->dma_handle); 3004 if (i != DDI_SUCCESS) { 3005 3006 switch (i) { 3007 case DDI_DMA_BADATTR : 3008 con_log(CL_ANN, (CE_WARN, 3009 "Failed ddi_dma_alloc_handle- Bad atrib")); 3010 break; 3011 case DDI_DMA_NORESOURCES : 3012 con_log(CL_ANN, (CE_WARN, 3013 "Failed ddi_dma_alloc_handle- No Resources")); 3014 break; 3015 default : 3016 con_log(CL_ANN, (CE_WARN, 3017 "Failed ddi_dma_alloc_handle :unknown %d", i)); 3018 break; 3019 } 3020 3021 return (-1); 3022 } 3023 3024 if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &endian_attr, 3025 DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, 3026 &obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) || 3027 alen < obj->size) { 3028 3029 ddi_dma_free_handle(&obj->dma_handle); 3030 3031 con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc")); 3032 3033 return (-1); 3034 } 3035 3036 if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer, 3037 obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, 3038 NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) { 3039 3040 ddi_dma_mem_free(&obj->acc_handle); 3041 ddi_dma_free_handle(&obj->dma_handle); 3042 3043 con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle")); 3044 3045 return (-1); 3046 } 3047 3048 if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) { 3049 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 3050 return (-1); 3051 } 3052 3053 if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) { 3054 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 3055 return (-1); 3056 } 3057 3058 return (cookie_cnt); 3059 } 3060 3061 /* 3062 * mega_free_dma_obj(struct megasas_instance *, dma_obj_t) 3063 * 3064 * De-allocate the memory and other resources for an dma object, which must 3065 * have been alloated by a previous call to mega_alloc_dma_obj() 3066 */ 3067 static int 3068 mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj) 3069 { 3070 3071 if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) { 3072 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 3073 return (DDI_FAILURE); 3074 } 3075 3076 if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) { 3077 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 3078 return (DDI_FAILURE); 3079 } 3080 3081 (void) ddi_dma_unbind_handle(obj.dma_handle); 3082 ddi_dma_mem_free(&obj.acc_handle); 3083 ddi_dma_free_handle(&obj.dma_handle); 3084 3085 return (DDI_SUCCESS); 3086 } 3087 3088 /* 3089 * megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *, 3090 * int, int (*)()) 3091 * 3092 * Allocate dma resources for a new scsi command 3093 */ 3094 static int 3095 megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt, 3096 struct buf *bp, int flags, int (*callback)()) 3097 { 3098 int dma_flags; 3099 int (*cb)(caddr_t); 3100 int i; 3101 3102 ddi_dma_attr_t tmp_dma_attr = megasas_generic_dma_attr; 3103 struct scsa_cmd *acmd = PKT2CMD(pkt); 3104 3105 acmd->cmd_buf = bp; 3106 3107 if (bp->b_flags & B_READ) { 3108 acmd->cmd_flags &= ~CFLAG_DMASEND; 3109 dma_flags = DDI_DMA_READ; 3110 } else { 3111 acmd->cmd_flags |= CFLAG_DMASEND; 3112 dma_flags = DDI_DMA_WRITE; 3113 } 3114 3115 if (flags & PKT_CONSISTENT) { 3116 acmd->cmd_flags |= CFLAG_CONSISTENT; 3117 dma_flags |= DDI_DMA_CONSISTENT; 3118 } 3119 3120 if (flags & PKT_DMA_PARTIAL) { 3121 dma_flags |= DDI_DMA_PARTIAL; 3122 } 3123 3124 dma_flags |= DDI_DMA_REDZONE; 3125 3126 cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP; 3127 3128 tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge; 3129 tmp_dma_attr.dma_attr_addr_hi = 0xffffffffffffffffull; 3130 3131 if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr, 3132 cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) { 3133 switch (i) { 3134 case DDI_DMA_BADATTR: 3135 bioerror(bp, EFAULT); 3136 return (-1); 3137 3138 case DDI_DMA_NORESOURCES: 3139 bioerror(bp, 0); 3140 return (-1); 3141 3142 default: 3143 con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: " 3144 "0x%x impossible\n", i)); 3145 bioerror(bp, EFAULT); 3146 return (-1); 3147 } 3148 } 3149 3150 i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags, 3151 cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies); 3152 3153 switch (i) { 3154 case DDI_DMA_PARTIAL_MAP: 3155 if ((dma_flags & DDI_DMA_PARTIAL) == 0) { 3156 con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: " 3157 "DDI_DMA_PARTIAL_MAP impossible\n")); 3158 goto no_dma_cookies; 3159 } 3160 3161 if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) == 3162 DDI_FAILURE) { 3163 con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n")); 3164 goto no_dma_cookies; 3165 } 3166 3167 if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin, 3168 &acmd->cmd_dma_offset, &acmd->cmd_dma_len, 3169 &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) == 3170 DDI_FAILURE) { 3171 3172 con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n")); 3173 goto no_dma_cookies; 3174 } 3175 3176 goto get_dma_cookies; 3177 case DDI_DMA_MAPPED: 3178 acmd->cmd_nwin = 1; 3179 acmd->cmd_dma_len = 0; 3180 acmd->cmd_dma_offset = 0; 3181 3182 get_dma_cookies: 3183 i = 0; 3184 acmd->cmd_dmacount = 0; 3185 for (;;) { 3186 acmd->cmd_dmacount += 3187 acmd->cmd_dmacookies[i++].dmac_size; 3188 3189 if (i == instance->max_num_sge || 3190 i == acmd->cmd_ncookies) 3191 break; 3192 3193 ddi_dma_nextcookie(acmd->cmd_dmahandle, 3194 &acmd->cmd_dmacookies[i]); 3195 } 3196 3197 acmd->cmd_cookie = i; 3198 acmd->cmd_cookiecnt = i; 3199 3200 acmd->cmd_flags |= CFLAG_DMAVALID; 3201 3202 if (bp->b_bcount >= acmd->cmd_dmacount) { 3203 pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount; 3204 } else { 3205 pkt->pkt_resid = 0; 3206 } 3207 3208 return (0); 3209 case DDI_DMA_NORESOURCES: 3210 bioerror(bp, 0); 3211 break; 3212 case DDI_DMA_NOMAPPING: 3213 bioerror(bp, EFAULT); 3214 break; 3215 case DDI_DMA_TOOBIG: 3216 bioerror(bp, EINVAL); 3217 break; 3218 case DDI_DMA_INUSE: 3219 con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:" 3220 " DDI_DMA_INUSE impossible\n")); 3221 break; 3222 default: 3223 con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: " 3224 "0x%x impossible\n", i)); 3225 break; 3226 } 3227 3228 no_dma_cookies: 3229 ddi_dma_free_handle(&acmd->cmd_dmahandle); 3230 acmd->cmd_dmahandle = NULL; 3231 acmd->cmd_flags &= ~CFLAG_DMAVALID; 3232 return (-1); 3233 } 3234 3235 /* 3236 * megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *) 3237 * 3238 * move dma resources to next dma window 3239 * 3240 */ 3241 static int 3242 megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt, 3243 struct buf *bp) 3244 { 3245 int i = 0; 3246 3247 struct scsa_cmd *acmd = PKT2CMD(pkt); 3248 3249 /* 3250 * If there are no more cookies remaining in this window, 3251 * must move to the next window first. 3252 */ 3253 if (acmd->cmd_cookie == acmd->cmd_ncookies) { 3254 if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) { 3255 return (0); 3256 } 3257 3258 /* at last window, cannot move */ 3259 if (++acmd->cmd_curwin >= acmd->cmd_nwin) { 3260 return (-1); 3261 } 3262 3263 if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin, 3264 &acmd->cmd_dma_offset, &acmd->cmd_dma_len, 3265 &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) == 3266 DDI_FAILURE) { 3267 return (-1); 3268 } 3269 3270 acmd->cmd_cookie = 0; 3271 } else { 3272 /* still more cookies in this window - get the next one */ 3273 ddi_dma_nextcookie(acmd->cmd_dmahandle, 3274 &acmd->cmd_dmacookies[0]); 3275 } 3276 3277 /* get remaining cookies in this window, up to our maximum */ 3278 for (;;) { 3279 acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size; 3280 acmd->cmd_cookie++; 3281 3282 if (i == instance->max_num_sge || 3283 acmd->cmd_cookie == acmd->cmd_ncookies) { 3284 break; 3285 } 3286 3287 ddi_dma_nextcookie(acmd->cmd_dmahandle, 3288 &acmd->cmd_dmacookies[i]); 3289 } 3290 3291 acmd->cmd_cookiecnt = i; 3292 3293 if (bp->b_bcount >= acmd->cmd_dmacount) { 3294 pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount; 3295 } else { 3296 pkt->pkt_resid = 0; 3297 } 3298 3299 return (0); 3300 } 3301 3302 /* 3303 * build_cmd 3304 */ 3305 static struct megasas_cmd * 3306 build_cmd(struct megasas_instance *instance, struct scsi_address *ap, 3307 struct scsi_pkt *pkt, uchar_t *cmd_done) 3308 { 3309 uint16_t flags = 0; 3310 uint32_t i; 3311 uint32_t context; 3312 uint32_t sge_bytes; 3313 3314 struct megasas_cmd *cmd; 3315 struct megasas_sge64 *mfi_sgl; 3316 struct scsa_cmd *acmd = PKT2CMD(pkt); 3317 struct megasas_pthru_frame *pthru; 3318 struct megasas_io_frame *ldio; 3319 3320 /* find out if this is logical or physical drive command. */ 3321 acmd->islogical = MEGADRV_IS_LOGICAL(ap); 3322 acmd->device_id = MAP_DEVICE_ID(instance, ap); 3323 *cmd_done = 0; 3324 3325 /* get the command packet */ 3326 if (!(cmd = get_mfi_pkt(instance))) { 3327 return (NULL); 3328 } 3329 3330 cmd->pkt = pkt; 3331 cmd->cmd = acmd; 3332 3333 /* lets get the command directions */ 3334 if (acmd->cmd_flags & CFLAG_DMASEND) { 3335 flags = MFI_FRAME_DIR_WRITE; 3336 3337 if (acmd->cmd_flags & CFLAG_CONSISTENT) { 3338 (void) ddi_dma_sync(acmd->cmd_dmahandle, 3339 acmd->cmd_dma_offset, acmd->cmd_dma_len, 3340 DDI_DMA_SYNC_FORDEV); 3341 } 3342 } else if (acmd->cmd_flags & ~CFLAG_DMASEND) { 3343 flags = MFI_FRAME_DIR_READ; 3344 3345 if (acmd->cmd_flags & CFLAG_CONSISTENT) { 3346 (void) ddi_dma_sync(acmd->cmd_dmahandle, 3347 acmd->cmd_dma_offset, acmd->cmd_dma_len, 3348 DDI_DMA_SYNC_FORCPU); 3349 } 3350 } else { 3351 flags = MFI_FRAME_DIR_NONE; 3352 } 3353 3354 flags |= MFI_FRAME_SGL64; 3355 3356 switch (pkt->pkt_cdbp[0]) { 3357 3358 /* 3359 * case SCMD_SYNCHRONIZE_CACHE: 3360 * flush_cache(instance); 3361 * return_mfi_pkt(instance, cmd); 3362 * *cmd_done = 1; 3363 * 3364 * return (NULL); 3365 */ 3366 3367 case SCMD_READ: 3368 case SCMD_WRITE: 3369 case SCMD_READ_G1: 3370 case SCMD_WRITE_G1: 3371 if (acmd->islogical) { 3372 ldio = (struct megasas_io_frame *)cmd->frame; 3373 3374 /* 3375 * preare the Logical IO frame: 3376 * 2nd bit is zero for all read cmds 3377 */ 3378 ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ? 3379 MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ; 3380 ldio->cmd_status = 0x0; 3381 ldio->scsi_status = 0x0; 3382 ldio->target_id = acmd->device_id; 3383 ldio->timeout = 0; 3384 ldio->reserved_0 = 0; 3385 ldio->pad_0 = 0; 3386 ldio->flags = flags; 3387 3388 /* Initialize sense Information */ 3389 bzero(cmd->sense, SENSE_LENGTH); 3390 ldio->sense_len = SENSE_LENGTH; 3391 ldio->sense_buf_phys_addr_hi = 0; 3392 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr; 3393 3394 ldio->start_lba_hi = 0; 3395 ldio->access_byte = (acmd->cmd_cdblen != 6) ? 3396 pkt->pkt_cdbp[1] : 0; 3397 ldio->sge_count = acmd->cmd_cookiecnt; 3398 mfi_sgl = (struct megasas_sge64 *)&ldio->sgl; 3399 3400 context = ldio->context; 3401 3402 if (acmd->cmd_cdblen == CDB_GROUP0) { 3403 ldio->lba_count = host_to_le16( 3404 (uint16_t)(pkt->pkt_cdbp[4])); 3405 3406 ldio->start_lba_lo = host_to_le32( 3407 ((uint32_t)(pkt->pkt_cdbp[3])) | 3408 ((uint32_t)(pkt->pkt_cdbp[2]) << 8) | 3409 ((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F) 3410 << 16)); 3411 } else if (acmd->cmd_cdblen == CDB_GROUP1) { 3412 ldio->lba_count = host_to_le16( 3413 ((uint16_t)(pkt->pkt_cdbp[8])) | 3414 ((uint16_t)(pkt->pkt_cdbp[7]) << 8)); 3415 3416 ldio->start_lba_lo = host_to_le32( 3417 ((uint32_t)(pkt->pkt_cdbp[5])) | 3418 ((uint32_t)(pkt->pkt_cdbp[4]) << 8) | 3419 ((uint32_t)(pkt->pkt_cdbp[3]) << 16) | 3420 ((uint32_t)(pkt->pkt_cdbp[2]) << 24)); 3421 } else if (acmd->cmd_cdblen == CDB_GROUP2) { 3422 ldio->lba_count = host_to_le16( 3423 ((uint16_t)(pkt->pkt_cdbp[9])) | 3424 ((uint16_t)(pkt->pkt_cdbp[8]) << 8) | 3425 ((uint16_t)(pkt->pkt_cdbp[7]) << 16) | 3426 ((uint16_t)(pkt->pkt_cdbp[6]) << 24)); 3427 3428 ldio->start_lba_lo = host_to_le32( 3429 ((uint32_t)(pkt->pkt_cdbp[5])) | 3430 ((uint32_t)(pkt->pkt_cdbp[4]) << 8) | 3431 ((uint32_t)(pkt->pkt_cdbp[3]) << 16) | 3432 ((uint32_t)(pkt->pkt_cdbp[2]) << 24)); 3433 } else if (acmd->cmd_cdblen == CDB_GROUP3) { 3434 ldio->lba_count = host_to_le16( 3435 ((uint16_t)(pkt->pkt_cdbp[13])) | 3436 ((uint16_t)(pkt->pkt_cdbp[12]) << 8) | 3437 ((uint16_t)(pkt->pkt_cdbp[11]) << 16) | 3438 ((uint16_t)(pkt->pkt_cdbp[10]) << 24)); 3439 3440 ldio->start_lba_lo = host_to_le32( 3441 ((uint32_t)(pkt->pkt_cdbp[9])) | 3442 ((uint32_t)(pkt->pkt_cdbp[8]) << 8) | 3443 ((uint32_t)(pkt->pkt_cdbp[7]) << 16) | 3444 ((uint32_t)(pkt->pkt_cdbp[6]) << 24)); 3445 3446 ldio->start_lba_lo = host_to_le32( 3447 ((uint32_t)(pkt->pkt_cdbp[5])) | 3448 ((uint32_t)(pkt->pkt_cdbp[4]) << 8) | 3449 ((uint32_t)(pkt->pkt_cdbp[3]) << 16) | 3450 ((uint32_t)(pkt->pkt_cdbp[2]) << 24)); 3451 } 3452 3453 break; 3454 } 3455 /* fall through For all non-rd/wr cmds */ 3456 default: 3457 pthru = (struct megasas_pthru_frame *)cmd->frame; 3458 3459 /* prepare the DCDB frame */ 3460 pthru->cmd = (acmd->islogical) ? 3461 MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI; 3462 pthru->cmd_status = 0x0; 3463 pthru->scsi_status = 0x0; 3464 pthru->target_id = acmd->device_id; 3465 pthru->lun = 0; 3466 pthru->cdb_len = acmd->cmd_cdblen; 3467 pthru->timeout = 0; 3468 pthru->flags = flags; 3469 pthru->data_xfer_len = acmd->cmd_dmacount; 3470 pthru->sge_count = acmd->cmd_cookiecnt; 3471 mfi_sgl = (struct megasas_sge64 *)&pthru->sgl; 3472 3473 bzero(cmd->sense, SENSE_LENGTH); 3474 pthru->sense_len = SENSE_LENGTH; 3475 pthru->sense_buf_phys_addr_hi = 0; 3476 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; 3477 3478 context = pthru->context; 3479 3480 bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen); 3481 3482 break; 3483 } 3484 #ifdef lint 3485 context = context; 3486 #endif 3487 /* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */ 3488 3489 /* prepare the scatter-gather list for the firmware */ 3490 for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) { 3491 mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress; 3492 mfi_sgl->length = acmd->cmd_dmacookies[i].dmac_size; 3493 } 3494 3495 sge_bytes = sizeof (struct megasas_sge64)*acmd->cmd_cookiecnt; 3496 3497 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + 3498 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1; 3499 3500 if (cmd->frame_count >= 8) { 3501 cmd->frame_count = 8; 3502 } 3503 3504 return (cmd); 3505 } 3506 3507 /* 3508 * wait_for_outstanding - Wait for all outstanding cmds 3509 * @instance: Adapter soft state 3510 * 3511 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to 3512 * complete all its outstanding commands. Returns error if one or more IOs 3513 * are pending after this time period. 3514 */ 3515 static int 3516 wait_for_outstanding(struct megasas_instance *instance) 3517 { 3518 int i; 3519 uint32_t wait_time = 90; 3520 3521 for (i = 0; i < wait_time; i++) { 3522 if (!instance->fw_outstanding) { 3523 break; 3524 } 3525 3526 drv_usecwait(MILLISEC); /* wait for 1000 usecs */; 3527 } 3528 3529 if (instance->fw_outstanding) { 3530 return (1); 3531 } 3532 3533 ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION); 3534 3535 return (0); 3536 } 3537 3538 /* 3539 * issue_mfi_pthru 3540 */ 3541 static int 3542 issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 3543 struct megasas_cmd *cmd, int mode) 3544 { 3545 void *ubuf; 3546 uint32_t kphys_addr = 0; 3547 uint32_t xferlen = 0; 3548 uint_t model; 3549 3550 dma_obj_t pthru_dma_obj; 3551 struct megasas_pthru_frame *kpthru; 3552 struct megasas_pthru_frame *pthru; 3553 3554 pthru = &cmd->frame->pthru; 3555 kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0]; 3556 3557 model = ddi_model_convert_from(mode & FMODELS); 3558 if (model == DDI_MODEL_ILP32) { 3559 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32")); 3560 3561 xferlen = kpthru->sgl.sge32[0].length; 3562 3563 /* SJ! - ubuf needs to be virtual address. */ 3564 ubuf = (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr; 3565 } else { 3566 #ifdef _ILP32 3567 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32")); 3568 xferlen = kpthru->sgl.sge32[0].length; 3569 /* SJ! - ubuf needs to be virtual address. */ 3570 ubuf = (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr; 3571 #else 3572 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64")); 3573 xferlen = kpthru->sgl.sge64[0].length; 3574 /* SJ! - ubuf needs to be virtual address. */ 3575 ubuf = (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr; 3576 #endif 3577 } 3578 3579 if (xferlen) { 3580 /* means IOCTL requires DMA */ 3581 /* allocate the data transfer buffer */ 3582 pthru_dma_obj.size = xferlen; 3583 pthru_dma_obj.dma_attr = megasas_generic_dma_attr; 3584 pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3585 pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3586 pthru_dma_obj.dma_attr.dma_attr_sgllen = 1; 3587 pthru_dma_obj.dma_attr.dma_attr_align = 1; 3588 3589 /* allocate kernel buffer for DMA */ 3590 if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) { 3591 con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: " 3592 "could not data transfer buffer alloc.")); 3593 return (DDI_FAILURE); 3594 } 3595 3596 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3597 if (kpthru->flags & MFI_FRAME_DIR_WRITE) { 3598 if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer, 3599 xferlen, mode)) { 3600 con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: " 3601 "copy from user space failed\n")); 3602 return (1); 3603 } 3604 } 3605 3606 kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address; 3607 } 3608 3609 pthru->cmd = kpthru->cmd; 3610 pthru->sense_len = kpthru->sense_len; 3611 pthru->cmd_status = kpthru->cmd_status; 3612 pthru->scsi_status = kpthru->scsi_status; 3613 pthru->target_id = kpthru->target_id; 3614 pthru->lun = kpthru->lun; 3615 pthru->cdb_len = kpthru->cdb_len; 3616 pthru->sge_count = kpthru->sge_count; 3617 pthru->timeout = kpthru->timeout; 3618 pthru->data_xfer_len = kpthru->data_xfer_len; 3619 3620 pthru->sense_buf_phys_addr_hi = 0; 3621 /* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */ 3622 pthru->sense_buf_phys_addr_lo = 0; 3623 3624 bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len); 3625 3626 pthru->flags = kpthru->flags & ~MFI_FRAME_SGL64; 3627 pthru->sgl.sge32[0].length = xferlen; 3628 pthru->sgl.sge32[0].phys_addr = kphys_addr; 3629 3630 cmd->sync_cmd = MEGASAS_TRUE; 3631 cmd->frame_count = 1; 3632 3633 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 3634 con_log(CL_ANN, (CE_WARN, 3635 "issue_mfi_pthru: fw_ioctl failed\n")); 3636 } else { 3637 if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) { 3638 3639 if (ddi_copyout(pthru_dma_obj.buffer, ubuf, 3640 xferlen, mode)) { 3641 con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: " 3642 "copy to user space failed\n")); 3643 return (1); 3644 } 3645 } 3646 } 3647 3648 kpthru->cmd_status = pthru->cmd_status; 3649 kpthru->scsi_status = pthru->scsi_status; 3650 3651 con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, " 3652 "scsi_status %x\n", pthru->cmd_status, pthru->scsi_status)); 3653 3654 if (xferlen) { 3655 /* free kernel buffer */ 3656 if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS) 3657 return (1); 3658 } 3659 3660 return (0); 3661 } 3662 3663 /* 3664 * issue_mfi_dcmd 3665 */ 3666 static int 3667 issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 3668 struct megasas_cmd *cmd, int mode) 3669 { 3670 void *ubuf; 3671 uint32_t kphys_addr = 0; 3672 uint32_t xferlen = 0; 3673 uint32_t model; 3674 dma_obj_t dcmd_dma_obj; 3675 struct megasas_dcmd_frame *kdcmd; 3676 struct megasas_dcmd_frame *dcmd; 3677 3678 dcmd = &cmd->frame->dcmd; 3679 kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0]; 3680 3681 model = ddi_model_convert_from(mode & FMODELS); 3682 if (model == DDI_MODEL_ILP32) { 3683 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32")); 3684 3685 xferlen = kdcmd->sgl.sge32[0].length; 3686 3687 /* SJ! - ubuf needs to be virtual address. */ 3688 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 3689 } 3690 else 3691 { 3692 #ifdef _ILP32 3693 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32")); 3694 xferlen = kdcmd->sgl.sge32[0].length; 3695 /* SJ! - ubuf needs to be virtual address. */ 3696 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 3697 #else 3698 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64")); 3699 xferlen = kdcmd->sgl.sge64[0].length; 3700 /* SJ! - ubuf needs to be virtual address. */ 3701 ubuf = (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr; 3702 #endif 3703 } 3704 if (xferlen) { 3705 /* means IOCTL requires DMA */ 3706 /* allocate the data transfer buffer */ 3707 dcmd_dma_obj.size = xferlen; 3708 dcmd_dma_obj.dma_attr = megasas_generic_dma_attr; 3709 dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3710 dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3711 dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1; 3712 dcmd_dma_obj.dma_attr.dma_attr_align = 1; 3713 3714 /* allocate kernel buffer for DMA */ 3715 if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) { 3716 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: " 3717 "could not data transfer buffer alloc.")); 3718 return (DDI_FAILURE); 3719 } 3720 3721 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3722 if (kdcmd->flags & MFI_FRAME_DIR_WRITE) { 3723 if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer, 3724 xferlen, mode)) { 3725 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: " 3726 "copy from user space failed\n")); 3727 return (1); 3728 } 3729 } 3730 3731 kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address; 3732 } 3733 3734 dcmd->cmd = kdcmd->cmd; 3735 dcmd->cmd_status = kdcmd->cmd_status; 3736 dcmd->sge_count = kdcmd->sge_count; 3737 dcmd->timeout = kdcmd->timeout; 3738 dcmd->data_xfer_len = kdcmd->data_xfer_len; 3739 dcmd->opcode = kdcmd->opcode; 3740 3741 bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ); 3742 3743 dcmd->flags = kdcmd->flags & ~MFI_FRAME_SGL64; 3744 dcmd->sgl.sge32[0].length = xferlen; 3745 dcmd->sgl.sge32[0].phys_addr = kphys_addr; 3746 3747 cmd->sync_cmd = MEGASAS_TRUE; 3748 cmd->frame_count = 1; 3749 3750 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 3751 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n")); 3752 } else { 3753 if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) { 3754 3755 if (ddi_copyout(dcmd_dma_obj.buffer, ubuf, 3756 xferlen, mode)) { 3757 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: " 3758 "copy to user space failed\n")); 3759 return (1); 3760 } 3761 } 3762 } 3763 3764 kdcmd->cmd_status = dcmd->cmd_status; 3765 3766 if (xferlen) { 3767 /* free kernel buffer */ 3768 if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS) 3769 return (1); 3770 } 3771 3772 return (0); 3773 } 3774 3775 /* 3776 * issue_mfi_smp 3777 */ 3778 static int 3779 issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 3780 struct megasas_cmd *cmd, int mode) 3781 { 3782 void *request_ubuf; 3783 void *response_ubuf; 3784 uint32_t request_xferlen = 0; 3785 uint32_t response_xferlen = 0; 3786 uint_t model; 3787 dma_obj_t request_dma_obj; 3788 dma_obj_t response_dma_obj; 3789 struct megasas_smp_frame *ksmp; 3790 struct megasas_smp_frame *smp; 3791 struct megasas_sge32 *sge32; 3792 #ifndef _ILP32 3793 struct megasas_sge64 *sge64; 3794 #endif 3795 3796 smp = &cmd->frame->smp; 3797 ksmp = (struct megasas_smp_frame *)&ioctl->frame[0]; 3798 3799 model = ddi_model_convert_from(mode & FMODELS); 3800 if (model == DDI_MODEL_ILP32) { 3801 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32")); 3802 3803 sge32 = &ksmp->sgl[0].sge32[0]; 3804 response_xferlen = sge32[0].length; 3805 request_xferlen = sge32[1].length; 3806 con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: " 3807 "response_xferlen = %x, request_xferlen = %x", 3808 response_xferlen, request_xferlen)); 3809 3810 /* SJ! - ubuf needs to be virtual address. */ 3811 3812 response_ubuf = (void *)(ulong_t)sge32[0].phys_addr; 3813 request_ubuf = (void *)(ulong_t)sge32[1].phys_addr; 3814 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: " 3815 "response_ubuf = %p, request_ubuf = %p", 3816 response_ubuf, request_ubuf)); 3817 } else { 3818 #ifdef _ILP32 3819 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32")); 3820 3821 sge32 = &ksmp->sgl[0].sge32[0]; 3822 response_xferlen = sge32[0].length; 3823 request_xferlen = sge32[1].length; 3824 con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: " 3825 "response_xferlen = %x, request_xferlen = %x", 3826 response_xferlen, request_xferlen)); 3827 3828 /* SJ! - ubuf needs to be virtual address. */ 3829 3830 response_ubuf = (void *)(ulong_t)sge32[0].phys_addr; 3831 request_ubuf = (void *)(ulong_t)sge32[1].phys_addr; 3832 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: " 3833 "response_ubuf = %p, request_ubuf = %p", 3834 response_ubuf, request_ubuf)); 3835 #else 3836 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64")); 3837 3838 sge64 = &ksmp->sgl[0].sge64[0]; 3839 response_xferlen = sge64[0].length; 3840 request_xferlen = sge64[1].length; 3841 3842 /* SJ! - ubuf needs to be virtual address. */ 3843 response_ubuf = (void *)(ulong_t)sge64[0].phys_addr; 3844 request_ubuf = (void *)(ulong_t)sge64[1].phys_addr; 3845 #endif 3846 } 3847 if (request_xferlen) { 3848 /* means IOCTL requires DMA */ 3849 /* allocate the data transfer buffer */ 3850 request_dma_obj.size = request_xferlen; 3851 request_dma_obj.dma_attr = megasas_generic_dma_attr; 3852 request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3853 request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3854 request_dma_obj.dma_attr.dma_attr_sgllen = 1; 3855 request_dma_obj.dma_attr.dma_attr_align = 1; 3856 3857 /* allocate kernel buffer for DMA */ 3858 if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) { 3859 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3860 "could not data transfer buffer alloc.")); 3861 return (DDI_FAILURE); 3862 } 3863 3864 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3865 if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer, 3866 request_xferlen, mode)) { 3867 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3868 "copy from user space failed\n")); 3869 return (1); 3870 } 3871 } 3872 3873 if (response_xferlen) { 3874 /* means IOCTL requires DMA */ 3875 /* allocate the data transfer buffer */ 3876 response_dma_obj.size = response_xferlen; 3877 response_dma_obj.dma_attr = megasas_generic_dma_attr; 3878 response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3879 response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3880 response_dma_obj.dma_attr.dma_attr_sgllen = 1; 3881 response_dma_obj.dma_attr.dma_attr_align = 1; 3882 3883 /* allocate kernel buffer for DMA */ 3884 if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) { 3885 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3886 "could not data transfer buffer alloc.")); 3887 return (DDI_FAILURE); 3888 } 3889 3890 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3891 if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer, 3892 response_xferlen, mode)) { 3893 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3894 "copy from user space failed\n")); 3895 return (1); 3896 } 3897 } 3898 3899 smp->cmd = ksmp->cmd; 3900 smp->cmd_status = ksmp->cmd_status; 3901 smp->connection_status = ksmp->connection_status; 3902 smp->sge_count = ksmp->sge_count; 3903 /* smp->context = ksmp->context; */ 3904 smp->timeout = ksmp->timeout; 3905 smp->data_xfer_len = ksmp->data_xfer_len; 3906 3907 bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr, 3908 sizeof (uint64_t)); 3909 3910 smp->flags = ksmp->flags & ~MFI_FRAME_SGL64; 3911 3912 model = ddi_model_convert_from(mode & FMODELS); 3913 if (model == DDI_MODEL_ILP32) { 3914 con_log(CL_ANN1, (CE_NOTE, 3915 "handle_drv_ioctl: DDI_MODEL_ILP32")); 3916 3917 sge32 = &smp->sgl[0].sge32[0]; 3918 sge32[0].length = response_xferlen; 3919 sge32[0].phys_addr = 3920 response_dma_obj.dma_cookie[0].dmac_address; 3921 sge32[1].length = request_xferlen; 3922 sge32[1].phys_addr = 3923 request_dma_obj.dma_cookie[0].dmac_address; 3924 } else { 3925 #ifdef _ILP32 3926 con_log(CL_ANN1, (CE_NOTE, 3927 "handle_drv_ioctl: DDI_MODEL_ILP32")); 3928 sge32 = &smp->sgl[0].sge32[0]; 3929 sge32[0].length = response_xferlen; 3930 sge32[0].phys_addr = 3931 response_dma_obj.dma_cookie[0].dmac_address; 3932 sge32[1].length = request_xferlen; 3933 sge32[1].phys_addr = 3934 request_dma_obj.dma_cookie[0].dmac_address; 3935 #else 3936 con_log(CL_ANN1, (CE_NOTE, 3937 "issue_mfi_smp: DDI_MODEL_LP64")); 3938 sge64 = &smp->sgl[0].sge64[0]; 3939 sge64[0].length = response_xferlen; 3940 sge64[0].phys_addr = 3941 response_dma_obj.dma_cookie[0].dmac_address; 3942 sge64[1].length = request_xferlen; 3943 sge64[1].phys_addr = 3944 request_dma_obj.dma_cookie[0].dmac_address; 3945 #endif 3946 } 3947 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: " 3948 "smp->response_xferlen = %d, smp->request_xferlen = %d " 3949 "smp->data_xfer_len = %d", sge32[0].length, sge32[1].length, 3950 smp->data_xfer_len)); 3951 3952 cmd->sync_cmd = MEGASAS_TRUE; 3953 cmd->frame_count = 1; 3954 3955 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 3956 con_log(CL_ANN, (CE_WARN, 3957 "issue_mfi_smp: fw_ioctl failed\n")); 3958 } else { 3959 con_log(CL_ANN1, (CE_NOTE, 3960 "issue_mfi_smp: copy to user space\n")); 3961 3962 if (request_xferlen) { 3963 if (ddi_copyout(request_dma_obj.buffer, request_ubuf, 3964 request_xferlen, mode)) { 3965 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3966 "copy to user space failed\n")); 3967 return (1); 3968 } 3969 } 3970 3971 if (response_xferlen) { 3972 if (ddi_copyout(response_dma_obj.buffer, response_ubuf, 3973 response_xferlen, mode)) { 3974 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3975 "copy to user space failed\n")); 3976 return (1); 3977 } 3978 } 3979 } 3980 3981 ksmp->cmd_status = smp->cmd_status; 3982 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d", 3983 smp->cmd_status)); 3984 3985 3986 if (request_xferlen) { 3987 /* free kernel buffer */ 3988 if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS) 3989 return (1); 3990 } 3991 3992 if (response_xferlen) { 3993 /* free kernel buffer */ 3994 if (mega_free_dma_obj(instance, response_dma_obj) != 3995 DDI_SUCCESS) 3996 return (1); 3997 } 3998 3999 return (0); 4000 } 4001 4002 /* 4003 * issue_mfi_stp 4004 */ 4005 static int 4006 issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 4007 struct megasas_cmd *cmd, int mode) 4008 { 4009 void *fis_ubuf; 4010 void *data_ubuf; 4011 uint32_t fis_xferlen = 0; 4012 uint32_t data_xferlen = 0; 4013 uint_t model; 4014 dma_obj_t fis_dma_obj; 4015 dma_obj_t data_dma_obj; 4016 struct megasas_stp_frame *kstp; 4017 struct megasas_stp_frame *stp; 4018 4019 stp = &cmd->frame->stp; 4020 kstp = (struct megasas_stp_frame *)&ioctl->frame[0]; 4021 4022 model = ddi_model_convert_from(mode & FMODELS); 4023 if (model == DDI_MODEL_ILP32) { 4024 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32")); 4025 4026 fis_xferlen = kstp->sgl.sge32[0].length; 4027 data_xferlen = kstp->sgl.sge32[1].length; 4028 4029 /* SJ! - ubuf needs to be virtual address. */ 4030 fis_ubuf = (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr; 4031 data_ubuf = (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr; 4032 } 4033 else 4034 { 4035 #ifdef _ILP32 4036 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32")); 4037 4038 fis_xferlen = kstp->sgl.sge32[0].length; 4039 data_xferlen = kstp->sgl.sge32[1].length; 4040 4041 /* SJ! - ubuf needs to be virtual address. */ 4042 fis_ubuf = (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr; 4043 data_ubuf = (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr; 4044 #else 4045 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64")); 4046 4047 fis_xferlen = kstp->sgl.sge64[0].length; 4048 data_xferlen = kstp->sgl.sge64[1].length; 4049 4050 /* SJ! - ubuf needs to be virtual address. */ 4051 fis_ubuf = (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr; 4052 data_ubuf = (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr; 4053 #endif 4054 } 4055 4056 4057 if (fis_xferlen) { 4058 con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: " 4059 "fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen)); 4060 4061 /* means IOCTL requires DMA */ 4062 /* allocate the data transfer buffer */ 4063 fis_dma_obj.size = fis_xferlen; 4064 fis_dma_obj.dma_attr = megasas_generic_dma_attr; 4065 fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 4066 fis_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 4067 fis_dma_obj.dma_attr.dma_attr_sgllen = 1; 4068 fis_dma_obj.dma_attr.dma_attr_align = 1; 4069 4070 /* allocate kernel buffer for DMA */ 4071 if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) { 4072 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4073 "could not data transfer buffer alloc.")); 4074 return (DDI_FAILURE); 4075 } 4076 4077 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 4078 if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer, 4079 fis_xferlen, mode)) { 4080 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4081 "copy from user space failed\n")); 4082 return (1); 4083 } 4084 } 4085 4086 if (data_xferlen) { 4087 con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p " 4088 "data_xferlen = %x", data_ubuf, data_xferlen)); 4089 4090 /* means IOCTL requires DMA */ 4091 /* allocate the data transfer buffer */ 4092 data_dma_obj.size = data_xferlen; 4093 data_dma_obj.dma_attr = megasas_generic_dma_attr; 4094 data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 4095 data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 4096 data_dma_obj.dma_attr.dma_attr_sgllen = 1; 4097 data_dma_obj.dma_attr.dma_attr_align = 1; 4098 4099 /* allocate kernel buffer for DMA */ 4100 if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) { 4101 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4102 "could not data transfer buffer alloc.")); 4103 return (DDI_FAILURE); 4104 } 4105 4106 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 4107 if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer, 4108 data_xferlen, mode)) { 4109 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4110 "copy from user space failed\n")); 4111 return (1); 4112 } 4113 } 4114 4115 stp->cmd = kstp->cmd; 4116 stp->cmd_status = kstp->cmd_status; 4117 stp->connection_status = kstp->connection_status; 4118 stp->target_id = kstp->target_id; 4119 stp->sge_count = kstp->sge_count; 4120 /* stp->context = kstp->context; */ 4121 stp->timeout = kstp->timeout; 4122 stp->data_xfer_len = kstp->data_xfer_len; 4123 4124 bcopy((void *)kstp->fis, (void *)stp->fis, 10); 4125 4126 stp->flags = kstp->flags & ~MFI_FRAME_SGL64; 4127 stp->stp_flags = kstp->stp_flags; 4128 stp->sgl.sge32[0].length = fis_xferlen; 4129 stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address; 4130 stp->sgl.sge32[1].length = data_xferlen; 4131 stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address; 4132 4133 cmd->sync_cmd = MEGASAS_TRUE; 4134 cmd->frame_count = 1; 4135 4136 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 4137 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n")); 4138 } else { 4139 4140 if (fis_xferlen) { 4141 if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf, 4142 fis_xferlen, mode)) { 4143 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4144 "copy to user space failed\n")); 4145 return (1); 4146 } 4147 } 4148 4149 if (data_xferlen) { 4150 if (ddi_copyout(data_dma_obj.buffer, data_ubuf, 4151 data_xferlen, mode)) { 4152 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4153 "copy to user space failed\n")); 4154 return (1); 4155 } 4156 } 4157 } 4158 4159 kstp->cmd_status = stp->cmd_status; 4160 4161 if (fis_xferlen) { 4162 /* free kernel buffer */ 4163 if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS) 4164 return (1); 4165 } 4166 4167 if (data_xferlen) { 4168 /* free kernel buffer */ 4169 if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS) 4170 return (1); 4171 } 4172 4173 return (0); 4174 } 4175 4176 /* 4177 * fill_up_drv_ver 4178 */ 4179 static void 4180 fill_up_drv_ver(struct megasas_drv_ver *dv) 4181 { 4182 (void) memset(dv, 0, sizeof (struct megasas_drv_ver)); 4183 4184 (void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$")); 4185 (void) memcpy(dv->os_name, "Solaris", strlen("Solaris")); 4186 (void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas")); 4187 (void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION)); 4188 (void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE, 4189 strlen(MEGASAS_RELDATE)); 4190 } 4191 4192 /* 4193 * handle_drv_ioctl 4194 */ 4195 static int 4196 handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 4197 int mode) 4198 { 4199 int i; 4200 int rval = 0; 4201 int *props = NULL; 4202 void *ubuf; 4203 4204 uint8_t *pci_conf_buf; 4205 uint32_t xferlen; 4206 uint32_t num_props; 4207 uint_t model; 4208 struct megasas_dcmd_frame *kdcmd; 4209 struct megasas_drv_ver dv; 4210 struct megasas_pci_information pi; 4211 4212 kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0]; 4213 4214 model = ddi_model_convert_from(mode & FMODELS); 4215 if (model == DDI_MODEL_ILP32) { 4216 con_log(CL_ANN1, (CE_NOTE, 4217 "handle_drv_ioctl: DDI_MODEL_ILP32")); 4218 4219 xferlen = kdcmd->sgl.sge32[0].length; 4220 4221 /* SJ! - ubuf needs to be virtual address. */ 4222 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 4223 } else { 4224 #ifdef _ILP32 4225 con_log(CL_ANN1, (CE_NOTE, 4226 "handle_drv_ioctl: DDI_MODEL_ILP32")); 4227 xferlen = kdcmd->sgl.sge32[0].length; 4228 /* SJ! - ubuf needs to be virtual address. */ 4229 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 4230 #else 4231 con_log(CL_ANN1, (CE_NOTE, 4232 "handle_drv_ioctl: DDI_MODEL_LP64")); 4233 xferlen = kdcmd->sgl.sge64[0].length; 4234 /* SJ! - ubuf needs to be virtual address. */ 4235 ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr; 4236 #endif 4237 } 4238 con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: " 4239 "dataBuf=%p size=%d bytes", ubuf, xferlen)); 4240 4241 switch (kdcmd->opcode) { 4242 case MR_DRIVER_IOCTL_DRIVER_VERSION: 4243 con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: " 4244 "MR_DRIVER_IOCTL_DRIVER_VERSION")); 4245 4246 fill_up_drv_ver(&dv); 4247 4248 if (ddi_copyout(&dv, ubuf, xferlen, mode)) { 4249 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4250 "MR_DRIVER_IOCTL_DRIVER_VERSION : " 4251 "copy to user space failed\n")); 4252 kdcmd->cmd_status = 1; 4253 rval = 1; 4254 } else { 4255 kdcmd->cmd_status = 0; 4256 } 4257 break; 4258 case MR_DRIVER_IOCTL_PCI_INFORMATION: 4259 con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: " 4260 "MR_DRIVER_IOCTL_PCI_INFORMAITON")); 4261 4262 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip, 4263 0, "reg", &props, &num_props)) { 4264 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4265 "MR_DRIVER_IOCTL_PCI_INFORMATION : " 4266 "ddi_prop_look_int_array failed\n")); 4267 rval = 1; 4268 } else { 4269 4270 pi.busNumber = (props[0] >> 16) & 0xFF; 4271 pi.deviceNumber = (props[0] >> 11) & 0x1f; 4272 pi.functionNumber = (props[0] >> 8) & 0x7; 4273 ddi_prop_free((void *)props); 4274 } 4275 4276 pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo; 4277 4278 for (i = 0; i < (sizeof (struct megasas_pci_information) - 4279 offsetof(struct megasas_pci_information, pciHeaderInfo)); 4280 i++) { 4281 pci_conf_buf[i] = 4282 pci_config_get8(instance->pci_handle, i); 4283 } 4284 4285 if (ddi_copyout(&pi, ubuf, xferlen, mode)) { 4286 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4287 "MR_DRIVER_IOCTL_PCI_INFORMATION : " 4288 "copy to user space failed\n")); 4289 kdcmd->cmd_status = 1; 4290 rval = 1; 4291 } else { 4292 kdcmd->cmd_status = 0; 4293 } 4294 break; 4295 default: 4296 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4297 "invalid driver specific IOCTL opcode = 0x%x", 4298 kdcmd->opcode)); 4299 kdcmd->cmd_status = 1; 4300 rval = 1; 4301 break; 4302 } 4303 4304 return (rval); 4305 } 4306 4307 /* 4308 * handle_mfi_ioctl 4309 */ 4310 static int 4311 handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 4312 int mode) 4313 { 4314 int rval = 0; 4315 4316 struct megasas_header *hdr; 4317 struct megasas_cmd *cmd; 4318 4319 cmd = get_mfi_pkt(instance); 4320 4321 if (!cmd) { 4322 con_log(CL_ANN, (CE_WARN, "megasas: " 4323 "failed to get a cmd packet\n")); 4324 return (1); 4325 } 4326 4327 hdr = (struct megasas_header *)&ioctl->frame[0]; 4328 4329 switch (hdr->cmd) { 4330 case MFI_CMD_OP_DCMD: 4331 rval = issue_mfi_dcmd(instance, ioctl, cmd, mode); 4332 break; 4333 case MFI_CMD_OP_SMP: 4334 rval = issue_mfi_smp(instance, ioctl, cmd, mode); 4335 break; 4336 case MFI_CMD_OP_STP: 4337 rval = issue_mfi_stp(instance, ioctl, cmd, mode); 4338 break; 4339 case MFI_CMD_OP_LD_SCSI: 4340 case MFI_CMD_OP_PD_SCSI: 4341 rval = issue_mfi_pthru(instance, ioctl, cmd, mode); 4342 break; 4343 default: 4344 con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: " 4345 "invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd)); 4346 rval = 1; 4347 break; 4348 } 4349 4350 4351 return_mfi_pkt(instance, cmd); 4352 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) 4353 rval = 1; 4354 return (rval); 4355 } 4356 4357 /* 4358 * AEN 4359 */ 4360 static int 4361 handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen) 4362 { 4363 int rval = 0; 4364 4365 rval = register_mfi_aen(instance, instance->aen_seq_num, 4366 aen->class_locale_word); 4367 4368 aen->cmd_status = (uint8_t)rval; 4369 4370 return (rval); 4371 } 4372 4373 static int 4374 register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num, 4375 uint32_t class_locale_word) 4376 { 4377 int ret_val; 4378 4379 struct megasas_cmd *cmd; 4380 struct megasas_dcmd_frame *dcmd; 4381 union megasas_evt_class_locale curr_aen; 4382 union megasas_evt_class_locale prev_aen; 4383 4384 /* 4385 * If there an AEN pending already (aen_cmd), check if the 4386 * class_locale of that pending AEN is inclusive of the new 4387 * AEN request we currently have. If it is, then we don't have 4388 * to do anything. In other words, whichever events the current 4389 * AEN request is subscribing to, have already been subscribed 4390 * to. 4391 * 4392 * If the old_cmd is _not_ inclusive, then we have to abort 4393 * that command, form a class_locale that is superset of both 4394 * old and current and re-issue to the FW 4395 */ 4396 4397 curr_aen.word = class_locale_word; 4398 4399 if (instance->aen_cmd) { 4400 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; 4401 4402 /* 4403 * A class whose enum value is smaller is inclusive of all 4404 * higher values. If a PROGRESS (= -1) was previously 4405 * registered, then a new registration requests for higher 4406 * classes need not be sent to FW. They are automatically 4407 * included. 4408 * 4409 * Locale numbers don't have such hierarchy. They are bitmap 4410 * values 4411 */ 4412 if ((prev_aen.members.class <= curr_aen.members.class) && 4413 !((prev_aen.members.locale & curr_aen.members.locale) ^ 4414 curr_aen.members.locale)) { 4415 /* 4416 * Previously issued event registration includes 4417 * current request. Nothing to do. 4418 */ 4419 4420 return (0); 4421 } else { 4422 curr_aen.members.locale |= prev_aen.members.locale; 4423 4424 if (prev_aen.members.class < curr_aen.members.class) 4425 curr_aen.members.class = prev_aen.members.class; 4426 4427 ret_val = abort_aen_cmd(instance, instance->aen_cmd); 4428 4429 if (ret_val) { 4430 con_log(CL_ANN, (CE_WARN, "register_mfi_aen: " 4431 "failed to abort prevous AEN command\n")); 4432 4433 return (ret_val); 4434 } 4435 } 4436 } else { 4437 curr_aen.word = class_locale_word; 4438 } 4439 4440 cmd = get_mfi_pkt(instance); 4441 4442 if (!cmd) 4443 return (-ENOMEM); 4444 4445 dcmd = &cmd->frame->dcmd; 4446 4447 /* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */ 4448 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 4449 4450 (void) memset(instance->mfi_evt_detail_obj.buffer, 0, 4451 sizeof (struct megasas_evt_detail)); 4452 4453 /* Prepare DCMD for aen registration */ 4454 dcmd->cmd = MFI_CMD_OP_DCMD; 4455 dcmd->cmd_status = 0x0; 4456 dcmd->sge_count = 1; 4457 dcmd->flags = MFI_FRAME_DIR_READ; 4458 dcmd->timeout = 0; 4459 dcmd->data_xfer_len = sizeof (struct megasas_evt_detail); 4460 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT; 4461 dcmd->mbox.w[0] = seq_num; 4462 dcmd->mbox.w[1] = curr_aen.word; 4463 dcmd->sgl.sge32[0].phys_addr = 4464 instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address; 4465 dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail); 4466 4467 instance->aen_seq_num = seq_num; 4468 4469 /* 4470 * Store reference to the cmd used to register for AEN. When an 4471 * application wants us to register for AEN, we have to abort this 4472 * cmd and re-register with a new EVENT LOCALE supplied by that app 4473 */ 4474 instance->aen_cmd = cmd; 4475 4476 cmd->frame_count = 1; 4477 4478 /* Issue the aen registration frame */ 4479 /* atomic_add_16 (&instance->fw_outstanding, 1); */ 4480 instance->func_ptr->issue_cmd(cmd, instance); 4481 4482 return (0); 4483 } 4484 4485 static void 4486 display_scsi_inquiry(caddr_t scsi_inq) 4487 { 4488 #define MAX_SCSI_DEVICE_CODE 14 4489 int i; 4490 char inquiry_buf[256] = {0}; 4491 int len; 4492 const char *const scsi_device_types[] = { 4493 "Direct-Access ", 4494 "Sequential-Access", 4495 "Printer ", 4496 "Processor ", 4497 "WORM ", 4498 "CD-ROM ", 4499 "Scanner ", 4500 "Optical Device ", 4501 "Medium Changer ", 4502 "Communications ", 4503 "Unknown ", 4504 "Unknown ", 4505 "Unknown ", 4506 "Enclosure ", 4507 }; 4508 4509 len = 0; 4510 4511 len += snprintf(inquiry_buf + len, 265 - len, " Vendor: "); 4512 for (i = 8; i < 16; i++) { 4513 len += snprintf(inquiry_buf + len, 265 - len, "%c", 4514 scsi_inq[i]); 4515 } 4516 4517 len += snprintf(inquiry_buf + len, 265 - len, " Model: "); 4518 4519 for (i = 16; i < 32; i++) { 4520 len += snprintf(inquiry_buf + len, 265 - len, "%c", 4521 scsi_inq[i]); 4522 } 4523 4524 len += snprintf(inquiry_buf + len, 265 - len, " Rev: "); 4525 4526 for (i = 32; i < 36; i++) { 4527 len += snprintf(inquiry_buf + len, 265 - len, "%c", 4528 scsi_inq[i]); 4529 } 4530 4531 len += snprintf(inquiry_buf + len, 265 - len, "\n"); 4532 4533 4534 i = scsi_inq[0] & 0x1f; 4535 4536 4537 len += snprintf(inquiry_buf + len, 265 - len, " Type: %s ", 4538 i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] : 4539 "Unknown "); 4540 4541 4542 len += snprintf(inquiry_buf + len, 265 - len, 4543 " ANSI SCSI revision: %02x", scsi_inq[2] & 0x07); 4544 4545 if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) { 4546 len += snprintf(inquiry_buf + len, 265 - len, " CCS\n"); 4547 } else { 4548 len += snprintf(inquiry_buf + len, 265 - len, "\n"); 4549 } 4550 4551 con_log(CL_ANN1, (CE_CONT, inquiry_buf)); 4552 } 4553 4554 static int 4555 read_fw_status_reg_xscale(struct megasas_instance *instance) 4556 { 4557 return ((int)RD_OB_MSG_0(instance)); 4558 } 4559 4560 static int 4561 read_fw_status_reg_ppc(struct megasas_instance *instance) 4562 { 4563 return ((int)RD_OB_SCRATCH_PAD_0(instance)); 4564 } 4565 4566 static void 4567 issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance) 4568 { 4569 atomic_add_16(&instance->fw_outstanding, 1); 4570 4571 /* Issue the command to the FW */ 4572 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) | 4573 (cmd->frame_count - 1), instance); 4574 } 4575 4576 static void 4577 issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance) 4578 { 4579 atomic_add_16(&instance->fw_outstanding, 1); 4580 4581 /* Issue the command to the FW */ 4582 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) | 4583 (((cmd->frame_count - 1) << 1) | 1), instance); 4584 } 4585 4586 /* 4587 * issue_cmd_in_sync_mode 4588 */ 4589 static int 4590 issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance, 4591 struct megasas_cmd *cmd) 4592 { 4593 int i; 4594 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC); 4595 4596 cmd->cmd_status = ENODATA; 4597 4598 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) | 4599 (cmd->frame_count - 1), instance); 4600 4601 mutex_enter(&instance->int_cmd_mtx); 4602 4603 for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) { 4604 cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx); 4605 } 4606 4607 mutex_exit(&instance->int_cmd_mtx); 4608 4609 if (i < (msecs -1)) { 4610 return (0); 4611 } else { 4612 return (1); 4613 } 4614 } 4615 4616 static int 4617 issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance, 4618 struct megasas_cmd *cmd) 4619 { 4620 int i; 4621 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC); 4622 4623 con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n")); 4624 4625 cmd->cmd_status = ENODATA; 4626 4627 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) | 4628 (((cmd->frame_count - 1) << 1) | 1), instance); 4629 4630 mutex_enter(&instance->int_cmd_mtx); 4631 4632 for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) { 4633 cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx); 4634 } 4635 4636 mutex_exit(&instance->int_cmd_mtx); 4637 4638 con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n")); 4639 4640 if (i < (msecs -1)) { 4641 return (0); 4642 } else { 4643 return (1); 4644 } 4645 } 4646 4647 /* 4648 * issue_cmd_in_poll_mode 4649 */ 4650 static int 4651 issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance, 4652 struct megasas_cmd *cmd) 4653 { 4654 int i; 4655 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC; 4656 struct megasas_header *frame_hdr; 4657 4658 frame_hdr = (struct megasas_header *)cmd->frame; 4659 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 4660 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; 4661 4662 /* issue the frame using inbound queue port */ 4663 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) | 4664 (cmd->frame_count - 1), instance); 4665 4666 /* wait for cmd_status to change from 0xFF */ 4667 for (i = 0; i < msecs && (frame_hdr->cmd_status == 4668 MFI_CMD_STATUS_POLL_MODE); i++) { 4669 drv_usecwait(MILLISEC); /* wait for 1000 usecs */ 4670 } 4671 4672 if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) { 4673 con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: " 4674 "cmd polling timed out")); 4675 return (DDI_FAILURE); 4676 } 4677 4678 return (DDI_SUCCESS); 4679 } 4680 4681 static int 4682 issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance, 4683 struct megasas_cmd *cmd) 4684 { 4685 int i; 4686 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC; 4687 struct megasas_header *frame_hdr; 4688 4689 con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n")); 4690 4691 frame_hdr = (struct megasas_header *)cmd->frame; 4692 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 4693 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; 4694 4695 /* issue the frame using inbound queue port */ 4696 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) | 4697 (((cmd->frame_count - 1) << 1) | 1), instance); 4698 4699 /* wait for cmd_status to change from 0xFF */ 4700 for (i = 0; i < msecs && (frame_hdr->cmd_status == 4701 MFI_CMD_STATUS_POLL_MODE); i++) { 4702 drv_usecwait(MILLISEC); /* wait for 1000 usecs */ 4703 } 4704 4705 if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) { 4706 con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: " 4707 "cmd polling timed out")); 4708 return (DDI_FAILURE); 4709 } 4710 4711 return (DDI_SUCCESS); 4712 } 4713 4714 static void 4715 enable_intr_xscale(struct megasas_instance *instance) 4716 { 4717 MFI_ENABLE_INTR(instance); 4718 } 4719 4720 static void 4721 enable_intr_ppc(struct megasas_instance *instance) 4722 { 4723 uint32_t mask; 4724 4725 con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n")); 4726 4727 /* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */ 4728 WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance); 4729 4730 /* 4731 * As 1078DE is same as 1078 chip, the interrupt mask 4732 * remains the same. 4733 */ 4734 /* WR_OB_INTR_MASK(~0x80000000, instance); */ 4735 WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance); 4736 4737 /* dummy read to force PCI flush */ 4738 mask = RD_OB_INTR_MASK(instance); 4739 4740 con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: " 4741 "outbound_intr_mask = 0x%x\n", mask)); 4742 } 4743 4744 static void 4745 disable_intr_xscale(struct megasas_instance *instance) 4746 { 4747 MFI_DISABLE_INTR(instance); 4748 } 4749 4750 static void 4751 disable_intr_ppc(struct megasas_instance *instance) 4752 { 4753 uint32_t mask; 4754 4755 con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n")); 4756 4757 con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : " 4758 "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance))); 4759 4760 /* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */ 4761 WR_OB_INTR_MASK(OB_INTR_MASK, instance); 4762 4763 con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : " 4764 "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance))); 4765 4766 /* dummy read to force PCI flush */ 4767 mask = RD_OB_INTR_MASK(instance); 4768 #ifdef lint 4769 mask = mask; 4770 #endif 4771 } 4772 4773 static int 4774 intr_ack_xscale(struct megasas_instance *instance) 4775 { 4776 uint32_t status; 4777 4778 /* check if it is our interrupt */ 4779 status = RD_OB_INTR_STATUS(instance); 4780 4781 if (!(status & MFI_OB_INTR_STATUS_MASK)) { 4782 return (DDI_INTR_UNCLAIMED); 4783 } 4784 4785 /* clear the interrupt by writing back the same value */ 4786 WR_OB_INTR_STATUS(status, instance); 4787 4788 return (DDI_INTR_CLAIMED); 4789 } 4790 4791 static int 4792 intr_ack_ppc(struct megasas_instance *instance) 4793 { 4794 uint32_t status; 4795 4796 con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n")); 4797 4798 /* check if it is our interrupt */ 4799 status = RD_OB_INTR_STATUS(instance); 4800 4801 con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status)); 4802 4803 /* 4804 * As 1078DE is same as 1078 chip, the status field 4805 * remains the same. 4806 */ 4807 if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) { 4808 return (DDI_INTR_UNCLAIMED); 4809 } 4810 4811 /* clear the interrupt by writing back the same value */ 4812 WR_OB_DOORBELL_CLEAR(status, instance); 4813 4814 /* dummy READ */ 4815 status = RD_OB_INTR_STATUS(instance); 4816 4817 con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n")); 4818 4819 return (DDI_INTR_CLAIMED); 4820 } 4821 4822 static int 4823 megasas_common_check(struct megasas_instance *instance, 4824 struct megasas_cmd *cmd) 4825 { 4826 int ret = DDI_SUCCESS; 4827 4828 if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) != 4829 DDI_SUCCESS) { 4830 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4831 if (cmd->pkt != NULL) { 4832 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4833 cmd->pkt->pkt_statistics = 0; 4834 } 4835 ret = DDI_FAILURE; 4836 } 4837 if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle) 4838 != DDI_SUCCESS) { 4839 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4840 if (cmd->pkt != NULL) { 4841 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4842 cmd->pkt->pkt_statistics = 0; 4843 } 4844 ret = DDI_FAILURE; 4845 } 4846 if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) != 4847 DDI_SUCCESS) { 4848 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4849 if (cmd->pkt != NULL) { 4850 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4851 cmd->pkt->pkt_statistics = 0; 4852 } 4853 ret = DDI_FAILURE; 4854 } 4855 if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) { 4856 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4857 ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0); 4858 if (cmd->pkt != NULL) { 4859 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4860 cmd->pkt->pkt_statistics = 0; 4861 } 4862 ret = DDI_FAILURE; 4863 } 4864 4865 return (ret); 4866 } 4867 4868 /*ARGSUSED*/ 4869 static int 4870 megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 4871 { 4872 /* 4873 * as the driver can always deal with an error in any dma or 4874 * access handle, we can just return the fme_status value. 4875 */ 4876 pci_ereport_post(dip, err, NULL); 4877 return (err->fme_status); 4878 } 4879 4880 static void 4881 megasas_fm_init(struct megasas_instance *instance) 4882 { 4883 /* Need to change iblock to priority for new MSI intr */ 4884 ddi_iblock_cookie_t fm_ibc; 4885 4886 /* Only register with IO Fault Services if we have some capability */ 4887 if (instance->fm_capabilities) { 4888 /* Adjust access and dma attributes for FMA */ 4889 endian_attr.devacc_attr_access = DDI_FLAGERR_ACC; 4890 megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR; 4891 4892 /* 4893 * Register capabilities with IO Fault Services. 4894 * fm_capabilities will be updated to indicate 4895 * capabilities actually supported (not requested.) 4896 */ 4897 4898 ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc); 4899 4900 /* 4901 * Initialize pci ereport capabilities if ereport 4902 * capable (should always be.) 4903 */ 4904 4905 if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) || 4906 DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4907 pci_ereport_setup(instance->dip); 4908 } 4909 4910 /* 4911 * Register error callback if error callback capable. 4912 */ 4913 if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4914 ddi_fm_handler_register(instance->dip, 4915 megasas_fm_error_cb, (void*) instance); 4916 } 4917 } else { 4918 endian_attr.devacc_attr_access = DDI_DEFAULT_ACC; 4919 megasas_generic_dma_attr.dma_attr_flags = 0; 4920 } 4921 } 4922 4923 static void 4924 megasas_fm_fini(struct megasas_instance *instance) 4925 { 4926 /* Only unregister FMA capabilities if registered */ 4927 if (instance->fm_capabilities) { 4928 /* 4929 * Un-register error callback if error callback capable. 4930 */ 4931 if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4932 ddi_fm_handler_unregister(instance->dip); 4933 } 4934 4935 /* 4936 * Release any resources allocated by pci_ereport_setup() 4937 */ 4938 if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) || 4939 DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4940 pci_ereport_teardown(instance->dip); 4941 } 4942 4943 /* Unregister from IO Fault Services */ 4944 ddi_fm_fini(instance->dip); 4945 4946 /* Adjust access and dma attributes for FMA */ 4947 endian_attr.devacc_attr_access = DDI_DEFAULT_ACC; 4948 megasas_generic_dma_attr.dma_attr_flags = 0; 4949 } 4950 } 4951 4952 int 4953 megasas_check_acc_handle(ddi_acc_handle_t handle) 4954 { 4955 ddi_fm_error_t de; 4956 4957 if (handle == NULL) { 4958 return (DDI_FAILURE); 4959 } 4960 4961 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); 4962 4963 return (de.fme_status); 4964 } 4965 4966 int 4967 megasas_check_dma_handle(ddi_dma_handle_t handle) 4968 { 4969 ddi_fm_error_t de; 4970 4971 if (handle == NULL) { 4972 return (DDI_FAILURE); 4973 } 4974 4975 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); 4976 4977 return (de.fme_status); 4978 } 4979 4980 void 4981 megasas_fm_ereport(struct megasas_instance *instance, char *detail) 4982 { 4983 uint64_t ena; 4984 char buf[FM_MAX_CLASS]; 4985 4986 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); 4987 ena = fm_ena_generate(0, FM_ENA_FMT1); 4988 if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) { 4989 ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP, 4990 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL); 4991 } 4992 } 4993