xref: /illumos-gate/usr/src/uts/common/io/mega_sas/megaraid_sas.c (revision 66582b606a8194f7f3ba5b3a3a6dca5b0d346361)
1 /*
2  * megaraid_sas.c: source for mega_sas driver
3  *
4  * MegaRAID device driver for SAS controllers
5  * Copyright (c) 2005-2008, LSI Logic Corporation.
6  * All rights reserved.
7  *
8  * Version:
9  * Author:
10  *        	Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com>
11  *        	Seokmann Ju
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions are met:
15  *
16  * 1. Redistributions of source code must retain the above copyright notice,
17  *    this list of conditions and the following disclaimer.
18  *
19  * 2. Redistributions in binary form must reproduce the above copyright notice,
20  *    this list of conditions and the following disclaimer in the documentation
21  *    and/or other materials provided with the distribution.
22  *
23  * 3. Neither the name of the author nor the names of its contributors may be
24  *    used to endorse or promote products derived from this software without
25  *    specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
35  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
37  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
38  * DAMAGE.
39  */
40 
41 /*
42  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
43  * Use is subject to license terms.
44  * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
45  */
46 
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/file.h>
50 #include <sys/errno.h>
51 #include <sys/open.h>
52 #include <sys/cred.h>
53 #include <sys/modctl.h>
54 #include <sys/conf.h>
55 #include <sys/devops.h>
56 #include <sys/cmn_err.h>
57 #include <sys/kmem.h>
58 #include <sys/stat.h>
59 #include <sys/mkdev.h>
60 #include <sys/pci.h>
61 #include <sys/scsi/scsi.h>
62 #include <sys/ddi.h>
63 #include <sys/sunddi.h>
64 #include <sys/atomic.h>
65 #include <sys/signal.h>
66 
67 #include "megaraid_sas.h"
68 
69 /*
70  * FMA header files
71  */
72 #include <sys/ddifm.h>
73 #include <sys/fm/protocol.h>
74 #include <sys/fm/util.h>
75 #include <sys/fm/io/ddi.h>
76 
77 /*
78  * Local static data
79  */
80 static void	*megasas_state = NULL;
81 static int 	debug_level_g = CL_ANN;
82 
83 #pragma weak scsi_hba_open
84 #pragma weak scsi_hba_close
85 #pragma weak scsi_hba_ioctl
86 
87 static ddi_dma_attr_t megasas_generic_dma_attr = {
88 	DMA_ATTR_V0,		/* dma_attr_version */
89 	0,			/* low DMA address range */
90 	0xFFFFFFFFU,		/* high DMA address range */
91 	0xFFFFFFFFU,		/* DMA counter register  */
92 	8,			/* DMA address alignment */
93 	0x07,			/* DMA burstsizes  */
94 	1,			/* min DMA size */
95 	0xFFFFFFFFU,		/* max DMA size */
96 	0xFFFFFFFFU,		/* segment boundary */
97 	MEGASAS_MAX_SGE_CNT,	/* dma_attr_sglen */
98 	512,			/* granularity of device */
99 	0			/* bus specific DMA flags */
100 };
101 
102 int32_t megasas_max_cap_maxxfer = 0x1000000;
103 
104 /*
105  * cb_ops contains base level routines
106  */
107 static struct cb_ops megasas_cb_ops = {
108 	megasas_open,		/* open */
109 	megasas_close,		/* close */
110 	nodev,			/* strategy */
111 	nodev,			/* print */
112 	nodev,			/* dump */
113 	nodev,			/* read */
114 	nodev,			/* write */
115 	megasas_ioctl,		/* ioctl */
116 	nodev,			/* devmap */
117 	nodev,			/* mmap */
118 	nodev,			/* segmap */
119 	nochpoll,		/* poll */
120 	nodev,			/* cb_prop_op */
121 	0,			/* streamtab  */
122 	D_NEW | D_HOTPLUG,	/* cb_flag */
123 	CB_REV,			/* cb_rev */
124 	nodev,			/* cb_aread */
125 	nodev			/* cb_awrite */
126 };
127 
128 /*
129  * dev_ops contains configuration routines
130  */
131 static struct dev_ops megasas_ops = {
132 	DEVO_REV,		/* rev, */
133 	0,			/* refcnt */
134 	megasas_getinfo,	/* getinfo */
135 	nulldev,		/* identify */
136 	nulldev,		/* probe */
137 	megasas_attach,		/* attach */
138 	megasas_detach,		/* detach */
139 	megasas_reset,		/* reset */
140 	&megasas_cb_ops,	/* char/block ops */
141 	NULL,			/* bus ops */
142 	NULL,			/* power */
143 	ddi_quiesce_not_supported,	/* devo_quiesce */
144 };
145 
146 static struct modldrv modldrv = {
147 	&mod_driverops,		/* module type - driver */
148 	MEGASAS_VERSION,
149 	&megasas_ops,		/* driver ops */
150 };
151 
152 static struct modlinkage modlinkage = {
153 	MODREV_1,	/* ml_rev - must be MODREV_1 */
154 	&modldrv,	/* ml_linkage */
155 	NULL		/* end of driver linkage */
156 };
157 
158 static struct ddi_device_acc_attr endian_attr = {
159 	DDI_DEVICE_ATTR_V1,
160 	DDI_STRUCTURE_LE_ACC,
161 	DDI_STRICTORDER_ACC,
162 	DDI_DEFAULT_ACC
163 };
164 
165 
166 /*
167  * ************************************************************************** *
168  *                                                                            *
169  *         common entry points - for loadable kernel modules                  *
170  *                                                                            *
171  * ************************************************************************** *
172  */
173 
174 /*
175  * _init - initialize a loadable module
176  * @void
177  *
178  * The driver should perform any one-time resource allocation or data
179  * initialization during driver loading in _init(). For example, the driver
180  * should initialize any mutexes global to the driver in this routine.
181  * The driver should not, however, use _init() to allocate or initialize
182  * anything that has to do with a particular instance of the device.
183  * Per-instance initialization must be done in attach().
184  */
185 int
186 _init(void)
187 {
188 	int ret;
189 
190 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
191 
192 	ret = ddi_soft_state_init(&megasas_state,
193 	    sizeof (struct megasas_instance), 0);
194 
195 	if (ret != 0) {
196 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init state"));
197 		return (ret);
198 	}
199 
200 	if ((ret = scsi_hba_init(&modlinkage)) != 0) {
201 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba"));
202 		ddi_soft_state_fini(&megasas_state);
203 		return (ret);
204 	}
205 
206 	ret = mod_install(&modlinkage);
207 
208 	if (ret != 0) {
209 		con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed"));
210 		scsi_hba_fini(&modlinkage);
211 		ddi_soft_state_fini(&megasas_state);
212 	}
213 
214 	return (ret);
215 }
216 
217 /*
218  * _info - returns information about a loadable module.
219  * @void
220  *
221  * _info() is called to return module information. This is a typical entry
222  * point that does predefined role. It simply calls mod_info().
223  */
224 int
225 _info(struct modinfo *modinfop)
226 {
227 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
228 
229 	return (mod_info(&modlinkage, modinfop));
230 }
231 
232 /*
233  * _fini - prepare a loadable module for unloading
234  * @void
235  *
236  * In _fini(), the driver should release any resources that were allocated in
237  * _init(). The driver must remove itself from the system module list.
238  */
239 int
240 _fini(void)
241 {
242 	int ret;
243 
244 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
245 
246 	if ((ret = mod_remove(&modlinkage)) != 0)
247 		return (ret);
248 
249 	scsi_hba_fini(&modlinkage);
250 
251 	ddi_soft_state_fini(&megasas_state);
252 
253 	return (ret);
254 }
255 
256 
257 /*
258  * ************************************************************************** *
259  *                                                                            *
260  *               common entry points - for autoconfiguration                  *
261  *                                                                            *
262  * ************************************************************************** *
263  */
264 /*
265  * attach - adds a device to the system as part of initialization
266  * @dip:
267  * @cmd:
268  *
269  * The kernel calls a driver's attach() entry point to attach an instance of
270  * a device (for MegaRAID, it is instance of a controller) or to resume
271  * operation for an instance of a device that has been suspended or has been
272  * shut down by the power management framework
273  * The attach() entry point typically includes the following types of
274  * processing:
275  * - allocate a soft-state structure for the device instance (for MegaRAID,
276  *   controller instance)
277  * - initialize per-instance mutexes
278  * - initialize condition variables
279  * - register the device's interrupts (for MegaRAID, controller's interrupts)
280  * - map the registers and memory of the device instance (for MegaRAID,
281  *   controller instance)
282  * - create minor device nodes for the device instance (for MegaRAID,
283  *   controller instance)
284  * - report that the device instance (for MegaRAID, controller instance) has
285  *   attached
286  */
287 static int
288 megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
289 {
290 	int		instance_no;
291 	int		nregs;
292 	uint8_t		added_isr_f = 0;
293 	uint8_t		added_soft_isr_f = 0;
294 	uint8_t		create_devctl_node_f = 0;
295 	uint8_t		create_scsi_node_f = 0;
296 	uint8_t		create_ioc_node_f = 0;
297 	uint8_t		tran_alloc_f = 0;
298 	uint8_t 	irq;
299 	uint16_t	vendor_id;
300 	uint16_t	device_id;
301 	uint16_t	subsysvid;
302 	uint16_t	subsysid;
303 	uint16_t	command;
304 
305 	scsi_hba_tran_t		*tran;
306 	ddi_dma_attr_t  tran_dma_attr;
307 	struct megasas_instance	*instance;
308 
309 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
310 
311 	/* CONSTCOND */
312 	ASSERT(NO_COMPETING_THREADS);
313 
314 	instance_no = ddi_get_instance(dip);
315 
316 	/*
317 	 * Since we know that some instantiations of this device can be
318 	 * plugged into slave-only SBus slots, check to see whether this is
319 	 * one such.
320 	 */
321 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
322 		con_log(CL_ANN, (CE_WARN,
323 		    "mega%d: Device in slave-only slot, unused", instance_no));
324 		return (DDI_FAILURE);
325 	}
326 
327 	switch (cmd) {
328 		case DDI_ATTACH:
329 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH"));
330 			/* allocate the soft state for the instance */
331 			if (ddi_soft_state_zalloc(megasas_state, instance_no)
332 			    != DDI_SUCCESS) {
333 				con_log(CL_ANN, (CE_WARN,
334 				    "mega%d: Failed to allocate soft state",
335 				    instance_no));
336 
337 				return (DDI_FAILURE);
338 			}
339 
340 			instance = (struct megasas_instance *)ddi_get_soft_state
341 			    (megasas_state, instance_no);
342 
343 			if (instance == NULL) {
344 				con_log(CL_ANN, (CE_WARN,
345 				    "mega%d: Bad soft state", instance_no));
346 
347 				ddi_soft_state_free(megasas_state, instance_no);
348 
349 				return (DDI_FAILURE);
350 			}
351 
352 			bzero((caddr_t)instance,
353 			    sizeof (struct megasas_instance));
354 
355 			instance->func_ptr = kmem_zalloc(
356 			    sizeof (struct megasas_func_ptr), KM_SLEEP);
357 			ASSERT(instance->func_ptr);
358 
359 			/* Setup the PCI configuration space handles */
360 			if (pci_config_setup(dip, &instance->pci_handle) !=
361 			    DDI_SUCCESS) {
362 				con_log(CL_ANN, (CE_WARN,
363 				    "mega%d: pci config setup failed ",
364 				    instance_no));
365 
366 				kmem_free(instance->func_ptr,
367 				    sizeof (struct megasas_func_ptr));
368 				ddi_soft_state_free(megasas_state, instance_no);
369 
370 				return (DDI_FAILURE);
371 			}
372 
373 			if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) {
374 				con_log(CL_ANN, (CE_WARN,
375 				    "megaraid: failed to get registers."));
376 
377 				pci_config_teardown(&instance->pci_handle);
378 				kmem_free(instance->func_ptr,
379 				    sizeof (struct megasas_func_ptr));
380 				ddi_soft_state_free(megasas_state, instance_no);
381 
382 				return (DDI_FAILURE);
383 			}
384 
385 			vendor_id = pci_config_get16(instance->pci_handle,
386 			    PCI_CONF_VENID);
387 			device_id = pci_config_get16(instance->pci_handle,
388 			    PCI_CONF_DEVID);
389 
390 			subsysvid = pci_config_get16(instance->pci_handle,
391 			    PCI_CONF_SUBVENID);
392 			subsysid = pci_config_get16(instance->pci_handle,
393 			    PCI_CONF_SUBSYSID);
394 
395 			pci_config_put16(instance->pci_handle, PCI_CONF_COMM,
396 			    (pci_config_get16(instance->pci_handle,
397 			    PCI_CONF_COMM) | PCI_COMM_ME));
398 			irq = pci_config_get8(instance->pci_handle,
399 			    PCI_CONF_ILINE);
400 
401 			con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
402 			    "0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n",
403 			    instance_no, vendor_id, device_id, subsysvid,
404 			    subsysid, irq, MEGASAS_VERSION));
405 
406 			/* enable bus-mastering */
407 			command = pci_config_get16(instance->pci_handle,
408 			    PCI_CONF_COMM);
409 
410 			if (!(command & PCI_COMM_ME)) {
411 				command |= PCI_COMM_ME;
412 
413 				pci_config_put16(instance->pci_handle,
414 				    PCI_CONF_COMM, command);
415 
416 				con_log(CL_ANN, (CE_CONT, "megaraid%d: "
417 				    "enable bus-mastering\n", instance_no));
418 			} else {
419 				con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: "
420 				"bus-mastering already set\n", instance_no));
421 			}
422 
423 			/* initialize function pointers */
424 			if ((device_id == PCI_DEVICE_ID_LSI_1078) ||
425 			    (device_id == PCI_DEVICE_ID_LSI_1078DE)) {
426 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
427 				    "1078R/DE detected\n", instance_no));
428 				instance->func_ptr->read_fw_status_reg =
429 				    read_fw_status_reg_ppc;
430 				instance->func_ptr->issue_cmd = issue_cmd_ppc;
431 				instance->func_ptr->issue_cmd_in_sync_mode =
432 				    issue_cmd_in_sync_mode_ppc;
433 				instance->func_ptr->issue_cmd_in_poll_mode =
434 				    issue_cmd_in_poll_mode_ppc;
435 				instance->func_ptr->enable_intr =
436 				    enable_intr_ppc;
437 				instance->func_ptr->disable_intr =
438 				    disable_intr_ppc;
439 				instance->func_ptr->intr_ack = intr_ack_ppc;
440 			} else {
441 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
442 				    "1064/8R detected\n", instance_no));
443 				instance->func_ptr->read_fw_status_reg =
444 				    read_fw_status_reg_xscale;
445 				instance->func_ptr->issue_cmd =
446 				    issue_cmd_xscale;
447 				instance->func_ptr->issue_cmd_in_sync_mode =
448 				    issue_cmd_in_sync_mode_xscale;
449 				instance->func_ptr->issue_cmd_in_poll_mode =
450 				    issue_cmd_in_poll_mode_xscale;
451 				instance->func_ptr->enable_intr =
452 				    enable_intr_xscale;
453 				instance->func_ptr->disable_intr =
454 				    disable_intr_xscale;
455 				instance->func_ptr->intr_ack =
456 				    intr_ack_xscale;
457 			}
458 
459 			instance->baseaddress = pci_config_get32(
460 			    instance->pci_handle, PCI_CONF_BASE0);
461 			instance->baseaddress &= 0x0fffc;
462 
463 			instance->dip		= dip;
464 			instance->vendor_id	= vendor_id;
465 			instance->device_id	= device_id;
466 			instance->subsysvid	= subsysvid;
467 			instance->subsysid	= subsysid;
468 
469 			/* Initialize FMA */
470 			instance->fm_capabilities = ddi_prop_get_int(
471 			    DDI_DEV_T_ANY, instance->dip, DDI_PROP_DONTPASS,
472 			    "fm-capable", DDI_FM_EREPORT_CAPABLE |
473 			    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE
474 			    | DDI_FM_ERRCB_CAPABLE);
475 
476 			megasas_fm_init(instance);
477 
478 			/* setup the mfi based low level driver */
479 			if (init_mfi(instance) != DDI_SUCCESS) {
480 				con_log(CL_ANN, (CE_WARN, "megaraid: "
481 				"could not initialize the low level driver"));
482 
483 				goto fail_attach;
484 			}
485 
486 			/*
487 			 * Allocate the interrupt blocking cookie.
488 			 * It represents the information the framework
489 			 * needs to block interrupts. This cookie will
490 			 * be used by the locks shared accross our ISR.
491 			 * These locks must be initialized before we
492 			 * register our ISR.
493 			 * ddi_add_intr(9F)
494 			 */
495 			if (ddi_get_iblock_cookie(dip, 0,
496 			    &instance->iblock_cookie) != DDI_SUCCESS) {
497 
498 				goto fail_attach;
499 			}
500 
501 			if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH,
502 			    &instance->soft_iblock_cookie) != DDI_SUCCESS) {
503 
504 				goto fail_attach;
505 			}
506 
507 			/*
508 			 * Initialize the driver mutexes common to
509 			 * normal/high level isr
510 			 */
511 			if (ddi_intr_hilevel(dip, 0)) {
512 				instance->isr_level = HIGH_LEVEL_INTR;
513 				mutex_init(&instance->cmd_pool_mtx,
514 				    "cmd_pool_mtx", MUTEX_DRIVER,
515 				    instance->soft_iblock_cookie);
516 				mutex_init(&instance->cmd_pend_mtx,
517 				    "cmd_pend_mtx", MUTEX_DRIVER,
518 				    instance->soft_iblock_cookie);
519 			} else {
520 				/*
521 				 * Initialize the driver mutexes
522 				 * specific to soft-isr
523 				 */
524 				instance->isr_level = NORMAL_LEVEL_INTR;
525 				mutex_init(&instance->cmd_pool_mtx,
526 				    "cmd_pool_mtx", MUTEX_DRIVER,
527 				    instance->iblock_cookie);
528 				mutex_init(&instance->cmd_pend_mtx,
529 				    "cmd_pend_mtx", MUTEX_DRIVER,
530 				    instance->iblock_cookie);
531 			}
532 
533 			mutex_init(&instance->completed_pool_mtx,
534 			    "completed_pool_mtx", MUTEX_DRIVER,
535 			    instance->iblock_cookie);
536 			mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx",
537 			    MUTEX_DRIVER, instance->iblock_cookie);
538 			mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx",
539 			    MUTEX_DRIVER, instance->iblock_cookie);
540 			mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx",
541 			    MUTEX_DRIVER, instance->iblock_cookie);
542 
543 			cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL);
544 			cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL);
545 
546 			INIT_LIST_HEAD(&instance->completed_pool_list);
547 
548 			/* Register our isr. */
549 			if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr,
550 			    (caddr_t)instance) != DDI_SUCCESS) {
551 				con_log(CL_ANN, (CE_WARN,
552 				    " ISR did not register"));
553 
554 				goto fail_attach;
555 			}
556 
557 			added_isr_f = 1;
558 
559 			/* Register our soft-isr for highlevel interrupts. */
560 			if (instance->isr_level == HIGH_LEVEL_INTR) {
561 				if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH,
562 				    &instance->soft_intr_id, NULL, NULL,
563 				    megasas_softintr, (caddr_t)instance) !=
564 				    DDI_SUCCESS) {
565 					con_log(CL_ANN, (CE_WARN,
566 					    " Software ISR did not register"));
567 
568 					goto fail_attach;
569 				}
570 
571 				added_soft_isr_f = 1;
572 			}
573 
574 			/* Allocate a transport structure */
575 			tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);
576 
577 			if (tran == NULL) {
578 				con_log(CL_ANN, (CE_WARN,
579 				    "scsi_hba_tran_alloc failed"));
580 				goto fail_attach;
581 			}
582 
583 			tran_alloc_f = 1;
584 
585 			instance->tran = tran;
586 
587 			tran->tran_hba_private	= instance;
588 			tran->tran_tgt_private 	= NULL;
589 			tran->tran_tgt_init	= megasas_tran_tgt_init;
590 			tran->tran_tgt_probe	= scsi_hba_probe;
591 			tran->tran_tgt_free	= (void (*)())NULL;
592 			tran->tran_init_pkt	= megasas_tran_init_pkt;
593 			tran->tran_start	= megasas_tran_start;
594 			tran->tran_abort	= megasas_tran_abort;
595 			tran->tran_reset	= megasas_tran_reset;
596 			tran->tran_bus_reset	= megasas_tran_bus_reset;
597 			tran->tran_getcap	= megasas_tran_getcap;
598 			tran->tran_setcap	= megasas_tran_setcap;
599 			tran->tran_destroy_pkt	= megasas_tran_destroy_pkt;
600 			tran->tran_dmafree	= megasas_tran_dmafree;
601 			tran->tran_sync_pkt	= megasas_tran_sync_pkt;
602 			tran->tran_reset_notify	= NULL;
603 			tran->tran_quiesce	= megasas_tran_quiesce;
604 			tran->tran_unquiesce	= megasas_tran_unquiesce;
605 
606 			tran_dma_attr = megasas_generic_dma_attr;
607 			tran_dma_attr.dma_attr_sgllen = instance->max_num_sge;
608 
609 			/* Attach this instance of the hba */
610 			if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0)
611 			    != DDI_SUCCESS) {
612 				con_log(CL_ANN, (CE_WARN,
613 				    "scsi_hba_attach failed\n"));
614 
615 				goto fail_attach;
616 			}
617 
618 			/* create devctl node for cfgadm command */
619 			if (ddi_create_minor_node(dip, "devctl",
620 			    S_IFCHR, INST2DEVCTL(instance_no),
621 			    DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) {
622 				con_log(CL_ANN, (CE_WARN,
623 				    "megaraid: failed to create devctl node."));
624 
625 				goto fail_attach;
626 			}
627 
628 			create_devctl_node_f = 1;
629 
630 			/* create scsi node for cfgadm command */
631 			if (ddi_create_minor_node(dip, "scsi", S_IFCHR,
632 			    INST2SCSI(instance_no),
633 			    DDI_NT_SCSI_ATTACHMENT_POINT, 0) ==
634 			    DDI_FAILURE) {
635 				con_log(CL_ANN, (CE_WARN,
636 				    "megaraid: failed to create scsi node."));
637 
638 				goto fail_attach;
639 			}
640 
641 			create_scsi_node_f = 1;
642 
643 			(void) sprintf(instance->iocnode, "%d:lsirdctl",
644 			    instance_no);
645 
646 			/*
647 			 * Create a node for applications
648 			 * for issuing ioctl to the driver.
649 			 */
650 			if (ddi_create_minor_node(dip, instance->iocnode,
651 			    S_IFCHR, INST2LSIRDCTL(instance_no),
652 			    DDI_PSEUDO, 0) == DDI_FAILURE) {
653 				con_log(CL_ANN, (CE_WARN,
654 				    "megaraid: failed to create ioctl node."));
655 
656 				goto fail_attach;
657 			}
658 
659 			create_ioc_node_f = 1;
660 
661 			/* enable interrupt */
662 			instance->func_ptr->enable_intr(instance);
663 
664 			/* initiate AEN */
665 			if (start_mfi_aen(instance)) {
666 				con_log(CL_ANN, (CE_WARN,
667 				    "megaraid: failed to initiate AEN."));
668 				goto fail_initiate_aen;
669 			}
670 
671 			con_log(CL_DLEVEL1, (CE_NOTE,
672 			    "AEN started for instance %d.", instance_no));
673 
674 			/* Finally! We are on the air.  */
675 			ddi_report_dev(dip);
676 
677 			if (megasas_check_acc_handle(instance->regmap_handle) !=
678 			    DDI_SUCCESS) {
679 				goto fail_attach;
680 			}
681 			if (megasas_check_acc_handle(instance->pci_handle) !=
682 			    DDI_SUCCESS) {
683 				goto fail_attach;
684 			}
685 			break;
686 		case DDI_PM_RESUME:
687 			con_log(CL_ANN, (CE_NOTE,
688 			    "megasas: DDI_PM_RESUME"));
689 			break;
690 		case DDI_RESUME:
691 			con_log(CL_ANN, (CE_NOTE,
692 			    "megasas: DDI_RESUME"));
693 			break;
694 		default:
695 			con_log(CL_ANN, (CE_WARN,
696 			    "megasas: invalid attach cmd=%x", cmd));
697 			return (DDI_FAILURE);
698 	}
699 
700 	return (DDI_SUCCESS);
701 
702 fail_initiate_aen:
703 fail_attach:
704 	if (create_devctl_node_f) {
705 		ddi_remove_minor_node(dip, "devctl");
706 	}
707 
708 	if (create_scsi_node_f) {
709 		ddi_remove_minor_node(dip, "scsi");
710 	}
711 
712 	if (create_ioc_node_f) {
713 		ddi_remove_minor_node(dip, instance->iocnode);
714 	}
715 
716 	if (tran_alloc_f) {
717 		scsi_hba_tran_free(tran);
718 	}
719 
720 
721 	if (added_soft_isr_f) {
722 		ddi_remove_softintr(instance->soft_intr_id);
723 	}
724 
725 	if (added_isr_f) {
726 		ddi_remove_intr(dip, 0, instance->iblock_cookie);
727 	}
728 
729 	megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
730 	ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
731 
732 	megasas_fm_fini(instance);
733 
734 	pci_config_teardown(&instance->pci_handle);
735 
736 	ddi_soft_state_free(megasas_state, instance_no);
737 
738 	con_log(CL_ANN, (CE_NOTE,
739 	    "megasas: return failure from mega_attach\n"));
740 
741 	return (DDI_FAILURE);
742 }
743 
744 /*
745  * getinfo - gets device information
746  * @dip:
747  * @cmd:
748  * @arg:
749  * @resultp:
750  *
751  * The system calls getinfo() to obtain configuration information that only
752  * the driver knows. The mapping of minor numbers to device instance is
753  * entirely under the control of the driver. The system sometimes needs to ask
754  * the driver which device a particular dev_t represents.
755  * Given the device number return the devinfo pointer from the scsi_device
756  * structure.
757  */
758 /*ARGSUSED*/
759 static int
760 megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
761 {
762 	int	rval;
763 	int	megasas_minor = getminor((dev_t)arg);
764 
765 	struct megasas_instance	*instance;
766 
767 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
768 
769 	switch (cmd) {
770 		case DDI_INFO_DEVT2DEVINFO:
771 			instance = (struct megasas_instance *)
772 			    ddi_get_soft_state(megasas_state,
773 			    MINOR2INST(megasas_minor));
774 
775 			if (instance == NULL) {
776 				*resultp = NULL;
777 				rval = DDI_FAILURE;
778 			} else {
779 				*resultp = instance->dip;
780 				rval = DDI_SUCCESS;
781 			}
782 			break;
783 		case DDI_INFO_DEVT2INSTANCE:
784 			*resultp = (void *)instance;
785 			rval = DDI_SUCCESS;
786 			break;
787 		default:
788 			*resultp = NULL;
789 			rval = DDI_FAILURE;
790 	}
791 
792 	return (rval);
793 }
794 
795 /*
796  * detach - detaches a device from the system
797  * @dip: pointer to the device's dev_info structure
798  * @cmd: type of detach
799  *
800  * A driver's detach() entry point is called to detach an instance of a device
801  * that is bound to the driver. The entry point is called with the instance of
802  * the device node to be detached and with DDI_DETACH, which is specified as
803  * the cmd argument to the entry point.
804  * This routine is called during driver unload. We free all the allocated
805  * resources and call the corresponding LLD so that it can also release all
806  * its resources.
807  */
808 static int
809 megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
810 {
811 	int	instance_no;
812 
813 	struct megasas_instance	*instance;
814 
815 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
816 
817 	/* CONSTCOND */
818 	ASSERT(NO_COMPETING_THREADS);
819 
820 	instance_no = ddi_get_instance(dip);
821 
822 	instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state,
823 	    instance_no);
824 
825 	if (!instance) {
826 		con_log(CL_ANN, (CE_WARN,
827 		    "megasas:%d could not get instance in detach",
828 		    instance_no));
829 
830 		return (DDI_FAILURE);
831 	}
832 
833 	con_log(CL_ANN, (CE_NOTE,
834 	    "megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n",
835 	    instance_no, instance->vendor_id, instance->device_id,
836 	    instance->subsysvid, instance->subsysid));
837 
838 	switch (cmd) {
839 		case DDI_DETACH:
840 			con_log(CL_ANN, (CE_NOTE,
841 			    "megasas_detach: DDI_DETACH\n"));
842 
843 			if (scsi_hba_detach(dip) != DDI_SUCCESS) {
844 				con_log(CL_ANN, (CE_WARN,
845 				    "megasas:%d failed to detach",
846 				    instance_no));
847 
848 				return (DDI_FAILURE);
849 			}
850 
851 			scsi_hba_tran_free(instance->tran);
852 
853 			if (abort_aen_cmd(instance, instance->aen_cmd)) {
854 				con_log(CL_ANN, (CE_WARN, "megasas_detach: "
855 				    "failed to abort prevous AEN command\n"));
856 
857 				return (DDI_FAILURE);
858 			}
859 
860 			instance->func_ptr->disable_intr(instance);
861 
862 			if (instance->isr_level == HIGH_LEVEL_INTR) {
863 				ddi_remove_softintr(instance->soft_intr_id);
864 			}
865 
866 			ddi_remove_intr(dip, 0, instance->iblock_cookie);
867 
868 			free_space_for_mfi(instance);
869 
870 			megasas_fm_fini(instance);
871 
872 			pci_config_teardown(&instance->pci_handle);
873 
874 			kmem_free(instance->func_ptr,
875 			    sizeof (struct megasas_func_ptr));
876 
877 			ddi_soft_state_free(megasas_state, instance_no);
878 			break;
879 		case DDI_PM_SUSPEND:
880 			con_log(CL_ANN, (CE_NOTE,
881 			    "megasas_detach: DDI_PM_SUSPEND\n"));
882 
883 			break;
884 		case DDI_SUSPEND:
885 			con_log(CL_ANN, (CE_NOTE,
886 			    "megasas_detach: DDI_SUSPEND\n"));
887 
888 			break;
889 		default:
890 			con_log(CL_ANN, (CE_WARN,
891 			    "invalid detach command:0x%x", cmd));
892 			return (DDI_FAILURE);
893 	}
894 
895 	return (DDI_SUCCESS);
896 }
897 
898 /*
899  * ************************************************************************** *
900  *                                                                            *
901  *             common entry points - for character driver types               *
902  *                                                                            *
903  * ************************************************************************** *
904  */
905 /*
906  * open - gets access to a device
907  * @dev:
908  * @openflags:
909  * @otyp:
910  * @credp:
911  *
912  * Access to a device by one or more application programs is controlled
913  * through the open() and close() entry points. The primary function of
914  * open() is to verify that the open request is allowed.
915  */
916 static  int
917 megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp)
918 {
919 	int	rval = 0;
920 
921 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
922 
923 	/* Check root permissions */
924 	if (drv_priv(credp) != 0) {
925 		con_log(CL_ANN, (CE_WARN,
926 		    "megaraid: Non-root ioctl access tried!"));
927 		return (EPERM);
928 	}
929 
930 	/* Verify we are being opened as a character device */
931 	if (otyp != OTYP_CHR) {
932 		con_log(CL_ANN, (CE_WARN,
933 		    "megaraid: ioctl node must be a char node\n"));
934 		return (EINVAL);
935 	}
936 
937 	if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev)))
938 	    == NULL) {
939 		return (ENXIO);
940 	}
941 
942 	if (scsi_hba_open) {
943 		rval = scsi_hba_open(dev, openflags, otyp, credp);
944 	}
945 
946 	return (rval);
947 }
948 
949 /*
950  * close - gives up access to a device
951  * @dev:
952  * @openflags:
953  * @otyp:
954  * @credp:
955  *
956  * close() should perform any cleanup necessary to finish using the minor
957  * device, and prepare the device (and driver) to be opened again.
958  */
959 static  int
960 megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp)
961 {
962 	int	rval = 0;
963 
964 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
965 
966 	/* no need for locks! */
967 
968 	if (scsi_hba_close) {
969 		rval = scsi_hba_close(dev, openflags, otyp, credp);
970 	}
971 
972 	return (rval);
973 }
974 
975 /*
976  * ioctl - performs a range of I/O commands for character drivers
977  * @dev:
978  * @cmd:
979  * @arg:
980  * @mode:
981  * @credp:
982  * @rvalp:
983  *
984  * ioctl() routine must make sure that user data is copied into or out of the
985  * kernel address space explicitly using copyin(), copyout(), ddi_copyin(),
986  * and ddi_copyout(), as appropriate.
987  * This is a wrapper routine to serialize access to the actual ioctl routine.
988  * ioctl() should return 0 on success, or the appropriate error number. The
989  * driver may also set the value returned to the calling process through rvalp.
990  */
991 static int
992 megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
993     int *rvalp)
994 {
995 	int	rval = 0;
996 
997 	struct megasas_instance	*instance;
998 	struct megasas_ioctl	ioctl;
999 	struct megasas_aen	aen;
1000 
1001 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1002 
1003 	instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev)));
1004 
1005 	if (instance == NULL) {
1006 		/* invalid minor number */
1007 		con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found."));
1008 		return (ENXIO);
1009 	}
1010 
1011 	switch ((uint_t)cmd) {
1012 		case MEGASAS_IOCTL_FIRMWARE:
1013 			if (ddi_copyin((void *) arg, &ioctl,
1014 			    sizeof (struct megasas_ioctl), mode)) {
1015 				con_log(CL_ANN, (CE_WARN, "megasas_ioctl: "
1016 				    "ERROR IOCTL copyin"));
1017 				return (EFAULT);
1018 			}
1019 
1020 			if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) {
1021 				rval = handle_drv_ioctl(instance, &ioctl, mode);
1022 			} else {
1023 				rval = handle_mfi_ioctl(instance, &ioctl, mode);
1024 			}
1025 
1026 			if (ddi_copyout((void *) &ioctl, (void *)arg,
1027 			    (sizeof (struct megasas_ioctl) - 1), mode)) {
1028 				con_log(CL_ANN, (CE_WARN,
1029 				    "megasas_ioctl: copy_to_user failed\n"));
1030 				rval = 1;
1031 			}
1032 
1033 			break;
1034 		case MEGASAS_IOCTL_AEN:
1035 			if (ddi_copyin((void *) arg, &aen,
1036 			    sizeof (struct megasas_aen), mode)) {
1037 				con_log(CL_ANN, (CE_WARN,
1038 				    "megasas_ioctl: ERROR AEN copyin"));
1039 				return (EFAULT);
1040 			}
1041 
1042 			rval = handle_mfi_aen(instance, &aen);
1043 
1044 			if (ddi_copyout((void *) &aen, (void *)arg,
1045 			    sizeof (struct megasas_aen), mode)) {
1046 				con_log(CL_ANN, (CE_WARN,
1047 				    "megasas_ioctl: copy_to_user failed\n"));
1048 				rval = 1;
1049 			}
1050 
1051 			break;
1052 		default:
1053 			rval = scsi_hba_ioctl(dev, cmd, arg,
1054 			    mode, credp, rvalp);
1055 
1056 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: "
1057 			    "scsi_hba_ioctl called, ret = %x.", rval));
1058 	}
1059 
1060 	return (rval);
1061 }
1062 
1063 /*
1064  * ************************************************************************** *
1065  *                                                                            *
1066  *               common entry points - for block driver types                 *
1067  *                                                                            *
1068  * ************************************************************************** *
1069  */
1070 /*
1071  * reset - TBD
1072  * @dip:
1073  * @cmd:
1074  *
1075  * TBD
1076  */
1077 /*ARGSUSED*/
1078 static int
1079 megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
1080 {
1081 	int	instance_no;
1082 
1083 	struct megasas_instance	*instance;
1084 
1085 	instance_no = ddi_get_instance(dip);
1086 	instance = (struct megasas_instance *)ddi_get_soft_state
1087 	    (megasas_state, instance_no);
1088 
1089 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1090 
1091 	if (!instance) {
1092 		con_log(CL_ANN, (CE_WARN,
1093 		    "megaraid:%d could not get adapter in reset",
1094 		    instance_no));
1095 		return (DDI_FAILURE);
1096 	}
1097 
1098 	con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..",
1099 	    instance_no));
1100 
1101 	flush_cache(instance);
1102 
1103 	return (DDI_SUCCESS);
1104 }
1105 
1106 
1107 /*
1108  * ************************************************************************** *
1109  *                                                                            *
1110  *                          entry points (SCSI HBA)                           *
1111  *                                                                            *
1112  * ************************************************************************** *
1113  */
1114 /*
1115  * tran_tgt_init - initialize a target device instance
1116  * @hba_dip:
1117  * @tgt_dip:
1118  * @tran:
1119  * @sd:
1120  *
1121  * The tran_tgt_init() entry point enables the HBA to allocate and initialize
1122  * any per-target resources. tran_tgt_init() also enables the HBA to qualify
1123  * the device's address as valid and supportable for that particular HBA.
1124  * By returning DDI_FAILURE, the instance of the target driver for that device
1125  * is not probed or attached.
1126  */
1127 /*ARGSUSED*/
1128 static int
1129 megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
1130     scsi_hba_tran_t *tran, struct scsi_device *sd)
1131 {
1132 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1133 
1134 	return (DDI_SUCCESS);
1135 }
1136 
1137 /*
1138  * tran_init_pkt - allocate & initialize a scsi_pkt structure
1139  * @ap:
1140  * @pkt:
1141  * @bp:
1142  * @cmdlen:
1143  * @statuslen:
1144  * @tgtlen:
1145  * @flags:
1146  * @callback:
1147  *
1148  * The tran_init_pkt() entry point allocates and initializes a scsi_pkt
1149  * structure and DMA resources for a target driver request. The
1150  * tran_init_pkt() entry point is called when the target driver calls the
1151  * SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point
1152  * is a request to perform one or more of three possible services:
1153  *  - allocation and initialization of a scsi_pkt structure
1154  *  - allocation of DMA resources for data transfer
1155  *  - reallocation of DMA resources for the next portion of the data transfer
1156  */
1157 static struct scsi_pkt *
1158 megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt,
1159     struct buf *bp, int cmdlen, int statuslen, int tgtlen,
1160     int flags, int (*callback)(), caddr_t arg)
1161 {
1162 	struct scsa_cmd	*acmd;
1163 	struct megasas_instance	*instance;
1164 	struct scsi_pkt	*new_pkt;
1165 
1166 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1167 
1168 	instance = ADDR2MEGA(ap);
1169 
1170 	/* step #1 : pkt allocation */
1171 	if (pkt == NULL) {
1172 		pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen,
1173 		    tgtlen, sizeof (struct scsa_cmd), callback, arg);
1174 		if (pkt == NULL) {
1175 			return (NULL);
1176 		}
1177 
1178 		acmd = PKT2CMD(pkt);
1179 
1180 		/*
1181 		 * Initialize the new pkt - we redundantly initialize
1182 		 * all the fields for illustrative purposes.
1183 		 */
1184 		acmd->cmd_pkt		= pkt;
1185 		acmd->cmd_flags		= 0;
1186 		acmd->cmd_scblen	= statuslen;
1187 		acmd->cmd_cdblen	= cmdlen;
1188 		acmd->cmd_dmahandle	= NULL;
1189 		acmd->cmd_ncookies	= 0;
1190 		acmd->cmd_cookie	= 0;
1191 		acmd->cmd_cookiecnt	= 0;
1192 		acmd->cmd_nwin		= 0;
1193 
1194 		pkt->pkt_address	= *ap;
1195 		pkt->pkt_comp		= (void (*)())NULL;
1196 		pkt->pkt_flags		= 0;
1197 		pkt->pkt_time		= 0;
1198 		pkt->pkt_resid		= 0;
1199 		pkt->pkt_state		= 0;
1200 		pkt->pkt_statistics	= 0;
1201 		pkt->pkt_reason		= 0;
1202 		new_pkt			= pkt;
1203 	} else {
1204 		acmd = PKT2CMD(pkt);
1205 		new_pkt = NULL;
1206 	}
1207 
1208 	/* step #2 : dma allocation/move */
1209 	if (bp && bp->b_bcount != 0) {
1210 		if (acmd->cmd_dmahandle == NULL) {
1211 			if (megasas_dma_alloc(instance, pkt, bp, flags,
1212 			    callback) == -1) {
1213 				if (new_pkt) {
1214 					scsi_hba_pkt_free(ap, new_pkt);
1215 				}
1216 
1217 				return ((struct scsi_pkt *)NULL);
1218 			}
1219 		} else {
1220 			if (megasas_dma_move(instance, pkt, bp) == -1) {
1221 				return ((struct scsi_pkt *)NULL);
1222 			}
1223 		}
1224 	}
1225 
1226 	return (pkt);
1227 }
1228 
1229 /*
1230  * tran_start - transport a SCSI command to the addressed target
1231  * @ap:
1232  * @pkt:
1233  *
1234  * The tran_start() entry point for a SCSI HBA driver is called to transport a
1235  * SCSI command to the addressed target. The SCSI command is described
1236  * entirely within the scsi_pkt structure, which the target driver allocated
1237  * through the HBA driver's tran_init_pkt() entry point. If the command
1238  * involves a data transfer, DMA resources must also have been allocated for
1239  * the scsi_pkt structure.
1240  *
1241  * Return Values :
1242  *	TRAN_BUSY - request queue is full, no more free scbs
1243  *	TRAN_ACCEPT - pkt has been submitted to the instance
1244  */
1245 static int
1246 megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt)
1247 {
1248 	uchar_t 	cmd_done = 0;
1249 
1250 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1251 	struct megasas_cmd	*cmd;
1252 
1253 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x",
1254 	    __func__, __LINE__, pkt->pkt_cdbp[0]));
1255 
1256 	pkt->pkt_reason	= CMD_CMPLT;
1257 	*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
1258 
1259 	cmd = build_cmd(instance, ap, pkt, &cmd_done);
1260 
1261 	/*
1262 	 * Check if the command is already completed by the mega_build_cmd()
1263 	 * routine. In which case the busy_flag would be clear and scb will be
1264 	 * NULL and appropriate reason provided in pkt_reason field
1265 	 */
1266 	if (cmd_done) {
1267 		if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
1268 			scsi_hba_pkt_comp(pkt);
1269 		}
1270 		pkt->pkt_reason = CMD_CMPLT;
1271 		pkt->pkt_scbp[0] = STATUS_GOOD;
1272 		pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET
1273 		    | STATE_SENT_CMD;
1274 		return (TRAN_ACCEPT);
1275 	}
1276 
1277 	if (cmd == NULL) {
1278 		return (TRAN_BUSY);
1279 	}
1280 
1281 	if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
1282 		if (instance->fw_outstanding > instance->max_fw_cmds) {
1283 			con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy"));
1284 			return_mfi_pkt(instance, cmd);
1285 			return (TRAN_BUSY);
1286 		}
1287 
1288 		/* Syncronize the Cmd frame for the controller */
1289 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0,
1290 		    DDI_DMA_SYNC_FORDEV);
1291 
1292 		instance->func_ptr->issue_cmd(cmd, instance);
1293 
1294 	} else {
1295 		struct megasas_header *hdr = &cmd->frame->hdr;
1296 
1297 		cmd->sync_cmd = MEGASAS_TRUE;
1298 
1299 		instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd);
1300 
1301 		pkt->pkt_reason		= CMD_CMPLT;
1302 		pkt->pkt_statistics	= 0;
1303 		pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS;
1304 
1305 		switch (hdr->cmd_status) {
1306 		case MFI_STAT_OK:
1307 			pkt->pkt_scbp[0] = STATUS_GOOD;
1308 			break;
1309 
1310 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
1311 
1312 			pkt->pkt_reason	= CMD_CMPLT;
1313 			pkt->pkt_statistics = 0;
1314 
1315 			((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1;
1316 			break;
1317 
1318 		case MFI_STAT_DEVICE_NOT_FOUND:
1319 			pkt->pkt_reason		= CMD_DEV_GONE;
1320 			pkt->pkt_statistics	= STAT_DISCON;
1321 			break;
1322 
1323 		default:
1324 			((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1;
1325 		}
1326 
1327 		return_mfi_pkt(instance, cmd);
1328 		(void) megasas_common_check(instance, cmd);
1329 
1330 		scsi_hba_pkt_comp(pkt);
1331 
1332 	}
1333 
1334 	return (TRAN_ACCEPT);
1335 }
1336 
1337 /*
1338  * tran_abort - Abort any commands that are currently in transport
1339  * @ap:
1340  * @pkt:
1341  *
1342  * The tran_abort() entry point for a SCSI HBA driver is called to abort any
1343  * commands that are currently in transport for a particular target. This entry
1344  * point is called when a target driver calls scsi_abort(). The tran_abort()
1345  * entry point should attempt to abort the command denoted by the pkt
1346  * parameter. If the pkt parameter is NULL, tran_abort() should attempt to
1347  * abort all outstanding commands in the transport layer for the particular
1348  * target or logical unit.
1349  */
1350 /*ARGSUSED*/
1351 static int
1352 megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
1353 {
1354 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1355 
1356 	/* aborting command not supported by H/W */
1357 
1358 	return (DDI_FAILURE);
1359 }
1360 
1361 /*
1362  * tran_reset - reset either the SCSI bus or target
1363  * @ap:
1364  * @level:
1365  *
1366  * The tran_reset() entry point for a SCSI HBA driver is called to reset either
1367  * the SCSI bus or a particular SCSI target device. This entry point is called
1368  * when a target driver calls scsi_reset(). The tran_reset() entry point must
1369  * reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the
1370  * particular target or logical unit must be reset.
1371  */
1372 /*ARGSUSED*/
1373 static int
1374 megasas_tran_reset(struct scsi_address *ap, int level)
1375 {
1376 	struct megasas_instance *instance = ADDR2MEGA(ap);
1377 
1378 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1379 
1380 	if (wait_for_outstanding(instance)) {
1381 		return (DDI_FAILURE);
1382 	} else {
1383 		return (DDI_SUCCESS);
1384 	}
1385 }
1386 
1387 /*
1388  * tran_bus_reset - reset the SCSI bus
1389  * @dip:
1390  * @level:
1391  *
1392  * The tran_bus_reset() vector in the scsi_hba_tran structure should be
1393  * initialized during the HBA driver's attach(). The vector should point to
1394  * an HBA entry point that is to be called when a user initiates a bus reset.
1395  * Implementation is hardware specific. If the HBA driver cannot reset the
1396  * SCSI bus without affecting the targets, the driver should fail RESET_BUS
1397  * or not initialize this vector.
1398  */
1399 /*ARGSUSED*/
1400 static int
1401 megasas_tran_bus_reset(dev_info_t *dip, int level)
1402 {
1403 	int	instance_no = ddi_get_instance(dip);
1404 
1405 	struct megasas_instance	*instance = ddi_get_soft_state(megasas_state,
1406 	    instance_no);
1407 
1408 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1409 
1410 	if (wait_for_outstanding(instance)) {
1411 		return (DDI_FAILURE);
1412 	} else {
1413 		return (DDI_SUCCESS);
1414 	}
1415 }
1416 
1417 /*
1418  * tran_getcap - get one of a set of SCSA-defined capabilities
1419  * @ap:
1420  * @cap:
1421  * @whom:
1422  *
1423  * The target driver can request the current setting of the capability for a
1424  * particular target by setting the whom parameter to nonzero. A whom value of
1425  * zero indicates a request for the current setting of the general capability
1426  * for the SCSI bus or for adapter hardware. The tran_getcap() should return -1
1427  * for undefined capabilities or the current value of the requested capability.
1428  */
1429 /*ARGSUSED*/
1430 static int
1431 megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom)
1432 {
1433 	int	rval = 0;
1434 
1435 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1436 
1437 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1438 
1439 	/* we do allow inquiring about capabilities for other targets */
1440 	if (cap == NULL) {
1441 		return (-1);
1442 	}
1443 
1444 	switch (scsi_hba_lookup_capstr(cap)) {
1445 		case SCSI_CAP_DMA_MAX:
1446 			/* Limit to 16MB max transfer */
1447 			rval = megasas_max_cap_maxxfer;
1448 			break;
1449 		case SCSI_CAP_MSG_OUT:
1450 			rval = 1;
1451 			break;
1452 		case SCSI_CAP_DISCONNECT:
1453 			rval = 0;
1454 			break;
1455 		case SCSI_CAP_SYNCHRONOUS:
1456 			rval = 0;
1457 			break;
1458 		case SCSI_CAP_WIDE_XFER:
1459 			rval = 1;
1460 			break;
1461 		case SCSI_CAP_TAGGED_QING:
1462 			rval = 1;
1463 			break;
1464 		case SCSI_CAP_UNTAGGED_QING:
1465 			rval = 1;
1466 			break;
1467 		case SCSI_CAP_PARITY:
1468 			rval = 1;
1469 			break;
1470 		case SCSI_CAP_INITIATOR_ID:
1471 			rval = instance->init_id;
1472 			break;
1473 		case SCSI_CAP_ARQ:
1474 			rval = 1;
1475 			break;
1476 		case SCSI_CAP_LINKED_CMDS:
1477 			rval = 0;
1478 			break;
1479 		case SCSI_CAP_RESET_NOTIFICATION:
1480 			rval = 1;
1481 			break;
1482 		case SCSI_CAP_GEOMETRY:
1483 			rval = -1;
1484 
1485 			break;
1486 		default:
1487 			con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x",
1488 			    scsi_hba_lookup_capstr(cap)));
1489 			rval = -1;
1490 			break;
1491 	}
1492 
1493 	return (rval);
1494 }
1495 
1496 /*
1497  * tran_setcap - set one of a set of SCSA-defined capabilities
1498  * @ap:
1499  * @cap:
1500  * @value:
1501  * @whom:
1502  *
1503  * The target driver might request that the new value be set for a particular
1504  * target by setting the whom parameter to nonzero. A whom value of zero
1505  * means that request is to set the new value for the SCSI bus or for adapter
1506  * hardware in general.
1507  * The tran_setcap() should return the following values as appropriate:
1508  * - -1 for undefined capabilities
1509  * - 0 if the HBA driver cannot set the capability to the requested value
1510  * - 1 if the HBA driver is able to set the capability to the requested value
1511  */
1512 /*ARGSUSED*/
1513 static int
1514 megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
1515 {
1516 	int		rval = 1;
1517 
1518 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1519 
1520 	/* We don't allow setting capabilities for other targets */
1521 	if (cap == NULL || whom == 0) {
1522 		return (-1);
1523 	}
1524 
1525 	switch (scsi_hba_lookup_capstr(cap)) {
1526 		case SCSI_CAP_DMA_MAX:
1527 		case SCSI_CAP_MSG_OUT:
1528 		case SCSI_CAP_PARITY:
1529 		case SCSI_CAP_LINKED_CMDS:
1530 		case SCSI_CAP_RESET_NOTIFICATION:
1531 		case SCSI_CAP_DISCONNECT:
1532 		case SCSI_CAP_SYNCHRONOUS:
1533 		case SCSI_CAP_UNTAGGED_QING:
1534 		case SCSI_CAP_WIDE_XFER:
1535 		case SCSI_CAP_INITIATOR_ID:
1536 		case SCSI_CAP_ARQ:
1537 			/*
1538 			 * None of these are settable via
1539 			 * the capability interface.
1540 			 */
1541 			break;
1542 		case SCSI_CAP_TAGGED_QING:
1543 			rval = 1;
1544 			break;
1545 		case SCSI_CAP_SECTOR_SIZE:
1546 			rval = 1;
1547 			break;
1548 
1549 		case SCSI_CAP_TOTAL_SECTORS:
1550 			rval = 1;
1551 			break;
1552 		default:
1553 			rval = -1;
1554 			break;
1555 	}
1556 
1557 	return (rval);
1558 }
1559 
1560 /*
1561  * tran_destroy_pkt - deallocate scsi_pkt structure
1562  * @ap:
1563  * @pkt:
1564  *
1565  * The tran_destroy_pkt() entry point is the HBA driver function that
1566  * deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is
1567  * called when the target driver calls scsi_destroy_pkt(). The
1568  * tran_destroy_pkt() entry point must free any DMA resources that have been
1569  * allocated for the packet. An implicit DMA synchronization occurs if the
1570  * DMA resources are freed and any cached data remains after the completion
1571  * of the transfer.
1572  */
1573 static void
1574 megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1575 {
1576 	struct scsa_cmd *acmd = PKT2CMD(pkt);
1577 
1578 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1579 
1580 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1581 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1582 
1583 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1584 
1585 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1586 
1587 		acmd->cmd_dmahandle = NULL;
1588 	}
1589 
1590 	/* free the pkt */
1591 	scsi_hba_pkt_free(ap, pkt);
1592 }
1593 
1594 /*
1595  * tran_dmafree - deallocates DMA resources
1596  * @ap:
1597  * @pkt:
1598  *
1599  * The tran_dmafree() entry point deallocates DMAQ resources that have been
1600  * allocated for a scsi_pkt structure. The tran_dmafree() entry point is
1601  * called when the target driver calls scsi_dmafree(). The tran_dmafree() must
1602  * free only DMA resources allocated for a scsi_pkt structure, not the
1603  * scsi_pkt itself. When DMA resources are freed, a DMA synchronization is
1604  * implicitly performed.
1605  */
1606 /*ARGSUSED*/
1607 static void
1608 megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
1609 {
1610 	register struct scsa_cmd *acmd = PKT2CMD(pkt);
1611 
1612 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1613 
1614 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1615 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1616 
1617 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1618 
1619 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1620 
1621 		acmd->cmd_dmahandle = NULL;
1622 	}
1623 }
1624 
1625 /*
1626  * tran_sync_pkt - synchronize the DMA object allocated
1627  * @ap:
1628  * @pkt:
1629  *
1630  * The tran_sync_pkt() entry point synchronizes the DMA object allocated for
1631  * the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt()
1632  * entry point is called when the target driver calls scsi_sync_pkt(). If the
1633  * data transfer direction is a DMA read from device to memory, tran_sync_pkt()
1634  * must synchronize the CPU's view of the data. If the data transfer direction
1635  * is a DMA write from memory to device, tran_sync_pkt() must synchronize the
1636  * device's view of the data.
1637  */
1638 /*ARGSUSED*/
1639 static void
1640 megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1641 {
1642 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1643 
1644 	/*
1645 	 * following 'ddi_dma_sync()' API call
1646 	 * already called for each I/O in the ISR
1647 	 */
1648 #if 0
1649 	int	i;
1650 
1651 	register struct scsa_cmd	*acmd = PKT2CMD(pkt);
1652 
1653 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1654 		(void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset,
1655 		    acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ?
1656 		    DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);
1657 	}
1658 #endif
1659 }
1660 
1661 /*ARGSUSED*/
1662 static int
1663 megasas_tran_quiesce(dev_info_t *dip)
1664 {
1665 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1666 
1667 	return (1);
1668 }
1669 
1670 /*ARGSUSED*/
1671 static int
1672 megasas_tran_unquiesce(dev_info_t *dip)
1673 {
1674 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1675 
1676 	return (1);
1677 }
1678 
1679 /*
1680  * megasas_isr(caddr_t)
1681  *
1682  * The Interrupt Service Routine
1683  *
1684  * Collect status for all completed commands and do callback
1685  *
1686  */
1687 static uint_t
1688 megasas_isr(struct megasas_instance *instance)
1689 {
1690 	int		need_softintr;
1691 	uint32_t	producer;
1692 	uint32_t	consumer;
1693 	uint32_t	context;
1694 
1695 	struct megasas_cmd	*cmd;
1696 
1697 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1698 
1699 	ASSERT(instance);
1700 	if (!instance->func_ptr->intr_ack(instance)) {
1701 		return (DDI_INTR_UNCLAIMED);
1702 	}
1703 
1704 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1705 	    0, 0, DDI_DMA_SYNC_FORCPU);
1706 
1707 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
1708 	    != DDI_SUCCESS) {
1709 		megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
1710 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
1711 		return (DDI_INTR_UNCLAIMED);
1712 	}
1713 
1714 	producer = *instance->producer;
1715 	consumer = *instance->consumer;
1716 
1717 	con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ",
1718 	    producer, consumer));
1719 
1720 	mutex_enter(&instance->completed_pool_mtx);
1721 
1722 	while (consumer != producer) {
1723 		context = instance->reply_queue[consumer];
1724 		cmd = instance->cmd_list[context];
1725 		mlist_add_tail(&cmd->list, &instance->completed_pool_list);
1726 
1727 		consumer++;
1728 		if (consumer == (instance->max_fw_cmds + 1)) {
1729 			consumer = 0;
1730 		}
1731 	}
1732 
1733 	mutex_exit(&instance->completed_pool_mtx);
1734 
1735 	*instance->consumer = consumer;
1736 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1737 	    0, 0, DDI_DMA_SYNC_FORDEV);
1738 
1739 	if (instance->softint_running) {
1740 		need_softintr = 0;
1741 	} else {
1742 		need_softintr = 1;
1743 	}
1744 
1745 	if (instance->isr_level == HIGH_LEVEL_INTR) {
1746 		if (need_softintr) {
1747 			ddi_trigger_softintr(instance->soft_intr_id);
1748 		}
1749 	} else {
1750 		/*
1751 		 * Not a high-level interrupt, therefore call the soft level
1752 		 * interrupt explicitly
1753 		 */
1754 		(void) megasas_softintr(instance);
1755 	}
1756 
1757 	return (DDI_INTR_CLAIMED);
1758 }
1759 
1760 
1761 /*
1762  * ************************************************************************** *
1763  *                                                                            *
1764  *                                  libraries                                 *
1765  *                                                                            *
1766  * ************************************************************************** *
1767  */
1768 /*
1769  * get_mfi_pkt : Get a command from the free pool
1770  */
1771 static struct megasas_cmd *
1772 get_mfi_pkt(struct megasas_instance *instance)
1773 {
1774 	mlist_t 		*head = &instance->cmd_pool_list;
1775 	struct megasas_cmd	*cmd = NULL;
1776 
1777 	mutex_enter(&instance->cmd_pool_mtx);
1778 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1779 
1780 	if (!mlist_empty(head)) {
1781 		cmd = mlist_entry(head->next, struct megasas_cmd, list);
1782 		mlist_del_init(head->next);
1783 	}
1784 	if (cmd != NULL)
1785 		cmd->pkt = NULL;
1786 	mutex_exit(&instance->cmd_pool_mtx);
1787 
1788 	return (cmd);
1789 }
1790 
1791 /*
1792  * return_mfi_pkt : Return a cmd to free command pool
1793  */
1794 static void
1795 return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd)
1796 {
1797 	mutex_enter(&instance->cmd_pool_mtx);
1798 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1799 
1800 	mlist_add(&cmd->list, &instance->cmd_pool_list);
1801 
1802 	mutex_exit(&instance->cmd_pool_mtx);
1803 }
1804 
1805 /*
1806  * destroy_mfi_frame_pool
1807  */
1808 static void
1809 destroy_mfi_frame_pool(struct megasas_instance *instance)
1810 {
1811 	int		i;
1812 	uint32_t	max_cmd = instance->max_fw_cmds;
1813 
1814 	struct megasas_cmd	*cmd;
1815 
1816 	/* return all frames to pool */
1817 	for (i = 0; i < max_cmd; i++) {
1818 
1819 		cmd = instance->cmd_list[i];
1820 
1821 		if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED)
1822 			(void) mega_free_dma_obj(instance, cmd->frame_dma_obj);
1823 
1824 		cmd->frame_dma_obj_status  = DMA_OBJ_FREED;
1825 	}
1826 
1827 }
1828 
1829 /*
1830  * create_mfi_frame_pool
1831  */
1832 static int
1833 create_mfi_frame_pool(struct megasas_instance *instance)
1834 {
1835 	int		i = 0;
1836 	int		cookie_cnt;
1837 	uint16_t	max_cmd;
1838 	uint16_t	sge_sz;
1839 	uint32_t	sgl_sz;
1840 	uint32_t	tot_frame_size;
1841 
1842 	struct megasas_cmd	*cmd;
1843 
1844 	max_cmd = instance->max_fw_cmds;
1845 
1846 	sge_sz	= sizeof (struct megasas_sge64);
1847 
1848 	/* calculated the number of 64byte frames required for SGL */
1849 	sgl_sz		= sge_sz * instance->max_num_sge;
1850 	tot_frame_size	= sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH;
1851 
1852 	con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: "
1853 	    "sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size));
1854 
1855 	while (i < max_cmd) {
1856 		cmd = instance->cmd_list[i];
1857 
1858 		cmd->frame_dma_obj.size	= tot_frame_size;
1859 		cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr;
1860 		cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1861 		cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1862 		cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1;
1863 		cmd->frame_dma_obj.dma_attr.dma_attr_align = 64;
1864 
1865 
1866 		cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj);
1867 
1868 		if (cookie_cnt == -1 || cookie_cnt > 1) {
1869 			con_log(CL_ANN, (CE_WARN,
1870 			    "create_mfi_frame_pool: could not alloc."));
1871 			return (DDI_FAILURE);
1872 		}
1873 
1874 		bzero(cmd->frame_dma_obj.buffer, tot_frame_size);
1875 
1876 		cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED;
1877 		cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer;
1878 		cmd->frame_phys_addr =
1879 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address;
1880 
1881 		cmd->sense = (uint8_t *)(((unsigned long)
1882 		    cmd->frame_dma_obj.buffer) +
1883 		    tot_frame_size - SENSE_LENGTH);
1884 		cmd->sense_phys_addr =
1885 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address +
1886 		    tot_frame_size - SENSE_LENGTH;
1887 
1888 		if (!cmd->frame || !cmd->sense) {
1889 			con_log(CL_ANN, (CE_NOTE,
1890 			    "megasas: pci_pool_alloc failed \n"));
1891 
1892 			return (-ENOMEM);
1893 		}
1894 
1895 		cmd->frame->io.context = cmd->index;
1896 		i++;
1897 
1898 		con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x",
1899 		    cmd->frame->io.context, cmd->frame_phys_addr));
1900 	}
1901 
1902 	return (DDI_SUCCESS);
1903 }
1904 
1905 /*
1906  * free_additional_dma_buffer
1907  */
1908 static void
1909 free_additional_dma_buffer(struct megasas_instance *instance)
1910 {
1911 	if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) {
1912 		(void) mega_free_dma_obj(instance,
1913 		    instance->mfi_internal_dma_obj);
1914 		instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED;
1915 	}
1916 
1917 	if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) {
1918 		(void) mega_free_dma_obj(instance,
1919 		    instance->mfi_evt_detail_obj);
1920 		instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED;
1921 	}
1922 }
1923 
1924 /*
1925  * alloc_additional_dma_buffer
1926  */
1927 static int
1928 alloc_additional_dma_buffer(struct megasas_instance *instance)
1929 {
1930 	uint32_t	reply_q_sz;
1931 	uint32_t	internal_buf_size = PAGESIZE*2;
1932 
1933 	/* max cmds plus 1 + producer & consumer */
1934 	reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2);
1935 
1936 	instance->mfi_internal_dma_obj.size = internal_buf_size;
1937 	instance->mfi_internal_dma_obj.dma_attr	= megasas_generic_dma_attr;
1938 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1939 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max =
1940 	    0xFFFFFFFFU;
1941 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen	= 1;
1942 
1943 	if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj)
1944 	    != 1) {
1945 		con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q"));
1946 		return (DDI_FAILURE);
1947 	}
1948 
1949 	bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size);
1950 
1951 	instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED;
1952 
1953 	instance->producer = (uint32_t *)((unsigned long)
1954 	    instance->mfi_internal_dma_obj.buffer);
1955 	instance->consumer = (uint32_t *)((unsigned long)
1956 	    instance->mfi_internal_dma_obj.buffer + 4);
1957 	instance->reply_queue = (uint32_t *)((unsigned long)
1958 	    instance->mfi_internal_dma_obj.buffer + 8);
1959 	instance->internal_buf = (caddr_t)(((unsigned long)
1960 	    instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8);
1961 	instance->internal_buf_dmac_add =
1962 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address +
1963 	    reply_q_sz;
1964 	instance->internal_buf_size = internal_buf_size -
1965 	    (reply_q_sz + 8);
1966 
1967 	/* allocate evt_detail */
1968 	instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail);
1969 	instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr;
1970 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1971 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1972 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1;
1973 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1;
1974 
1975 	if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) {
1976 		con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: "
1977 		    "could not data transfer buffer alloc."));
1978 		return (DDI_FAILURE);
1979 	}
1980 
1981 	bzero(instance->mfi_evt_detail_obj.buffer,
1982 	    sizeof (struct megasas_evt_detail));
1983 
1984 	instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED;
1985 
1986 	return (DDI_SUCCESS);
1987 }
1988 
1989 /*
1990  * free_space_for_mfi
1991  */
1992 static void
1993 free_space_for_mfi(struct megasas_instance *instance)
1994 {
1995 	int		i;
1996 	uint32_t	max_cmd = instance->max_fw_cmds;
1997 
1998 	/* already freed */
1999 	if (instance->cmd_list == NULL) {
2000 		return;
2001 	}
2002 
2003 	free_additional_dma_buffer(instance);
2004 
2005 	/* first free the MFI frame pool */
2006 	destroy_mfi_frame_pool(instance);
2007 
2008 	/* free all the commands in the cmd_list */
2009 	for (i = 0; i < instance->max_fw_cmds; i++) {
2010 		kmem_free(instance->cmd_list[i],
2011 		    sizeof (struct megasas_cmd));
2012 
2013 		instance->cmd_list[i] = NULL;
2014 	}
2015 
2016 	/* free the cmd_list buffer itself */
2017 	kmem_free(instance->cmd_list,
2018 	    sizeof (struct megasas_cmd *) * max_cmd);
2019 
2020 	instance->cmd_list = NULL;
2021 
2022 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2023 }
2024 
2025 /*
2026  * alloc_space_for_mfi
2027  */
2028 static int
2029 alloc_space_for_mfi(struct megasas_instance *instance)
2030 {
2031 	int		i;
2032 	uint32_t	max_cmd;
2033 	size_t		sz;
2034 
2035 	struct megasas_cmd	*cmd;
2036 
2037 	max_cmd = instance->max_fw_cmds;
2038 	sz = sizeof (struct megasas_cmd *) * max_cmd;
2039 
2040 	/*
2041 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
2042 	 * Allocate the dynamic array first and then allocate individual
2043 	 * commands.
2044 	 */
2045 	instance->cmd_list = kmem_zalloc(sz, KM_SLEEP);
2046 	ASSERT(instance->cmd_list);
2047 
2048 	for (i = 0; i < max_cmd; i++) {
2049 		instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd),
2050 		    KM_SLEEP);
2051 		ASSERT(instance->cmd_list[i]);
2052 	}
2053 
2054 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2055 
2056 	/* add all the commands to command pool (instance->cmd_pool) */
2057 	for (i = 0; i < max_cmd; i++) {
2058 		cmd		= instance->cmd_list[i];
2059 		cmd->index	= i;
2060 
2061 		mlist_add_tail(&cmd->list, &instance->cmd_pool_list);
2062 	}
2063 
2064 	/* create a frame pool and assign one frame to each cmd */
2065 	if (create_mfi_frame_pool(instance)) {
2066 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2067 		return (DDI_FAILURE);
2068 	}
2069 
2070 	/* create a frame pool and assign one frame to each cmd */
2071 	if (alloc_additional_dma_buffer(instance)) {
2072 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2073 		return (DDI_FAILURE);
2074 	}
2075 
2076 	return (DDI_SUCCESS);
2077 }
2078 
2079 /*
2080  * get_ctrl_info
2081  */
2082 static int
2083 get_ctrl_info(struct megasas_instance *instance,
2084     struct megasas_ctrl_info *ctrl_info)
2085 {
2086 	int	ret = 0;
2087 
2088 	struct megasas_cmd		*cmd;
2089 	struct megasas_dcmd_frame	*dcmd;
2090 	struct megasas_ctrl_info	*ci;
2091 
2092 	cmd = get_mfi_pkt(instance);
2093 
2094 	if (!cmd) {
2095 		con_log(CL_ANN, (CE_WARN,
2096 		    "Failed to get a cmd for ctrl info\n"));
2097 		return (DDI_FAILURE);
2098 	}
2099 
2100 	dcmd = &cmd->frame->dcmd;
2101 
2102 	ci = (struct megasas_ctrl_info *)instance->internal_buf;
2103 
2104 	if (!ci) {
2105 		con_log(CL_ANN, (CE_WARN,
2106 		    "Failed to alloc mem for ctrl info\n"));
2107 		return_mfi_pkt(instance, cmd);
2108 		return (DDI_FAILURE);
2109 	}
2110 
2111 	(void) memset(ci, 0, sizeof (struct megasas_ctrl_info));
2112 
2113 	/* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */
2114 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2115 
2116 	dcmd->cmd			= MFI_CMD_OP_DCMD;
2117 	dcmd->cmd_status		= MFI_CMD_STATUS_POLL_MODE;
2118 	dcmd->sge_count			= 1;
2119 	dcmd->flags			= MFI_FRAME_DIR_READ;
2120 	dcmd->timeout			= 0;
2121 	dcmd->data_xfer_len		= sizeof (struct megasas_ctrl_info);
2122 	dcmd->opcode			= MR_DCMD_CTRL_GET_INFO;
2123 	dcmd->sgl.sge32[0].phys_addr	= instance->internal_buf_dmac_add;
2124 	dcmd->sgl.sge32[0].length	= sizeof (struct megasas_ctrl_info);
2125 
2126 	cmd->frame_count = 1;
2127 
2128 	if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2129 		ret = 0;
2130 		(void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info));
2131 	} else {
2132 		con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n"));
2133 		ret = -1;
2134 	}
2135 
2136 	return_mfi_pkt(instance, cmd);
2137 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2138 		ret = -1;
2139 	}
2140 
2141 	return (ret);
2142 }
2143 
2144 /*
2145  * abort_aen_cmd
2146  */
2147 static int
2148 abort_aen_cmd(struct megasas_instance *instance,
2149     struct megasas_cmd *cmd_to_abort)
2150 {
2151 	int	ret = 0;
2152 
2153 	struct megasas_cmd		*cmd;
2154 	struct megasas_abort_frame	*abort_fr;
2155 
2156 	cmd = get_mfi_pkt(instance);
2157 
2158 	if (!cmd) {
2159 		con_log(CL_ANN, (CE_WARN,
2160 		    "Failed to get a cmd for ctrl info\n"));
2161 		return (DDI_FAILURE);
2162 	}
2163 
2164 	abort_fr = &cmd->frame->abort;
2165 
2166 	/* prepare and issue the abort frame */
2167 	abort_fr->cmd = MFI_CMD_OP_ABORT;
2168 	abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE;
2169 	abort_fr->flags = 0;
2170 	abort_fr->abort_context = cmd_to_abort->index;
2171 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
2172 	abort_fr->abort_mfi_phys_addr_hi = 0;
2173 
2174 	instance->aen_cmd->abort_aen = 1;
2175 
2176 	cmd->sync_cmd = MEGASAS_TRUE;
2177 	cmd->frame_count = 1;
2178 
2179 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2180 		con_log(CL_ANN, (CE_WARN,
2181 		    "abort_aen_cmd: issue_cmd_in_sync_mode failed\n"));
2182 		ret = -1;
2183 	} else {
2184 		ret = 0;
2185 	}
2186 
2187 	instance->aen_cmd->abort_aen = 1;
2188 	instance->aen_cmd = 0;
2189 
2190 	return_mfi_pkt(instance, cmd);
2191 	(void) megasas_common_check(instance, cmd);
2192 
2193 	return (ret);
2194 }
2195 
2196 /*
2197  * init_mfi
2198  */
2199 static int
2200 init_mfi(struct megasas_instance *instance)
2201 {
2202 	off_t				reglength;
2203 	struct megasas_cmd		*cmd;
2204 	struct megasas_ctrl_info	ctrl_info;
2205 	struct megasas_init_frame	*init_frame;
2206 	struct megasas_init_queue_info	*initq_info;
2207 
2208 	if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, &reglength)
2209 	    != DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) {
2210 		return (DDI_FAILURE);
2211 	}
2212 
2213 	if (reglength > DEFAULT_MFI_MEM_SZ) {
2214 		reglength = DEFAULT_MFI_MEM_SZ;
2215 		con_log(CL_DLEVEL1, (CE_NOTE,
2216 		    "mega: register length to map is 0x%lx bytes", reglength));
2217 	}
2218 
2219 	if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO,
2220 	    &instance->regmap, 0, reglength, &endian_attr,
2221 	    &instance->regmap_handle) != DDI_SUCCESS) {
2222 		con_log(CL_ANN, (CE_NOTE,
2223 		    "megaraid: couldn't map control registers"));
2224 
2225 		goto fail_mfi_reg_setup;
2226 	}
2227 
2228 	/* we expect the FW state to be READY */
2229 	if (mfi_state_transition_to_ready(instance)) {
2230 		con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready"));
2231 		goto fail_ready_state;
2232 	}
2233 
2234 	/* get various operational parameters from status register */
2235 	instance->max_num_sge =
2236 	    (instance->func_ptr->read_fw_status_reg(instance) &
2237 	    0xFF0000) >> 0x10;
2238 	/*
2239 	 * Reduce the max supported cmds by 1. This is to ensure that the
2240 	 * reply_q_sz (1 more than the max cmd that driver may send)
2241 	 * does not exceed max cmds that the FW can support
2242 	 */
2243 	instance->max_fw_cmds =
2244 	    instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF;
2245 	instance->max_fw_cmds = instance->max_fw_cmds - 1;
2246 
2247 	instance->max_num_sge =
2248 	    (instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ?
2249 	    MEGASAS_MAX_SGE_CNT : instance->max_num_sge;
2250 
2251 	/* create a pool of commands */
2252 	if (alloc_space_for_mfi(instance))
2253 		goto fail_alloc_fw_space;
2254 
2255 	/* disable interrupt for initial preparation */
2256 	instance->func_ptr->disable_intr(instance);
2257 
2258 	/*
2259 	 * Prepare a init frame. Note the init frame points to queue info
2260 	 * structure. Each frame has SGL allocated after first 64 bytes. For
2261 	 * this frame - since we don't need any SGL - we use SGL's space as
2262 	 * queue info structure
2263 	 */
2264 	cmd = get_mfi_pkt(instance);
2265 
2266 	init_frame = (struct megasas_init_frame *)cmd->frame;
2267 	initq_info = (struct megasas_init_queue_info *)
2268 	    ((unsigned long)init_frame + 64);
2269 
2270 	(void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
2271 	(void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info));
2272 
2273 	initq_info->init_flags = 0;
2274 
2275 	initq_info->reply_queue_entries	= instance->max_fw_cmds + 1;
2276 
2277 	initq_info->producer_index_phys_addr_hi	= 0;
2278 	initq_info->producer_index_phys_addr_lo =
2279 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address;
2280 
2281 	initq_info->consumer_index_phys_addr_hi = 0;
2282 	initq_info->consumer_index_phys_addr_lo =
2283 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4;
2284 
2285 	initq_info->reply_queue_start_phys_addr_hi = 0;
2286 	initq_info->reply_queue_start_phys_addr_lo =
2287 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8;
2288 
2289 	init_frame->cmd				= MFI_CMD_OP_INIT;
2290 	init_frame->cmd_status			= MFI_CMD_STATUS_POLL_MODE;
2291 	init_frame->flags			= 0;
2292 	init_frame->queue_info_new_phys_addr_lo	=
2293 	    cmd->frame_phys_addr + 64;
2294 	init_frame->queue_info_new_phys_addr_hi	= 0;
2295 
2296 	init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info);
2297 
2298 	cmd->frame_count = 1;
2299 
2300 	/* issue the init frame in polled mode */
2301 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2302 		con_log(CL_ANN, (CE_WARN, "failed to init firmware"));
2303 		goto fail_fw_init;
2304 	}
2305 
2306 	return_mfi_pkt(instance, cmd);
2307 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2308 		goto fail_fw_init;
2309 	}
2310 
2311 	/* gather misc FW related information */
2312 	if (!get_ctrl_info(instance, &ctrl_info)) {
2313 		instance->max_sectors_per_req = ctrl_info.max_request_size;
2314 		con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d",
2315 		    ctrl_info.product_name, ctrl_info.ld_present_count));
2316 	} else {
2317 		instance->max_sectors_per_req = instance->max_num_sge *
2318 		    PAGESIZE / 512;
2319 	}
2320 
2321 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2322 		goto fail_fw_init;
2323 	}
2324 
2325 	return (0);
2326 
2327 fail_fw_init:
2328 fail_alloc_fw_space:
2329 
2330 	free_space_for_mfi(instance);
2331 
2332 fail_ready_state:
2333 	ddi_regs_map_free(&instance->regmap_handle);
2334 
2335 fail_mfi_reg_setup:
2336 	return (DDI_FAILURE);
2337 }
2338 
2339 /*
2340  * mfi_state_transition_to_ready	: Move the FW to READY state
2341  *
2342  * @reg_set			: MFI register set
2343  */
2344 static int
2345 mfi_state_transition_to_ready(struct megasas_instance *instance)
2346 {
2347 	int		i;
2348 	uint8_t		max_wait;
2349 	uint32_t	fw_ctrl;
2350 	uint32_t	fw_state;
2351 	uint32_t	cur_state;
2352 
2353 	fw_state =
2354 	    instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK;
2355 	con_log(CL_ANN1, (CE_NOTE,
2356 	    "mfi_state_transition_to_ready:FW state = 0x%x", fw_state));
2357 
2358 	while (fw_state != MFI_STATE_READY) {
2359 		con_log(CL_ANN, (CE_NOTE,
2360 		    "mfi_state_transition_to_ready:FW state%x", fw_state));
2361 
2362 		switch (fw_state) {
2363 		case MFI_STATE_FAULT:
2364 			con_log(CL_ANN, (CE_NOTE,
2365 			    "megasas: FW in FAULT state!!"));
2366 
2367 			return (-ENODEV);
2368 		case MFI_STATE_WAIT_HANDSHAKE:
2369 			/* set the CLR bit in IMR0 */
2370 			con_log(CL_ANN, (CE_NOTE,
2371 			    "megasas: FW waiting for HANDSHAKE"));
2372 			/*
2373 			 * PCI_Hot Plug: MFI F/W requires
2374 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2375 			 * to be set
2376 			 */
2377 			/* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */
2378 			WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE |
2379 			    MFI_INIT_HOTPLUG, instance);
2380 
2381 			max_wait	= 2;
2382 			cur_state	= MFI_STATE_WAIT_HANDSHAKE;
2383 			break;
2384 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2385 			/* set the CLR bit in IMR0 */
2386 			con_log(CL_ANN, (CE_NOTE,
2387 			    "megasas: FW state boot message pending"));
2388 			/*
2389 			 * PCI_Hot Plug: MFI F/W requires
2390 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2391 			 * to be set
2392 			 */
2393 			WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance);
2394 
2395 			max_wait	= 10;
2396 			cur_state	= MFI_STATE_BOOT_MESSAGE_PENDING;
2397 			break;
2398 		case MFI_STATE_OPERATIONAL:
2399 			/* bring it to READY state; assuming max wait 2 secs */
2400 			instance->func_ptr->disable_intr(instance);
2401 			con_log(CL_ANN1, (CE_NOTE,
2402 			    "megasas: FW in OPERATIONAL state"));
2403 			/*
2404 			 * PCI_Hot Plug: MFI F/W requires
2405 			 * (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT)
2406 			 * to be set
2407 			 */
2408 			/* WR_IB_DOORBELL(MFI_INIT_READY, instance); */
2409 			WR_IB_DOORBELL(MFI_RESET_FLAGS, instance);
2410 
2411 			max_wait	= 10;
2412 			cur_state	= MFI_STATE_OPERATIONAL;
2413 			break;
2414 		case MFI_STATE_UNDEFINED:
2415 			/* this state should not last for more than 2 seconds */
2416 			con_log(CL_ANN, (CE_NOTE, "FW state undefined\n"));
2417 
2418 			max_wait	= 2;
2419 			cur_state	= MFI_STATE_UNDEFINED;
2420 			break;
2421 		case MFI_STATE_BB_INIT:
2422 			max_wait	= 2;
2423 			cur_state	= MFI_STATE_BB_INIT;
2424 			break;
2425 		case MFI_STATE_FW_INIT:
2426 			max_wait	= 2;
2427 			cur_state	= MFI_STATE_FW_INIT;
2428 			break;
2429 		case MFI_STATE_DEVICE_SCAN:
2430 			max_wait	= 10;
2431 			cur_state	= MFI_STATE_DEVICE_SCAN;
2432 			break;
2433 		default:
2434 			con_log(CL_ANN, (CE_NOTE,
2435 			    "megasas: Unknown state 0x%x\n", fw_state));
2436 			return (-ENODEV);
2437 		}
2438 
2439 		/* the cur_state should not last for more than max_wait secs */
2440 		for (i = 0; i < (max_wait * MILLISEC); i++) {
2441 			/* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */
2442 			fw_state =
2443 			    instance->func_ptr->read_fw_status_reg(instance) &
2444 			    MFI_STATE_MASK;
2445 
2446 			if (fw_state == cur_state) {
2447 				delay(1 * drv_usectohz(MILLISEC));
2448 			} else {
2449 				break;
2450 			}
2451 		}
2452 
2453 		/* return error if fw_state hasn't changed after max_wait */
2454 		if (fw_state == cur_state) {
2455 			con_log(CL_ANN, (CE_NOTE,
2456 			    "FW state hasn't changed in %d secs\n", max_wait));
2457 			return (-ENODEV);
2458 		}
2459 	};
2460 
2461 	fw_ctrl = RD_IB_DOORBELL(instance);
2462 
2463 	con_log(CL_ANN1, (CE_NOTE,
2464 	    "mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl));
2465 
2466 	/*
2467 	 * Write 0xF to the doorbell register to do the following.
2468 	 * - Abort all outstanding commands (bit 0).
2469 	 * - Transition from OPERATIONAL to READY state (bit 1).
2470 	 * - Discard (possible) low MFA posted in 64-bit mode (bit-2).
2471 	 * - Set to release FW to continue running (i.e. BIOS handshake
2472 	 *   (bit 3).
2473 	 */
2474 	WR_IB_DOORBELL(0xF, instance);
2475 
2476 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2477 		return (-ENODEV);
2478 	}
2479 	return (0);
2480 }
2481 
2482 /*
2483  * get_seq_num
2484  */
2485 static int
2486 get_seq_num(struct megasas_instance *instance,
2487     struct megasas_evt_log_info *eli)
2488 {
2489 	int	ret = 0;
2490 
2491 	dma_obj_t			dcmd_dma_obj;
2492 	struct megasas_cmd		*cmd;
2493 	struct megasas_dcmd_frame	*dcmd;
2494 
2495 	cmd = get_mfi_pkt(instance);
2496 
2497 	if (!cmd) {
2498 		cmn_err(CE_WARN, "megasas: failed to get a cmd\n");
2499 		return (-ENOMEM);
2500 	}
2501 
2502 	dcmd	= &cmd->frame->dcmd;
2503 
2504 	/* allocate the data transfer buffer */
2505 	dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info);
2506 	dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
2507 	dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
2508 	dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
2509 	dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
2510 	dcmd_dma_obj.dma_attr.dma_attr_align = 1;
2511 
2512 	if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
2513 		con_log(CL_ANN, (CE_WARN,
2514 		    "get_seq_num: could not data transfer buffer alloc."));
2515 		return (DDI_FAILURE);
2516 	}
2517 
2518 	(void) memset(dcmd_dma_obj.buffer, 0,
2519 	    sizeof (struct megasas_evt_log_info));
2520 
2521 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2522 
2523 	dcmd->cmd = MFI_CMD_OP_DCMD;
2524 	dcmd->cmd_status = 0;
2525 	dcmd->sge_count	= 1;
2526 	dcmd->flags = MFI_FRAME_DIR_READ;
2527 	dcmd->timeout = 0;
2528 	dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info);
2529 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2530 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info);
2531 	dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
2532 
2533 	cmd->sync_cmd = MEGASAS_TRUE;
2534 	cmd->frame_count = 1;
2535 
2536 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2537 		cmn_err(CE_WARN, "get_seq_num: "
2538 		    "failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n");
2539 		ret = -1;
2540 	} else {
2541 		/* copy the data back into callers buffer */
2542 		bcopy(dcmd_dma_obj.buffer, eli,
2543 		    sizeof (struct megasas_evt_log_info));
2544 		ret = 0;
2545 	}
2546 
2547 	if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
2548 		ret = -1;
2549 
2550 	return_mfi_pkt(instance, cmd);
2551 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2552 		ret = -1;
2553 	}
2554 	return (ret);
2555 }
2556 
2557 /*
2558  * start_mfi_aen
2559  */
2560 static int
2561 start_mfi_aen(struct megasas_instance *instance)
2562 {
2563 	int	ret = 0;
2564 
2565 	struct megasas_evt_log_info	eli;
2566 	union megasas_evt_class_locale	class_locale;
2567 
2568 	/* get the latest sequence number from FW */
2569 	(void) memset(&eli, 0, sizeof (struct megasas_evt_log_info));
2570 
2571 	if (get_seq_num(instance, &eli)) {
2572 		cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n");
2573 		return (-1);
2574 	}
2575 
2576 	/* register AEN with FW for latest sequence number plus 1 */
2577 	class_locale.members.reserved	= 0;
2578 	class_locale.members.locale	= MR_EVT_LOCALE_ALL;
2579 	class_locale.members.class	= MR_EVT_CLASS_CRITICAL;
2580 
2581 	ret = register_mfi_aen(instance, eli.newest_seq_num + 1,
2582 	    class_locale.word);
2583 
2584 	if (ret) {
2585 		cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n");
2586 		return (-1);
2587 	}
2588 
2589 	return (ret);
2590 }
2591 
2592 /*
2593  * flush_cache
2594  */
2595 static void
2596 flush_cache(struct megasas_instance *instance)
2597 {
2598 	struct megasas_cmd		*cmd;
2599 	struct megasas_dcmd_frame	*dcmd;
2600 
2601 	if (!(cmd = get_mfi_pkt(instance)))
2602 		return;
2603 
2604 	dcmd = &cmd->frame->dcmd;
2605 
2606 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2607 
2608 	dcmd->cmd		= MFI_CMD_OP_DCMD;
2609 	dcmd->cmd_status	= 0x0;
2610 	dcmd->sge_count		= 0;
2611 	dcmd->flags		= MFI_FRAME_DIR_NONE;
2612 	dcmd->timeout		= 0;
2613 	dcmd->data_xfer_len	= 0;
2614 	dcmd->opcode		= MR_DCMD_CTRL_CACHE_FLUSH;
2615 	dcmd->mbox.b[0]		= MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2616 
2617 	cmd->frame_count = 1;
2618 
2619 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2620 		cmn_err(CE_WARN,
2621 		    "flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n");
2622 	}
2623 	con_log(CL_DLEVEL1, (CE_NOTE, "done"));
2624 	return_mfi_pkt(instance, cmd);
2625 	(void) megasas_common_check(instance, cmd);
2626 }
2627 
2628 /*
2629  * service_mfi_aen-	Completes an AEN command
2630  * @instance:			Adapter soft state
2631  * @cmd:			Command to be completed
2632  *
2633  */
2634 static void
2635 service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2636 {
2637 	uint32_t	seq_num;
2638 	struct megasas_evt_detail *evt_detail =
2639 	    (struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer;
2640 
2641 	cmd->cmd_status = cmd->frame->io.cmd_status;
2642 
2643 	if (cmd->cmd_status == ENODATA) {
2644 		cmd->cmd_status = 0;
2645 	}
2646 
2647 	/*
2648 	 * log the MFI AEN event to the sysevent queue so that
2649 	 * application will get noticed
2650 	 */
2651 	if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS",
2652 	    NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) {
2653 		int	instance_no = ddi_get_instance(instance->dip);
2654 		con_log(CL_ANN, (CE_WARN,
2655 		    "mega%d: Failed to log AEN event", instance_no));
2656 	}
2657 
2658 	/* get copy of seq_num and class/locale for re-registration */
2659 	seq_num = evt_detail->seq_num;
2660 	seq_num++;
2661 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
2662 	    sizeof (struct megasas_evt_detail));
2663 
2664 	cmd->frame->dcmd.cmd_status = 0x0;
2665 	cmd->frame->dcmd.mbox.w[0] = seq_num;
2666 
2667 	instance->aen_seq_num = seq_num;
2668 
2669 	cmd->frame_count = 1;
2670 
2671 	/* Issue the aen registration frame */
2672 	instance->func_ptr->issue_cmd(cmd, instance);
2673 }
2674 
2675 /*
2676  * complete_cmd_in_sync_mode -	Completes an internal command
2677  * @instance:			Adapter soft state
2678  * @cmd:			Command to be completed
2679  *
2680  * The issue_cmd_in_sync_mode() function waits for a command to complete
2681  * after it issues a command. This function wakes up that waiting routine by
2682  * calling wake_up() on the wait queue.
2683  */
2684 static void
2685 complete_cmd_in_sync_mode(struct megasas_instance *instance,
2686     struct megasas_cmd *cmd)
2687 {
2688 	cmd->cmd_status = cmd->frame->io.cmd_status;
2689 
2690 	cmd->sync_cmd = MEGASAS_FALSE;
2691 
2692 	if (cmd->cmd_status == ENODATA) {
2693 		cmd->cmd_status = 0;
2694 	}
2695 
2696 	cv_broadcast(&instance->int_cmd_cv);
2697 }
2698 
2699 /*
2700  * megasas_softintr - The Software ISR
2701  * @param arg	: HBA soft state
2702  *
2703  * called from high-level interrupt if hi-level interrupt are not there,
2704  * otherwise triggered as a soft interrupt
2705  */
2706 static uint_t
2707 megasas_softintr(struct megasas_instance *instance)
2708 {
2709 	struct scsi_pkt		*pkt;
2710 	struct scsa_cmd		*acmd;
2711 	struct megasas_cmd	*cmd;
2712 	struct mlist_head	*pos, *next;
2713 	mlist_t			process_list;
2714 	struct megasas_header	*hdr;
2715 	struct scsi_arq_status	*arqstat;
2716 
2717 	con_log(CL_ANN1, (CE_CONT, "megasas_softintr called"));
2718 
2719 	ASSERT(instance);
2720 	mutex_enter(&instance->completed_pool_mtx);
2721 
2722 	if (mlist_empty(&instance->completed_pool_list)) {
2723 		mutex_exit(&instance->completed_pool_mtx);
2724 		return (DDI_INTR_UNCLAIMED);
2725 	}
2726 
2727 	instance->softint_running = 1;
2728 
2729 	INIT_LIST_HEAD(&process_list);
2730 	mlist_splice(&instance->completed_pool_list, &process_list);
2731 	INIT_LIST_HEAD(&instance->completed_pool_list);
2732 
2733 	mutex_exit(&instance->completed_pool_mtx);
2734 
2735 	/* perform all callbacks first, before releasing the SCBs */
2736 	mlist_for_each_safe(pos, next, &process_list) {
2737 		cmd = mlist_entry(pos, struct megasas_cmd, list);
2738 
2739 		/* syncronize the Cmd frame for the controller */
2740 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle,
2741 		    0, 0, DDI_DMA_SYNC_FORCPU);
2742 
2743 		if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
2744 		    DDI_SUCCESS) {
2745 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2746 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2747 			return (DDI_INTR_UNCLAIMED);
2748 		}
2749 
2750 		hdr = &cmd->frame->hdr;
2751 
2752 		/* remove the internal command from the process list */
2753 		mlist_del_init(&cmd->list);
2754 
2755 		switch (hdr->cmd) {
2756 		case MFI_CMD_OP_PD_SCSI:
2757 		case MFI_CMD_OP_LD_SCSI:
2758 		case MFI_CMD_OP_LD_READ:
2759 		case MFI_CMD_OP_LD_WRITE:
2760 			/*
2761 			 * MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI
2762 			 * could have been issued either through an
2763 			 * IO path or an IOCTL path. If it was via IOCTL,
2764 			 * we will send it to internal completion.
2765 			 */
2766 			if (cmd->sync_cmd == MEGASAS_TRUE) {
2767 				complete_cmd_in_sync_mode(instance, cmd);
2768 				break;
2769 			}
2770 
2771 			/* regular commands */
2772 			acmd =	cmd->cmd;
2773 			pkt =	CMD2PKT(acmd);
2774 
2775 			if (acmd->cmd_flags & CFLAG_DMAVALID) {
2776 				if (acmd->cmd_flags & CFLAG_CONSISTENT) {
2777 					(void) ddi_dma_sync(acmd->cmd_dmahandle,
2778 					    acmd->cmd_dma_offset,
2779 					    acmd->cmd_dma_len,
2780 					    DDI_DMA_SYNC_FORCPU);
2781 				}
2782 			}
2783 
2784 			pkt->pkt_reason		= CMD_CMPLT;
2785 			pkt->pkt_statistics	= 0;
2786 			pkt->pkt_state = STATE_GOT_BUS
2787 			    | STATE_GOT_TARGET | STATE_SENT_CMD
2788 			    | STATE_XFERRED_DATA | STATE_GOT_STATUS;
2789 
2790 			con_log(CL_ANN1, (CE_CONT,
2791 			    "CDB[0] = %x completed for %s: size %lx context %x",
2792 			    pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"),
2793 			    acmd->cmd_dmacount, hdr->context));
2794 
2795 			if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) {
2796 				struct scsi_inquiry	*inq;
2797 
2798 				if (acmd->cmd_dmacount != 0) {
2799 					bp_mapin(acmd->cmd_buf);
2800 					inq = (struct scsi_inquiry *)
2801 					    acmd->cmd_buf->b_un.b_addr;
2802 
2803 					/* don't expose physical drives to OS */
2804 					if (acmd->islogical &&
2805 					    (hdr->cmd_status == MFI_STAT_OK)) {
2806 						display_scsi_inquiry(
2807 						    (caddr_t)inq);
2808 					} else if ((hdr->cmd_status ==
2809 					    MFI_STAT_OK) && inq->inq_dtype ==
2810 					    DTYPE_DIRECT) {
2811 
2812 						display_scsi_inquiry(
2813 						    (caddr_t)inq);
2814 
2815 						/* for physical disk */
2816 						hdr->cmd_status =
2817 						    MFI_STAT_DEVICE_NOT_FOUND;
2818 					}
2819 				}
2820 			}
2821 
2822 			switch (hdr->cmd_status) {
2823 			case MFI_STAT_OK:
2824 				pkt->pkt_scbp[0] = STATUS_GOOD;
2825 				break;
2826 			case MFI_STAT_LD_CC_IN_PROGRESS:
2827 			case MFI_STAT_LD_RECON_IN_PROGRESS:
2828 			    /* SJ - these are not correct way */
2829 				pkt->pkt_scbp[0] = STATUS_GOOD;
2830 				break;
2831 			case MFI_STAT_LD_INIT_IN_PROGRESS:
2832 				con_log(CL_ANN,
2833 				    (CE_WARN, "Initialization in Progress"));
2834 				pkt->pkt_reason	= CMD_TRAN_ERR;
2835 
2836 				break;
2837 			case MFI_STAT_SCSI_DONE_WITH_ERROR:
2838 				con_log(CL_ANN1, (CE_CONT, "scsi_done error"));
2839 
2840 				pkt->pkt_reason	= CMD_CMPLT;
2841 				((struct scsi_status *)
2842 				    pkt->pkt_scbp)->sts_chk = 1;
2843 
2844 				if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) {
2845 
2846 					con_log(CL_ANN,
2847 					    (CE_WARN, "TEST_UNIT_READY fail"));
2848 
2849 				} else {
2850 					pkt->pkt_state |= STATE_ARQ_DONE;
2851 					arqstat = (void *)(pkt->pkt_scbp);
2852 					arqstat->sts_rqpkt_reason = CMD_CMPLT;
2853 					arqstat->sts_rqpkt_resid = 0;
2854 					arqstat->sts_rqpkt_state |=
2855 					    STATE_GOT_BUS | STATE_GOT_TARGET
2856 					    | STATE_SENT_CMD
2857 					    | STATE_XFERRED_DATA;
2858 					*(uint8_t *)&arqstat->sts_rqpkt_status =
2859 					    STATUS_GOOD;
2860 
2861 					bcopy(cmd->sense,
2862 					    &(arqstat->sts_sensedata),
2863 					    acmd->cmd_scblen -
2864 					    offsetof(struct scsi_arq_status,
2865 					    sts_sensedata));
2866 				}
2867 				break;
2868 			case MFI_STAT_LD_OFFLINE:
2869 			case MFI_STAT_DEVICE_NOT_FOUND:
2870 				con_log(CL_ANN1, (CE_CONT,
2871 				    "device not found error"));
2872 				pkt->pkt_reason	= CMD_DEV_GONE;
2873 				pkt->pkt_statistics  = STAT_DISCON;
2874 				break;
2875 			case MFI_STAT_LD_LBA_OUT_OF_RANGE:
2876 				pkt->pkt_state |= STATE_ARQ_DONE;
2877 				pkt->pkt_reason	= CMD_CMPLT;
2878 				((struct scsi_status *)
2879 				    pkt->pkt_scbp)->sts_chk = 1;
2880 
2881 				arqstat = (void *)(pkt->pkt_scbp);
2882 				arqstat->sts_rqpkt_reason = CMD_CMPLT;
2883 				arqstat->sts_rqpkt_resid = 0;
2884 				arqstat->sts_rqpkt_state |= STATE_GOT_BUS
2885 				    | STATE_GOT_TARGET | STATE_SENT_CMD
2886 				    | STATE_XFERRED_DATA;
2887 				*(uint8_t *)&arqstat->sts_rqpkt_status =
2888 				    STATUS_GOOD;
2889 
2890 				arqstat->sts_sensedata.es_valid = 1;
2891 				arqstat->sts_sensedata.es_key =
2892 				    KEY_ILLEGAL_REQUEST;
2893 				arqstat->sts_sensedata.es_class =
2894 				    CLASS_EXTENDED_SENSE;
2895 
2896 				/*
2897 				 * LOGICAL BLOCK ADDRESS OUT OF RANGE:
2898 				 * ASC: 0x21h; ASCQ: 0x00h;
2899 				 */
2900 				arqstat->sts_sensedata.es_add_code = 0x21;
2901 				arqstat->sts_sensedata.es_qual_code = 0x00;
2902 
2903 				break;
2904 
2905 			default:
2906 				con_log(CL_ANN, (CE_CONT, "Unknown status!"));
2907 				pkt->pkt_reason	= CMD_TRAN_ERR;
2908 
2909 				break;
2910 			}
2911 
2912 			atomic_add_16(&instance->fw_outstanding, (-1));
2913 
2914 			return_mfi_pkt(instance, cmd);
2915 
2916 			(void) megasas_common_check(instance, cmd);
2917 
2918 			if (acmd->cmd_dmahandle) {
2919 				if (megasas_check_dma_handle(
2920 				    acmd->cmd_dmahandle) != DDI_SUCCESS) {
2921 					ddi_fm_service_impact(instance->dip,
2922 					    DDI_SERVICE_UNAFFECTED);
2923 					pkt->pkt_reason = CMD_TRAN_ERR;
2924 					pkt->pkt_statistics = 0;
2925 				}
2926 			}
2927 
2928 			/* Call the callback routine */
2929 			if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
2930 				scsi_hba_pkt_comp(pkt);
2931 			}
2932 
2933 			break;
2934 		case MFI_CMD_OP_SMP:
2935 		case MFI_CMD_OP_STP:
2936 			complete_cmd_in_sync_mode(instance, cmd);
2937 			break;
2938 		case MFI_CMD_OP_DCMD:
2939 			/* see if got an event notification */
2940 			if (cmd->frame->dcmd.opcode ==
2941 			    MR_DCMD_CTRL_EVENT_WAIT) {
2942 				if ((instance->aen_cmd == cmd) &&
2943 				    (instance->aen_cmd->abort_aen)) {
2944 					con_log(CL_ANN, (CE_WARN,
2945 					    "megasas_softintr: "
2946 					    "aborted_aen returned"));
2947 				} else {
2948 					service_mfi_aen(instance, cmd);
2949 
2950 					atomic_add_16(&instance->fw_outstanding,
2951 					    (-1));
2952 				}
2953 			} else {
2954 				complete_cmd_in_sync_mode(instance, cmd);
2955 			}
2956 
2957 			break;
2958 		case MFI_CMD_OP_ABORT:
2959 			con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete"));
2960 			/*
2961 			 * MFI_CMD_OP_ABORT successfully completed
2962 			 * in the synchronous mode
2963 			 */
2964 			complete_cmd_in_sync_mode(instance, cmd);
2965 			break;
2966 		default:
2967 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2968 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2969 
2970 			if (cmd->pkt != NULL) {
2971 				pkt = cmd->pkt;
2972 				if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
2973 					scsi_hba_pkt_comp(pkt);
2974 				}
2975 			}
2976 			con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!"));
2977 			break;
2978 		}
2979 	}
2980 
2981 	instance->softint_running = 0;
2982 
2983 	return (DDI_INTR_CLAIMED);
2984 }
2985 
2986 /*
2987  * mega_alloc_dma_obj
2988  *
2989  * Allocate the memory and other resources for an dma object.
2990  */
2991 static int
2992 mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj)
2993 {
2994 	int	i;
2995 	size_t	alen = 0;
2996 	uint_t	cookie_cnt;
2997 	struct ddi_device_acc_attr	tmp_endian_attr;
2998 
2999 	tmp_endian_attr = endian_attr;
3000 	tmp_endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
3001 	i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr,
3002 	    DDI_DMA_SLEEP, NULL, &obj->dma_handle);
3003 	if (i != DDI_SUCCESS) {
3004 
3005 		switch (i) {
3006 			case DDI_DMA_BADATTR :
3007 				con_log(CL_ANN, (CE_WARN,
3008 				"Failed ddi_dma_alloc_handle- Bad atrib"));
3009 				break;
3010 			case DDI_DMA_NORESOURCES :
3011 				con_log(CL_ANN, (CE_WARN,
3012 				"Failed ddi_dma_alloc_handle- No Resources"));
3013 				break;
3014 			default :
3015 				con_log(CL_ANN, (CE_WARN,
3016 				"Failed ddi_dma_alloc_handle :unknown %d", i));
3017 				break;
3018 		}
3019 
3020 		return (-1);
3021 	}
3022 
3023 	if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &tmp_endian_attr,
3024 	    DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
3025 	    &obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) ||
3026 	    alen < obj->size) {
3027 
3028 		ddi_dma_free_handle(&obj->dma_handle);
3029 
3030 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc"));
3031 
3032 		return (-1);
3033 	}
3034 
3035 	if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer,
3036 	    obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
3037 	    NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) {
3038 
3039 		ddi_dma_mem_free(&obj->acc_handle);
3040 		ddi_dma_free_handle(&obj->dma_handle);
3041 
3042 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle"));
3043 
3044 		return (-1);
3045 	}
3046 
3047 	if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) {
3048 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3049 		return (-1);
3050 	}
3051 
3052 	if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) {
3053 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3054 		return (-1);
3055 	}
3056 
3057 	return (cookie_cnt);
3058 }
3059 
3060 /*
3061  * mega_free_dma_obj(struct megasas_instance *, dma_obj_t)
3062  *
3063  * De-allocate the memory and other resources for an dma object, which must
3064  * have been alloated by a previous call to mega_alloc_dma_obj()
3065  */
3066 static int
3067 mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj)
3068 {
3069 
3070 	if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) {
3071 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3072 		return (DDI_FAILURE);
3073 	}
3074 
3075 	if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) {
3076 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3077 		return (DDI_FAILURE);
3078 	}
3079 
3080 	(void) ddi_dma_unbind_handle(obj.dma_handle);
3081 	ddi_dma_mem_free(&obj.acc_handle);
3082 	ddi_dma_free_handle(&obj.dma_handle);
3083 
3084 	return (DDI_SUCCESS);
3085 }
3086 
3087 /*
3088  * megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *,
3089  * int, int (*)())
3090  *
3091  * Allocate dma resources for a new scsi command
3092  */
3093 static int
3094 megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt,
3095     struct buf *bp, int flags, int (*callback)())
3096 {
3097 	int	dma_flags;
3098 	int	(*cb)(caddr_t);
3099 	int	i;
3100 
3101 	ddi_dma_attr_t	tmp_dma_attr = megasas_generic_dma_attr;
3102 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3103 
3104 	acmd->cmd_buf = bp;
3105 
3106 	if (bp->b_flags & B_READ) {
3107 		acmd->cmd_flags &= ~CFLAG_DMASEND;
3108 		dma_flags = DDI_DMA_READ;
3109 	} else {
3110 		acmd->cmd_flags |= CFLAG_DMASEND;
3111 		dma_flags = DDI_DMA_WRITE;
3112 	}
3113 
3114 	if (flags & PKT_CONSISTENT) {
3115 		acmd->cmd_flags |= CFLAG_CONSISTENT;
3116 		dma_flags |= DDI_DMA_CONSISTENT;
3117 	}
3118 
3119 	if (flags & PKT_DMA_PARTIAL) {
3120 		dma_flags |= DDI_DMA_PARTIAL;
3121 	}
3122 
3123 	dma_flags |= DDI_DMA_REDZONE;
3124 
3125 	cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
3126 
3127 	tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge;
3128 	tmp_dma_attr.dma_attr_addr_hi = 0xffffffffffffffffull;
3129 
3130 	if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr,
3131 	    cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) {
3132 		switch (i) {
3133 		case DDI_DMA_BADATTR:
3134 			bioerror(bp, EFAULT);
3135 			return (-1);
3136 
3137 		case DDI_DMA_NORESOURCES:
3138 			bioerror(bp, 0);
3139 			return (-1);
3140 
3141 		default:
3142 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: "
3143 			    "0x%x impossible\n", i));
3144 			bioerror(bp, EFAULT);
3145 			return (-1);
3146 		}
3147 	}
3148 
3149 	i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags,
3150 	    cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies);
3151 
3152 	switch (i) {
3153 	case DDI_DMA_PARTIAL_MAP:
3154 		if ((dma_flags & DDI_DMA_PARTIAL) == 0) {
3155 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3156 			    "DDI_DMA_PARTIAL_MAP impossible\n"));
3157 			goto no_dma_cookies;
3158 		}
3159 
3160 		if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) ==
3161 		    DDI_FAILURE) {
3162 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n"));
3163 			goto no_dma_cookies;
3164 		}
3165 
3166 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3167 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3168 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3169 		    DDI_FAILURE) {
3170 
3171 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n"));
3172 			goto no_dma_cookies;
3173 		}
3174 
3175 		goto get_dma_cookies;
3176 	case DDI_DMA_MAPPED:
3177 		acmd->cmd_nwin = 1;
3178 		acmd->cmd_dma_len = 0;
3179 		acmd->cmd_dma_offset = 0;
3180 
3181 get_dma_cookies:
3182 		i = 0;
3183 		acmd->cmd_dmacount = 0;
3184 		for (;;) {
3185 			acmd->cmd_dmacount +=
3186 			    acmd->cmd_dmacookies[i++].dmac_size;
3187 
3188 			if (i == instance->max_num_sge ||
3189 			    i == acmd->cmd_ncookies)
3190 				break;
3191 
3192 			ddi_dma_nextcookie(acmd->cmd_dmahandle,
3193 			    &acmd->cmd_dmacookies[i]);
3194 		}
3195 
3196 		acmd->cmd_cookie = i;
3197 		acmd->cmd_cookiecnt = i;
3198 
3199 		acmd->cmd_flags |= CFLAG_DMAVALID;
3200 
3201 		if (bp->b_bcount >= acmd->cmd_dmacount) {
3202 			pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3203 		} else {
3204 			pkt->pkt_resid = 0;
3205 		}
3206 
3207 		return (0);
3208 	case DDI_DMA_NORESOURCES:
3209 		bioerror(bp, 0);
3210 		break;
3211 	case DDI_DMA_NOMAPPING:
3212 		bioerror(bp, EFAULT);
3213 		break;
3214 	case DDI_DMA_TOOBIG:
3215 		bioerror(bp, EINVAL);
3216 		break;
3217 	case DDI_DMA_INUSE:
3218 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:"
3219 		    " DDI_DMA_INUSE impossible\n"));
3220 		break;
3221 	default:
3222 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3223 		    "0x%x impossible\n", i));
3224 		break;
3225 	}
3226 
3227 no_dma_cookies:
3228 	ddi_dma_free_handle(&acmd->cmd_dmahandle);
3229 	acmd->cmd_dmahandle = NULL;
3230 	acmd->cmd_flags &= ~CFLAG_DMAVALID;
3231 	return (-1);
3232 }
3233 
3234 /*
3235  * megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *)
3236  *
3237  * move dma resources to next dma window
3238  *
3239  */
3240 static int
3241 megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt,
3242     struct buf *bp)
3243 {
3244 	int	i = 0;
3245 
3246 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3247 
3248 	/*
3249 	 * If there are no more cookies remaining in this window,
3250 	 * must move to the next window first.
3251 	 */
3252 	if (acmd->cmd_cookie == acmd->cmd_ncookies) {
3253 		if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) {
3254 			return (0);
3255 		}
3256 
3257 		/* at last window, cannot move */
3258 		if (++acmd->cmd_curwin >= acmd->cmd_nwin) {
3259 			return (-1);
3260 		}
3261 
3262 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3263 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3264 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3265 		    DDI_FAILURE) {
3266 			return (-1);
3267 		}
3268 
3269 		acmd->cmd_cookie = 0;
3270 	} else {
3271 		/* still more cookies in this window - get the next one */
3272 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3273 		    &acmd->cmd_dmacookies[0]);
3274 	}
3275 
3276 	/* get remaining cookies in this window, up to our maximum */
3277 	for (;;) {
3278 		acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size;
3279 		acmd->cmd_cookie++;
3280 
3281 		if (i == instance->max_num_sge ||
3282 		    acmd->cmd_cookie == acmd->cmd_ncookies) {
3283 			break;
3284 		}
3285 
3286 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3287 		    &acmd->cmd_dmacookies[i]);
3288 	}
3289 
3290 	acmd->cmd_cookiecnt = i;
3291 
3292 	if (bp->b_bcount >= acmd->cmd_dmacount) {
3293 		pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3294 	} else {
3295 		pkt->pkt_resid = 0;
3296 	}
3297 
3298 	return (0);
3299 }
3300 
3301 /*
3302  * build_cmd
3303  */
3304 static struct megasas_cmd *
3305 build_cmd(struct megasas_instance *instance, struct scsi_address *ap,
3306     struct scsi_pkt *pkt, uchar_t *cmd_done)
3307 {
3308 	uint16_t	flags = 0;
3309 	uint32_t	i;
3310 	uint32_t	sge_bytes;
3311 
3312 	struct megasas_cmd		*cmd;
3313 	struct megasas_sge64		*mfi_sgl;
3314 	struct scsa_cmd			*acmd = PKT2CMD(pkt);
3315 	struct megasas_pthru_frame 	*pthru;
3316 	struct megasas_io_frame		*ldio;
3317 
3318 	/* find out if this is logical or physical drive command.  */
3319 	acmd->islogical = MEGADRV_IS_LOGICAL(ap);
3320 	acmd->device_id = MAP_DEVICE_ID(instance, ap);
3321 	*cmd_done = 0;
3322 
3323 	/* get the command packet */
3324 	if (!(cmd = get_mfi_pkt(instance))) {
3325 		return (NULL);
3326 	}
3327 
3328 	cmd->pkt = pkt;
3329 	cmd->cmd = acmd;
3330 
3331 	/* lets get the command directions */
3332 	if (acmd->cmd_flags & CFLAG_DMASEND) {
3333 		flags = MFI_FRAME_DIR_WRITE;
3334 
3335 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3336 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3337 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3338 			    DDI_DMA_SYNC_FORDEV);
3339 		}
3340 	} else if (acmd->cmd_flags & ~CFLAG_DMASEND) {
3341 		flags = MFI_FRAME_DIR_READ;
3342 
3343 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3344 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3345 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3346 			    DDI_DMA_SYNC_FORCPU);
3347 		}
3348 	} else {
3349 		flags = MFI_FRAME_DIR_NONE;
3350 	}
3351 
3352 	flags |= MFI_FRAME_SGL64;
3353 
3354 	switch (pkt->pkt_cdbp[0]) {
3355 
3356 	/*
3357 	 * case SCMD_SYNCHRONIZE_CACHE:
3358 	 * 	flush_cache(instance);
3359 	 *	return_mfi_pkt(instance, cmd);
3360 	 *	*cmd_done = 1;
3361 	 *
3362 	 *	return (NULL);
3363 	 */
3364 
3365 	case SCMD_READ:
3366 	case SCMD_WRITE:
3367 	case SCMD_READ_G1:
3368 	case SCMD_WRITE_G1:
3369 		if (acmd->islogical) {
3370 			ldio = (struct megasas_io_frame *)cmd->frame;
3371 
3372 			/*
3373 			 * preare the Logical IO frame:
3374 			 * 2nd bit is zero for all read cmds
3375 			 */
3376 			ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ?
3377 			    MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ;
3378 			ldio->cmd_status = 0x0;
3379 			ldio->scsi_status = 0x0;
3380 			ldio->target_id	 = acmd->device_id;
3381 			ldio->timeout = 0;
3382 			ldio->reserved_0 = 0;
3383 			ldio->pad_0 = 0;
3384 			ldio->flags = flags;
3385 
3386 			/* Initialize sense Information */
3387 			bzero(cmd->sense, SENSE_LENGTH);
3388 			ldio->sense_len = SENSE_LENGTH;
3389 			ldio->sense_buf_phys_addr_hi = 0;
3390 			ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3391 
3392 			ldio->start_lba_hi = 0;
3393 			ldio->access_byte = (acmd->cmd_cdblen != 6) ?
3394 			    pkt->pkt_cdbp[1] : 0;
3395 			ldio->sge_count = acmd->cmd_cookiecnt;
3396 			mfi_sgl = (struct megasas_sge64	*)&ldio->sgl;
3397 
3398 			if (acmd->cmd_cdblen == CDB_GROUP0) {
3399 				ldio->lba_count	= host_to_le16(
3400 				    (uint16_t)(pkt->pkt_cdbp[4]));
3401 
3402 				ldio->start_lba_lo = host_to_le32(
3403 				    ((uint32_t)(pkt->pkt_cdbp[3])) |
3404 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 8) |
3405 				    ((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F)
3406 				    << 16));
3407 			} else if (acmd->cmd_cdblen == CDB_GROUP1) {
3408 				ldio->lba_count = host_to_le16(
3409 				    ((uint16_t)(pkt->pkt_cdbp[8])) |
3410 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 8));
3411 
3412 				ldio->start_lba_lo = host_to_le32(
3413 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3414 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3415 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3416 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3417 			} else if (acmd->cmd_cdblen == CDB_GROUP2) {
3418 				ldio->lba_count	 = host_to_le16(
3419 				    ((uint16_t)(pkt->pkt_cdbp[9])) |
3420 				    ((uint16_t)(pkt->pkt_cdbp[8]) << 8) |
3421 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 16) |
3422 				    ((uint16_t)(pkt->pkt_cdbp[6]) << 24));
3423 
3424 				ldio->start_lba_lo = host_to_le32(
3425 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3426 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3427 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3428 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3429 			} else if (acmd->cmd_cdblen == CDB_GROUP3) {
3430 				ldio->lba_count = host_to_le16(
3431 				    ((uint16_t)(pkt->pkt_cdbp[13])) |
3432 				    ((uint16_t)(pkt->pkt_cdbp[12]) << 8) |
3433 				    ((uint16_t)(pkt->pkt_cdbp[11]) << 16) |
3434 				    ((uint16_t)(pkt->pkt_cdbp[10]) << 24));
3435 
3436 				ldio->start_lba_lo = host_to_le32(
3437 				    ((uint32_t)(pkt->pkt_cdbp[9])) |
3438 				    ((uint32_t)(pkt->pkt_cdbp[8]) << 8) |
3439 				    ((uint32_t)(pkt->pkt_cdbp[7]) << 16) |
3440 				    ((uint32_t)(pkt->pkt_cdbp[6]) << 24));
3441 
3442 				ldio->start_lba_lo = host_to_le32(
3443 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3444 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3445 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3446 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3447 			}
3448 
3449 			break;
3450 		}
3451 		/* For all non-rd/wr cmds */
3452 		/* FALLTHROUGH */
3453 	default:
3454 		pthru	= (struct megasas_pthru_frame *)cmd->frame;
3455 
3456 		/* prepare the DCDB frame */
3457 		pthru->cmd = (acmd->islogical) ?
3458 		    MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI;
3459 		pthru->cmd_status	= 0x0;
3460 		pthru->scsi_status	= 0x0;
3461 		pthru->target_id	= acmd->device_id;
3462 		pthru->lun		= 0;
3463 		pthru->cdb_len		= acmd->cmd_cdblen;
3464 		pthru->timeout		= 0;
3465 		pthru->flags		= flags;
3466 		pthru->data_xfer_len	= acmd->cmd_dmacount;
3467 		pthru->sge_count	= acmd->cmd_cookiecnt;
3468 		mfi_sgl			= (struct megasas_sge64 *)&pthru->sgl;
3469 
3470 		bzero(cmd->sense, SENSE_LENGTH);
3471 		pthru->sense_len	= SENSE_LENGTH;
3472 		pthru->sense_buf_phys_addr_hi = 0;
3473 		pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3474 
3475 		bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen);
3476 
3477 		break;
3478 	}
3479 	/* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */
3480 
3481 	/* prepare the scatter-gather list for the firmware */
3482 	for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) {
3483 		mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress;
3484 		mfi_sgl->length    = acmd->cmd_dmacookies[i].dmac_size;
3485 	}
3486 
3487 	sge_bytes = sizeof (struct megasas_sge64)*acmd->cmd_cookiecnt;
3488 
3489 	cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
3490 	    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
3491 
3492 	if (cmd->frame_count >= 8) {
3493 		cmd->frame_count = 8;
3494 	}
3495 
3496 	return (cmd);
3497 }
3498 
3499 /*
3500  * wait_for_outstanding -	Wait for all outstanding cmds
3501  * @instance:				Adapter soft state
3502  *
3503  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
3504  * complete all its outstanding commands. Returns error if one or more IOs
3505  * are pending after this time period.
3506  */
3507 static int
3508 wait_for_outstanding(struct megasas_instance *instance)
3509 {
3510 	int		i;
3511 	uint32_t	wait_time = 90;
3512 
3513 	for (i = 0; i < wait_time; i++) {
3514 		if (!instance->fw_outstanding) {
3515 			break;
3516 		}
3517 
3518 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */;
3519 	}
3520 
3521 	if (instance->fw_outstanding) {
3522 		return (1);
3523 	}
3524 
3525 	ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION);
3526 
3527 	return (0);
3528 }
3529 
3530 /*
3531  * issue_mfi_pthru
3532  */
3533 static int
3534 issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3535     struct megasas_cmd *cmd, int mode)
3536 {
3537 	void		*ubuf;
3538 	uint32_t	kphys_addr = 0;
3539 	uint32_t	xferlen = 0;
3540 	uint_t		model;
3541 
3542 	dma_obj_t			pthru_dma_obj;
3543 	struct megasas_pthru_frame	*kpthru;
3544 	struct megasas_pthru_frame	*pthru;
3545 
3546 	pthru = &cmd->frame->pthru;
3547 	kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0];
3548 
3549 	model = ddi_model_convert_from(mode & FMODELS);
3550 	if (model == DDI_MODEL_ILP32) {
3551 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3552 
3553 		xferlen	= kpthru->sgl.sge32[0].length;
3554 
3555 		/* SJ! - ubuf needs to be virtual address. */
3556 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3557 	} else {
3558 #ifdef _ILP32
3559 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3560 		xferlen	= kpthru->sgl.sge32[0].length;
3561 		/* SJ! - ubuf needs to be virtual address. */
3562 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3563 #else
3564 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64"));
3565 		xferlen	= kpthru->sgl.sge64[0].length;
3566 		/* SJ! - ubuf needs to be virtual address. */
3567 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr;
3568 #endif
3569 	}
3570 
3571 	if (xferlen) {
3572 		/* means IOCTL requires DMA */
3573 		/* allocate the data transfer buffer */
3574 		pthru_dma_obj.size = xferlen;
3575 		pthru_dma_obj.dma_attr = megasas_generic_dma_attr;
3576 		pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3577 		pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3578 		pthru_dma_obj.dma_attr.dma_attr_sgllen = 1;
3579 		pthru_dma_obj.dma_attr.dma_attr_align = 1;
3580 
3581 		/* allocate kernel buffer for DMA */
3582 		if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) {
3583 			con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3584 			    "could not data transfer buffer alloc."));
3585 			return (DDI_FAILURE);
3586 		}
3587 
3588 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3589 		if (kpthru->flags & MFI_FRAME_DIR_WRITE) {
3590 			if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer,
3591 			    xferlen, mode)) {
3592 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3593 				    "copy from user space failed\n"));
3594 				return (1);
3595 			}
3596 		}
3597 
3598 		kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address;
3599 	}
3600 
3601 	pthru->cmd		= kpthru->cmd;
3602 	pthru->sense_len	= kpthru->sense_len;
3603 	pthru->cmd_status	= kpthru->cmd_status;
3604 	pthru->scsi_status	= kpthru->scsi_status;
3605 	pthru->target_id	= kpthru->target_id;
3606 	pthru->lun		= kpthru->lun;
3607 	pthru->cdb_len		= kpthru->cdb_len;
3608 	pthru->sge_count	= kpthru->sge_count;
3609 	pthru->timeout		= kpthru->timeout;
3610 	pthru->data_xfer_len	= kpthru->data_xfer_len;
3611 
3612 	pthru->sense_buf_phys_addr_hi	= 0;
3613 	/* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */
3614 	pthru->sense_buf_phys_addr_lo	= 0;
3615 
3616 	bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len);
3617 
3618 	pthru->flags			= kpthru->flags & ~MFI_FRAME_SGL64;
3619 	pthru->sgl.sge32[0].length	= xferlen;
3620 	pthru->sgl.sge32[0].phys_addr	= kphys_addr;
3621 
3622 	cmd->sync_cmd = MEGASAS_TRUE;
3623 	cmd->frame_count = 1;
3624 
3625 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3626 		con_log(CL_ANN, (CE_WARN,
3627 		    "issue_mfi_pthru: fw_ioctl failed\n"));
3628 	} else {
3629 		if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) {
3630 
3631 			if (ddi_copyout(pthru_dma_obj.buffer, ubuf,
3632 			    xferlen, mode)) {
3633 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3634 				    "copy to user space failed\n"));
3635 				return (1);
3636 			}
3637 		}
3638 	}
3639 
3640 	kpthru->cmd_status = pthru->cmd_status;
3641 	kpthru->scsi_status = pthru->scsi_status;
3642 
3643 	con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, "
3644 	    "scsi_status %x\n", pthru->cmd_status, pthru->scsi_status));
3645 
3646 	if (xferlen) {
3647 		/* free kernel buffer */
3648 		if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS)
3649 			return (1);
3650 	}
3651 
3652 	return (0);
3653 }
3654 
3655 /*
3656  * issue_mfi_dcmd
3657  */
3658 static int
3659 issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3660     struct megasas_cmd *cmd, int mode)
3661 {
3662 	void		*ubuf;
3663 	uint32_t	kphys_addr = 0;
3664 	uint32_t	xferlen = 0;
3665 	uint32_t	model;
3666 	dma_obj_t			dcmd_dma_obj;
3667 	struct megasas_dcmd_frame	*kdcmd;
3668 	struct megasas_dcmd_frame	*dcmd;
3669 
3670 	dcmd = &cmd->frame->dcmd;
3671 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
3672 
3673 	model = ddi_model_convert_from(mode & FMODELS);
3674 	if (model == DDI_MODEL_ILP32) {
3675 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3676 
3677 		xferlen	= kdcmd->sgl.sge32[0].length;
3678 
3679 		/* SJ! - ubuf needs to be virtual address. */
3680 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3681 	}
3682 	else
3683 	{
3684 #ifdef _ILP32
3685 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3686 		xferlen	= kdcmd->sgl.sge32[0].length;
3687 		/* SJ! - ubuf needs to be virtual address. */
3688 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3689 #else
3690 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64"));
3691 		xferlen	= kdcmd->sgl.sge64[0].length;
3692 		/* SJ! - ubuf needs to be virtual address. */
3693 		ubuf	= (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr;
3694 #endif
3695 	}
3696 	if (xferlen) {
3697 		/* means IOCTL requires DMA */
3698 		/* allocate the data transfer buffer */
3699 		dcmd_dma_obj.size = xferlen;
3700 		dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
3701 		dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3702 		dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3703 		dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
3704 		dcmd_dma_obj.dma_attr.dma_attr_align = 1;
3705 
3706 		/* allocate kernel buffer for DMA */
3707 		if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
3708 			con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3709 			    "could not data transfer buffer alloc."));
3710 			return (DDI_FAILURE);
3711 		}
3712 
3713 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3714 		if (kdcmd->flags & MFI_FRAME_DIR_WRITE) {
3715 			if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer,
3716 			    xferlen, mode)) {
3717 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3718 				    "copy from user space failed\n"));
3719 				return (1);
3720 			}
3721 		}
3722 
3723 		kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
3724 	}
3725 
3726 	dcmd->cmd		= kdcmd->cmd;
3727 	dcmd->cmd_status	= kdcmd->cmd_status;
3728 	dcmd->sge_count		= kdcmd->sge_count;
3729 	dcmd->timeout		= kdcmd->timeout;
3730 	dcmd->data_xfer_len	= kdcmd->data_xfer_len;
3731 	dcmd->opcode		= kdcmd->opcode;
3732 
3733 	bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ);
3734 
3735 	dcmd->flags			= kdcmd->flags & ~MFI_FRAME_SGL64;
3736 	dcmd->sgl.sge32[0].length	= xferlen;
3737 	dcmd->sgl.sge32[0].phys_addr	= kphys_addr;
3738 
3739 	cmd->sync_cmd = MEGASAS_TRUE;
3740 	cmd->frame_count = 1;
3741 
3742 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3743 		con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n"));
3744 	} else {
3745 		if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) {
3746 
3747 			if (ddi_copyout(dcmd_dma_obj.buffer, ubuf,
3748 			    xferlen, mode)) {
3749 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3750 				    "copy to user space failed\n"));
3751 				return (1);
3752 			}
3753 		}
3754 	}
3755 
3756 	kdcmd->cmd_status = dcmd->cmd_status;
3757 
3758 	if (xferlen) {
3759 		/* free kernel buffer */
3760 		if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
3761 			return (1);
3762 	}
3763 
3764 	return (0);
3765 }
3766 
3767 /*
3768  * issue_mfi_smp
3769  */
3770 static int
3771 issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3772     struct megasas_cmd *cmd, int mode)
3773 {
3774 	void		*request_ubuf;
3775 	void		*response_ubuf;
3776 	uint32_t	request_xferlen = 0;
3777 	uint32_t	response_xferlen = 0;
3778 	uint_t		model;
3779 	dma_obj_t			request_dma_obj;
3780 	dma_obj_t			response_dma_obj;
3781 	struct megasas_smp_frame	*ksmp;
3782 	struct megasas_smp_frame	*smp;
3783 	struct megasas_sge32		*sge32;
3784 #ifndef _ILP32
3785 	struct megasas_sge64		*sge64;
3786 #endif
3787 
3788 	smp = &cmd->frame->smp;
3789 	ksmp = (struct megasas_smp_frame *)&ioctl->frame[0];
3790 
3791 	model = ddi_model_convert_from(mode & FMODELS);
3792 	if (model == DDI_MODEL_ILP32) {
3793 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3794 
3795 		sge32			= &ksmp->sgl[0].sge32[0];
3796 		response_xferlen	= sge32[0].length;
3797 		request_xferlen		= sge32[1].length;
3798 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3799 		    "response_xferlen = %x, request_xferlen = %x",
3800 		    response_xferlen, request_xferlen));
3801 
3802 		/* SJ! - ubuf needs to be virtual address. */
3803 
3804 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3805 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3806 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3807 		    "response_ubuf = %p, request_ubuf = %p",
3808 		    response_ubuf, request_ubuf));
3809 	} else {
3810 #ifdef _ILP32
3811 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3812 
3813 		sge32			= &ksmp->sgl[0].sge32[0];
3814 		response_xferlen	= sge32[0].length;
3815 		request_xferlen		= sge32[1].length;
3816 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3817 		    "response_xferlen = %x, request_xferlen = %x",
3818 		    response_xferlen, request_xferlen));
3819 
3820 		/* SJ! - ubuf needs to be virtual address. */
3821 
3822 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3823 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3824 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3825 		    "response_ubuf = %p, request_ubuf = %p",
3826 		    response_ubuf, request_ubuf));
3827 #else
3828 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64"));
3829 
3830 		sge64			= &ksmp->sgl[0].sge64[0];
3831 		response_xferlen	= sge64[0].length;
3832 		request_xferlen		= sge64[1].length;
3833 
3834 		/* SJ! - ubuf needs to be virtual address. */
3835 		response_ubuf	= (void *)(ulong_t)sge64[0].phys_addr;
3836 		request_ubuf	= (void *)(ulong_t)sge64[1].phys_addr;
3837 #endif
3838 	}
3839 	if (request_xferlen) {
3840 		/* means IOCTL requires DMA */
3841 		/* allocate the data transfer buffer */
3842 		request_dma_obj.size = request_xferlen;
3843 		request_dma_obj.dma_attr = megasas_generic_dma_attr;
3844 		request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3845 		request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3846 		request_dma_obj.dma_attr.dma_attr_sgllen = 1;
3847 		request_dma_obj.dma_attr.dma_attr_align = 1;
3848 
3849 		/* allocate kernel buffer for DMA */
3850 		if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) {
3851 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3852 			    "could not data transfer buffer alloc."));
3853 			return (DDI_FAILURE);
3854 		}
3855 
3856 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3857 		if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer,
3858 		    request_xferlen, mode)) {
3859 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3860 			    "copy from user space failed\n"));
3861 			return (1);
3862 		}
3863 	}
3864 
3865 	if (response_xferlen) {
3866 		/* means IOCTL requires DMA */
3867 		/* allocate the data transfer buffer */
3868 		response_dma_obj.size = response_xferlen;
3869 		response_dma_obj.dma_attr = megasas_generic_dma_attr;
3870 		response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3871 		response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3872 		response_dma_obj.dma_attr.dma_attr_sgllen = 1;
3873 		response_dma_obj.dma_attr.dma_attr_align = 1;
3874 
3875 		/* allocate kernel buffer for DMA */
3876 		if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) {
3877 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3878 			    "could not data transfer buffer alloc."));
3879 			return (DDI_FAILURE);
3880 		}
3881 
3882 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3883 		if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer,
3884 		    response_xferlen, mode)) {
3885 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3886 			    "copy from user space failed\n"));
3887 			return (1);
3888 		}
3889 	}
3890 
3891 	smp->cmd		= ksmp->cmd;
3892 	smp->cmd_status		= ksmp->cmd_status;
3893 	smp->connection_status	= ksmp->connection_status;
3894 	smp->sge_count		= ksmp->sge_count;
3895 	/* smp->context		= ksmp->context; */
3896 	smp->timeout		= ksmp->timeout;
3897 	smp->data_xfer_len	= ksmp->data_xfer_len;
3898 
3899 	bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr,
3900 	    sizeof (uint64_t));
3901 
3902 	smp->flags		= ksmp->flags & ~MFI_FRAME_SGL64;
3903 
3904 	model = ddi_model_convert_from(mode & FMODELS);
3905 	if (model == DDI_MODEL_ILP32) {
3906 		con_log(CL_ANN1, (CE_NOTE,
3907 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3908 
3909 		sge32 = &smp->sgl[0].sge32[0];
3910 		sge32[0].length	= response_xferlen;
3911 		sge32[0].phys_addr =
3912 		    response_dma_obj.dma_cookie[0].dmac_address;
3913 		sge32[1].length	= request_xferlen;
3914 		sge32[1].phys_addr =
3915 		    request_dma_obj.dma_cookie[0].dmac_address;
3916 	} else {
3917 #ifdef _ILP32
3918 		con_log(CL_ANN1, (CE_NOTE,
3919 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3920 		sge32 = &smp->sgl[0].sge32[0];
3921 		sge32[0].length	 = response_xferlen;
3922 		sge32[0].phys_addr =
3923 		    response_dma_obj.dma_cookie[0].dmac_address;
3924 		sge32[1].length	= request_xferlen;
3925 		sge32[1].phys_addr =
3926 		    request_dma_obj.dma_cookie[0].dmac_address;
3927 #else
3928 		con_log(CL_ANN1, (CE_NOTE,
3929 		    "issue_mfi_smp: DDI_MODEL_LP64"));
3930 		sge64 = &smp->sgl[0].sge64[0];
3931 		sge64[0].length	= response_xferlen;
3932 		sge64[0].phys_addr =
3933 		    response_dma_obj.dma_cookie[0].dmac_address;
3934 		sge64[1].length	= request_xferlen;
3935 		sge64[1].phys_addr =
3936 		    request_dma_obj.dma_cookie[0].dmac_address;
3937 #endif
3938 	}
3939 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3940 	    "smp->response_xferlen = %d, smp->request_xferlen = %d "
3941 	    "smp->data_xfer_len = %d", sge32[0].length, sge32[1].length,
3942 	    smp->data_xfer_len));
3943 
3944 	cmd->sync_cmd = MEGASAS_TRUE;
3945 	cmd->frame_count = 1;
3946 
3947 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3948 		con_log(CL_ANN, (CE_WARN,
3949 		    "issue_mfi_smp: fw_ioctl failed\n"));
3950 	} else {
3951 		con_log(CL_ANN1, (CE_NOTE,
3952 		    "issue_mfi_smp: copy to user space\n"));
3953 
3954 		if (request_xferlen) {
3955 			if (ddi_copyout(request_dma_obj.buffer, request_ubuf,
3956 			    request_xferlen, mode)) {
3957 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3958 				    "copy to user space failed\n"));
3959 				return (1);
3960 			}
3961 		}
3962 
3963 		if (response_xferlen) {
3964 			if (ddi_copyout(response_dma_obj.buffer, response_ubuf,
3965 			    response_xferlen, mode)) {
3966 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3967 				    "copy to user space failed\n"));
3968 				return (1);
3969 			}
3970 		}
3971 	}
3972 
3973 	ksmp->cmd_status = smp->cmd_status;
3974 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d",
3975 	    smp->cmd_status));
3976 
3977 
3978 	if (request_xferlen) {
3979 		/* free kernel buffer */
3980 		if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS)
3981 			return (1);
3982 	}
3983 
3984 	if (response_xferlen) {
3985 		/* free kernel buffer */
3986 		if (mega_free_dma_obj(instance, response_dma_obj) !=
3987 		    DDI_SUCCESS)
3988 			return (1);
3989 	}
3990 
3991 	return (0);
3992 }
3993 
3994 /*
3995  * issue_mfi_stp
3996  */
3997 static int
3998 issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3999     struct megasas_cmd *cmd, int mode)
4000 {
4001 	void		*fis_ubuf;
4002 	void		*data_ubuf;
4003 	uint32_t	fis_xferlen = 0;
4004 	uint32_t	data_xferlen = 0;
4005 	uint_t		model;
4006 	dma_obj_t			fis_dma_obj;
4007 	dma_obj_t			data_dma_obj;
4008 	struct megasas_stp_frame	*kstp;
4009 	struct megasas_stp_frame	*stp;
4010 
4011 	stp = &cmd->frame->stp;
4012 	kstp = (struct megasas_stp_frame *)&ioctl->frame[0];
4013 
4014 	model = ddi_model_convert_from(mode & FMODELS);
4015 	if (model == DDI_MODEL_ILP32) {
4016 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4017 
4018 		fis_xferlen	= kstp->sgl.sge32[0].length;
4019 		data_xferlen	= kstp->sgl.sge32[1].length;
4020 
4021 		/* SJ! - ubuf needs to be virtual address. */
4022 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4023 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4024 	}
4025 	else
4026 	{
4027 #ifdef _ILP32
4028 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4029 
4030 		fis_xferlen	= kstp->sgl.sge32[0].length;
4031 		data_xferlen	= kstp->sgl.sge32[1].length;
4032 
4033 		/* SJ! - ubuf needs to be virtual address. */
4034 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4035 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4036 #else
4037 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64"));
4038 
4039 		fis_xferlen	= kstp->sgl.sge64[0].length;
4040 		data_xferlen	= kstp->sgl.sge64[1].length;
4041 
4042 		/* SJ! - ubuf needs to be virtual address. */
4043 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr;
4044 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr;
4045 #endif
4046 	}
4047 
4048 
4049 	if (fis_xferlen) {
4050 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: "
4051 		    "fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen));
4052 
4053 		/* means IOCTL requires DMA */
4054 		/* allocate the data transfer buffer */
4055 		fis_dma_obj.size = fis_xferlen;
4056 		fis_dma_obj.dma_attr = megasas_generic_dma_attr;
4057 		fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4058 		fis_dma_obj.dma_attr.dma_attr_count_max	= 0xFFFFFFFFU;
4059 		fis_dma_obj.dma_attr.dma_attr_sgllen = 1;
4060 		fis_dma_obj.dma_attr.dma_attr_align = 1;
4061 
4062 		/* allocate kernel buffer for DMA */
4063 		if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) {
4064 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4065 			    "could not data transfer buffer alloc."));
4066 			return (DDI_FAILURE);
4067 		}
4068 
4069 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4070 		if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer,
4071 		    fis_xferlen, mode)) {
4072 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4073 			    "copy from user space failed\n"));
4074 			return (1);
4075 		}
4076 	}
4077 
4078 	if (data_xferlen) {
4079 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p "
4080 		    "data_xferlen = %x", data_ubuf, data_xferlen));
4081 
4082 		/* means IOCTL requires DMA */
4083 		/* allocate the data transfer buffer */
4084 		data_dma_obj.size = data_xferlen;
4085 		data_dma_obj.dma_attr = megasas_generic_dma_attr;
4086 		data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4087 		data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
4088 		data_dma_obj.dma_attr.dma_attr_sgllen = 1;
4089 		data_dma_obj.dma_attr.dma_attr_align = 1;
4090 
4091 		/* allocate kernel buffer for DMA */
4092 		if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) {
4093 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4094 			    "could not data transfer buffer alloc."));
4095 			return (DDI_FAILURE);
4096 		}
4097 
4098 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4099 		if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer,
4100 		    data_xferlen, mode)) {
4101 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4102 			    "copy from user space failed\n"));
4103 			return (1);
4104 		}
4105 	}
4106 
4107 	stp->cmd = kstp->cmd;
4108 	stp->cmd_status	= kstp->cmd_status;
4109 	stp->connection_status = kstp->connection_status;
4110 	stp->target_id = kstp->target_id;
4111 	stp->sge_count = kstp->sge_count;
4112 	/* stp->context = kstp->context; */
4113 	stp->timeout = kstp->timeout;
4114 	stp->data_xfer_len = kstp->data_xfer_len;
4115 
4116 	bcopy((void *)kstp->fis, (void *)stp->fis, 10);
4117 
4118 	stp->flags = kstp->flags & ~MFI_FRAME_SGL64;
4119 	stp->stp_flags = kstp->stp_flags;
4120 	stp->sgl.sge32[0].length = fis_xferlen;
4121 	stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address;
4122 	stp->sgl.sge32[1].length = data_xferlen;
4123 	stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address;
4124 
4125 	cmd->sync_cmd = MEGASAS_TRUE;
4126 	cmd->frame_count = 1;
4127 
4128 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
4129 		con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n"));
4130 	} else {
4131 
4132 		if (fis_xferlen) {
4133 			if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf,
4134 			    fis_xferlen, mode)) {
4135 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4136 				    "copy to user space failed\n"));
4137 				return (1);
4138 			}
4139 		}
4140 
4141 		if (data_xferlen) {
4142 			if (ddi_copyout(data_dma_obj.buffer, data_ubuf,
4143 			    data_xferlen, mode)) {
4144 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4145 				    "copy to user space failed\n"));
4146 				return (1);
4147 			}
4148 		}
4149 	}
4150 
4151 	kstp->cmd_status = stp->cmd_status;
4152 
4153 	if (fis_xferlen) {
4154 		/* free kernel buffer */
4155 		if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS)
4156 			return (1);
4157 	}
4158 
4159 	if (data_xferlen) {
4160 		/* free kernel buffer */
4161 		if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS)
4162 			return (1);
4163 	}
4164 
4165 	return (0);
4166 }
4167 
4168 /*
4169  * fill_up_drv_ver
4170  */
4171 static void
4172 fill_up_drv_ver(struct megasas_drv_ver *dv)
4173 {
4174 	(void) memset(dv, 0, sizeof (struct megasas_drv_ver));
4175 
4176 	(void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$"));
4177 	(void) memcpy(dv->os_name, "Solaris", strlen("Solaris"));
4178 	(void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas"));
4179 	(void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION));
4180 	(void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE,
4181 	    strlen(MEGASAS_RELDATE));
4182 }
4183 
4184 /*
4185  * handle_drv_ioctl
4186  */
4187 static int
4188 handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4189     int mode)
4190 {
4191 	int	i;
4192 	int	rval = 0;
4193 	int	*props = NULL;
4194 	void	*ubuf;
4195 
4196 	uint8_t		*pci_conf_buf;
4197 	uint32_t	xferlen;
4198 	uint32_t	num_props;
4199 	uint_t		model;
4200 	struct megasas_dcmd_frame	*kdcmd;
4201 	struct megasas_drv_ver		dv;
4202 	struct megasas_pci_information	pi;
4203 
4204 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
4205 
4206 	model = ddi_model_convert_from(mode & FMODELS);
4207 	if (model == DDI_MODEL_ILP32) {
4208 		con_log(CL_ANN1, (CE_NOTE,
4209 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4210 
4211 		xferlen	= kdcmd->sgl.sge32[0].length;
4212 
4213 		/* SJ! - ubuf needs to be virtual address. */
4214 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4215 	} else {
4216 #ifdef _ILP32
4217 		con_log(CL_ANN1, (CE_NOTE,
4218 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4219 		xferlen	= kdcmd->sgl.sge32[0].length;
4220 		/* SJ! - ubuf needs to be virtual address. */
4221 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4222 #else
4223 		con_log(CL_ANN1, (CE_NOTE,
4224 		    "handle_drv_ioctl: DDI_MODEL_LP64"));
4225 		xferlen	= kdcmd->sgl.sge64[0].length;
4226 		/* SJ! - ubuf needs to be virtual address. */
4227 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr;
4228 #endif
4229 	}
4230 	con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4231 	    "dataBuf=%p size=%d bytes", ubuf, xferlen));
4232 
4233 	switch (kdcmd->opcode) {
4234 	case MR_DRIVER_IOCTL_DRIVER_VERSION:
4235 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4236 		    "MR_DRIVER_IOCTL_DRIVER_VERSION"));
4237 
4238 		fill_up_drv_ver(&dv);
4239 
4240 		if (ddi_copyout(&dv, ubuf, xferlen, mode)) {
4241 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4242 			    "MR_DRIVER_IOCTL_DRIVER_VERSION : "
4243 			    "copy to user space failed\n"));
4244 			kdcmd->cmd_status = 1;
4245 			rval = 1;
4246 		} else {
4247 			kdcmd->cmd_status = 0;
4248 		}
4249 		break;
4250 	case MR_DRIVER_IOCTL_PCI_INFORMATION:
4251 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4252 		    "MR_DRIVER_IOCTL_PCI_INFORMAITON"));
4253 
4254 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip,
4255 		    0, "reg", &props, &num_props)) {
4256 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4257 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4258 			    "ddi_prop_look_int_array failed\n"));
4259 			rval = 1;
4260 		} else {
4261 
4262 			pi.busNumber = (props[0] >> 16) & 0xFF;
4263 			pi.deviceNumber = (props[0] >> 11) & 0x1f;
4264 			pi.functionNumber = (props[0] >> 8) & 0x7;
4265 			ddi_prop_free((void *)props);
4266 		}
4267 
4268 		pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo;
4269 
4270 		for (i = 0; i < (sizeof (struct megasas_pci_information) -
4271 		    offsetof(struct megasas_pci_information, pciHeaderInfo));
4272 		    i++) {
4273 			pci_conf_buf[i] =
4274 			    pci_config_get8(instance->pci_handle, i);
4275 		}
4276 
4277 		if (ddi_copyout(&pi, ubuf, xferlen, mode)) {
4278 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4279 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4280 			    "copy to user space failed\n"));
4281 			kdcmd->cmd_status = 1;
4282 			rval = 1;
4283 		} else {
4284 			kdcmd->cmd_status = 0;
4285 		}
4286 		break;
4287 	default:
4288 		con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4289 		    "invalid driver specific IOCTL opcode = 0x%x",
4290 		    kdcmd->opcode));
4291 		kdcmd->cmd_status = 1;
4292 		rval = 1;
4293 		break;
4294 	}
4295 
4296 	return (rval);
4297 }
4298 
4299 /*
4300  * handle_mfi_ioctl
4301  */
4302 static int
4303 handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4304     int mode)
4305 {
4306 	int	rval = 0;
4307 
4308 	struct megasas_header	*hdr;
4309 	struct megasas_cmd	*cmd;
4310 
4311 	cmd = get_mfi_pkt(instance);
4312 
4313 	if (!cmd) {
4314 		con_log(CL_ANN, (CE_WARN, "megasas: "
4315 		    "failed to get a cmd packet\n"));
4316 		return (1);
4317 	}
4318 
4319 	hdr = (struct megasas_header *)&ioctl->frame[0];
4320 
4321 	switch (hdr->cmd) {
4322 	case MFI_CMD_OP_DCMD:
4323 		rval = issue_mfi_dcmd(instance, ioctl, cmd, mode);
4324 		break;
4325 	case MFI_CMD_OP_SMP:
4326 		rval = issue_mfi_smp(instance, ioctl, cmd, mode);
4327 		break;
4328 	case MFI_CMD_OP_STP:
4329 		rval = issue_mfi_stp(instance, ioctl, cmd, mode);
4330 		break;
4331 	case MFI_CMD_OP_LD_SCSI:
4332 	case MFI_CMD_OP_PD_SCSI:
4333 		rval = issue_mfi_pthru(instance, ioctl, cmd, mode);
4334 		break;
4335 	default:
4336 		con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: "
4337 		    "invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd));
4338 		rval = 1;
4339 		break;
4340 	}
4341 
4342 
4343 	return_mfi_pkt(instance, cmd);
4344 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS)
4345 		rval = 1;
4346 	return (rval);
4347 }
4348 
4349 /*
4350  * AEN
4351  */
4352 static int
4353 handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen)
4354 {
4355 	int	rval = 0;
4356 
4357 	rval = register_mfi_aen(instance, instance->aen_seq_num,
4358 	    aen->class_locale_word);
4359 
4360 	aen->cmd_status = (uint8_t)rval;
4361 
4362 	return (rval);
4363 }
4364 
4365 static int
4366 register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num,
4367     uint32_t class_locale_word)
4368 {
4369 	int	ret_val;
4370 
4371 	struct megasas_cmd		*cmd;
4372 	struct megasas_dcmd_frame	*dcmd;
4373 	union megasas_evt_class_locale	curr_aen;
4374 	union megasas_evt_class_locale	prev_aen;
4375 
4376 	/*
4377 	 * If there an AEN pending already (aen_cmd), check if the
4378 	 * class_locale of that pending AEN is inclusive of the new
4379 	 * AEN request we currently have. If it is, then we don't have
4380 	 * to do anything. In other words, whichever events the current
4381 	 * AEN request is subscribing to, have already been subscribed
4382 	 * to.
4383 	 *
4384 	 * If the old_cmd is _not_ inclusive, then we have to abort
4385 	 * that command, form a class_locale that is superset of both
4386 	 * old and current and re-issue to the FW
4387 	 */
4388 
4389 	curr_aen.word = class_locale_word;
4390 
4391 	if (instance->aen_cmd) {
4392 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
4393 
4394 		/*
4395 		 * A class whose enum value is smaller is inclusive of all
4396 		 * higher values. If a PROGRESS (= -1) was previously
4397 		 * registered, then a new registration requests for higher
4398 		 * classes need not be sent to FW. They are automatically
4399 		 * included.
4400 		 *
4401 		 * Locale numbers don't have such hierarchy. They are bitmap
4402 		 * values
4403 		 */
4404 		if ((prev_aen.members.class <= curr_aen.members.class) &&
4405 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
4406 		    curr_aen.members.locale)) {
4407 			/*
4408 			 * Previously issued event registration includes
4409 			 * current request. Nothing to do.
4410 			 */
4411 
4412 			return (0);
4413 		} else {
4414 			curr_aen.members.locale |= prev_aen.members.locale;
4415 
4416 			if (prev_aen.members.class < curr_aen.members.class)
4417 				curr_aen.members.class = prev_aen.members.class;
4418 
4419 			ret_val = abort_aen_cmd(instance, instance->aen_cmd);
4420 
4421 			if (ret_val) {
4422 				con_log(CL_ANN, (CE_WARN, "register_mfi_aen: "
4423 				    "failed to abort prevous AEN command\n"));
4424 
4425 				return (ret_val);
4426 			}
4427 		}
4428 	} else {
4429 		curr_aen.word = class_locale_word;
4430 	}
4431 
4432 	cmd = get_mfi_pkt(instance);
4433 
4434 	if (!cmd)
4435 		return (-ENOMEM);
4436 
4437 	dcmd = &cmd->frame->dcmd;
4438 
4439 	/* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */
4440 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
4441 
4442 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
4443 	    sizeof (struct megasas_evt_detail));
4444 
4445 	/* Prepare DCMD for aen registration */
4446 	dcmd->cmd = MFI_CMD_OP_DCMD;
4447 	dcmd->cmd_status = 0x0;
4448 	dcmd->sge_count = 1;
4449 	dcmd->flags = MFI_FRAME_DIR_READ;
4450 	dcmd->timeout = 0;
4451 	dcmd->data_xfer_len = sizeof (struct megasas_evt_detail);
4452 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
4453 	dcmd->mbox.w[0] = seq_num;
4454 	dcmd->mbox.w[1] = curr_aen.word;
4455 	dcmd->sgl.sge32[0].phys_addr =
4456 	    instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address;
4457 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail);
4458 
4459 	instance->aen_seq_num = seq_num;
4460 
4461 	/*
4462 	 * Store reference to the cmd used to register for AEN. When an
4463 	 * application wants us to register for AEN, we have to abort this
4464 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
4465 	 */
4466 	instance->aen_cmd = cmd;
4467 
4468 	cmd->frame_count = 1;
4469 
4470 	/* Issue the aen registration frame */
4471 	/* atomic_add_16 (&instance->fw_outstanding, 1); */
4472 	instance->func_ptr->issue_cmd(cmd, instance);
4473 
4474 	return (0);
4475 }
4476 
4477 static void
4478 display_scsi_inquiry(caddr_t scsi_inq)
4479 {
4480 #define	MAX_SCSI_DEVICE_CODE	14
4481 	int		i;
4482 	char		inquiry_buf[256] = {0};
4483 	int		len;
4484 	const char	*const scsi_device_types[] = {
4485 		"Direct-Access    ",
4486 		"Sequential-Access",
4487 		"Printer          ",
4488 		"Processor        ",
4489 		"WORM             ",
4490 		"CD-ROM           ",
4491 		"Scanner          ",
4492 		"Optical Device   ",
4493 		"Medium Changer   ",
4494 		"Communications   ",
4495 		"Unknown          ",
4496 		"Unknown          ",
4497 		"Unknown          ",
4498 		"Enclosure        ",
4499 	};
4500 
4501 	len = 0;
4502 
4503 	len += snprintf(inquiry_buf + len, 265 - len, "  Vendor: ");
4504 	for (i = 8; i < 16; i++) {
4505 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4506 		    scsi_inq[i]);
4507 	}
4508 
4509 	len += snprintf(inquiry_buf + len, 265 - len, "  Model: ");
4510 
4511 	for (i = 16; i < 32; i++) {
4512 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4513 		    scsi_inq[i]);
4514 	}
4515 
4516 	len += snprintf(inquiry_buf + len, 265 - len, "  Rev: ");
4517 
4518 	for (i = 32; i < 36; i++) {
4519 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4520 		    scsi_inq[i]);
4521 	}
4522 
4523 	len += snprintf(inquiry_buf + len, 265 - len, "\n");
4524 
4525 
4526 	i = scsi_inq[0] & 0x1f;
4527 
4528 
4529 	len += snprintf(inquiry_buf + len, 265 - len, "  Type:   %s ",
4530 	    i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
4531 	    "Unknown          ");
4532 
4533 
4534 	len += snprintf(inquiry_buf + len, 265 - len,
4535 	    "                 ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
4536 
4537 	if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) {
4538 		len += snprintf(inquiry_buf + len, 265 - len, " CCS\n");
4539 	} else {
4540 		len += snprintf(inquiry_buf + len, 265 - len, "\n");
4541 	}
4542 
4543 	con_log(CL_ANN1, (CE_CONT, inquiry_buf));
4544 }
4545 
4546 static int
4547 read_fw_status_reg_xscale(struct megasas_instance *instance)
4548 {
4549 	return ((int)RD_OB_MSG_0(instance));
4550 }
4551 
4552 static int
4553 read_fw_status_reg_ppc(struct megasas_instance *instance)
4554 {
4555 	return ((int)RD_OB_SCRATCH_PAD_0(instance));
4556 }
4557 
4558 static void
4559 issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance)
4560 {
4561 	atomic_inc_16(&instance->fw_outstanding);
4562 
4563 	/* Issue the command to the FW */
4564 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4565 	    (cmd->frame_count - 1), instance);
4566 }
4567 
4568 static void
4569 issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance)
4570 {
4571 	atomic_inc_16(&instance->fw_outstanding);
4572 
4573 	/* Issue the command to the FW */
4574 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4575 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4576 }
4577 
4578 /*
4579  * issue_cmd_in_sync_mode
4580  */
4581 static int
4582 issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance,
4583     struct megasas_cmd *cmd)
4584 {
4585 	int		i;
4586 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4587 
4588 	cmd->cmd_status	= ENODATA;
4589 
4590 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4591 	    (cmd->frame_count - 1), instance);
4592 
4593 	mutex_enter(&instance->int_cmd_mtx);
4594 
4595 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4596 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4597 	}
4598 
4599 	mutex_exit(&instance->int_cmd_mtx);
4600 
4601 	if (i < (msecs -1)) {
4602 		return (0);
4603 	} else {
4604 		return (1);
4605 	}
4606 }
4607 
4608 static int
4609 issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance,
4610     struct megasas_cmd *cmd)
4611 {
4612 	int		i;
4613 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4614 
4615 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n"));
4616 
4617 	cmd->cmd_status	= ENODATA;
4618 
4619 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4620 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4621 
4622 	mutex_enter(&instance->int_cmd_mtx);
4623 
4624 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4625 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4626 	}
4627 
4628 	mutex_exit(&instance->int_cmd_mtx);
4629 
4630 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n"));
4631 
4632 	if (i < (msecs -1)) {
4633 		return (0);
4634 	} else {
4635 		return (1);
4636 	}
4637 }
4638 
4639 /*
4640  * issue_cmd_in_poll_mode
4641  */
4642 static int
4643 issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance,
4644     struct megasas_cmd *cmd)
4645 {
4646 	int		i;
4647 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4648 	struct megasas_header *frame_hdr;
4649 
4650 	frame_hdr = (struct megasas_header *)cmd->frame;
4651 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4652 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4653 
4654 	/* issue the frame using inbound queue port */
4655 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4656 	    (cmd->frame_count - 1), instance);
4657 
4658 	/* wait for cmd_status to change from 0xFF */
4659 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4660 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4661 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4662 	}
4663 
4664 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4665 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4666 		    "cmd polling timed out"));
4667 		return (DDI_FAILURE);
4668 	}
4669 
4670 	return (DDI_SUCCESS);
4671 }
4672 
4673 static int
4674 issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance,
4675     struct megasas_cmd *cmd)
4676 {
4677 	int		i;
4678 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4679 	struct megasas_header *frame_hdr;
4680 
4681 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n"));
4682 
4683 	frame_hdr = (struct megasas_header *)cmd->frame;
4684 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4685 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4686 
4687 	/* issue the frame using inbound queue port */
4688 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4689 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4690 
4691 	/* wait for cmd_status to change from 0xFF */
4692 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4693 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4694 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4695 	}
4696 
4697 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4698 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4699 		    "cmd polling timed out"));
4700 		return (DDI_FAILURE);
4701 	}
4702 
4703 	return (DDI_SUCCESS);
4704 }
4705 
4706 static void
4707 enable_intr_xscale(struct megasas_instance *instance)
4708 {
4709 	MFI_ENABLE_INTR(instance);
4710 }
4711 
4712 static void
4713 enable_intr_ppc(struct megasas_instance *instance)
4714 {
4715 	uint32_t	mask;
4716 
4717 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n"));
4718 
4719 	/* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */
4720 	WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance);
4721 
4722 	/*
4723 	 * As 1078DE is same as 1078 chip, the interrupt mask
4724 	 * remains the same.
4725 	 */
4726 	/* WR_OB_INTR_MASK(~0x80000000, instance); */
4727 	WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance);
4728 
4729 	/* dummy read to force PCI flush */
4730 	mask = RD_OB_INTR_MASK(instance);
4731 
4732 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: "
4733 	    "outbound_intr_mask = 0x%x\n", mask));
4734 }
4735 
4736 static void
4737 disable_intr_xscale(struct megasas_instance *instance)
4738 {
4739 	MFI_DISABLE_INTR(instance);
4740 }
4741 
4742 static void
4743 disable_intr_ppc(struct megasas_instance *instance)
4744 {
4745 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n"));
4746 
4747 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : "
4748 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4749 
4750 	/* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */
4751 	WR_OB_INTR_MASK(OB_INTR_MASK, instance);
4752 
4753 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : "
4754 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4755 
4756 	/* dummy read to force PCI flush */
4757 	(void) RD_OB_INTR_MASK(instance);
4758 }
4759 
4760 static int
4761 intr_ack_xscale(struct megasas_instance *instance)
4762 {
4763 	uint32_t	status;
4764 
4765 	/* check if it is our interrupt */
4766 	status = RD_OB_INTR_STATUS(instance);
4767 
4768 	if (!(status & MFI_OB_INTR_STATUS_MASK)) {
4769 		return (DDI_INTR_UNCLAIMED);
4770 	}
4771 
4772 	/* clear the interrupt by writing back the same value */
4773 	WR_OB_INTR_STATUS(status, instance);
4774 
4775 	return (DDI_INTR_CLAIMED);
4776 }
4777 
4778 static int
4779 intr_ack_ppc(struct megasas_instance *instance)
4780 {
4781 	uint32_t	status;
4782 
4783 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n"));
4784 
4785 	/* check if it is our interrupt */
4786 	status = RD_OB_INTR_STATUS(instance);
4787 
4788 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status));
4789 
4790 	/*
4791 	 * As 1078DE is same as 1078 chip, the status field
4792 	 * remains the same.
4793 	 */
4794 	if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) {
4795 		return (DDI_INTR_UNCLAIMED);
4796 	}
4797 
4798 	/* clear the interrupt by writing back the same value */
4799 	WR_OB_DOORBELL_CLEAR(status, instance);
4800 
4801 	/* dummy READ */
4802 	status = RD_OB_INTR_STATUS(instance);
4803 
4804 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n"));
4805 
4806 	return (DDI_INTR_CLAIMED);
4807 }
4808 
4809 static int
4810 megasas_common_check(struct megasas_instance *instance,
4811     struct  megasas_cmd *cmd)
4812 {
4813 	int ret = DDI_SUCCESS;
4814 
4815 	if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
4816 	    DDI_SUCCESS) {
4817 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4818 		if (cmd->pkt != NULL) {
4819 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4820 			cmd->pkt->pkt_statistics = 0;
4821 		}
4822 		ret = DDI_FAILURE;
4823 	}
4824 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
4825 	    != DDI_SUCCESS) {
4826 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4827 		if (cmd->pkt != NULL) {
4828 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4829 			cmd->pkt->pkt_statistics = 0;
4830 		}
4831 		ret = DDI_FAILURE;
4832 	}
4833 	if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) !=
4834 	    DDI_SUCCESS) {
4835 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4836 		if (cmd->pkt != NULL) {
4837 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4838 			cmd->pkt->pkt_statistics = 0;
4839 		}
4840 		ret = DDI_FAILURE;
4841 	}
4842 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
4843 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4844 		ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0);
4845 		if (cmd->pkt != NULL) {
4846 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4847 			cmd->pkt->pkt_statistics = 0;
4848 		}
4849 		ret = DDI_FAILURE;
4850 	}
4851 
4852 	return (ret);
4853 }
4854 
4855 /*ARGSUSED*/
4856 static int
4857 megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4858 {
4859 	/*
4860 	 * as the driver can always deal with an error in any dma or
4861 	 * access handle, we can just return the fme_status value.
4862 	 */
4863 	pci_ereport_post(dip, err, NULL);
4864 	return (err->fme_status);
4865 }
4866 
4867 static void
4868 megasas_fm_init(struct megasas_instance *instance)
4869 {
4870 	/* Need to change iblock to priority for new MSI intr */
4871 	ddi_iblock_cookie_t fm_ibc;
4872 
4873 	/* Only register with IO Fault Services if we have some capability */
4874 	if (instance->fm_capabilities) {
4875 		/* Adjust access and dma attributes for FMA */
4876 		endian_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4877 		megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
4878 
4879 		/*
4880 		 * Register capabilities with IO Fault Services.
4881 		 * fm_capabilities will be updated to indicate
4882 		 * capabilities actually supported (not requested.)
4883 		 */
4884 
4885 		ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc);
4886 
4887 		/*
4888 		 * Initialize pci ereport capabilities if ereport
4889 		 * capable (should always be.)
4890 		 */
4891 
4892 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4893 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4894 			pci_ereport_setup(instance->dip);
4895 		}
4896 
4897 		/*
4898 		 * Register error callback if error callback capable.
4899 		 */
4900 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4901 			ddi_fm_handler_register(instance->dip,
4902 			    megasas_fm_error_cb, (void*) instance);
4903 		}
4904 	} else {
4905 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4906 		megasas_generic_dma_attr.dma_attr_flags = 0;
4907 	}
4908 }
4909 
4910 static void
4911 megasas_fm_fini(struct megasas_instance *instance)
4912 {
4913 	/* Only unregister FMA capabilities if registered */
4914 	if (instance->fm_capabilities) {
4915 		/*
4916 		 * Un-register error callback if error callback capable.
4917 		 */
4918 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4919 			ddi_fm_handler_unregister(instance->dip);
4920 		}
4921 
4922 		/*
4923 		 * Release any resources allocated by pci_ereport_setup()
4924 		 */
4925 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4926 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4927 			pci_ereport_teardown(instance->dip);
4928 		}
4929 
4930 		/* Unregister from IO Fault Services */
4931 		ddi_fm_fini(instance->dip);
4932 
4933 		/* Adjust access and dma attributes for FMA */
4934 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4935 		megasas_generic_dma_attr.dma_attr_flags = 0;
4936 	}
4937 }
4938 
4939 int
4940 megasas_check_acc_handle(ddi_acc_handle_t handle)
4941 {
4942 	ddi_fm_error_t de;
4943 
4944 	if (handle == NULL) {
4945 		return (DDI_FAILURE);
4946 	}
4947 
4948 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4949 
4950 	return (de.fme_status);
4951 }
4952 
4953 int
4954 megasas_check_dma_handle(ddi_dma_handle_t handle)
4955 {
4956 	ddi_fm_error_t de;
4957 
4958 	if (handle == NULL) {
4959 		return (DDI_FAILURE);
4960 	}
4961 
4962 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4963 
4964 	return (de.fme_status);
4965 }
4966 
4967 void
4968 megasas_fm_ereport(struct megasas_instance *instance, char *detail)
4969 {
4970 	uint64_t ena;
4971 	char buf[FM_MAX_CLASS];
4972 
4973 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4974 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4975 	if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) {
4976 		ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP,
4977 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL);
4978 	}
4979 }
4980