xref: /illumos-gate/usr/src/uts/common/io/mega_sas/megaraid_sas.c (revision 588a1af05d98e04562709dbfc4827a5f46f8f2fd)
1 /*
2  * megaraid_sas.c: source for mega_sas driver
3  *
4  * MegaRAID device driver for SAS controllers
5  * Copyright (c) 2005-2008, LSI Logic Corporation.
6  * All rights reserved.
7  *
8  * Version:
9  * Author:
10  *        	Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com>
11  *        	Seokmann Ju
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions are met:
15  *
16  * 1. Redistributions of source code must retain the above copyright notice,
17  *    this list of conditions and the following disclaimer.
18  *
19  * 2. Redistributions in binary form must reproduce the above copyright notice,
20  *    this list of conditions and the following disclaimer in the documentation
21  *    and/or other materials provided with the distribution.
22  *
23  * 3. Neither the name of the author nor the names of its contributors may be
24  *    used to endorse or promote products derived from this software without
25  *    specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
35  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
37  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
38  * DAMAGE.
39  */
40 
41 /*
42  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
43  * Use is subject to license terms.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/file.h>
49 #include <sys/errno.h>
50 #include <sys/open.h>
51 #include <sys/cred.h>
52 #include <sys/modctl.h>
53 #include <sys/conf.h>
54 #include <sys/devops.h>
55 #include <sys/cmn_err.h>
56 #include <sys/kmem.h>
57 #include <sys/stat.h>
58 #include <sys/mkdev.h>
59 #include <sys/pci.h>
60 #include <sys/scsi/scsi.h>
61 #include <sys/ddi.h>
62 #include <sys/sunddi.h>
63 #include <sys/atomic.h>
64 #include <sys/signal.h>
65 
66 #include "megaraid_sas.h"
67 
68 /*
69  * FMA header files
70  */
71 #include <sys/ddifm.h>
72 #include <sys/fm/protocol.h>
73 #include <sys/fm/util.h>
74 #include <sys/fm/io/ddi.h>
75 
76 /*
77  * Local static data
78  */
79 static void	*megasas_state = NULL;
80 static int 	debug_level_g = CL_ANN;
81 
82 #pragma weak scsi_hba_open
83 #pragma weak scsi_hba_close
84 #pragma weak scsi_hba_ioctl
85 
86 static ddi_dma_attr_t megasas_generic_dma_attr = {
87 	DMA_ATTR_V0,		/* dma_attr_version */
88 	0,			/* low DMA address range */
89 	0xFFFFFFFFU,		/* high DMA address range */
90 	0xFFFFFFFFU,		/* DMA counter register  */
91 	8,			/* DMA address alignment */
92 	0x07,			/* DMA burstsizes  */
93 	1,			/* min DMA size */
94 	0xFFFFFFFFU,		/* max DMA size */
95 	0xFFFFFFFFU,		/* segment boundary */
96 	MEGASAS_MAX_SGE_CNT,	/* dma_attr_sglen */
97 	512,			/* granularity of device */
98 	0			/* bus specific DMA flags */
99 };
100 
101 int32_t megasas_max_cap_maxxfer = 0x1000000;
102 
103 /*
104  * cb_ops contains base level routines
105  */
106 static struct cb_ops megasas_cb_ops = {
107 	megasas_open,		/* open */
108 	megasas_close,		/* close */
109 	nodev,			/* strategy */
110 	nodev,			/* print */
111 	nodev,			/* dump */
112 	nodev,			/* read */
113 	nodev,			/* write */
114 	megasas_ioctl,		/* ioctl */
115 	nodev,			/* devmap */
116 	nodev,			/* mmap */
117 	nodev,			/* segmap */
118 	nochpoll,		/* poll */
119 	nodev,			/* cb_prop_op */
120 	0,			/* streamtab  */
121 	D_NEW | D_HOTPLUG,	/* cb_flag */
122 	CB_REV,			/* cb_rev */
123 	nodev,			/* cb_aread */
124 	nodev			/* cb_awrite */
125 };
126 
127 /*
128  * dev_ops contains configuration routines
129  */
130 static struct dev_ops megasas_ops = {
131 	DEVO_REV,		/* rev, */
132 	0,			/* refcnt */
133 	megasas_getinfo,	/* getinfo */
134 	nulldev,		/* identify */
135 	nulldev,		/* probe */
136 	megasas_attach,		/* attach */
137 	megasas_detach,		/* detach */
138 	megasas_reset,		/* reset */
139 	&megasas_cb_ops,	/* char/block ops */
140 	NULL,			/* bus ops */
141 	NULL,			/* power */
142 	ddi_quiesce_not_supported,	/* devo_quiesce */
143 };
144 
145 char _depends_on[] = "misc/scsi";
146 
147 static struct modldrv modldrv = {
148 	&mod_driverops,		/* module type - driver */
149 	MEGASAS_VERSION,
150 	&megasas_ops,		/* driver ops */
151 };
152 
153 static struct modlinkage modlinkage = {
154 	MODREV_1,	/* ml_rev - must be MODREV_1 */
155 	&modldrv,	/* ml_linkage */
156 	NULL		/* end of driver linkage */
157 };
158 
159 static struct ddi_device_acc_attr endian_attr = {
160 	DDI_DEVICE_ATTR_V0,
161 	DDI_STRUCTURE_LE_ACC,
162 	DDI_STRICTORDER_ACC
163 };
164 
165 
166 /*
167  * ************************************************************************** *
168  *                                                                            *
169  *         common entry points - for loadable kernel modules                  *
170  *                                                                            *
171  * ************************************************************************** *
172  */
173 
174 /*
175  * _init - initialize a loadable module
176  * @void
177  *
178  * The driver should perform any one-time resource allocation or data
179  * initialization during driver loading in _init(). For example, the driver
180  * should initialize any mutexes global to the driver in this routine.
181  * The driver should not, however, use _init() to allocate or initialize
182  * anything that has to do with a particular instance of the device.
183  * Per-instance initialization must be done in attach().
184  */
185 int
186 _init(void)
187 {
188 	int ret;
189 
190 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
191 
192 	ret = ddi_soft_state_init(&megasas_state,
193 	    sizeof (struct megasas_instance), 0);
194 
195 	if (ret != 0) {
196 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init state"));
197 		return (ret);
198 	}
199 
200 	if ((ret = scsi_hba_init(&modlinkage)) != 0) {
201 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba"));
202 		ddi_soft_state_fini(&megasas_state);
203 		return (ret);
204 	}
205 
206 	ret = mod_install(&modlinkage);
207 
208 	if (ret != 0) {
209 		con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed"));
210 		scsi_hba_fini(&modlinkage);
211 		ddi_soft_state_fini(&megasas_state);
212 	}
213 
214 	return (ret);
215 }
216 
217 /*
218  * _info - returns information about a loadable module.
219  * @void
220  *
221  * _info() is called to return module information. This is a typical entry
222  * point that does predefined role. It simply calls mod_info().
223  */
224 int
225 _info(struct modinfo *modinfop)
226 {
227 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
228 
229 	return (mod_info(&modlinkage, modinfop));
230 }
231 
232 /*
233  * _fini - prepare a loadable module for unloading
234  * @void
235  *
236  * In _fini(), the driver should release any resources that were allocated in
237  * _init(). The driver must remove itself from the system module list.
238  */
239 int
240 _fini(void)
241 {
242 	int ret;
243 
244 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
245 
246 	if ((ret = mod_remove(&modlinkage)) != 0)
247 		return (ret);
248 
249 	scsi_hba_fini(&modlinkage);
250 
251 	ddi_soft_state_fini(&megasas_state);
252 
253 	return (ret);
254 }
255 
256 
257 /*
258  * ************************************************************************** *
259  *                                                                            *
260  *               common entry points - for autoconfiguration                  *
261  *                                                                            *
262  * ************************************************************************** *
263  */
264 /*
265  * attach - adds a device to the system as part of initialization
266  * @dip:
267  * @cmd:
268  *
269  * The kernel calls a driver's attach() entry point to attach an instance of
270  * a device (for MegaRAID, it is instance of a controller) or to resume
271  * operation for an instance of a device that has been suspended or has been
272  * shut down by the power management framework
273  * The attach() entry point typically includes the following types of
274  * processing:
275  * - allocate a soft-state structure for the device instance (for MegaRAID,
276  *   controller instance)
277  * - initialize per-instance mutexes
278  * - initialize condition variables
279  * - register the device's interrupts (for MegaRAID, controller's interrupts)
280  * - map the registers and memory of the device instance (for MegaRAID,
281  *   controller instance)
282  * - create minor device nodes for the device instance (for MegaRAID,
283  *   controller instance)
284  * - report that the device instance (for MegaRAID, controller instance) has
285  *   attached
286  */
287 static int
288 megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
289 {
290 	int		instance_no;
291 	int		nregs;
292 	uint8_t		added_isr_f = 0;
293 	uint8_t		added_soft_isr_f = 0;
294 	uint8_t		create_devctl_node_f = 0;
295 	uint8_t		create_scsi_node_f = 0;
296 	uint8_t		create_ioc_node_f = 0;
297 	uint8_t		tran_alloc_f = 0;
298 	uint8_t 	irq;
299 	uint16_t	vendor_id;
300 	uint16_t	device_id;
301 	uint16_t	subsysvid;
302 	uint16_t	subsysid;
303 	uint16_t	command;
304 
305 	scsi_hba_tran_t		*tran;
306 	ddi_dma_attr_t  tran_dma_attr;
307 	struct megasas_instance	*instance;
308 
309 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
310 
311 	/* CONSTCOND */
312 	ASSERT(NO_COMPETING_THREADS);
313 
314 	instance_no = ddi_get_instance(dip);
315 
316 	/*
317 	 * Since we know that some instantiations of this device can be
318 	 * plugged into slave-only SBus slots, check to see whether this is
319 	 * one such.
320 	 */
321 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
322 		con_log(CL_ANN, (CE_WARN,
323 		    "mega%d: Device in slave-only slot, unused", instance_no));
324 		return (DDI_FAILURE);
325 	}
326 
327 	switch (cmd) {
328 		case DDI_ATTACH:
329 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH"));
330 			/* allocate the soft state for the instance */
331 			if (ddi_soft_state_zalloc(megasas_state, instance_no)
332 			    != DDI_SUCCESS) {
333 				con_log(CL_ANN, (CE_WARN,
334 				    "mega%d: Failed to allocate soft state",
335 				    instance_no));
336 
337 				return (DDI_FAILURE);
338 			}
339 
340 			instance = (struct megasas_instance *)ddi_get_soft_state
341 			    (megasas_state, instance_no);
342 
343 			if (instance == NULL) {
344 				con_log(CL_ANN, (CE_WARN,
345 				    "mega%d: Bad soft state", instance_no));
346 
347 				ddi_soft_state_free(megasas_state, instance_no);
348 
349 				return (DDI_FAILURE);
350 			}
351 
352 			bzero((caddr_t)instance,
353 			    sizeof (struct megasas_instance));
354 
355 			instance->func_ptr = kmem_zalloc(
356 			    sizeof (struct megasas_func_ptr), KM_SLEEP);
357 			ASSERT(instance->func_ptr);
358 
359 			/* Setup the PCI configuration space handles */
360 			if (pci_config_setup(dip, &instance->pci_handle) !=
361 			    DDI_SUCCESS) {
362 				con_log(CL_ANN, (CE_WARN,
363 				    "mega%d: pci config setup failed ",
364 				    instance_no));
365 
366 				kmem_free(instance->func_ptr,
367 				    sizeof (struct megasas_func_ptr));
368 				ddi_soft_state_free(megasas_state, instance_no);
369 
370 				return (DDI_FAILURE);
371 			}
372 
373 			if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) {
374 				con_log(CL_ANN, (CE_WARN,
375 				    "megaraid: failed to get registers."));
376 
377 				pci_config_teardown(&instance->pci_handle);
378 				kmem_free(instance->func_ptr,
379 				    sizeof (struct megasas_func_ptr));
380 				ddi_soft_state_free(megasas_state, instance_no);
381 
382 				return (DDI_FAILURE);
383 			}
384 
385 			vendor_id = pci_config_get16(instance->pci_handle,
386 			    PCI_CONF_VENID);
387 			device_id = pci_config_get16(instance->pci_handle,
388 			    PCI_CONF_DEVID);
389 
390 			subsysvid = pci_config_get16(instance->pci_handle,
391 			    PCI_CONF_SUBVENID);
392 			subsysid = pci_config_get16(instance->pci_handle,
393 			    PCI_CONF_SUBSYSID);
394 
395 			pci_config_put16(instance->pci_handle, PCI_CONF_COMM,
396 			    (pci_config_get16(instance->pci_handle,
397 			    PCI_CONF_COMM) | PCI_COMM_ME));
398 			irq = pci_config_get8(instance->pci_handle,
399 			    PCI_CONF_ILINE);
400 
401 			con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
402 			    "0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n",
403 			    instance_no, vendor_id, device_id, subsysvid,
404 			    subsysid, irq, MEGASAS_VERSION));
405 
406 			/* enable bus-mastering */
407 			command = pci_config_get16(instance->pci_handle,
408 			    PCI_CONF_COMM);
409 
410 			if (!(command & PCI_COMM_ME)) {
411 				command |= PCI_COMM_ME;
412 
413 				pci_config_put16(instance->pci_handle,
414 				    PCI_CONF_COMM, command);
415 
416 				con_log(CL_ANN, (CE_CONT, "megaraid%d: "
417 				    "enable bus-mastering\n", instance_no));
418 			} else {
419 				con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: "
420 				"bus-mastering already set\n", instance_no));
421 			}
422 
423 			/* initialize function pointers */
424 			if ((device_id == PCI_DEVICE_ID_LSI_1078) ||
425 			    (device_id == PCI_DEVICE_ID_LSI_1078DE)) {
426 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
427 				    "1078R/DE detected\n", instance_no));
428 				instance->func_ptr->read_fw_status_reg =
429 				    read_fw_status_reg_ppc;
430 				instance->func_ptr->issue_cmd = issue_cmd_ppc;
431 				instance->func_ptr->issue_cmd_in_sync_mode =
432 				    issue_cmd_in_sync_mode_ppc;
433 				instance->func_ptr->issue_cmd_in_poll_mode =
434 				    issue_cmd_in_poll_mode_ppc;
435 				instance->func_ptr->enable_intr =
436 				    enable_intr_ppc;
437 				instance->func_ptr->disable_intr =
438 				    disable_intr_ppc;
439 				instance->func_ptr->intr_ack = intr_ack_ppc;
440 			} else {
441 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
442 				    "1064/8R detected\n", instance_no));
443 				instance->func_ptr->read_fw_status_reg =
444 				    read_fw_status_reg_xscale;
445 				instance->func_ptr->issue_cmd =
446 				    issue_cmd_xscale;
447 				instance->func_ptr->issue_cmd_in_sync_mode =
448 				    issue_cmd_in_sync_mode_xscale;
449 				instance->func_ptr->issue_cmd_in_poll_mode =
450 				    issue_cmd_in_poll_mode_xscale;
451 				instance->func_ptr->enable_intr =
452 				    enable_intr_xscale;
453 				instance->func_ptr->disable_intr =
454 				    disable_intr_xscale;
455 				instance->func_ptr->intr_ack =
456 				    intr_ack_xscale;
457 			}
458 
459 			instance->baseaddress = pci_config_get32(
460 			    instance->pci_handle, PCI_CONF_BASE0);
461 			instance->baseaddress &= 0x0fffc;
462 
463 			instance->dip		= dip;
464 			instance->vendor_id	= vendor_id;
465 			instance->device_id	= device_id;
466 			instance->subsysvid	= subsysvid;
467 			instance->subsysid	= subsysid;
468 
469 			/* Initialize FMA */
470 			instance->fm_capabilities = ddi_prop_get_int(
471 			    DDI_DEV_T_ANY, instance->dip, DDI_PROP_CANSLEEP
472 			    | DDI_PROP_DONTPASS, "fm-capable",
473 			    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE
474 			    | DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
475 
476 			megasas_fm_init(instance);
477 
478 			/* setup the mfi based low level driver */
479 			if (init_mfi(instance) != DDI_SUCCESS) {
480 				con_log(CL_ANN, (CE_WARN, "megaraid: "
481 				"could not initialize the low level driver"));
482 
483 				goto fail_attach;
484 			}
485 
486 			/*
487 			 * Allocate the interrupt blocking cookie.
488 			 * It represents the information the framework
489 			 * needs to block interrupts. This cookie will
490 			 * be used by the locks shared accross our ISR.
491 			 * These locks must be initialized before we
492 			 * register our ISR.
493 			 * ddi_add_intr(9F)
494 			 */
495 			if (ddi_get_iblock_cookie(dip, 0,
496 			    &instance->iblock_cookie) != DDI_SUCCESS) {
497 
498 				goto fail_attach;
499 			}
500 
501 			if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH,
502 			    &instance->soft_iblock_cookie) != DDI_SUCCESS) {
503 
504 				goto fail_attach;
505 			}
506 
507 			/*
508 			 * Initialize the driver mutexes common to
509 			 * normal/high level isr
510 			 */
511 			if (ddi_intr_hilevel(dip, 0)) {
512 				instance->isr_level = HIGH_LEVEL_INTR;
513 				mutex_init(&instance->cmd_pool_mtx,
514 				    "cmd_pool_mtx", MUTEX_DRIVER,
515 				    instance->soft_iblock_cookie);
516 				mutex_init(&instance->cmd_pend_mtx,
517 				    "cmd_pend_mtx", MUTEX_DRIVER,
518 				    instance->soft_iblock_cookie);
519 			} else {
520 				/*
521 				 * Initialize the driver mutexes
522 				 * specific to soft-isr
523 				 */
524 				instance->isr_level = NORMAL_LEVEL_INTR;
525 				mutex_init(&instance->cmd_pool_mtx,
526 				    "cmd_pool_mtx", MUTEX_DRIVER,
527 				    instance->iblock_cookie);
528 				mutex_init(&instance->cmd_pend_mtx,
529 				    "cmd_pend_mtx", MUTEX_DRIVER,
530 				    instance->iblock_cookie);
531 			}
532 
533 			mutex_init(&instance->completed_pool_mtx,
534 			    "completed_pool_mtx", MUTEX_DRIVER,
535 			    instance->iblock_cookie);
536 			mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx",
537 			    MUTEX_DRIVER, instance->iblock_cookie);
538 			mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx",
539 			    MUTEX_DRIVER, instance->iblock_cookie);
540 			mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx",
541 			    MUTEX_DRIVER, instance->iblock_cookie);
542 
543 			cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL);
544 			cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL);
545 
546 			INIT_LIST_HEAD(&instance->completed_pool_list);
547 
548 			/* Register our isr. */
549 			if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr,
550 			    (caddr_t)instance) != DDI_SUCCESS) {
551 				con_log(CL_ANN, (CE_WARN,
552 				    " ISR did not register"));
553 
554 				goto fail_attach;
555 			}
556 
557 			added_isr_f = 1;
558 
559 			/* Register our soft-isr for highlevel interrupts. */
560 			if (instance->isr_level == HIGH_LEVEL_INTR) {
561 				if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH,
562 				    &instance->soft_intr_id, NULL, NULL,
563 				    megasas_softintr, (caddr_t)instance) !=
564 				    DDI_SUCCESS) {
565 					con_log(CL_ANN, (CE_WARN,
566 					    " Software ISR did not register"));
567 
568 					goto fail_attach;
569 				}
570 
571 				added_soft_isr_f = 1;
572 			}
573 
574 			/* Allocate a transport structure */
575 			tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);
576 
577 			if (tran == NULL) {
578 				con_log(CL_ANN, (CE_WARN,
579 				    "scsi_hba_tran_alloc failed"));
580 				goto fail_attach;
581 			}
582 
583 			tran_alloc_f = 1;
584 
585 			instance->tran = tran;
586 
587 			tran->tran_hba_private	= instance;
588 			tran->tran_tgt_private 	= NULL;
589 			tran->tran_tgt_init	= megasas_tran_tgt_init;
590 			tran->tran_tgt_probe	= scsi_hba_probe;
591 			tran->tran_tgt_free	= (void (*)())NULL;
592 			tran->tran_init_pkt	= megasas_tran_init_pkt;
593 			tran->tran_start	= megasas_tran_start;
594 			tran->tran_abort	= megasas_tran_abort;
595 			tran->tran_reset	= megasas_tran_reset;
596 			tran->tran_bus_reset	= megasas_tran_bus_reset;
597 			tran->tran_getcap	= megasas_tran_getcap;
598 			tran->tran_setcap	= megasas_tran_setcap;
599 			tran->tran_destroy_pkt	= megasas_tran_destroy_pkt;
600 			tran->tran_dmafree	= megasas_tran_dmafree;
601 			tran->tran_sync_pkt	= megasas_tran_sync_pkt;
602 			tran->tran_reset_notify	= NULL;
603 			tran->tran_quiesce	= megasas_tran_quiesce;
604 			tran->tran_unquiesce	= megasas_tran_unquiesce;
605 
606 			tran_dma_attr = megasas_generic_dma_attr;
607 			tran_dma_attr.dma_attr_sgllen = instance->max_num_sge;
608 
609 			/* Attach this instance of the hba */
610 			if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0)
611 			    != DDI_SUCCESS) {
612 				con_log(CL_ANN, (CE_WARN,
613 				    "scsi_hba_attach failed\n"));
614 
615 				goto fail_attach;
616 			}
617 
618 			/* create devctl node for cfgadm command */
619 			if (ddi_create_minor_node(dip, "devctl",
620 			    S_IFCHR, INST2DEVCTL(instance_no),
621 			    DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) {
622 				con_log(CL_ANN, (CE_WARN,
623 				    "megaraid: failed to create devctl node."));
624 
625 				goto fail_attach;
626 			}
627 
628 			create_devctl_node_f = 1;
629 
630 			/* create scsi node for cfgadm command */
631 			if (ddi_create_minor_node(dip, "scsi", S_IFCHR,
632 			    INST2SCSI(instance_no),
633 			    DDI_NT_SCSI_ATTACHMENT_POINT, 0) ==
634 			    DDI_FAILURE) {
635 				con_log(CL_ANN, (CE_WARN,
636 				    "megaraid: failed to create scsi node."));
637 
638 				goto fail_attach;
639 			}
640 
641 			create_scsi_node_f = 1;
642 
643 			(void) sprintf(instance->iocnode, "%d:lsirdctl",
644 			    instance_no);
645 
646 			/*
647 			 * Create a node for applications
648 			 * for issuing ioctl to the driver.
649 			 */
650 			if (ddi_create_minor_node(dip, instance->iocnode,
651 			    S_IFCHR, INST2LSIRDCTL(instance_no),
652 			    DDI_PSEUDO, 0) == DDI_FAILURE) {
653 				con_log(CL_ANN, (CE_WARN,
654 				    "megaraid: failed to create ioctl node."));
655 
656 				goto fail_attach;
657 			}
658 
659 			create_ioc_node_f = 1;
660 
661 			/* enable interrupt */
662 			instance->func_ptr->enable_intr(instance);
663 
664 			/* initiate AEN */
665 			if (start_mfi_aen(instance)) {
666 				con_log(CL_ANN, (CE_WARN,
667 				    "megaraid: failed to initiate AEN."));
668 				goto fail_initiate_aen;
669 			}
670 
671 			con_log(CL_DLEVEL1, (CE_NOTE,
672 			    "AEN started for instance %d.", instance_no));
673 
674 			/* Finally! We are on the air.  */
675 			ddi_report_dev(dip);
676 
677 			if (megasas_check_acc_handle(instance->regmap_handle) !=
678 			    DDI_SUCCESS) {
679 				goto fail_attach;
680 			}
681 			if (megasas_check_acc_handle(instance->pci_handle) !=
682 			    DDI_SUCCESS) {
683 				goto fail_attach;
684 			}
685 			break;
686 		case DDI_PM_RESUME:
687 			con_log(CL_ANN, (CE_NOTE,
688 			    "megasas: DDI_PM_RESUME"));
689 			break;
690 		case DDI_RESUME:
691 			con_log(CL_ANN, (CE_NOTE,
692 			    "megasas: DDI_RESUME"));
693 			break;
694 		default:
695 			con_log(CL_ANN, (CE_WARN,
696 			    "megasas: invalid attach cmd=%x", cmd));
697 			return (DDI_FAILURE);
698 	}
699 
700 	return (DDI_SUCCESS);
701 
702 fail_initiate_aen:
703 fail_attach:
704 	if (create_devctl_node_f) {
705 		ddi_remove_minor_node(dip, "devctl");
706 	}
707 
708 	if (create_scsi_node_f) {
709 		ddi_remove_minor_node(dip, "scsi");
710 	}
711 
712 	if (create_ioc_node_f) {
713 		ddi_remove_minor_node(dip, instance->iocnode);
714 	}
715 
716 	if (tran_alloc_f) {
717 		scsi_hba_tran_free(tran);
718 	}
719 
720 
721 	if (added_soft_isr_f) {
722 		ddi_remove_softintr(instance->soft_intr_id);
723 	}
724 
725 	if (added_isr_f) {
726 		ddi_remove_intr(dip, 0, instance->iblock_cookie);
727 	}
728 
729 	megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
730 	ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
731 
732 	megasas_fm_fini(instance);
733 
734 	pci_config_teardown(&instance->pci_handle);
735 
736 	ddi_soft_state_free(megasas_state, instance_no);
737 
738 	con_log(CL_ANN, (CE_NOTE,
739 	    "megasas: return failure from mega_attach\n"));
740 
741 	return (DDI_FAILURE);
742 }
743 
744 /*
745  * getinfo - gets device information
746  * @dip:
747  * @cmd:
748  * @arg:
749  * @resultp:
750  *
751  * The system calls getinfo() to obtain configuration information that only
752  * the driver knows. The mapping of minor numbers to device instance is
753  * entirely under the control of the driver. The system sometimes needs to ask
754  * the driver which device a particular dev_t represents.
755  * Given the device number return the devinfo pointer from the scsi_device
756  * structure.
757  */
758 /*ARGSUSED*/
759 static int
760 megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
761 {
762 	int	rval;
763 	int	megasas_minor = getminor((dev_t)arg);
764 
765 	struct megasas_instance	*instance;
766 
767 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
768 
769 	switch (cmd) {
770 		case DDI_INFO_DEVT2DEVINFO:
771 			instance = (struct megasas_instance *)
772 			    ddi_get_soft_state(megasas_state,
773 			    MINOR2INST(megasas_minor));
774 
775 			if (instance == NULL) {
776 				*resultp = NULL;
777 				rval = DDI_FAILURE;
778 			} else {
779 				*resultp = instance->dip;
780 				rval = DDI_SUCCESS;
781 			}
782 			break;
783 		case DDI_INFO_DEVT2INSTANCE:
784 			*resultp = (void *)instance;
785 			rval = DDI_SUCCESS;
786 			break;
787 		default:
788 			*resultp = NULL;
789 			rval = DDI_FAILURE;
790 	}
791 
792 	return (rval);
793 }
794 
795 /*
796  * detach - detaches a device from the system
797  * @dip: pointer to the device's dev_info structure
798  * @cmd: type of detach
799  *
800  * A driver's detach() entry point is called to detach an instance of a device
801  * that is bound to the driver. The entry point is called with the instance of
802  * the device node to be detached and with DDI_DETACH, which is specified as
803  * the cmd argument to the entry point.
804  * This routine is called during driver unload. We free all the allocated
805  * resources and call the corresponding LLD so that it can also release all
806  * its resources.
807  */
808 static int
809 megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
810 {
811 	int	instance_no;
812 
813 	struct megasas_instance	*instance;
814 
815 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
816 
817 	/* CONSTCOND */
818 	ASSERT(NO_COMPETING_THREADS);
819 
820 	instance_no = ddi_get_instance(dip);
821 
822 	instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state,
823 	    instance_no);
824 
825 	if (!instance) {
826 		con_log(CL_ANN, (CE_WARN,
827 		    "megasas:%d could not get instance in detach",
828 		    instance_no));
829 
830 		return (DDI_FAILURE);
831 	}
832 
833 	con_log(CL_ANN, (CE_NOTE,
834 	    "megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n",
835 	    instance_no, instance->vendor_id, instance->device_id,
836 	    instance->subsysvid, instance->subsysid));
837 
838 	switch (cmd) {
839 		case DDI_DETACH:
840 			con_log(CL_ANN, (CE_NOTE,
841 			    "megasas_detach: DDI_DETACH\n"));
842 
843 			if (scsi_hba_detach(dip) != DDI_SUCCESS) {
844 				con_log(CL_ANN, (CE_WARN,
845 				    "megasas:%d failed to detach",
846 				    instance_no));
847 
848 				return (DDI_FAILURE);
849 			}
850 
851 			scsi_hba_tran_free(instance->tran);
852 
853 			if (abort_aen_cmd(instance, instance->aen_cmd)) {
854 				con_log(CL_ANN, (CE_WARN, "megasas_detach: "
855 				    "failed to abort prevous AEN command\n"));
856 
857 				return (DDI_FAILURE);
858 			}
859 
860 			instance->func_ptr->disable_intr(instance);
861 
862 			if (instance->isr_level == HIGH_LEVEL_INTR) {
863 				ddi_remove_softintr(instance->soft_intr_id);
864 			}
865 
866 			ddi_remove_intr(dip, 0, instance->iblock_cookie);
867 
868 			free_space_for_mfi(instance);
869 
870 			megasas_fm_fini(instance);
871 
872 			pci_config_teardown(&instance->pci_handle);
873 
874 			kmem_free(instance->func_ptr,
875 			    sizeof (struct megasas_func_ptr));
876 
877 			ddi_soft_state_free(megasas_state, instance_no);
878 			break;
879 		case DDI_PM_SUSPEND:
880 			con_log(CL_ANN, (CE_NOTE,
881 			    "megasas_detach: DDI_PM_SUSPEND\n"));
882 
883 			break;
884 		case DDI_SUSPEND:
885 			con_log(CL_ANN, (CE_NOTE,
886 			    "megasas_detach: DDI_SUSPEND\n"));
887 
888 			break;
889 		default:
890 			con_log(CL_ANN, (CE_WARN,
891 			    "invalid detach command:0x%x", cmd));
892 			return (DDI_FAILURE);
893 	}
894 
895 	return (DDI_SUCCESS);
896 }
897 
898 /*
899  * ************************************************************************** *
900  *                                                                            *
901  *             common entry points - for character driver types               *
902  *                                                                            *
903  * ************************************************************************** *
904  */
905 /*
906  * open - gets access to a device
907  * @dev:
908  * @openflags:
909  * @otyp:
910  * @credp:
911  *
912  * Access to a device by one or more application programs is controlled
913  * through the open() and close() entry points. The primary function of
914  * open() is to verify that the open request is allowed.
915  */
916 static  int
917 megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp)
918 {
919 	int	rval = 0;
920 
921 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
922 
923 	/* Check root permissions */
924 	if (drv_priv(credp) != 0) {
925 		con_log(CL_ANN, (CE_WARN,
926 		    "megaraid: Non-root ioctl access tried!"));
927 		return (EPERM);
928 	}
929 
930 	/* Verify we are being opened as a character device */
931 	if (otyp != OTYP_CHR) {
932 		con_log(CL_ANN, (CE_WARN,
933 		    "megaraid: ioctl node must be a char node\n"));
934 		return (EINVAL);
935 	}
936 
937 	if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev)))
938 	    == NULL) {
939 		return (ENXIO);
940 	}
941 
942 	if (scsi_hba_open) {
943 		rval = scsi_hba_open(dev, openflags, otyp, credp);
944 	}
945 
946 	return (rval);
947 }
948 
949 /*
950  * close - gives up access to a device
951  * @dev:
952  * @openflags:
953  * @otyp:
954  * @credp:
955  *
956  * close() should perform any cleanup necessary to finish using the minor
957  * device, and prepare the device (and driver) to be opened again.
958  */
959 static  int
960 megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp)
961 {
962 	int	rval = 0;
963 
964 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
965 
966 	/* no need for locks! */
967 
968 	if (scsi_hba_close) {
969 		rval = scsi_hba_close(dev, openflags, otyp, credp);
970 	}
971 
972 	return (rval);
973 }
974 
975 /*
976  * ioctl - performs a range of I/O commands for character drivers
977  * @dev:
978  * @cmd:
979  * @arg:
980  * @mode:
981  * @credp:
982  * @rvalp:
983  *
984  * ioctl() routine must make sure that user data is copied into or out of the
985  * kernel address space explicitly using copyin(), copyout(), ddi_copyin(),
986  * and ddi_copyout(), as appropriate.
987  * This is a wrapper routine to serialize access to the actual ioctl routine.
988  * ioctl() should return 0 on success, or the appropriate error number. The
989  * driver may also set the value returned to the calling process through rvalp.
990  */
991 static int
992 megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
993     int *rvalp)
994 {
995 	int	rval = 0;
996 
997 	struct megasas_instance	*instance;
998 	struct megasas_ioctl	ioctl;
999 	struct megasas_aen	aen;
1000 
1001 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1002 
1003 	instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev)));
1004 
1005 	if (instance == NULL) {
1006 		/* invalid minor number */
1007 		con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found."));
1008 		return (ENXIO);
1009 	}
1010 
1011 	switch ((uint_t)cmd) {
1012 		case MEGASAS_IOCTL_FIRMWARE:
1013 			if (ddi_copyin((void *) arg, &ioctl,
1014 			    sizeof (struct megasas_ioctl), mode)) {
1015 				con_log(CL_ANN, (CE_WARN, "megasas_ioctl: "
1016 				    "ERROR IOCTL copyin"));
1017 				return (EFAULT);
1018 			}
1019 
1020 			if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) {
1021 				rval = handle_drv_ioctl(instance, &ioctl, mode);
1022 			} else {
1023 				rval = handle_mfi_ioctl(instance, &ioctl, mode);
1024 			}
1025 
1026 			if (ddi_copyout((void *) &ioctl, (void *)arg,
1027 			    (sizeof (struct megasas_ioctl) - 1), mode)) {
1028 				con_log(CL_ANN, (CE_WARN,
1029 				    "megasas_ioctl: copy_to_user failed\n"));
1030 				rval = 1;
1031 			}
1032 
1033 			break;
1034 		case MEGASAS_IOCTL_AEN:
1035 			if (ddi_copyin((void *) arg, &aen,
1036 			    sizeof (struct megasas_aen), mode)) {
1037 				con_log(CL_ANN, (CE_WARN,
1038 				    "megasas_ioctl: ERROR AEN copyin"));
1039 				return (EFAULT);
1040 			}
1041 
1042 			rval = handle_mfi_aen(instance, &aen);
1043 
1044 			if (ddi_copyout((void *) &aen, (void *)arg,
1045 			    sizeof (struct megasas_aen), mode)) {
1046 				con_log(CL_ANN, (CE_WARN,
1047 				    "megasas_ioctl: copy_to_user failed\n"));
1048 				rval = 1;
1049 			}
1050 
1051 			break;
1052 		default:
1053 			rval = scsi_hba_ioctl(dev, cmd, arg,
1054 			    mode, credp, rvalp);
1055 
1056 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: "
1057 			    "scsi_hba_ioctl called, ret = %x.", rval));
1058 	}
1059 
1060 	return (rval);
1061 }
1062 
1063 /*
1064  * ************************************************************************** *
1065  *                                                                            *
1066  *               common entry points - for block driver types                 *
1067  *                                                                            *
1068  * ************************************************************************** *
1069  */
1070 /*
1071  * reset - TBD
1072  * @dip:
1073  * @cmd:
1074  *
1075  * TBD
1076  */
1077 /*ARGSUSED*/
1078 static int
1079 megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
1080 {
1081 	int	instance_no;
1082 
1083 	struct megasas_instance	*instance;
1084 
1085 	instance_no = ddi_get_instance(dip);
1086 	instance = (struct megasas_instance *)ddi_get_soft_state
1087 	    (megasas_state, instance_no);
1088 
1089 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1090 
1091 	if (!instance) {
1092 		con_log(CL_ANN, (CE_WARN,
1093 		    "megaraid:%d could not get adapter in reset",
1094 		    instance_no));
1095 		return (DDI_FAILURE);
1096 	}
1097 
1098 	con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..",
1099 	    instance_no));
1100 
1101 	flush_cache(instance);
1102 
1103 	return (DDI_SUCCESS);
1104 }
1105 
1106 
1107 /*
1108  * ************************************************************************** *
1109  *                                                                            *
1110  *                          entry points (SCSI HBA)                           *
1111  *                                                                            *
1112  * ************************************************************************** *
1113  */
1114 /*
1115  * tran_tgt_init - initialize a target device instance
1116  * @hba_dip:
1117  * @tgt_dip:
1118  * @tran:
1119  * @sd:
1120  *
1121  * The tran_tgt_init() entry point enables the HBA to allocate and initialize
1122  * any per-target resources. tran_tgt_init() also enables the HBA to qualify
1123  * the device's address as valid and supportable for that particular HBA.
1124  * By returning DDI_FAILURE, the instance of the target driver for that device
1125  * is not probed or attached.
1126  */
1127 /*ARGSUSED*/
1128 static int
1129 megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
1130 		scsi_hba_tran_t *tran, struct scsi_device *sd)
1131 {
1132 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1133 
1134 	return (DDI_SUCCESS);
1135 }
1136 
1137 /*
1138  * tran_init_pkt - allocate & initialize a scsi_pkt structure
1139  * @ap:
1140  * @pkt:
1141  * @bp:
1142  * @cmdlen:
1143  * @statuslen:
1144  * @tgtlen:
1145  * @flags:
1146  * @callback:
1147  *
1148  * The tran_init_pkt() entry point allocates and initializes a scsi_pkt
1149  * structure and DMA resources for a target driver request. The
1150  * tran_init_pkt() entry point is called when the target driver calls the
1151  * SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point
1152  * is a request to perform one or more of three possible services:
1153  *  - allocation and initialization of a scsi_pkt structure
1154  *  - allocation of DMA resources for data transfer
1155  *  - reallocation of DMA resources for the next portion of the data transfer
1156  */
1157 static struct scsi_pkt *
1158 megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt,
1159 	struct buf *bp, int cmdlen, int statuslen, int tgtlen,
1160 	int flags, int (*callback)(), caddr_t arg)
1161 {
1162 	struct scsa_cmd	*acmd;
1163 	struct megasas_instance	*instance;
1164 	struct scsi_pkt	*new_pkt;
1165 
1166 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1167 
1168 	instance = ADDR2MEGA(ap);
1169 
1170 	/* step #1 : pkt allocation */
1171 	if (pkt == NULL) {
1172 		pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen,
1173 		    tgtlen, sizeof (struct scsa_cmd), callback, arg);
1174 		if (pkt == NULL) {
1175 			return (NULL);
1176 		}
1177 
1178 		acmd = PKT2CMD(pkt);
1179 
1180 		/*
1181 		 * Initialize the new pkt - we redundantly initialize
1182 		 * all the fields for illustrative purposes.
1183 		 */
1184 		acmd->cmd_pkt		= pkt;
1185 		acmd->cmd_flags		= 0;
1186 		acmd->cmd_scblen	= statuslen;
1187 		acmd->cmd_cdblen	= cmdlen;
1188 		acmd->cmd_dmahandle	= NULL;
1189 		acmd->cmd_ncookies	= 0;
1190 		acmd->cmd_cookie	= 0;
1191 		acmd->cmd_cookiecnt	= 0;
1192 		acmd->cmd_nwin		= 0;
1193 
1194 		pkt->pkt_address	= *ap;
1195 		pkt->pkt_comp		= (void (*)())NULL;
1196 		pkt->pkt_flags		= 0;
1197 		pkt->pkt_time		= 0;
1198 		pkt->pkt_resid		= 0;
1199 		pkt->pkt_state		= 0;
1200 		pkt->pkt_statistics	= 0;
1201 		pkt->pkt_reason		= 0;
1202 		new_pkt			= pkt;
1203 	} else {
1204 		acmd = PKT2CMD(pkt);
1205 		new_pkt = NULL;
1206 	}
1207 
1208 	/* step #2 : dma allocation/move */
1209 	if (bp && bp->b_bcount != 0) {
1210 		if (acmd->cmd_dmahandle == NULL) {
1211 			if (megasas_dma_alloc(instance, pkt, bp, flags,
1212 			    callback) == -1) {
1213 				if (new_pkt) {
1214 					scsi_hba_pkt_free(ap, new_pkt);
1215 				}
1216 
1217 				return ((struct scsi_pkt *)NULL);
1218 			}
1219 		} else {
1220 			if (megasas_dma_move(instance, pkt, bp) == -1) {
1221 				return ((struct scsi_pkt *)NULL);
1222 			}
1223 		}
1224 	}
1225 
1226 	return (pkt);
1227 }
1228 
1229 /*
1230  * tran_start - transport a SCSI command to the addressed target
1231  * @ap:
1232  * @pkt:
1233  *
1234  * The tran_start() entry point for a SCSI HBA driver is called to transport a
1235  * SCSI command to the addressed target. The SCSI command is described
1236  * entirely within the scsi_pkt structure, which the target driver allocated
1237  * through the HBA driver's tran_init_pkt() entry point. If the command
1238  * involves a data transfer, DMA resources must also have been allocated for
1239  * the scsi_pkt structure.
1240  *
1241  * Return Values :
1242  *	TRAN_BUSY - request queue is full, no more free scbs
1243  *	TRAN_ACCEPT - pkt has been submitted to the instance
1244  */
1245 static int
1246 megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt)
1247 {
1248 	uchar_t 	cmd_done = 0;
1249 
1250 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1251 	struct megasas_cmd	*cmd;
1252 
1253 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x",
1254 	    __func__, __LINE__, pkt->pkt_cdbp[0]));
1255 
1256 	pkt->pkt_reason	= CMD_CMPLT;
1257 	*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
1258 
1259 	cmd = build_cmd(instance, ap, pkt, &cmd_done);
1260 
1261 	/*
1262 	 * Check if the command is already completed by the mega_build_cmd()
1263 	 * routine. In which case the busy_flag would be clear and scb will be
1264 	 * NULL and appropriate reason provided in pkt_reason field
1265 	 */
1266 	if (cmd_done) {
1267 		if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && pkt->pkt_comp) {
1268 			(*pkt->pkt_comp)(pkt);
1269 		}
1270 		pkt->pkt_reason = CMD_CMPLT;
1271 		pkt->pkt_scbp[0] = STATUS_GOOD;
1272 		pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET
1273 		    | STATE_SENT_CMD;
1274 		return (TRAN_ACCEPT);
1275 	}
1276 
1277 	if (cmd == NULL) {
1278 		return (TRAN_BUSY);
1279 	}
1280 
1281 	if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
1282 		if (instance->fw_outstanding > instance->max_fw_cmds) {
1283 			con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy"));
1284 			return_mfi_pkt(instance, cmd);
1285 			return (TRAN_BUSY);
1286 		}
1287 
1288 		/* Syncronize the Cmd frame for the controller */
1289 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0,
1290 		    DDI_DMA_SYNC_FORDEV);
1291 
1292 		instance->func_ptr->issue_cmd(cmd, instance);
1293 
1294 	} else {
1295 		struct megasas_header *hdr = &cmd->frame->hdr;
1296 
1297 		cmd->sync_cmd = MEGASAS_TRUE;
1298 
1299 		instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd);
1300 
1301 		pkt->pkt_reason		= CMD_CMPLT;
1302 		pkt->pkt_statistics	= 0;
1303 		pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS;
1304 
1305 		switch (hdr->cmd_status) {
1306 		case MFI_STAT_OK:
1307 			pkt->pkt_scbp[0] = STATUS_GOOD;
1308 			break;
1309 
1310 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
1311 
1312 			pkt->pkt_reason	= CMD_CMPLT;
1313 			pkt->pkt_statistics = 0;
1314 
1315 			((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1;
1316 			break;
1317 
1318 		case MFI_STAT_DEVICE_NOT_FOUND:
1319 			pkt->pkt_reason		= CMD_DEV_GONE;
1320 			pkt->pkt_statistics	= STAT_DISCON;
1321 			break;
1322 
1323 		default:
1324 			((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1;
1325 		}
1326 
1327 		return_mfi_pkt(instance, cmd);
1328 		(void) megasas_common_check(instance, cmd);
1329 
1330 		if (pkt->pkt_comp) {
1331 			(*pkt->pkt_comp)(pkt);
1332 		}
1333 
1334 	}
1335 
1336 	return (TRAN_ACCEPT);
1337 }
1338 
1339 /*
1340  * tran_abort - Abort any commands that are currently in transport
1341  * @ap:
1342  * @pkt:
1343  *
1344  * The tran_abort() entry point for a SCSI HBA driver is called to abort any
1345  * commands that are currently in transport for a particular target. This entry
1346  * point is called when a target driver calls scsi_abort(). The tran_abort()
1347  * entry point should attempt to abort the command denoted by the pkt
1348  * parameter. If the pkt parameter is NULL, tran_abort() should attempt to
1349  * abort all outstanding commands in the transport layer for the particular
1350  * target or logical unit.
1351  */
1352 /*ARGSUSED*/
1353 static int
1354 megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
1355 {
1356 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1357 
1358 	/* aborting command not supported by H/W */
1359 
1360 	return (DDI_FAILURE);
1361 }
1362 
1363 /*
1364  * tran_reset - reset either the SCSI bus or target
1365  * @ap:
1366  * @level:
1367  *
1368  * The tran_reset() entry point for a SCSI HBA driver is called to reset either
1369  * the SCSI bus or a particular SCSI target device. This entry point is called
1370  * when a target driver calls scsi_reset(). The tran_reset() entry point must
1371  * reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the
1372  * particular target or logical unit must be reset.
1373  */
1374 /*ARGSUSED*/
1375 static int
1376 megasas_tran_reset(struct scsi_address *ap, int level)
1377 {
1378 	struct megasas_instance *instance = ADDR2MEGA(ap);
1379 
1380 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1381 
1382 	if (wait_for_outstanding(instance)) {
1383 		return (DDI_FAILURE);
1384 	} else {
1385 		return (DDI_SUCCESS);
1386 	}
1387 }
1388 
1389 /*
1390  * tran_bus_reset - reset the SCSI bus
1391  * @dip:
1392  * @level:
1393  *
1394  * The tran_bus_reset() vector in the scsi_hba_tran structure should be
1395  * initialized during the HBA driver's attach(). The vector should point to
1396  * an HBA entry point that is to be called when a user initiates a bus reset.
1397  * Implementation is hardware specific. If the HBA driver cannot reset the
1398  * SCSI bus without affecting the targets, the driver should fail RESET_BUS
1399  * or not initialize this vector.
1400  */
1401 /*ARGSUSED*/
1402 static int
1403 megasas_tran_bus_reset(dev_info_t *dip, int level)
1404 {
1405 	int	instance_no = ddi_get_instance(dip);
1406 
1407 	struct megasas_instance	*instance = ddi_get_soft_state(megasas_state,
1408 	    instance_no);
1409 
1410 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1411 
1412 	if (wait_for_outstanding(instance)) {
1413 		return (DDI_FAILURE);
1414 	} else {
1415 		return (DDI_SUCCESS);
1416 	}
1417 }
1418 
1419 /*
1420  * tran_getcap - get one of a set of SCSA-defined capabilities
1421  * @ap:
1422  * @cap:
1423  * @whom:
1424  *
1425  * The target driver can request the current setting of the capability for a
1426  * particular target by setting the whom parameter to nonzero. A whom value of
1427  * zero indicates a request for the current setting of the general capability
1428  * for the SCSI bus or for adapter hardware. The tran_getcap() should return -1
1429  * for undefined capabilities or the current value of the requested capability.
1430  */
1431 /*ARGSUSED*/
1432 static int
1433 megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom)
1434 {
1435 	int	rval = 0;
1436 
1437 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1438 
1439 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1440 
1441 	/* we do allow inquiring about capabilities for other targets */
1442 	if (cap == NULL) {
1443 		return (-1);
1444 	}
1445 
1446 	switch (scsi_hba_lookup_capstr(cap)) {
1447 		case SCSI_CAP_DMA_MAX:
1448 			/* Limit to 16MB max transfer */
1449 			rval = megasas_max_cap_maxxfer;
1450 			break;
1451 		case SCSI_CAP_MSG_OUT:
1452 			rval = 1;
1453 			break;
1454 		case SCSI_CAP_DISCONNECT:
1455 			rval = 0;
1456 			break;
1457 		case SCSI_CAP_SYNCHRONOUS:
1458 			rval = 0;
1459 			break;
1460 		case SCSI_CAP_WIDE_XFER:
1461 			rval = 1;
1462 			break;
1463 		case SCSI_CAP_TAGGED_QING:
1464 			rval = 1;
1465 			break;
1466 		case SCSI_CAP_UNTAGGED_QING:
1467 			rval = 1;
1468 			break;
1469 		case SCSI_CAP_PARITY:
1470 			rval = 1;
1471 			break;
1472 		case SCSI_CAP_INITIATOR_ID:
1473 			rval = instance->init_id;
1474 			break;
1475 		case SCSI_CAP_ARQ:
1476 			rval = 1;
1477 			break;
1478 		case SCSI_CAP_LINKED_CMDS:
1479 			rval = 0;
1480 			break;
1481 		case SCSI_CAP_RESET_NOTIFICATION:
1482 			rval = 1;
1483 			break;
1484 		case SCSI_CAP_GEOMETRY:
1485 			rval = -1;
1486 
1487 			break;
1488 		default:
1489 			con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x",
1490 			    scsi_hba_lookup_capstr(cap)));
1491 			rval = -1;
1492 			break;
1493 	}
1494 
1495 	return (rval);
1496 }
1497 
1498 /*
1499  * tran_setcap - set one of a set of SCSA-defined capabilities
1500  * @ap:
1501  * @cap:
1502  * @value:
1503  * @whom:
1504  *
1505  * The target driver might request that the new value be set for a particular
1506  * target by setting the whom parameter to nonzero. A whom value of zero
1507  * means that request is to set the new value for the SCSI bus or for adapter
1508  * hardware in general.
1509  * The tran_setcap() should return the following values as appropriate:
1510  * - -1 for undefined capabilities
1511  * - 0 if the HBA driver cannot set the capability to the requested value
1512  * - 1 if the HBA driver is able to set the capability to the requested value
1513  */
1514 /*ARGSUSED*/
1515 static int
1516 megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
1517 {
1518 	int		rval = 1;
1519 
1520 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1521 
1522 	/* We don't allow setting capabilities for other targets */
1523 	if (cap == NULL || whom == 0) {
1524 		return (-1);
1525 	}
1526 
1527 	switch (scsi_hba_lookup_capstr(cap)) {
1528 		case SCSI_CAP_DMA_MAX:
1529 		case SCSI_CAP_MSG_OUT:
1530 		case SCSI_CAP_PARITY:
1531 		case SCSI_CAP_LINKED_CMDS:
1532 		case SCSI_CAP_RESET_NOTIFICATION:
1533 		case SCSI_CAP_DISCONNECT:
1534 		case SCSI_CAP_SYNCHRONOUS:
1535 		case SCSI_CAP_UNTAGGED_QING:
1536 		case SCSI_CAP_WIDE_XFER:
1537 		case SCSI_CAP_INITIATOR_ID:
1538 		case SCSI_CAP_ARQ:
1539 			/*
1540 			 * None of these are settable via
1541 			 * the capability interface.
1542 			 */
1543 			break;
1544 		case SCSI_CAP_TAGGED_QING:
1545 			rval = 1;
1546 			break;
1547 		case SCSI_CAP_SECTOR_SIZE:
1548 			rval = 1;
1549 			break;
1550 
1551 		case SCSI_CAP_TOTAL_SECTORS:
1552 			rval = 1;
1553 			break;
1554 		default:
1555 			rval = -1;
1556 			break;
1557 	}
1558 
1559 	return (rval);
1560 }
1561 
1562 /*
1563  * tran_destroy_pkt - deallocate scsi_pkt structure
1564  * @ap:
1565  * @pkt:
1566  *
1567  * The tran_destroy_pkt() entry point is the HBA driver function that
1568  * deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is
1569  * called when the target driver calls scsi_destroy_pkt(). The
1570  * tran_destroy_pkt() entry point must free any DMA resources that have been
1571  * allocated for the packet. An implicit DMA synchronization occurs if the
1572  * DMA resources are freed and any cached data remains after the completion
1573  * of the transfer.
1574  */
1575 static void
1576 megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1577 {
1578 	struct scsa_cmd *acmd = PKT2CMD(pkt);
1579 
1580 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1581 
1582 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1583 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1584 
1585 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1586 
1587 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1588 
1589 		acmd->cmd_dmahandle = NULL;
1590 	}
1591 
1592 	/* free the pkt */
1593 	scsi_hba_pkt_free(ap, pkt);
1594 }
1595 
1596 /*
1597  * tran_dmafree - deallocates DMA resources
1598  * @ap:
1599  * @pkt:
1600  *
1601  * The tran_dmafree() entry point deallocates DMAQ resources that have been
1602  * allocated for a scsi_pkt structure. The tran_dmafree() entry point is
1603  * called when the target driver calls scsi_dmafree(). The tran_dmafree() must
1604  * free only DMA resources allocated for a scsi_pkt structure, not the
1605  * scsi_pkt itself. When DMA resources are freed, a DMA synchronization is
1606  * implicitly performed.
1607  */
1608 /*ARGSUSED*/
1609 static void
1610 megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
1611 {
1612 	register struct scsa_cmd *acmd = PKT2CMD(pkt);
1613 
1614 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1615 
1616 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1617 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1618 
1619 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1620 
1621 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1622 
1623 		acmd->cmd_dmahandle = NULL;
1624 	}
1625 }
1626 
1627 /*
1628  * tran_sync_pkt - synchronize the DMA object allocated
1629  * @ap:
1630  * @pkt:
1631  *
1632  * The tran_sync_pkt() entry point synchronizes the DMA object allocated for
1633  * the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt()
1634  * entry point is called when the target driver calls scsi_sync_pkt(). If the
1635  * data transfer direction is a DMA read from device to memory, tran_sync_pkt()
1636  * must synchronize the CPU's view of the data. If the data transfer direction
1637  * is a DMA write from memory to device, tran_sync_pkt() must synchronize the
1638  * device's view of the data.
1639  */
1640 /*ARGSUSED*/
1641 static void
1642 megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1643 {
1644 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1645 
1646 	/*
1647 	 * following 'ddi_dma_sync()' API call
1648 	 * already called for each I/O in the ISR
1649 	 */
1650 #if 0
1651 	int	i;
1652 
1653 	register struct scsa_cmd	*acmd = PKT2CMD(pkt);
1654 
1655 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1656 		(void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset,
1657 		    acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ?
1658 		    DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);
1659 	}
1660 #endif
1661 }
1662 
1663 /*ARGSUSED*/
1664 static int
1665 megasas_tran_quiesce(dev_info_t *dip)
1666 {
1667 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1668 
1669 	return (1);
1670 }
1671 
1672 /*ARGSUSED*/
1673 static int
1674 megasas_tran_unquiesce(dev_info_t *dip)
1675 {
1676 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1677 
1678 	return (1);
1679 }
1680 
1681 /*
1682  * megasas_isr(caddr_t)
1683  *
1684  * The Interrupt Service Routine
1685  *
1686  * Collect status for all completed commands and do callback
1687  *
1688  */
1689 static uint_t
1690 megasas_isr(struct megasas_instance *instance)
1691 {
1692 	int		need_softintr;
1693 	uint32_t	producer;
1694 	uint32_t	consumer;
1695 	uint32_t	context;
1696 
1697 	struct megasas_cmd	*cmd;
1698 
1699 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1700 
1701 	ASSERT(instance);
1702 	if (!instance->func_ptr->intr_ack(instance)) {
1703 		return (DDI_INTR_UNCLAIMED);
1704 	}
1705 
1706 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1707 	    0, 0, DDI_DMA_SYNC_FORCPU);
1708 
1709 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
1710 	    != DDI_SUCCESS) {
1711 		megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
1712 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
1713 		return (DDI_INTR_UNCLAIMED);
1714 	}
1715 
1716 	producer = *instance->producer;
1717 	consumer = *instance->consumer;
1718 
1719 	con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ",
1720 	    producer, consumer));
1721 
1722 	mutex_enter(&instance->completed_pool_mtx);
1723 
1724 	while (consumer != producer) {
1725 		context = instance->reply_queue[consumer];
1726 		cmd = instance->cmd_list[context];
1727 		mlist_add_tail(&cmd->list, &instance->completed_pool_list);
1728 
1729 		consumer++;
1730 		if (consumer == (instance->max_fw_cmds + 1)) {
1731 			consumer = 0;
1732 		}
1733 	}
1734 
1735 	mutex_exit(&instance->completed_pool_mtx);
1736 
1737 	*instance->consumer = consumer;
1738 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1739 	    0, 0, DDI_DMA_SYNC_FORDEV);
1740 
1741 	if (instance->softint_running) {
1742 		need_softintr = 0;
1743 	} else {
1744 		need_softintr = 1;
1745 	}
1746 
1747 	if (instance->isr_level == HIGH_LEVEL_INTR) {
1748 		if (need_softintr) {
1749 			ddi_trigger_softintr(instance->soft_intr_id);
1750 		}
1751 	} else {
1752 		/*
1753 		 * Not a high-level interrupt, therefore call the soft level
1754 		 * interrupt explicitly
1755 		 */
1756 		(void) megasas_softintr(instance);
1757 	}
1758 
1759 	return (DDI_INTR_CLAIMED);
1760 }
1761 
1762 
1763 /*
1764  * ************************************************************************** *
1765  *                                                                            *
1766  *                                  libraries                                 *
1767  *                                                                            *
1768  * ************************************************************************** *
1769  */
1770 /*
1771  * get_mfi_pkt : Get a command from the free pool
1772  */
1773 static struct megasas_cmd *
1774 get_mfi_pkt(struct megasas_instance *instance)
1775 {
1776 	mlist_t 		*head = &instance->cmd_pool_list;
1777 	struct megasas_cmd	*cmd = NULL;
1778 
1779 	mutex_enter(&instance->cmd_pool_mtx);
1780 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1781 
1782 	if (!mlist_empty(head)) {
1783 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1784 		cmd = mlist_entry(head->next, struct megasas_cmd, list);
1785 		mlist_del_init(head->next);
1786 	}
1787 	if (cmd != NULL)
1788 		cmd->pkt = NULL;
1789 	mutex_exit(&instance->cmd_pool_mtx);
1790 
1791 	return (cmd);
1792 }
1793 
1794 /*
1795  * return_mfi_pkt : Return a cmd to free command pool
1796  */
1797 static void
1798 return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd)
1799 {
1800 	mutex_enter(&instance->cmd_pool_mtx);
1801 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1802 
1803 	mlist_add(&cmd->list, &instance->cmd_pool_list);
1804 
1805 	mutex_exit(&instance->cmd_pool_mtx);
1806 }
1807 
1808 /*
1809  * destroy_mfi_frame_pool
1810  */
1811 static void
1812 destroy_mfi_frame_pool(struct megasas_instance *instance)
1813 {
1814 	int		i;
1815 	uint32_t	max_cmd = instance->max_fw_cmds;
1816 
1817 	struct megasas_cmd	*cmd;
1818 
1819 	/* return all frames to pool */
1820 	for (i = 0; i < max_cmd; i++) {
1821 
1822 		cmd = instance->cmd_list[i];
1823 
1824 		if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED)
1825 			(void) mega_free_dma_obj(instance, cmd->frame_dma_obj);
1826 
1827 		cmd->frame_dma_obj_status  = DMA_OBJ_FREED;
1828 	}
1829 
1830 }
1831 
1832 /*
1833  * create_mfi_frame_pool
1834  */
1835 static int
1836 create_mfi_frame_pool(struct megasas_instance *instance)
1837 {
1838 	int		i = 0;
1839 	int		cookie_cnt;
1840 	uint16_t	max_cmd;
1841 	uint16_t	sge_sz;
1842 	uint32_t	sgl_sz;
1843 	uint32_t	tot_frame_size;
1844 
1845 	struct megasas_cmd	*cmd;
1846 
1847 	max_cmd = instance->max_fw_cmds;
1848 
1849 	sge_sz	= sizeof (struct megasas_sge64);
1850 
1851 	/* calculated the number of 64byte frames required for SGL */
1852 	sgl_sz		= sge_sz * instance->max_num_sge;
1853 	tot_frame_size	= sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH;
1854 
1855 	con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: "
1856 	    "sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size));
1857 
1858 	while (i < max_cmd) {
1859 		cmd = instance->cmd_list[i];
1860 
1861 		cmd->frame_dma_obj.size	= tot_frame_size;
1862 		cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr;
1863 		cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1864 		cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1865 		cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1;
1866 		cmd->frame_dma_obj.dma_attr.dma_attr_align = 64;
1867 
1868 
1869 		cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj);
1870 
1871 		if (cookie_cnt == -1 || cookie_cnt > 1) {
1872 			con_log(CL_ANN, (CE_WARN,
1873 			    "create_mfi_frame_pool: could not alloc."));
1874 			return (DDI_FAILURE);
1875 		}
1876 
1877 		bzero(cmd->frame_dma_obj.buffer, tot_frame_size);
1878 
1879 		cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED;
1880 		cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer;
1881 		cmd->frame_phys_addr =
1882 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address;
1883 
1884 		cmd->sense = (uint8_t *)(((unsigned long)
1885 		    cmd->frame_dma_obj.buffer) +
1886 		    tot_frame_size - SENSE_LENGTH);
1887 		cmd->sense_phys_addr =
1888 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address +
1889 		    tot_frame_size - SENSE_LENGTH;
1890 
1891 		if (!cmd->frame || !cmd->sense) {
1892 			con_log(CL_ANN, (CE_NOTE,
1893 			    "megasas: pci_pool_alloc failed \n"));
1894 
1895 			return (-ENOMEM);
1896 		}
1897 
1898 		cmd->frame->io.context = cmd->index;
1899 		i++;
1900 
1901 		con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x",
1902 		    cmd->frame->io.context, cmd->frame_phys_addr));
1903 	}
1904 
1905 	return (DDI_SUCCESS);
1906 }
1907 
1908 /*
1909  * free_additional_dma_buffer
1910  */
1911 static void
1912 free_additional_dma_buffer(struct megasas_instance *instance)
1913 {
1914 	if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) {
1915 		(void) mega_free_dma_obj(instance,
1916 		    instance->mfi_internal_dma_obj);
1917 		instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED;
1918 	}
1919 
1920 	if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) {
1921 		(void) mega_free_dma_obj(instance,
1922 		    instance->mfi_evt_detail_obj);
1923 		instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED;
1924 	}
1925 }
1926 
1927 /*
1928  * alloc_additional_dma_buffer
1929  */
1930 static int
1931 alloc_additional_dma_buffer(struct megasas_instance *instance)
1932 {
1933 	uint32_t	reply_q_sz;
1934 	uint32_t	internal_buf_size = PAGESIZE*2;
1935 
1936 	/* max cmds plus 1 + producer & consumer */
1937 	reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2);
1938 
1939 	instance->mfi_internal_dma_obj.size = internal_buf_size;
1940 	instance->mfi_internal_dma_obj.dma_attr	= megasas_generic_dma_attr;
1941 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1942 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max =
1943 	    0xFFFFFFFFU;
1944 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen	= 1;
1945 
1946 	if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj)
1947 	    != 1) {
1948 		con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q"));
1949 		return (DDI_FAILURE);
1950 	}
1951 
1952 	bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size);
1953 
1954 	instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED;
1955 
1956 	instance->producer = (uint32_t *)((unsigned long)
1957 	    instance->mfi_internal_dma_obj.buffer);
1958 	instance->consumer = (uint32_t *)((unsigned long)
1959 	    instance->mfi_internal_dma_obj.buffer + 4);
1960 	instance->reply_queue = (uint32_t *)((unsigned long)
1961 	    instance->mfi_internal_dma_obj.buffer + 8);
1962 	instance->internal_buf = (caddr_t)(((unsigned long)
1963 	    instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8);
1964 	instance->internal_buf_dmac_add =
1965 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address +
1966 	    reply_q_sz;
1967 	instance->internal_buf_size = internal_buf_size -
1968 	    (reply_q_sz + 8);
1969 
1970 	/* allocate evt_detail */
1971 	instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail);
1972 	instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr;
1973 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1974 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1975 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1;
1976 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1;
1977 
1978 	if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) {
1979 		con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: "
1980 		    "could not data transfer buffer alloc."));
1981 		return (DDI_FAILURE);
1982 	}
1983 
1984 	bzero(instance->mfi_evt_detail_obj.buffer,
1985 	    sizeof (struct megasas_evt_detail));
1986 
1987 	instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED;
1988 
1989 	return (DDI_SUCCESS);
1990 }
1991 
1992 /*
1993  * free_space_for_mfi
1994  */
1995 static void
1996 free_space_for_mfi(struct megasas_instance *instance)
1997 {
1998 	int		i;
1999 	uint32_t	max_cmd = instance->max_fw_cmds;
2000 
2001 	/* already freed */
2002 	if (instance->cmd_list == NULL) {
2003 		return;
2004 	}
2005 
2006 	free_additional_dma_buffer(instance);
2007 
2008 	/* first free the MFI frame pool */
2009 	destroy_mfi_frame_pool(instance);
2010 
2011 	/* free all the commands in the cmd_list */
2012 	for (i = 0; i < instance->max_fw_cmds; i++) {
2013 		kmem_free(instance->cmd_list[i],
2014 		    sizeof (struct megasas_cmd));
2015 
2016 		instance->cmd_list[i] = NULL;
2017 	}
2018 
2019 	/* free the cmd_list buffer itself */
2020 	kmem_free(instance->cmd_list,
2021 	    sizeof (struct megasas_cmd *) * max_cmd);
2022 
2023 	instance->cmd_list = NULL;
2024 
2025 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2026 }
2027 
2028 /*
2029  * alloc_space_for_mfi
2030  */
2031 static int
2032 alloc_space_for_mfi(struct megasas_instance *instance)
2033 {
2034 	int		i;
2035 	uint32_t	max_cmd;
2036 	size_t		sz;
2037 
2038 	struct megasas_cmd	*cmd;
2039 
2040 	max_cmd = instance->max_fw_cmds;
2041 	sz = sizeof (struct megasas_cmd *) * max_cmd;
2042 
2043 	/*
2044 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
2045 	 * Allocate the dynamic array first and then allocate individual
2046 	 * commands.
2047 	 */
2048 	instance->cmd_list = kmem_zalloc(sz, KM_SLEEP);
2049 	ASSERT(instance->cmd_list);
2050 
2051 	for (i = 0; i < max_cmd; i++) {
2052 		instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd),
2053 		    KM_SLEEP);
2054 		ASSERT(instance->cmd_list[i]);
2055 	}
2056 
2057 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2058 
2059 	/* add all the commands to command pool (instance->cmd_pool) */
2060 	for (i = 0; i < max_cmd; i++) {
2061 		cmd		= instance->cmd_list[i];
2062 		cmd->index	= i;
2063 
2064 		mlist_add_tail(&cmd->list, &instance->cmd_pool_list);
2065 	}
2066 
2067 	/* create a frame pool and assign one frame to each cmd */
2068 	if (create_mfi_frame_pool(instance)) {
2069 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2070 		return (DDI_FAILURE);
2071 	}
2072 
2073 	/* create a frame pool and assign one frame to each cmd */
2074 	if (alloc_additional_dma_buffer(instance)) {
2075 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2076 		return (DDI_FAILURE);
2077 	}
2078 
2079 	return (DDI_SUCCESS);
2080 }
2081 
2082 /*
2083  * get_ctrl_info
2084  */
2085 static int
2086 get_ctrl_info(struct megasas_instance *instance,
2087     struct megasas_ctrl_info *ctrl_info)
2088 {
2089 	int	ret = 0;
2090 
2091 	struct megasas_cmd		*cmd;
2092 	struct megasas_dcmd_frame	*dcmd;
2093 	struct megasas_ctrl_info	*ci;
2094 
2095 	cmd = get_mfi_pkt(instance);
2096 
2097 	if (!cmd) {
2098 		con_log(CL_ANN, (CE_WARN,
2099 		    "Failed to get a cmd for ctrl info\n"));
2100 		return (DDI_FAILURE);
2101 	}
2102 
2103 	dcmd = &cmd->frame->dcmd;
2104 
2105 	ci = (struct megasas_ctrl_info *)instance->internal_buf;
2106 
2107 	if (!ci) {
2108 		con_log(CL_ANN, (CE_WARN,
2109 		    "Failed to alloc mem for ctrl info\n"));
2110 		return_mfi_pkt(instance, cmd);
2111 		return (DDI_FAILURE);
2112 	}
2113 
2114 	(void) memset(ci, 0, sizeof (struct megasas_ctrl_info));
2115 
2116 	/* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */
2117 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2118 
2119 	dcmd->cmd			= MFI_CMD_OP_DCMD;
2120 	dcmd->cmd_status		= MFI_CMD_STATUS_POLL_MODE;
2121 	dcmd->sge_count			= 1;
2122 	dcmd->flags			= MFI_FRAME_DIR_READ;
2123 	dcmd->timeout			= 0;
2124 	dcmd->data_xfer_len		= sizeof (struct megasas_ctrl_info);
2125 	dcmd->opcode			= MR_DCMD_CTRL_GET_INFO;
2126 	dcmd->sgl.sge32[0].phys_addr	= instance->internal_buf_dmac_add;
2127 	dcmd->sgl.sge32[0].length	= sizeof (struct megasas_ctrl_info);
2128 
2129 	cmd->frame_count = 1;
2130 
2131 	if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2132 		ret = 0;
2133 		(void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info));
2134 	} else {
2135 		con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n"));
2136 		ret = -1;
2137 	}
2138 
2139 	return_mfi_pkt(instance, cmd);
2140 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2141 		ret = -1;
2142 	}
2143 
2144 	return (ret);
2145 }
2146 
2147 /*
2148  * abort_aen_cmd
2149  */
2150 static int
2151 abort_aen_cmd(struct megasas_instance *instance,
2152     struct megasas_cmd *cmd_to_abort)
2153 {
2154 	int	ret = 0;
2155 
2156 	struct megasas_cmd		*cmd;
2157 	struct megasas_abort_frame	*abort_fr;
2158 
2159 	cmd = get_mfi_pkt(instance);
2160 
2161 	if (!cmd) {
2162 		con_log(CL_ANN, (CE_WARN,
2163 		    "Failed to get a cmd for ctrl info\n"));
2164 		return (DDI_FAILURE);
2165 	}
2166 
2167 	abort_fr = &cmd->frame->abort;
2168 
2169 	/* prepare and issue the abort frame */
2170 	abort_fr->cmd = MFI_CMD_OP_ABORT;
2171 	abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE;
2172 	abort_fr->flags = 0;
2173 	abort_fr->abort_context = cmd_to_abort->index;
2174 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
2175 	abort_fr->abort_mfi_phys_addr_hi = 0;
2176 
2177 	instance->aen_cmd->abort_aen = 1;
2178 
2179 	cmd->sync_cmd = MEGASAS_TRUE;
2180 	cmd->frame_count = 1;
2181 
2182 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2183 		con_log(CL_ANN, (CE_WARN,
2184 		    "abort_aen_cmd: issue_cmd_in_sync_mode failed\n"));
2185 		ret = -1;
2186 	} else {
2187 		ret = 0;
2188 	}
2189 
2190 	instance->aen_cmd->abort_aen = 1;
2191 	instance->aen_cmd = 0;
2192 
2193 	return_mfi_pkt(instance, cmd);
2194 	(void) megasas_common_check(instance, cmd);
2195 
2196 	return (ret);
2197 }
2198 
2199 /*
2200  * init_mfi
2201  */
2202 static int
2203 init_mfi(struct megasas_instance *instance)
2204 {
2205 	off_t				reglength;
2206 	struct megasas_cmd		*cmd;
2207 	struct megasas_ctrl_info	ctrl_info;
2208 	struct megasas_init_frame	*init_frame;
2209 	struct megasas_init_queue_info	*initq_info;
2210 
2211 	if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, &reglength)
2212 	    != DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) {
2213 		return (DDI_FAILURE);
2214 	}
2215 
2216 	if (reglength > DEFAULT_MFI_MEM_SZ) {
2217 		reglength = DEFAULT_MFI_MEM_SZ;
2218 		con_log(CL_DLEVEL1, (CE_NOTE,
2219 		    "mega: register length to map is 0x%lx bytes", reglength));
2220 	}
2221 
2222 	if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO,
2223 	    &instance->regmap, 0, reglength, &endian_attr,
2224 	    &instance->regmap_handle) != DDI_SUCCESS) {
2225 		con_log(CL_ANN, (CE_NOTE,
2226 		    "megaraid: couldn't map control registers"));
2227 
2228 		goto fail_mfi_reg_setup;
2229 	}
2230 
2231 	/* we expect the FW state to be READY */
2232 	if (mfi_state_transition_to_ready(instance)) {
2233 		con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready"));
2234 		goto fail_ready_state;
2235 	}
2236 
2237 	/* get various operational parameters from status register */
2238 	instance->max_num_sge =
2239 	    (instance->func_ptr->read_fw_status_reg(instance) &
2240 	    0xFF0000) >> 0x10;
2241 	/*
2242 	 * Reduce the max supported cmds by 1. This is to ensure that the
2243 	 * reply_q_sz (1 more than the max cmd that driver may send)
2244 	 * does not exceed max cmds that the FW can support
2245 	 */
2246 	instance->max_fw_cmds =
2247 	    instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF;
2248 	instance->max_fw_cmds = instance->max_fw_cmds - 1;
2249 
2250 	instance->max_num_sge =
2251 	    (instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ?
2252 	    MEGASAS_MAX_SGE_CNT : instance->max_num_sge;
2253 
2254 	/* create a pool of commands */
2255 	if (alloc_space_for_mfi(instance))
2256 		goto fail_alloc_fw_space;
2257 
2258 	/* disable interrupt for initial preparation */
2259 	instance->func_ptr->disable_intr(instance);
2260 
2261 	/*
2262 	 * Prepare a init frame. Note the init frame points to queue info
2263 	 * structure. Each frame has SGL allocated after first 64 bytes. For
2264 	 * this frame - since we don't need any SGL - we use SGL's space as
2265 	 * queue info structure
2266 	 */
2267 	cmd = get_mfi_pkt(instance);
2268 
2269 	init_frame = (struct megasas_init_frame *)cmd->frame;
2270 	initq_info = (struct megasas_init_queue_info *)
2271 	    ((unsigned long)init_frame + 64);
2272 
2273 	(void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
2274 	(void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info));
2275 
2276 	initq_info->init_flags = 0;
2277 
2278 	initq_info->reply_queue_entries	= instance->max_fw_cmds + 1;
2279 
2280 	initq_info->producer_index_phys_addr_hi	= 0;
2281 	initq_info->producer_index_phys_addr_lo =
2282 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address;
2283 
2284 	initq_info->consumer_index_phys_addr_hi = 0;
2285 	initq_info->consumer_index_phys_addr_lo =
2286 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4;
2287 
2288 	initq_info->reply_queue_start_phys_addr_hi = 0;
2289 	initq_info->reply_queue_start_phys_addr_lo =
2290 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8;
2291 
2292 	init_frame->cmd				= MFI_CMD_OP_INIT;
2293 	init_frame->cmd_status			= MFI_CMD_STATUS_POLL_MODE;
2294 	init_frame->flags			= 0;
2295 	init_frame->queue_info_new_phys_addr_lo	=
2296 	    cmd->frame_phys_addr + 64;
2297 	init_frame->queue_info_new_phys_addr_hi	= 0;
2298 
2299 	init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info);
2300 
2301 	cmd->frame_count = 1;
2302 
2303 	/* issue the init frame in polled mode */
2304 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2305 		con_log(CL_ANN, (CE_WARN, "failed to init firmware"));
2306 		goto fail_fw_init;
2307 	}
2308 
2309 	return_mfi_pkt(instance, cmd);
2310 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2311 		goto fail_fw_init;
2312 	}
2313 
2314 	/* gather misc FW related information */
2315 	if (!get_ctrl_info(instance, &ctrl_info)) {
2316 		instance->max_sectors_per_req = ctrl_info.max_request_size;
2317 		con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d",
2318 		    ctrl_info.product_name, ctrl_info.ld_present_count));
2319 	} else {
2320 		instance->max_sectors_per_req = instance->max_num_sge *
2321 		    PAGESIZE / 512;
2322 	}
2323 
2324 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2325 		goto fail_fw_init;
2326 	}
2327 
2328 	return (0);
2329 
2330 fail_fw_init:
2331 fail_alloc_fw_space:
2332 
2333 	free_space_for_mfi(instance);
2334 
2335 fail_ready_state:
2336 	ddi_regs_map_free(&instance->regmap_handle);
2337 
2338 fail_mfi_reg_setup:
2339 	return (DDI_FAILURE);
2340 }
2341 
2342 /*
2343  * mfi_state_transition_to_ready	: Move the FW to READY state
2344  *
2345  * @reg_set			: MFI register set
2346  */
2347 static int
2348 mfi_state_transition_to_ready(struct megasas_instance *instance)
2349 {
2350 	int		i;
2351 	uint8_t		max_wait;
2352 	uint32_t	fw_ctrl;
2353 	uint32_t	fw_state;
2354 	uint32_t	cur_state;
2355 
2356 	fw_state =
2357 	    instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK;
2358 	con_log(CL_ANN1, (CE_NOTE,
2359 	    "mfi_state_transition_to_ready:FW state = 0x%x", fw_state));
2360 
2361 	while (fw_state != MFI_STATE_READY) {
2362 		con_log(CL_ANN, (CE_NOTE,
2363 		    "mfi_state_transition_to_ready:FW state%x", fw_state));
2364 
2365 		switch (fw_state) {
2366 		case MFI_STATE_FAULT:
2367 			con_log(CL_ANN, (CE_NOTE,
2368 			    "megasas: FW in FAULT state!!"));
2369 
2370 			return (-ENODEV);
2371 		case MFI_STATE_WAIT_HANDSHAKE:
2372 			/* set the CLR bit in IMR0 */
2373 			con_log(CL_ANN, (CE_NOTE,
2374 			    "megasas: FW waiting for HANDSHAKE"));
2375 			/*
2376 			 * PCI_Hot Plug: MFI F/W requires
2377 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2378 			 * to be set
2379 			 */
2380 			/* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */
2381 			WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE |
2382 			    MFI_INIT_HOTPLUG, instance);
2383 
2384 			max_wait	= 2;
2385 			cur_state	= MFI_STATE_WAIT_HANDSHAKE;
2386 			break;
2387 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2388 			/* set the CLR bit in IMR0 */
2389 			con_log(CL_ANN, (CE_NOTE,
2390 			    "megasas: FW state boot message pending"));
2391 			/*
2392 			 * PCI_Hot Plug: MFI F/W requires
2393 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2394 			 * to be set
2395 			 */
2396 			WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance);
2397 
2398 			max_wait	= 10;
2399 			cur_state	= MFI_STATE_BOOT_MESSAGE_PENDING;
2400 			break;
2401 		case MFI_STATE_OPERATIONAL:
2402 			/* bring it to READY state; assuming max wait 2 secs */
2403 			instance->func_ptr->disable_intr(instance);
2404 			con_log(CL_ANN1, (CE_NOTE,
2405 			    "megasas: FW in OPERATIONAL state"));
2406 			/*
2407 			 * PCI_Hot Plug: MFI F/W requires
2408 			 * (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT)
2409 			 * to be set
2410 			 */
2411 			/* WR_IB_DOORBELL(MFI_INIT_READY, instance); */
2412 			WR_IB_DOORBELL(MFI_RESET_FLAGS, instance);
2413 
2414 			max_wait	= 10;
2415 			cur_state	= MFI_STATE_OPERATIONAL;
2416 			break;
2417 		case MFI_STATE_UNDEFINED:
2418 			/* this state should not last for more than 2 seconds */
2419 			con_log(CL_ANN, (CE_NOTE, "FW state undefined\n"));
2420 
2421 			max_wait	= 2;
2422 			cur_state	= MFI_STATE_UNDEFINED;
2423 			break;
2424 		case MFI_STATE_BB_INIT:
2425 			max_wait	= 2;
2426 			cur_state	= MFI_STATE_BB_INIT;
2427 			break;
2428 		case MFI_STATE_FW_INIT:
2429 			max_wait	= 2;
2430 			cur_state	= MFI_STATE_FW_INIT;
2431 			break;
2432 		case MFI_STATE_DEVICE_SCAN:
2433 			max_wait	= 10;
2434 			cur_state	= MFI_STATE_DEVICE_SCAN;
2435 			break;
2436 		default:
2437 			con_log(CL_ANN, (CE_NOTE,
2438 			    "megasas: Unknown state 0x%x\n", fw_state));
2439 			return (-ENODEV);
2440 		}
2441 
2442 		/* the cur_state should not last for more than max_wait secs */
2443 		for (i = 0; i < (max_wait * MILLISEC); i++) {
2444 			/* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */
2445 			fw_state =
2446 			    instance->func_ptr->read_fw_status_reg(instance) &
2447 			    MFI_STATE_MASK;
2448 
2449 			if (fw_state == cur_state) {
2450 				delay(1 * drv_usectohz(MILLISEC));
2451 			} else {
2452 				break;
2453 			}
2454 		}
2455 
2456 		/* return error if fw_state hasn't changed after max_wait */
2457 		if (fw_state == cur_state) {
2458 			con_log(CL_ANN, (CE_NOTE,
2459 			    "FW state hasn't changed in %d secs\n", max_wait));
2460 			return (-ENODEV);
2461 		}
2462 	};
2463 
2464 	fw_ctrl = RD_IB_DOORBELL(instance);
2465 
2466 	con_log(CL_ANN1, (CE_NOTE,
2467 	    "mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl));
2468 
2469 	/*
2470 	 * Write 0xF to the doorbell register to do the following.
2471 	 * - Abort all outstanding commands (bit 0).
2472 	 * - Transition from OPERATIONAL to READY state (bit 1).
2473 	 * - Discard (possible) low MFA posted in 64-bit mode (bit-2).
2474 	 * - Set to release FW to continue running (i.e. BIOS handshake
2475 	 *   (bit 3).
2476 	 */
2477 	WR_IB_DOORBELL(0xF, instance);
2478 
2479 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2480 		return (-ENODEV);
2481 	}
2482 	return (0);
2483 }
2484 
2485 /*
2486  * get_seq_num
2487  */
2488 static int
2489 get_seq_num(struct megasas_instance *instance,
2490     struct megasas_evt_log_info *eli)
2491 {
2492 	int	ret = 0;
2493 
2494 	dma_obj_t			dcmd_dma_obj;
2495 	struct megasas_cmd		*cmd;
2496 	struct megasas_dcmd_frame	*dcmd;
2497 
2498 	cmd = get_mfi_pkt(instance);
2499 
2500 	if (!cmd) {
2501 		cmn_err(CE_WARN, "megasas: failed to get a cmd\n");
2502 		return (-ENOMEM);
2503 	}
2504 
2505 	dcmd	= &cmd->frame->dcmd;
2506 
2507 	/* allocate the data transfer buffer */
2508 	dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info);
2509 	dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
2510 	dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
2511 	dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
2512 	dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
2513 	dcmd_dma_obj.dma_attr.dma_attr_align = 1;
2514 
2515 	if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
2516 		con_log(CL_ANN, (CE_WARN,
2517 		    "get_seq_num: could not data transfer buffer alloc."));
2518 		return (DDI_FAILURE);
2519 	}
2520 
2521 	(void) memset(dcmd_dma_obj.buffer, 0,
2522 	    sizeof (struct megasas_evt_log_info));
2523 
2524 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2525 
2526 	dcmd->cmd = MFI_CMD_OP_DCMD;
2527 	dcmd->cmd_status = 0;
2528 	dcmd->sge_count	= 1;
2529 	dcmd->flags = MFI_FRAME_DIR_READ;
2530 	dcmd->timeout = 0;
2531 	dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info);
2532 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2533 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info);
2534 	dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
2535 
2536 	cmd->sync_cmd = MEGASAS_TRUE;
2537 	cmd->frame_count = 1;
2538 
2539 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2540 		cmn_err(CE_WARN, "get_seq_num: "
2541 		    "failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n");
2542 		ret = -1;
2543 	} else {
2544 		/* copy the data back into callers buffer */
2545 		bcopy(dcmd_dma_obj.buffer, eli,
2546 		    sizeof (struct megasas_evt_log_info));
2547 		ret = 0;
2548 	}
2549 
2550 	if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
2551 		ret = -1;
2552 
2553 	return_mfi_pkt(instance, cmd);
2554 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2555 		ret = -1;
2556 	}
2557 	return (ret);
2558 }
2559 
2560 /*
2561  * start_mfi_aen
2562  */
2563 static int
2564 start_mfi_aen(struct megasas_instance *instance)
2565 {
2566 	int	ret = 0;
2567 
2568 	struct megasas_evt_log_info	eli;
2569 	union megasas_evt_class_locale	class_locale;
2570 
2571 	/* get the latest sequence number from FW */
2572 	(void) memset(&eli, 0, sizeof (struct megasas_evt_log_info));
2573 
2574 	if (get_seq_num(instance, &eli)) {
2575 		cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n");
2576 		return (-1);
2577 	}
2578 
2579 	/* register AEN with FW for latest sequence number plus 1 */
2580 	class_locale.members.reserved	= 0;
2581 	class_locale.members.locale	= MR_EVT_LOCALE_ALL;
2582 	class_locale.members.class	= MR_EVT_CLASS_CRITICAL;
2583 
2584 	ret = register_mfi_aen(instance, eli.newest_seq_num + 1,
2585 	    class_locale.word);
2586 
2587 	if (ret) {
2588 		cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n");
2589 		return (-1);
2590 	}
2591 
2592 	return (ret);
2593 }
2594 
2595 /*
2596  * flush_cache
2597  */
2598 static void
2599 flush_cache(struct megasas_instance *instance)
2600 {
2601 	struct megasas_cmd		*cmd;
2602 	struct megasas_dcmd_frame	*dcmd;
2603 
2604 	if (!(cmd = get_mfi_pkt(instance)))
2605 		return;
2606 
2607 	dcmd = &cmd->frame->dcmd;
2608 
2609 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2610 
2611 	dcmd->cmd		= MFI_CMD_OP_DCMD;
2612 	dcmd->cmd_status	= 0x0;
2613 	dcmd->sge_count		= 0;
2614 	dcmd->flags		= MFI_FRAME_DIR_NONE;
2615 	dcmd->timeout		= 0;
2616 	dcmd->data_xfer_len	= 0;
2617 	dcmd->opcode		= MR_DCMD_CTRL_CACHE_FLUSH;
2618 	dcmd->mbox.b[0]		= MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2619 
2620 	cmd->frame_count = 1;
2621 
2622 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2623 		cmn_err(CE_WARN,
2624 		    "flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n");
2625 	}
2626 	con_log(CL_DLEVEL1, (CE_NOTE, "done"));
2627 	return_mfi_pkt(instance, cmd);
2628 	(void) megasas_common_check(instance, cmd);
2629 }
2630 
2631 /*
2632  * service_mfi_aen-	Completes an AEN command
2633  * @instance:			Adapter soft state
2634  * @cmd:			Command to be completed
2635  *
2636  */
2637 static void
2638 service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2639 {
2640 	uint32_t	seq_num;
2641 	struct megasas_evt_detail *evt_detail =
2642 	    (struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer;
2643 
2644 	cmd->cmd_status = cmd->frame->io.cmd_status;
2645 
2646 	if (cmd->cmd_status == ENODATA) {
2647 		cmd->cmd_status = 0;
2648 	}
2649 
2650 	/*
2651 	 * log the MFI AEN event to the sysevent queue so that
2652 	 * application will get noticed
2653 	 */
2654 	if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS",
2655 	    NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) {
2656 		int	instance_no = ddi_get_instance(instance->dip);
2657 		con_log(CL_ANN, (CE_WARN,
2658 		    "mega%d: Failed to log AEN event", instance_no));
2659 	}
2660 
2661 	/* get copy of seq_num and class/locale for re-registration */
2662 	seq_num = evt_detail->seq_num;
2663 	seq_num++;
2664 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
2665 	    sizeof (struct megasas_evt_detail));
2666 
2667 	cmd->frame->dcmd.cmd_status = 0x0;
2668 	cmd->frame->dcmd.mbox.w[0] = seq_num;
2669 
2670 	instance->aen_seq_num = seq_num;
2671 
2672 	cmd->frame_count = 1;
2673 
2674 	/* Issue the aen registration frame */
2675 	instance->func_ptr->issue_cmd(cmd, instance);
2676 }
2677 
2678 /*
2679  * complete_cmd_in_sync_mode -	Completes an internal command
2680  * @instance:			Adapter soft state
2681  * @cmd:			Command to be completed
2682  *
2683  * The issue_cmd_in_sync_mode() function waits for a command to complete
2684  * after it issues a command. This function wakes up that waiting routine by
2685  * calling wake_up() on the wait queue.
2686  */
2687 static void
2688 complete_cmd_in_sync_mode(struct megasas_instance *instance,
2689     struct megasas_cmd *cmd)
2690 {
2691 	cmd->cmd_status = cmd->frame->io.cmd_status;
2692 
2693 	cmd->sync_cmd = MEGASAS_FALSE;
2694 
2695 	if (cmd->cmd_status == ENODATA) {
2696 		cmd->cmd_status = 0;
2697 	}
2698 
2699 	cv_broadcast(&instance->int_cmd_cv);
2700 }
2701 
2702 /*
2703  * megasas_softintr - The Software ISR
2704  * @param arg	: HBA soft state
2705  *
2706  * called from high-level interrupt if hi-level interrupt are not there,
2707  * otherwise triggered as a soft interrupt
2708  */
2709 static uint_t
2710 megasas_softintr(struct megasas_instance *instance)
2711 {
2712 	struct scsi_pkt		*pkt;
2713 	struct scsa_cmd		*acmd;
2714 	struct megasas_cmd	*cmd;
2715 	struct mlist_head	*pos, *next;
2716 	mlist_t			process_list;
2717 	struct megasas_header	*hdr;
2718 	struct scsi_arq_status	*arqstat;
2719 
2720 	con_log(CL_ANN1, (CE_CONT, "megasas_softintr called"));
2721 
2722 	ASSERT(instance);
2723 	mutex_enter(&instance->completed_pool_mtx);
2724 
2725 	if (mlist_empty(&instance->completed_pool_list)) {
2726 		mutex_exit(&instance->completed_pool_mtx);
2727 		return (DDI_INTR_UNCLAIMED);
2728 	}
2729 
2730 	instance->softint_running = 1;
2731 
2732 	INIT_LIST_HEAD(&process_list);
2733 	mlist_splice(&instance->completed_pool_list, &process_list);
2734 	INIT_LIST_HEAD(&instance->completed_pool_list);
2735 
2736 	mutex_exit(&instance->completed_pool_mtx);
2737 
2738 	/* perform all callbacks first, before releasing the SCBs */
2739 	mlist_for_each_safe(pos, next, &process_list) {
2740 		/* LINTED E_BAD_PTR_CAST_ALIGN */
2741 		cmd = mlist_entry(pos, struct megasas_cmd, list);
2742 
2743 		/* syncronize the Cmd frame for the controller */
2744 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle,
2745 		    0, 0, DDI_DMA_SYNC_FORCPU);
2746 
2747 		if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
2748 		    DDI_SUCCESS) {
2749 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2750 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2751 			return (DDI_INTR_UNCLAIMED);
2752 		}
2753 
2754 		hdr = &cmd->frame->hdr;
2755 
2756 		/* remove the internal command from the process list */
2757 		mlist_del_init(&cmd->list);
2758 
2759 		switch (hdr->cmd) {
2760 		case MFI_CMD_OP_PD_SCSI:
2761 		case MFI_CMD_OP_LD_SCSI:
2762 		case MFI_CMD_OP_LD_READ:
2763 		case MFI_CMD_OP_LD_WRITE:
2764 			/*
2765 			 * MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI
2766 			 * could have been issued either through an
2767 			 * IO path or an IOCTL path. If it was via IOCTL,
2768 			 * we will send it to internal completion.
2769 			 */
2770 			if (cmd->sync_cmd == MEGASAS_TRUE) {
2771 				complete_cmd_in_sync_mode(instance, cmd);
2772 				break;
2773 			}
2774 
2775 			/* regular commands */
2776 			acmd =	cmd->cmd;
2777 			pkt =	CMD2PKT(acmd);
2778 
2779 			if (acmd->cmd_flags & CFLAG_DMAVALID) {
2780 				if (acmd->cmd_flags & CFLAG_CONSISTENT) {
2781 					(void) ddi_dma_sync(acmd->cmd_dmahandle,
2782 					    acmd->cmd_dma_offset,
2783 					    acmd->cmd_dma_len,
2784 					    DDI_DMA_SYNC_FORCPU);
2785 				}
2786 			}
2787 
2788 			pkt->pkt_reason		= CMD_CMPLT;
2789 			pkt->pkt_statistics	= 0;
2790 			pkt->pkt_state = STATE_GOT_BUS
2791 			    | STATE_GOT_TARGET | STATE_SENT_CMD
2792 			    | STATE_XFERRED_DATA | STATE_GOT_STATUS;
2793 
2794 			con_log(CL_ANN1, (CE_CONT,
2795 			    "CDB[0] = %x completed for %s: size %lx context %x",
2796 			    pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"),
2797 			    acmd->cmd_dmacount, hdr->context));
2798 
2799 			if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) {
2800 				struct scsi_inquiry	*inq;
2801 
2802 				if (acmd->cmd_dmacount != 0) {
2803 					bp_mapin(acmd->cmd_buf);
2804 					inq = (struct scsi_inquiry *)
2805 					    acmd->cmd_buf->b_un.b_addr;
2806 
2807 					/* don't expose physical drives to OS */
2808 					if (acmd->islogical &&
2809 					    (hdr->cmd_status == MFI_STAT_OK)) {
2810 						display_scsi_inquiry(
2811 						    (caddr_t)inq);
2812 					} else if ((hdr->cmd_status ==
2813 					    MFI_STAT_OK) && inq->inq_dtype ==
2814 					    DTYPE_DIRECT) {
2815 
2816 						display_scsi_inquiry(
2817 						    (caddr_t)inq);
2818 
2819 						/* for physical disk */
2820 						hdr->cmd_status =
2821 						    MFI_STAT_DEVICE_NOT_FOUND;
2822 					}
2823 				}
2824 			}
2825 
2826 			switch (hdr->cmd_status) {
2827 			case MFI_STAT_OK:
2828 				pkt->pkt_scbp[0] = STATUS_GOOD;
2829 				break;
2830 			case MFI_STAT_LD_CC_IN_PROGRESS:
2831 			case MFI_STAT_LD_RECON_IN_PROGRESS:
2832 			    /* SJ - these are not correct way */
2833 				pkt->pkt_scbp[0] = STATUS_GOOD;
2834 				break;
2835 			case MFI_STAT_LD_INIT_IN_PROGRESS:
2836 				con_log(CL_ANN,
2837 				    (CE_WARN, "Initialization in Progress"));
2838 				pkt->pkt_reason	= CMD_TRAN_ERR;
2839 
2840 				break;
2841 			case MFI_STAT_SCSI_DONE_WITH_ERROR:
2842 				con_log(CL_ANN1, (CE_CONT, "scsi_done error"));
2843 
2844 				pkt->pkt_reason	= CMD_CMPLT;
2845 				((struct scsi_status *)
2846 				    pkt->pkt_scbp)->sts_chk = 1;
2847 
2848 				if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) {
2849 
2850 					con_log(CL_ANN,
2851 					    (CE_WARN, "TEST_UNIT_READY fail"));
2852 
2853 				} else {
2854 					pkt->pkt_state |= STATE_ARQ_DONE;
2855 					arqstat = (void *)(pkt->pkt_scbp);
2856 					arqstat->sts_rqpkt_reason = CMD_CMPLT;
2857 					arqstat->sts_rqpkt_resid = 0;
2858 					arqstat->sts_rqpkt_state |=
2859 					    STATE_GOT_BUS | STATE_GOT_TARGET
2860 					    | STATE_SENT_CMD
2861 					    | STATE_XFERRED_DATA;
2862 					*(uint8_t *)&arqstat->sts_rqpkt_status =
2863 					    STATUS_GOOD;
2864 
2865 					bcopy(cmd->sense,
2866 					    &(arqstat->sts_sensedata),
2867 					    acmd->cmd_scblen -
2868 					    offsetof(struct scsi_arq_status,
2869 					    sts_sensedata));
2870 				}
2871 				break;
2872 			case MFI_STAT_LD_OFFLINE:
2873 			case MFI_STAT_DEVICE_NOT_FOUND:
2874 				con_log(CL_ANN1, (CE_CONT,
2875 				    "device not found error"));
2876 				pkt->pkt_reason	= CMD_DEV_GONE;
2877 				pkt->pkt_statistics  = STAT_DISCON;
2878 				break;
2879 			case MFI_STAT_LD_LBA_OUT_OF_RANGE:
2880 				pkt->pkt_state |= STATE_ARQ_DONE;
2881 				pkt->pkt_reason	= CMD_CMPLT;
2882 				((struct scsi_status *)
2883 				    pkt->pkt_scbp)->sts_chk = 1;
2884 
2885 				arqstat = (void *)(pkt->pkt_scbp);
2886 				arqstat->sts_rqpkt_reason = CMD_CMPLT;
2887 				arqstat->sts_rqpkt_resid = 0;
2888 				arqstat->sts_rqpkt_state |= STATE_GOT_BUS
2889 				    | STATE_GOT_TARGET | STATE_SENT_CMD
2890 				    | STATE_XFERRED_DATA;
2891 				*(uint8_t *)&arqstat->sts_rqpkt_status =
2892 				    STATUS_GOOD;
2893 
2894 				arqstat->sts_sensedata.es_valid = 1;
2895 				arqstat->sts_sensedata.es_key =
2896 				    KEY_ILLEGAL_REQUEST;
2897 				arqstat->sts_sensedata.es_class =
2898 				    CLASS_EXTENDED_SENSE;
2899 
2900 				/*
2901 				 * LOGICAL BLOCK ADDRESS OUT OF RANGE:
2902 				 * ASC: 0x21h; ASCQ: 0x00h;
2903 				 */
2904 				arqstat->sts_sensedata.es_add_code = 0x21;
2905 				arqstat->sts_sensedata.es_qual_code = 0x00;
2906 
2907 				break;
2908 
2909 			default:
2910 				con_log(CL_ANN, (CE_CONT, "Unknown status!"));
2911 				pkt->pkt_reason	= CMD_TRAN_ERR;
2912 
2913 				break;
2914 			}
2915 
2916 			atomic_add_16(&instance->fw_outstanding, (-1));
2917 
2918 			return_mfi_pkt(instance, cmd);
2919 
2920 			(void) megasas_common_check(instance, cmd);
2921 
2922 			if (acmd->cmd_dmahandle) {
2923 				if (megasas_check_dma_handle(
2924 				    acmd->cmd_dmahandle) != DDI_SUCCESS) {
2925 					ddi_fm_service_impact(instance->dip,
2926 					    DDI_SERVICE_UNAFFECTED);
2927 					pkt->pkt_reason = CMD_TRAN_ERR;
2928 					pkt->pkt_statistics = 0;
2929 				}
2930 			}
2931 
2932 			/* Call the callback routine */
2933 			if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&
2934 			    pkt->pkt_comp) {
2935 				(*pkt->pkt_comp)(pkt);
2936 			}
2937 
2938 			break;
2939 		case MFI_CMD_OP_SMP:
2940 		case MFI_CMD_OP_STP:
2941 			complete_cmd_in_sync_mode(instance, cmd);
2942 			break;
2943 		case MFI_CMD_OP_DCMD:
2944 			/* see if got an event notification */
2945 			if (cmd->frame->dcmd.opcode ==
2946 			    MR_DCMD_CTRL_EVENT_WAIT) {
2947 				if ((instance->aen_cmd == cmd) &&
2948 				    (instance->aen_cmd->abort_aen)) {
2949 					con_log(CL_ANN, (CE_WARN,
2950 					    "megasas_softintr: "
2951 					    "aborted_aen returned"));
2952 				} else {
2953 					service_mfi_aen(instance, cmd);
2954 				}
2955 			} else {
2956 				complete_cmd_in_sync_mode(instance, cmd);
2957 			}
2958 
2959 			break;
2960 		case MFI_CMD_OP_ABORT:
2961 			con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete"));
2962 			/*
2963 			 * MFI_CMD_OP_ABORT successfully completed
2964 			 * in the synchronous mode
2965 			 */
2966 			complete_cmd_in_sync_mode(instance, cmd);
2967 			break;
2968 		default:
2969 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2970 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2971 
2972 			if (cmd->pkt != NULL) {
2973 				pkt = cmd->pkt;
2974 				if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&
2975 				    pkt->pkt_comp) {
2976 					(*pkt->pkt_comp)(pkt);
2977 				}
2978 			}
2979 			con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!"));
2980 			break;
2981 		}
2982 	}
2983 
2984 	instance->softint_running = 0;
2985 
2986 	return (DDI_INTR_CLAIMED);
2987 }
2988 
2989 /*
2990  * mega_alloc_dma_obj
2991  *
2992  * Allocate the memory and other resources for an dma object.
2993  */
2994 static int
2995 mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj)
2996 {
2997 	int	i;
2998 	size_t	alen = 0;
2999 	uint_t	cookie_cnt;
3000 
3001 	i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr,
3002 	    DDI_DMA_SLEEP, NULL, &obj->dma_handle);
3003 	if (i != DDI_SUCCESS) {
3004 
3005 		switch (i) {
3006 			case DDI_DMA_BADATTR :
3007 				con_log(CL_ANN, (CE_WARN,
3008 				"Failed ddi_dma_alloc_handle- Bad atrib"));
3009 				break;
3010 			case DDI_DMA_NORESOURCES :
3011 				con_log(CL_ANN, (CE_WARN,
3012 				"Failed ddi_dma_alloc_handle- No Resources"));
3013 				break;
3014 			default :
3015 				con_log(CL_ANN, (CE_WARN,
3016 				"Failed ddi_dma_alloc_handle :unknown %d", i));
3017 				break;
3018 		}
3019 
3020 		return (-1);
3021 	}
3022 
3023 	if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &endian_attr,
3024 	    DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
3025 	    &obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) ||
3026 	    alen < obj->size) {
3027 
3028 		ddi_dma_free_handle(&obj->dma_handle);
3029 
3030 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc"));
3031 
3032 		return (-1);
3033 	}
3034 
3035 	if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer,
3036 	    obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
3037 	    NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) {
3038 
3039 		ddi_dma_mem_free(&obj->acc_handle);
3040 		ddi_dma_free_handle(&obj->dma_handle);
3041 
3042 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle"));
3043 
3044 		return (-1);
3045 	}
3046 
3047 	if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) {
3048 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3049 		return (-1);
3050 	}
3051 
3052 	if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) {
3053 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3054 		return (-1);
3055 	}
3056 
3057 	return (cookie_cnt);
3058 }
3059 
3060 /*
3061  * mega_free_dma_obj(struct megasas_instance *, dma_obj_t)
3062  *
3063  * De-allocate the memory and other resources for an dma object, which must
3064  * have been alloated by a previous call to mega_alloc_dma_obj()
3065  */
3066 static int
3067 mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj)
3068 {
3069 
3070 	if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) {
3071 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3072 		return (DDI_FAILURE);
3073 	}
3074 
3075 	if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) {
3076 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3077 		return (DDI_FAILURE);
3078 	}
3079 
3080 	(void) ddi_dma_unbind_handle(obj.dma_handle);
3081 	ddi_dma_mem_free(&obj.acc_handle);
3082 	ddi_dma_free_handle(&obj.dma_handle);
3083 
3084 	return (DDI_SUCCESS);
3085 }
3086 
3087 /*
3088  * megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *,
3089  * int, int (*)())
3090  *
3091  * Allocate dma resources for a new scsi command
3092  */
3093 static int
3094 megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt,
3095     struct buf *bp, int flags, int (*callback)())
3096 {
3097 	int	dma_flags;
3098 	int	(*cb)(caddr_t);
3099 	int	i;
3100 
3101 	ddi_dma_attr_t	tmp_dma_attr = megasas_generic_dma_attr;
3102 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3103 
3104 	acmd->cmd_buf = bp;
3105 
3106 	if (bp->b_flags & B_READ) {
3107 		acmd->cmd_flags &= ~CFLAG_DMASEND;
3108 		dma_flags = DDI_DMA_READ;
3109 	} else {
3110 		acmd->cmd_flags |= CFLAG_DMASEND;
3111 		dma_flags = DDI_DMA_WRITE;
3112 	}
3113 
3114 	if (flags & PKT_CONSISTENT) {
3115 		acmd->cmd_flags |= CFLAG_CONSISTENT;
3116 		dma_flags |= DDI_DMA_CONSISTENT;
3117 	}
3118 
3119 	if (flags & PKT_DMA_PARTIAL) {
3120 		dma_flags |= DDI_DMA_PARTIAL;
3121 	}
3122 
3123 	dma_flags |= DDI_DMA_REDZONE;
3124 
3125 	cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
3126 
3127 	tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge;
3128 
3129 	if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr,
3130 	    cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) {
3131 		switch (i) {
3132 		case DDI_DMA_BADATTR:
3133 			bioerror(bp, EFAULT);
3134 			return (-1);
3135 
3136 		case DDI_DMA_NORESOURCES:
3137 			bioerror(bp, 0);
3138 			return (-1);
3139 
3140 		default:
3141 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: "
3142 			    "0x%x impossible\n", i));
3143 			bioerror(bp, EFAULT);
3144 			return (-1);
3145 		}
3146 	}
3147 
3148 	i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags,
3149 	    cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies);
3150 
3151 	switch (i) {
3152 	case DDI_DMA_PARTIAL_MAP:
3153 		if ((dma_flags & DDI_DMA_PARTIAL) == 0) {
3154 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3155 			    "DDI_DMA_PARTIAL_MAP impossible\n"));
3156 			goto no_dma_cookies;
3157 		}
3158 
3159 		if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) ==
3160 		    DDI_FAILURE) {
3161 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n"));
3162 			goto no_dma_cookies;
3163 		}
3164 
3165 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3166 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3167 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3168 		    DDI_FAILURE) {
3169 
3170 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n"));
3171 			goto no_dma_cookies;
3172 		}
3173 
3174 		goto get_dma_cookies;
3175 	case DDI_DMA_MAPPED:
3176 		acmd->cmd_nwin = 1;
3177 		acmd->cmd_dma_len = 0;
3178 		acmd->cmd_dma_offset = 0;
3179 
3180 get_dma_cookies:
3181 		i = 0;
3182 		acmd->cmd_dmacount = 0;
3183 		for (;;) {
3184 			acmd->cmd_dmacount +=
3185 			    acmd->cmd_dmacookies[i++].dmac_size;
3186 
3187 			if (i == instance->max_num_sge ||
3188 			    i == acmd->cmd_ncookies)
3189 				break;
3190 
3191 			ddi_dma_nextcookie(acmd->cmd_dmahandle,
3192 			    &acmd->cmd_dmacookies[i]);
3193 		}
3194 
3195 		acmd->cmd_cookie = i;
3196 		acmd->cmd_cookiecnt = i;
3197 
3198 		acmd->cmd_flags |= CFLAG_DMAVALID;
3199 
3200 		if (bp->b_bcount >= acmd->cmd_dmacount) {
3201 			pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3202 		} else {
3203 			pkt->pkt_resid = 0;
3204 		}
3205 
3206 		return (0);
3207 	case DDI_DMA_NORESOURCES:
3208 		bioerror(bp, 0);
3209 		break;
3210 	case DDI_DMA_NOMAPPING:
3211 		bioerror(bp, EFAULT);
3212 		break;
3213 	case DDI_DMA_TOOBIG:
3214 		bioerror(bp, EINVAL);
3215 		break;
3216 	case DDI_DMA_INUSE:
3217 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:"
3218 		    " DDI_DMA_INUSE impossible\n"));
3219 		break;
3220 	default:
3221 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3222 		    "0x%x impossible\n", i));
3223 		break;
3224 	}
3225 
3226 no_dma_cookies:
3227 	ddi_dma_free_handle(&acmd->cmd_dmahandle);
3228 	acmd->cmd_dmahandle = NULL;
3229 	acmd->cmd_flags &= ~CFLAG_DMAVALID;
3230 	return (-1);
3231 }
3232 
3233 /*
3234  * megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *)
3235  *
3236  * move dma resources to next dma window
3237  *
3238  */
3239 static int
3240 megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt,
3241     struct buf *bp)
3242 {
3243 	int	i = 0;
3244 
3245 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3246 
3247 	/*
3248 	 * If there are no more cookies remaining in this window,
3249 	 * must move to the next window first.
3250 	 */
3251 	if (acmd->cmd_cookie == acmd->cmd_ncookies) {
3252 		if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) {
3253 			return (0);
3254 		}
3255 
3256 		/* at last window, cannot move */
3257 		if (++acmd->cmd_curwin >= acmd->cmd_nwin) {
3258 			return (-1);
3259 		}
3260 
3261 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3262 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3263 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3264 		    DDI_FAILURE) {
3265 			return (-1);
3266 		}
3267 
3268 		acmd->cmd_cookie = 0;
3269 	} else {
3270 		/* still more cookies in this window - get the next one */
3271 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3272 		    &acmd->cmd_dmacookies[0]);
3273 	}
3274 
3275 	/* get remaining cookies in this window, up to our maximum */
3276 	for (;;) {
3277 		acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size;
3278 		acmd->cmd_cookie++;
3279 
3280 		if (i == instance->max_num_sge ||
3281 		    acmd->cmd_cookie == acmd->cmd_ncookies) {
3282 			break;
3283 		}
3284 
3285 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3286 		    &acmd->cmd_dmacookies[i]);
3287 	}
3288 
3289 	acmd->cmd_cookiecnt = i;
3290 
3291 	if (bp->b_bcount >= acmd->cmd_dmacount) {
3292 		pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3293 	} else {
3294 		pkt->pkt_resid = 0;
3295 	}
3296 
3297 	return (0);
3298 }
3299 
3300 /*
3301  * build_cmd
3302  */
3303 static struct megasas_cmd *
3304 build_cmd(struct megasas_instance *instance, struct scsi_address *ap,
3305     struct scsi_pkt *pkt, uchar_t *cmd_done)
3306 {
3307 	uint16_t	flags = 0;
3308 	uint32_t	i;
3309 	uint32_t 	context;
3310 	uint32_t	sge_bytes;
3311 
3312 	struct megasas_cmd		*cmd;
3313 	struct megasas_sge32		*mfi_sgl;
3314 	struct scsa_cmd			*acmd = PKT2CMD(pkt);
3315 	struct megasas_pthru_frame 	*pthru;
3316 	struct megasas_io_frame		*ldio;
3317 
3318 	/* find out if this is logical or physical drive command.  */
3319 	acmd->islogical = MEGADRV_IS_LOGICAL(ap);
3320 	acmd->device_id = MAP_DEVICE_ID(instance, ap);
3321 	*cmd_done = 0;
3322 
3323 	/* get the command packet */
3324 	if (!(cmd = get_mfi_pkt(instance))) {
3325 		return (NULL);
3326 	}
3327 
3328 	cmd->pkt = pkt;
3329 	cmd->cmd = acmd;
3330 
3331 	/* lets get the command directions */
3332 	if (acmd->cmd_flags & CFLAG_DMASEND) {
3333 		flags = MFI_FRAME_DIR_WRITE;
3334 
3335 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3336 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3337 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3338 			    DDI_DMA_SYNC_FORDEV);
3339 		}
3340 	} else if (acmd->cmd_flags & ~CFLAG_DMASEND) {
3341 		flags = MFI_FRAME_DIR_READ;
3342 
3343 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3344 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3345 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3346 			    DDI_DMA_SYNC_FORCPU);
3347 		}
3348 	} else {
3349 		flags = MFI_FRAME_DIR_NONE;
3350 	}
3351 
3352 	/* flags |= MFI_FRAME_SGL64; */
3353 
3354 	switch (pkt->pkt_cdbp[0]) {
3355 
3356 	/*
3357 	 * case SCMD_SYNCHRONIZE_CACHE:
3358 	 * 	flush_cache(instance);
3359 	 *	return_mfi_pkt(instance, cmd);
3360 	 *	*cmd_done = 1;
3361 	 *
3362 	 *	return (NULL);
3363 	 */
3364 
3365 	case SCMD_READ:
3366 	case SCMD_WRITE:
3367 	case SCMD_READ_G1:
3368 	case SCMD_WRITE_G1:
3369 		if (acmd->islogical) {
3370 			ldio = (struct megasas_io_frame *)cmd->frame;
3371 
3372 			/*
3373 			 * preare the Logical IO frame:
3374 			 * 2nd bit is zero for all read cmds
3375 			 */
3376 			ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ?
3377 			    MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ;
3378 			ldio->cmd_status = 0x0;
3379 			ldio->scsi_status = 0x0;
3380 			ldio->target_id	 = acmd->device_id;
3381 			ldio->timeout = 0;
3382 			ldio->reserved_0 = 0;
3383 			ldio->pad_0 = 0;
3384 			ldio->flags = flags;
3385 
3386 			/* Initialize sense Information */
3387 			bzero(cmd->sense, SENSE_LENGTH);
3388 			ldio->sense_len = SENSE_LENGTH;
3389 			ldio->sense_buf_phys_addr_hi = 0;
3390 			ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3391 
3392 			ldio->start_lba_hi = 0;
3393 			ldio->access_byte = (acmd->cmd_cdblen != 6) ?
3394 			    pkt->pkt_cdbp[1] : 0;
3395 			ldio->sge_count = acmd->cmd_cookiecnt;
3396 			mfi_sgl = (struct megasas_sge32	*)&ldio->sgl;
3397 
3398 			context = ldio->context;
3399 
3400 			if (acmd->cmd_cdblen == CDB_GROUP0) {
3401 				ldio->lba_count	= host_to_le16(
3402 				    (uint16_t)(pkt->pkt_cdbp[4]));
3403 
3404 				ldio->start_lba_lo = host_to_le32(
3405 				    ((uint32_t)(pkt->pkt_cdbp[3])) |
3406 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 8) |
3407 				    ((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F)
3408 				    << 16));
3409 			} else if (acmd->cmd_cdblen == CDB_GROUP1) {
3410 				ldio->lba_count = host_to_le16(
3411 				    ((uint16_t)(pkt->pkt_cdbp[8])) |
3412 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 8));
3413 
3414 				ldio->start_lba_lo = host_to_le32(
3415 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3416 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3417 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3418 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3419 			} else if (acmd->cmd_cdblen == CDB_GROUP2) {
3420 				ldio->lba_count	 = host_to_le16(
3421 				    ((uint16_t)(pkt->pkt_cdbp[9])) |
3422 				    ((uint16_t)(pkt->pkt_cdbp[8]) << 8) |
3423 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 16) |
3424 				    ((uint16_t)(pkt->pkt_cdbp[6]) << 24));
3425 
3426 				ldio->start_lba_lo = host_to_le32(
3427 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3428 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3429 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3430 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3431 			} else if (acmd->cmd_cdblen == CDB_GROUP3) {
3432 				ldio->lba_count = host_to_le16(
3433 				    ((uint16_t)(pkt->pkt_cdbp[13])) |
3434 				    ((uint16_t)(pkt->pkt_cdbp[12]) << 8) |
3435 				    ((uint16_t)(pkt->pkt_cdbp[11]) << 16) |
3436 				    ((uint16_t)(pkt->pkt_cdbp[10]) << 24));
3437 
3438 				ldio->start_lba_lo = host_to_le32(
3439 				    ((uint32_t)(pkt->pkt_cdbp[9])) |
3440 				    ((uint32_t)(pkt->pkt_cdbp[8]) << 8) |
3441 				    ((uint32_t)(pkt->pkt_cdbp[7]) << 16) |
3442 				    ((uint32_t)(pkt->pkt_cdbp[6]) << 24));
3443 
3444 				ldio->start_lba_lo = host_to_le32(
3445 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3446 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3447 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3448 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3449 			}
3450 
3451 			break;
3452 		}
3453 		/* fall through For all non-rd/wr cmds */
3454 	default:
3455 		pthru	= (struct megasas_pthru_frame *)cmd->frame;
3456 
3457 		/* prepare the DCDB frame */
3458 		pthru->cmd = (acmd->islogical) ?
3459 		    MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI;
3460 		pthru->cmd_status	= 0x0;
3461 		pthru->scsi_status	= 0x0;
3462 		pthru->target_id	= acmd->device_id;
3463 		pthru->lun		= 0;
3464 		pthru->cdb_len		= acmd->cmd_cdblen;
3465 		pthru->timeout		= 0;
3466 		pthru->flags		= flags;
3467 		pthru->data_xfer_len	= acmd->cmd_dmacount;
3468 		pthru->sge_count	= acmd->cmd_cookiecnt;
3469 		mfi_sgl			= (struct megasas_sge32 *)&pthru->sgl;
3470 
3471 		bzero(cmd->sense, SENSE_LENGTH);
3472 		pthru->sense_len	= SENSE_LENGTH;
3473 		pthru->sense_buf_phys_addr_hi = 0;
3474 		pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3475 
3476 		context = pthru->context;
3477 
3478 		bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen);
3479 
3480 		break;
3481 	}
3482 #ifdef lint
3483 	context = context;
3484 #endif
3485 	/* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */
3486 
3487 	/* prepare the scatter-gather list for the firmware */
3488 	for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) {
3489 		mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress;
3490 		mfi_sgl->length    = acmd->cmd_dmacookies[i].dmac_size;
3491 	}
3492 
3493 	sge_bytes = sizeof (struct megasas_sge32)*acmd->cmd_cookiecnt;
3494 
3495 	cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
3496 	    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
3497 
3498 	if (cmd->frame_count >= 8) {
3499 		cmd->frame_count = 8;
3500 	}
3501 
3502 	return (cmd);
3503 }
3504 
3505 /*
3506  * wait_for_outstanding -	Wait for all outstanding cmds
3507  * @instance:				Adapter soft state
3508  *
3509  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
3510  * complete all its outstanding commands. Returns error if one or more IOs
3511  * are pending after this time period.
3512  */
3513 static int
3514 wait_for_outstanding(struct megasas_instance *instance)
3515 {
3516 	int		i;
3517 	uint32_t	wait_time = 90;
3518 
3519 	for (i = 0; i < wait_time; i++) {
3520 		if (!instance->fw_outstanding) {
3521 			break;
3522 		}
3523 
3524 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */;
3525 	}
3526 
3527 	if (instance->fw_outstanding) {
3528 		return (1);
3529 	}
3530 
3531 	ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION);
3532 
3533 	return (0);
3534 }
3535 
3536 /*
3537  * issue_mfi_pthru
3538  */
3539 static int
3540 issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3541     struct megasas_cmd *cmd, int mode)
3542 {
3543 	void		*ubuf;
3544 	uint32_t	kphys_addr = 0;
3545 	uint32_t	xferlen = 0;
3546 	uint_t		model;
3547 
3548 	dma_obj_t			pthru_dma_obj;
3549 	struct megasas_pthru_frame	*kpthru;
3550 	struct megasas_pthru_frame	*pthru;
3551 
3552 	pthru = &cmd->frame->pthru;
3553 	kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0];
3554 
3555 	model = ddi_model_convert_from(mode & FMODELS);
3556 	if (model == DDI_MODEL_ILP32) {
3557 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3558 
3559 		xferlen	= kpthru->sgl.sge32[0].length;
3560 
3561 		/* SJ! - ubuf needs to be virtual address. */
3562 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3563 	} else {
3564 #ifdef _ILP32
3565 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3566 		xferlen	= kpthru->sgl.sge32[0].length;
3567 		/* SJ! - ubuf needs to be virtual address. */
3568 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3569 #else
3570 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64"));
3571 		xferlen	= kpthru->sgl.sge64[0].length;
3572 		/* SJ! - ubuf needs to be virtual address. */
3573 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr;
3574 #endif
3575 	}
3576 
3577 	if (xferlen) {
3578 		/* means IOCTL requires DMA */
3579 		/* allocate the data transfer buffer */
3580 		pthru_dma_obj.size = xferlen;
3581 		pthru_dma_obj.dma_attr = megasas_generic_dma_attr;
3582 		pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3583 		pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3584 		pthru_dma_obj.dma_attr.dma_attr_sgllen = 1;
3585 		pthru_dma_obj.dma_attr.dma_attr_align = 1;
3586 
3587 		/* allocate kernel buffer for DMA */
3588 		if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) {
3589 			con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3590 			    "could not data transfer buffer alloc."));
3591 			return (DDI_FAILURE);
3592 		}
3593 
3594 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3595 		if (kpthru->flags & MFI_FRAME_DIR_WRITE) {
3596 			if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer,
3597 			    xferlen, mode)) {
3598 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3599 				    "copy from user space failed\n"));
3600 				return (1);
3601 			}
3602 		}
3603 
3604 		kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address;
3605 	}
3606 
3607 	pthru->cmd		= kpthru->cmd;
3608 	pthru->sense_len	= kpthru->sense_len;
3609 	pthru->cmd_status	= kpthru->cmd_status;
3610 	pthru->scsi_status	= kpthru->scsi_status;
3611 	pthru->target_id	= kpthru->target_id;
3612 	pthru->lun		= kpthru->lun;
3613 	pthru->cdb_len		= kpthru->cdb_len;
3614 	pthru->sge_count	= kpthru->sge_count;
3615 	pthru->timeout		= kpthru->timeout;
3616 	pthru->data_xfer_len	= kpthru->data_xfer_len;
3617 
3618 	pthru->sense_buf_phys_addr_hi	= 0;
3619 	/* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */
3620 	pthru->sense_buf_phys_addr_lo	= 0;
3621 
3622 	bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len);
3623 
3624 	pthru->flags			= kpthru->flags & ~MFI_FRAME_SGL64;
3625 	pthru->sgl.sge32[0].length	= xferlen;
3626 	pthru->sgl.sge32[0].phys_addr	= kphys_addr;
3627 
3628 	cmd->sync_cmd = MEGASAS_TRUE;
3629 	cmd->frame_count = 1;
3630 
3631 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3632 		con_log(CL_ANN, (CE_WARN,
3633 		    "issue_mfi_pthru: fw_ioctl failed\n"));
3634 	} else {
3635 		if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) {
3636 
3637 			if (ddi_copyout(pthru_dma_obj.buffer, ubuf,
3638 			    xferlen, mode)) {
3639 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3640 				    "copy to user space failed\n"));
3641 				return (1);
3642 			}
3643 		}
3644 	}
3645 
3646 	kpthru->cmd_status = pthru->cmd_status;
3647 	kpthru->scsi_status = pthru->scsi_status;
3648 
3649 	con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, "
3650 	    "scsi_status %x\n", pthru->cmd_status, pthru->scsi_status));
3651 
3652 	if (xferlen) {
3653 		/* free kernel buffer */
3654 		if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS)
3655 			return (1);
3656 	}
3657 
3658 	return (0);
3659 }
3660 
3661 /*
3662  * issue_mfi_dcmd
3663  */
3664 static int
3665 issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3666     struct megasas_cmd *cmd, int mode)
3667 {
3668 	void		*ubuf;
3669 	uint32_t	kphys_addr = 0;
3670 	uint32_t	xferlen = 0;
3671 	uint32_t	model;
3672 	dma_obj_t			dcmd_dma_obj;
3673 	struct megasas_dcmd_frame	*kdcmd;
3674 	struct megasas_dcmd_frame	*dcmd;
3675 
3676 	dcmd = &cmd->frame->dcmd;
3677 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
3678 
3679 	model = ddi_model_convert_from(mode & FMODELS);
3680 	if (model == DDI_MODEL_ILP32) {
3681 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3682 
3683 		xferlen	= kdcmd->sgl.sge32[0].length;
3684 
3685 		/* SJ! - ubuf needs to be virtual address. */
3686 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3687 	}
3688 	else
3689 	{
3690 #ifdef _ILP32
3691 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3692 		xferlen	= kdcmd->sgl.sge32[0].length;
3693 		/* SJ! - ubuf needs to be virtual address. */
3694 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3695 #else
3696 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64"));
3697 		xferlen	= kdcmd->sgl.sge64[0].length;
3698 		/* SJ! - ubuf needs to be virtual address. */
3699 		ubuf	= (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr;
3700 #endif
3701 	}
3702 	if (xferlen) {
3703 		/* means IOCTL requires DMA */
3704 		/* allocate the data transfer buffer */
3705 		dcmd_dma_obj.size = xferlen;
3706 		dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
3707 		dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3708 		dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3709 		dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
3710 		dcmd_dma_obj.dma_attr.dma_attr_align = 1;
3711 
3712 		/* allocate kernel buffer for DMA */
3713 		if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
3714 			con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3715 			    "could not data transfer buffer alloc."));
3716 			return (DDI_FAILURE);
3717 		}
3718 
3719 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3720 		if (kdcmd->flags & MFI_FRAME_DIR_WRITE) {
3721 			if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer,
3722 			    xferlen, mode)) {
3723 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3724 				    "copy from user space failed\n"));
3725 				return (1);
3726 			}
3727 		}
3728 
3729 		kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
3730 	}
3731 
3732 	dcmd->cmd		= kdcmd->cmd;
3733 	dcmd->cmd_status	= kdcmd->cmd_status;
3734 	dcmd->sge_count		= kdcmd->sge_count;
3735 	dcmd->timeout		= kdcmd->timeout;
3736 	dcmd->data_xfer_len	= kdcmd->data_xfer_len;
3737 	dcmd->opcode		= kdcmd->opcode;
3738 
3739 	bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ);
3740 
3741 	dcmd->flags			= kdcmd->flags & ~MFI_FRAME_SGL64;
3742 	dcmd->sgl.sge32[0].length	= xferlen;
3743 	dcmd->sgl.sge32[0].phys_addr	= kphys_addr;
3744 
3745 	cmd->sync_cmd = MEGASAS_TRUE;
3746 	cmd->frame_count = 1;
3747 
3748 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3749 		con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n"));
3750 	} else {
3751 		if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) {
3752 
3753 			if (ddi_copyout(dcmd_dma_obj.buffer, ubuf,
3754 			    xferlen, mode)) {
3755 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3756 				    "copy to user space failed\n"));
3757 				return (1);
3758 			}
3759 		}
3760 	}
3761 
3762 	kdcmd->cmd_status = dcmd->cmd_status;
3763 
3764 	if (xferlen) {
3765 		/* free kernel buffer */
3766 		if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
3767 			return (1);
3768 	}
3769 
3770 	return (0);
3771 }
3772 
3773 /*
3774  * issue_mfi_smp
3775  */
3776 static int
3777 issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3778     struct megasas_cmd *cmd, int mode)
3779 {
3780 	void		*request_ubuf;
3781 	void		*response_ubuf;
3782 	uint32_t	request_xferlen = 0;
3783 	uint32_t	response_xferlen = 0;
3784 	uint_t		model;
3785 	dma_obj_t			request_dma_obj;
3786 	dma_obj_t			response_dma_obj;
3787 	struct megasas_smp_frame	*ksmp;
3788 	struct megasas_smp_frame	*smp;
3789 	struct megasas_sge32		*sge32;
3790 #ifndef _ILP32
3791 	struct megasas_sge64		*sge64;
3792 #endif
3793 
3794 	smp = &cmd->frame->smp;
3795 	ksmp = (struct megasas_smp_frame *)&ioctl->frame[0];
3796 
3797 	model = ddi_model_convert_from(mode & FMODELS);
3798 	if (model == DDI_MODEL_ILP32) {
3799 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3800 
3801 		sge32			= &ksmp->sgl[0].sge32[0];
3802 		response_xferlen	= sge32[0].length;
3803 		request_xferlen		= sge32[1].length;
3804 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3805 		    "response_xferlen = %x, request_xferlen = %x",
3806 		    response_xferlen, request_xferlen));
3807 
3808 		/* SJ! - ubuf needs to be virtual address. */
3809 
3810 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3811 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3812 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3813 		    "response_ubuf = %p, request_ubuf = %p",
3814 		    response_ubuf, request_ubuf));
3815 	} else {
3816 #ifdef _ILP32
3817 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3818 
3819 		sge32			= &ksmp->sgl[0].sge32[0];
3820 		response_xferlen	= sge32[0].length;
3821 		request_xferlen		= sge32[1].length;
3822 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3823 		    "response_xferlen = %x, request_xferlen = %x",
3824 		    response_xferlen, request_xferlen));
3825 
3826 		/* SJ! - ubuf needs to be virtual address. */
3827 
3828 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3829 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3830 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3831 		    "response_ubuf = %p, request_ubuf = %p",
3832 		    response_ubuf, request_ubuf));
3833 #else
3834 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64"));
3835 
3836 		sge64			= &ksmp->sgl[0].sge64[0];
3837 		response_xferlen	= sge64[0].length;
3838 		request_xferlen		= sge64[1].length;
3839 
3840 		/* SJ! - ubuf needs to be virtual address. */
3841 		response_ubuf	= (void *)(ulong_t)sge64[0].phys_addr;
3842 		request_ubuf	= (void *)(ulong_t)sge64[1].phys_addr;
3843 #endif
3844 	}
3845 	if (request_xferlen) {
3846 		/* means IOCTL requires DMA */
3847 		/* allocate the data transfer buffer */
3848 		request_dma_obj.size = request_xferlen;
3849 		request_dma_obj.dma_attr = megasas_generic_dma_attr;
3850 		request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3851 		request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3852 		request_dma_obj.dma_attr.dma_attr_sgllen = 1;
3853 		request_dma_obj.dma_attr.dma_attr_align = 1;
3854 
3855 		/* allocate kernel buffer for DMA */
3856 		if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) {
3857 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3858 			    "could not data transfer buffer alloc."));
3859 			return (DDI_FAILURE);
3860 		}
3861 
3862 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3863 		if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer,
3864 		    request_xferlen, mode)) {
3865 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3866 			    "copy from user space failed\n"));
3867 			return (1);
3868 		}
3869 	}
3870 
3871 	if (response_xferlen) {
3872 		/* means IOCTL requires DMA */
3873 		/* allocate the data transfer buffer */
3874 		response_dma_obj.size = response_xferlen;
3875 		response_dma_obj.dma_attr = megasas_generic_dma_attr;
3876 		response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3877 		response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3878 		response_dma_obj.dma_attr.dma_attr_sgllen = 1;
3879 		response_dma_obj.dma_attr.dma_attr_align = 1;
3880 
3881 		/* allocate kernel buffer for DMA */
3882 		if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) {
3883 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3884 			    "could not data transfer buffer alloc."));
3885 			return (DDI_FAILURE);
3886 		}
3887 
3888 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3889 		if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer,
3890 		    response_xferlen, mode)) {
3891 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3892 			    "copy from user space failed\n"));
3893 			return (1);
3894 		}
3895 	}
3896 
3897 	smp->cmd		= ksmp->cmd;
3898 	smp->cmd_status		= ksmp->cmd_status;
3899 	smp->connection_status	= ksmp->connection_status;
3900 	smp->sge_count		= ksmp->sge_count;
3901 	/* smp->context		= ksmp->context; */
3902 	smp->timeout		= ksmp->timeout;
3903 	smp->data_xfer_len	= ksmp->data_xfer_len;
3904 
3905 	bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr,
3906 	    sizeof (uint64_t));
3907 
3908 	smp->flags		= ksmp->flags & ~MFI_FRAME_SGL64;
3909 
3910 	model = ddi_model_convert_from(mode & FMODELS);
3911 	if (model == DDI_MODEL_ILP32) {
3912 		con_log(CL_ANN1, (CE_NOTE,
3913 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3914 
3915 		sge32 = &smp->sgl[0].sge32[0];
3916 		sge32[0].length	= response_xferlen;
3917 		sge32[0].phys_addr =
3918 		    response_dma_obj.dma_cookie[0].dmac_address;
3919 		sge32[1].length	= request_xferlen;
3920 		sge32[1].phys_addr =
3921 		    request_dma_obj.dma_cookie[0].dmac_address;
3922 	} else {
3923 #ifdef _ILP32
3924 		con_log(CL_ANN1, (CE_NOTE,
3925 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3926 		sge32 = &smp->sgl[0].sge32[0];
3927 		sge32[0].length	 = response_xferlen;
3928 		sge32[0].phys_addr =
3929 		    response_dma_obj.dma_cookie[0].dmac_address;
3930 		sge32[1].length	= request_xferlen;
3931 		sge32[1].phys_addr =
3932 		    request_dma_obj.dma_cookie[0].dmac_address;
3933 #else
3934 		con_log(CL_ANN1, (CE_NOTE,
3935 		    "issue_mfi_smp: DDI_MODEL_LP64"));
3936 		sge64 = &smp->sgl[0].sge64[0];
3937 		sge64[0].length	= response_xferlen;
3938 		sge64[0].phys_addr =
3939 		    response_dma_obj.dma_cookie[0].dmac_address;
3940 		sge64[1].length	= request_xferlen;
3941 		sge64[1].phys_addr =
3942 		    request_dma_obj.dma_cookie[0].dmac_address;
3943 #endif
3944 	}
3945 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3946 	    "smp->response_xferlen = %d, smp->request_xferlen = %d "
3947 	    "smp->data_xfer_len = %d", sge32[0].length, sge32[1].length,
3948 	    smp->data_xfer_len));
3949 
3950 	cmd->sync_cmd = MEGASAS_TRUE;
3951 	cmd->frame_count = 1;
3952 
3953 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3954 		con_log(CL_ANN, (CE_WARN,
3955 		    "issue_mfi_smp: fw_ioctl failed\n"));
3956 	} else {
3957 		con_log(CL_ANN1, (CE_NOTE,
3958 		    "issue_mfi_smp: copy to user space\n"));
3959 
3960 		if (request_xferlen) {
3961 			if (ddi_copyout(request_dma_obj.buffer, request_ubuf,
3962 			    request_xferlen, mode)) {
3963 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3964 				    "copy to user space failed\n"));
3965 				return (1);
3966 			}
3967 		}
3968 
3969 		if (response_xferlen) {
3970 			if (ddi_copyout(response_dma_obj.buffer, response_ubuf,
3971 			    response_xferlen, mode)) {
3972 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3973 				    "copy to user space failed\n"));
3974 				return (1);
3975 			}
3976 		}
3977 	}
3978 
3979 	ksmp->cmd_status = smp->cmd_status;
3980 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d",
3981 	    smp->cmd_status));
3982 
3983 
3984 	if (request_xferlen) {
3985 		/* free kernel buffer */
3986 		if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS)
3987 			return (1);
3988 	}
3989 
3990 	if (response_xferlen) {
3991 		/* free kernel buffer */
3992 		if (mega_free_dma_obj(instance, response_dma_obj) !=
3993 		    DDI_SUCCESS)
3994 			return (1);
3995 	}
3996 
3997 	return (0);
3998 }
3999 
4000 /*
4001  * issue_mfi_stp
4002  */
4003 static int
4004 issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4005     struct megasas_cmd *cmd, int mode)
4006 {
4007 	void		*fis_ubuf;
4008 	void		*data_ubuf;
4009 	uint32_t	fis_xferlen = 0;
4010 	uint32_t	data_xferlen = 0;
4011 	uint_t		model;
4012 	dma_obj_t			fis_dma_obj;
4013 	dma_obj_t			data_dma_obj;
4014 	struct megasas_stp_frame	*kstp;
4015 	struct megasas_stp_frame	*stp;
4016 
4017 	stp = &cmd->frame->stp;
4018 	kstp = (struct megasas_stp_frame *)&ioctl->frame[0];
4019 
4020 	model = ddi_model_convert_from(mode & FMODELS);
4021 	if (model == DDI_MODEL_ILP32) {
4022 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4023 
4024 		fis_xferlen	= kstp->sgl.sge32[0].length;
4025 		data_xferlen	= kstp->sgl.sge32[1].length;
4026 
4027 		/* SJ! - ubuf needs to be virtual address. */
4028 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4029 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4030 	}
4031 	else
4032 	{
4033 #ifdef _ILP32
4034 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4035 
4036 		fis_xferlen	= kstp->sgl.sge32[0].length;
4037 		data_xferlen	= kstp->sgl.sge32[1].length;
4038 
4039 		/* SJ! - ubuf needs to be virtual address. */
4040 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4041 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4042 #else
4043 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64"));
4044 
4045 		fis_xferlen	= kstp->sgl.sge64[0].length;
4046 		data_xferlen	= kstp->sgl.sge64[1].length;
4047 
4048 		/* SJ! - ubuf needs to be virtual address. */
4049 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr;
4050 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr;
4051 #endif
4052 	}
4053 
4054 
4055 	if (fis_xferlen) {
4056 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: "
4057 		    "fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen));
4058 
4059 		/* means IOCTL requires DMA */
4060 		/* allocate the data transfer buffer */
4061 		fis_dma_obj.size = fis_xferlen;
4062 		fis_dma_obj.dma_attr = megasas_generic_dma_attr;
4063 		fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4064 		fis_dma_obj.dma_attr.dma_attr_count_max	= 0xFFFFFFFFU;
4065 		fis_dma_obj.dma_attr.dma_attr_sgllen = 1;
4066 		fis_dma_obj.dma_attr.dma_attr_align = 1;
4067 
4068 		/* allocate kernel buffer for DMA */
4069 		if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) {
4070 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4071 			    "could not data transfer buffer alloc."));
4072 			return (DDI_FAILURE);
4073 		}
4074 
4075 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4076 		if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer,
4077 		    fis_xferlen, mode)) {
4078 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4079 			    "copy from user space failed\n"));
4080 			return (1);
4081 		}
4082 	}
4083 
4084 	if (data_xferlen) {
4085 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p "
4086 		    "data_xferlen = %x", data_ubuf, data_xferlen));
4087 
4088 		/* means IOCTL requires DMA */
4089 		/* allocate the data transfer buffer */
4090 		data_dma_obj.size = data_xferlen;
4091 		data_dma_obj.dma_attr = megasas_generic_dma_attr;
4092 		data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4093 		data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
4094 		data_dma_obj.dma_attr.dma_attr_sgllen = 1;
4095 		data_dma_obj.dma_attr.dma_attr_align = 1;
4096 
4097 		/* allocate kernel buffer for DMA */
4098 		if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) {
4099 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4100 			    "could not data transfer buffer alloc."));
4101 			return (DDI_FAILURE);
4102 		}
4103 
4104 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4105 		if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer,
4106 		    data_xferlen, mode)) {
4107 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4108 			    "copy from user space failed\n"));
4109 			return (1);
4110 		}
4111 	}
4112 
4113 	stp->cmd = kstp->cmd;
4114 	stp->cmd_status	= kstp->cmd_status;
4115 	stp->connection_status = kstp->connection_status;
4116 	stp->target_id = kstp->target_id;
4117 	stp->sge_count = kstp->sge_count;
4118 	/* stp->context = kstp->context; */
4119 	stp->timeout = kstp->timeout;
4120 	stp->data_xfer_len = kstp->data_xfer_len;
4121 
4122 	bcopy((void *)kstp->fis, (void *)stp->fis, 10);
4123 
4124 	stp->flags = kstp->flags & ~MFI_FRAME_SGL64;
4125 	stp->stp_flags = kstp->stp_flags;
4126 	stp->sgl.sge32[0].length = fis_xferlen;
4127 	stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address;
4128 	stp->sgl.sge32[1].length = data_xferlen;
4129 	stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address;
4130 
4131 	cmd->sync_cmd = MEGASAS_TRUE;
4132 	cmd->frame_count = 1;
4133 
4134 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
4135 		con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n"));
4136 	} else {
4137 
4138 		if (fis_xferlen) {
4139 			if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf,
4140 			    fis_xferlen, mode)) {
4141 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4142 				    "copy to user space failed\n"));
4143 				return (1);
4144 			}
4145 		}
4146 
4147 		if (data_xferlen) {
4148 			if (ddi_copyout(data_dma_obj.buffer, data_ubuf,
4149 			    data_xferlen, mode)) {
4150 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4151 				    "copy to user space failed\n"));
4152 				return (1);
4153 			}
4154 		}
4155 	}
4156 
4157 	kstp->cmd_status = stp->cmd_status;
4158 
4159 	if (fis_xferlen) {
4160 		/* free kernel buffer */
4161 		if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS)
4162 			return (1);
4163 	}
4164 
4165 	if (data_xferlen) {
4166 		/* free kernel buffer */
4167 		if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS)
4168 			return (1);
4169 	}
4170 
4171 	return (0);
4172 }
4173 
4174 /*
4175  * fill_up_drv_ver
4176  */
4177 static void
4178 fill_up_drv_ver(struct megasas_drv_ver *dv)
4179 {
4180 	(void) memset(dv, 0, sizeof (struct megasas_drv_ver));
4181 
4182 	(void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$"));
4183 	(void) memcpy(dv->os_name, "Solaris", strlen("Solaris"));
4184 	(void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas"));
4185 	(void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION));
4186 	(void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE,
4187 	    strlen(MEGASAS_RELDATE));
4188 }
4189 
4190 /*
4191  * handle_drv_ioctl
4192  */
4193 static int
4194 handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4195     int mode)
4196 {
4197 	int	i;
4198 	int	rval = 0;
4199 	int	*props = NULL;
4200 	void	*ubuf;
4201 
4202 	uint8_t		*pci_conf_buf;
4203 	uint32_t	xferlen;
4204 	uint32_t	num_props;
4205 	uint_t		model;
4206 	struct megasas_dcmd_frame	*kdcmd;
4207 	struct megasas_drv_ver		dv;
4208 	struct megasas_pci_information	pi;
4209 
4210 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
4211 
4212 	model = ddi_model_convert_from(mode & FMODELS);
4213 	if (model == DDI_MODEL_ILP32) {
4214 		con_log(CL_ANN1, (CE_NOTE,
4215 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4216 
4217 		xferlen	= kdcmd->sgl.sge32[0].length;
4218 
4219 		/* SJ! - ubuf needs to be virtual address. */
4220 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4221 	} else {
4222 #ifdef _ILP32
4223 		con_log(CL_ANN1, (CE_NOTE,
4224 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4225 		xferlen	= kdcmd->sgl.sge32[0].length;
4226 		/* SJ! - ubuf needs to be virtual address. */
4227 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4228 #else
4229 		con_log(CL_ANN1, (CE_NOTE,
4230 		    "handle_drv_ioctl: DDI_MODEL_LP64"));
4231 		xferlen	= kdcmd->sgl.sge64[0].length;
4232 		/* SJ! - ubuf needs to be virtual address. */
4233 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr;
4234 #endif
4235 	}
4236 	con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4237 	    "dataBuf=%p size=%d bytes", ubuf, xferlen));
4238 
4239 	switch (kdcmd->opcode) {
4240 	case MR_DRIVER_IOCTL_DRIVER_VERSION:
4241 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4242 		    "MR_DRIVER_IOCTL_DRIVER_VERSION"));
4243 
4244 		fill_up_drv_ver(&dv);
4245 
4246 		if (ddi_copyout(&dv, ubuf, xferlen, mode)) {
4247 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4248 			    "MR_DRIVER_IOCTL_DRIVER_VERSION : "
4249 			    "copy to user space failed\n"));
4250 			kdcmd->cmd_status = 1;
4251 			rval = 1;
4252 		} else {
4253 			kdcmd->cmd_status = 0;
4254 		}
4255 		break;
4256 	case MR_DRIVER_IOCTL_PCI_INFORMATION:
4257 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4258 		    "MR_DRIVER_IOCTL_PCI_INFORMAITON"));
4259 
4260 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip,
4261 		    0, "reg", &props, &num_props)) {
4262 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4263 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4264 			    "ddi_prop_look_int_array failed\n"));
4265 			rval = 1;
4266 		} else {
4267 
4268 			pi.busNumber = (props[0] >> 16) & 0xFF;
4269 			pi.deviceNumber = (props[0] >> 11) & 0x1f;
4270 			pi.functionNumber = (props[0] >> 8) & 0x7;
4271 			ddi_prop_free((void *)props);
4272 		}
4273 
4274 		pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo;
4275 
4276 		for (i = 0; i < (sizeof (struct megasas_pci_information) -
4277 		    offsetof(struct megasas_pci_information, pciHeaderInfo));
4278 		    i++) {
4279 			pci_conf_buf[i] =
4280 			    pci_config_get8(instance->pci_handle, i);
4281 		}
4282 
4283 		if (ddi_copyout(&pi, ubuf, xferlen, mode)) {
4284 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4285 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4286 			    "copy to user space failed\n"));
4287 			kdcmd->cmd_status = 1;
4288 			rval = 1;
4289 		} else {
4290 			kdcmd->cmd_status = 0;
4291 		}
4292 		break;
4293 	default:
4294 		con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4295 		    "invalid driver specific IOCTL opcode = 0x%x",
4296 		    kdcmd->opcode));
4297 		kdcmd->cmd_status = 1;
4298 		rval = 1;
4299 		break;
4300 	}
4301 
4302 	return (rval);
4303 }
4304 
4305 /*
4306  * handle_mfi_ioctl
4307  */
4308 static int
4309 handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4310     int mode)
4311 {
4312 	int	rval = 0;
4313 
4314 	struct megasas_header	*hdr;
4315 	struct megasas_cmd	*cmd;
4316 
4317 	cmd = get_mfi_pkt(instance);
4318 
4319 	if (!cmd) {
4320 		con_log(CL_ANN, (CE_WARN, "megasas: "
4321 		    "failed to get a cmd packet\n"));
4322 		return (1);
4323 	}
4324 
4325 	hdr = (struct megasas_header *)&ioctl->frame[0];
4326 
4327 	switch (hdr->cmd) {
4328 	case MFI_CMD_OP_DCMD:
4329 		rval = issue_mfi_dcmd(instance, ioctl, cmd, mode);
4330 		break;
4331 	case MFI_CMD_OP_SMP:
4332 		rval = issue_mfi_smp(instance, ioctl, cmd, mode);
4333 		break;
4334 	case MFI_CMD_OP_STP:
4335 		rval = issue_mfi_stp(instance, ioctl, cmd, mode);
4336 		break;
4337 	case MFI_CMD_OP_LD_SCSI:
4338 	case MFI_CMD_OP_PD_SCSI:
4339 		rval = issue_mfi_pthru(instance, ioctl, cmd, mode);
4340 		break;
4341 	default:
4342 		con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: "
4343 		    "invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd));
4344 		rval = 1;
4345 		break;
4346 	}
4347 
4348 
4349 	return_mfi_pkt(instance, cmd);
4350 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS)
4351 		rval = 1;
4352 	return (rval);
4353 }
4354 
4355 /*
4356  * AEN
4357  */
4358 static int
4359 handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen)
4360 {
4361 	int	rval = 0;
4362 
4363 	rval = register_mfi_aen(instance, instance->aen_seq_num,
4364 	    aen->class_locale_word);
4365 
4366 	aen->cmd_status = (uint8_t)rval;
4367 
4368 	return (rval);
4369 }
4370 
4371 static int
4372 register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num,
4373     uint32_t class_locale_word)
4374 {
4375 	int	ret_val;
4376 
4377 	struct megasas_cmd		*cmd;
4378 	struct megasas_dcmd_frame	*dcmd;
4379 	union megasas_evt_class_locale	curr_aen;
4380 	union megasas_evt_class_locale	prev_aen;
4381 
4382 	/*
4383 	 * If there an AEN pending already (aen_cmd), check if the
4384 	 * class_locale of that pending AEN is inclusive of the new
4385 	 * AEN request we currently have. If it is, then we don't have
4386 	 * to do anything. In other words, whichever events the current
4387 	 * AEN request is subscribing to, have already been subscribed
4388 	 * to.
4389 	 *
4390 	 * If the old_cmd is _not_ inclusive, then we have to abort
4391 	 * that command, form a class_locale that is superset of both
4392 	 * old and current and re-issue to the FW
4393 	 */
4394 
4395 	curr_aen.word = class_locale_word;
4396 
4397 	if (instance->aen_cmd) {
4398 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
4399 
4400 		/*
4401 		 * A class whose enum value is smaller is inclusive of all
4402 		 * higher values. If a PROGRESS (= -1) was previously
4403 		 * registered, then a new registration requests for higher
4404 		 * classes need not be sent to FW. They are automatically
4405 		 * included.
4406 		 *
4407 		 * Locale numbers don't have such hierarchy. They are bitmap
4408 		 * values
4409 		 */
4410 		if ((prev_aen.members.class <= curr_aen.members.class) &&
4411 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
4412 		    curr_aen.members.locale)) {
4413 			/*
4414 			 * Previously issued event registration includes
4415 			 * current request. Nothing to do.
4416 			 */
4417 
4418 			return (0);
4419 		} else {
4420 			curr_aen.members.locale |= prev_aen.members.locale;
4421 
4422 			if (prev_aen.members.class < curr_aen.members.class)
4423 				curr_aen.members.class = prev_aen.members.class;
4424 
4425 			ret_val = abort_aen_cmd(instance, instance->aen_cmd);
4426 
4427 			if (ret_val) {
4428 				con_log(CL_ANN, (CE_WARN, "register_mfi_aen: "
4429 				    "failed to abort prevous AEN command\n"));
4430 
4431 				return (ret_val);
4432 			}
4433 		}
4434 	} else {
4435 		curr_aen.word = class_locale_word;
4436 	}
4437 
4438 	cmd = get_mfi_pkt(instance);
4439 
4440 	if (!cmd)
4441 		return (-ENOMEM);
4442 
4443 	dcmd = &cmd->frame->dcmd;
4444 
4445 	/* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */
4446 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
4447 
4448 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
4449 	    sizeof (struct megasas_evt_detail));
4450 
4451 	/* Prepare DCMD for aen registration */
4452 	dcmd->cmd = MFI_CMD_OP_DCMD;
4453 	dcmd->cmd_status = 0x0;
4454 	dcmd->sge_count = 1;
4455 	dcmd->flags = MFI_FRAME_DIR_READ;
4456 	dcmd->timeout = 0;
4457 	dcmd->data_xfer_len = sizeof (struct megasas_evt_detail);
4458 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
4459 	dcmd->mbox.w[0] = seq_num;
4460 	dcmd->mbox.w[1] = curr_aen.word;
4461 	dcmd->sgl.sge32[0].phys_addr =
4462 	    instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address;
4463 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail);
4464 
4465 	instance->aen_seq_num = seq_num;
4466 
4467 	/*
4468 	 * Store reference to the cmd used to register for AEN. When an
4469 	 * application wants us to register for AEN, we have to abort this
4470 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
4471 	 */
4472 	instance->aen_cmd = cmd;
4473 
4474 	cmd->frame_count = 1;
4475 
4476 	/* Issue the aen registration frame */
4477 	/* atomic_add_16 (&instance->fw_outstanding, 1); */
4478 	instance->func_ptr->issue_cmd(cmd, instance);
4479 
4480 	return (0);
4481 }
4482 
4483 static void
4484 display_scsi_inquiry(caddr_t scsi_inq)
4485 {
4486 #define	MAX_SCSI_DEVICE_CODE	14
4487 	int		i;
4488 	char		inquiry_buf[256] = {0};
4489 	int		len;
4490 	const char	*const scsi_device_types[] = {
4491 		"Direct-Access    ",
4492 		"Sequential-Access",
4493 		"Printer          ",
4494 		"Processor        ",
4495 		"WORM             ",
4496 		"CD-ROM           ",
4497 		"Scanner          ",
4498 		"Optical Device   ",
4499 		"Medium Changer   ",
4500 		"Communications   ",
4501 		"Unknown          ",
4502 		"Unknown          ",
4503 		"Unknown          ",
4504 		"Enclosure        ",
4505 	};
4506 
4507 	len = 0;
4508 
4509 	len += snprintf(inquiry_buf + len, 265 - len, "  Vendor: ");
4510 	for (i = 8; i < 16; i++) {
4511 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4512 		    scsi_inq[i]);
4513 	}
4514 
4515 	len += snprintf(inquiry_buf + len, 265 - len, "  Model: ");
4516 
4517 	for (i = 16; i < 32; i++) {
4518 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4519 		    scsi_inq[i]);
4520 	}
4521 
4522 	len += snprintf(inquiry_buf + len, 265 - len, "  Rev: ");
4523 
4524 	for (i = 32; i < 36; i++) {
4525 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4526 		    scsi_inq[i]);
4527 	}
4528 
4529 	len += snprintf(inquiry_buf + len, 265 - len, "\n");
4530 
4531 
4532 	i = scsi_inq[0] & 0x1f;
4533 
4534 
4535 	len += snprintf(inquiry_buf + len, 265 - len, "  Type:   %s ",
4536 	    i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
4537 	    "Unknown          ");
4538 
4539 
4540 	len += snprintf(inquiry_buf + len, 265 - len,
4541 	    "                 ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
4542 
4543 	if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) {
4544 		len += snprintf(inquiry_buf + len, 265 - len, " CCS\n");
4545 	} else {
4546 		len += snprintf(inquiry_buf + len, 265 - len, "\n");
4547 	}
4548 
4549 	con_log(CL_ANN1, (CE_CONT, inquiry_buf));
4550 }
4551 
4552 static int
4553 read_fw_status_reg_xscale(struct megasas_instance *instance)
4554 {
4555 	return ((int)RD_OB_MSG_0(instance));
4556 }
4557 
4558 static int
4559 read_fw_status_reg_ppc(struct megasas_instance *instance)
4560 {
4561 	return ((int)RD_OB_SCRATCH_PAD_0(instance));
4562 }
4563 
4564 static void
4565 issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance)
4566 {
4567 	atomic_add_16(&instance->fw_outstanding, 1);
4568 
4569 	/* Issue the command to the FW */
4570 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4571 	    (cmd->frame_count - 1), instance);
4572 }
4573 
4574 static void
4575 issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance)
4576 {
4577 	atomic_add_16(&instance->fw_outstanding, 1);
4578 
4579 	/* Issue the command to the FW */
4580 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4581 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4582 }
4583 
4584 /*
4585  * issue_cmd_in_sync_mode
4586  */
4587 static int
4588 issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance,
4589     struct megasas_cmd *cmd)
4590 {
4591 	int		i;
4592 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4593 
4594 	cmd->cmd_status	= ENODATA;
4595 
4596 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4597 	    (cmd->frame_count - 1), instance);
4598 
4599 	mutex_enter(&instance->int_cmd_mtx);
4600 
4601 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4602 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4603 	}
4604 
4605 	mutex_exit(&instance->int_cmd_mtx);
4606 
4607 	if (i < (msecs -1)) {
4608 		return (0);
4609 	} else {
4610 		return (1);
4611 	}
4612 }
4613 
4614 static int
4615 issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance,
4616     struct megasas_cmd *cmd)
4617 {
4618 	int		i;
4619 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4620 
4621 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n"));
4622 
4623 	cmd->cmd_status	= ENODATA;
4624 
4625 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4626 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4627 
4628 	mutex_enter(&instance->int_cmd_mtx);
4629 
4630 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4631 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4632 	}
4633 
4634 	mutex_exit(&instance->int_cmd_mtx);
4635 
4636 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n"));
4637 
4638 	if (i < (msecs -1)) {
4639 		return (0);
4640 	} else {
4641 		return (1);
4642 	}
4643 }
4644 
4645 /*
4646  * issue_cmd_in_poll_mode
4647  */
4648 static int
4649 issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance,
4650     struct megasas_cmd *cmd)
4651 {
4652 	int		i;
4653 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4654 	struct megasas_header *frame_hdr;
4655 
4656 	frame_hdr = (struct megasas_header *)cmd->frame;
4657 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4658 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4659 
4660 	/* issue the frame using inbound queue port */
4661 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4662 	    (cmd->frame_count - 1), instance);
4663 
4664 	/* wait for cmd_status to change from 0xFF */
4665 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4666 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4667 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4668 	}
4669 
4670 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4671 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4672 		    "cmd polling timed out"));
4673 		return (DDI_FAILURE);
4674 	}
4675 
4676 	return (DDI_SUCCESS);
4677 }
4678 
4679 static int
4680 issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance,
4681     struct megasas_cmd *cmd)
4682 {
4683 	int		i;
4684 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4685 	struct megasas_header *frame_hdr;
4686 
4687 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n"));
4688 
4689 	frame_hdr = (struct megasas_header *)cmd->frame;
4690 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4691 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4692 
4693 	/* issue the frame using inbound queue port */
4694 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4695 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4696 
4697 	/* wait for cmd_status to change from 0xFF */
4698 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4699 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4700 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4701 	}
4702 
4703 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4704 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4705 		    "cmd polling timed out"));
4706 		return (DDI_FAILURE);
4707 	}
4708 
4709 	return (DDI_SUCCESS);
4710 }
4711 
4712 static void
4713 enable_intr_xscale(struct megasas_instance *instance)
4714 {
4715 	MFI_ENABLE_INTR(instance);
4716 }
4717 
4718 static void
4719 enable_intr_ppc(struct megasas_instance *instance)
4720 {
4721 	uint32_t	mask;
4722 
4723 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n"));
4724 
4725 	/* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */
4726 	WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance);
4727 
4728 	/*
4729 	 * As 1078DE is same as 1078 chip, the interrupt mask
4730 	 * remains the same.
4731 	 */
4732 	/* WR_OB_INTR_MASK(~0x80000000, instance); */
4733 	WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance);
4734 
4735 	/* dummy read to force PCI flush */
4736 	mask = RD_OB_INTR_MASK(instance);
4737 
4738 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: "
4739 	    "outbound_intr_mask = 0x%x\n", mask));
4740 }
4741 
4742 static void
4743 disable_intr_xscale(struct megasas_instance *instance)
4744 {
4745 	MFI_DISABLE_INTR(instance);
4746 }
4747 
4748 static void
4749 disable_intr_ppc(struct megasas_instance *instance)
4750 {
4751 	uint32_t	mask;
4752 
4753 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n"));
4754 
4755 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : "
4756 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4757 
4758 	/* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */
4759 	WR_OB_INTR_MASK(OB_INTR_MASK, instance);
4760 
4761 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : "
4762 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4763 
4764 	/* dummy read to force PCI flush */
4765 	mask = RD_OB_INTR_MASK(instance);
4766 #ifdef lint
4767 	mask = mask;
4768 #endif
4769 }
4770 
4771 static int
4772 intr_ack_xscale(struct megasas_instance *instance)
4773 {
4774 	uint32_t	status;
4775 
4776 	/* check if it is our interrupt */
4777 	status = RD_OB_INTR_STATUS(instance);
4778 
4779 	if (!(status & MFI_OB_INTR_STATUS_MASK)) {
4780 		return (DDI_INTR_UNCLAIMED);
4781 	}
4782 
4783 	/* clear the interrupt by writing back the same value */
4784 	WR_OB_INTR_STATUS(status, instance);
4785 
4786 	return (DDI_INTR_CLAIMED);
4787 }
4788 
4789 static int
4790 intr_ack_ppc(struct megasas_instance *instance)
4791 {
4792 	uint32_t	status;
4793 
4794 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n"));
4795 
4796 	/* check if it is our interrupt */
4797 	status = RD_OB_INTR_STATUS(instance);
4798 
4799 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status));
4800 
4801 	/*
4802 	 * As 1078DE is same as 1078 chip, the status field
4803 	 * remains the same.
4804 	 */
4805 	if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) {
4806 		return (DDI_INTR_UNCLAIMED);
4807 	}
4808 
4809 	/* clear the interrupt by writing back the same value */
4810 	WR_OB_DOORBELL_CLEAR(status, instance);
4811 
4812 	/* dummy READ */
4813 	status = RD_OB_INTR_STATUS(instance);
4814 
4815 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n"));
4816 
4817 	return (DDI_INTR_CLAIMED);
4818 }
4819 
4820 static int
4821 megasas_common_check(struct megasas_instance *instance,
4822     struct  megasas_cmd *cmd)
4823 {
4824 	int ret = DDI_SUCCESS;
4825 
4826 	if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
4827 	    DDI_SUCCESS) {
4828 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4829 		if (cmd->pkt != NULL) {
4830 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4831 			cmd->pkt->pkt_statistics = 0;
4832 		}
4833 		ret = DDI_FAILURE;
4834 	}
4835 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
4836 	    != DDI_SUCCESS) {
4837 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4838 		if (cmd->pkt != NULL) {
4839 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4840 			cmd->pkt->pkt_statistics = 0;
4841 		}
4842 		ret = DDI_FAILURE;
4843 	}
4844 	if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) !=
4845 	    DDI_SUCCESS) {
4846 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4847 		if (cmd->pkt != NULL) {
4848 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4849 			cmd->pkt->pkt_statistics = 0;
4850 		}
4851 		ret = DDI_FAILURE;
4852 	}
4853 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
4854 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4855 		ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0);
4856 		if (cmd->pkt != NULL) {
4857 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4858 			cmd->pkt->pkt_statistics = 0;
4859 		}
4860 		ret = DDI_FAILURE;
4861 	}
4862 
4863 	return (ret);
4864 }
4865 
4866 /*ARGSUSED*/
4867 static int
4868 megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4869 {
4870 	/*
4871 	 * as the driver can always deal with an error in any dma or
4872 	 * access handle, we can just return the fme_status value.
4873 	 */
4874 	pci_ereport_post(dip, err, NULL);
4875 	return (err->fme_status);
4876 }
4877 
4878 static void
4879 megasas_fm_init(struct megasas_instance *instance)
4880 {
4881 	/* Need to change iblock to priority for new MSI intr */
4882 	ddi_iblock_cookie_t fm_ibc;
4883 
4884 	/* Only register with IO Fault Services if we have some capability */
4885 	if (instance->fm_capabilities) {
4886 		/* Adjust access and dma attributes for FMA */
4887 		endian_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4888 		megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
4889 
4890 		/*
4891 		 * Register capabilities with IO Fault Services.
4892 		 * fm_capabilities will be updated to indicate
4893 		 * capabilities actually supported (not requested.)
4894 		 */
4895 
4896 		ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc);
4897 
4898 		/*
4899 		 * Initialize pci ereport capabilities if ereport
4900 		 * capable (should always be.)
4901 		 */
4902 
4903 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4904 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4905 			pci_ereport_setup(instance->dip);
4906 		}
4907 
4908 		/*
4909 		 * Register error callback if error callback capable.
4910 		 */
4911 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4912 			ddi_fm_handler_register(instance->dip,
4913 			    megasas_fm_error_cb, (void*) instance);
4914 		}
4915 	} else {
4916 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4917 		megasas_generic_dma_attr.dma_attr_flags = 0;
4918 	}
4919 }
4920 
4921 static void
4922 megasas_fm_fini(struct megasas_instance *instance)
4923 {
4924 	/* Only unregister FMA capabilities if registered */
4925 	if (instance->fm_capabilities) {
4926 		/*
4927 		 * Un-register error callback if error callback capable.
4928 		 */
4929 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4930 			ddi_fm_handler_unregister(instance->dip);
4931 		}
4932 
4933 		/*
4934 		 * Release any resources allocated by pci_ereport_setup()
4935 		 */
4936 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4937 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4938 			pci_ereport_teardown(instance->dip);
4939 		}
4940 
4941 		/* Unregister from IO Fault Services */
4942 		ddi_fm_fini(instance->dip);
4943 
4944 		/* Adjust access and dma attributes for FMA */
4945 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4946 		megasas_generic_dma_attr.dma_attr_flags = 0;
4947 	}
4948 }
4949 
4950 int
4951 megasas_check_acc_handle(ddi_acc_handle_t handle)
4952 {
4953 	ddi_fm_error_t de;
4954 
4955 	if (handle == NULL) {
4956 		return (DDI_FAILURE);
4957 	}
4958 
4959 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4960 
4961 	return (de.fme_status);
4962 }
4963 
4964 int
4965 megasas_check_dma_handle(ddi_dma_handle_t handle)
4966 {
4967 	ddi_fm_error_t de;
4968 
4969 	if (handle == NULL) {
4970 		return (DDI_FAILURE);
4971 	}
4972 
4973 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4974 
4975 	return (de.fme_status);
4976 }
4977 
4978 void
4979 megasas_fm_ereport(struct megasas_instance *instance, char *detail)
4980 {
4981 	uint64_t ena;
4982 	char buf[FM_MAX_CLASS];
4983 
4984 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4985 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4986 	if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) {
4987 		ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP,
4988 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL);
4989 	}
4990 }
4991