1 /* 2 * megaraid_sas.c: source for mega_sas driver 3 * 4 * MegaRAID device driver for SAS controllers 5 * Copyright (c) 2005-2008, LSI Logic Corporation. 6 * All rights reserved. 7 * 8 * Version: 9 * Author: 10 * Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com> 11 * Seokmann Ju 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright notice, 17 * this list of conditions and the following disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above copyright notice, 20 * this list of conditions and the following disclaimer in the documentation 21 * and/or other materials provided with the distribution. 22 * 23 * 3. Neither the name of the author nor the names of its contributors may be 24 * used to endorse or promote products derived from this software without 25 * specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 35 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 36 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 37 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 38 * DAMAGE. 39 */ 40 41 /* 42 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 43 * Use is subject to license terms. 44 */ 45 46 #include <sys/types.h> 47 #include <sys/param.h> 48 #include <sys/file.h> 49 #include <sys/errno.h> 50 #include <sys/open.h> 51 #include <sys/cred.h> 52 #include <sys/modctl.h> 53 #include <sys/conf.h> 54 #include <sys/devops.h> 55 #include <sys/cmn_err.h> 56 #include <sys/kmem.h> 57 #include <sys/stat.h> 58 #include <sys/mkdev.h> 59 #include <sys/pci.h> 60 #include <sys/scsi/scsi.h> 61 #include <sys/ddi.h> 62 #include <sys/sunddi.h> 63 #include <sys/atomic.h> 64 #include <sys/signal.h> 65 66 #include "megaraid_sas.h" 67 68 /* 69 * FMA header files 70 */ 71 #include <sys/ddifm.h> 72 #include <sys/fm/protocol.h> 73 #include <sys/fm/util.h> 74 #include <sys/fm/io/ddi.h> 75 76 /* 77 * Local static data 78 */ 79 static void *megasas_state = NULL; 80 static int debug_level_g = CL_ANN; 81 82 #pragma weak scsi_hba_open 83 #pragma weak scsi_hba_close 84 #pragma weak scsi_hba_ioctl 85 86 static ddi_dma_attr_t megasas_generic_dma_attr = { 87 DMA_ATTR_V0, /* dma_attr_version */ 88 0, /* low DMA address range */ 89 0xFFFFFFFFU, /* high DMA address range */ 90 0xFFFFFFFFU, /* DMA counter register */ 91 8, /* DMA address alignment */ 92 0x07, /* DMA burstsizes */ 93 1, /* min DMA size */ 94 0xFFFFFFFFU, /* max DMA size */ 95 0xFFFFFFFFU, /* segment boundary */ 96 MEGASAS_MAX_SGE_CNT, /* dma_attr_sglen */ 97 512, /* granularity of device */ 98 0 /* bus specific DMA flags */ 99 }; 100 101 int32_t megasas_max_cap_maxxfer = 0x1000000; 102 103 /* 104 * cb_ops contains base level routines 105 */ 106 static struct cb_ops megasas_cb_ops = { 107 megasas_open, /* open */ 108 megasas_close, /* close */ 109 nodev, /* strategy */ 110 nodev, /* print */ 111 nodev, /* dump */ 112 nodev, /* read */ 113 nodev, /* write */ 114 megasas_ioctl, /* ioctl */ 115 nodev, /* devmap */ 116 nodev, /* mmap */ 117 nodev, /* segmap */ 118 nochpoll, /* poll */ 119 nodev, /* cb_prop_op */ 120 0, /* streamtab */ 121 D_NEW | D_HOTPLUG, /* cb_flag */ 122 CB_REV, /* cb_rev */ 123 nodev, /* cb_aread */ 124 nodev /* cb_awrite */ 125 }; 126 127 /* 128 * dev_ops contains configuration routines 129 */ 130 static struct dev_ops megasas_ops = { 131 DEVO_REV, /* rev, */ 132 0, /* refcnt */ 133 megasas_getinfo, /* getinfo */ 134 nulldev, /* identify */ 135 nulldev, /* probe */ 136 megasas_attach, /* attach */ 137 megasas_detach, /* detach */ 138 megasas_reset, /* reset */ 139 &megasas_cb_ops, /* char/block ops */ 140 NULL, /* bus ops */ 141 NULL, /* power */ 142 ddi_quiesce_not_supported, /* devo_quiesce */ 143 }; 144 145 char _depends_on[] = "misc/scsi"; 146 147 static struct modldrv modldrv = { 148 &mod_driverops, /* module type - driver */ 149 MEGASAS_VERSION, 150 &megasas_ops, /* driver ops */ 151 }; 152 153 static struct modlinkage modlinkage = { 154 MODREV_1, /* ml_rev - must be MODREV_1 */ 155 &modldrv, /* ml_linkage */ 156 NULL /* end of driver linkage */ 157 }; 158 159 static struct ddi_device_acc_attr endian_attr = { 160 DDI_DEVICE_ATTR_V0, 161 DDI_STRUCTURE_LE_ACC, 162 DDI_STRICTORDER_ACC 163 }; 164 165 166 /* 167 * ************************************************************************** * 168 * * 169 * common entry points - for loadable kernel modules * 170 * * 171 * ************************************************************************** * 172 */ 173 174 /* 175 * _init - initialize a loadable module 176 * @void 177 * 178 * The driver should perform any one-time resource allocation or data 179 * initialization during driver loading in _init(). For example, the driver 180 * should initialize any mutexes global to the driver in this routine. 181 * The driver should not, however, use _init() to allocate or initialize 182 * anything that has to do with a particular instance of the device. 183 * Per-instance initialization must be done in attach(). 184 */ 185 int 186 _init(void) 187 { 188 int ret; 189 190 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 191 192 ret = ddi_soft_state_init(&megasas_state, 193 sizeof (struct megasas_instance), 0); 194 195 if (ret != 0) { 196 con_log(CL_ANN, (CE_WARN, "megaraid: could not init state")); 197 return (ret); 198 } 199 200 if ((ret = scsi_hba_init(&modlinkage)) != 0) { 201 con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba")); 202 ddi_soft_state_fini(&megasas_state); 203 return (ret); 204 } 205 206 ret = mod_install(&modlinkage); 207 208 if (ret != 0) { 209 con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed")); 210 scsi_hba_fini(&modlinkage); 211 ddi_soft_state_fini(&megasas_state); 212 } 213 214 return (ret); 215 } 216 217 /* 218 * _info - returns information about a loadable module. 219 * @void 220 * 221 * _info() is called to return module information. This is a typical entry 222 * point that does predefined role. It simply calls mod_info(). 223 */ 224 int 225 _info(struct modinfo *modinfop) 226 { 227 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 228 229 return (mod_info(&modlinkage, modinfop)); 230 } 231 232 /* 233 * _fini - prepare a loadable module for unloading 234 * @void 235 * 236 * In _fini(), the driver should release any resources that were allocated in 237 * _init(). The driver must remove itself from the system module list. 238 */ 239 int 240 _fini(void) 241 { 242 int ret; 243 244 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 245 246 if ((ret = mod_remove(&modlinkage)) != 0) 247 return (ret); 248 249 scsi_hba_fini(&modlinkage); 250 251 ddi_soft_state_fini(&megasas_state); 252 253 return (ret); 254 } 255 256 257 /* 258 * ************************************************************************** * 259 * * 260 * common entry points - for autoconfiguration * 261 * * 262 * ************************************************************************** * 263 */ 264 /* 265 * attach - adds a device to the system as part of initialization 266 * @dip: 267 * @cmd: 268 * 269 * The kernel calls a driver's attach() entry point to attach an instance of 270 * a device (for MegaRAID, it is instance of a controller) or to resume 271 * operation for an instance of a device that has been suspended or has been 272 * shut down by the power management framework 273 * The attach() entry point typically includes the following types of 274 * processing: 275 * - allocate a soft-state structure for the device instance (for MegaRAID, 276 * controller instance) 277 * - initialize per-instance mutexes 278 * - initialize condition variables 279 * - register the device's interrupts (for MegaRAID, controller's interrupts) 280 * - map the registers and memory of the device instance (for MegaRAID, 281 * controller instance) 282 * - create minor device nodes for the device instance (for MegaRAID, 283 * controller instance) 284 * - report that the device instance (for MegaRAID, controller instance) has 285 * attached 286 */ 287 static int 288 megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 289 { 290 int instance_no; 291 int nregs; 292 uint8_t added_isr_f = 0; 293 uint8_t added_soft_isr_f = 0; 294 uint8_t create_devctl_node_f = 0; 295 uint8_t create_scsi_node_f = 0; 296 uint8_t create_ioc_node_f = 0; 297 uint8_t tran_alloc_f = 0; 298 uint8_t irq; 299 uint16_t vendor_id; 300 uint16_t device_id; 301 uint16_t subsysvid; 302 uint16_t subsysid; 303 uint16_t command; 304 305 scsi_hba_tran_t *tran; 306 ddi_dma_attr_t tran_dma_attr; 307 struct megasas_instance *instance; 308 309 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 310 311 /* CONSTCOND */ 312 ASSERT(NO_COMPETING_THREADS); 313 314 instance_no = ddi_get_instance(dip); 315 316 /* 317 * Since we know that some instantiations of this device can be 318 * plugged into slave-only SBus slots, check to see whether this is 319 * one such. 320 */ 321 if (ddi_slaveonly(dip) == DDI_SUCCESS) { 322 con_log(CL_ANN, (CE_WARN, 323 "mega%d: Device in slave-only slot, unused", instance_no)); 324 return (DDI_FAILURE); 325 } 326 327 switch (cmd) { 328 case DDI_ATTACH: 329 con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH")); 330 /* allocate the soft state for the instance */ 331 if (ddi_soft_state_zalloc(megasas_state, instance_no) 332 != DDI_SUCCESS) { 333 con_log(CL_ANN, (CE_WARN, 334 "mega%d: Failed to allocate soft state", 335 instance_no)); 336 337 return (DDI_FAILURE); 338 } 339 340 instance = (struct megasas_instance *)ddi_get_soft_state 341 (megasas_state, instance_no); 342 343 if (instance == NULL) { 344 con_log(CL_ANN, (CE_WARN, 345 "mega%d: Bad soft state", instance_no)); 346 347 ddi_soft_state_free(megasas_state, instance_no); 348 349 return (DDI_FAILURE); 350 } 351 352 bzero((caddr_t)instance, 353 sizeof (struct megasas_instance)); 354 355 instance->func_ptr = kmem_zalloc( 356 sizeof (struct megasas_func_ptr), KM_SLEEP); 357 ASSERT(instance->func_ptr); 358 359 /* Setup the PCI configuration space handles */ 360 if (pci_config_setup(dip, &instance->pci_handle) != 361 DDI_SUCCESS) { 362 con_log(CL_ANN, (CE_WARN, 363 "mega%d: pci config setup failed ", 364 instance_no)); 365 366 kmem_free(instance->func_ptr, 367 sizeof (struct megasas_func_ptr)); 368 ddi_soft_state_free(megasas_state, instance_no); 369 370 return (DDI_FAILURE); 371 } 372 373 if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) { 374 con_log(CL_ANN, (CE_WARN, 375 "megaraid: failed to get registers.")); 376 377 pci_config_teardown(&instance->pci_handle); 378 kmem_free(instance->func_ptr, 379 sizeof (struct megasas_func_ptr)); 380 ddi_soft_state_free(megasas_state, instance_no); 381 382 return (DDI_FAILURE); 383 } 384 385 vendor_id = pci_config_get16(instance->pci_handle, 386 PCI_CONF_VENID); 387 device_id = pci_config_get16(instance->pci_handle, 388 PCI_CONF_DEVID); 389 390 subsysvid = pci_config_get16(instance->pci_handle, 391 PCI_CONF_SUBVENID); 392 subsysid = pci_config_get16(instance->pci_handle, 393 PCI_CONF_SUBSYSID); 394 395 pci_config_put16(instance->pci_handle, PCI_CONF_COMM, 396 (pci_config_get16(instance->pci_handle, 397 PCI_CONF_COMM) | PCI_COMM_ME)); 398 irq = pci_config_get8(instance->pci_handle, 399 PCI_CONF_ILINE); 400 401 con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: " 402 "0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n", 403 instance_no, vendor_id, device_id, subsysvid, 404 subsysid, irq, MEGASAS_VERSION)); 405 406 /* enable bus-mastering */ 407 command = pci_config_get16(instance->pci_handle, 408 PCI_CONF_COMM); 409 410 if (!(command & PCI_COMM_ME)) { 411 command |= PCI_COMM_ME; 412 413 pci_config_put16(instance->pci_handle, 414 PCI_CONF_COMM, command); 415 416 con_log(CL_ANN, (CE_CONT, "megaraid%d: " 417 "enable bus-mastering\n", instance_no)); 418 } else { 419 con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: " 420 "bus-mastering already set\n", instance_no)); 421 } 422 423 /* initialize function pointers */ 424 if ((device_id == PCI_DEVICE_ID_LSI_1078) || 425 (device_id == PCI_DEVICE_ID_LSI_1078DE)) { 426 con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: " 427 "1078R/DE detected\n", instance_no)); 428 instance->func_ptr->read_fw_status_reg = 429 read_fw_status_reg_ppc; 430 instance->func_ptr->issue_cmd = issue_cmd_ppc; 431 instance->func_ptr->issue_cmd_in_sync_mode = 432 issue_cmd_in_sync_mode_ppc; 433 instance->func_ptr->issue_cmd_in_poll_mode = 434 issue_cmd_in_poll_mode_ppc; 435 instance->func_ptr->enable_intr = 436 enable_intr_ppc; 437 instance->func_ptr->disable_intr = 438 disable_intr_ppc; 439 instance->func_ptr->intr_ack = intr_ack_ppc; 440 } else { 441 con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: " 442 "1064/8R detected\n", instance_no)); 443 instance->func_ptr->read_fw_status_reg = 444 read_fw_status_reg_xscale; 445 instance->func_ptr->issue_cmd = 446 issue_cmd_xscale; 447 instance->func_ptr->issue_cmd_in_sync_mode = 448 issue_cmd_in_sync_mode_xscale; 449 instance->func_ptr->issue_cmd_in_poll_mode = 450 issue_cmd_in_poll_mode_xscale; 451 instance->func_ptr->enable_intr = 452 enable_intr_xscale; 453 instance->func_ptr->disable_intr = 454 disable_intr_xscale; 455 instance->func_ptr->intr_ack = 456 intr_ack_xscale; 457 } 458 459 instance->baseaddress = pci_config_get32( 460 instance->pci_handle, PCI_CONF_BASE0); 461 instance->baseaddress &= 0x0fffc; 462 463 instance->dip = dip; 464 instance->vendor_id = vendor_id; 465 instance->device_id = device_id; 466 instance->subsysvid = subsysvid; 467 instance->subsysid = subsysid; 468 469 /* Initialize FMA */ 470 instance->fm_capabilities = ddi_prop_get_int( 471 DDI_DEV_T_ANY, instance->dip, DDI_PROP_CANSLEEP 472 | DDI_PROP_DONTPASS, "fm-capable", 473 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE 474 | DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 475 476 megasas_fm_init(instance); 477 478 /* setup the mfi based low level driver */ 479 if (init_mfi(instance) != DDI_SUCCESS) { 480 con_log(CL_ANN, (CE_WARN, "megaraid: " 481 "could not initialize the low level driver")); 482 483 goto fail_attach; 484 } 485 486 /* 487 * Allocate the interrupt blocking cookie. 488 * It represents the information the framework 489 * needs to block interrupts. This cookie will 490 * be used by the locks shared accross our ISR. 491 * These locks must be initialized before we 492 * register our ISR. 493 * ddi_add_intr(9F) 494 */ 495 if (ddi_get_iblock_cookie(dip, 0, 496 &instance->iblock_cookie) != DDI_SUCCESS) { 497 498 goto fail_attach; 499 } 500 501 if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH, 502 &instance->soft_iblock_cookie) != DDI_SUCCESS) { 503 504 goto fail_attach; 505 } 506 507 /* 508 * Initialize the driver mutexes common to 509 * normal/high level isr 510 */ 511 if (ddi_intr_hilevel(dip, 0)) { 512 instance->isr_level = HIGH_LEVEL_INTR; 513 mutex_init(&instance->cmd_pool_mtx, 514 "cmd_pool_mtx", MUTEX_DRIVER, 515 instance->soft_iblock_cookie); 516 mutex_init(&instance->cmd_pend_mtx, 517 "cmd_pend_mtx", MUTEX_DRIVER, 518 instance->soft_iblock_cookie); 519 } else { 520 /* 521 * Initialize the driver mutexes 522 * specific to soft-isr 523 */ 524 instance->isr_level = NORMAL_LEVEL_INTR; 525 mutex_init(&instance->cmd_pool_mtx, 526 "cmd_pool_mtx", MUTEX_DRIVER, 527 instance->iblock_cookie); 528 mutex_init(&instance->cmd_pend_mtx, 529 "cmd_pend_mtx", MUTEX_DRIVER, 530 instance->iblock_cookie); 531 } 532 533 mutex_init(&instance->completed_pool_mtx, 534 "completed_pool_mtx", MUTEX_DRIVER, 535 instance->iblock_cookie); 536 mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx", 537 MUTEX_DRIVER, instance->iblock_cookie); 538 mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx", 539 MUTEX_DRIVER, instance->iblock_cookie); 540 mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx", 541 MUTEX_DRIVER, instance->iblock_cookie); 542 543 cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL); 544 cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL); 545 546 INIT_LIST_HEAD(&instance->completed_pool_list); 547 548 /* Register our isr. */ 549 if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr, 550 (caddr_t)instance) != DDI_SUCCESS) { 551 con_log(CL_ANN, (CE_WARN, 552 " ISR did not register")); 553 554 goto fail_attach; 555 } 556 557 added_isr_f = 1; 558 559 /* Register our soft-isr for highlevel interrupts. */ 560 if (instance->isr_level == HIGH_LEVEL_INTR) { 561 if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH, 562 &instance->soft_intr_id, NULL, NULL, 563 megasas_softintr, (caddr_t)instance) != 564 DDI_SUCCESS) { 565 con_log(CL_ANN, (CE_WARN, 566 " Software ISR did not register")); 567 568 goto fail_attach; 569 } 570 571 added_soft_isr_f = 1; 572 } 573 574 /* Allocate a transport structure */ 575 tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP); 576 577 if (tran == NULL) { 578 con_log(CL_ANN, (CE_WARN, 579 "scsi_hba_tran_alloc failed")); 580 goto fail_attach; 581 } 582 583 tran_alloc_f = 1; 584 585 instance->tran = tran; 586 587 tran->tran_hba_private = instance; 588 tran->tran_tgt_private = NULL; 589 tran->tran_tgt_init = megasas_tran_tgt_init; 590 tran->tran_tgt_probe = scsi_hba_probe; 591 tran->tran_tgt_free = (void (*)())NULL; 592 tran->tran_init_pkt = megasas_tran_init_pkt; 593 tran->tran_start = megasas_tran_start; 594 tran->tran_abort = megasas_tran_abort; 595 tran->tran_reset = megasas_tran_reset; 596 tran->tran_bus_reset = megasas_tran_bus_reset; 597 tran->tran_getcap = megasas_tran_getcap; 598 tran->tran_setcap = megasas_tran_setcap; 599 tran->tran_destroy_pkt = megasas_tran_destroy_pkt; 600 tran->tran_dmafree = megasas_tran_dmafree; 601 tran->tran_sync_pkt = megasas_tran_sync_pkt; 602 tran->tran_reset_notify = NULL; 603 tran->tran_quiesce = megasas_tran_quiesce; 604 tran->tran_unquiesce = megasas_tran_unquiesce; 605 606 tran_dma_attr = megasas_generic_dma_attr; 607 tran_dma_attr.dma_attr_sgllen = instance->max_num_sge; 608 609 /* Attach this instance of the hba */ 610 if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0) 611 != DDI_SUCCESS) { 612 con_log(CL_ANN, (CE_WARN, 613 "scsi_hba_attach failed\n")); 614 615 goto fail_attach; 616 } 617 618 /* create devctl node for cfgadm command */ 619 if (ddi_create_minor_node(dip, "devctl", 620 S_IFCHR, INST2DEVCTL(instance_no), 621 DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) { 622 con_log(CL_ANN, (CE_WARN, 623 "megaraid: failed to create devctl node.")); 624 625 goto fail_attach; 626 } 627 628 create_devctl_node_f = 1; 629 630 /* create scsi node for cfgadm command */ 631 if (ddi_create_minor_node(dip, "scsi", S_IFCHR, 632 INST2SCSI(instance_no), 633 DDI_NT_SCSI_ATTACHMENT_POINT, 0) == 634 DDI_FAILURE) { 635 con_log(CL_ANN, (CE_WARN, 636 "megaraid: failed to create scsi node.")); 637 638 goto fail_attach; 639 } 640 641 create_scsi_node_f = 1; 642 643 (void) sprintf(instance->iocnode, "%d:lsirdctl", 644 instance_no); 645 646 /* 647 * Create a node for applications 648 * for issuing ioctl to the driver. 649 */ 650 if (ddi_create_minor_node(dip, instance->iocnode, 651 S_IFCHR, INST2LSIRDCTL(instance_no), 652 DDI_PSEUDO, 0) == DDI_FAILURE) { 653 con_log(CL_ANN, (CE_WARN, 654 "megaraid: failed to create ioctl node.")); 655 656 goto fail_attach; 657 } 658 659 create_ioc_node_f = 1; 660 661 /* enable interrupt */ 662 instance->func_ptr->enable_intr(instance); 663 664 /* initiate AEN */ 665 if (start_mfi_aen(instance)) { 666 con_log(CL_ANN, (CE_WARN, 667 "megaraid: failed to initiate AEN.")); 668 goto fail_initiate_aen; 669 } 670 671 con_log(CL_DLEVEL1, (CE_NOTE, 672 "AEN started for instance %d.", instance_no)); 673 674 /* Finally! We are on the air. */ 675 ddi_report_dev(dip); 676 677 if (megasas_check_acc_handle(instance->regmap_handle) != 678 DDI_SUCCESS) { 679 goto fail_attach; 680 } 681 if (megasas_check_acc_handle(instance->pci_handle) != 682 DDI_SUCCESS) { 683 goto fail_attach; 684 } 685 break; 686 case DDI_PM_RESUME: 687 con_log(CL_ANN, (CE_NOTE, 688 "megasas: DDI_PM_RESUME")); 689 break; 690 case DDI_RESUME: 691 con_log(CL_ANN, (CE_NOTE, 692 "megasas: DDI_RESUME")); 693 break; 694 default: 695 con_log(CL_ANN, (CE_WARN, 696 "megasas: invalid attach cmd=%x", cmd)); 697 return (DDI_FAILURE); 698 } 699 700 return (DDI_SUCCESS); 701 702 fail_initiate_aen: 703 fail_attach: 704 if (create_devctl_node_f) { 705 ddi_remove_minor_node(dip, "devctl"); 706 } 707 708 if (create_scsi_node_f) { 709 ddi_remove_minor_node(dip, "scsi"); 710 } 711 712 if (create_ioc_node_f) { 713 ddi_remove_minor_node(dip, instance->iocnode); 714 } 715 716 if (tran_alloc_f) { 717 scsi_hba_tran_free(tran); 718 } 719 720 721 if (added_soft_isr_f) { 722 ddi_remove_softintr(instance->soft_intr_id); 723 } 724 725 if (added_isr_f) { 726 ddi_remove_intr(dip, 0, instance->iblock_cookie); 727 } 728 729 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 730 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 731 732 megasas_fm_fini(instance); 733 734 pci_config_teardown(&instance->pci_handle); 735 736 ddi_soft_state_free(megasas_state, instance_no); 737 738 con_log(CL_ANN, (CE_NOTE, 739 "megasas: return failure from mega_attach\n")); 740 741 return (DDI_FAILURE); 742 } 743 744 /* 745 * getinfo - gets device information 746 * @dip: 747 * @cmd: 748 * @arg: 749 * @resultp: 750 * 751 * The system calls getinfo() to obtain configuration information that only 752 * the driver knows. The mapping of minor numbers to device instance is 753 * entirely under the control of the driver. The system sometimes needs to ask 754 * the driver which device a particular dev_t represents. 755 * Given the device number return the devinfo pointer from the scsi_device 756 * structure. 757 */ 758 /*ARGSUSED*/ 759 static int 760 megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp) 761 { 762 int rval; 763 int megasas_minor = getminor((dev_t)arg); 764 765 struct megasas_instance *instance; 766 767 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 768 769 switch (cmd) { 770 case DDI_INFO_DEVT2DEVINFO: 771 instance = (struct megasas_instance *) 772 ddi_get_soft_state(megasas_state, 773 MINOR2INST(megasas_minor)); 774 775 if (instance == NULL) { 776 *resultp = NULL; 777 rval = DDI_FAILURE; 778 } else { 779 *resultp = instance->dip; 780 rval = DDI_SUCCESS; 781 } 782 break; 783 case DDI_INFO_DEVT2INSTANCE: 784 *resultp = (void *)instance; 785 rval = DDI_SUCCESS; 786 break; 787 default: 788 *resultp = NULL; 789 rval = DDI_FAILURE; 790 } 791 792 return (rval); 793 } 794 795 /* 796 * detach - detaches a device from the system 797 * @dip: pointer to the device's dev_info structure 798 * @cmd: type of detach 799 * 800 * A driver's detach() entry point is called to detach an instance of a device 801 * that is bound to the driver. The entry point is called with the instance of 802 * the device node to be detached and with DDI_DETACH, which is specified as 803 * the cmd argument to the entry point. 804 * This routine is called during driver unload. We free all the allocated 805 * resources and call the corresponding LLD so that it can also release all 806 * its resources. 807 */ 808 static int 809 megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 810 { 811 int instance_no; 812 813 struct megasas_instance *instance; 814 815 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 816 817 /* CONSTCOND */ 818 ASSERT(NO_COMPETING_THREADS); 819 820 instance_no = ddi_get_instance(dip); 821 822 instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state, 823 instance_no); 824 825 if (!instance) { 826 con_log(CL_ANN, (CE_WARN, 827 "megasas:%d could not get instance in detach", 828 instance_no)); 829 830 return (DDI_FAILURE); 831 } 832 833 con_log(CL_ANN, (CE_NOTE, 834 "megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n", 835 instance_no, instance->vendor_id, instance->device_id, 836 instance->subsysvid, instance->subsysid)); 837 838 switch (cmd) { 839 case DDI_DETACH: 840 con_log(CL_ANN, (CE_NOTE, 841 "megasas_detach: DDI_DETACH\n")); 842 843 if (scsi_hba_detach(dip) != DDI_SUCCESS) { 844 con_log(CL_ANN, (CE_WARN, 845 "megasas:%d failed to detach", 846 instance_no)); 847 848 return (DDI_FAILURE); 849 } 850 851 scsi_hba_tran_free(instance->tran); 852 853 if (abort_aen_cmd(instance, instance->aen_cmd)) { 854 con_log(CL_ANN, (CE_WARN, "megasas_detach: " 855 "failed to abort prevous AEN command\n")); 856 857 return (DDI_FAILURE); 858 } 859 860 instance->func_ptr->disable_intr(instance); 861 862 if (instance->isr_level == HIGH_LEVEL_INTR) { 863 ddi_remove_softintr(instance->soft_intr_id); 864 } 865 866 ddi_remove_intr(dip, 0, instance->iblock_cookie); 867 868 free_space_for_mfi(instance); 869 870 megasas_fm_fini(instance); 871 872 pci_config_teardown(&instance->pci_handle); 873 874 kmem_free(instance->func_ptr, 875 sizeof (struct megasas_func_ptr)); 876 877 ddi_soft_state_free(megasas_state, instance_no); 878 break; 879 case DDI_PM_SUSPEND: 880 con_log(CL_ANN, (CE_NOTE, 881 "megasas_detach: DDI_PM_SUSPEND\n")); 882 883 break; 884 case DDI_SUSPEND: 885 con_log(CL_ANN, (CE_NOTE, 886 "megasas_detach: DDI_SUSPEND\n")); 887 888 break; 889 default: 890 con_log(CL_ANN, (CE_WARN, 891 "invalid detach command:0x%x", cmd)); 892 return (DDI_FAILURE); 893 } 894 895 return (DDI_SUCCESS); 896 } 897 898 /* 899 * ************************************************************************** * 900 * * 901 * common entry points - for character driver types * 902 * * 903 * ************************************************************************** * 904 */ 905 /* 906 * open - gets access to a device 907 * @dev: 908 * @openflags: 909 * @otyp: 910 * @credp: 911 * 912 * Access to a device by one or more application programs is controlled 913 * through the open() and close() entry points. The primary function of 914 * open() is to verify that the open request is allowed. 915 */ 916 static int 917 megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp) 918 { 919 int rval = 0; 920 921 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 922 923 /* Check root permissions */ 924 if (drv_priv(credp) != 0) { 925 con_log(CL_ANN, (CE_WARN, 926 "megaraid: Non-root ioctl access tried!")); 927 return (EPERM); 928 } 929 930 /* Verify we are being opened as a character device */ 931 if (otyp != OTYP_CHR) { 932 con_log(CL_ANN, (CE_WARN, 933 "megaraid: ioctl node must be a char node\n")); 934 return (EINVAL); 935 } 936 937 if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev))) 938 == NULL) { 939 return (ENXIO); 940 } 941 942 if (scsi_hba_open) { 943 rval = scsi_hba_open(dev, openflags, otyp, credp); 944 } 945 946 return (rval); 947 } 948 949 /* 950 * close - gives up access to a device 951 * @dev: 952 * @openflags: 953 * @otyp: 954 * @credp: 955 * 956 * close() should perform any cleanup necessary to finish using the minor 957 * device, and prepare the device (and driver) to be opened again. 958 */ 959 static int 960 megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp) 961 { 962 int rval = 0; 963 964 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 965 966 /* no need for locks! */ 967 968 if (scsi_hba_close) { 969 rval = scsi_hba_close(dev, openflags, otyp, credp); 970 } 971 972 return (rval); 973 } 974 975 /* 976 * ioctl - performs a range of I/O commands for character drivers 977 * @dev: 978 * @cmd: 979 * @arg: 980 * @mode: 981 * @credp: 982 * @rvalp: 983 * 984 * ioctl() routine must make sure that user data is copied into or out of the 985 * kernel address space explicitly using copyin(), copyout(), ddi_copyin(), 986 * and ddi_copyout(), as appropriate. 987 * This is a wrapper routine to serialize access to the actual ioctl routine. 988 * ioctl() should return 0 on success, or the appropriate error number. The 989 * driver may also set the value returned to the calling process through rvalp. 990 */ 991 static int 992 megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 993 int *rvalp) 994 { 995 int rval = 0; 996 997 struct megasas_instance *instance; 998 struct megasas_ioctl ioctl; 999 struct megasas_aen aen; 1000 1001 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1002 1003 instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev))); 1004 1005 if (instance == NULL) { 1006 /* invalid minor number */ 1007 con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found.")); 1008 return (ENXIO); 1009 } 1010 1011 switch ((uint_t)cmd) { 1012 case MEGASAS_IOCTL_FIRMWARE: 1013 if (ddi_copyin((void *) arg, &ioctl, 1014 sizeof (struct megasas_ioctl), mode)) { 1015 con_log(CL_ANN, (CE_WARN, "megasas_ioctl: " 1016 "ERROR IOCTL copyin")); 1017 return (EFAULT); 1018 } 1019 1020 if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) { 1021 rval = handle_drv_ioctl(instance, &ioctl, mode); 1022 } else { 1023 rval = handle_mfi_ioctl(instance, &ioctl, mode); 1024 } 1025 1026 if (ddi_copyout((void *) &ioctl, (void *)arg, 1027 (sizeof (struct megasas_ioctl) - 1), mode)) { 1028 con_log(CL_ANN, (CE_WARN, 1029 "megasas_ioctl: copy_to_user failed\n")); 1030 rval = 1; 1031 } 1032 1033 break; 1034 case MEGASAS_IOCTL_AEN: 1035 if (ddi_copyin((void *) arg, &aen, 1036 sizeof (struct megasas_aen), mode)) { 1037 con_log(CL_ANN, (CE_WARN, 1038 "megasas_ioctl: ERROR AEN copyin")); 1039 return (EFAULT); 1040 } 1041 1042 rval = handle_mfi_aen(instance, &aen); 1043 1044 if (ddi_copyout((void *) &aen, (void *)arg, 1045 sizeof (struct megasas_aen), mode)) { 1046 con_log(CL_ANN, (CE_WARN, 1047 "megasas_ioctl: copy_to_user failed\n")); 1048 rval = 1; 1049 } 1050 1051 break; 1052 default: 1053 rval = scsi_hba_ioctl(dev, cmd, arg, 1054 mode, credp, rvalp); 1055 1056 con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: " 1057 "scsi_hba_ioctl called, ret = %x.", rval)); 1058 } 1059 1060 return (rval); 1061 } 1062 1063 /* 1064 * ************************************************************************** * 1065 * * 1066 * common entry points - for block driver types * 1067 * * 1068 * ************************************************************************** * 1069 */ 1070 /* 1071 * reset - TBD 1072 * @dip: 1073 * @cmd: 1074 * 1075 * TBD 1076 */ 1077 /*ARGSUSED*/ 1078 static int 1079 megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd) 1080 { 1081 int instance_no; 1082 1083 struct megasas_instance *instance; 1084 1085 instance_no = ddi_get_instance(dip); 1086 instance = (struct megasas_instance *)ddi_get_soft_state 1087 (megasas_state, instance_no); 1088 1089 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1090 1091 if (!instance) { 1092 con_log(CL_ANN, (CE_WARN, 1093 "megaraid:%d could not get adapter in reset", 1094 instance_no)); 1095 return (DDI_FAILURE); 1096 } 1097 1098 con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..", 1099 instance_no)); 1100 1101 flush_cache(instance); 1102 1103 return (DDI_SUCCESS); 1104 } 1105 1106 1107 /* 1108 * ************************************************************************** * 1109 * * 1110 * entry points (SCSI HBA) * 1111 * * 1112 * ************************************************************************** * 1113 */ 1114 /* 1115 * tran_tgt_init - initialize a target device instance 1116 * @hba_dip: 1117 * @tgt_dip: 1118 * @tran: 1119 * @sd: 1120 * 1121 * The tran_tgt_init() entry point enables the HBA to allocate and initialize 1122 * any per-target resources. tran_tgt_init() also enables the HBA to qualify 1123 * the device's address as valid and supportable for that particular HBA. 1124 * By returning DDI_FAILURE, the instance of the target driver for that device 1125 * is not probed or attached. 1126 */ 1127 /*ARGSUSED*/ 1128 static int 1129 megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 1130 scsi_hba_tran_t *tran, struct scsi_device *sd) 1131 { 1132 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1133 1134 return (DDI_SUCCESS); 1135 } 1136 1137 /* 1138 * tran_init_pkt - allocate & initialize a scsi_pkt structure 1139 * @ap: 1140 * @pkt: 1141 * @bp: 1142 * @cmdlen: 1143 * @statuslen: 1144 * @tgtlen: 1145 * @flags: 1146 * @callback: 1147 * 1148 * The tran_init_pkt() entry point allocates and initializes a scsi_pkt 1149 * structure and DMA resources for a target driver request. The 1150 * tran_init_pkt() entry point is called when the target driver calls the 1151 * SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point 1152 * is a request to perform one or more of three possible services: 1153 * - allocation and initialization of a scsi_pkt structure 1154 * - allocation of DMA resources for data transfer 1155 * - reallocation of DMA resources for the next portion of the data transfer 1156 */ 1157 static struct scsi_pkt * 1158 megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt, 1159 struct buf *bp, int cmdlen, int statuslen, int tgtlen, 1160 int flags, int (*callback)(), caddr_t arg) 1161 { 1162 struct scsa_cmd *acmd; 1163 struct megasas_instance *instance; 1164 struct scsi_pkt *new_pkt; 1165 1166 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1167 1168 instance = ADDR2MEGA(ap); 1169 1170 /* step #1 : pkt allocation */ 1171 if (pkt == NULL) { 1172 pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen, 1173 tgtlen, sizeof (struct scsa_cmd), callback, arg); 1174 if (pkt == NULL) { 1175 return (NULL); 1176 } 1177 1178 acmd = PKT2CMD(pkt); 1179 1180 /* 1181 * Initialize the new pkt - we redundantly initialize 1182 * all the fields for illustrative purposes. 1183 */ 1184 acmd->cmd_pkt = pkt; 1185 acmd->cmd_flags = 0; 1186 acmd->cmd_scblen = statuslen; 1187 acmd->cmd_cdblen = cmdlen; 1188 acmd->cmd_dmahandle = NULL; 1189 acmd->cmd_ncookies = 0; 1190 acmd->cmd_cookie = 0; 1191 acmd->cmd_cookiecnt = 0; 1192 acmd->cmd_nwin = 0; 1193 1194 pkt->pkt_address = *ap; 1195 pkt->pkt_comp = (void (*)())NULL; 1196 pkt->pkt_flags = 0; 1197 pkt->pkt_time = 0; 1198 pkt->pkt_resid = 0; 1199 pkt->pkt_state = 0; 1200 pkt->pkt_statistics = 0; 1201 pkt->pkt_reason = 0; 1202 new_pkt = pkt; 1203 } else { 1204 acmd = PKT2CMD(pkt); 1205 new_pkt = NULL; 1206 } 1207 1208 /* step #2 : dma allocation/move */ 1209 if (bp && bp->b_bcount != 0) { 1210 if (acmd->cmd_dmahandle == NULL) { 1211 if (megasas_dma_alloc(instance, pkt, bp, flags, 1212 callback) == -1) { 1213 if (new_pkt) { 1214 scsi_hba_pkt_free(ap, new_pkt); 1215 } 1216 1217 return ((struct scsi_pkt *)NULL); 1218 } 1219 } else { 1220 if (megasas_dma_move(instance, pkt, bp) == -1) { 1221 return ((struct scsi_pkt *)NULL); 1222 } 1223 } 1224 } 1225 1226 return (pkt); 1227 } 1228 1229 /* 1230 * tran_start - transport a SCSI command to the addressed target 1231 * @ap: 1232 * @pkt: 1233 * 1234 * The tran_start() entry point for a SCSI HBA driver is called to transport a 1235 * SCSI command to the addressed target. The SCSI command is described 1236 * entirely within the scsi_pkt structure, which the target driver allocated 1237 * through the HBA driver's tran_init_pkt() entry point. If the command 1238 * involves a data transfer, DMA resources must also have been allocated for 1239 * the scsi_pkt structure. 1240 * 1241 * Return Values : 1242 * TRAN_BUSY - request queue is full, no more free scbs 1243 * TRAN_ACCEPT - pkt has been submitted to the instance 1244 */ 1245 static int 1246 megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt) 1247 { 1248 uchar_t cmd_done = 0; 1249 1250 struct megasas_instance *instance = ADDR2MEGA(ap); 1251 struct megasas_cmd *cmd; 1252 1253 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x", 1254 __func__, __LINE__, pkt->pkt_cdbp[0])); 1255 1256 pkt->pkt_reason = CMD_CMPLT; 1257 *pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */ 1258 1259 cmd = build_cmd(instance, ap, pkt, &cmd_done); 1260 1261 /* 1262 * Check if the command is already completed by the mega_build_cmd() 1263 * routine. In which case the busy_flag would be clear and scb will be 1264 * NULL and appropriate reason provided in pkt_reason field 1265 */ 1266 if (cmd_done) { 1267 if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && pkt->pkt_comp) { 1268 (*pkt->pkt_comp)(pkt); 1269 } 1270 pkt->pkt_reason = CMD_CMPLT; 1271 pkt->pkt_scbp[0] = STATUS_GOOD; 1272 pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET 1273 | STATE_SENT_CMD; 1274 return (TRAN_ACCEPT); 1275 } 1276 1277 if (cmd == NULL) { 1278 return (TRAN_BUSY); 1279 } 1280 1281 if ((pkt->pkt_flags & FLAG_NOINTR) == 0) { 1282 if (instance->fw_outstanding > instance->max_fw_cmds) { 1283 con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy")); 1284 return_mfi_pkt(instance, cmd); 1285 return (TRAN_BUSY); 1286 } 1287 1288 /* Syncronize the Cmd frame for the controller */ 1289 (void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0, 1290 DDI_DMA_SYNC_FORDEV); 1291 1292 instance->func_ptr->issue_cmd(cmd, instance); 1293 1294 } else { 1295 struct megasas_header *hdr = &cmd->frame->hdr; 1296 1297 cmd->sync_cmd = MEGASAS_TRUE; 1298 1299 instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd); 1300 1301 pkt->pkt_reason = CMD_CMPLT; 1302 pkt->pkt_statistics = 0; 1303 pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS; 1304 1305 switch (hdr->cmd_status) { 1306 case MFI_STAT_OK: 1307 pkt->pkt_scbp[0] = STATUS_GOOD; 1308 break; 1309 1310 case MFI_STAT_SCSI_DONE_WITH_ERROR: 1311 1312 pkt->pkt_reason = CMD_CMPLT; 1313 pkt->pkt_statistics = 0; 1314 1315 ((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1; 1316 break; 1317 1318 case MFI_STAT_DEVICE_NOT_FOUND: 1319 pkt->pkt_reason = CMD_DEV_GONE; 1320 pkt->pkt_statistics = STAT_DISCON; 1321 break; 1322 1323 default: 1324 ((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1; 1325 } 1326 1327 return_mfi_pkt(instance, cmd); 1328 (void) megasas_common_check(instance, cmd); 1329 1330 if (pkt->pkt_comp) { 1331 (*pkt->pkt_comp)(pkt); 1332 } 1333 1334 } 1335 1336 return (TRAN_ACCEPT); 1337 } 1338 1339 /* 1340 * tran_abort - Abort any commands that are currently in transport 1341 * @ap: 1342 * @pkt: 1343 * 1344 * The tran_abort() entry point for a SCSI HBA driver is called to abort any 1345 * commands that are currently in transport for a particular target. This entry 1346 * point is called when a target driver calls scsi_abort(). The tran_abort() 1347 * entry point should attempt to abort the command denoted by the pkt 1348 * parameter. If the pkt parameter is NULL, tran_abort() should attempt to 1349 * abort all outstanding commands in the transport layer for the particular 1350 * target or logical unit. 1351 */ 1352 /*ARGSUSED*/ 1353 static int 1354 megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt) 1355 { 1356 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1357 1358 /* aborting command not supported by H/W */ 1359 1360 return (DDI_FAILURE); 1361 } 1362 1363 /* 1364 * tran_reset - reset either the SCSI bus or target 1365 * @ap: 1366 * @level: 1367 * 1368 * The tran_reset() entry point for a SCSI HBA driver is called to reset either 1369 * the SCSI bus or a particular SCSI target device. This entry point is called 1370 * when a target driver calls scsi_reset(). The tran_reset() entry point must 1371 * reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the 1372 * particular target or logical unit must be reset. 1373 */ 1374 /*ARGSUSED*/ 1375 static int 1376 megasas_tran_reset(struct scsi_address *ap, int level) 1377 { 1378 struct megasas_instance *instance = ADDR2MEGA(ap); 1379 1380 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1381 1382 if (wait_for_outstanding(instance)) { 1383 return (DDI_FAILURE); 1384 } else { 1385 return (DDI_SUCCESS); 1386 } 1387 } 1388 1389 /* 1390 * tran_bus_reset - reset the SCSI bus 1391 * @dip: 1392 * @level: 1393 * 1394 * The tran_bus_reset() vector in the scsi_hba_tran structure should be 1395 * initialized during the HBA driver's attach(). The vector should point to 1396 * an HBA entry point that is to be called when a user initiates a bus reset. 1397 * Implementation is hardware specific. If the HBA driver cannot reset the 1398 * SCSI bus without affecting the targets, the driver should fail RESET_BUS 1399 * or not initialize this vector. 1400 */ 1401 /*ARGSUSED*/ 1402 static int 1403 megasas_tran_bus_reset(dev_info_t *dip, int level) 1404 { 1405 int instance_no = ddi_get_instance(dip); 1406 1407 struct megasas_instance *instance = ddi_get_soft_state(megasas_state, 1408 instance_no); 1409 1410 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1411 1412 if (wait_for_outstanding(instance)) { 1413 return (DDI_FAILURE); 1414 } else { 1415 return (DDI_SUCCESS); 1416 } 1417 } 1418 1419 /* 1420 * tran_getcap - get one of a set of SCSA-defined capabilities 1421 * @ap: 1422 * @cap: 1423 * @whom: 1424 * 1425 * The target driver can request the current setting of the capability for a 1426 * particular target by setting the whom parameter to nonzero. A whom value of 1427 * zero indicates a request for the current setting of the general capability 1428 * for the SCSI bus or for adapter hardware. The tran_getcap() should return -1 1429 * for undefined capabilities or the current value of the requested capability. 1430 */ 1431 /*ARGSUSED*/ 1432 static int 1433 megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom) 1434 { 1435 int rval = 0; 1436 1437 struct megasas_instance *instance = ADDR2MEGA(ap); 1438 1439 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1440 1441 /* we do allow inquiring about capabilities for other targets */ 1442 if (cap == NULL) { 1443 return (-1); 1444 } 1445 1446 switch (scsi_hba_lookup_capstr(cap)) { 1447 case SCSI_CAP_DMA_MAX: 1448 /* Limit to 16MB max transfer */ 1449 rval = megasas_max_cap_maxxfer; 1450 break; 1451 case SCSI_CAP_MSG_OUT: 1452 rval = 1; 1453 break; 1454 case SCSI_CAP_DISCONNECT: 1455 rval = 0; 1456 break; 1457 case SCSI_CAP_SYNCHRONOUS: 1458 rval = 0; 1459 break; 1460 case SCSI_CAP_WIDE_XFER: 1461 rval = 1; 1462 break; 1463 case SCSI_CAP_TAGGED_QING: 1464 rval = 1; 1465 break; 1466 case SCSI_CAP_UNTAGGED_QING: 1467 rval = 1; 1468 break; 1469 case SCSI_CAP_PARITY: 1470 rval = 1; 1471 break; 1472 case SCSI_CAP_INITIATOR_ID: 1473 rval = instance->init_id; 1474 break; 1475 case SCSI_CAP_ARQ: 1476 rval = 1; 1477 break; 1478 case SCSI_CAP_LINKED_CMDS: 1479 rval = 0; 1480 break; 1481 case SCSI_CAP_RESET_NOTIFICATION: 1482 rval = 1; 1483 break; 1484 case SCSI_CAP_GEOMETRY: 1485 rval = -1; 1486 1487 break; 1488 default: 1489 con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x", 1490 scsi_hba_lookup_capstr(cap))); 1491 rval = -1; 1492 break; 1493 } 1494 1495 return (rval); 1496 } 1497 1498 /* 1499 * tran_setcap - set one of a set of SCSA-defined capabilities 1500 * @ap: 1501 * @cap: 1502 * @value: 1503 * @whom: 1504 * 1505 * The target driver might request that the new value be set for a particular 1506 * target by setting the whom parameter to nonzero. A whom value of zero 1507 * means that request is to set the new value for the SCSI bus or for adapter 1508 * hardware in general. 1509 * The tran_setcap() should return the following values as appropriate: 1510 * - -1 for undefined capabilities 1511 * - 0 if the HBA driver cannot set the capability to the requested value 1512 * - 1 if the HBA driver is able to set the capability to the requested value 1513 */ 1514 /*ARGSUSED*/ 1515 static int 1516 megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom) 1517 { 1518 int rval = 1; 1519 1520 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1521 1522 /* We don't allow setting capabilities for other targets */ 1523 if (cap == NULL || whom == 0) { 1524 return (-1); 1525 } 1526 1527 switch (scsi_hba_lookup_capstr(cap)) { 1528 case SCSI_CAP_DMA_MAX: 1529 case SCSI_CAP_MSG_OUT: 1530 case SCSI_CAP_PARITY: 1531 case SCSI_CAP_LINKED_CMDS: 1532 case SCSI_CAP_RESET_NOTIFICATION: 1533 case SCSI_CAP_DISCONNECT: 1534 case SCSI_CAP_SYNCHRONOUS: 1535 case SCSI_CAP_UNTAGGED_QING: 1536 case SCSI_CAP_WIDE_XFER: 1537 case SCSI_CAP_INITIATOR_ID: 1538 case SCSI_CAP_ARQ: 1539 /* 1540 * None of these are settable via 1541 * the capability interface. 1542 */ 1543 break; 1544 case SCSI_CAP_TAGGED_QING: 1545 rval = 1; 1546 break; 1547 case SCSI_CAP_SECTOR_SIZE: 1548 rval = 1; 1549 break; 1550 1551 case SCSI_CAP_TOTAL_SECTORS: 1552 rval = 1; 1553 break; 1554 default: 1555 rval = -1; 1556 break; 1557 } 1558 1559 return (rval); 1560 } 1561 1562 /* 1563 * tran_destroy_pkt - deallocate scsi_pkt structure 1564 * @ap: 1565 * @pkt: 1566 * 1567 * The tran_destroy_pkt() entry point is the HBA driver function that 1568 * deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is 1569 * called when the target driver calls scsi_destroy_pkt(). The 1570 * tran_destroy_pkt() entry point must free any DMA resources that have been 1571 * allocated for the packet. An implicit DMA synchronization occurs if the 1572 * DMA resources are freed and any cached data remains after the completion 1573 * of the transfer. 1574 */ 1575 static void 1576 megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 1577 { 1578 struct scsa_cmd *acmd = PKT2CMD(pkt); 1579 1580 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1581 1582 if (acmd->cmd_flags & CFLAG_DMAVALID) { 1583 acmd->cmd_flags &= ~CFLAG_DMAVALID; 1584 1585 (void) ddi_dma_unbind_handle(acmd->cmd_dmahandle); 1586 1587 ddi_dma_free_handle(&acmd->cmd_dmahandle); 1588 1589 acmd->cmd_dmahandle = NULL; 1590 } 1591 1592 /* free the pkt */ 1593 scsi_hba_pkt_free(ap, pkt); 1594 } 1595 1596 /* 1597 * tran_dmafree - deallocates DMA resources 1598 * @ap: 1599 * @pkt: 1600 * 1601 * The tran_dmafree() entry point deallocates DMAQ resources that have been 1602 * allocated for a scsi_pkt structure. The tran_dmafree() entry point is 1603 * called when the target driver calls scsi_dmafree(). The tran_dmafree() must 1604 * free only DMA resources allocated for a scsi_pkt structure, not the 1605 * scsi_pkt itself. When DMA resources are freed, a DMA synchronization is 1606 * implicitly performed. 1607 */ 1608 /*ARGSUSED*/ 1609 static void 1610 megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt) 1611 { 1612 register struct scsa_cmd *acmd = PKT2CMD(pkt); 1613 1614 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1615 1616 if (acmd->cmd_flags & CFLAG_DMAVALID) { 1617 acmd->cmd_flags &= ~CFLAG_DMAVALID; 1618 1619 (void) ddi_dma_unbind_handle(acmd->cmd_dmahandle); 1620 1621 ddi_dma_free_handle(&acmd->cmd_dmahandle); 1622 1623 acmd->cmd_dmahandle = NULL; 1624 } 1625 } 1626 1627 /* 1628 * tran_sync_pkt - synchronize the DMA object allocated 1629 * @ap: 1630 * @pkt: 1631 * 1632 * The tran_sync_pkt() entry point synchronizes the DMA object allocated for 1633 * the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt() 1634 * entry point is called when the target driver calls scsi_sync_pkt(). If the 1635 * data transfer direction is a DMA read from device to memory, tran_sync_pkt() 1636 * must synchronize the CPU's view of the data. If the data transfer direction 1637 * is a DMA write from memory to device, tran_sync_pkt() must synchronize the 1638 * device's view of the data. 1639 */ 1640 /*ARGSUSED*/ 1641 static void 1642 megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 1643 { 1644 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1645 1646 /* 1647 * following 'ddi_dma_sync()' API call 1648 * already called for each I/O in the ISR 1649 */ 1650 #if 0 1651 int i; 1652 1653 register struct scsa_cmd *acmd = PKT2CMD(pkt); 1654 1655 if (acmd->cmd_flags & CFLAG_DMAVALID) { 1656 (void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset, 1657 acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ? 1658 DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU); 1659 } 1660 #endif 1661 } 1662 1663 /*ARGSUSED*/ 1664 static int 1665 megasas_tran_quiesce(dev_info_t *dip) 1666 { 1667 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1668 1669 return (1); 1670 } 1671 1672 /*ARGSUSED*/ 1673 static int 1674 megasas_tran_unquiesce(dev_info_t *dip) 1675 { 1676 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1677 1678 return (1); 1679 } 1680 1681 /* 1682 * megasas_isr(caddr_t) 1683 * 1684 * The Interrupt Service Routine 1685 * 1686 * Collect status for all completed commands and do callback 1687 * 1688 */ 1689 static uint_t 1690 megasas_isr(struct megasas_instance *instance) 1691 { 1692 int need_softintr; 1693 uint32_t producer; 1694 uint32_t consumer; 1695 uint32_t context; 1696 1697 struct megasas_cmd *cmd; 1698 1699 con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__)); 1700 1701 ASSERT(instance); 1702 if (!instance->func_ptr->intr_ack(instance)) { 1703 return (DDI_INTR_UNCLAIMED); 1704 } 1705 1706 (void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle, 1707 0, 0, DDI_DMA_SYNC_FORCPU); 1708 1709 if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle) 1710 != DDI_SUCCESS) { 1711 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 1712 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 1713 return (DDI_INTR_UNCLAIMED); 1714 } 1715 1716 producer = *instance->producer; 1717 consumer = *instance->consumer; 1718 1719 con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ", 1720 producer, consumer)); 1721 1722 mutex_enter(&instance->completed_pool_mtx); 1723 1724 while (consumer != producer) { 1725 context = instance->reply_queue[consumer]; 1726 cmd = instance->cmd_list[context]; 1727 mlist_add_tail(&cmd->list, &instance->completed_pool_list); 1728 1729 consumer++; 1730 if (consumer == (instance->max_fw_cmds + 1)) { 1731 consumer = 0; 1732 } 1733 } 1734 1735 mutex_exit(&instance->completed_pool_mtx); 1736 1737 *instance->consumer = consumer; 1738 (void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle, 1739 0, 0, DDI_DMA_SYNC_FORDEV); 1740 1741 if (instance->softint_running) { 1742 need_softintr = 0; 1743 } else { 1744 need_softintr = 1; 1745 } 1746 1747 if (instance->isr_level == HIGH_LEVEL_INTR) { 1748 if (need_softintr) { 1749 ddi_trigger_softintr(instance->soft_intr_id); 1750 } 1751 } else { 1752 /* 1753 * Not a high-level interrupt, therefore call the soft level 1754 * interrupt explicitly 1755 */ 1756 (void) megasas_softintr(instance); 1757 } 1758 1759 return (DDI_INTR_CLAIMED); 1760 } 1761 1762 1763 /* 1764 * ************************************************************************** * 1765 * * 1766 * libraries * 1767 * * 1768 * ************************************************************************** * 1769 */ 1770 /* 1771 * get_mfi_pkt : Get a command from the free pool 1772 */ 1773 static struct megasas_cmd * 1774 get_mfi_pkt(struct megasas_instance *instance) 1775 { 1776 mlist_t *head = &instance->cmd_pool_list; 1777 struct megasas_cmd *cmd = NULL; 1778 1779 mutex_enter(&instance->cmd_pool_mtx); 1780 ASSERT(mutex_owned(&instance->cmd_pool_mtx)); 1781 1782 if (!mlist_empty(head)) { 1783 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1784 cmd = mlist_entry(head->next, struct megasas_cmd, list); 1785 mlist_del_init(head->next); 1786 } 1787 if (cmd != NULL) 1788 cmd->pkt = NULL; 1789 mutex_exit(&instance->cmd_pool_mtx); 1790 1791 return (cmd); 1792 } 1793 1794 /* 1795 * return_mfi_pkt : Return a cmd to free command pool 1796 */ 1797 static void 1798 return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd) 1799 { 1800 mutex_enter(&instance->cmd_pool_mtx); 1801 ASSERT(mutex_owned(&instance->cmd_pool_mtx)); 1802 1803 mlist_add(&cmd->list, &instance->cmd_pool_list); 1804 1805 mutex_exit(&instance->cmd_pool_mtx); 1806 } 1807 1808 /* 1809 * destroy_mfi_frame_pool 1810 */ 1811 static void 1812 destroy_mfi_frame_pool(struct megasas_instance *instance) 1813 { 1814 int i; 1815 uint32_t max_cmd = instance->max_fw_cmds; 1816 1817 struct megasas_cmd *cmd; 1818 1819 /* return all frames to pool */ 1820 for (i = 0; i < max_cmd; i++) { 1821 1822 cmd = instance->cmd_list[i]; 1823 1824 if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED) 1825 (void) mega_free_dma_obj(instance, cmd->frame_dma_obj); 1826 1827 cmd->frame_dma_obj_status = DMA_OBJ_FREED; 1828 } 1829 1830 } 1831 1832 /* 1833 * create_mfi_frame_pool 1834 */ 1835 static int 1836 create_mfi_frame_pool(struct megasas_instance *instance) 1837 { 1838 int i = 0; 1839 int cookie_cnt; 1840 uint16_t max_cmd; 1841 uint16_t sge_sz; 1842 uint32_t sgl_sz; 1843 uint32_t tot_frame_size; 1844 1845 struct megasas_cmd *cmd; 1846 1847 max_cmd = instance->max_fw_cmds; 1848 1849 sge_sz = sizeof (struct megasas_sge64); 1850 1851 /* calculated the number of 64byte frames required for SGL */ 1852 sgl_sz = sge_sz * instance->max_num_sge; 1853 tot_frame_size = sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH; 1854 1855 con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: " 1856 "sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size)); 1857 1858 while (i < max_cmd) { 1859 cmd = instance->cmd_list[i]; 1860 1861 cmd->frame_dma_obj.size = tot_frame_size; 1862 cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr; 1863 cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 1864 cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 1865 cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1; 1866 cmd->frame_dma_obj.dma_attr.dma_attr_align = 64; 1867 1868 1869 cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj); 1870 1871 if (cookie_cnt == -1 || cookie_cnt > 1) { 1872 con_log(CL_ANN, (CE_WARN, 1873 "create_mfi_frame_pool: could not alloc.")); 1874 return (DDI_FAILURE); 1875 } 1876 1877 bzero(cmd->frame_dma_obj.buffer, tot_frame_size); 1878 1879 cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED; 1880 cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer; 1881 cmd->frame_phys_addr = 1882 cmd->frame_dma_obj.dma_cookie[0].dmac_address; 1883 1884 cmd->sense = (uint8_t *)(((unsigned long) 1885 cmd->frame_dma_obj.buffer) + 1886 tot_frame_size - SENSE_LENGTH); 1887 cmd->sense_phys_addr = 1888 cmd->frame_dma_obj.dma_cookie[0].dmac_address + 1889 tot_frame_size - SENSE_LENGTH; 1890 1891 if (!cmd->frame || !cmd->sense) { 1892 con_log(CL_ANN, (CE_NOTE, 1893 "megasas: pci_pool_alloc failed \n")); 1894 1895 return (-ENOMEM); 1896 } 1897 1898 cmd->frame->io.context = cmd->index; 1899 i++; 1900 1901 con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x", 1902 cmd->frame->io.context, cmd->frame_phys_addr)); 1903 } 1904 1905 return (DDI_SUCCESS); 1906 } 1907 1908 /* 1909 * free_additional_dma_buffer 1910 */ 1911 static void 1912 free_additional_dma_buffer(struct megasas_instance *instance) 1913 { 1914 if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) { 1915 (void) mega_free_dma_obj(instance, 1916 instance->mfi_internal_dma_obj); 1917 instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED; 1918 } 1919 1920 if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) { 1921 (void) mega_free_dma_obj(instance, 1922 instance->mfi_evt_detail_obj); 1923 instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED; 1924 } 1925 } 1926 1927 /* 1928 * alloc_additional_dma_buffer 1929 */ 1930 static int 1931 alloc_additional_dma_buffer(struct megasas_instance *instance) 1932 { 1933 uint32_t reply_q_sz; 1934 uint32_t internal_buf_size = PAGESIZE*2; 1935 1936 /* max cmds plus 1 + producer & consumer */ 1937 reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2); 1938 1939 instance->mfi_internal_dma_obj.size = internal_buf_size; 1940 instance->mfi_internal_dma_obj.dma_attr = megasas_generic_dma_attr; 1941 instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 1942 instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max = 1943 0xFFFFFFFFU; 1944 instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen = 1; 1945 1946 if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj) 1947 != 1) { 1948 con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q")); 1949 return (DDI_FAILURE); 1950 } 1951 1952 bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size); 1953 1954 instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED; 1955 1956 instance->producer = (uint32_t *)((unsigned long) 1957 instance->mfi_internal_dma_obj.buffer); 1958 instance->consumer = (uint32_t *)((unsigned long) 1959 instance->mfi_internal_dma_obj.buffer + 4); 1960 instance->reply_queue = (uint32_t *)((unsigned long) 1961 instance->mfi_internal_dma_obj.buffer + 8); 1962 instance->internal_buf = (caddr_t)(((unsigned long) 1963 instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8); 1964 instance->internal_buf_dmac_add = 1965 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 1966 reply_q_sz; 1967 instance->internal_buf_size = internal_buf_size - 1968 (reply_q_sz + 8); 1969 1970 /* allocate evt_detail */ 1971 instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail); 1972 instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr; 1973 instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 1974 instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 1975 instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1; 1976 instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1; 1977 1978 if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) { 1979 con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: " 1980 "could not data transfer buffer alloc.")); 1981 return (DDI_FAILURE); 1982 } 1983 1984 bzero(instance->mfi_evt_detail_obj.buffer, 1985 sizeof (struct megasas_evt_detail)); 1986 1987 instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED; 1988 1989 return (DDI_SUCCESS); 1990 } 1991 1992 /* 1993 * free_space_for_mfi 1994 */ 1995 static void 1996 free_space_for_mfi(struct megasas_instance *instance) 1997 { 1998 int i; 1999 uint32_t max_cmd = instance->max_fw_cmds; 2000 2001 /* already freed */ 2002 if (instance->cmd_list == NULL) { 2003 return; 2004 } 2005 2006 free_additional_dma_buffer(instance); 2007 2008 /* first free the MFI frame pool */ 2009 destroy_mfi_frame_pool(instance); 2010 2011 /* free all the commands in the cmd_list */ 2012 for (i = 0; i < instance->max_fw_cmds; i++) { 2013 kmem_free(instance->cmd_list[i], 2014 sizeof (struct megasas_cmd)); 2015 2016 instance->cmd_list[i] = NULL; 2017 } 2018 2019 /* free the cmd_list buffer itself */ 2020 kmem_free(instance->cmd_list, 2021 sizeof (struct megasas_cmd *) * max_cmd); 2022 2023 instance->cmd_list = NULL; 2024 2025 INIT_LIST_HEAD(&instance->cmd_pool_list); 2026 } 2027 2028 /* 2029 * alloc_space_for_mfi 2030 */ 2031 static int 2032 alloc_space_for_mfi(struct megasas_instance *instance) 2033 { 2034 int i; 2035 uint32_t max_cmd; 2036 size_t sz; 2037 2038 struct megasas_cmd *cmd; 2039 2040 max_cmd = instance->max_fw_cmds; 2041 sz = sizeof (struct megasas_cmd *) * max_cmd; 2042 2043 /* 2044 * instance->cmd_list is an array of struct megasas_cmd pointers. 2045 * Allocate the dynamic array first and then allocate individual 2046 * commands. 2047 */ 2048 instance->cmd_list = kmem_zalloc(sz, KM_SLEEP); 2049 ASSERT(instance->cmd_list); 2050 2051 for (i = 0; i < max_cmd; i++) { 2052 instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd), 2053 KM_SLEEP); 2054 ASSERT(instance->cmd_list[i]); 2055 } 2056 2057 INIT_LIST_HEAD(&instance->cmd_pool_list); 2058 2059 /* add all the commands to command pool (instance->cmd_pool) */ 2060 for (i = 0; i < max_cmd; i++) { 2061 cmd = instance->cmd_list[i]; 2062 cmd->index = i; 2063 2064 mlist_add_tail(&cmd->list, &instance->cmd_pool_list); 2065 } 2066 2067 /* create a frame pool and assign one frame to each cmd */ 2068 if (create_mfi_frame_pool(instance)) { 2069 con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n")); 2070 return (DDI_FAILURE); 2071 } 2072 2073 /* create a frame pool and assign one frame to each cmd */ 2074 if (alloc_additional_dma_buffer(instance)) { 2075 con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n")); 2076 return (DDI_FAILURE); 2077 } 2078 2079 return (DDI_SUCCESS); 2080 } 2081 2082 /* 2083 * get_ctrl_info 2084 */ 2085 static int 2086 get_ctrl_info(struct megasas_instance *instance, 2087 struct megasas_ctrl_info *ctrl_info) 2088 { 2089 int ret = 0; 2090 2091 struct megasas_cmd *cmd; 2092 struct megasas_dcmd_frame *dcmd; 2093 struct megasas_ctrl_info *ci; 2094 2095 cmd = get_mfi_pkt(instance); 2096 2097 if (!cmd) { 2098 con_log(CL_ANN, (CE_WARN, 2099 "Failed to get a cmd for ctrl info\n")); 2100 return (DDI_FAILURE); 2101 } 2102 2103 dcmd = &cmd->frame->dcmd; 2104 2105 ci = (struct megasas_ctrl_info *)instance->internal_buf; 2106 2107 if (!ci) { 2108 con_log(CL_ANN, (CE_WARN, 2109 "Failed to alloc mem for ctrl info\n")); 2110 return_mfi_pkt(instance, cmd); 2111 return (DDI_FAILURE); 2112 } 2113 2114 (void) memset(ci, 0, sizeof (struct megasas_ctrl_info)); 2115 2116 /* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */ 2117 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 2118 2119 dcmd->cmd = MFI_CMD_OP_DCMD; 2120 dcmd->cmd_status = MFI_CMD_STATUS_POLL_MODE; 2121 dcmd->sge_count = 1; 2122 dcmd->flags = MFI_FRAME_DIR_READ; 2123 dcmd->timeout = 0; 2124 dcmd->data_xfer_len = sizeof (struct megasas_ctrl_info); 2125 dcmd->opcode = MR_DCMD_CTRL_GET_INFO; 2126 dcmd->sgl.sge32[0].phys_addr = instance->internal_buf_dmac_add; 2127 dcmd->sgl.sge32[0].length = sizeof (struct megasas_ctrl_info); 2128 2129 cmd->frame_count = 1; 2130 2131 if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) { 2132 ret = 0; 2133 (void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info)); 2134 } else { 2135 con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n")); 2136 ret = -1; 2137 } 2138 2139 return_mfi_pkt(instance, cmd); 2140 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) { 2141 ret = -1; 2142 } 2143 2144 return (ret); 2145 } 2146 2147 /* 2148 * abort_aen_cmd 2149 */ 2150 static int 2151 abort_aen_cmd(struct megasas_instance *instance, 2152 struct megasas_cmd *cmd_to_abort) 2153 { 2154 int ret = 0; 2155 2156 struct megasas_cmd *cmd; 2157 struct megasas_abort_frame *abort_fr; 2158 2159 cmd = get_mfi_pkt(instance); 2160 2161 if (!cmd) { 2162 con_log(CL_ANN, (CE_WARN, 2163 "Failed to get a cmd for ctrl info\n")); 2164 return (DDI_FAILURE); 2165 } 2166 2167 abort_fr = &cmd->frame->abort; 2168 2169 /* prepare and issue the abort frame */ 2170 abort_fr->cmd = MFI_CMD_OP_ABORT; 2171 abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE; 2172 abort_fr->flags = 0; 2173 abort_fr->abort_context = cmd_to_abort->index; 2174 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr; 2175 abort_fr->abort_mfi_phys_addr_hi = 0; 2176 2177 instance->aen_cmd->abort_aen = 1; 2178 2179 cmd->sync_cmd = MEGASAS_TRUE; 2180 cmd->frame_count = 1; 2181 2182 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 2183 con_log(CL_ANN, (CE_WARN, 2184 "abort_aen_cmd: issue_cmd_in_sync_mode failed\n")); 2185 ret = -1; 2186 } else { 2187 ret = 0; 2188 } 2189 2190 instance->aen_cmd->abort_aen = 1; 2191 instance->aen_cmd = 0; 2192 2193 return_mfi_pkt(instance, cmd); 2194 (void) megasas_common_check(instance, cmd); 2195 2196 return (ret); 2197 } 2198 2199 /* 2200 * init_mfi 2201 */ 2202 static int 2203 init_mfi(struct megasas_instance *instance) 2204 { 2205 off_t reglength; 2206 struct megasas_cmd *cmd; 2207 struct megasas_ctrl_info ctrl_info; 2208 struct megasas_init_frame *init_frame; 2209 struct megasas_init_queue_info *initq_info; 2210 2211 if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, ®length) 2212 != DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) { 2213 return (DDI_FAILURE); 2214 } 2215 2216 if (reglength > DEFAULT_MFI_MEM_SZ) { 2217 reglength = DEFAULT_MFI_MEM_SZ; 2218 con_log(CL_DLEVEL1, (CE_NOTE, 2219 "mega: register length to map is 0x%lx bytes", reglength)); 2220 } 2221 2222 if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO, 2223 &instance->regmap, 0, reglength, &endian_attr, 2224 &instance->regmap_handle) != DDI_SUCCESS) { 2225 con_log(CL_ANN, (CE_NOTE, 2226 "megaraid: couldn't map control registers")); 2227 2228 goto fail_mfi_reg_setup; 2229 } 2230 2231 /* we expect the FW state to be READY */ 2232 if (mfi_state_transition_to_ready(instance)) { 2233 con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready")); 2234 goto fail_ready_state; 2235 } 2236 2237 /* get various operational parameters from status register */ 2238 instance->max_num_sge = 2239 (instance->func_ptr->read_fw_status_reg(instance) & 2240 0xFF0000) >> 0x10; 2241 /* 2242 * Reduce the max supported cmds by 1. This is to ensure that the 2243 * reply_q_sz (1 more than the max cmd that driver may send) 2244 * does not exceed max cmds that the FW can support 2245 */ 2246 instance->max_fw_cmds = 2247 instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF; 2248 instance->max_fw_cmds = instance->max_fw_cmds - 1; 2249 2250 instance->max_num_sge = 2251 (instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ? 2252 MEGASAS_MAX_SGE_CNT : instance->max_num_sge; 2253 2254 /* create a pool of commands */ 2255 if (alloc_space_for_mfi(instance)) 2256 goto fail_alloc_fw_space; 2257 2258 /* disable interrupt for initial preparation */ 2259 instance->func_ptr->disable_intr(instance); 2260 2261 /* 2262 * Prepare a init frame. Note the init frame points to queue info 2263 * structure. Each frame has SGL allocated after first 64 bytes. For 2264 * this frame - since we don't need any SGL - we use SGL's space as 2265 * queue info structure 2266 */ 2267 cmd = get_mfi_pkt(instance); 2268 2269 init_frame = (struct megasas_init_frame *)cmd->frame; 2270 initq_info = (struct megasas_init_queue_info *) 2271 ((unsigned long)init_frame + 64); 2272 2273 (void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE); 2274 (void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info)); 2275 2276 initq_info->init_flags = 0; 2277 2278 initq_info->reply_queue_entries = instance->max_fw_cmds + 1; 2279 2280 initq_info->producer_index_phys_addr_hi = 0; 2281 initq_info->producer_index_phys_addr_lo = 2282 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address; 2283 2284 initq_info->consumer_index_phys_addr_hi = 0; 2285 initq_info->consumer_index_phys_addr_lo = 2286 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4; 2287 2288 initq_info->reply_queue_start_phys_addr_hi = 0; 2289 initq_info->reply_queue_start_phys_addr_lo = 2290 instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8; 2291 2292 init_frame->cmd = MFI_CMD_OP_INIT; 2293 init_frame->cmd_status = MFI_CMD_STATUS_POLL_MODE; 2294 init_frame->flags = 0; 2295 init_frame->queue_info_new_phys_addr_lo = 2296 cmd->frame_phys_addr + 64; 2297 init_frame->queue_info_new_phys_addr_hi = 0; 2298 2299 init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info); 2300 2301 cmd->frame_count = 1; 2302 2303 /* issue the init frame in polled mode */ 2304 if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) { 2305 con_log(CL_ANN, (CE_WARN, "failed to init firmware")); 2306 goto fail_fw_init; 2307 } 2308 2309 return_mfi_pkt(instance, cmd); 2310 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) { 2311 goto fail_fw_init; 2312 } 2313 2314 /* gather misc FW related information */ 2315 if (!get_ctrl_info(instance, &ctrl_info)) { 2316 instance->max_sectors_per_req = ctrl_info.max_request_size; 2317 con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d", 2318 ctrl_info.product_name, ctrl_info.ld_present_count)); 2319 } else { 2320 instance->max_sectors_per_req = instance->max_num_sge * 2321 PAGESIZE / 512; 2322 } 2323 2324 if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) { 2325 goto fail_fw_init; 2326 } 2327 2328 return (0); 2329 2330 fail_fw_init: 2331 fail_alloc_fw_space: 2332 2333 free_space_for_mfi(instance); 2334 2335 fail_ready_state: 2336 ddi_regs_map_free(&instance->regmap_handle); 2337 2338 fail_mfi_reg_setup: 2339 return (DDI_FAILURE); 2340 } 2341 2342 /* 2343 * mfi_state_transition_to_ready : Move the FW to READY state 2344 * 2345 * @reg_set : MFI register set 2346 */ 2347 static int 2348 mfi_state_transition_to_ready(struct megasas_instance *instance) 2349 { 2350 int i; 2351 uint8_t max_wait; 2352 uint32_t fw_ctrl; 2353 uint32_t fw_state; 2354 uint32_t cur_state; 2355 2356 fw_state = 2357 instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK; 2358 con_log(CL_ANN1, (CE_NOTE, 2359 "mfi_state_transition_to_ready:FW state = 0x%x", fw_state)); 2360 2361 while (fw_state != MFI_STATE_READY) { 2362 con_log(CL_ANN, (CE_NOTE, 2363 "mfi_state_transition_to_ready:FW state%x", fw_state)); 2364 2365 switch (fw_state) { 2366 case MFI_STATE_FAULT: 2367 con_log(CL_ANN, (CE_NOTE, 2368 "megasas: FW in FAULT state!!")); 2369 2370 return (-ENODEV); 2371 case MFI_STATE_WAIT_HANDSHAKE: 2372 /* set the CLR bit in IMR0 */ 2373 con_log(CL_ANN, (CE_NOTE, 2374 "megasas: FW waiting for HANDSHAKE")); 2375 /* 2376 * PCI_Hot Plug: MFI F/W requires 2377 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG) 2378 * to be set 2379 */ 2380 /* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */ 2381 WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE | 2382 MFI_INIT_HOTPLUG, instance); 2383 2384 max_wait = 2; 2385 cur_state = MFI_STATE_WAIT_HANDSHAKE; 2386 break; 2387 case MFI_STATE_BOOT_MESSAGE_PENDING: 2388 /* set the CLR bit in IMR0 */ 2389 con_log(CL_ANN, (CE_NOTE, 2390 "megasas: FW state boot message pending")); 2391 /* 2392 * PCI_Hot Plug: MFI F/W requires 2393 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG) 2394 * to be set 2395 */ 2396 WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance); 2397 2398 max_wait = 10; 2399 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; 2400 break; 2401 case MFI_STATE_OPERATIONAL: 2402 /* bring it to READY state; assuming max wait 2 secs */ 2403 instance->func_ptr->disable_intr(instance); 2404 con_log(CL_ANN1, (CE_NOTE, 2405 "megasas: FW in OPERATIONAL state")); 2406 /* 2407 * PCI_Hot Plug: MFI F/W requires 2408 * (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT) 2409 * to be set 2410 */ 2411 /* WR_IB_DOORBELL(MFI_INIT_READY, instance); */ 2412 WR_IB_DOORBELL(MFI_RESET_FLAGS, instance); 2413 2414 max_wait = 10; 2415 cur_state = MFI_STATE_OPERATIONAL; 2416 break; 2417 case MFI_STATE_UNDEFINED: 2418 /* this state should not last for more than 2 seconds */ 2419 con_log(CL_ANN, (CE_NOTE, "FW state undefined\n")); 2420 2421 max_wait = 2; 2422 cur_state = MFI_STATE_UNDEFINED; 2423 break; 2424 case MFI_STATE_BB_INIT: 2425 max_wait = 2; 2426 cur_state = MFI_STATE_BB_INIT; 2427 break; 2428 case MFI_STATE_FW_INIT: 2429 max_wait = 2; 2430 cur_state = MFI_STATE_FW_INIT; 2431 break; 2432 case MFI_STATE_DEVICE_SCAN: 2433 max_wait = 10; 2434 cur_state = MFI_STATE_DEVICE_SCAN; 2435 break; 2436 default: 2437 con_log(CL_ANN, (CE_NOTE, 2438 "megasas: Unknown state 0x%x\n", fw_state)); 2439 return (-ENODEV); 2440 } 2441 2442 /* the cur_state should not last for more than max_wait secs */ 2443 for (i = 0; i < (max_wait * MILLISEC); i++) { 2444 /* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */ 2445 fw_state = 2446 instance->func_ptr->read_fw_status_reg(instance) & 2447 MFI_STATE_MASK; 2448 2449 if (fw_state == cur_state) { 2450 delay(1 * drv_usectohz(MILLISEC)); 2451 } else { 2452 break; 2453 } 2454 } 2455 2456 /* return error if fw_state hasn't changed after max_wait */ 2457 if (fw_state == cur_state) { 2458 con_log(CL_ANN, (CE_NOTE, 2459 "FW state hasn't changed in %d secs\n", max_wait)); 2460 return (-ENODEV); 2461 } 2462 }; 2463 2464 fw_ctrl = RD_IB_DOORBELL(instance); 2465 2466 con_log(CL_ANN1, (CE_NOTE, 2467 "mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl)); 2468 2469 /* 2470 * Write 0xF to the doorbell register to do the following. 2471 * - Abort all outstanding commands (bit 0). 2472 * - Transition from OPERATIONAL to READY state (bit 1). 2473 * - Discard (possible) low MFA posted in 64-bit mode (bit-2). 2474 * - Set to release FW to continue running (i.e. BIOS handshake 2475 * (bit 3). 2476 */ 2477 WR_IB_DOORBELL(0xF, instance); 2478 2479 if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) { 2480 return (-ENODEV); 2481 } 2482 return (0); 2483 } 2484 2485 /* 2486 * get_seq_num 2487 */ 2488 static int 2489 get_seq_num(struct megasas_instance *instance, 2490 struct megasas_evt_log_info *eli) 2491 { 2492 int ret = 0; 2493 2494 dma_obj_t dcmd_dma_obj; 2495 struct megasas_cmd *cmd; 2496 struct megasas_dcmd_frame *dcmd; 2497 2498 cmd = get_mfi_pkt(instance); 2499 2500 if (!cmd) { 2501 cmn_err(CE_WARN, "megasas: failed to get a cmd\n"); 2502 return (-ENOMEM); 2503 } 2504 2505 dcmd = &cmd->frame->dcmd; 2506 2507 /* allocate the data transfer buffer */ 2508 dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info); 2509 dcmd_dma_obj.dma_attr = megasas_generic_dma_attr; 2510 dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 2511 dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 2512 dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1; 2513 dcmd_dma_obj.dma_attr.dma_attr_align = 1; 2514 2515 if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) { 2516 con_log(CL_ANN, (CE_WARN, 2517 "get_seq_num: could not data transfer buffer alloc.")); 2518 return (DDI_FAILURE); 2519 } 2520 2521 (void) memset(dcmd_dma_obj.buffer, 0, 2522 sizeof (struct megasas_evt_log_info)); 2523 2524 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 2525 2526 dcmd->cmd = MFI_CMD_OP_DCMD; 2527 dcmd->cmd_status = 0; 2528 dcmd->sge_count = 1; 2529 dcmd->flags = MFI_FRAME_DIR_READ; 2530 dcmd->timeout = 0; 2531 dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info); 2532 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO; 2533 dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info); 2534 dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address; 2535 2536 cmd->sync_cmd = MEGASAS_TRUE; 2537 cmd->frame_count = 1; 2538 2539 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 2540 cmn_err(CE_WARN, "get_seq_num: " 2541 "failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n"); 2542 ret = -1; 2543 } else { 2544 /* copy the data back into callers buffer */ 2545 bcopy(dcmd_dma_obj.buffer, eli, 2546 sizeof (struct megasas_evt_log_info)); 2547 ret = 0; 2548 } 2549 2550 if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS) 2551 ret = -1; 2552 2553 return_mfi_pkt(instance, cmd); 2554 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) { 2555 ret = -1; 2556 } 2557 return (ret); 2558 } 2559 2560 /* 2561 * start_mfi_aen 2562 */ 2563 static int 2564 start_mfi_aen(struct megasas_instance *instance) 2565 { 2566 int ret = 0; 2567 2568 struct megasas_evt_log_info eli; 2569 union megasas_evt_class_locale class_locale; 2570 2571 /* get the latest sequence number from FW */ 2572 (void) memset(&eli, 0, sizeof (struct megasas_evt_log_info)); 2573 2574 if (get_seq_num(instance, &eli)) { 2575 cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n"); 2576 return (-1); 2577 } 2578 2579 /* register AEN with FW for latest sequence number plus 1 */ 2580 class_locale.members.reserved = 0; 2581 class_locale.members.locale = MR_EVT_LOCALE_ALL; 2582 class_locale.members.class = MR_EVT_CLASS_CRITICAL; 2583 2584 ret = register_mfi_aen(instance, eli.newest_seq_num + 1, 2585 class_locale.word); 2586 2587 if (ret) { 2588 cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n"); 2589 return (-1); 2590 } 2591 2592 return (ret); 2593 } 2594 2595 /* 2596 * flush_cache 2597 */ 2598 static void 2599 flush_cache(struct megasas_instance *instance) 2600 { 2601 struct megasas_cmd *cmd; 2602 struct megasas_dcmd_frame *dcmd; 2603 2604 if (!(cmd = get_mfi_pkt(instance))) 2605 return; 2606 2607 dcmd = &cmd->frame->dcmd; 2608 2609 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 2610 2611 dcmd->cmd = MFI_CMD_OP_DCMD; 2612 dcmd->cmd_status = 0x0; 2613 dcmd->sge_count = 0; 2614 dcmd->flags = MFI_FRAME_DIR_NONE; 2615 dcmd->timeout = 0; 2616 dcmd->data_xfer_len = 0; 2617 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH; 2618 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; 2619 2620 cmd->frame_count = 1; 2621 2622 if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) { 2623 cmn_err(CE_WARN, 2624 "flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n"); 2625 } 2626 con_log(CL_DLEVEL1, (CE_NOTE, "done")); 2627 return_mfi_pkt(instance, cmd); 2628 (void) megasas_common_check(instance, cmd); 2629 } 2630 2631 /* 2632 * service_mfi_aen- Completes an AEN command 2633 * @instance: Adapter soft state 2634 * @cmd: Command to be completed 2635 * 2636 */ 2637 static void 2638 service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) 2639 { 2640 uint32_t seq_num; 2641 struct megasas_evt_detail *evt_detail = 2642 (struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer; 2643 2644 cmd->cmd_status = cmd->frame->io.cmd_status; 2645 2646 if (cmd->cmd_status == ENODATA) { 2647 cmd->cmd_status = 0; 2648 } 2649 2650 /* 2651 * log the MFI AEN event to the sysevent queue so that 2652 * application will get noticed 2653 */ 2654 if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS", 2655 NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) { 2656 int instance_no = ddi_get_instance(instance->dip); 2657 con_log(CL_ANN, (CE_WARN, 2658 "mega%d: Failed to log AEN event", instance_no)); 2659 } 2660 2661 /* get copy of seq_num and class/locale for re-registration */ 2662 seq_num = evt_detail->seq_num; 2663 seq_num++; 2664 (void) memset(instance->mfi_evt_detail_obj.buffer, 0, 2665 sizeof (struct megasas_evt_detail)); 2666 2667 cmd->frame->dcmd.cmd_status = 0x0; 2668 cmd->frame->dcmd.mbox.w[0] = seq_num; 2669 2670 instance->aen_seq_num = seq_num; 2671 2672 cmd->frame_count = 1; 2673 2674 /* Issue the aen registration frame */ 2675 instance->func_ptr->issue_cmd(cmd, instance); 2676 } 2677 2678 /* 2679 * complete_cmd_in_sync_mode - Completes an internal command 2680 * @instance: Adapter soft state 2681 * @cmd: Command to be completed 2682 * 2683 * The issue_cmd_in_sync_mode() function waits for a command to complete 2684 * after it issues a command. This function wakes up that waiting routine by 2685 * calling wake_up() on the wait queue. 2686 */ 2687 static void 2688 complete_cmd_in_sync_mode(struct megasas_instance *instance, 2689 struct megasas_cmd *cmd) 2690 { 2691 cmd->cmd_status = cmd->frame->io.cmd_status; 2692 2693 cmd->sync_cmd = MEGASAS_FALSE; 2694 2695 if (cmd->cmd_status == ENODATA) { 2696 cmd->cmd_status = 0; 2697 } 2698 2699 cv_broadcast(&instance->int_cmd_cv); 2700 } 2701 2702 /* 2703 * megasas_softintr - The Software ISR 2704 * @param arg : HBA soft state 2705 * 2706 * called from high-level interrupt if hi-level interrupt are not there, 2707 * otherwise triggered as a soft interrupt 2708 */ 2709 static uint_t 2710 megasas_softintr(struct megasas_instance *instance) 2711 { 2712 struct scsi_pkt *pkt; 2713 struct scsa_cmd *acmd; 2714 struct megasas_cmd *cmd; 2715 struct mlist_head *pos, *next; 2716 mlist_t process_list; 2717 struct megasas_header *hdr; 2718 struct scsi_arq_status *arqstat; 2719 2720 con_log(CL_ANN1, (CE_CONT, "megasas_softintr called")); 2721 2722 ASSERT(instance); 2723 mutex_enter(&instance->completed_pool_mtx); 2724 2725 if (mlist_empty(&instance->completed_pool_list)) { 2726 mutex_exit(&instance->completed_pool_mtx); 2727 return (DDI_INTR_UNCLAIMED); 2728 } 2729 2730 instance->softint_running = 1; 2731 2732 INIT_LIST_HEAD(&process_list); 2733 mlist_splice(&instance->completed_pool_list, &process_list); 2734 INIT_LIST_HEAD(&instance->completed_pool_list); 2735 2736 mutex_exit(&instance->completed_pool_mtx); 2737 2738 /* perform all callbacks first, before releasing the SCBs */ 2739 mlist_for_each_safe(pos, next, &process_list) { 2740 /* LINTED E_BAD_PTR_CAST_ALIGN */ 2741 cmd = mlist_entry(pos, struct megasas_cmd, list); 2742 2743 /* syncronize the Cmd frame for the controller */ 2744 (void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 2745 0, 0, DDI_DMA_SYNC_FORCPU); 2746 2747 if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) != 2748 DDI_SUCCESS) { 2749 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 2750 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 2751 return (DDI_INTR_UNCLAIMED); 2752 } 2753 2754 hdr = &cmd->frame->hdr; 2755 2756 /* remove the internal command from the process list */ 2757 mlist_del_init(&cmd->list); 2758 2759 switch (hdr->cmd) { 2760 case MFI_CMD_OP_PD_SCSI: 2761 case MFI_CMD_OP_LD_SCSI: 2762 case MFI_CMD_OP_LD_READ: 2763 case MFI_CMD_OP_LD_WRITE: 2764 /* 2765 * MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI 2766 * could have been issued either through an 2767 * IO path or an IOCTL path. If it was via IOCTL, 2768 * we will send it to internal completion. 2769 */ 2770 if (cmd->sync_cmd == MEGASAS_TRUE) { 2771 complete_cmd_in_sync_mode(instance, cmd); 2772 break; 2773 } 2774 2775 /* regular commands */ 2776 acmd = cmd->cmd; 2777 pkt = CMD2PKT(acmd); 2778 2779 if (acmd->cmd_flags & CFLAG_DMAVALID) { 2780 if (acmd->cmd_flags & CFLAG_CONSISTENT) { 2781 (void) ddi_dma_sync(acmd->cmd_dmahandle, 2782 acmd->cmd_dma_offset, 2783 acmd->cmd_dma_len, 2784 DDI_DMA_SYNC_FORCPU); 2785 } 2786 } 2787 2788 pkt->pkt_reason = CMD_CMPLT; 2789 pkt->pkt_statistics = 0; 2790 pkt->pkt_state = STATE_GOT_BUS 2791 | STATE_GOT_TARGET | STATE_SENT_CMD 2792 | STATE_XFERRED_DATA | STATE_GOT_STATUS; 2793 2794 con_log(CL_ANN1, (CE_CONT, 2795 "CDB[0] = %x completed for %s: size %lx context %x", 2796 pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"), 2797 acmd->cmd_dmacount, hdr->context)); 2798 2799 if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) { 2800 struct scsi_inquiry *inq; 2801 2802 if (acmd->cmd_dmacount != 0) { 2803 bp_mapin(acmd->cmd_buf); 2804 inq = (struct scsi_inquiry *) 2805 acmd->cmd_buf->b_un.b_addr; 2806 2807 /* don't expose physical drives to OS */ 2808 if (acmd->islogical && 2809 (hdr->cmd_status == MFI_STAT_OK)) { 2810 display_scsi_inquiry( 2811 (caddr_t)inq); 2812 } else if ((hdr->cmd_status == 2813 MFI_STAT_OK) && inq->inq_dtype == 2814 DTYPE_DIRECT) { 2815 2816 display_scsi_inquiry( 2817 (caddr_t)inq); 2818 2819 /* for physical disk */ 2820 hdr->cmd_status = 2821 MFI_STAT_DEVICE_NOT_FOUND; 2822 } 2823 } 2824 } 2825 2826 switch (hdr->cmd_status) { 2827 case MFI_STAT_OK: 2828 pkt->pkt_scbp[0] = STATUS_GOOD; 2829 break; 2830 case MFI_STAT_LD_CC_IN_PROGRESS: 2831 case MFI_STAT_LD_RECON_IN_PROGRESS: 2832 /* SJ - these are not correct way */ 2833 pkt->pkt_scbp[0] = STATUS_GOOD; 2834 break; 2835 case MFI_STAT_LD_INIT_IN_PROGRESS: 2836 con_log(CL_ANN, 2837 (CE_WARN, "Initialization in Progress")); 2838 pkt->pkt_reason = CMD_TRAN_ERR; 2839 2840 break; 2841 case MFI_STAT_SCSI_DONE_WITH_ERROR: 2842 con_log(CL_ANN1, (CE_CONT, "scsi_done error")); 2843 2844 pkt->pkt_reason = CMD_CMPLT; 2845 ((struct scsi_status *) 2846 pkt->pkt_scbp)->sts_chk = 1; 2847 2848 if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) { 2849 2850 con_log(CL_ANN, 2851 (CE_WARN, "TEST_UNIT_READY fail")); 2852 2853 } else { 2854 pkt->pkt_state |= STATE_ARQ_DONE; 2855 arqstat = (void *)(pkt->pkt_scbp); 2856 arqstat->sts_rqpkt_reason = CMD_CMPLT; 2857 arqstat->sts_rqpkt_resid = 0; 2858 arqstat->sts_rqpkt_state |= 2859 STATE_GOT_BUS | STATE_GOT_TARGET 2860 | STATE_SENT_CMD 2861 | STATE_XFERRED_DATA; 2862 *(uint8_t *)&arqstat->sts_rqpkt_status = 2863 STATUS_GOOD; 2864 2865 bcopy(cmd->sense, 2866 &(arqstat->sts_sensedata), 2867 acmd->cmd_scblen - 2868 offsetof(struct scsi_arq_status, 2869 sts_sensedata)); 2870 } 2871 break; 2872 case MFI_STAT_LD_OFFLINE: 2873 case MFI_STAT_DEVICE_NOT_FOUND: 2874 con_log(CL_ANN1, (CE_CONT, 2875 "device not found error")); 2876 pkt->pkt_reason = CMD_DEV_GONE; 2877 pkt->pkt_statistics = STAT_DISCON; 2878 break; 2879 case MFI_STAT_LD_LBA_OUT_OF_RANGE: 2880 pkt->pkt_state |= STATE_ARQ_DONE; 2881 pkt->pkt_reason = CMD_CMPLT; 2882 ((struct scsi_status *) 2883 pkt->pkt_scbp)->sts_chk = 1; 2884 2885 arqstat = (void *)(pkt->pkt_scbp); 2886 arqstat->sts_rqpkt_reason = CMD_CMPLT; 2887 arqstat->sts_rqpkt_resid = 0; 2888 arqstat->sts_rqpkt_state |= STATE_GOT_BUS 2889 | STATE_GOT_TARGET | STATE_SENT_CMD 2890 | STATE_XFERRED_DATA; 2891 *(uint8_t *)&arqstat->sts_rqpkt_status = 2892 STATUS_GOOD; 2893 2894 arqstat->sts_sensedata.es_valid = 1; 2895 arqstat->sts_sensedata.es_key = 2896 KEY_ILLEGAL_REQUEST; 2897 arqstat->sts_sensedata.es_class = 2898 CLASS_EXTENDED_SENSE; 2899 2900 /* 2901 * LOGICAL BLOCK ADDRESS OUT OF RANGE: 2902 * ASC: 0x21h; ASCQ: 0x00h; 2903 */ 2904 arqstat->sts_sensedata.es_add_code = 0x21; 2905 arqstat->sts_sensedata.es_qual_code = 0x00; 2906 2907 break; 2908 2909 default: 2910 con_log(CL_ANN, (CE_CONT, "Unknown status!")); 2911 pkt->pkt_reason = CMD_TRAN_ERR; 2912 2913 break; 2914 } 2915 2916 atomic_add_16(&instance->fw_outstanding, (-1)); 2917 2918 return_mfi_pkt(instance, cmd); 2919 2920 (void) megasas_common_check(instance, cmd); 2921 2922 if (acmd->cmd_dmahandle) { 2923 if (megasas_check_dma_handle( 2924 acmd->cmd_dmahandle) != DDI_SUCCESS) { 2925 ddi_fm_service_impact(instance->dip, 2926 DDI_SERVICE_UNAFFECTED); 2927 pkt->pkt_reason = CMD_TRAN_ERR; 2928 pkt->pkt_statistics = 0; 2929 } 2930 } 2931 2932 /* Call the callback routine */ 2933 if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && 2934 pkt->pkt_comp) { 2935 (*pkt->pkt_comp)(pkt); 2936 } 2937 2938 break; 2939 case MFI_CMD_OP_SMP: 2940 case MFI_CMD_OP_STP: 2941 complete_cmd_in_sync_mode(instance, cmd); 2942 break; 2943 case MFI_CMD_OP_DCMD: 2944 /* see if got an event notification */ 2945 if (cmd->frame->dcmd.opcode == 2946 MR_DCMD_CTRL_EVENT_WAIT) { 2947 if ((instance->aen_cmd == cmd) && 2948 (instance->aen_cmd->abort_aen)) { 2949 con_log(CL_ANN, (CE_WARN, 2950 "megasas_softintr: " 2951 "aborted_aen returned")); 2952 } else { 2953 service_mfi_aen(instance, cmd); 2954 } 2955 } else { 2956 complete_cmd_in_sync_mode(instance, cmd); 2957 } 2958 2959 break; 2960 case MFI_CMD_OP_ABORT: 2961 con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete")); 2962 /* 2963 * MFI_CMD_OP_ABORT successfully completed 2964 * in the synchronous mode 2965 */ 2966 complete_cmd_in_sync_mode(instance, cmd); 2967 break; 2968 default: 2969 megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE); 2970 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 2971 2972 if (cmd->pkt != NULL) { 2973 pkt = cmd->pkt; 2974 if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && 2975 pkt->pkt_comp) { 2976 (*pkt->pkt_comp)(pkt); 2977 } 2978 } 2979 con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!")); 2980 break; 2981 } 2982 } 2983 2984 instance->softint_running = 0; 2985 2986 return (DDI_INTR_CLAIMED); 2987 } 2988 2989 /* 2990 * mega_alloc_dma_obj 2991 * 2992 * Allocate the memory and other resources for an dma object. 2993 */ 2994 static int 2995 mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj) 2996 { 2997 int i; 2998 size_t alen = 0; 2999 uint_t cookie_cnt; 3000 3001 i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr, 3002 DDI_DMA_SLEEP, NULL, &obj->dma_handle); 3003 if (i != DDI_SUCCESS) { 3004 3005 switch (i) { 3006 case DDI_DMA_BADATTR : 3007 con_log(CL_ANN, (CE_WARN, 3008 "Failed ddi_dma_alloc_handle- Bad atrib")); 3009 break; 3010 case DDI_DMA_NORESOURCES : 3011 con_log(CL_ANN, (CE_WARN, 3012 "Failed ddi_dma_alloc_handle- No Resources")); 3013 break; 3014 default : 3015 con_log(CL_ANN, (CE_WARN, 3016 "Failed ddi_dma_alloc_handle :unknown %d", i)); 3017 break; 3018 } 3019 3020 return (-1); 3021 } 3022 3023 if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &endian_attr, 3024 DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, 3025 &obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) || 3026 alen < obj->size) { 3027 3028 ddi_dma_free_handle(&obj->dma_handle); 3029 3030 con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc")); 3031 3032 return (-1); 3033 } 3034 3035 if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer, 3036 obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, 3037 NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) { 3038 3039 ddi_dma_mem_free(&obj->acc_handle); 3040 ddi_dma_free_handle(&obj->dma_handle); 3041 3042 con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle")); 3043 3044 return (-1); 3045 } 3046 3047 if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) { 3048 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 3049 return (-1); 3050 } 3051 3052 if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) { 3053 ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST); 3054 return (-1); 3055 } 3056 3057 return (cookie_cnt); 3058 } 3059 3060 /* 3061 * mega_free_dma_obj(struct megasas_instance *, dma_obj_t) 3062 * 3063 * De-allocate the memory and other resources for an dma object, which must 3064 * have been alloated by a previous call to mega_alloc_dma_obj() 3065 */ 3066 static int 3067 mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj) 3068 { 3069 3070 if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) { 3071 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 3072 return (DDI_FAILURE); 3073 } 3074 3075 if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) { 3076 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 3077 return (DDI_FAILURE); 3078 } 3079 3080 (void) ddi_dma_unbind_handle(obj.dma_handle); 3081 ddi_dma_mem_free(&obj.acc_handle); 3082 ddi_dma_free_handle(&obj.dma_handle); 3083 3084 return (DDI_SUCCESS); 3085 } 3086 3087 /* 3088 * megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *, 3089 * int, int (*)()) 3090 * 3091 * Allocate dma resources for a new scsi command 3092 */ 3093 static int 3094 megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt, 3095 struct buf *bp, int flags, int (*callback)()) 3096 { 3097 int dma_flags; 3098 int (*cb)(caddr_t); 3099 int i; 3100 3101 ddi_dma_attr_t tmp_dma_attr = megasas_generic_dma_attr; 3102 struct scsa_cmd *acmd = PKT2CMD(pkt); 3103 3104 acmd->cmd_buf = bp; 3105 3106 if (bp->b_flags & B_READ) { 3107 acmd->cmd_flags &= ~CFLAG_DMASEND; 3108 dma_flags = DDI_DMA_READ; 3109 } else { 3110 acmd->cmd_flags |= CFLAG_DMASEND; 3111 dma_flags = DDI_DMA_WRITE; 3112 } 3113 3114 if (flags & PKT_CONSISTENT) { 3115 acmd->cmd_flags |= CFLAG_CONSISTENT; 3116 dma_flags |= DDI_DMA_CONSISTENT; 3117 } 3118 3119 if (flags & PKT_DMA_PARTIAL) { 3120 dma_flags |= DDI_DMA_PARTIAL; 3121 } 3122 3123 dma_flags |= DDI_DMA_REDZONE; 3124 3125 cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP; 3126 3127 tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge; 3128 3129 if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr, 3130 cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) { 3131 switch (i) { 3132 case DDI_DMA_BADATTR: 3133 bioerror(bp, EFAULT); 3134 return (-1); 3135 3136 case DDI_DMA_NORESOURCES: 3137 bioerror(bp, 0); 3138 return (-1); 3139 3140 default: 3141 con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: " 3142 "0x%x impossible\n", i)); 3143 bioerror(bp, EFAULT); 3144 return (-1); 3145 } 3146 } 3147 3148 i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags, 3149 cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies); 3150 3151 switch (i) { 3152 case DDI_DMA_PARTIAL_MAP: 3153 if ((dma_flags & DDI_DMA_PARTIAL) == 0) { 3154 con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: " 3155 "DDI_DMA_PARTIAL_MAP impossible\n")); 3156 goto no_dma_cookies; 3157 } 3158 3159 if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) == 3160 DDI_FAILURE) { 3161 con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n")); 3162 goto no_dma_cookies; 3163 } 3164 3165 if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin, 3166 &acmd->cmd_dma_offset, &acmd->cmd_dma_len, 3167 &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) == 3168 DDI_FAILURE) { 3169 3170 con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n")); 3171 goto no_dma_cookies; 3172 } 3173 3174 goto get_dma_cookies; 3175 case DDI_DMA_MAPPED: 3176 acmd->cmd_nwin = 1; 3177 acmd->cmd_dma_len = 0; 3178 acmd->cmd_dma_offset = 0; 3179 3180 get_dma_cookies: 3181 i = 0; 3182 acmd->cmd_dmacount = 0; 3183 for (;;) { 3184 acmd->cmd_dmacount += 3185 acmd->cmd_dmacookies[i++].dmac_size; 3186 3187 if (i == instance->max_num_sge || 3188 i == acmd->cmd_ncookies) 3189 break; 3190 3191 ddi_dma_nextcookie(acmd->cmd_dmahandle, 3192 &acmd->cmd_dmacookies[i]); 3193 } 3194 3195 acmd->cmd_cookie = i; 3196 acmd->cmd_cookiecnt = i; 3197 3198 acmd->cmd_flags |= CFLAG_DMAVALID; 3199 3200 if (bp->b_bcount >= acmd->cmd_dmacount) { 3201 pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount; 3202 } else { 3203 pkt->pkt_resid = 0; 3204 } 3205 3206 return (0); 3207 case DDI_DMA_NORESOURCES: 3208 bioerror(bp, 0); 3209 break; 3210 case DDI_DMA_NOMAPPING: 3211 bioerror(bp, EFAULT); 3212 break; 3213 case DDI_DMA_TOOBIG: 3214 bioerror(bp, EINVAL); 3215 break; 3216 case DDI_DMA_INUSE: 3217 con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:" 3218 " DDI_DMA_INUSE impossible\n")); 3219 break; 3220 default: 3221 con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: " 3222 "0x%x impossible\n", i)); 3223 break; 3224 } 3225 3226 no_dma_cookies: 3227 ddi_dma_free_handle(&acmd->cmd_dmahandle); 3228 acmd->cmd_dmahandle = NULL; 3229 acmd->cmd_flags &= ~CFLAG_DMAVALID; 3230 return (-1); 3231 } 3232 3233 /* 3234 * megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *) 3235 * 3236 * move dma resources to next dma window 3237 * 3238 */ 3239 static int 3240 megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt, 3241 struct buf *bp) 3242 { 3243 int i = 0; 3244 3245 struct scsa_cmd *acmd = PKT2CMD(pkt); 3246 3247 /* 3248 * If there are no more cookies remaining in this window, 3249 * must move to the next window first. 3250 */ 3251 if (acmd->cmd_cookie == acmd->cmd_ncookies) { 3252 if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) { 3253 return (0); 3254 } 3255 3256 /* at last window, cannot move */ 3257 if (++acmd->cmd_curwin >= acmd->cmd_nwin) { 3258 return (-1); 3259 } 3260 3261 if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin, 3262 &acmd->cmd_dma_offset, &acmd->cmd_dma_len, 3263 &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) == 3264 DDI_FAILURE) { 3265 return (-1); 3266 } 3267 3268 acmd->cmd_cookie = 0; 3269 } else { 3270 /* still more cookies in this window - get the next one */ 3271 ddi_dma_nextcookie(acmd->cmd_dmahandle, 3272 &acmd->cmd_dmacookies[0]); 3273 } 3274 3275 /* get remaining cookies in this window, up to our maximum */ 3276 for (;;) { 3277 acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size; 3278 acmd->cmd_cookie++; 3279 3280 if (i == instance->max_num_sge || 3281 acmd->cmd_cookie == acmd->cmd_ncookies) { 3282 break; 3283 } 3284 3285 ddi_dma_nextcookie(acmd->cmd_dmahandle, 3286 &acmd->cmd_dmacookies[i]); 3287 } 3288 3289 acmd->cmd_cookiecnt = i; 3290 3291 if (bp->b_bcount >= acmd->cmd_dmacount) { 3292 pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount; 3293 } else { 3294 pkt->pkt_resid = 0; 3295 } 3296 3297 return (0); 3298 } 3299 3300 /* 3301 * build_cmd 3302 */ 3303 static struct megasas_cmd * 3304 build_cmd(struct megasas_instance *instance, struct scsi_address *ap, 3305 struct scsi_pkt *pkt, uchar_t *cmd_done) 3306 { 3307 uint16_t flags = 0; 3308 uint32_t i; 3309 uint32_t context; 3310 uint32_t sge_bytes; 3311 3312 struct megasas_cmd *cmd; 3313 struct megasas_sge32 *mfi_sgl; 3314 struct scsa_cmd *acmd = PKT2CMD(pkt); 3315 struct megasas_pthru_frame *pthru; 3316 struct megasas_io_frame *ldio; 3317 3318 /* find out if this is logical or physical drive command. */ 3319 acmd->islogical = MEGADRV_IS_LOGICAL(ap); 3320 acmd->device_id = MAP_DEVICE_ID(instance, ap); 3321 *cmd_done = 0; 3322 3323 /* get the command packet */ 3324 if (!(cmd = get_mfi_pkt(instance))) { 3325 return (NULL); 3326 } 3327 3328 cmd->pkt = pkt; 3329 cmd->cmd = acmd; 3330 3331 /* lets get the command directions */ 3332 if (acmd->cmd_flags & CFLAG_DMASEND) { 3333 flags = MFI_FRAME_DIR_WRITE; 3334 3335 if (acmd->cmd_flags & CFLAG_CONSISTENT) { 3336 (void) ddi_dma_sync(acmd->cmd_dmahandle, 3337 acmd->cmd_dma_offset, acmd->cmd_dma_len, 3338 DDI_DMA_SYNC_FORDEV); 3339 } 3340 } else if (acmd->cmd_flags & ~CFLAG_DMASEND) { 3341 flags = MFI_FRAME_DIR_READ; 3342 3343 if (acmd->cmd_flags & CFLAG_CONSISTENT) { 3344 (void) ddi_dma_sync(acmd->cmd_dmahandle, 3345 acmd->cmd_dma_offset, acmd->cmd_dma_len, 3346 DDI_DMA_SYNC_FORCPU); 3347 } 3348 } else { 3349 flags = MFI_FRAME_DIR_NONE; 3350 } 3351 3352 /* flags |= MFI_FRAME_SGL64; */ 3353 3354 switch (pkt->pkt_cdbp[0]) { 3355 3356 /* 3357 * case SCMD_SYNCHRONIZE_CACHE: 3358 * flush_cache(instance); 3359 * return_mfi_pkt(instance, cmd); 3360 * *cmd_done = 1; 3361 * 3362 * return (NULL); 3363 */ 3364 3365 case SCMD_READ: 3366 case SCMD_WRITE: 3367 case SCMD_READ_G1: 3368 case SCMD_WRITE_G1: 3369 if (acmd->islogical) { 3370 ldio = (struct megasas_io_frame *)cmd->frame; 3371 3372 /* 3373 * preare the Logical IO frame: 3374 * 2nd bit is zero for all read cmds 3375 */ 3376 ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ? 3377 MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ; 3378 ldio->cmd_status = 0x0; 3379 ldio->scsi_status = 0x0; 3380 ldio->target_id = acmd->device_id; 3381 ldio->timeout = 0; 3382 ldio->reserved_0 = 0; 3383 ldio->pad_0 = 0; 3384 ldio->flags = flags; 3385 3386 /* Initialize sense Information */ 3387 bzero(cmd->sense, SENSE_LENGTH); 3388 ldio->sense_len = SENSE_LENGTH; 3389 ldio->sense_buf_phys_addr_hi = 0; 3390 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr; 3391 3392 ldio->start_lba_hi = 0; 3393 ldio->access_byte = (acmd->cmd_cdblen != 6) ? 3394 pkt->pkt_cdbp[1] : 0; 3395 ldio->sge_count = acmd->cmd_cookiecnt; 3396 mfi_sgl = (struct megasas_sge32 *)&ldio->sgl; 3397 3398 context = ldio->context; 3399 3400 if (acmd->cmd_cdblen == CDB_GROUP0) { 3401 ldio->lba_count = host_to_le16( 3402 (uint16_t)(pkt->pkt_cdbp[4])); 3403 3404 ldio->start_lba_lo = host_to_le32( 3405 ((uint32_t)(pkt->pkt_cdbp[3])) | 3406 ((uint32_t)(pkt->pkt_cdbp[2]) << 8) | 3407 ((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F) 3408 << 16)); 3409 } else if (acmd->cmd_cdblen == CDB_GROUP1) { 3410 ldio->lba_count = host_to_le16( 3411 ((uint16_t)(pkt->pkt_cdbp[8])) | 3412 ((uint16_t)(pkt->pkt_cdbp[7]) << 8)); 3413 3414 ldio->start_lba_lo = host_to_le32( 3415 ((uint32_t)(pkt->pkt_cdbp[5])) | 3416 ((uint32_t)(pkt->pkt_cdbp[4]) << 8) | 3417 ((uint32_t)(pkt->pkt_cdbp[3]) << 16) | 3418 ((uint32_t)(pkt->pkt_cdbp[2]) << 24)); 3419 } else if (acmd->cmd_cdblen == CDB_GROUP2) { 3420 ldio->lba_count = host_to_le16( 3421 ((uint16_t)(pkt->pkt_cdbp[9])) | 3422 ((uint16_t)(pkt->pkt_cdbp[8]) << 8) | 3423 ((uint16_t)(pkt->pkt_cdbp[7]) << 16) | 3424 ((uint16_t)(pkt->pkt_cdbp[6]) << 24)); 3425 3426 ldio->start_lba_lo = host_to_le32( 3427 ((uint32_t)(pkt->pkt_cdbp[5])) | 3428 ((uint32_t)(pkt->pkt_cdbp[4]) << 8) | 3429 ((uint32_t)(pkt->pkt_cdbp[3]) << 16) | 3430 ((uint32_t)(pkt->pkt_cdbp[2]) << 24)); 3431 } else if (acmd->cmd_cdblen == CDB_GROUP3) { 3432 ldio->lba_count = host_to_le16( 3433 ((uint16_t)(pkt->pkt_cdbp[13])) | 3434 ((uint16_t)(pkt->pkt_cdbp[12]) << 8) | 3435 ((uint16_t)(pkt->pkt_cdbp[11]) << 16) | 3436 ((uint16_t)(pkt->pkt_cdbp[10]) << 24)); 3437 3438 ldio->start_lba_lo = host_to_le32( 3439 ((uint32_t)(pkt->pkt_cdbp[9])) | 3440 ((uint32_t)(pkt->pkt_cdbp[8]) << 8) | 3441 ((uint32_t)(pkt->pkt_cdbp[7]) << 16) | 3442 ((uint32_t)(pkt->pkt_cdbp[6]) << 24)); 3443 3444 ldio->start_lba_lo = host_to_le32( 3445 ((uint32_t)(pkt->pkt_cdbp[5])) | 3446 ((uint32_t)(pkt->pkt_cdbp[4]) << 8) | 3447 ((uint32_t)(pkt->pkt_cdbp[3]) << 16) | 3448 ((uint32_t)(pkt->pkt_cdbp[2]) << 24)); 3449 } 3450 3451 break; 3452 } 3453 /* fall through For all non-rd/wr cmds */ 3454 default: 3455 pthru = (struct megasas_pthru_frame *)cmd->frame; 3456 3457 /* prepare the DCDB frame */ 3458 pthru->cmd = (acmd->islogical) ? 3459 MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI; 3460 pthru->cmd_status = 0x0; 3461 pthru->scsi_status = 0x0; 3462 pthru->target_id = acmd->device_id; 3463 pthru->lun = 0; 3464 pthru->cdb_len = acmd->cmd_cdblen; 3465 pthru->timeout = 0; 3466 pthru->flags = flags; 3467 pthru->data_xfer_len = acmd->cmd_dmacount; 3468 pthru->sge_count = acmd->cmd_cookiecnt; 3469 mfi_sgl = (struct megasas_sge32 *)&pthru->sgl; 3470 3471 bzero(cmd->sense, SENSE_LENGTH); 3472 pthru->sense_len = SENSE_LENGTH; 3473 pthru->sense_buf_phys_addr_hi = 0; 3474 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; 3475 3476 context = pthru->context; 3477 3478 bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen); 3479 3480 break; 3481 } 3482 #ifdef lint 3483 context = context; 3484 #endif 3485 /* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */ 3486 3487 /* prepare the scatter-gather list for the firmware */ 3488 for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) { 3489 mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress; 3490 mfi_sgl->length = acmd->cmd_dmacookies[i].dmac_size; 3491 } 3492 3493 sge_bytes = sizeof (struct megasas_sge32)*acmd->cmd_cookiecnt; 3494 3495 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + 3496 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1; 3497 3498 if (cmd->frame_count >= 8) { 3499 cmd->frame_count = 8; 3500 } 3501 3502 return (cmd); 3503 } 3504 3505 /* 3506 * wait_for_outstanding - Wait for all outstanding cmds 3507 * @instance: Adapter soft state 3508 * 3509 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to 3510 * complete all its outstanding commands. Returns error if one or more IOs 3511 * are pending after this time period. 3512 */ 3513 static int 3514 wait_for_outstanding(struct megasas_instance *instance) 3515 { 3516 int i; 3517 uint32_t wait_time = 90; 3518 3519 for (i = 0; i < wait_time; i++) { 3520 if (!instance->fw_outstanding) { 3521 break; 3522 } 3523 3524 drv_usecwait(MILLISEC); /* wait for 1000 usecs */; 3525 } 3526 3527 if (instance->fw_outstanding) { 3528 return (1); 3529 } 3530 3531 ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION); 3532 3533 return (0); 3534 } 3535 3536 /* 3537 * issue_mfi_pthru 3538 */ 3539 static int 3540 issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 3541 struct megasas_cmd *cmd, int mode) 3542 { 3543 void *ubuf; 3544 uint32_t kphys_addr = 0; 3545 uint32_t xferlen = 0; 3546 uint_t model; 3547 3548 dma_obj_t pthru_dma_obj; 3549 struct megasas_pthru_frame *kpthru; 3550 struct megasas_pthru_frame *pthru; 3551 3552 pthru = &cmd->frame->pthru; 3553 kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0]; 3554 3555 model = ddi_model_convert_from(mode & FMODELS); 3556 if (model == DDI_MODEL_ILP32) { 3557 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32")); 3558 3559 xferlen = kpthru->sgl.sge32[0].length; 3560 3561 /* SJ! - ubuf needs to be virtual address. */ 3562 ubuf = (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr; 3563 } else { 3564 #ifdef _ILP32 3565 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32")); 3566 xferlen = kpthru->sgl.sge32[0].length; 3567 /* SJ! - ubuf needs to be virtual address. */ 3568 ubuf = (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr; 3569 #else 3570 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64")); 3571 xferlen = kpthru->sgl.sge64[0].length; 3572 /* SJ! - ubuf needs to be virtual address. */ 3573 ubuf = (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr; 3574 #endif 3575 } 3576 3577 if (xferlen) { 3578 /* means IOCTL requires DMA */ 3579 /* allocate the data transfer buffer */ 3580 pthru_dma_obj.size = xferlen; 3581 pthru_dma_obj.dma_attr = megasas_generic_dma_attr; 3582 pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3583 pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3584 pthru_dma_obj.dma_attr.dma_attr_sgllen = 1; 3585 pthru_dma_obj.dma_attr.dma_attr_align = 1; 3586 3587 /* allocate kernel buffer for DMA */ 3588 if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) { 3589 con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: " 3590 "could not data transfer buffer alloc.")); 3591 return (DDI_FAILURE); 3592 } 3593 3594 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3595 if (kpthru->flags & MFI_FRAME_DIR_WRITE) { 3596 if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer, 3597 xferlen, mode)) { 3598 con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: " 3599 "copy from user space failed\n")); 3600 return (1); 3601 } 3602 } 3603 3604 kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address; 3605 } 3606 3607 pthru->cmd = kpthru->cmd; 3608 pthru->sense_len = kpthru->sense_len; 3609 pthru->cmd_status = kpthru->cmd_status; 3610 pthru->scsi_status = kpthru->scsi_status; 3611 pthru->target_id = kpthru->target_id; 3612 pthru->lun = kpthru->lun; 3613 pthru->cdb_len = kpthru->cdb_len; 3614 pthru->sge_count = kpthru->sge_count; 3615 pthru->timeout = kpthru->timeout; 3616 pthru->data_xfer_len = kpthru->data_xfer_len; 3617 3618 pthru->sense_buf_phys_addr_hi = 0; 3619 /* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */ 3620 pthru->sense_buf_phys_addr_lo = 0; 3621 3622 bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len); 3623 3624 pthru->flags = kpthru->flags & ~MFI_FRAME_SGL64; 3625 pthru->sgl.sge32[0].length = xferlen; 3626 pthru->sgl.sge32[0].phys_addr = kphys_addr; 3627 3628 cmd->sync_cmd = MEGASAS_TRUE; 3629 cmd->frame_count = 1; 3630 3631 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 3632 con_log(CL_ANN, (CE_WARN, 3633 "issue_mfi_pthru: fw_ioctl failed\n")); 3634 } else { 3635 if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) { 3636 3637 if (ddi_copyout(pthru_dma_obj.buffer, ubuf, 3638 xferlen, mode)) { 3639 con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: " 3640 "copy to user space failed\n")); 3641 return (1); 3642 } 3643 } 3644 } 3645 3646 kpthru->cmd_status = pthru->cmd_status; 3647 kpthru->scsi_status = pthru->scsi_status; 3648 3649 con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, " 3650 "scsi_status %x\n", pthru->cmd_status, pthru->scsi_status)); 3651 3652 if (xferlen) { 3653 /* free kernel buffer */ 3654 if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS) 3655 return (1); 3656 } 3657 3658 return (0); 3659 } 3660 3661 /* 3662 * issue_mfi_dcmd 3663 */ 3664 static int 3665 issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 3666 struct megasas_cmd *cmd, int mode) 3667 { 3668 void *ubuf; 3669 uint32_t kphys_addr = 0; 3670 uint32_t xferlen = 0; 3671 uint32_t model; 3672 dma_obj_t dcmd_dma_obj; 3673 struct megasas_dcmd_frame *kdcmd; 3674 struct megasas_dcmd_frame *dcmd; 3675 3676 dcmd = &cmd->frame->dcmd; 3677 kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0]; 3678 3679 model = ddi_model_convert_from(mode & FMODELS); 3680 if (model == DDI_MODEL_ILP32) { 3681 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32")); 3682 3683 xferlen = kdcmd->sgl.sge32[0].length; 3684 3685 /* SJ! - ubuf needs to be virtual address. */ 3686 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 3687 } 3688 else 3689 { 3690 #ifdef _ILP32 3691 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32")); 3692 xferlen = kdcmd->sgl.sge32[0].length; 3693 /* SJ! - ubuf needs to be virtual address. */ 3694 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 3695 #else 3696 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64")); 3697 xferlen = kdcmd->sgl.sge64[0].length; 3698 /* SJ! - ubuf needs to be virtual address. */ 3699 ubuf = (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr; 3700 #endif 3701 } 3702 if (xferlen) { 3703 /* means IOCTL requires DMA */ 3704 /* allocate the data transfer buffer */ 3705 dcmd_dma_obj.size = xferlen; 3706 dcmd_dma_obj.dma_attr = megasas_generic_dma_attr; 3707 dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3708 dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3709 dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1; 3710 dcmd_dma_obj.dma_attr.dma_attr_align = 1; 3711 3712 /* allocate kernel buffer for DMA */ 3713 if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) { 3714 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: " 3715 "could not data transfer buffer alloc.")); 3716 return (DDI_FAILURE); 3717 } 3718 3719 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3720 if (kdcmd->flags & MFI_FRAME_DIR_WRITE) { 3721 if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer, 3722 xferlen, mode)) { 3723 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: " 3724 "copy from user space failed\n")); 3725 return (1); 3726 } 3727 } 3728 3729 kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address; 3730 } 3731 3732 dcmd->cmd = kdcmd->cmd; 3733 dcmd->cmd_status = kdcmd->cmd_status; 3734 dcmd->sge_count = kdcmd->sge_count; 3735 dcmd->timeout = kdcmd->timeout; 3736 dcmd->data_xfer_len = kdcmd->data_xfer_len; 3737 dcmd->opcode = kdcmd->opcode; 3738 3739 bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ); 3740 3741 dcmd->flags = kdcmd->flags & ~MFI_FRAME_SGL64; 3742 dcmd->sgl.sge32[0].length = xferlen; 3743 dcmd->sgl.sge32[0].phys_addr = kphys_addr; 3744 3745 cmd->sync_cmd = MEGASAS_TRUE; 3746 cmd->frame_count = 1; 3747 3748 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 3749 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n")); 3750 } else { 3751 if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) { 3752 3753 if (ddi_copyout(dcmd_dma_obj.buffer, ubuf, 3754 xferlen, mode)) { 3755 con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: " 3756 "copy to user space failed\n")); 3757 return (1); 3758 } 3759 } 3760 } 3761 3762 kdcmd->cmd_status = dcmd->cmd_status; 3763 3764 if (xferlen) { 3765 /* free kernel buffer */ 3766 if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS) 3767 return (1); 3768 } 3769 3770 return (0); 3771 } 3772 3773 /* 3774 * issue_mfi_smp 3775 */ 3776 static int 3777 issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 3778 struct megasas_cmd *cmd, int mode) 3779 { 3780 void *request_ubuf; 3781 void *response_ubuf; 3782 uint32_t request_xferlen = 0; 3783 uint32_t response_xferlen = 0; 3784 uint_t model; 3785 dma_obj_t request_dma_obj; 3786 dma_obj_t response_dma_obj; 3787 struct megasas_smp_frame *ksmp; 3788 struct megasas_smp_frame *smp; 3789 struct megasas_sge32 *sge32; 3790 #ifndef _ILP32 3791 struct megasas_sge64 *sge64; 3792 #endif 3793 3794 smp = &cmd->frame->smp; 3795 ksmp = (struct megasas_smp_frame *)&ioctl->frame[0]; 3796 3797 model = ddi_model_convert_from(mode & FMODELS); 3798 if (model == DDI_MODEL_ILP32) { 3799 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32")); 3800 3801 sge32 = &ksmp->sgl[0].sge32[0]; 3802 response_xferlen = sge32[0].length; 3803 request_xferlen = sge32[1].length; 3804 con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: " 3805 "response_xferlen = %x, request_xferlen = %x", 3806 response_xferlen, request_xferlen)); 3807 3808 /* SJ! - ubuf needs to be virtual address. */ 3809 3810 response_ubuf = (void *)(ulong_t)sge32[0].phys_addr; 3811 request_ubuf = (void *)(ulong_t)sge32[1].phys_addr; 3812 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: " 3813 "response_ubuf = %p, request_ubuf = %p", 3814 response_ubuf, request_ubuf)); 3815 } else { 3816 #ifdef _ILP32 3817 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32")); 3818 3819 sge32 = &ksmp->sgl[0].sge32[0]; 3820 response_xferlen = sge32[0].length; 3821 request_xferlen = sge32[1].length; 3822 con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: " 3823 "response_xferlen = %x, request_xferlen = %x", 3824 response_xferlen, request_xferlen)); 3825 3826 /* SJ! - ubuf needs to be virtual address. */ 3827 3828 response_ubuf = (void *)(ulong_t)sge32[0].phys_addr; 3829 request_ubuf = (void *)(ulong_t)sge32[1].phys_addr; 3830 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: " 3831 "response_ubuf = %p, request_ubuf = %p", 3832 response_ubuf, request_ubuf)); 3833 #else 3834 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64")); 3835 3836 sge64 = &ksmp->sgl[0].sge64[0]; 3837 response_xferlen = sge64[0].length; 3838 request_xferlen = sge64[1].length; 3839 3840 /* SJ! - ubuf needs to be virtual address. */ 3841 response_ubuf = (void *)(ulong_t)sge64[0].phys_addr; 3842 request_ubuf = (void *)(ulong_t)sge64[1].phys_addr; 3843 #endif 3844 } 3845 if (request_xferlen) { 3846 /* means IOCTL requires DMA */ 3847 /* allocate the data transfer buffer */ 3848 request_dma_obj.size = request_xferlen; 3849 request_dma_obj.dma_attr = megasas_generic_dma_attr; 3850 request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3851 request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3852 request_dma_obj.dma_attr.dma_attr_sgllen = 1; 3853 request_dma_obj.dma_attr.dma_attr_align = 1; 3854 3855 /* allocate kernel buffer for DMA */ 3856 if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) { 3857 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3858 "could not data transfer buffer alloc.")); 3859 return (DDI_FAILURE); 3860 } 3861 3862 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3863 if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer, 3864 request_xferlen, mode)) { 3865 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3866 "copy from user space failed\n")); 3867 return (1); 3868 } 3869 } 3870 3871 if (response_xferlen) { 3872 /* means IOCTL requires DMA */ 3873 /* allocate the data transfer buffer */ 3874 response_dma_obj.size = response_xferlen; 3875 response_dma_obj.dma_attr = megasas_generic_dma_attr; 3876 response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 3877 response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 3878 response_dma_obj.dma_attr.dma_attr_sgllen = 1; 3879 response_dma_obj.dma_attr.dma_attr_align = 1; 3880 3881 /* allocate kernel buffer for DMA */ 3882 if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) { 3883 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3884 "could not data transfer buffer alloc.")); 3885 return (DDI_FAILURE); 3886 } 3887 3888 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 3889 if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer, 3890 response_xferlen, mode)) { 3891 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3892 "copy from user space failed\n")); 3893 return (1); 3894 } 3895 } 3896 3897 smp->cmd = ksmp->cmd; 3898 smp->cmd_status = ksmp->cmd_status; 3899 smp->connection_status = ksmp->connection_status; 3900 smp->sge_count = ksmp->sge_count; 3901 /* smp->context = ksmp->context; */ 3902 smp->timeout = ksmp->timeout; 3903 smp->data_xfer_len = ksmp->data_xfer_len; 3904 3905 bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr, 3906 sizeof (uint64_t)); 3907 3908 smp->flags = ksmp->flags & ~MFI_FRAME_SGL64; 3909 3910 model = ddi_model_convert_from(mode & FMODELS); 3911 if (model == DDI_MODEL_ILP32) { 3912 con_log(CL_ANN1, (CE_NOTE, 3913 "handle_drv_ioctl: DDI_MODEL_ILP32")); 3914 3915 sge32 = &smp->sgl[0].sge32[0]; 3916 sge32[0].length = response_xferlen; 3917 sge32[0].phys_addr = 3918 response_dma_obj.dma_cookie[0].dmac_address; 3919 sge32[1].length = request_xferlen; 3920 sge32[1].phys_addr = 3921 request_dma_obj.dma_cookie[0].dmac_address; 3922 } else { 3923 #ifdef _ILP32 3924 con_log(CL_ANN1, (CE_NOTE, 3925 "handle_drv_ioctl: DDI_MODEL_ILP32")); 3926 sge32 = &smp->sgl[0].sge32[0]; 3927 sge32[0].length = response_xferlen; 3928 sge32[0].phys_addr = 3929 response_dma_obj.dma_cookie[0].dmac_address; 3930 sge32[1].length = request_xferlen; 3931 sge32[1].phys_addr = 3932 request_dma_obj.dma_cookie[0].dmac_address; 3933 #else 3934 con_log(CL_ANN1, (CE_NOTE, 3935 "issue_mfi_smp: DDI_MODEL_LP64")); 3936 sge64 = &smp->sgl[0].sge64[0]; 3937 sge64[0].length = response_xferlen; 3938 sge64[0].phys_addr = 3939 response_dma_obj.dma_cookie[0].dmac_address; 3940 sge64[1].length = request_xferlen; 3941 sge64[1].phys_addr = 3942 request_dma_obj.dma_cookie[0].dmac_address; 3943 #endif 3944 } 3945 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: " 3946 "smp->response_xferlen = %d, smp->request_xferlen = %d " 3947 "smp->data_xfer_len = %d", sge32[0].length, sge32[1].length, 3948 smp->data_xfer_len)); 3949 3950 cmd->sync_cmd = MEGASAS_TRUE; 3951 cmd->frame_count = 1; 3952 3953 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 3954 con_log(CL_ANN, (CE_WARN, 3955 "issue_mfi_smp: fw_ioctl failed\n")); 3956 } else { 3957 con_log(CL_ANN1, (CE_NOTE, 3958 "issue_mfi_smp: copy to user space\n")); 3959 3960 if (request_xferlen) { 3961 if (ddi_copyout(request_dma_obj.buffer, request_ubuf, 3962 request_xferlen, mode)) { 3963 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3964 "copy to user space failed\n")); 3965 return (1); 3966 } 3967 } 3968 3969 if (response_xferlen) { 3970 if (ddi_copyout(response_dma_obj.buffer, response_ubuf, 3971 response_xferlen, mode)) { 3972 con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: " 3973 "copy to user space failed\n")); 3974 return (1); 3975 } 3976 } 3977 } 3978 3979 ksmp->cmd_status = smp->cmd_status; 3980 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d", 3981 smp->cmd_status)); 3982 3983 3984 if (request_xferlen) { 3985 /* free kernel buffer */ 3986 if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS) 3987 return (1); 3988 } 3989 3990 if (response_xferlen) { 3991 /* free kernel buffer */ 3992 if (mega_free_dma_obj(instance, response_dma_obj) != 3993 DDI_SUCCESS) 3994 return (1); 3995 } 3996 3997 return (0); 3998 } 3999 4000 /* 4001 * issue_mfi_stp 4002 */ 4003 static int 4004 issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 4005 struct megasas_cmd *cmd, int mode) 4006 { 4007 void *fis_ubuf; 4008 void *data_ubuf; 4009 uint32_t fis_xferlen = 0; 4010 uint32_t data_xferlen = 0; 4011 uint_t model; 4012 dma_obj_t fis_dma_obj; 4013 dma_obj_t data_dma_obj; 4014 struct megasas_stp_frame *kstp; 4015 struct megasas_stp_frame *stp; 4016 4017 stp = &cmd->frame->stp; 4018 kstp = (struct megasas_stp_frame *)&ioctl->frame[0]; 4019 4020 model = ddi_model_convert_from(mode & FMODELS); 4021 if (model == DDI_MODEL_ILP32) { 4022 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32")); 4023 4024 fis_xferlen = kstp->sgl.sge32[0].length; 4025 data_xferlen = kstp->sgl.sge32[1].length; 4026 4027 /* SJ! - ubuf needs to be virtual address. */ 4028 fis_ubuf = (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr; 4029 data_ubuf = (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr; 4030 } 4031 else 4032 { 4033 #ifdef _ILP32 4034 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32")); 4035 4036 fis_xferlen = kstp->sgl.sge32[0].length; 4037 data_xferlen = kstp->sgl.sge32[1].length; 4038 4039 /* SJ! - ubuf needs to be virtual address. */ 4040 fis_ubuf = (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr; 4041 data_ubuf = (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr; 4042 #else 4043 con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64")); 4044 4045 fis_xferlen = kstp->sgl.sge64[0].length; 4046 data_xferlen = kstp->sgl.sge64[1].length; 4047 4048 /* SJ! - ubuf needs to be virtual address. */ 4049 fis_ubuf = (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr; 4050 data_ubuf = (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr; 4051 #endif 4052 } 4053 4054 4055 if (fis_xferlen) { 4056 con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: " 4057 "fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen)); 4058 4059 /* means IOCTL requires DMA */ 4060 /* allocate the data transfer buffer */ 4061 fis_dma_obj.size = fis_xferlen; 4062 fis_dma_obj.dma_attr = megasas_generic_dma_attr; 4063 fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 4064 fis_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 4065 fis_dma_obj.dma_attr.dma_attr_sgllen = 1; 4066 fis_dma_obj.dma_attr.dma_attr_align = 1; 4067 4068 /* allocate kernel buffer for DMA */ 4069 if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) { 4070 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4071 "could not data transfer buffer alloc.")); 4072 return (DDI_FAILURE); 4073 } 4074 4075 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 4076 if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer, 4077 fis_xferlen, mode)) { 4078 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4079 "copy from user space failed\n")); 4080 return (1); 4081 } 4082 } 4083 4084 if (data_xferlen) { 4085 con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p " 4086 "data_xferlen = %x", data_ubuf, data_xferlen)); 4087 4088 /* means IOCTL requires DMA */ 4089 /* allocate the data transfer buffer */ 4090 data_dma_obj.size = data_xferlen; 4091 data_dma_obj.dma_attr = megasas_generic_dma_attr; 4092 data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU; 4093 data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU; 4094 data_dma_obj.dma_attr.dma_attr_sgllen = 1; 4095 data_dma_obj.dma_attr.dma_attr_align = 1; 4096 4097 /* allocate kernel buffer for DMA */ 4098 if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) { 4099 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4100 "could not data transfer buffer alloc.")); 4101 return (DDI_FAILURE); 4102 } 4103 4104 /* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */ 4105 if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer, 4106 data_xferlen, mode)) { 4107 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4108 "copy from user space failed\n")); 4109 return (1); 4110 } 4111 } 4112 4113 stp->cmd = kstp->cmd; 4114 stp->cmd_status = kstp->cmd_status; 4115 stp->connection_status = kstp->connection_status; 4116 stp->target_id = kstp->target_id; 4117 stp->sge_count = kstp->sge_count; 4118 /* stp->context = kstp->context; */ 4119 stp->timeout = kstp->timeout; 4120 stp->data_xfer_len = kstp->data_xfer_len; 4121 4122 bcopy((void *)kstp->fis, (void *)stp->fis, 10); 4123 4124 stp->flags = kstp->flags & ~MFI_FRAME_SGL64; 4125 stp->stp_flags = kstp->stp_flags; 4126 stp->sgl.sge32[0].length = fis_xferlen; 4127 stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address; 4128 stp->sgl.sge32[1].length = data_xferlen; 4129 stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address; 4130 4131 cmd->sync_cmd = MEGASAS_TRUE; 4132 cmd->frame_count = 1; 4133 4134 if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) { 4135 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n")); 4136 } else { 4137 4138 if (fis_xferlen) { 4139 if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf, 4140 fis_xferlen, mode)) { 4141 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4142 "copy to user space failed\n")); 4143 return (1); 4144 } 4145 } 4146 4147 if (data_xferlen) { 4148 if (ddi_copyout(data_dma_obj.buffer, data_ubuf, 4149 data_xferlen, mode)) { 4150 con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: " 4151 "copy to user space failed\n")); 4152 return (1); 4153 } 4154 } 4155 } 4156 4157 kstp->cmd_status = stp->cmd_status; 4158 4159 if (fis_xferlen) { 4160 /* free kernel buffer */ 4161 if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS) 4162 return (1); 4163 } 4164 4165 if (data_xferlen) { 4166 /* free kernel buffer */ 4167 if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS) 4168 return (1); 4169 } 4170 4171 return (0); 4172 } 4173 4174 /* 4175 * fill_up_drv_ver 4176 */ 4177 static void 4178 fill_up_drv_ver(struct megasas_drv_ver *dv) 4179 { 4180 (void) memset(dv, 0, sizeof (struct megasas_drv_ver)); 4181 4182 (void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$")); 4183 (void) memcpy(dv->os_name, "Solaris", strlen("Solaris")); 4184 (void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas")); 4185 (void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION)); 4186 (void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE, 4187 strlen(MEGASAS_RELDATE)); 4188 } 4189 4190 /* 4191 * handle_drv_ioctl 4192 */ 4193 static int 4194 handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 4195 int mode) 4196 { 4197 int i; 4198 int rval = 0; 4199 int *props = NULL; 4200 void *ubuf; 4201 4202 uint8_t *pci_conf_buf; 4203 uint32_t xferlen; 4204 uint32_t num_props; 4205 uint_t model; 4206 struct megasas_dcmd_frame *kdcmd; 4207 struct megasas_drv_ver dv; 4208 struct megasas_pci_information pi; 4209 4210 kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0]; 4211 4212 model = ddi_model_convert_from(mode & FMODELS); 4213 if (model == DDI_MODEL_ILP32) { 4214 con_log(CL_ANN1, (CE_NOTE, 4215 "handle_drv_ioctl: DDI_MODEL_ILP32")); 4216 4217 xferlen = kdcmd->sgl.sge32[0].length; 4218 4219 /* SJ! - ubuf needs to be virtual address. */ 4220 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 4221 } else { 4222 #ifdef _ILP32 4223 con_log(CL_ANN1, (CE_NOTE, 4224 "handle_drv_ioctl: DDI_MODEL_ILP32")); 4225 xferlen = kdcmd->sgl.sge32[0].length; 4226 /* SJ! - ubuf needs to be virtual address. */ 4227 ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr; 4228 #else 4229 con_log(CL_ANN1, (CE_NOTE, 4230 "handle_drv_ioctl: DDI_MODEL_LP64")); 4231 xferlen = kdcmd->sgl.sge64[0].length; 4232 /* SJ! - ubuf needs to be virtual address. */ 4233 ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr; 4234 #endif 4235 } 4236 con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: " 4237 "dataBuf=%p size=%d bytes", ubuf, xferlen)); 4238 4239 switch (kdcmd->opcode) { 4240 case MR_DRIVER_IOCTL_DRIVER_VERSION: 4241 con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: " 4242 "MR_DRIVER_IOCTL_DRIVER_VERSION")); 4243 4244 fill_up_drv_ver(&dv); 4245 4246 if (ddi_copyout(&dv, ubuf, xferlen, mode)) { 4247 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4248 "MR_DRIVER_IOCTL_DRIVER_VERSION : " 4249 "copy to user space failed\n")); 4250 kdcmd->cmd_status = 1; 4251 rval = 1; 4252 } else { 4253 kdcmd->cmd_status = 0; 4254 } 4255 break; 4256 case MR_DRIVER_IOCTL_PCI_INFORMATION: 4257 con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: " 4258 "MR_DRIVER_IOCTL_PCI_INFORMAITON")); 4259 4260 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip, 4261 0, "reg", &props, &num_props)) { 4262 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4263 "MR_DRIVER_IOCTL_PCI_INFORMATION : " 4264 "ddi_prop_look_int_array failed\n")); 4265 rval = 1; 4266 } else { 4267 4268 pi.busNumber = (props[0] >> 16) & 0xFF; 4269 pi.deviceNumber = (props[0] >> 11) & 0x1f; 4270 pi.functionNumber = (props[0] >> 8) & 0x7; 4271 ddi_prop_free((void *)props); 4272 } 4273 4274 pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo; 4275 4276 for (i = 0; i < (sizeof (struct megasas_pci_information) - 4277 offsetof(struct megasas_pci_information, pciHeaderInfo)); 4278 i++) { 4279 pci_conf_buf[i] = 4280 pci_config_get8(instance->pci_handle, i); 4281 } 4282 4283 if (ddi_copyout(&pi, ubuf, xferlen, mode)) { 4284 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4285 "MR_DRIVER_IOCTL_PCI_INFORMATION : " 4286 "copy to user space failed\n")); 4287 kdcmd->cmd_status = 1; 4288 rval = 1; 4289 } else { 4290 kdcmd->cmd_status = 0; 4291 } 4292 break; 4293 default: 4294 con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: " 4295 "invalid driver specific IOCTL opcode = 0x%x", 4296 kdcmd->opcode)); 4297 kdcmd->cmd_status = 1; 4298 rval = 1; 4299 break; 4300 } 4301 4302 return (rval); 4303 } 4304 4305 /* 4306 * handle_mfi_ioctl 4307 */ 4308 static int 4309 handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl, 4310 int mode) 4311 { 4312 int rval = 0; 4313 4314 struct megasas_header *hdr; 4315 struct megasas_cmd *cmd; 4316 4317 cmd = get_mfi_pkt(instance); 4318 4319 if (!cmd) { 4320 con_log(CL_ANN, (CE_WARN, "megasas: " 4321 "failed to get a cmd packet\n")); 4322 return (1); 4323 } 4324 4325 hdr = (struct megasas_header *)&ioctl->frame[0]; 4326 4327 switch (hdr->cmd) { 4328 case MFI_CMD_OP_DCMD: 4329 rval = issue_mfi_dcmd(instance, ioctl, cmd, mode); 4330 break; 4331 case MFI_CMD_OP_SMP: 4332 rval = issue_mfi_smp(instance, ioctl, cmd, mode); 4333 break; 4334 case MFI_CMD_OP_STP: 4335 rval = issue_mfi_stp(instance, ioctl, cmd, mode); 4336 break; 4337 case MFI_CMD_OP_LD_SCSI: 4338 case MFI_CMD_OP_PD_SCSI: 4339 rval = issue_mfi_pthru(instance, ioctl, cmd, mode); 4340 break; 4341 default: 4342 con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: " 4343 "invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd)); 4344 rval = 1; 4345 break; 4346 } 4347 4348 4349 return_mfi_pkt(instance, cmd); 4350 if (megasas_common_check(instance, cmd) != DDI_SUCCESS) 4351 rval = 1; 4352 return (rval); 4353 } 4354 4355 /* 4356 * AEN 4357 */ 4358 static int 4359 handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen) 4360 { 4361 int rval = 0; 4362 4363 rval = register_mfi_aen(instance, instance->aen_seq_num, 4364 aen->class_locale_word); 4365 4366 aen->cmd_status = (uint8_t)rval; 4367 4368 return (rval); 4369 } 4370 4371 static int 4372 register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num, 4373 uint32_t class_locale_word) 4374 { 4375 int ret_val; 4376 4377 struct megasas_cmd *cmd; 4378 struct megasas_dcmd_frame *dcmd; 4379 union megasas_evt_class_locale curr_aen; 4380 union megasas_evt_class_locale prev_aen; 4381 4382 /* 4383 * If there an AEN pending already (aen_cmd), check if the 4384 * class_locale of that pending AEN is inclusive of the new 4385 * AEN request we currently have. If it is, then we don't have 4386 * to do anything. In other words, whichever events the current 4387 * AEN request is subscribing to, have already been subscribed 4388 * to. 4389 * 4390 * If the old_cmd is _not_ inclusive, then we have to abort 4391 * that command, form a class_locale that is superset of both 4392 * old and current and re-issue to the FW 4393 */ 4394 4395 curr_aen.word = class_locale_word; 4396 4397 if (instance->aen_cmd) { 4398 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; 4399 4400 /* 4401 * A class whose enum value is smaller is inclusive of all 4402 * higher values. If a PROGRESS (= -1) was previously 4403 * registered, then a new registration requests for higher 4404 * classes need not be sent to FW. They are automatically 4405 * included. 4406 * 4407 * Locale numbers don't have such hierarchy. They are bitmap 4408 * values 4409 */ 4410 if ((prev_aen.members.class <= curr_aen.members.class) && 4411 !((prev_aen.members.locale & curr_aen.members.locale) ^ 4412 curr_aen.members.locale)) { 4413 /* 4414 * Previously issued event registration includes 4415 * current request. Nothing to do. 4416 */ 4417 4418 return (0); 4419 } else { 4420 curr_aen.members.locale |= prev_aen.members.locale; 4421 4422 if (prev_aen.members.class < curr_aen.members.class) 4423 curr_aen.members.class = prev_aen.members.class; 4424 4425 ret_val = abort_aen_cmd(instance, instance->aen_cmd); 4426 4427 if (ret_val) { 4428 con_log(CL_ANN, (CE_WARN, "register_mfi_aen: " 4429 "failed to abort prevous AEN command\n")); 4430 4431 return (ret_val); 4432 } 4433 } 4434 } else { 4435 curr_aen.word = class_locale_word; 4436 } 4437 4438 cmd = get_mfi_pkt(instance); 4439 4440 if (!cmd) 4441 return (-ENOMEM); 4442 4443 dcmd = &cmd->frame->dcmd; 4444 4445 /* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */ 4446 (void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ); 4447 4448 (void) memset(instance->mfi_evt_detail_obj.buffer, 0, 4449 sizeof (struct megasas_evt_detail)); 4450 4451 /* Prepare DCMD for aen registration */ 4452 dcmd->cmd = MFI_CMD_OP_DCMD; 4453 dcmd->cmd_status = 0x0; 4454 dcmd->sge_count = 1; 4455 dcmd->flags = MFI_FRAME_DIR_READ; 4456 dcmd->timeout = 0; 4457 dcmd->data_xfer_len = sizeof (struct megasas_evt_detail); 4458 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT; 4459 dcmd->mbox.w[0] = seq_num; 4460 dcmd->mbox.w[1] = curr_aen.word; 4461 dcmd->sgl.sge32[0].phys_addr = 4462 instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address; 4463 dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail); 4464 4465 instance->aen_seq_num = seq_num; 4466 4467 /* 4468 * Store reference to the cmd used to register for AEN. When an 4469 * application wants us to register for AEN, we have to abort this 4470 * cmd and re-register with a new EVENT LOCALE supplied by that app 4471 */ 4472 instance->aen_cmd = cmd; 4473 4474 cmd->frame_count = 1; 4475 4476 /* Issue the aen registration frame */ 4477 /* atomic_add_16 (&instance->fw_outstanding, 1); */ 4478 instance->func_ptr->issue_cmd(cmd, instance); 4479 4480 return (0); 4481 } 4482 4483 static void 4484 display_scsi_inquiry(caddr_t scsi_inq) 4485 { 4486 #define MAX_SCSI_DEVICE_CODE 14 4487 int i; 4488 char inquiry_buf[256] = {0}; 4489 int len; 4490 const char *const scsi_device_types[] = { 4491 "Direct-Access ", 4492 "Sequential-Access", 4493 "Printer ", 4494 "Processor ", 4495 "WORM ", 4496 "CD-ROM ", 4497 "Scanner ", 4498 "Optical Device ", 4499 "Medium Changer ", 4500 "Communications ", 4501 "Unknown ", 4502 "Unknown ", 4503 "Unknown ", 4504 "Enclosure ", 4505 }; 4506 4507 len = 0; 4508 4509 len += snprintf(inquiry_buf + len, 265 - len, " Vendor: "); 4510 for (i = 8; i < 16; i++) { 4511 len += snprintf(inquiry_buf + len, 265 - len, "%c", 4512 scsi_inq[i]); 4513 } 4514 4515 len += snprintf(inquiry_buf + len, 265 - len, " Model: "); 4516 4517 for (i = 16; i < 32; i++) { 4518 len += snprintf(inquiry_buf + len, 265 - len, "%c", 4519 scsi_inq[i]); 4520 } 4521 4522 len += snprintf(inquiry_buf + len, 265 - len, " Rev: "); 4523 4524 for (i = 32; i < 36; i++) { 4525 len += snprintf(inquiry_buf + len, 265 - len, "%c", 4526 scsi_inq[i]); 4527 } 4528 4529 len += snprintf(inquiry_buf + len, 265 - len, "\n"); 4530 4531 4532 i = scsi_inq[0] & 0x1f; 4533 4534 4535 len += snprintf(inquiry_buf + len, 265 - len, " Type: %s ", 4536 i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] : 4537 "Unknown "); 4538 4539 4540 len += snprintf(inquiry_buf + len, 265 - len, 4541 " ANSI SCSI revision: %02x", scsi_inq[2] & 0x07); 4542 4543 if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) { 4544 len += snprintf(inquiry_buf + len, 265 - len, " CCS\n"); 4545 } else { 4546 len += snprintf(inquiry_buf + len, 265 - len, "\n"); 4547 } 4548 4549 con_log(CL_ANN1, (CE_CONT, inquiry_buf)); 4550 } 4551 4552 static int 4553 read_fw_status_reg_xscale(struct megasas_instance *instance) 4554 { 4555 return ((int)RD_OB_MSG_0(instance)); 4556 } 4557 4558 static int 4559 read_fw_status_reg_ppc(struct megasas_instance *instance) 4560 { 4561 return ((int)RD_OB_SCRATCH_PAD_0(instance)); 4562 } 4563 4564 static void 4565 issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance) 4566 { 4567 atomic_add_16(&instance->fw_outstanding, 1); 4568 4569 /* Issue the command to the FW */ 4570 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) | 4571 (cmd->frame_count - 1), instance); 4572 } 4573 4574 static void 4575 issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance) 4576 { 4577 atomic_add_16(&instance->fw_outstanding, 1); 4578 4579 /* Issue the command to the FW */ 4580 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) | 4581 (((cmd->frame_count - 1) << 1) | 1), instance); 4582 } 4583 4584 /* 4585 * issue_cmd_in_sync_mode 4586 */ 4587 static int 4588 issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance, 4589 struct megasas_cmd *cmd) 4590 { 4591 int i; 4592 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC); 4593 4594 cmd->cmd_status = ENODATA; 4595 4596 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) | 4597 (cmd->frame_count - 1), instance); 4598 4599 mutex_enter(&instance->int_cmd_mtx); 4600 4601 for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) { 4602 cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx); 4603 } 4604 4605 mutex_exit(&instance->int_cmd_mtx); 4606 4607 if (i < (msecs -1)) { 4608 return (0); 4609 } else { 4610 return (1); 4611 } 4612 } 4613 4614 static int 4615 issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance, 4616 struct megasas_cmd *cmd) 4617 { 4618 int i; 4619 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC); 4620 4621 con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n")); 4622 4623 cmd->cmd_status = ENODATA; 4624 4625 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) | 4626 (((cmd->frame_count - 1) << 1) | 1), instance); 4627 4628 mutex_enter(&instance->int_cmd_mtx); 4629 4630 for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) { 4631 cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx); 4632 } 4633 4634 mutex_exit(&instance->int_cmd_mtx); 4635 4636 con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n")); 4637 4638 if (i < (msecs -1)) { 4639 return (0); 4640 } else { 4641 return (1); 4642 } 4643 } 4644 4645 /* 4646 * issue_cmd_in_poll_mode 4647 */ 4648 static int 4649 issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance, 4650 struct megasas_cmd *cmd) 4651 { 4652 int i; 4653 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC; 4654 struct megasas_header *frame_hdr; 4655 4656 frame_hdr = (struct megasas_header *)cmd->frame; 4657 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 4658 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; 4659 4660 /* issue the frame using inbound queue port */ 4661 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) | 4662 (cmd->frame_count - 1), instance); 4663 4664 /* wait for cmd_status to change from 0xFF */ 4665 for (i = 0; i < msecs && (frame_hdr->cmd_status == 4666 MFI_CMD_STATUS_POLL_MODE); i++) { 4667 drv_usecwait(MILLISEC); /* wait for 1000 usecs */ 4668 } 4669 4670 if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) { 4671 con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: " 4672 "cmd polling timed out")); 4673 return (DDI_FAILURE); 4674 } 4675 4676 return (DDI_SUCCESS); 4677 } 4678 4679 static int 4680 issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance, 4681 struct megasas_cmd *cmd) 4682 { 4683 int i; 4684 uint32_t msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC; 4685 struct megasas_header *frame_hdr; 4686 4687 con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n")); 4688 4689 frame_hdr = (struct megasas_header *)cmd->frame; 4690 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; 4691 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; 4692 4693 /* issue the frame using inbound queue port */ 4694 WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) | 4695 (((cmd->frame_count - 1) << 1) | 1), instance); 4696 4697 /* wait for cmd_status to change from 0xFF */ 4698 for (i = 0; i < msecs && (frame_hdr->cmd_status == 4699 MFI_CMD_STATUS_POLL_MODE); i++) { 4700 drv_usecwait(MILLISEC); /* wait for 1000 usecs */ 4701 } 4702 4703 if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) { 4704 con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: " 4705 "cmd polling timed out")); 4706 return (DDI_FAILURE); 4707 } 4708 4709 return (DDI_SUCCESS); 4710 } 4711 4712 static void 4713 enable_intr_xscale(struct megasas_instance *instance) 4714 { 4715 MFI_ENABLE_INTR(instance); 4716 } 4717 4718 static void 4719 enable_intr_ppc(struct megasas_instance *instance) 4720 { 4721 uint32_t mask; 4722 4723 con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n")); 4724 4725 /* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */ 4726 WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance); 4727 4728 /* 4729 * As 1078DE is same as 1078 chip, the interrupt mask 4730 * remains the same. 4731 */ 4732 /* WR_OB_INTR_MASK(~0x80000000, instance); */ 4733 WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance); 4734 4735 /* dummy read to force PCI flush */ 4736 mask = RD_OB_INTR_MASK(instance); 4737 4738 con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: " 4739 "outbound_intr_mask = 0x%x\n", mask)); 4740 } 4741 4742 static void 4743 disable_intr_xscale(struct megasas_instance *instance) 4744 { 4745 MFI_DISABLE_INTR(instance); 4746 } 4747 4748 static void 4749 disable_intr_ppc(struct megasas_instance *instance) 4750 { 4751 uint32_t mask; 4752 4753 con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n")); 4754 4755 con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : " 4756 "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance))); 4757 4758 /* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */ 4759 WR_OB_INTR_MASK(OB_INTR_MASK, instance); 4760 4761 con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : " 4762 "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance))); 4763 4764 /* dummy read to force PCI flush */ 4765 mask = RD_OB_INTR_MASK(instance); 4766 #ifdef lint 4767 mask = mask; 4768 #endif 4769 } 4770 4771 static int 4772 intr_ack_xscale(struct megasas_instance *instance) 4773 { 4774 uint32_t status; 4775 4776 /* check if it is our interrupt */ 4777 status = RD_OB_INTR_STATUS(instance); 4778 4779 if (!(status & MFI_OB_INTR_STATUS_MASK)) { 4780 return (DDI_INTR_UNCLAIMED); 4781 } 4782 4783 /* clear the interrupt by writing back the same value */ 4784 WR_OB_INTR_STATUS(status, instance); 4785 4786 return (DDI_INTR_CLAIMED); 4787 } 4788 4789 static int 4790 intr_ack_ppc(struct megasas_instance *instance) 4791 { 4792 uint32_t status; 4793 4794 con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n")); 4795 4796 /* check if it is our interrupt */ 4797 status = RD_OB_INTR_STATUS(instance); 4798 4799 con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status)); 4800 4801 /* 4802 * As 1078DE is same as 1078 chip, the status field 4803 * remains the same. 4804 */ 4805 if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) { 4806 return (DDI_INTR_UNCLAIMED); 4807 } 4808 4809 /* clear the interrupt by writing back the same value */ 4810 WR_OB_DOORBELL_CLEAR(status, instance); 4811 4812 /* dummy READ */ 4813 status = RD_OB_INTR_STATUS(instance); 4814 4815 con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n")); 4816 4817 return (DDI_INTR_CLAIMED); 4818 } 4819 4820 static int 4821 megasas_common_check(struct megasas_instance *instance, 4822 struct megasas_cmd *cmd) 4823 { 4824 int ret = DDI_SUCCESS; 4825 4826 if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) != 4827 DDI_SUCCESS) { 4828 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4829 if (cmd->pkt != NULL) { 4830 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4831 cmd->pkt->pkt_statistics = 0; 4832 } 4833 ret = DDI_FAILURE; 4834 } 4835 if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle) 4836 != DDI_SUCCESS) { 4837 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4838 if (cmd->pkt != NULL) { 4839 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4840 cmd->pkt->pkt_statistics = 0; 4841 } 4842 ret = DDI_FAILURE; 4843 } 4844 if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) != 4845 DDI_SUCCESS) { 4846 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4847 if (cmd->pkt != NULL) { 4848 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4849 cmd->pkt->pkt_statistics = 0; 4850 } 4851 ret = DDI_FAILURE; 4852 } 4853 if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) { 4854 ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED); 4855 ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0); 4856 if (cmd->pkt != NULL) { 4857 cmd->pkt->pkt_reason = CMD_TRAN_ERR; 4858 cmd->pkt->pkt_statistics = 0; 4859 } 4860 ret = DDI_FAILURE; 4861 } 4862 4863 return (ret); 4864 } 4865 4866 /*ARGSUSED*/ 4867 static int 4868 megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 4869 { 4870 /* 4871 * as the driver can always deal with an error in any dma or 4872 * access handle, we can just return the fme_status value. 4873 */ 4874 pci_ereport_post(dip, err, NULL); 4875 return (err->fme_status); 4876 } 4877 4878 static void 4879 megasas_fm_init(struct megasas_instance *instance) 4880 { 4881 /* Need to change iblock to priority for new MSI intr */ 4882 ddi_iblock_cookie_t fm_ibc; 4883 4884 /* Only register with IO Fault Services if we have some capability */ 4885 if (instance->fm_capabilities) { 4886 /* Adjust access and dma attributes for FMA */ 4887 endian_attr.devacc_attr_access = DDI_FLAGERR_ACC; 4888 megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR; 4889 4890 /* 4891 * Register capabilities with IO Fault Services. 4892 * fm_capabilities will be updated to indicate 4893 * capabilities actually supported (not requested.) 4894 */ 4895 4896 ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc); 4897 4898 /* 4899 * Initialize pci ereport capabilities if ereport 4900 * capable (should always be.) 4901 */ 4902 4903 if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) || 4904 DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4905 pci_ereport_setup(instance->dip); 4906 } 4907 4908 /* 4909 * Register error callback if error callback capable. 4910 */ 4911 if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4912 ddi_fm_handler_register(instance->dip, 4913 megasas_fm_error_cb, (void*) instance); 4914 } 4915 } else { 4916 endian_attr.devacc_attr_access = DDI_DEFAULT_ACC; 4917 megasas_generic_dma_attr.dma_attr_flags = 0; 4918 } 4919 } 4920 4921 static void 4922 megasas_fm_fini(struct megasas_instance *instance) 4923 { 4924 /* Only unregister FMA capabilities if registered */ 4925 if (instance->fm_capabilities) { 4926 /* 4927 * Un-register error callback if error callback capable. 4928 */ 4929 if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4930 ddi_fm_handler_unregister(instance->dip); 4931 } 4932 4933 /* 4934 * Release any resources allocated by pci_ereport_setup() 4935 */ 4936 if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) || 4937 DDI_FM_ERRCB_CAP(instance->fm_capabilities)) { 4938 pci_ereport_teardown(instance->dip); 4939 } 4940 4941 /* Unregister from IO Fault Services */ 4942 ddi_fm_fini(instance->dip); 4943 4944 /* Adjust access and dma attributes for FMA */ 4945 endian_attr.devacc_attr_access = DDI_DEFAULT_ACC; 4946 megasas_generic_dma_attr.dma_attr_flags = 0; 4947 } 4948 } 4949 4950 int 4951 megasas_check_acc_handle(ddi_acc_handle_t handle) 4952 { 4953 ddi_fm_error_t de; 4954 4955 if (handle == NULL) { 4956 return (DDI_FAILURE); 4957 } 4958 4959 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); 4960 4961 return (de.fme_status); 4962 } 4963 4964 int 4965 megasas_check_dma_handle(ddi_dma_handle_t handle) 4966 { 4967 ddi_fm_error_t de; 4968 4969 if (handle == NULL) { 4970 return (DDI_FAILURE); 4971 } 4972 4973 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); 4974 4975 return (de.fme_status); 4976 } 4977 4978 void 4979 megasas_fm_ereport(struct megasas_instance *instance, char *detail) 4980 { 4981 uint64_t ena; 4982 char buf[FM_MAX_CLASS]; 4983 4984 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); 4985 ena = fm_ena_generate(0, FM_ENA_FMT1); 4986 if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) { 4987 ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP, 4988 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL); 4989 } 4990 } 4991