xref: /illumos-gate/usr/src/uts/common/io/mega_sas/megaraid_sas.c (revision 257873cfc1dd3337766407f80397db60a56f2f5a)
1 /*
2  * megaraid_sas.c: source for mega_sas driver
3  *
4  * MegaRAID device driver for SAS controllers
5  * Copyright (c) 2005-2008, LSI Logic Corporation.
6  * All rights reserved.
7  *
8  * Version:
9  * Author:
10  *        	Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com>
11  *        	Seokmann Ju
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions are met:
15  *
16  * 1. Redistributions of source code must retain the above copyright notice,
17  *    this list of conditions and the following disclaimer.
18  *
19  * 2. Redistributions in binary form must reproduce the above copyright notice,
20  *    this list of conditions and the following disclaimer in the documentation
21  *    and/or other materials provided with the distribution.
22  *
23  * 3. Neither the name of the author nor the names of its contributors may be
24  *    used to endorse or promote products derived from this software without
25  *    specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
35  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
37  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
38  * DAMAGE.
39  */
40 
41 /*
42  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
43  * Use is subject to license terms.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/file.h>
49 #include <sys/errno.h>
50 #include <sys/open.h>
51 #include <sys/cred.h>
52 #include <sys/modctl.h>
53 #include <sys/conf.h>
54 #include <sys/devops.h>
55 #include <sys/cmn_err.h>
56 #include <sys/kmem.h>
57 #include <sys/stat.h>
58 #include <sys/mkdev.h>
59 #include <sys/pci.h>
60 #include <sys/scsi/scsi.h>
61 #include <sys/ddi.h>
62 #include <sys/sunddi.h>
63 #include <sys/atomic.h>
64 #include <sys/signal.h>
65 
66 #include "megaraid_sas.h"
67 
68 /*
69  * FMA header files
70  */
71 #include <sys/ddifm.h>
72 #include <sys/fm/protocol.h>
73 #include <sys/fm/util.h>
74 #include <sys/fm/io/ddi.h>
75 
76 /*
77  * Local static data
78  */
79 static void	*megasas_state = NULL;
80 static int 	debug_level_g = CL_ANN;
81 
82 #pragma weak scsi_hba_open
83 #pragma weak scsi_hba_close
84 #pragma weak scsi_hba_ioctl
85 
86 static ddi_dma_attr_t megasas_generic_dma_attr = {
87 	DMA_ATTR_V0,		/* dma_attr_version */
88 	0,			/* low DMA address range */
89 	0xFFFFFFFFU,		/* high DMA address range */
90 	0xFFFFFFFFU,		/* DMA counter register  */
91 	8,			/* DMA address alignment */
92 	0x07,			/* DMA burstsizes  */
93 	1,			/* min DMA size */
94 	0xFFFFFFFFU,		/* max DMA size */
95 	0xFFFFFFFFU,		/* segment boundary */
96 	MEGASAS_MAX_SGE_CNT,	/* dma_attr_sglen */
97 	512,			/* granularity of device */
98 	0			/* bus specific DMA flags */
99 };
100 
101 int32_t megasas_max_cap_maxxfer = 0x1000000;
102 
103 /*
104  * cb_ops contains base level routines
105  */
106 static struct cb_ops megasas_cb_ops = {
107 	megasas_open,		/* open */
108 	megasas_close,		/* close */
109 	nodev,			/* strategy */
110 	nodev,			/* print */
111 	nodev,			/* dump */
112 	nodev,			/* read */
113 	nodev,			/* write */
114 	megasas_ioctl,		/* ioctl */
115 	nodev,			/* devmap */
116 	nodev,			/* mmap */
117 	nodev,			/* segmap */
118 	nochpoll,		/* poll */
119 	nodev,			/* cb_prop_op */
120 	0,			/* streamtab  */
121 	D_NEW | D_HOTPLUG,	/* cb_flag */
122 	CB_REV,			/* cb_rev */
123 	nodev,			/* cb_aread */
124 	nodev			/* cb_awrite */
125 };
126 
127 /*
128  * dev_ops contains configuration routines
129  */
130 static struct dev_ops megasas_ops = {
131 	DEVO_REV,		/* rev, */
132 	0,			/* refcnt */
133 	megasas_getinfo,	/* getinfo */
134 	nulldev,		/* identify */
135 	nulldev,		/* probe */
136 	megasas_attach,		/* attach */
137 	megasas_detach,		/* detach */
138 	megasas_reset,		/* reset */
139 	&megasas_cb_ops,	/* char/block ops */
140 	NULL,			/* bus ops */
141 	NULL,			/* power */
142 	ddi_quiesce_not_supported,	/* devo_quiesce */
143 };
144 
145 char _depends_on[] = "misc/scsi";
146 
147 static struct modldrv modldrv = {
148 	&mod_driverops,		/* module type - driver */
149 	MEGASAS_VERSION,
150 	&megasas_ops,		/* driver ops */
151 };
152 
153 static struct modlinkage modlinkage = {
154 	MODREV_1,	/* ml_rev - must be MODREV_1 */
155 	&modldrv,	/* ml_linkage */
156 	NULL		/* end of driver linkage */
157 };
158 
159 static struct ddi_device_acc_attr endian_attr = {
160 	DDI_DEVICE_ATTR_V0,
161 	DDI_STRUCTURE_LE_ACC,
162 	DDI_STRICTORDER_ACC
163 };
164 
165 
166 /*
167  * ************************************************************************** *
168  *                                                                            *
169  *         common entry points - for loadable kernel modules                  *
170  *                                                                            *
171  * ************************************************************************** *
172  */
173 
174 /*
175  * _init - initialize a loadable module
176  * @void
177  *
178  * The driver should perform any one-time resource allocation or data
179  * initialization during driver loading in _init(). For example, the driver
180  * should initialize any mutexes global to the driver in this routine.
181  * The driver should not, however, use _init() to allocate or initialize
182  * anything that has to do with a particular instance of the device.
183  * Per-instance initialization must be done in attach().
184  */
185 int
186 _init(void)
187 {
188 	int ret;
189 
190 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
191 
192 	ret = ddi_soft_state_init(&megasas_state,
193 	    sizeof (struct megasas_instance), 0);
194 
195 	if (ret != 0) {
196 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init state"));
197 		return (ret);
198 	}
199 
200 	if ((ret = scsi_hba_init(&modlinkage)) != 0) {
201 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba"));
202 		ddi_soft_state_fini(&megasas_state);
203 		return (ret);
204 	}
205 
206 	ret = mod_install(&modlinkage);
207 
208 	if (ret != 0) {
209 		con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed"));
210 		scsi_hba_fini(&modlinkage);
211 		ddi_soft_state_fini(&megasas_state);
212 	}
213 
214 	return (ret);
215 }
216 
217 /*
218  * _info - returns information about a loadable module.
219  * @void
220  *
221  * _info() is called to return module information. This is a typical entry
222  * point that does predefined role. It simply calls mod_info().
223  */
224 int
225 _info(struct modinfo *modinfop)
226 {
227 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
228 
229 	return (mod_info(&modlinkage, modinfop));
230 }
231 
232 /*
233  * _fini - prepare a loadable module for unloading
234  * @void
235  *
236  * In _fini(), the driver should release any resources that were allocated in
237  * _init(). The driver must remove itself from the system module list.
238  */
239 int
240 _fini(void)
241 {
242 	int ret;
243 
244 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
245 
246 	if ((ret = mod_remove(&modlinkage)) != 0)
247 		return (ret);
248 
249 	scsi_hba_fini(&modlinkage);
250 
251 	ddi_soft_state_fini(&megasas_state);
252 
253 	return (ret);
254 }
255 
256 
257 /*
258  * ************************************************************************** *
259  *                                                                            *
260  *               common entry points - for autoconfiguration                  *
261  *                                                                            *
262  * ************************************************************************** *
263  */
264 /*
265  * attach - adds a device to the system as part of initialization
266  * @dip:
267  * @cmd:
268  *
269  * The kernel calls a driver's attach() entry point to attach an instance of
270  * a device (for MegaRAID, it is instance of a controller) or to resume
271  * operation for an instance of a device that has been suspended or has been
272  * shut down by the power management framework
273  * The attach() entry point typically includes the following types of
274  * processing:
275  * - allocate a soft-state structure for the device instance (for MegaRAID,
276  *   controller instance)
277  * - initialize per-instance mutexes
278  * - initialize condition variables
279  * - register the device's interrupts (for MegaRAID, controller's interrupts)
280  * - map the registers and memory of the device instance (for MegaRAID,
281  *   controller instance)
282  * - create minor device nodes for the device instance (for MegaRAID,
283  *   controller instance)
284  * - report that the device instance (for MegaRAID, controller instance) has
285  *   attached
286  */
287 static int
288 megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
289 {
290 	int		instance_no;
291 	int		nregs;
292 	uint8_t		added_isr_f = 0;
293 	uint8_t		added_soft_isr_f = 0;
294 	uint8_t		create_devctl_node_f = 0;
295 	uint8_t		create_scsi_node_f = 0;
296 	uint8_t		create_ioc_node_f = 0;
297 	uint8_t		tran_alloc_f = 0;
298 	uint8_t 	irq;
299 	uint16_t	vendor_id;
300 	uint16_t	device_id;
301 	uint16_t	subsysvid;
302 	uint16_t	subsysid;
303 	uint16_t	command;
304 
305 	scsi_hba_tran_t		*tran;
306 	ddi_dma_attr_t  tran_dma_attr;
307 	struct megasas_instance	*instance;
308 
309 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
310 
311 	/* CONSTCOND */
312 	ASSERT(NO_COMPETING_THREADS);
313 
314 	instance_no = ddi_get_instance(dip);
315 
316 	/*
317 	 * Since we know that some instantiations of this device can be
318 	 * plugged into slave-only SBus slots, check to see whether this is
319 	 * one such.
320 	 */
321 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
322 		con_log(CL_ANN, (CE_WARN,
323 		    "mega%d: Device in slave-only slot, unused", instance_no));
324 		return (DDI_FAILURE);
325 	}
326 
327 	switch (cmd) {
328 		case DDI_ATTACH:
329 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH"));
330 			/* allocate the soft state for the instance */
331 			if (ddi_soft_state_zalloc(megasas_state, instance_no)
332 			    != DDI_SUCCESS) {
333 				con_log(CL_ANN, (CE_WARN,
334 				    "mega%d: Failed to allocate soft state",
335 				    instance_no));
336 
337 				return (DDI_FAILURE);
338 			}
339 
340 			instance = (struct megasas_instance *)ddi_get_soft_state
341 			    (megasas_state, instance_no);
342 
343 			if (instance == NULL) {
344 				con_log(CL_ANN, (CE_WARN,
345 				    "mega%d: Bad soft state", instance_no));
346 
347 				ddi_soft_state_free(megasas_state, instance_no);
348 
349 				return (DDI_FAILURE);
350 			}
351 
352 			bzero((caddr_t)instance,
353 			    sizeof (struct megasas_instance));
354 
355 			instance->func_ptr = kmem_zalloc(
356 			    sizeof (struct megasas_func_ptr), KM_SLEEP);
357 			ASSERT(instance->func_ptr);
358 
359 			/* Setup the PCI configuration space handles */
360 			if (pci_config_setup(dip, &instance->pci_handle) !=
361 			    DDI_SUCCESS) {
362 				con_log(CL_ANN, (CE_WARN,
363 				    "mega%d: pci config setup failed ",
364 				    instance_no));
365 
366 				kmem_free(instance->func_ptr,
367 				    sizeof (struct megasas_func_ptr));
368 				ddi_soft_state_free(megasas_state, instance_no);
369 
370 				return (DDI_FAILURE);
371 			}
372 
373 			if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) {
374 				con_log(CL_ANN, (CE_WARN,
375 				    "megaraid: failed to get registers."));
376 
377 				pci_config_teardown(&instance->pci_handle);
378 				kmem_free(instance->func_ptr,
379 				    sizeof (struct megasas_func_ptr));
380 				ddi_soft_state_free(megasas_state, instance_no);
381 
382 				return (DDI_FAILURE);
383 			}
384 
385 			vendor_id = pci_config_get16(instance->pci_handle,
386 			    PCI_CONF_VENID);
387 			device_id = pci_config_get16(instance->pci_handle,
388 			    PCI_CONF_DEVID);
389 
390 			subsysvid = pci_config_get16(instance->pci_handle,
391 			    PCI_CONF_SUBVENID);
392 			subsysid = pci_config_get16(instance->pci_handle,
393 			    PCI_CONF_SUBSYSID);
394 
395 			pci_config_put16(instance->pci_handle, PCI_CONF_COMM,
396 			    (pci_config_get16(instance->pci_handle,
397 			    PCI_CONF_COMM) | PCI_COMM_ME));
398 			irq = pci_config_get8(instance->pci_handle,
399 			    PCI_CONF_ILINE);
400 
401 			con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
402 			    "0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n",
403 			    instance_no, vendor_id, device_id, subsysvid,
404 			    subsysid, irq, MEGASAS_VERSION));
405 
406 			/* enable bus-mastering */
407 			command = pci_config_get16(instance->pci_handle,
408 			    PCI_CONF_COMM);
409 
410 			if (!(command & PCI_COMM_ME)) {
411 				command |= PCI_COMM_ME;
412 
413 				pci_config_put16(instance->pci_handle,
414 				    PCI_CONF_COMM, command);
415 
416 				con_log(CL_ANN, (CE_CONT, "megaraid%d: "
417 				    "enable bus-mastering\n", instance_no));
418 			} else {
419 				con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: "
420 				"bus-mastering already set\n", instance_no));
421 			}
422 
423 			/* initialize function pointers */
424 			if ((device_id == PCI_DEVICE_ID_LSI_1078) ||
425 			    (device_id == PCI_DEVICE_ID_LSI_1078DE)) {
426 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
427 				    "1078R/DE detected\n", instance_no));
428 				instance->func_ptr->read_fw_status_reg =
429 				    read_fw_status_reg_ppc;
430 				instance->func_ptr->issue_cmd = issue_cmd_ppc;
431 				instance->func_ptr->issue_cmd_in_sync_mode =
432 				    issue_cmd_in_sync_mode_ppc;
433 				instance->func_ptr->issue_cmd_in_poll_mode =
434 				    issue_cmd_in_poll_mode_ppc;
435 				instance->func_ptr->enable_intr =
436 				    enable_intr_ppc;
437 				instance->func_ptr->disable_intr =
438 				    disable_intr_ppc;
439 				instance->func_ptr->intr_ack = intr_ack_ppc;
440 			} else {
441 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
442 				    "1064/8R detected\n", instance_no));
443 				instance->func_ptr->read_fw_status_reg =
444 				    read_fw_status_reg_xscale;
445 				instance->func_ptr->issue_cmd =
446 				    issue_cmd_xscale;
447 				instance->func_ptr->issue_cmd_in_sync_mode =
448 				    issue_cmd_in_sync_mode_xscale;
449 				instance->func_ptr->issue_cmd_in_poll_mode =
450 				    issue_cmd_in_poll_mode_xscale;
451 				instance->func_ptr->enable_intr =
452 				    enable_intr_xscale;
453 				instance->func_ptr->disable_intr =
454 				    disable_intr_xscale;
455 				instance->func_ptr->intr_ack =
456 				    intr_ack_xscale;
457 			}
458 
459 			instance->baseaddress = pci_config_get32(
460 			    instance->pci_handle, PCI_CONF_BASE0);
461 			instance->baseaddress &= 0x0fffc;
462 
463 			instance->dip		= dip;
464 			instance->vendor_id	= vendor_id;
465 			instance->device_id	= device_id;
466 			instance->subsysvid	= subsysvid;
467 			instance->subsysid	= subsysid;
468 
469 			/* Initialize FMA */
470 			instance->fm_capabilities = ddi_prop_get_int(
471 			    DDI_DEV_T_ANY, instance->dip, DDI_PROP_DONTPASS,
472 			    "fm-capable", DDI_FM_EREPORT_CAPABLE |
473 			    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE
474 			    | DDI_FM_ERRCB_CAPABLE);
475 
476 			megasas_fm_init(instance);
477 
478 			/* setup the mfi based low level driver */
479 			if (init_mfi(instance) != DDI_SUCCESS) {
480 				con_log(CL_ANN, (CE_WARN, "megaraid: "
481 				"could not initialize the low level driver"));
482 
483 				goto fail_attach;
484 			}
485 
486 			/*
487 			 * Allocate the interrupt blocking cookie.
488 			 * It represents the information the framework
489 			 * needs to block interrupts. This cookie will
490 			 * be used by the locks shared accross our ISR.
491 			 * These locks must be initialized before we
492 			 * register our ISR.
493 			 * ddi_add_intr(9F)
494 			 */
495 			if (ddi_get_iblock_cookie(dip, 0,
496 			    &instance->iblock_cookie) != DDI_SUCCESS) {
497 
498 				goto fail_attach;
499 			}
500 
501 			if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH,
502 			    &instance->soft_iblock_cookie) != DDI_SUCCESS) {
503 
504 				goto fail_attach;
505 			}
506 
507 			/*
508 			 * Initialize the driver mutexes common to
509 			 * normal/high level isr
510 			 */
511 			if (ddi_intr_hilevel(dip, 0)) {
512 				instance->isr_level = HIGH_LEVEL_INTR;
513 				mutex_init(&instance->cmd_pool_mtx,
514 				    "cmd_pool_mtx", MUTEX_DRIVER,
515 				    instance->soft_iblock_cookie);
516 				mutex_init(&instance->cmd_pend_mtx,
517 				    "cmd_pend_mtx", MUTEX_DRIVER,
518 				    instance->soft_iblock_cookie);
519 			} else {
520 				/*
521 				 * Initialize the driver mutexes
522 				 * specific to soft-isr
523 				 */
524 				instance->isr_level = NORMAL_LEVEL_INTR;
525 				mutex_init(&instance->cmd_pool_mtx,
526 				    "cmd_pool_mtx", MUTEX_DRIVER,
527 				    instance->iblock_cookie);
528 				mutex_init(&instance->cmd_pend_mtx,
529 				    "cmd_pend_mtx", MUTEX_DRIVER,
530 				    instance->iblock_cookie);
531 			}
532 
533 			mutex_init(&instance->completed_pool_mtx,
534 			    "completed_pool_mtx", MUTEX_DRIVER,
535 			    instance->iblock_cookie);
536 			mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx",
537 			    MUTEX_DRIVER, instance->iblock_cookie);
538 			mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx",
539 			    MUTEX_DRIVER, instance->iblock_cookie);
540 			mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx",
541 			    MUTEX_DRIVER, instance->iblock_cookie);
542 
543 			cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL);
544 			cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL);
545 
546 			INIT_LIST_HEAD(&instance->completed_pool_list);
547 
548 			/* Register our isr. */
549 			if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr,
550 			    (caddr_t)instance) != DDI_SUCCESS) {
551 				con_log(CL_ANN, (CE_WARN,
552 				    " ISR did not register"));
553 
554 				goto fail_attach;
555 			}
556 
557 			added_isr_f = 1;
558 
559 			/* Register our soft-isr for highlevel interrupts. */
560 			if (instance->isr_level == HIGH_LEVEL_INTR) {
561 				if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH,
562 				    &instance->soft_intr_id, NULL, NULL,
563 				    megasas_softintr, (caddr_t)instance) !=
564 				    DDI_SUCCESS) {
565 					con_log(CL_ANN, (CE_WARN,
566 					    " Software ISR did not register"));
567 
568 					goto fail_attach;
569 				}
570 
571 				added_soft_isr_f = 1;
572 			}
573 
574 			/* Allocate a transport structure */
575 			tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);
576 
577 			if (tran == NULL) {
578 				con_log(CL_ANN, (CE_WARN,
579 				    "scsi_hba_tran_alloc failed"));
580 				goto fail_attach;
581 			}
582 
583 			tran_alloc_f = 1;
584 
585 			instance->tran = tran;
586 
587 			tran->tran_hba_private	= instance;
588 			tran->tran_tgt_private 	= NULL;
589 			tran->tran_tgt_init	= megasas_tran_tgt_init;
590 			tran->tran_tgt_probe	= scsi_hba_probe;
591 			tran->tran_tgt_free	= (void (*)())NULL;
592 			tran->tran_init_pkt	= megasas_tran_init_pkt;
593 			tran->tran_start	= megasas_tran_start;
594 			tran->tran_abort	= megasas_tran_abort;
595 			tran->tran_reset	= megasas_tran_reset;
596 			tran->tran_bus_reset	= megasas_tran_bus_reset;
597 			tran->tran_getcap	= megasas_tran_getcap;
598 			tran->tran_setcap	= megasas_tran_setcap;
599 			tran->tran_destroy_pkt	= megasas_tran_destroy_pkt;
600 			tran->tran_dmafree	= megasas_tran_dmafree;
601 			tran->tran_sync_pkt	= megasas_tran_sync_pkt;
602 			tran->tran_reset_notify	= NULL;
603 			tran->tran_quiesce	= megasas_tran_quiesce;
604 			tran->tran_unquiesce	= megasas_tran_unquiesce;
605 
606 			tran_dma_attr = megasas_generic_dma_attr;
607 			tran_dma_attr.dma_attr_sgllen = instance->max_num_sge;
608 
609 			/* Attach this instance of the hba */
610 			if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0)
611 			    != DDI_SUCCESS) {
612 				con_log(CL_ANN, (CE_WARN,
613 				    "scsi_hba_attach failed\n"));
614 
615 				goto fail_attach;
616 			}
617 
618 			/* create devctl node for cfgadm command */
619 			if (ddi_create_minor_node(dip, "devctl",
620 			    S_IFCHR, INST2DEVCTL(instance_no),
621 			    DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) {
622 				con_log(CL_ANN, (CE_WARN,
623 				    "megaraid: failed to create devctl node."));
624 
625 				goto fail_attach;
626 			}
627 
628 			create_devctl_node_f = 1;
629 
630 			/* create scsi node for cfgadm command */
631 			if (ddi_create_minor_node(dip, "scsi", S_IFCHR,
632 			    INST2SCSI(instance_no),
633 			    DDI_NT_SCSI_ATTACHMENT_POINT, 0) ==
634 			    DDI_FAILURE) {
635 				con_log(CL_ANN, (CE_WARN,
636 				    "megaraid: failed to create scsi node."));
637 
638 				goto fail_attach;
639 			}
640 
641 			create_scsi_node_f = 1;
642 
643 			(void) sprintf(instance->iocnode, "%d:lsirdctl",
644 			    instance_no);
645 
646 			/*
647 			 * Create a node for applications
648 			 * for issuing ioctl to the driver.
649 			 */
650 			if (ddi_create_minor_node(dip, instance->iocnode,
651 			    S_IFCHR, INST2LSIRDCTL(instance_no),
652 			    DDI_PSEUDO, 0) == DDI_FAILURE) {
653 				con_log(CL_ANN, (CE_WARN,
654 				    "megaraid: failed to create ioctl node."));
655 
656 				goto fail_attach;
657 			}
658 
659 			create_ioc_node_f = 1;
660 
661 			/* enable interrupt */
662 			instance->func_ptr->enable_intr(instance);
663 
664 			/* initiate AEN */
665 			if (start_mfi_aen(instance)) {
666 				con_log(CL_ANN, (CE_WARN,
667 				    "megaraid: failed to initiate AEN."));
668 				goto fail_initiate_aen;
669 			}
670 
671 			con_log(CL_DLEVEL1, (CE_NOTE,
672 			    "AEN started for instance %d.", instance_no));
673 
674 			/* Finally! We are on the air.  */
675 			ddi_report_dev(dip);
676 
677 			if (megasas_check_acc_handle(instance->regmap_handle) !=
678 			    DDI_SUCCESS) {
679 				goto fail_attach;
680 			}
681 			if (megasas_check_acc_handle(instance->pci_handle) !=
682 			    DDI_SUCCESS) {
683 				goto fail_attach;
684 			}
685 			break;
686 		case DDI_PM_RESUME:
687 			con_log(CL_ANN, (CE_NOTE,
688 			    "megasas: DDI_PM_RESUME"));
689 			break;
690 		case DDI_RESUME:
691 			con_log(CL_ANN, (CE_NOTE,
692 			    "megasas: DDI_RESUME"));
693 			break;
694 		default:
695 			con_log(CL_ANN, (CE_WARN,
696 			    "megasas: invalid attach cmd=%x", cmd));
697 			return (DDI_FAILURE);
698 	}
699 
700 	return (DDI_SUCCESS);
701 
702 fail_initiate_aen:
703 fail_attach:
704 	if (create_devctl_node_f) {
705 		ddi_remove_minor_node(dip, "devctl");
706 	}
707 
708 	if (create_scsi_node_f) {
709 		ddi_remove_minor_node(dip, "scsi");
710 	}
711 
712 	if (create_ioc_node_f) {
713 		ddi_remove_minor_node(dip, instance->iocnode);
714 	}
715 
716 	if (tran_alloc_f) {
717 		scsi_hba_tran_free(tran);
718 	}
719 
720 
721 	if (added_soft_isr_f) {
722 		ddi_remove_softintr(instance->soft_intr_id);
723 	}
724 
725 	if (added_isr_f) {
726 		ddi_remove_intr(dip, 0, instance->iblock_cookie);
727 	}
728 
729 	megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
730 	ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
731 
732 	megasas_fm_fini(instance);
733 
734 	pci_config_teardown(&instance->pci_handle);
735 
736 	ddi_soft_state_free(megasas_state, instance_no);
737 
738 	con_log(CL_ANN, (CE_NOTE,
739 	    "megasas: return failure from mega_attach\n"));
740 
741 	return (DDI_FAILURE);
742 }
743 
744 /*
745  * getinfo - gets device information
746  * @dip:
747  * @cmd:
748  * @arg:
749  * @resultp:
750  *
751  * The system calls getinfo() to obtain configuration information that only
752  * the driver knows. The mapping of minor numbers to device instance is
753  * entirely under the control of the driver. The system sometimes needs to ask
754  * the driver which device a particular dev_t represents.
755  * Given the device number return the devinfo pointer from the scsi_device
756  * structure.
757  */
758 /*ARGSUSED*/
759 static int
760 megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
761 {
762 	int	rval;
763 	int	megasas_minor = getminor((dev_t)arg);
764 
765 	struct megasas_instance	*instance;
766 
767 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
768 
769 	switch (cmd) {
770 		case DDI_INFO_DEVT2DEVINFO:
771 			instance = (struct megasas_instance *)
772 			    ddi_get_soft_state(megasas_state,
773 			    MINOR2INST(megasas_minor));
774 
775 			if (instance == NULL) {
776 				*resultp = NULL;
777 				rval = DDI_FAILURE;
778 			} else {
779 				*resultp = instance->dip;
780 				rval = DDI_SUCCESS;
781 			}
782 			break;
783 		case DDI_INFO_DEVT2INSTANCE:
784 			*resultp = (void *)instance;
785 			rval = DDI_SUCCESS;
786 			break;
787 		default:
788 			*resultp = NULL;
789 			rval = DDI_FAILURE;
790 	}
791 
792 	return (rval);
793 }
794 
795 /*
796  * detach - detaches a device from the system
797  * @dip: pointer to the device's dev_info structure
798  * @cmd: type of detach
799  *
800  * A driver's detach() entry point is called to detach an instance of a device
801  * that is bound to the driver. The entry point is called with the instance of
802  * the device node to be detached and with DDI_DETACH, which is specified as
803  * the cmd argument to the entry point.
804  * This routine is called during driver unload. We free all the allocated
805  * resources and call the corresponding LLD so that it can also release all
806  * its resources.
807  */
808 static int
809 megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
810 {
811 	int	instance_no;
812 
813 	struct megasas_instance	*instance;
814 
815 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
816 
817 	/* CONSTCOND */
818 	ASSERT(NO_COMPETING_THREADS);
819 
820 	instance_no = ddi_get_instance(dip);
821 
822 	instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state,
823 	    instance_no);
824 
825 	if (!instance) {
826 		con_log(CL_ANN, (CE_WARN,
827 		    "megasas:%d could not get instance in detach",
828 		    instance_no));
829 
830 		return (DDI_FAILURE);
831 	}
832 
833 	con_log(CL_ANN, (CE_NOTE,
834 	    "megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n",
835 	    instance_no, instance->vendor_id, instance->device_id,
836 	    instance->subsysvid, instance->subsysid));
837 
838 	switch (cmd) {
839 		case DDI_DETACH:
840 			con_log(CL_ANN, (CE_NOTE,
841 			    "megasas_detach: DDI_DETACH\n"));
842 
843 			if (scsi_hba_detach(dip) != DDI_SUCCESS) {
844 				con_log(CL_ANN, (CE_WARN,
845 				    "megasas:%d failed to detach",
846 				    instance_no));
847 
848 				return (DDI_FAILURE);
849 			}
850 
851 			scsi_hba_tran_free(instance->tran);
852 
853 			if (abort_aen_cmd(instance, instance->aen_cmd)) {
854 				con_log(CL_ANN, (CE_WARN, "megasas_detach: "
855 				    "failed to abort prevous AEN command\n"));
856 
857 				return (DDI_FAILURE);
858 			}
859 
860 			instance->func_ptr->disable_intr(instance);
861 
862 			if (instance->isr_level == HIGH_LEVEL_INTR) {
863 				ddi_remove_softintr(instance->soft_intr_id);
864 			}
865 
866 			ddi_remove_intr(dip, 0, instance->iblock_cookie);
867 
868 			free_space_for_mfi(instance);
869 
870 			megasas_fm_fini(instance);
871 
872 			pci_config_teardown(&instance->pci_handle);
873 
874 			kmem_free(instance->func_ptr,
875 			    sizeof (struct megasas_func_ptr));
876 
877 			ddi_soft_state_free(megasas_state, instance_no);
878 			break;
879 		case DDI_PM_SUSPEND:
880 			con_log(CL_ANN, (CE_NOTE,
881 			    "megasas_detach: DDI_PM_SUSPEND\n"));
882 
883 			break;
884 		case DDI_SUSPEND:
885 			con_log(CL_ANN, (CE_NOTE,
886 			    "megasas_detach: DDI_SUSPEND\n"));
887 
888 			break;
889 		default:
890 			con_log(CL_ANN, (CE_WARN,
891 			    "invalid detach command:0x%x", cmd));
892 			return (DDI_FAILURE);
893 	}
894 
895 	return (DDI_SUCCESS);
896 }
897 
898 /*
899  * ************************************************************************** *
900  *                                                                            *
901  *             common entry points - for character driver types               *
902  *                                                                            *
903  * ************************************************************************** *
904  */
905 /*
906  * open - gets access to a device
907  * @dev:
908  * @openflags:
909  * @otyp:
910  * @credp:
911  *
912  * Access to a device by one or more application programs is controlled
913  * through the open() and close() entry points. The primary function of
914  * open() is to verify that the open request is allowed.
915  */
916 static  int
917 megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp)
918 {
919 	int	rval = 0;
920 
921 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
922 
923 	/* Check root permissions */
924 	if (drv_priv(credp) != 0) {
925 		con_log(CL_ANN, (CE_WARN,
926 		    "megaraid: Non-root ioctl access tried!"));
927 		return (EPERM);
928 	}
929 
930 	/* Verify we are being opened as a character device */
931 	if (otyp != OTYP_CHR) {
932 		con_log(CL_ANN, (CE_WARN,
933 		    "megaraid: ioctl node must be a char node\n"));
934 		return (EINVAL);
935 	}
936 
937 	if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev)))
938 	    == NULL) {
939 		return (ENXIO);
940 	}
941 
942 	if (scsi_hba_open) {
943 		rval = scsi_hba_open(dev, openflags, otyp, credp);
944 	}
945 
946 	return (rval);
947 }
948 
949 /*
950  * close - gives up access to a device
951  * @dev:
952  * @openflags:
953  * @otyp:
954  * @credp:
955  *
956  * close() should perform any cleanup necessary to finish using the minor
957  * device, and prepare the device (and driver) to be opened again.
958  */
959 static  int
960 megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp)
961 {
962 	int	rval = 0;
963 
964 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
965 
966 	/* no need for locks! */
967 
968 	if (scsi_hba_close) {
969 		rval = scsi_hba_close(dev, openflags, otyp, credp);
970 	}
971 
972 	return (rval);
973 }
974 
975 /*
976  * ioctl - performs a range of I/O commands for character drivers
977  * @dev:
978  * @cmd:
979  * @arg:
980  * @mode:
981  * @credp:
982  * @rvalp:
983  *
984  * ioctl() routine must make sure that user data is copied into or out of the
985  * kernel address space explicitly using copyin(), copyout(), ddi_copyin(),
986  * and ddi_copyout(), as appropriate.
987  * This is a wrapper routine to serialize access to the actual ioctl routine.
988  * ioctl() should return 0 on success, or the appropriate error number. The
989  * driver may also set the value returned to the calling process through rvalp.
990  */
991 static int
992 megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
993     int *rvalp)
994 {
995 	int	rval = 0;
996 
997 	struct megasas_instance	*instance;
998 	struct megasas_ioctl	ioctl;
999 	struct megasas_aen	aen;
1000 
1001 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1002 
1003 	instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev)));
1004 
1005 	if (instance == NULL) {
1006 		/* invalid minor number */
1007 		con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found."));
1008 		return (ENXIO);
1009 	}
1010 
1011 	switch ((uint_t)cmd) {
1012 		case MEGASAS_IOCTL_FIRMWARE:
1013 			if (ddi_copyin((void *) arg, &ioctl,
1014 			    sizeof (struct megasas_ioctl), mode)) {
1015 				con_log(CL_ANN, (CE_WARN, "megasas_ioctl: "
1016 				    "ERROR IOCTL copyin"));
1017 				return (EFAULT);
1018 			}
1019 
1020 			if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) {
1021 				rval = handle_drv_ioctl(instance, &ioctl, mode);
1022 			} else {
1023 				rval = handle_mfi_ioctl(instance, &ioctl, mode);
1024 			}
1025 
1026 			if (ddi_copyout((void *) &ioctl, (void *)arg,
1027 			    (sizeof (struct megasas_ioctl) - 1), mode)) {
1028 				con_log(CL_ANN, (CE_WARN,
1029 				    "megasas_ioctl: copy_to_user failed\n"));
1030 				rval = 1;
1031 			}
1032 
1033 			break;
1034 		case MEGASAS_IOCTL_AEN:
1035 			if (ddi_copyin((void *) arg, &aen,
1036 			    sizeof (struct megasas_aen), mode)) {
1037 				con_log(CL_ANN, (CE_WARN,
1038 				    "megasas_ioctl: ERROR AEN copyin"));
1039 				return (EFAULT);
1040 			}
1041 
1042 			rval = handle_mfi_aen(instance, &aen);
1043 
1044 			if (ddi_copyout((void *) &aen, (void *)arg,
1045 			    sizeof (struct megasas_aen), mode)) {
1046 				con_log(CL_ANN, (CE_WARN,
1047 				    "megasas_ioctl: copy_to_user failed\n"));
1048 				rval = 1;
1049 			}
1050 
1051 			break;
1052 		default:
1053 			rval = scsi_hba_ioctl(dev, cmd, arg,
1054 			    mode, credp, rvalp);
1055 
1056 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: "
1057 			    "scsi_hba_ioctl called, ret = %x.", rval));
1058 	}
1059 
1060 	return (rval);
1061 }
1062 
1063 /*
1064  * ************************************************************************** *
1065  *                                                                            *
1066  *               common entry points - for block driver types                 *
1067  *                                                                            *
1068  * ************************************************************************** *
1069  */
1070 /*
1071  * reset - TBD
1072  * @dip:
1073  * @cmd:
1074  *
1075  * TBD
1076  */
1077 /*ARGSUSED*/
1078 static int
1079 megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
1080 {
1081 	int	instance_no;
1082 
1083 	struct megasas_instance	*instance;
1084 
1085 	instance_no = ddi_get_instance(dip);
1086 	instance = (struct megasas_instance *)ddi_get_soft_state
1087 	    (megasas_state, instance_no);
1088 
1089 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1090 
1091 	if (!instance) {
1092 		con_log(CL_ANN, (CE_WARN,
1093 		    "megaraid:%d could not get adapter in reset",
1094 		    instance_no));
1095 		return (DDI_FAILURE);
1096 	}
1097 
1098 	con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..",
1099 	    instance_no));
1100 
1101 	flush_cache(instance);
1102 
1103 	return (DDI_SUCCESS);
1104 }
1105 
1106 
1107 /*
1108  * ************************************************************************** *
1109  *                                                                            *
1110  *                          entry points (SCSI HBA)                           *
1111  *                                                                            *
1112  * ************************************************************************** *
1113  */
1114 /*
1115  * tran_tgt_init - initialize a target device instance
1116  * @hba_dip:
1117  * @tgt_dip:
1118  * @tran:
1119  * @sd:
1120  *
1121  * The tran_tgt_init() entry point enables the HBA to allocate and initialize
1122  * any per-target resources. tran_tgt_init() also enables the HBA to qualify
1123  * the device's address as valid and supportable for that particular HBA.
1124  * By returning DDI_FAILURE, the instance of the target driver for that device
1125  * is not probed or attached.
1126  */
1127 /*ARGSUSED*/
1128 static int
1129 megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
1130 		scsi_hba_tran_t *tran, struct scsi_device *sd)
1131 {
1132 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1133 
1134 	return (DDI_SUCCESS);
1135 }
1136 
1137 /*
1138  * tran_init_pkt - allocate & initialize a scsi_pkt structure
1139  * @ap:
1140  * @pkt:
1141  * @bp:
1142  * @cmdlen:
1143  * @statuslen:
1144  * @tgtlen:
1145  * @flags:
1146  * @callback:
1147  *
1148  * The tran_init_pkt() entry point allocates and initializes a scsi_pkt
1149  * structure and DMA resources for a target driver request. The
1150  * tran_init_pkt() entry point is called when the target driver calls the
1151  * SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point
1152  * is a request to perform one or more of three possible services:
1153  *  - allocation and initialization of a scsi_pkt structure
1154  *  - allocation of DMA resources for data transfer
1155  *  - reallocation of DMA resources for the next portion of the data transfer
1156  */
1157 static struct scsi_pkt *
1158 megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt,
1159 	struct buf *bp, int cmdlen, int statuslen, int tgtlen,
1160 	int flags, int (*callback)(), caddr_t arg)
1161 {
1162 	struct scsa_cmd	*acmd;
1163 	struct megasas_instance	*instance;
1164 	struct scsi_pkt	*new_pkt;
1165 
1166 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1167 
1168 	instance = ADDR2MEGA(ap);
1169 
1170 	/* step #1 : pkt allocation */
1171 	if (pkt == NULL) {
1172 		pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen,
1173 		    tgtlen, sizeof (struct scsa_cmd), callback, arg);
1174 		if (pkt == NULL) {
1175 			return (NULL);
1176 		}
1177 
1178 		acmd = PKT2CMD(pkt);
1179 
1180 		/*
1181 		 * Initialize the new pkt - we redundantly initialize
1182 		 * all the fields for illustrative purposes.
1183 		 */
1184 		acmd->cmd_pkt		= pkt;
1185 		acmd->cmd_flags		= 0;
1186 		acmd->cmd_scblen	= statuslen;
1187 		acmd->cmd_cdblen	= cmdlen;
1188 		acmd->cmd_dmahandle	= NULL;
1189 		acmd->cmd_ncookies	= 0;
1190 		acmd->cmd_cookie	= 0;
1191 		acmd->cmd_cookiecnt	= 0;
1192 		acmd->cmd_nwin		= 0;
1193 
1194 		pkt->pkt_address	= *ap;
1195 		pkt->pkt_comp		= (void (*)())NULL;
1196 		pkt->pkt_flags		= 0;
1197 		pkt->pkt_time		= 0;
1198 		pkt->pkt_resid		= 0;
1199 		pkt->pkt_state		= 0;
1200 		pkt->pkt_statistics	= 0;
1201 		pkt->pkt_reason		= 0;
1202 		new_pkt			= pkt;
1203 	} else {
1204 		acmd = PKT2CMD(pkt);
1205 		new_pkt = NULL;
1206 	}
1207 
1208 	/* step #2 : dma allocation/move */
1209 	if (bp && bp->b_bcount != 0) {
1210 		if (acmd->cmd_dmahandle == NULL) {
1211 			if (megasas_dma_alloc(instance, pkt, bp, flags,
1212 			    callback) == -1) {
1213 				if (new_pkt) {
1214 					scsi_hba_pkt_free(ap, new_pkt);
1215 				}
1216 
1217 				return ((struct scsi_pkt *)NULL);
1218 			}
1219 		} else {
1220 			if (megasas_dma_move(instance, pkt, bp) == -1) {
1221 				return ((struct scsi_pkt *)NULL);
1222 			}
1223 		}
1224 	}
1225 
1226 	return (pkt);
1227 }
1228 
1229 /*
1230  * tran_start - transport a SCSI command to the addressed target
1231  * @ap:
1232  * @pkt:
1233  *
1234  * The tran_start() entry point for a SCSI HBA driver is called to transport a
1235  * SCSI command to the addressed target. The SCSI command is described
1236  * entirely within the scsi_pkt structure, which the target driver allocated
1237  * through the HBA driver's tran_init_pkt() entry point. If the command
1238  * involves a data transfer, DMA resources must also have been allocated for
1239  * the scsi_pkt structure.
1240  *
1241  * Return Values :
1242  *	TRAN_BUSY - request queue is full, no more free scbs
1243  *	TRAN_ACCEPT - pkt has been submitted to the instance
1244  */
1245 static int
1246 megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt)
1247 {
1248 	uchar_t 	cmd_done = 0;
1249 
1250 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1251 	struct megasas_cmd	*cmd;
1252 
1253 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x",
1254 	    __func__, __LINE__, pkt->pkt_cdbp[0]));
1255 
1256 	pkt->pkt_reason	= CMD_CMPLT;
1257 	*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
1258 
1259 	cmd = build_cmd(instance, ap, pkt, &cmd_done);
1260 
1261 	/*
1262 	 * Check if the command is already completed by the mega_build_cmd()
1263 	 * routine. In which case the busy_flag would be clear and scb will be
1264 	 * NULL and appropriate reason provided in pkt_reason field
1265 	 */
1266 	if (cmd_done) {
1267 		if (((pkt->pkt_flags & FLAG_NOINTR) == 0) && pkt->pkt_comp) {
1268 			(*pkt->pkt_comp)(pkt);
1269 		}
1270 		pkt->pkt_reason = CMD_CMPLT;
1271 		pkt->pkt_scbp[0] = STATUS_GOOD;
1272 		pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET
1273 		    | STATE_SENT_CMD;
1274 		return (TRAN_ACCEPT);
1275 	}
1276 
1277 	if (cmd == NULL) {
1278 		return (TRAN_BUSY);
1279 	}
1280 
1281 	if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
1282 		if (instance->fw_outstanding > instance->max_fw_cmds) {
1283 			con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy"));
1284 			return_mfi_pkt(instance, cmd);
1285 			return (TRAN_BUSY);
1286 		}
1287 
1288 		/* Syncronize the Cmd frame for the controller */
1289 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0,
1290 		    DDI_DMA_SYNC_FORDEV);
1291 
1292 		instance->func_ptr->issue_cmd(cmd, instance);
1293 
1294 	} else {
1295 		struct megasas_header *hdr = &cmd->frame->hdr;
1296 
1297 		cmd->sync_cmd = MEGASAS_TRUE;
1298 
1299 		instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd);
1300 
1301 		pkt->pkt_reason		= CMD_CMPLT;
1302 		pkt->pkt_statistics	= 0;
1303 		pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS;
1304 
1305 		switch (hdr->cmd_status) {
1306 		case MFI_STAT_OK:
1307 			pkt->pkt_scbp[0] = STATUS_GOOD;
1308 			break;
1309 
1310 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
1311 
1312 			pkt->pkt_reason	= CMD_CMPLT;
1313 			pkt->pkt_statistics = 0;
1314 
1315 			((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1;
1316 			break;
1317 
1318 		case MFI_STAT_DEVICE_NOT_FOUND:
1319 			pkt->pkt_reason		= CMD_DEV_GONE;
1320 			pkt->pkt_statistics	= STAT_DISCON;
1321 			break;
1322 
1323 		default:
1324 			((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1;
1325 		}
1326 
1327 		return_mfi_pkt(instance, cmd);
1328 		(void) megasas_common_check(instance, cmd);
1329 
1330 		if (pkt->pkt_comp) {
1331 			(*pkt->pkt_comp)(pkt);
1332 		}
1333 
1334 	}
1335 
1336 	return (TRAN_ACCEPT);
1337 }
1338 
1339 /*
1340  * tran_abort - Abort any commands that are currently in transport
1341  * @ap:
1342  * @pkt:
1343  *
1344  * The tran_abort() entry point for a SCSI HBA driver is called to abort any
1345  * commands that are currently in transport for a particular target. This entry
1346  * point is called when a target driver calls scsi_abort(). The tran_abort()
1347  * entry point should attempt to abort the command denoted by the pkt
1348  * parameter. If the pkt parameter is NULL, tran_abort() should attempt to
1349  * abort all outstanding commands in the transport layer for the particular
1350  * target or logical unit.
1351  */
1352 /*ARGSUSED*/
1353 static int
1354 megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
1355 {
1356 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1357 
1358 	/* aborting command not supported by H/W */
1359 
1360 	return (DDI_FAILURE);
1361 }
1362 
1363 /*
1364  * tran_reset - reset either the SCSI bus or target
1365  * @ap:
1366  * @level:
1367  *
1368  * The tran_reset() entry point for a SCSI HBA driver is called to reset either
1369  * the SCSI bus or a particular SCSI target device. This entry point is called
1370  * when a target driver calls scsi_reset(). The tran_reset() entry point must
1371  * reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the
1372  * particular target or logical unit must be reset.
1373  */
1374 /*ARGSUSED*/
1375 static int
1376 megasas_tran_reset(struct scsi_address *ap, int level)
1377 {
1378 	struct megasas_instance *instance = ADDR2MEGA(ap);
1379 
1380 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1381 
1382 	if (wait_for_outstanding(instance)) {
1383 		return (DDI_FAILURE);
1384 	} else {
1385 		return (DDI_SUCCESS);
1386 	}
1387 }
1388 
1389 /*
1390  * tran_bus_reset - reset the SCSI bus
1391  * @dip:
1392  * @level:
1393  *
1394  * The tran_bus_reset() vector in the scsi_hba_tran structure should be
1395  * initialized during the HBA driver's attach(). The vector should point to
1396  * an HBA entry point that is to be called when a user initiates a bus reset.
1397  * Implementation is hardware specific. If the HBA driver cannot reset the
1398  * SCSI bus without affecting the targets, the driver should fail RESET_BUS
1399  * or not initialize this vector.
1400  */
1401 /*ARGSUSED*/
1402 static int
1403 megasas_tran_bus_reset(dev_info_t *dip, int level)
1404 {
1405 	int	instance_no = ddi_get_instance(dip);
1406 
1407 	struct megasas_instance	*instance = ddi_get_soft_state(megasas_state,
1408 	    instance_no);
1409 
1410 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1411 
1412 	if (wait_for_outstanding(instance)) {
1413 		return (DDI_FAILURE);
1414 	} else {
1415 		return (DDI_SUCCESS);
1416 	}
1417 }
1418 
1419 /*
1420  * tran_getcap - get one of a set of SCSA-defined capabilities
1421  * @ap:
1422  * @cap:
1423  * @whom:
1424  *
1425  * The target driver can request the current setting of the capability for a
1426  * particular target by setting the whom parameter to nonzero. A whom value of
1427  * zero indicates a request for the current setting of the general capability
1428  * for the SCSI bus or for adapter hardware. The tran_getcap() should return -1
1429  * for undefined capabilities or the current value of the requested capability.
1430  */
1431 /*ARGSUSED*/
1432 static int
1433 megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom)
1434 {
1435 	int	rval = 0;
1436 
1437 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1438 
1439 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1440 
1441 	/* we do allow inquiring about capabilities for other targets */
1442 	if (cap == NULL) {
1443 		return (-1);
1444 	}
1445 
1446 	switch (scsi_hba_lookup_capstr(cap)) {
1447 		case SCSI_CAP_DMA_MAX:
1448 			/* Limit to 16MB max transfer */
1449 			rval = megasas_max_cap_maxxfer;
1450 			break;
1451 		case SCSI_CAP_MSG_OUT:
1452 			rval = 1;
1453 			break;
1454 		case SCSI_CAP_DISCONNECT:
1455 			rval = 0;
1456 			break;
1457 		case SCSI_CAP_SYNCHRONOUS:
1458 			rval = 0;
1459 			break;
1460 		case SCSI_CAP_WIDE_XFER:
1461 			rval = 1;
1462 			break;
1463 		case SCSI_CAP_TAGGED_QING:
1464 			rval = 1;
1465 			break;
1466 		case SCSI_CAP_UNTAGGED_QING:
1467 			rval = 1;
1468 			break;
1469 		case SCSI_CAP_PARITY:
1470 			rval = 1;
1471 			break;
1472 		case SCSI_CAP_INITIATOR_ID:
1473 			rval = instance->init_id;
1474 			break;
1475 		case SCSI_CAP_ARQ:
1476 			rval = 1;
1477 			break;
1478 		case SCSI_CAP_LINKED_CMDS:
1479 			rval = 0;
1480 			break;
1481 		case SCSI_CAP_RESET_NOTIFICATION:
1482 			rval = 1;
1483 			break;
1484 		case SCSI_CAP_GEOMETRY:
1485 			rval = -1;
1486 
1487 			break;
1488 		default:
1489 			con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x",
1490 			    scsi_hba_lookup_capstr(cap)));
1491 			rval = -1;
1492 			break;
1493 	}
1494 
1495 	return (rval);
1496 }
1497 
1498 /*
1499  * tran_setcap - set one of a set of SCSA-defined capabilities
1500  * @ap:
1501  * @cap:
1502  * @value:
1503  * @whom:
1504  *
1505  * The target driver might request that the new value be set for a particular
1506  * target by setting the whom parameter to nonzero. A whom value of zero
1507  * means that request is to set the new value for the SCSI bus or for adapter
1508  * hardware in general.
1509  * The tran_setcap() should return the following values as appropriate:
1510  * - -1 for undefined capabilities
1511  * - 0 if the HBA driver cannot set the capability to the requested value
1512  * - 1 if the HBA driver is able to set the capability to the requested value
1513  */
1514 /*ARGSUSED*/
1515 static int
1516 megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
1517 {
1518 	int		rval = 1;
1519 
1520 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1521 
1522 	/* We don't allow setting capabilities for other targets */
1523 	if (cap == NULL || whom == 0) {
1524 		return (-1);
1525 	}
1526 
1527 	switch (scsi_hba_lookup_capstr(cap)) {
1528 		case SCSI_CAP_DMA_MAX:
1529 		case SCSI_CAP_MSG_OUT:
1530 		case SCSI_CAP_PARITY:
1531 		case SCSI_CAP_LINKED_CMDS:
1532 		case SCSI_CAP_RESET_NOTIFICATION:
1533 		case SCSI_CAP_DISCONNECT:
1534 		case SCSI_CAP_SYNCHRONOUS:
1535 		case SCSI_CAP_UNTAGGED_QING:
1536 		case SCSI_CAP_WIDE_XFER:
1537 		case SCSI_CAP_INITIATOR_ID:
1538 		case SCSI_CAP_ARQ:
1539 			/*
1540 			 * None of these are settable via
1541 			 * the capability interface.
1542 			 */
1543 			break;
1544 		case SCSI_CAP_TAGGED_QING:
1545 			rval = 1;
1546 			break;
1547 		case SCSI_CAP_SECTOR_SIZE:
1548 			rval = 1;
1549 			break;
1550 
1551 		case SCSI_CAP_TOTAL_SECTORS:
1552 			rval = 1;
1553 			break;
1554 		default:
1555 			rval = -1;
1556 			break;
1557 	}
1558 
1559 	return (rval);
1560 }
1561 
1562 /*
1563  * tran_destroy_pkt - deallocate scsi_pkt structure
1564  * @ap:
1565  * @pkt:
1566  *
1567  * The tran_destroy_pkt() entry point is the HBA driver function that
1568  * deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is
1569  * called when the target driver calls scsi_destroy_pkt(). The
1570  * tran_destroy_pkt() entry point must free any DMA resources that have been
1571  * allocated for the packet. An implicit DMA synchronization occurs if the
1572  * DMA resources are freed and any cached data remains after the completion
1573  * of the transfer.
1574  */
1575 static void
1576 megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1577 {
1578 	struct scsa_cmd *acmd = PKT2CMD(pkt);
1579 
1580 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1581 
1582 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1583 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1584 
1585 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1586 
1587 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1588 
1589 		acmd->cmd_dmahandle = NULL;
1590 	}
1591 
1592 	/* free the pkt */
1593 	scsi_hba_pkt_free(ap, pkt);
1594 }
1595 
1596 /*
1597  * tran_dmafree - deallocates DMA resources
1598  * @ap:
1599  * @pkt:
1600  *
1601  * The tran_dmafree() entry point deallocates DMAQ resources that have been
1602  * allocated for a scsi_pkt structure. The tran_dmafree() entry point is
1603  * called when the target driver calls scsi_dmafree(). The tran_dmafree() must
1604  * free only DMA resources allocated for a scsi_pkt structure, not the
1605  * scsi_pkt itself. When DMA resources are freed, a DMA synchronization is
1606  * implicitly performed.
1607  */
1608 /*ARGSUSED*/
1609 static void
1610 megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
1611 {
1612 	register struct scsa_cmd *acmd = PKT2CMD(pkt);
1613 
1614 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1615 
1616 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1617 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1618 
1619 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1620 
1621 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1622 
1623 		acmd->cmd_dmahandle = NULL;
1624 	}
1625 }
1626 
1627 /*
1628  * tran_sync_pkt - synchronize the DMA object allocated
1629  * @ap:
1630  * @pkt:
1631  *
1632  * The tran_sync_pkt() entry point synchronizes the DMA object allocated for
1633  * the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt()
1634  * entry point is called when the target driver calls scsi_sync_pkt(). If the
1635  * data transfer direction is a DMA read from device to memory, tran_sync_pkt()
1636  * must synchronize the CPU's view of the data. If the data transfer direction
1637  * is a DMA write from memory to device, tran_sync_pkt() must synchronize the
1638  * device's view of the data.
1639  */
1640 /*ARGSUSED*/
1641 static void
1642 megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1643 {
1644 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1645 
1646 	/*
1647 	 * following 'ddi_dma_sync()' API call
1648 	 * already called for each I/O in the ISR
1649 	 */
1650 #if 0
1651 	int	i;
1652 
1653 	register struct scsa_cmd	*acmd = PKT2CMD(pkt);
1654 
1655 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1656 		(void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset,
1657 		    acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ?
1658 		    DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);
1659 	}
1660 #endif
1661 }
1662 
1663 /*ARGSUSED*/
1664 static int
1665 megasas_tran_quiesce(dev_info_t *dip)
1666 {
1667 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1668 
1669 	return (1);
1670 }
1671 
1672 /*ARGSUSED*/
1673 static int
1674 megasas_tran_unquiesce(dev_info_t *dip)
1675 {
1676 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1677 
1678 	return (1);
1679 }
1680 
1681 /*
1682  * megasas_isr(caddr_t)
1683  *
1684  * The Interrupt Service Routine
1685  *
1686  * Collect status for all completed commands and do callback
1687  *
1688  */
1689 static uint_t
1690 megasas_isr(struct megasas_instance *instance)
1691 {
1692 	int		need_softintr;
1693 	uint32_t	producer;
1694 	uint32_t	consumer;
1695 	uint32_t	context;
1696 
1697 	struct megasas_cmd	*cmd;
1698 
1699 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1700 
1701 	ASSERT(instance);
1702 	if (!instance->func_ptr->intr_ack(instance)) {
1703 		return (DDI_INTR_UNCLAIMED);
1704 	}
1705 
1706 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1707 	    0, 0, DDI_DMA_SYNC_FORCPU);
1708 
1709 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
1710 	    != DDI_SUCCESS) {
1711 		megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
1712 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
1713 		return (DDI_INTR_UNCLAIMED);
1714 	}
1715 
1716 	producer = *instance->producer;
1717 	consumer = *instance->consumer;
1718 
1719 	con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ",
1720 	    producer, consumer));
1721 
1722 	mutex_enter(&instance->completed_pool_mtx);
1723 
1724 	while (consumer != producer) {
1725 		context = instance->reply_queue[consumer];
1726 		cmd = instance->cmd_list[context];
1727 		mlist_add_tail(&cmd->list, &instance->completed_pool_list);
1728 
1729 		consumer++;
1730 		if (consumer == (instance->max_fw_cmds + 1)) {
1731 			consumer = 0;
1732 		}
1733 	}
1734 
1735 	mutex_exit(&instance->completed_pool_mtx);
1736 
1737 	*instance->consumer = consumer;
1738 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1739 	    0, 0, DDI_DMA_SYNC_FORDEV);
1740 
1741 	if (instance->softint_running) {
1742 		need_softintr = 0;
1743 	} else {
1744 		need_softintr = 1;
1745 	}
1746 
1747 	if (instance->isr_level == HIGH_LEVEL_INTR) {
1748 		if (need_softintr) {
1749 			ddi_trigger_softintr(instance->soft_intr_id);
1750 		}
1751 	} else {
1752 		/*
1753 		 * Not a high-level interrupt, therefore call the soft level
1754 		 * interrupt explicitly
1755 		 */
1756 		(void) megasas_softintr(instance);
1757 	}
1758 
1759 	return (DDI_INTR_CLAIMED);
1760 }
1761 
1762 
1763 /*
1764  * ************************************************************************** *
1765  *                                                                            *
1766  *                                  libraries                                 *
1767  *                                                                            *
1768  * ************************************************************************** *
1769  */
1770 /*
1771  * get_mfi_pkt : Get a command from the free pool
1772  */
1773 static struct megasas_cmd *
1774 get_mfi_pkt(struct megasas_instance *instance)
1775 {
1776 	mlist_t 		*head = &instance->cmd_pool_list;
1777 	struct megasas_cmd	*cmd = NULL;
1778 
1779 	mutex_enter(&instance->cmd_pool_mtx);
1780 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1781 
1782 	if (!mlist_empty(head)) {
1783 		cmd = mlist_entry(head->next, struct megasas_cmd, list);
1784 		mlist_del_init(head->next);
1785 	}
1786 	if (cmd != NULL)
1787 		cmd->pkt = NULL;
1788 	mutex_exit(&instance->cmd_pool_mtx);
1789 
1790 	return (cmd);
1791 }
1792 
1793 /*
1794  * return_mfi_pkt : Return a cmd to free command pool
1795  */
1796 static void
1797 return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd)
1798 {
1799 	mutex_enter(&instance->cmd_pool_mtx);
1800 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1801 
1802 	mlist_add(&cmd->list, &instance->cmd_pool_list);
1803 
1804 	mutex_exit(&instance->cmd_pool_mtx);
1805 }
1806 
1807 /*
1808  * destroy_mfi_frame_pool
1809  */
1810 static void
1811 destroy_mfi_frame_pool(struct megasas_instance *instance)
1812 {
1813 	int		i;
1814 	uint32_t	max_cmd = instance->max_fw_cmds;
1815 
1816 	struct megasas_cmd	*cmd;
1817 
1818 	/* return all frames to pool */
1819 	for (i = 0; i < max_cmd; i++) {
1820 
1821 		cmd = instance->cmd_list[i];
1822 
1823 		if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED)
1824 			(void) mega_free_dma_obj(instance, cmd->frame_dma_obj);
1825 
1826 		cmd->frame_dma_obj_status  = DMA_OBJ_FREED;
1827 	}
1828 
1829 }
1830 
1831 /*
1832  * create_mfi_frame_pool
1833  */
1834 static int
1835 create_mfi_frame_pool(struct megasas_instance *instance)
1836 {
1837 	int		i = 0;
1838 	int		cookie_cnt;
1839 	uint16_t	max_cmd;
1840 	uint16_t	sge_sz;
1841 	uint32_t	sgl_sz;
1842 	uint32_t	tot_frame_size;
1843 
1844 	struct megasas_cmd	*cmd;
1845 
1846 	max_cmd = instance->max_fw_cmds;
1847 
1848 	sge_sz	= sizeof (struct megasas_sge64);
1849 
1850 	/* calculated the number of 64byte frames required for SGL */
1851 	sgl_sz		= sge_sz * instance->max_num_sge;
1852 	tot_frame_size	= sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH;
1853 
1854 	con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: "
1855 	    "sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size));
1856 
1857 	while (i < max_cmd) {
1858 		cmd = instance->cmd_list[i];
1859 
1860 		cmd->frame_dma_obj.size	= tot_frame_size;
1861 		cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr;
1862 		cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1863 		cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1864 		cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1;
1865 		cmd->frame_dma_obj.dma_attr.dma_attr_align = 64;
1866 
1867 
1868 		cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj);
1869 
1870 		if (cookie_cnt == -1 || cookie_cnt > 1) {
1871 			con_log(CL_ANN, (CE_WARN,
1872 			    "create_mfi_frame_pool: could not alloc."));
1873 			return (DDI_FAILURE);
1874 		}
1875 
1876 		bzero(cmd->frame_dma_obj.buffer, tot_frame_size);
1877 
1878 		cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED;
1879 		cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer;
1880 		cmd->frame_phys_addr =
1881 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address;
1882 
1883 		cmd->sense = (uint8_t *)(((unsigned long)
1884 		    cmd->frame_dma_obj.buffer) +
1885 		    tot_frame_size - SENSE_LENGTH);
1886 		cmd->sense_phys_addr =
1887 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address +
1888 		    tot_frame_size - SENSE_LENGTH;
1889 
1890 		if (!cmd->frame || !cmd->sense) {
1891 			con_log(CL_ANN, (CE_NOTE,
1892 			    "megasas: pci_pool_alloc failed \n"));
1893 
1894 			return (-ENOMEM);
1895 		}
1896 
1897 		cmd->frame->io.context = cmd->index;
1898 		i++;
1899 
1900 		con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x",
1901 		    cmd->frame->io.context, cmd->frame_phys_addr));
1902 	}
1903 
1904 	return (DDI_SUCCESS);
1905 }
1906 
1907 /*
1908  * free_additional_dma_buffer
1909  */
1910 static void
1911 free_additional_dma_buffer(struct megasas_instance *instance)
1912 {
1913 	if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) {
1914 		(void) mega_free_dma_obj(instance,
1915 		    instance->mfi_internal_dma_obj);
1916 		instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED;
1917 	}
1918 
1919 	if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) {
1920 		(void) mega_free_dma_obj(instance,
1921 		    instance->mfi_evt_detail_obj);
1922 		instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED;
1923 	}
1924 }
1925 
1926 /*
1927  * alloc_additional_dma_buffer
1928  */
1929 static int
1930 alloc_additional_dma_buffer(struct megasas_instance *instance)
1931 {
1932 	uint32_t	reply_q_sz;
1933 	uint32_t	internal_buf_size = PAGESIZE*2;
1934 
1935 	/* max cmds plus 1 + producer & consumer */
1936 	reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2);
1937 
1938 	instance->mfi_internal_dma_obj.size = internal_buf_size;
1939 	instance->mfi_internal_dma_obj.dma_attr	= megasas_generic_dma_attr;
1940 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1941 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max =
1942 	    0xFFFFFFFFU;
1943 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen	= 1;
1944 
1945 	if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj)
1946 	    != 1) {
1947 		con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q"));
1948 		return (DDI_FAILURE);
1949 	}
1950 
1951 	bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size);
1952 
1953 	instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED;
1954 
1955 	instance->producer = (uint32_t *)((unsigned long)
1956 	    instance->mfi_internal_dma_obj.buffer);
1957 	instance->consumer = (uint32_t *)((unsigned long)
1958 	    instance->mfi_internal_dma_obj.buffer + 4);
1959 	instance->reply_queue = (uint32_t *)((unsigned long)
1960 	    instance->mfi_internal_dma_obj.buffer + 8);
1961 	instance->internal_buf = (caddr_t)(((unsigned long)
1962 	    instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8);
1963 	instance->internal_buf_dmac_add =
1964 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address +
1965 	    reply_q_sz;
1966 	instance->internal_buf_size = internal_buf_size -
1967 	    (reply_q_sz + 8);
1968 
1969 	/* allocate evt_detail */
1970 	instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail);
1971 	instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr;
1972 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1973 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1974 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1;
1975 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1;
1976 
1977 	if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) {
1978 		con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: "
1979 		    "could not data transfer buffer alloc."));
1980 		return (DDI_FAILURE);
1981 	}
1982 
1983 	bzero(instance->mfi_evt_detail_obj.buffer,
1984 	    sizeof (struct megasas_evt_detail));
1985 
1986 	instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED;
1987 
1988 	return (DDI_SUCCESS);
1989 }
1990 
1991 /*
1992  * free_space_for_mfi
1993  */
1994 static void
1995 free_space_for_mfi(struct megasas_instance *instance)
1996 {
1997 	int		i;
1998 	uint32_t	max_cmd = instance->max_fw_cmds;
1999 
2000 	/* already freed */
2001 	if (instance->cmd_list == NULL) {
2002 		return;
2003 	}
2004 
2005 	free_additional_dma_buffer(instance);
2006 
2007 	/* first free the MFI frame pool */
2008 	destroy_mfi_frame_pool(instance);
2009 
2010 	/* free all the commands in the cmd_list */
2011 	for (i = 0; i < instance->max_fw_cmds; i++) {
2012 		kmem_free(instance->cmd_list[i],
2013 		    sizeof (struct megasas_cmd));
2014 
2015 		instance->cmd_list[i] = NULL;
2016 	}
2017 
2018 	/* free the cmd_list buffer itself */
2019 	kmem_free(instance->cmd_list,
2020 	    sizeof (struct megasas_cmd *) * max_cmd);
2021 
2022 	instance->cmd_list = NULL;
2023 
2024 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2025 }
2026 
2027 /*
2028  * alloc_space_for_mfi
2029  */
2030 static int
2031 alloc_space_for_mfi(struct megasas_instance *instance)
2032 {
2033 	int		i;
2034 	uint32_t	max_cmd;
2035 	size_t		sz;
2036 
2037 	struct megasas_cmd	*cmd;
2038 
2039 	max_cmd = instance->max_fw_cmds;
2040 	sz = sizeof (struct megasas_cmd *) * max_cmd;
2041 
2042 	/*
2043 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
2044 	 * Allocate the dynamic array first and then allocate individual
2045 	 * commands.
2046 	 */
2047 	instance->cmd_list = kmem_zalloc(sz, KM_SLEEP);
2048 	ASSERT(instance->cmd_list);
2049 
2050 	for (i = 0; i < max_cmd; i++) {
2051 		instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd),
2052 		    KM_SLEEP);
2053 		ASSERT(instance->cmd_list[i]);
2054 	}
2055 
2056 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2057 
2058 	/* add all the commands to command pool (instance->cmd_pool) */
2059 	for (i = 0; i < max_cmd; i++) {
2060 		cmd		= instance->cmd_list[i];
2061 		cmd->index	= i;
2062 
2063 		mlist_add_tail(&cmd->list, &instance->cmd_pool_list);
2064 	}
2065 
2066 	/* create a frame pool and assign one frame to each cmd */
2067 	if (create_mfi_frame_pool(instance)) {
2068 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2069 		return (DDI_FAILURE);
2070 	}
2071 
2072 	/* create a frame pool and assign one frame to each cmd */
2073 	if (alloc_additional_dma_buffer(instance)) {
2074 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2075 		return (DDI_FAILURE);
2076 	}
2077 
2078 	return (DDI_SUCCESS);
2079 }
2080 
2081 /*
2082  * get_ctrl_info
2083  */
2084 static int
2085 get_ctrl_info(struct megasas_instance *instance,
2086     struct megasas_ctrl_info *ctrl_info)
2087 {
2088 	int	ret = 0;
2089 
2090 	struct megasas_cmd		*cmd;
2091 	struct megasas_dcmd_frame	*dcmd;
2092 	struct megasas_ctrl_info	*ci;
2093 
2094 	cmd = get_mfi_pkt(instance);
2095 
2096 	if (!cmd) {
2097 		con_log(CL_ANN, (CE_WARN,
2098 		    "Failed to get a cmd for ctrl info\n"));
2099 		return (DDI_FAILURE);
2100 	}
2101 
2102 	dcmd = &cmd->frame->dcmd;
2103 
2104 	ci = (struct megasas_ctrl_info *)instance->internal_buf;
2105 
2106 	if (!ci) {
2107 		con_log(CL_ANN, (CE_WARN,
2108 		    "Failed to alloc mem for ctrl info\n"));
2109 		return_mfi_pkt(instance, cmd);
2110 		return (DDI_FAILURE);
2111 	}
2112 
2113 	(void) memset(ci, 0, sizeof (struct megasas_ctrl_info));
2114 
2115 	/* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */
2116 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2117 
2118 	dcmd->cmd			= MFI_CMD_OP_DCMD;
2119 	dcmd->cmd_status		= MFI_CMD_STATUS_POLL_MODE;
2120 	dcmd->sge_count			= 1;
2121 	dcmd->flags			= MFI_FRAME_DIR_READ;
2122 	dcmd->timeout			= 0;
2123 	dcmd->data_xfer_len		= sizeof (struct megasas_ctrl_info);
2124 	dcmd->opcode			= MR_DCMD_CTRL_GET_INFO;
2125 	dcmd->sgl.sge32[0].phys_addr	= instance->internal_buf_dmac_add;
2126 	dcmd->sgl.sge32[0].length	= sizeof (struct megasas_ctrl_info);
2127 
2128 	cmd->frame_count = 1;
2129 
2130 	if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2131 		ret = 0;
2132 		(void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info));
2133 	} else {
2134 		con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n"));
2135 		ret = -1;
2136 	}
2137 
2138 	return_mfi_pkt(instance, cmd);
2139 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2140 		ret = -1;
2141 	}
2142 
2143 	return (ret);
2144 }
2145 
2146 /*
2147  * abort_aen_cmd
2148  */
2149 static int
2150 abort_aen_cmd(struct megasas_instance *instance,
2151     struct megasas_cmd *cmd_to_abort)
2152 {
2153 	int	ret = 0;
2154 
2155 	struct megasas_cmd		*cmd;
2156 	struct megasas_abort_frame	*abort_fr;
2157 
2158 	cmd = get_mfi_pkt(instance);
2159 
2160 	if (!cmd) {
2161 		con_log(CL_ANN, (CE_WARN,
2162 		    "Failed to get a cmd for ctrl info\n"));
2163 		return (DDI_FAILURE);
2164 	}
2165 
2166 	abort_fr = &cmd->frame->abort;
2167 
2168 	/* prepare and issue the abort frame */
2169 	abort_fr->cmd = MFI_CMD_OP_ABORT;
2170 	abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE;
2171 	abort_fr->flags = 0;
2172 	abort_fr->abort_context = cmd_to_abort->index;
2173 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
2174 	abort_fr->abort_mfi_phys_addr_hi = 0;
2175 
2176 	instance->aen_cmd->abort_aen = 1;
2177 
2178 	cmd->sync_cmd = MEGASAS_TRUE;
2179 	cmd->frame_count = 1;
2180 
2181 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2182 		con_log(CL_ANN, (CE_WARN,
2183 		    "abort_aen_cmd: issue_cmd_in_sync_mode failed\n"));
2184 		ret = -1;
2185 	} else {
2186 		ret = 0;
2187 	}
2188 
2189 	instance->aen_cmd->abort_aen = 1;
2190 	instance->aen_cmd = 0;
2191 
2192 	return_mfi_pkt(instance, cmd);
2193 	(void) megasas_common_check(instance, cmd);
2194 
2195 	return (ret);
2196 }
2197 
2198 /*
2199  * init_mfi
2200  */
2201 static int
2202 init_mfi(struct megasas_instance *instance)
2203 {
2204 	off_t				reglength;
2205 	struct megasas_cmd		*cmd;
2206 	struct megasas_ctrl_info	ctrl_info;
2207 	struct megasas_init_frame	*init_frame;
2208 	struct megasas_init_queue_info	*initq_info;
2209 
2210 	if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, &reglength)
2211 	    != DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) {
2212 		return (DDI_FAILURE);
2213 	}
2214 
2215 	if (reglength > DEFAULT_MFI_MEM_SZ) {
2216 		reglength = DEFAULT_MFI_MEM_SZ;
2217 		con_log(CL_DLEVEL1, (CE_NOTE,
2218 		    "mega: register length to map is 0x%lx bytes", reglength));
2219 	}
2220 
2221 	if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO,
2222 	    &instance->regmap, 0, reglength, &endian_attr,
2223 	    &instance->regmap_handle) != DDI_SUCCESS) {
2224 		con_log(CL_ANN, (CE_NOTE,
2225 		    "megaraid: couldn't map control registers"));
2226 
2227 		goto fail_mfi_reg_setup;
2228 	}
2229 
2230 	/* we expect the FW state to be READY */
2231 	if (mfi_state_transition_to_ready(instance)) {
2232 		con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready"));
2233 		goto fail_ready_state;
2234 	}
2235 
2236 	/* get various operational parameters from status register */
2237 	instance->max_num_sge =
2238 	    (instance->func_ptr->read_fw_status_reg(instance) &
2239 	    0xFF0000) >> 0x10;
2240 	/*
2241 	 * Reduce the max supported cmds by 1. This is to ensure that the
2242 	 * reply_q_sz (1 more than the max cmd that driver may send)
2243 	 * does not exceed max cmds that the FW can support
2244 	 */
2245 	instance->max_fw_cmds =
2246 	    instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF;
2247 	instance->max_fw_cmds = instance->max_fw_cmds - 1;
2248 
2249 	instance->max_num_sge =
2250 	    (instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ?
2251 	    MEGASAS_MAX_SGE_CNT : instance->max_num_sge;
2252 
2253 	/* create a pool of commands */
2254 	if (alloc_space_for_mfi(instance))
2255 		goto fail_alloc_fw_space;
2256 
2257 	/* disable interrupt for initial preparation */
2258 	instance->func_ptr->disable_intr(instance);
2259 
2260 	/*
2261 	 * Prepare a init frame. Note the init frame points to queue info
2262 	 * structure. Each frame has SGL allocated after first 64 bytes. For
2263 	 * this frame - since we don't need any SGL - we use SGL's space as
2264 	 * queue info structure
2265 	 */
2266 	cmd = get_mfi_pkt(instance);
2267 
2268 	init_frame = (struct megasas_init_frame *)cmd->frame;
2269 	initq_info = (struct megasas_init_queue_info *)
2270 	    ((unsigned long)init_frame + 64);
2271 
2272 	(void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
2273 	(void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info));
2274 
2275 	initq_info->init_flags = 0;
2276 
2277 	initq_info->reply_queue_entries	= instance->max_fw_cmds + 1;
2278 
2279 	initq_info->producer_index_phys_addr_hi	= 0;
2280 	initq_info->producer_index_phys_addr_lo =
2281 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address;
2282 
2283 	initq_info->consumer_index_phys_addr_hi = 0;
2284 	initq_info->consumer_index_phys_addr_lo =
2285 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4;
2286 
2287 	initq_info->reply_queue_start_phys_addr_hi = 0;
2288 	initq_info->reply_queue_start_phys_addr_lo =
2289 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8;
2290 
2291 	init_frame->cmd				= MFI_CMD_OP_INIT;
2292 	init_frame->cmd_status			= MFI_CMD_STATUS_POLL_MODE;
2293 	init_frame->flags			= 0;
2294 	init_frame->queue_info_new_phys_addr_lo	=
2295 	    cmd->frame_phys_addr + 64;
2296 	init_frame->queue_info_new_phys_addr_hi	= 0;
2297 
2298 	init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info);
2299 
2300 	cmd->frame_count = 1;
2301 
2302 	/* issue the init frame in polled mode */
2303 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2304 		con_log(CL_ANN, (CE_WARN, "failed to init firmware"));
2305 		goto fail_fw_init;
2306 	}
2307 
2308 	return_mfi_pkt(instance, cmd);
2309 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2310 		goto fail_fw_init;
2311 	}
2312 
2313 	/* gather misc FW related information */
2314 	if (!get_ctrl_info(instance, &ctrl_info)) {
2315 		instance->max_sectors_per_req = ctrl_info.max_request_size;
2316 		con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d",
2317 		    ctrl_info.product_name, ctrl_info.ld_present_count));
2318 	} else {
2319 		instance->max_sectors_per_req = instance->max_num_sge *
2320 		    PAGESIZE / 512;
2321 	}
2322 
2323 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2324 		goto fail_fw_init;
2325 	}
2326 
2327 	return (0);
2328 
2329 fail_fw_init:
2330 fail_alloc_fw_space:
2331 
2332 	free_space_for_mfi(instance);
2333 
2334 fail_ready_state:
2335 	ddi_regs_map_free(&instance->regmap_handle);
2336 
2337 fail_mfi_reg_setup:
2338 	return (DDI_FAILURE);
2339 }
2340 
2341 /*
2342  * mfi_state_transition_to_ready	: Move the FW to READY state
2343  *
2344  * @reg_set			: MFI register set
2345  */
2346 static int
2347 mfi_state_transition_to_ready(struct megasas_instance *instance)
2348 {
2349 	int		i;
2350 	uint8_t		max_wait;
2351 	uint32_t	fw_ctrl;
2352 	uint32_t	fw_state;
2353 	uint32_t	cur_state;
2354 
2355 	fw_state =
2356 	    instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK;
2357 	con_log(CL_ANN1, (CE_NOTE,
2358 	    "mfi_state_transition_to_ready:FW state = 0x%x", fw_state));
2359 
2360 	while (fw_state != MFI_STATE_READY) {
2361 		con_log(CL_ANN, (CE_NOTE,
2362 		    "mfi_state_transition_to_ready:FW state%x", fw_state));
2363 
2364 		switch (fw_state) {
2365 		case MFI_STATE_FAULT:
2366 			con_log(CL_ANN, (CE_NOTE,
2367 			    "megasas: FW in FAULT state!!"));
2368 
2369 			return (-ENODEV);
2370 		case MFI_STATE_WAIT_HANDSHAKE:
2371 			/* set the CLR bit in IMR0 */
2372 			con_log(CL_ANN, (CE_NOTE,
2373 			    "megasas: FW waiting for HANDSHAKE"));
2374 			/*
2375 			 * PCI_Hot Plug: MFI F/W requires
2376 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2377 			 * to be set
2378 			 */
2379 			/* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */
2380 			WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE |
2381 			    MFI_INIT_HOTPLUG, instance);
2382 
2383 			max_wait	= 2;
2384 			cur_state	= MFI_STATE_WAIT_HANDSHAKE;
2385 			break;
2386 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2387 			/* set the CLR bit in IMR0 */
2388 			con_log(CL_ANN, (CE_NOTE,
2389 			    "megasas: FW state boot message pending"));
2390 			/*
2391 			 * PCI_Hot Plug: MFI F/W requires
2392 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2393 			 * to be set
2394 			 */
2395 			WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance);
2396 
2397 			max_wait	= 10;
2398 			cur_state	= MFI_STATE_BOOT_MESSAGE_PENDING;
2399 			break;
2400 		case MFI_STATE_OPERATIONAL:
2401 			/* bring it to READY state; assuming max wait 2 secs */
2402 			instance->func_ptr->disable_intr(instance);
2403 			con_log(CL_ANN1, (CE_NOTE,
2404 			    "megasas: FW in OPERATIONAL state"));
2405 			/*
2406 			 * PCI_Hot Plug: MFI F/W requires
2407 			 * (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT)
2408 			 * to be set
2409 			 */
2410 			/* WR_IB_DOORBELL(MFI_INIT_READY, instance); */
2411 			WR_IB_DOORBELL(MFI_RESET_FLAGS, instance);
2412 
2413 			max_wait	= 10;
2414 			cur_state	= MFI_STATE_OPERATIONAL;
2415 			break;
2416 		case MFI_STATE_UNDEFINED:
2417 			/* this state should not last for more than 2 seconds */
2418 			con_log(CL_ANN, (CE_NOTE, "FW state undefined\n"));
2419 
2420 			max_wait	= 2;
2421 			cur_state	= MFI_STATE_UNDEFINED;
2422 			break;
2423 		case MFI_STATE_BB_INIT:
2424 			max_wait	= 2;
2425 			cur_state	= MFI_STATE_BB_INIT;
2426 			break;
2427 		case MFI_STATE_FW_INIT:
2428 			max_wait	= 2;
2429 			cur_state	= MFI_STATE_FW_INIT;
2430 			break;
2431 		case MFI_STATE_DEVICE_SCAN:
2432 			max_wait	= 10;
2433 			cur_state	= MFI_STATE_DEVICE_SCAN;
2434 			break;
2435 		default:
2436 			con_log(CL_ANN, (CE_NOTE,
2437 			    "megasas: Unknown state 0x%x\n", fw_state));
2438 			return (-ENODEV);
2439 		}
2440 
2441 		/* the cur_state should not last for more than max_wait secs */
2442 		for (i = 0; i < (max_wait * MILLISEC); i++) {
2443 			/* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */
2444 			fw_state =
2445 			    instance->func_ptr->read_fw_status_reg(instance) &
2446 			    MFI_STATE_MASK;
2447 
2448 			if (fw_state == cur_state) {
2449 				delay(1 * drv_usectohz(MILLISEC));
2450 			} else {
2451 				break;
2452 			}
2453 		}
2454 
2455 		/* return error if fw_state hasn't changed after max_wait */
2456 		if (fw_state == cur_state) {
2457 			con_log(CL_ANN, (CE_NOTE,
2458 			    "FW state hasn't changed in %d secs\n", max_wait));
2459 			return (-ENODEV);
2460 		}
2461 	};
2462 
2463 	fw_ctrl = RD_IB_DOORBELL(instance);
2464 
2465 	con_log(CL_ANN1, (CE_NOTE,
2466 	    "mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl));
2467 
2468 	/*
2469 	 * Write 0xF to the doorbell register to do the following.
2470 	 * - Abort all outstanding commands (bit 0).
2471 	 * - Transition from OPERATIONAL to READY state (bit 1).
2472 	 * - Discard (possible) low MFA posted in 64-bit mode (bit-2).
2473 	 * - Set to release FW to continue running (i.e. BIOS handshake
2474 	 *   (bit 3).
2475 	 */
2476 	WR_IB_DOORBELL(0xF, instance);
2477 
2478 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2479 		return (-ENODEV);
2480 	}
2481 	return (0);
2482 }
2483 
2484 /*
2485  * get_seq_num
2486  */
2487 static int
2488 get_seq_num(struct megasas_instance *instance,
2489     struct megasas_evt_log_info *eli)
2490 {
2491 	int	ret = 0;
2492 
2493 	dma_obj_t			dcmd_dma_obj;
2494 	struct megasas_cmd		*cmd;
2495 	struct megasas_dcmd_frame	*dcmd;
2496 
2497 	cmd = get_mfi_pkt(instance);
2498 
2499 	if (!cmd) {
2500 		cmn_err(CE_WARN, "megasas: failed to get a cmd\n");
2501 		return (-ENOMEM);
2502 	}
2503 
2504 	dcmd	= &cmd->frame->dcmd;
2505 
2506 	/* allocate the data transfer buffer */
2507 	dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info);
2508 	dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
2509 	dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
2510 	dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
2511 	dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
2512 	dcmd_dma_obj.dma_attr.dma_attr_align = 1;
2513 
2514 	if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
2515 		con_log(CL_ANN, (CE_WARN,
2516 		    "get_seq_num: could not data transfer buffer alloc."));
2517 		return (DDI_FAILURE);
2518 	}
2519 
2520 	(void) memset(dcmd_dma_obj.buffer, 0,
2521 	    sizeof (struct megasas_evt_log_info));
2522 
2523 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2524 
2525 	dcmd->cmd = MFI_CMD_OP_DCMD;
2526 	dcmd->cmd_status = 0;
2527 	dcmd->sge_count	= 1;
2528 	dcmd->flags = MFI_FRAME_DIR_READ;
2529 	dcmd->timeout = 0;
2530 	dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info);
2531 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2532 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info);
2533 	dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
2534 
2535 	cmd->sync_cmd = MEGASAS_TRUE;
2536 	cmd->frame_count = 1;
2537 
2538 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2539 		cmn_err(CE_WARN, "get_seq_num: "
2540 		    "failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n");
2541 		ret = -1;
2542 	} else {
2543 		/* copy the data back into callers buffer */
2544 		bcopy(dcmd_dma_obj.buffer, eli,
2545 		    sizeof (struct megasas_evt_log_info));
2546 		ret = 0;
2547 	}
2548 
2549 	if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
2550 		ret = -1;
2551 
2552 	return_mfi_pkt(instance, cmd);
2553 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2554 		ret = -1;
2555 	}
2556 	return (ret);
2557 }
2558 
2559 /*
2560  * start_mfi_aen
2561  */
2562 static int
2563 start_mfi_aen(struct megasas_instance *instance)
2564 {
2565 	int	ret = 0;
2566 
2567 	struct megasas_evt_log_info	eli;
2568 	union megasas_evt_class_locale	class_locale;
2569 
2570 	/* get the latest sequence number from FW */
2571 	(void) memset(&eli, 0, sizeof (struct megasas_evt_log_info));
2572 
2573 	if (get_seq_num(instance, &eli)) {
2574 		cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n");
2575 		return (-1);
2576 	}
2577 
2578 	/* register AEN with FW for latest sequence number plus 1 */
2579 	class_locale.members.reserved	= 0;
2580 	class_locale.members.locale	= MR_EVT_LOCALE_ALL;
2581 	class_locale.members.class	= MR_EVT_CLASS_CRITICAL;
2582 
2583 	ret = register_mfi_aen(instance, eli.newest_seq_num + 1,
2584 	    class_locale.word);
2585 
2586 	if (ret) {
2587 		cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n");
2588 		return (-1);
2589 	}
2590 
2591 	return (ret);
2592 }
2593 
2594 /*
2595  * flush_cache
2596  */
2597 static void
2598 flush_cache(struct megasas_instance *instance)
2599 {
2600 	struct megasas_cmd		*cmd;
2601 	struct megasas_dcmd_frame	*dcmd;
2602 
2603 	if (!(cmd = get_mfi_pkt(instance)))
2604 		return;
2605 
2606 	dcmd = &cmd->frame->dcmd;
2607 
2608 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2609 
2610 	dcmd->cmd		= MFI_CMD_OP_DCMD;
2611 	dcmd->cmd_status	= 0x0;
2612 	dcmd->sge_count		= 0;
2613 	dcmd->flags		= MFI_FRAME_DIR_NONE;
2614 	dcmd->timeout		= 0;
2615 	dcmd->data_xfer_len	= 0;
2616 	dcmd->opcode		= MR_DCMD_CTRL_CACHE_FLUSH;
2617 	dcmd->mbox.b[0]		= MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2618 
2619 	cmd->frame_count = 1;
2620 
2621 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2622 		cmn_err(CE_WARN,
2623 		    "flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n");
2624 	}
2625 	con_log(CL_DLEVEL1, (CE_NOTE, "done"));
2626 	return_mfi_pkt(instance, cmd);
2627 	(void) megasas_common_check(instance, cmd);
2628 }
2629 
2630 /*
2631  * service_mfi_aen-	Completes an AEN command
2632  * @instance:			Adapter soft state
2633  * @cmd:			Command to be completed
2634  *
2635  */
2636 static void
2637 service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2638 {
2639 	uint32_t	seq_num;
2640 	struct megasas_evt_detail *evt_detail =
2641 	    (struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer;
2642 
2643 	cmd->cmd_status = cmd->frame->io.cmd_status;
2644 
2645 	if (cmd->cmd_status == ENODATA) {
2646 		cmd->cmd_status = 0;
2647 	}
2648 
2649 	/*
2650 	 * log the MFI AEN event to the sysevent queue so that
2651 	 * application will get noticed
2652 	 */
2653 	if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS",
2654 	    NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) {
2655 		int	instance_no = ddi_get_instance(instance->dip);
2656 		con_log(CL_ANN, (CE_WARN,
2657 		    "mega%d: Failed to log AEN event", instance_no));
2658 	}
2659 
2660 	/* get copy of seq_num and class/locale for re-registration */
2661 	seq_num = evt_detail->seq_num;
2662 	seq_num++;
2663 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
2664 	    sizeof (struct megasas_evt_detail));
2665 
2666 	cmd->frame->dcmd.cmd_status = 0x0;
2667 	cmd->frame->dcmd.mbox.w[0] = seq_num;
2668 
2669 	instance->aen_seq_num = seq_num;
2670 
2671 	cmd->frame_count = 1;
2672 
2673 	/* Issue the aen registration frame */
2674 	instance->func_ptr->issue_cmd(cmd, instance);
2675 }
2676 
2677 /*
2678  * complete_cmd_in_sync_mode -	Completes an internal command
2679  * @instance:			Adapter soft state
2680  * @cmd:			Command to be completed
2681  *
2682  * The issue_cmd_in_sync_mode() function waits for a command to complete
2683  * after it issues a command. This function wakes up that waiting routine by
2684  * calling wake_up() on the wait queue.
2685  */
2686 static void
2687 complete_cmd_in_sync_mode(struct megasas_instance *instance,
2688     struct megasas_cmd *cmd)
2689 {
2690 	cmd->cmd_status = cmd->frame->io.cmd_status;
2691 
2692 	cmd->sync_cmd = MEGASAS_FALSE;
2693 
2694 	if (cmd->cmd_status == ENODATA) {
2695 		cmd->cmd_status = 0;
2696 	}
2697 
2698 	cv_broadcast(&instance->int_cmd_cv);
2699 }
2700 
2701 /*
2702  * megasas_softintr - The Software ISR
2703  * @param arg	: HBA soft state
2704  *
2705  * called from high-level interrupt if hi-level interrupt are not there,
2706  * otherwise triggered as a soft interrupt
2707  */
2708 static uint_t
2709 megasas_softintr(struct megasas_instance *instance)
2710 {
2711 	struct scsi_pkt		*pkt;
2712 	struct scsa_cmd		*acmd;
2713 	struct megasas_cmd	*cmd;
2714 	struct mlist_head	*pos, *next;
2715 	mlist_t			process_list;
2716 	struct megasas_header	*hdr;
2717 	struct scsi_arq_status	*arqstat;
2718 
2719 	con_log(CL_ANN1, (CE_CONT, "megasas_softintr called"));
2720 
2721 	ASSERT(instance);
2722 	mutex_enter(&instance->completed_pool_mtx);
2723 
2724 	if (mlist_empty(&instance->completed_pool_list)) {
2725 		mutex_exit(&instance->completed_pool_mtx);
2726 		return (DDI_INTR_UNCLAIMED);
2727 	}
2728 
2729 	instance->softint_running = 1;
2730 
2731 	INIT_LIST_HEAD(&process_list);
2732 	mlist_splice(&instance->completed_pool_list, &process_list);
2733 	INIT_LIST_HEAD(&instance->completed_pool_list);
2734 
2735 	mutex_exit(&instance->completed_pool_mtx);
2736 
2737 	/* perform all callbacks first, before releasing the SCBs */
2738 	mlist_for_each_safe(pos, next, &process_list) {
2739 		cmd = mlist_entry(pos, struct megasas_cmd, list);
2740 
2741 		/* syncronize the Cmd frame for the controller */
2742 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle,
2743 		    0, 0, DDI_DMA_SYNC_FORCPU);
2744 
2745 		if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
2746 		    DDI_SUCCESS) {
2747 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2748 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2749 			return (DDI_INTR_UNCLAIMED);
2750 		}
2751 
2752 		hdr = &cmd->frame->hdr;
2753 
2754 		/* remove the internal command from the process list */
2755 		mlist_del_init(&cmd->list);
2756 
2757 		switch (hdr->cmd) {
2758 		case MFI_CMD_OP_PD_SCSI:
2759 		case MFI_CMD_OP_LD_SCSI:
2760 		case MFI_CMD_OP_LD_READ:
2761 		case MFI_CMD_OP_LD_WRITE:
2762 			/*
2763 			 * MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI
2764 			 * could have been issued either through an
2765 			 * IO path or an IOCTL path. If it was via IOCTL,
2766 			 * we will send it to internal completion.
2767 			 */
2768 			if (cmd->sync_cmd == MEGASAS_TRUE) {
2769 				complete_cmd_in_sync_mode(instance, cmd);
2770 				break;
2771 			}
2772 
2773 			/* regular commands */
2774 			acmd =	cmd->cmd;
2775 			pkt =	CMD2PKT(acmd);
2776 
2777 			if (acmd->cmd_flags & CFLAG_DMAVALID) {
2778 				if (acmd->cmd_flags & CFLAG_CONSISTENT) {
2779 					(void) ddi_dma_sync(acmd->cmd_dmahandle,
2780 					    acmd->cmd_dma_offset,
2781 					    acmd->cmd_dma_len,
2782 					    DDI_DMA_SYNC_FORCPU);
2783 				}
2784 			}
2785 
2786 			pkt->pkt_reason		= CMD_CMPLT;
2787 			pkt->pkt_statistics	= 0;
2788 			pkt->pkt_state = STATE_GOT_BUS
2789 			    | STATE_GOT_TARGET | STATE_SENT_CMD
2790 			    | STATE_XFERRED_DATA | STATE_GOT_STATUS;
2791 
2792 			con_log(CL_ANN1, (CE_CONT,
2793 			    "CDB[0] = %x completed for %s: size %lx context %x",
2794 			    pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"),
2795 			    acmd->cmd_dmacount, hdr->context));
2796 
2797 			if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) {
2798 				struct scsi_inquiry	*inq;
2799 
2800 				if (acmd->cmd_dmacount != 0) {
2801 					bp_mapin(acmd->cmd_buf);
2802 					inq = (struct scsi_inquiry *)
2803 					    acmd->cmd_buf->b_un.b_addr;
2804 
2805 					/* don't expose physical drives to OS */
2806 					if (acmd->islogical &&
2807 					    (hdr->cmd_status == MFI_STAT_OK)) {
2808 						display_scsi_inquiry(
2809 						    (caddr_t)inq);
2810 					} else if ((hdr->cmd_status ==
2811 					    MFI_STAT_OK) && inq->inq_dtype ==
2812 					    DTYPE_DIRECT) {
2813 
2814 						display_scsi_inquiry(
2815 						    (caddr_t)inq);
2816 
2817 						/* for physical disk */
2818 						hdr->cmd_status =
2819 						    MFI_STAT_DEVICE_NOT_FOUND;
2820 					}
2821 				}
2822 			}
2823 
2824 			switch (hdr->cmd_status) {
2825 			case MFI_STAT_OK:
2826 				pkt->pkt_scbp[0] = STATUS_GOOD;
2827 				break;
2828 			case MFI_STAT_LD_CC_IN_PROGRESS:
2829 			case MFI_STAT_LD_RECON_IN_PROGRESS:
2830 			    /* SJ - these are not correct way */
2831 				pkt->pkt_scbp[0] = STATUS_GOOD;
2832 				break;
2833 			case MFI_STAT_LD_INIT_IN_PROGRESS:
2834 				con_log(CL_ANN,
2835 				    (CE_WARN, "Initialization in Progress"));
2836 				pkt->pkt_reason	= CMD_TRAN_ERR;
2837 
2838 				break;
2839 			case MFI_STAT_SCSI_DONE_WITH_ERROR:
2840 				con_log(CL_ANN1, (CE_CONT, "scsi_done error"));
2841 
2842 				pkt->pkt_reason	= CMD_CMPLT;
2843 				((struct scsi_status *)
2844 				    pkt->pkt_scbp)->sts_chk = 1;
2845 
2846 				if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) {
2847 
2848 					con_log(CL_ANN,
2849 					    (CE_WARN, "TEST_UNIT_READY fail"));
2850 
2851 				} else {
2852 					pkt->pkt_state |= STATE_ARQ_DONE;
2853 					arqstat = (void *)(pkt->pkt_scbp);
2854 					arqstat->sts_rqpkt_reason = CMD_CMPLT;
2855 					arqstat->sts_rqpkt_resid = 0;
2856 					arqstat->sts_rqpkt_state |=
2857 					    STATE_GOT_BUS | STATE_GOT_TARGET
2858 					    | STATE_SENT_CMD
2859 					    | STATE_XFERRED_DATA;
2860 					*(uint8_t *)&arqstat->sts_rqpkt_status =
2861 					    STATUS_GOOD;
2862 
2863 					bcopy(cmd->sense,
2864 					    &(arqstat->sts_sensedata),
2865 					    acmd->cmd_scblen -
2866 					    offsetof(struct scsi_arq_status,
2867 					    sts_sensedata));
2868 				}
2869 				break;
2870 			case MFI_STAT_LD_OFFLINE:
2871 			case MFI_STAT_DEVICE_NOT_FOUND:
2872 				con_log(CL_ANN1, (CE_CONT,
2873 				    "device not found error"));
2874 				pkt->pkt_reason	= CMD_DEV_GONE;
2875 				pkt->pkt_statistics  = STAT_DISCON;
2876 				break;
2877 			case MFI_STAT_LD_LBA_OUT_OF_RANGE:
2878 				pkt->pkt_state |= STATE_ARQ_DONE;
2879 				pkt->pkt_reason	= CMD_CMPLT;
2880 				((struct scsi_status *)
2881 				    pkt->pkt_scbp)->sts_chk = 1;
2882 
2883 				arqstat = (void *)(pkt->pkt_scbp);
2884 				arqstat->sts_rqpkt_reason = CMD_CMPLT;
2885 				arqstat->sts_rqpkt_resid = 0;
2886 				arqstat->sts_rqpkt_state |= STATE_GOT_BUS
2887 				    | STATE_GOT_TARGET | STATE_SENT_CMD
2888 				    | STATE_XFERRED_DATA;
2889 				*(uint8_t *)&arqstat->sts_rqpkt_status =
2890 				    STATUS_GOOD;
2891 
2892 				arqstat->sts_sensedata.es_valid = 1;
2893 				arqstat->sts_sensedata.es_key =
2894 				    KEY_ILLEGAL_REQUEST;
2895 				arqstat->sts_sensedata.es_class =
2896 				    CLASS_EXTENDED_SENSE;
2897 
2898 				/*
2899 				 * LOGICAL BLOCK ADDRESS OUT OF RANGE:
2900 				 * ASC: 0x21h; ASCQ: 0x00h;
2901 				 */
2902 				arqstat->sts_sensedata.es_add_code = 0x21;
2903 				arqstat->sts_sensedata.es_qual_code = 0x00;
2904 
2905 				break;
2906 
2907 			default:
2908 				con_log(CL_ANN, (CE_CONT, "Unknown status!"));
2909 				pkt->pkt_reason	= CMD_TRAN_ERR;
2910 
2911 				break;
2912 			}
2913 
2914 			atomic_add_16(&instance->fw_outstanding, (-1));
2915 
2916 			return_mfi_pkt(instance, cmd);
2917 
2918 			(void) megasas_common_check(instance, cmd);
2919 
2920 			if (acmd->cmd_dmahandle) {
2921 				if (megasas_check_dma_handle(
2922 				    acmd->cmd_dmahandle) != DDI_SUCCESS) {
2923 					ddi_fm_service_impact(instance->dip,
2924 					    DDI_SERVICE_UNAFFECTED);
2925 					pkt->pkt_reason = CMD_TRAN_ERR;
2926 					pkt->pkt_statistics = 0;
2927 				}
2928 			}
2929 
2930 			/* Call the callback routine */
2931 			if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&
2932 			    pkt->pkt_comp) {
2933 				(*pkt->pkt_comp)(pkt);
2934 			}
2935 
2936 			break;
2937 		case MFI_CMD_OP_SMP:
2938 		case MFI_CMD_OP_STP:
2939 			complete_cmd_in_sync_mode(instance, cmd);
2940 			break;
2941 		case MFI_CMD_OP_DCMD:
2942 			/* see if got an event notification */
2943 			if (cmd->frame->dcmd.opcode ==
2944 			    MR_DCMD_CTRL_EVENT_WAIT) {
2945 				if ((instance->aen_cmd == cmd) &&
2946 				    (instance->aen_cmd->abort_aen)) {
2947 					con_log(CL_ANN, (CE_WARN,
2948 					    "megasas_softintr: "
2949 					    "aborted_aen returned"));
2950 				} else {
2951 					service_mfi_aen(instance, cmd);
2952 				}
2953 			} else {
2954 				complete_cmd_in_sync_mode(instance, cmd);
2955 			}
2956 
2957 			break;
2958 		case MFI_CMD_OP_ABORT:
2959 			con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete"));
2960 			/*
2961 			 * MFI_CMD_OP_ABORT successfully completed
2962 			 * in the synchronous mode
2963 			 */
2964 			complete_cmd_in_sync_mode(instance, cmd);
2965 			break;
2966 		default:
2967 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2968 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2969 
2970 			if (cmd->pkt != NULL) {
2971 				pkt = cmd->pkt;
2972 				if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&
2973 				    pkt->pkt_comp) {
2974 					(*pkt->pkt_comp)(pkt);
2975 				}
2976 			}
2977 			con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!"));
2978 			break;
2979 		}
2980 	}
2981 
2982 	instance->softint_running = 0;
2983 
2984 	return (DDI_INTR_CLAIMED);
2985 }
2986 
2987 /*
2988  * mega_alloc_dma_obj
2989  *
2990  * Allocate the memory and other resources for an dma object.
2991  */
2992 static int
2993 mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj)
2994 {
2995 	int	i;
2996 	size_t	alen = 0;
2997 	uint_t	cookie_cnt;
2998 
2999 	i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr,
3000 	    DDI_DMA_SLEEP, NULL, &obj->dma_handle);
3001 	if (i != DDI_SUCCESS) {
3002 
3003 		switch (i) {
3004 			case DDI_DMA_BADATTR :
3005 				con_log(CL_ANN, (CE_WARN,
3006 				"Failed ddi_dma_alloc_handle- Bad atrib"));
3007 				break;
3008 			case DDI_DMA_NORESOURCES :
3009 				con_log(CL_ANN, (CE_WARN,
3010 				"Failed ddi_dma_alloc_handle- No Resources"));
3011 				break;
3012 			default :
3013 				con_log(CL_ANN, (CE_WARN,
3014 				"Failed ddi_dma_alloc_handle :unknown %d", i));
3015 				break;
3016 		}
3017 
3018 		return (-1);
3019 	}
3020 
3021 	if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &endian_attr,
3022 	    DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
3023 	    &obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) ||
3024 	    alen < obj->size) {
3025 
3026 		ddi_dma_free_handle(&obj->dma_handle);
3027 
3028 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc"));
3029 
3030 		return (-1);
3031 	}
3032 
3033 	if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer,
3034 	    obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
3035 	    NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) {
3036 
3037 		ddi_dma_mem_free(&obj->acc_handle);
3038 		ddi_dma_free_handle(&obj->dma_handle);
3039 
3040 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle"));
3041 
3042 		return (-1);
3043 	}
3044 
3045 	if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) {
3046 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3047 		return (-1);
3048 	}
3049 
3050 	if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) {
3051 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3052 		return (-1);
3053 	}
3054 
3055 	return (cookie_cnt);
3056 }
3057 
3058 /*
3059  * mega_free_dma_obj(struct megasas_instance *, dma_obj_t)
3060  *
3061  * De-allocate the memory and other resources for an dma object, which must
3062  * have been alloated by a previous call to mega_alloc_dma_obj()
3063  */
3064 static int
3065 mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj)
3066 {
3067 
3068 	if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) {
3069 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3070 		return (DDI_FAILURE);
3071 	}
3072 
3073 	if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) {
3074 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3075 		return (DDI_FAILURE);
3076 	}
3077 
3078 	(void) ddi_dma_unbind_handle(obj.dma_handle);
3079 	ddi_dma_mem_free(&obj.acc_handle);
3080 	ddi_dma_free_handle(&obj.dma_handle);
3081 
3082 	return (DDI_SUCCESS);
3083 }
3084 
3085 /*
3086  * megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *,
3087  * int, int (*)())
3088  *
3089  * Allocate dma resources for a new scsi command
3090  */
3091 static int
3092 megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt,
3093     struct buf *bp, int flags, int (*callback)())
3094 {
3095 	int	dma_flags;
3096 	int	(*cb)(caddr_t);
3097 	int	i;
3098 
3099 	ddi_dma_attr_t	tmp_dma_attr = megasas_generic_dma_attr;
3100 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3101 
3102 	acmd->cmd_buf = bp;
3103 
3104 	if (bp->b_flags & B_READ) {
3105 		acmd->cmd_flags &= ~CFLAG_DMASEND;
3106 		dma_flags = DDI_DMA_READ;
3107 	} else {
3108 		acmd->cmd_flags |= CFLAG_DMASEND;
3109 		dma_flags = DDI_DMA_WRITE;
3110 	}
3111 
3112 	if (flags & PKT_CONSISTENT) {
3113 		acmd->cmd_flags |= CFLAG_CONSISTENT;
3114 		dma_flags |= DDI_DMA_CONSISTENT;
3115 	}
3116 
3117 	if (flags & PKT_DMA_PARTIAL) {
3118 		dma_flags |= DDI_DMA_PARTIAL;
3119 	}
3120 
3121 	dma_flags |= DDI_DMA_REDZONE;
3122 
3123 	cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
3124 
3125 	tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge;
3126 	tmp_dma_attr.dma_attr_addr_hi = 0xffffffffffffffffull;
3127 
3128 	if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr,
3129 	    cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) {
3130 		switch (i) {
3131 		case DDI_DMA_BADATTR:
3132 			bioerror(bp, EFAULT);
3133 			return (-1);
3134 
3135 		case DDI_DMA_NORESOURCES:
3136 			bioerror(bp, 0);
3137 			return (-1);
3138 
3139 		default:
3140 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: "
3141 			    "0x%x impossible\n", i));
3142 			bioerror(bp, EFAULT);
3143 			return (-1);
3144 		}
3145 	}
3146 
3147 	i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags,
3148 	    cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies);
3149 
3150 	switch (i) {
3151 	case DDI_DMA_PARTIAL_MAP:
3152 		if ((dma_flags & DDI_DMA_PARTIAL) == 0) {
3153 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3154 			    "DDI_DMA_PARTIAL_MAP impossible\n"));
3155 			goto no_dma_cookies;
3156 		}
3157 
3158 		if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) ==
3159 		    DDI_FAILURE) {
3160 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n"));
3161 			goto no_dma_cookies;
3162 		}
3163 
3164 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3165 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3166 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3167 		    DDI_FAILURE) {
3168 
3169 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n"));
3170 			goto no_dma_cookies;
3171 		}
3172 
3173 		goto get_dma_cookies;
3174 	case DDI_DMA_MAPPED:
3175 		acmd->cmd_nwin = 1;
3176 		acmd->cmd_dma_len = 0;
3177 		acmd->cmd_dma_offset = 0;
3178 
3179 get_dma_cookies:
3180 		i = 0;
3181 		acmd->cmd_dmacount = 0;
3182 		for (;;) {
3183 			acmd->cmd_dmacount +=
3184 			    acmd->cmd_dmacookies[i++].dmac_size;
3185 
3186 			if (i == instance->max_num_sge ||
3187 			    i == acmd->cmd_ncookies)
3188 				break;
3189 
3190 			ddi_dma_nextcookie(acmd->cmd_dmahandle,
3191 			    &acmd->cmd_dmacookies[i]);
3192 		}
3193 
3194 		acmd->cmd_cookie = i;
3195 		acmd->cmd_cookiecnt = i;
3196 
3197 		acmd->cmd_flags |= CFLAG_DMAVALID;
3198 
3199 		if (bp->b_bcount >= acmd->cmd_dmacount) {
3200 			pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3201 		} else {
3202 			pkt->pkt_resid = 0;
3203 		}
3204 
3205 		return (0);
3206 	case DDI_DMA_NORESOURCES:
3207 		bioerror(bp, 0);
3208 		break;
3209 	case DDI_DMA_NOMAPPING:
3210 		bioerror(bp, EFAULT);
3211 		break;
3212 	case DDI_DMA_TOOBIG:
3213 		bioerror(bp, EINVAL);
3214 		break;
3215 	case DDI_DMA_INUSE:
3216 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:"
3217 		    " DDI_DMA_INUSE impossible\n"));
3218 		break;
3219 	default:
3220 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3221 		    "0x%x impossible\n", i));
3222 		break;
3223 	}
3224 
3225 no_dma_cookies:
3226 	ddi_dma_free_handle(&acmd->cmd_dmahandle);
3227 	acmd->cmd_dmahandle = NULL;
3228 	acmd->cmd_flags &= ~CFLAG_DMAVALID;
3229 	return (-1);
3230 }
3231 
3232 /*
3233  * megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *)
3234  *
3235  * move dma resources to next dma window
3236  *
3237  */
3238 static int
3239 megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt,
3240     struct buf *bp)
3241 {
3242 	int	i = 0;
3243 
3244 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3245 
3246 	/*
3247 	 * If there are no more cookies remaining in this window,
3248 	 * must move to the next window first.
3249 	 */
3250 	if (acmd->cmd_cookie == acmd->cmd_ncookies) {
3251 		if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) {
3252 			return (0);
3253 		}
3254 
3255 		/* at last window, cannot move */
3256 		if (++acmd->cmd_curwin >= acmd->cmd_nwin) {
3257 			return (-1);
3258 		}
3259 
3260 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3261 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3262 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3263 		    DDI_FAILURE) {
3264 			return (-1);
3265 		}
3266 
3267 		acmd->cmd_cookie = 0;
3268 	} else {
3269 		/* still more cookies in this window - get the next one */
3270 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3271 		    &acmd->cmd_dmacookies[0]);
3272 	}
3273 
3274 	/* get remaining cookies in this window, up to our maximum */
3275 	for (;;) {
3276 		acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size;
3277 		acmd->cmd_cookie++;
3278 
3279 		if (i == instance->max_num_sge ||
3280 		    acmd->cmd_cookie == acmd->cmd_ncookies) {
3281 			break;
3282 		}
3283 
3284 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3285 		    &acmd->cmd_dmacookies[i]);
3286 	}
3287 
3288 	acmd->cmd_cookiecnt = i;
3289 
3290 	if (bp->b_bcount >= acmd->cmd_dmacount) {
3291 		pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3292 	} else {
3293 		pkt->pkt_resid = 0;
3294 	}
3295 
3296 	return (0);
3297 }
3298 
3299 /*
3300  * build_cmd
3301  */
3302 static struct megasas_cmd *
3303 build_cmd(struct megasas_instance *instance, struct scsi_address *ap,
3304     struct scsi_pkt *pkt, uchar_t *cmd_done)
3305 {
3306 	uint16_t	flags = 0;
3307 	uint32_t	i;
3308 	uint32_t 	context;
3309 	uint32_t	sge_bytes;
3310 
3311 	struct megasas_cmd		*cmd;
3312 	struct megasas_sge64		*mfi_sgl;
3313 	struct scsa_cmd			*acmd = PKT2CMD(pkt);
3314 	struct megasas_pthru_frame 	*pthru;
3315 	struct megasas_io_frame		*ldio;
3316 
3317 	/* find out if this is logical or physical drive command.  */
3318 	acmd->islogical = MEGADRV_IS_LOGICAL(ap);
3319 	acmd->device_id = MAP_DEVICE_ID(instance, ap);
3320 	*cmd_done = 0;
3321 
3322 	/* get the command packet */
3323 	if (!(cmd = get_mfi_pkt(instance))) {
3324 		return (NULL);
3325 	}
3326 
3327 	cmd->pkt = pkt;
3328 	cmd->cmd = acmd;
3329 
3330 	/* lets get the command directions */
3331 	if (acmd->cmd_flags & CFLAG_DMASEND) {
3332 		flags = MFI_FRAME_DIR_WRITE;
3333 
3334 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3335 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3336 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3337 			    DDI_DMA_SYNC_FORDEV);
3338 		}
3339 	} else if (acmd->cmd_flags & ~CFLAG_DMASEND) {
3340 		flags = MFI_FRAME_DIR_READ;
3341 
3342 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3343 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3344 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3345 			    DDI_DMA_SYNC_FORCPU);
3346 		}
3347 	} else {
3348 		flags = MFI_FRAME_DIR_NONE;
3349 	}
3350 
3351 	flags |= MFI_FRAME_SGL64;
3352 
3353 	switch (pkt->pkt_cdbp[0]) {
3354 
3355 	/*
3356 	 * case SCMD_SYNCHRONIZE_CACHE:
3357 	 * 	flush_cache(instance);
3358 	 *	return_mfi_pkt(instance, cmd);
3359 	 *	*cmd_done = 1;
3360 	 *
3361 	 *	return (NULL);
3362 	 */
3363 
3364 	case SCMD_READ:
3365 	case SCMD_WRITE:
3366 	case SCMD_READ_G1:
3367 	case SCMD_WRITE_G1:
3368 		if (acmd->islogical) {
3369 			ldio = (struct megasas_io_frame *)cmd->frame;
3370 
3371 			/*
3372 			 * preare the Logical IO frame:
3373 			 * 2nd bit is zero for all read cmds
3374 			 */
3375 			ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ?
3376 			    MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ;
3377 			ldio->cmd_status = 0x0;
3378 			ldio->scsi_status = 0x0;
3379 			ldio->target_id	 = acmd->device_id;
3380 			ldio->timeout = 0;
3381 			ldio->reserved_0 = 0;
3382 			ldio->pad_0 = 0;
3383 			ldio->flags = flags;
3384 
3385 			/* Initialize sense Information */
3386 			bzero(cmd->sense, SENSE_LENGTH);
3387 			ldio->sense_len = SENSE_LENGTH;
3388 			ldio->sense_buf_phys_addr_hi = 0;
3389 			ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3390 
3391 			ldio->start_lba_hi = 0;
3392 			ldio->access_byte = (acmd->cmd_cdblen != 6) ?
3393 			    pkt->pkt_cdbp[1] : 0;
3394 			ldio->sge_count = acmd->cmd_cookiecnt;
3395 			mfi_sgl = (struct megasas_sge64	*)&ldio->sgl;
3396 
3397 			context = ldio->context;
3398 
3399 			if (acmd->cmd_cdblen == CDB_GROUP0) {
3400 				ldio->lba_count	= host_to_le16(
3401 				    (uint16_t)(pkt->pkt_cdbp[4]));
3402 
3403 				ldio->start_lba_lo = host_to_le32(
3404 				    ((uint32_t)(pkt->pkt_cdbp[3])) |
3405 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 8) |
3406 				    ((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F)
3407 				    << 16));
3408 			} else if (acmd->cmd_cdblen == CDB_GROUP1) {
3409 				ldio->lba_count = host_to_le16(
3410 				    ((uint16_t)(pkt->pkt_cdbp[8])) |
3411 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 8));
3412 
3413 				ldio->start_lba_lo = host_to_le32(
3414 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3415 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3416 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3417 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3418 			} else if (acmd->cmd_cdblen == CDB_GROUP2) {
3419 				ldio->lba_count	 = host_to_le16(
3420 				    ((uint16_t)(pkt->pkt_cdbp[9])) |
3421 				    ((uint16_t)(pkt->pkt_cdbp[8]) << 8) |
3422 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 16) |
3423 				    ((uint16_t)(pkt->pkt_cdbp[6]) << 24));
3424 
3425 				ldio->start_lba_lo = host_to_le32(
3426 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3427 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3428 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3429 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3430 			} else if (acmd->cmd_cdblen == CDB_GROUP3) {
3431 				ldio->lba_count = host_to_le16(
3432 				    ((uint16_t)(pkt->pkt_cdbp[13])) |
3433 				    ((uint16_t)(pkt->pkt_cdbp[12]) << 8) |
3434 				    ((uint16_t)(pkt->pkt_cdbp[11]) << 16) |
3435 				    ((uint16_t)(pkt->pkt_cdbp[10]) << 24));
3436 
3437 				ldio->start_lba_lo = host_to_le32(
3438 				    ((uint32_t)(pkt->pkt_cdbp[9])) |
3439 				    ((uint32_t)(pkt->pkt_cdbp[8]) << 8) |
3440 				    ((uint32_t)(pkt->pkt_cdbp[7]) << 16) |
3441 				    ((uint32_t)(pkt->pkt_cdbp[6]) << 24));
3442 
3443 				ldio->start_lba_lo = host_to_le32(
3444 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3445 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3446 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3447 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3448 			}
3449 
3450 			break;
3451 		}
3452 		/* fall through For all non-rd/wr cmds */
3453 	default:
3454 		pthru	= (struct megasas_pthru_frame *)cmd->frame;
3455 
3456 		/* prepare the DCDB frame */
3457 		pthru->cmd = (acmd->islogical) ?
3458 		    MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI;
3459 		pthru->cmd_status	= 0x0;
3460 		pthru->scsi_status	= 0x0;
3461 		pthru->target_id	= acmd->device_id;
3462 		pthru->lun		= 0;
3463 		pthru->cdb_len		= acmd->cmd_cdblen;
3464 		pthru->timeout		= 0;
3465 		pthru->flags		= flags;
3466 		pthru->data_xfer_len	= acmd->cmd_dmacount;
3467 		pthru->sge_count	= acmd->cmd_cookiecnt;
3468 		mfi_sgl			= (struct megasas_sge64 *)&pthru->sgl;
3469 
3470 		bzero(cmd->sense, SENSE_LENGTH);
3471 		pthru->sense_len	= SENSE_LENGTH;
3472 		pthru->sense_buf_phys_addr_hi = 0;
3473 		pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3474 
3475 		context = pthru->context;
3476 
3477 		bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen);
3478 
3479 		break;
3480 	}
3481 #ifdef lint
3482 	context = context;
3483 #endif
3484 	/* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */
3485 
3486 	/* prepare the scatter-gather list for the firmware */
3487 	for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) {
3488 		mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress;
3489 		mfi_sgl->length    = acmd->cmd_dmacookies[i].dmac_size;
3490 	}
3491 
3492 	sge_bytes = sizeof (struct megasas_sge64)*acmd->cmd_cookiecnt;
3493 
3494 	cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
3495 	    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
3496 
3497 	if (cmd->frame_count >= 8) {
3498 		cmd->frame_count = 8;
3499 	}
3500 
3501 	return (cmd);
3502 }
3503 
3504 /*
3505  * wait_for_outstanding -	Wait for all outstanding cmds
3506  * @instance:				Adapter soft state
3507  *
3508  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
3509  * complete all its outstanding commands. Returns error if one or more IOs
3510  * are pending after this time period.
3511  */
3512 static int
3513 wait_for_outstanding(struct megasas_instance *instance)
3514 {
3515 	int		i;
3516 	uint32_t	wait_time = 90;
3517 
3518 	for (i = 0; i < wait_time; i++) {
3519 		if (!instance->fw_outstanding) {
3520 			break;
3521 		}
3522 
3523 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */;
3524 	}
3525 
3526 	if (instance->fw_outstanding) {
3527 		return (1);
3528 	}
3529 
3530 	ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION);
3531 
3532 	return (0);
3533 }
3534 
3535 /*
3536  * issue_mfi_pthru
3537  */
3538 static int
3539 issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3540     struct megasas_cmd *cmd, int mode)
3541 {
3542 	void		*ubuf;
3543 	uint32_t	kphys_addr = 0;
3544 	uint32_t	xferlen = 0;
3545 	uint_t		model;
3546 
3547 	dma_obj_t			pthru_dma_obj;
3548 	struct megasas_pthru_frame	*kpthru;
3549 	struct megasas_pthru_frame	*pthru;
3550 
3551 	pthru = &cmd->frame->pthru;
3552 	kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0];
3553 
3554 	model = ddi_model_convert_from(mode & FMODELS);
3555 	if (model == DDI_MODEL_ILP32) {
3556 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3557 
3558 		xferlen	= kpthru->sgl.sge32[0].length;
3559 
3560 		/* SJ! - ubuf needs to be virtual address. */
3561 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3562 	} else {
3563 #ifdef _ILP32
3564 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3565 		xferlen	= kpthru->sgl.sge32[0].length;
3566 		/* SJ! - ubuf needs to be virtual address. */
3567 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3568 #else
3569 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64"));
3570 		xferlen	= kpthru->sgl.sge64[0].length;
3571 		/* SJ! - ubuf needs to be virtual address. */
3572 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr;
3573 #endif
3574 	}
3575 
3576 	if (xferlen) {
3577 		/* means IOCTL requires DMA */
3578 		/* allocate the data transfer buffer */
3579 		pthru_dma_obj.size = xferlen;
3580 		pthru_dma_obj.dma_attr = megasas_generic_dma_attr;
3581 		pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3582 		pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3583 		pthru_dma_obj.dma_attr.dma_attr_sgllen = 1;
3584 		pthru_dma_obj.dma_attr.dma_attr_align = 1;
3585 
3586 		/* allocate kernel buffer for DMA */
3587 		if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) {
3588 			con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3589 			    "could not data transfer buffer alloc."));
3590 			return (DDI_FAILURE);
3591 		}
3592 
3593 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3594 		if (kpthru->flags & MFI_FRAME_DIR_WRITE) {
3595 			if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer,
3596 			    xferlen, mode)) {
3597 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3598 				    "copy from user space failed\n"));
3599 				return (1);
3600 			}
3601 		}
3602 
3603 		kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address;
3604 	}
3605 
3606 	pthru->cmd		= kpthru->cmd;
3607 	pthru->sense_len	= kpthru->sense_len;
3608 	pthru->cmd_status	= kpthru->cmd_status;
3609 	pthru->scsi_status	= kpthru->scsi_status;
3610 	pthru->target_id	= kpthru->target_id;
3611 	pthru->lun		= kpthru->lun;
3612 	pthru->cdb_len		= kpthru->cdb_len;
3613 	pthru->sge_count	= kpthru->sge_count;
3614 	pthru->timeout		= kpthru->timeout;
3615 	pthru->data_xfer_len	= kpthru->data_xfer_len;
3616 
3617 	pthru->sense_buf_phys_addr_hi	= 0;
3618 	/* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */
3619 	pthru->sense_buf_phys_addr_lo	= 0;
3620 
3621 	bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len);
3622 
3623 	pthru->flags			= kpthru->flags & ~MFI_FRAME_SGL64;
3624 	pthru->sgl.sge32[0].length	= xferlen;
3625 	pthru->sgl.sge32[0].phys_addr	= kphys_addr;
3626 
3627 	cmd->sync_cmd = MEGASAS_TRUE;
3628 	cmd->frame_count = 1;
3629 
3630 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3631 		con_log(CL_ANN, (CE_WARN,
3632 		    "issue_mfi_pthru: fw_ioctl failed\n"));
3633 	} else {
3634 		if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) {
3635 
3636 			if (ddi_copyout(pthru_dma_obj.buffer, ubuf,
3637 			    xferlen, mode)) {
3638 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3639 				    "copy to user space failed\n"));
3640 				return (1);
3641 			}
3642 		}
3643 	}
3644 
3645 	kpthru->cmd_status = pthru->cmd_status;
3646 	kpthru->scsi_status = pthru->scsi_status;
3647 
3648 	con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, "
3649 	    "scsi_status %x\n", pthru->cmd_status, pthru->scsi_status));
3650 
3651 	if (xferlen) {
3652 		/* free kernel buffer */
3653 		if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS)
3654 			return (1);
3655 	}
3656 
3657 	return (0);
3658 }
3659 
3660 /*
3661  * issue_mfi_dcmd
3662  */
3663 static int
3664 issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3665     struct megasas_cmd *cmd, int mode)
3666 {
3667 	void		*ubuf;
3668 	uint32_t	kphys_addr = 0;
3669 	uint32_t	xferlen = 0;
3670 	uint32_t	model;
3671 	dma_obj_t			dcmd_dma_obj;
3672 	struct megasas_dcmd_frame	*kdcmd;
3673 	struct megasas_dcmd_frame	*dcmd;
3674 
3675 	dcmd = &cmd->frame->dcmd;
3676 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
3677 
3678 	model = ddi_model_convert_from(mode & FMODELS);
3679 	if (model == DDI_MODEL_ILP32) {
3680 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3681 
3682 		xferlen	= kdcmd->sgl.sge32[0].length;
3683 
3684 		/* SJ! - ubuf needs to be virtual address. */
3685 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3686 	}
3687 	else
3688 	{
3689 #ifdef _ILP32
3690 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3691 		xferlen	= kdcmd->sgl.sge32[0].length;
3692 		/* SJ! - ubuf needs to be virtual address. */
3693 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3694 #else
3695 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64"));
3696 		xferlen	= kdcmd->sgl.sge64[0].length;
3697 		/* SJ! - ubuf needs to be virtual address. */
3698 		ubuf	= (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr;
3699 #endif
3700 	}
3701 	if (xferlen) {
3702 		/* means IOCTL requires DMA */
3703 		/* allocate the data transfer buffer */
3704 		dcmd_dma_obj.size = xferlen;
3705 		dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
3706 		dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3707 		dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3708 		dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
3709 		dcmd_dma_obj.dma_attr.dma_attr_align = 1;
3710 
3711 		/* allocate kernel buffer for DMA */
3712 		if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
3713 			con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3714 			    "could not data transfer buffer alloc."));
3715 			return (DDI_FAILURE);
3716 		}
3717 
3718 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3719 		if (kdcmd->flags & MFI_FRAME_DIR_WRITE) {
3720 			if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer,
3721 			    xferlen, mode)) {
3722 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3723 				    "copy from user space failed\n"));
3724 				return (1);
3725 			}
3726 		}
3727 
3728 		kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
3729 	}
3730 
3731 	dcmd->cmd		= kdcmd->cmd;
3732 	dcmd->cmd_status	= kdcmd->cmd_status;
3733 	dcmd->sge_count		= kdcmd->sge_count;
3734 	dcmd->timeout		= kdcmd->timeout;
3735 	dcmd->data_xfer_len	= kdcmd->data_xfer_len;
3736 	dcmd->opcode		= kdcmd->opcode;
3737 
3738 	bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ);
3739 
3740 	dcmd->flags			= kdcmd->flags & ~MFI_FRAME_SGL64;
3741 	dcmd->sgl.sge32[0].length	= xferlen;
3742 	dcmd->sgl.sge32[0].phys_addr	= kphys_addr;
3743 
3744 	cmd->sync_cmd = MEGASAS_TRUE;
3745 	cmd->frame_count = 1;
3746 
3747 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3748 		con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n"));
3749 	} else {
3750 		if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) {
3751 
3752 			if (ddi_copyout(dcmd_dma_obj.buffer, ubuf,
3753 			    xferlen, mode)) {
3754 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3755 				    "copy to user space failed\n"));
3756 				return (1);
3757 			}
3758 		}
3759 	}
3760 
3761 	kdcmd->cmd_status = dcmd->cmd_status;
3762 
3763 	if (xferlen) {
3764 		/* free kernel buffer */
3765 		if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
3766 			return (1);
3767 	}
3768 
3769 	return (0);
3770 }
3771 
3772 /*
3773  * issue_mfi_smp
3774  */
3775 static int
3776 issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3777     struct megasas_cmd *cmd, int mode)
3778 {
3779 	void		*request_ubuf;
3780 	void		*response_ubuf;
3781 	uint32_t	request_xferlen = 0;
3782 	uint32_t	response_xferlen = 0;
3783 	uint_t		model;
3784 	dma_obj_t			request_dma_obj;
3785 	dma_obj_t			response_dma_obj;
3786 	struct megasas_smp_frame	*ksmp;
3787 	struct megasas_smp_frame	*smp;
3788 	struct megasas_sge32		*sge32;
3789 #ifndef _ILP32
3790 	struct megasas_sge64		*sge64;
3791 #endif
3792 
3793 	smp = &cmd->frame->smp;
3794 	ksmp = (struct megasas_smp_frame *)&ioctl->frame[0];
3795 
3796 	model = ddi_model_convert_from(mode & FMODELS);
3797 	if (model == DDI_MODEL_ILP32) {
3798 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3799 
3800 		sge32			= &ksmp->sgl[0].sge32[0];
3801 		response_xferlen	= sge32[0].length;
3802 		request_xferlen		= sge32[1].length;
3803 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3804 		    "response_xferlen = %x, request_xferlen = %x",
3805 		    response_xferlen, request_xferlen));
3806 
3807 		/* SJ! - ubuf needs to be virtual address. */
3808 
3809 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3810 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3811 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3812 		    "response_ubuf = %p, request_ubuf = %p",
3813 		    response_ubuf, request_ubuf));
3814 	} else {
3815 #ifdef _ILP32
3816 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3817 
3818 		sge32			= &ksmp->sgl[0].sge32[0];
3819 		response_xferlen	= sge32[0].length;
3820 		request_xferlen		= sge32[1].length;
3821 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3822 		    "response_xferlen = %x, request_xferlen = %x",
3823 		    response_xferlen, request_xferlen));
3824 
3825 		/* SJ! - ubuf needs to be virtual address. */
3826 
3827 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3828 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3829 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3830 		    "response_ubuf = %p, request_ubuf = %p",
3831 		    response_ubuf, request_ubuf));
3832 #else
3833 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64"));
3834 
3835 		sge64			= &ksmp->sgl[0].sge64[0];
3836 		response_xferlen	= sge64[0].length;
3837 		request_xferlen		= sge64[1].length;
3838 
3839 		/* SJ! - ubuf needs to be virtual address. */
3840 		response_ubuf	= (void *)(ulong_t)sge64[0].phys_addr;
3841 		request_ubuf	= (void *)(ulong_t)sge64[1].phys_addr;
3842 #endif
3843 	}
3844 	if (request_xferlen) {
3845 		/* means IOCTL requires DMA */
3846 		/* allocate the data transfer buffer */
3847 		request_dma_obj.size = request_xferlen;
3848 		request_dma_obj.dma_attr = megasas_generic_dma_attr;
3849 		request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3850 		request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3851 		request_dma_obj.dma_attr.dma_attr_sgllen = 1;
3852 		request_dma_obj.dma_attr.dma_attr_align = 1;
3853 
3854 		/* allocate kernel buffer for DMA */
3855 		if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) {
3856 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3857 			    "could not data transfer buffer alloc."));
3858 			return (DDI_FAILURE);
3859 		}
3860 
3861 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3862 		if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer,
3863 		    request_xferlen, mode)) {
3864 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3865 			    "copy from user space failed\n"));
3866 			return (1);
3867 		}
3868 	}
3869 
3870 	if (response_xferlen) {
3871 		/* means IOCTL requires DMA */
3872 		/* allocate the data transfer buffer */
3873 		response_dma_obj.size = response_xferlen;
3874 		response_dma_obj.dma_attr = megasas_generic_dma_attr;
3875 		response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3876 		response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3877 		response_dma_obj.dma_attr.dma_attr_sgllen = 1;
3878 		response_dma_obj.dma_attr.dma_attr_align = 1;
3879 
3880 		/* allocate kernel buffer for DMA */
3881 		if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) {
3882 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3883 			    "could not data transfer buffer alloc."));
3884 			return (DDI_FAILURE);
3885 		}
3886 
3887 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3888 		if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer,
3889 		    response_xferlen, mode)) {
3890 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3891 			    "copy from user space failed\n"));
3892 			return (1);
3893 		}
3894 	}
3895 
3896 	smp->cmd		= ksmp->cmd;
3897 	smp->cmd_status		= ksmp->cmd_status;
3898 	smp->connection_status	= ksmp->connection_status;
3899 	smp->sge_count		= ksmp->sge_count;
3900 	/* smp->context		= ksmp->context; */
3901 	smp->timeout		= ksmp->timeout;
3902 	smp->data_xfer_len	= ksmp->data_xfer_len;
3903 
3904 	bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr,
3905 	    sizeof (uint64_t));
3906 
3907 	smp->flags		= ksmp->flags & ~MFI_FRAME_SGL64;
3908 
3909 	model = ddi_model_convert_from(mode & FMODELS);
3910 	if (model == DDI_MODEL_ILP32) {
3911 		con_log(CL_ANN1, (CE_NOTE,
3912 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3913 
3914 		sge32 = &smp->sgl[0].sge32[0];
3915 		sge32[0].length	= response_xferlen;
3916 		sge32[0].phys_addr =
3917 		    response_dma_obj.dma_cookie[0].dmac_address;
3918 		sge32[1].length	= request_xferlen;
3919 		sge32[1].phys_addr =
3920 		    request_dma_obj.dma_cookie[0].dmac_address;
3921 	} else {
3922 #ifdef _ILP32
3923 		con_log(CL_ANN1, (CE_NOTE,
3924 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3925 		sge32 = &smp->sgl[0].sge32[0];
3926 		sge32[0].length	 = response_xferlen;
3927 		sge32[0].phys_addr =
3928 		    response_dma_obj.dma_cookie[0].dmac_address;
3929 		sge32[1].length	= request_xferlen;
3930 		sge32[1].phys_addr =
3931 		    request_dma_obj.dma_cookie[0].dmac_address;
3932 #else
3933 		con_log(CL_ANN1, (CE_NOTE,
3934 		    "issue_mfi_smp: DDI_MODEL_LP64"));
3935 		sge64 = &smp->sgl[0].sge64[0];
3936 		sge64[0].length	= response_xferlen;
3937 		sge64[0].phys_addr =
3938 		    response_dma_obj.dma_cookie[0].dmac_address;
3939 		sge64[1].length	= request_xferlen;
3940 		sge64[1].phys_addr =
3941 		    request_dma_obj.dma_cookie[0].dmac_address;
3942 #endif
3943 	}
3944 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3945 	    "smp->response_xferlen = %d, smp->request_xferlen = %d "
3946 	    "smp->data_xfer_len = %d", sge32[0].length, sge32[1].length,
3947 	    smp->data_xfer_len));
3948 
3949 	cmd->sync_cmd = MEGASAS_TRUE;
3950 	cmd->frame_count = 1;
3951 
3952 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3953 		con_log(CL_ANN, (CE_WARN,
3954 		    "issue_mfi_smp: fw_ioctl failed\n"));
3955 	} else {
3956 		con_log(CL_ANN1, (CE_NOTE,
3957 		    "issue_mfi_smp: copy to user space\n"));
3958 
3959 		if (request_xferlen) {
3960 			if (ddi_copyout(request_dma_obj.buffer, request_ubuf,
3961 			    request_xferlen, mode)) {
3962 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3963 				    "copy to user space failed\n"));
3964 				return (1);
3965 			}
3966 		}
3967 
3968 		if (response_xferlen) {
3969 			if (ddi_copyout(response_dma_obj.buffer, response_ubuf,
3970 			    response_xferlen, mode)) {
3971 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3972 				    "copy to user space failed\n"));
3973 				return (1);
3974 			}
3975 		}
3976 	}
3977 
3978 	ksmp->cmd_status = smp->cmd_status;
3979 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d",
3980 	    smp->cmd_status));
3981 
3982 
3983 	if (request_xferlen) {
3984 		/* free kernel buffer */
3985 		if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS)
3986 			return (1);
3987 	}
3988 
3989 	if (response_xferlen) {
3990 		/* free kernel buffer */
3991 		if (mega_free_dma_obj(instance, response_dma_obj) !=
3992 		    DDI_SUCCESS)
3993 			return (1);
3994 	}
3995 
3996 	return (0);
3997 }
3998 
3999 /*
4000  * issue_mfi_stp
4001  */
4002 static int
4003 issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4004     struct megasas_cmd *cmd, int mode)
4005 {
4006 	void		*fis_ubuf;
4007 	void		*data_ubuf;
4008 	uint32_t	fis_xferlen = 0;
4009 	uint32_t	data_xferlen = 0;
4010 	uint_t		model;
4011 	dma_obj_t			fis_dma_obj;
4012 	dma_obj_t			data_dma_obj;
4013 	struct megasas_stp_frame	*kstp;
4014 	struct megasas_stp_frame	*stp;
4015 
4016 	stp = &cmd->frame->stp;
4017 	kstp = (struct megasas_stp_frame *)&ioctl->frame[0];
4018 
4019 	model = ddi_model_convert_from(mode & FMODELS);
4020 	if (model == DDI_MODEL_ILP32) {
4021 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4022 
4023 		fis_xferlen	= kstp->sgl.sge32[0].length;
4024 		data_xferlen	= kstp->sgl.sge32[1].length;
4025 
4026 		/* SJ! - ubuf needs to be virtual address. */
4027 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4028 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4029 	}
4030 	else
4031 	{
4032 #ifdef _ILP32
4033 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4034 
4035 		fis_xferlen	= kstp->sgl.sge32[0].length;
4036 		data_xferlen	= kstp->sgl.sge32[1].length;
4037 
4038 		/* SJ! - ubuf needs to be virtual address. */
4039 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4040 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4041 #else
4042 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64"));
4043 
4044 		fis_xferlen	= kstp->sgl.sge64[0].length;
4045 		data_xferlen	= kstp->sgl.sge64[1].length;
4046 
4047 		/* SJ! - ubuf needs to be virtual address. */
4048 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr;
4049 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr;
4050 #endif
4051 	}
4052 
4053 
4054 	if (fis_xferlen) {
4055 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: "
4056 		    "fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen));
4057 
4058 		/* means IOCTL requires DMA */
4059 		/* allocate the data transfer buffer */
4060 		fis_dma_obj.size = fis_xferlen;
4061 		fis_dma_obj.dma_attr = megasas_generic_dma_attr;
4062 		fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4063 		fis_dma_obj.dma_attr.dma_attr_count_max	= 0xFFFFFFFFU;
4064 		fis_dma_obj.dma_attr.dma_attr_sgllen = 1;
4065 		fis_dma_obj.dma_attr.dma_attr_align = 1;
4066 
4067 		/* allocate kernel buffer for DMA */
4068 		if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) {
4069 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4070 			    "could not data transfer buffer alloc."));
4071 			return (DDI_FAILURE);
4072 		}
4073 
4074 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4075 		if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer,
4076 		    fis_xferlen, mode)) {
4077 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4078 			    "copy from user space failed\n"));
4079 			return (1);
4080 		}
4081 	}
4082 
4083 	if (data_xferlen) {
4084 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p "
4085 		    "data_xferlen = %x", data_ubuf, data_xferlen));
4086 
4087 		/* means IOCTL requires DMA */
4088 		/* allocate the data transfer buffer */
4089 		data_dma_obj.size = data_xferlen;
4090 		data_dma_obj.dma_attr = megasas_generic_dma_attr;
4091 		data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4092 		data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
4093 		data_dma_obj.dma_attr.dma_attr_sgllen = 1;
4094 		data_dma_obj.dma_attr.dma_attr_align = 1;
4095 
4096 		/* allocate kernel buffer for DMA */
4097 		if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) {
4098 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4099 			    "could not data transfer buffer alloc."));
4100 			return (DDI_FAILURE);
4101 		}
4102 
4103 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4104 		if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer,
4105 		    data_xferlen, mode)) {
4106 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4107 			    "copy from user space failed\n"));
4108 			return (1);
4109 		}
4110 	}
4111 
4112 	stp->cmd = kstp->cmd;
4113 	stp->cmd_status	= kstp->cmd_status;
4114 	stp->connection_status = kstp->connection_status;
4115 	stp->target_id = kstp->target_id;
4116 	stp->sge_count = kstp->sge_count;
4117 	/* stp->context = kstp->context; */
4118 	stp->timeout = kstp->timeout;
4119 	stp->data_xfer_len = kstp->data_xfer_len;
4120 
4121 	bcopy((void *)kstp->fis, (void *)stp->fis, 10);
4122 
4123 	stp->flags = kstp->flags & ~MFI_FRAME_SGL64;
4124 	stp->stp_flags = kstp->stp_flags;
4125 	stp->sgl.sge32[0].length = fis_xferlen;
4126 	stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address;
4127 	stp->sgl.sge32[1].length = data_xferlen;
4128 	stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address;
4129 
4130 	cmd->sync_cmd = MEGASAS_TRUE;
4131 	cmd->frame_count = 1;
4132 
4133 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
4134 		con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n"));
4135 	} else {
4136 
4137 		if (fis_xferlen) {
4138 			if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf,
4139 			    fis_xferlen, mode)) {
4140 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4141 				    "copy to user space failed\n"));
4142 				return (1);
4143 			}
4144 		}
4145 
4146 		if (data_xferlen) {
4147 			if (ddi_copyout(data_dma_obj.buffer, data_ubuf,
4148 			    data_xferlen, mode)) {
4149 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4150 				    "copy to user space failed\n"));
4151 				return (1);
4152 			}
4153 		}
4154 	}
4155 
4156 	kstp->cmd_status = stp->cmd_status;
4157 
4158 	if (fis_xferlen) {
4159 		/* free kernel buffer */
4160 		if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS)
4161 			return (1);
4162 	}
4163 
4164 	if (data_xferlen) {
4165 		/* free kernel buffer */
4166 		if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS)
4167 			return (1);
4168 	}
4169 
4170 	return (0);
4171 }
4172 
4173 /*
4174  * fill_up_drv_ver
4175  */
4176 static void
4177 fill_up_drv_ver(struct megasas_drv_ver *dv)
4178 {
4179 	(void) memset(dv, 0, sizeof (struct megasas_drv_ver));
4180 
4181 	(void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$"));
4182 	(void) memcpy(dv->os_name, "Solaris", strlen("Solaris"));
4183 	(void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas"));
4184 	(void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION));
4185 	(void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE,
4186 	    strlen(MEGASAS_RELDATE));
4187 }
4188 
4189 /*
4190  * handle_drv_ioctl
4191  */
4192 static int
4193 handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4194     int mode)
4195 {
4196 	int	i;
4197 	int	rval = 0;
4198 	int	*props = NULL;
4199 	void	*ubuf;
4200 
4201 	uint8_t		*pci_conf_buf;
4202 	uint32_t	xferlen;
4203 	uint32_t	num_props;
4204 	uint_t		model;
4205 	struct megasas_dcmd_frame	*kdcmd;
4206 	struct megasas_drv_ver		dv;
4207 	struct megasas_pci_information	pi;
4208 
4209 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
4210 
4211 	model = ddi_model_convert_from(mode & FMODELS);
4212 	if (model == DDI_MODEL_ILP32) {
4213 		con_log(CL_ANN1, (CE_NOTE,
4214 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4215 
4216 		xferlen	= kdcmd->sgl.sge32[0].length;
4217 
4218 		/* SJ! - ubuf needs to be virtual address. */
4219 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4220 	} else {
4221 #ifdef _ILP32
4222 		con_log(CL_ANN1, (CE_NOTE,
4223 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4224 		xferlen	= kdcmd->sgl.sge32[0].length;
4225 		/* SJ! - ubuf needs to be virtual address. */
4226 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4227 #else
4228 		con_log(CL_ANN1, (CE_NOTE,
4229 		    "handle_drv_ioctl: DDI_MODEL_LP64"));
4230 		xferlen	= kdcmd->sgl.sge64[0].length;
4231 		/* SJ! - ubuf needs to be virtual address. */
4232 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr;
4233 #endif
4234 	}
4235 	con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4236 	    "dataBuf=%p size=%d bytes", ubuf, xferlen));
4237 
4238 	switch (kdcmd->opcode) {
4239 	case MR_DRIVER_IOCTL_DRIVER_VERSION:
4240 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4241 		    "MR_DRIVER_IOCTL_DRIVER_VERSION"));
4242 
4243 		fill_up_drv_ver(&dv);
4244 
4245 		if (ddi_copyout(&dv, ubuf, xferlen, mode)) {
4246 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4247 			    "MR_DRIVER_IOCTL_DRIVER_VERSION : "
4248 			    "copy to user space failed\n"));
4249 			kdcmd->cmd_status = 1;
4250 			rval = 1;
4251 		} else {
4252 			kdcmd->cmd_status = 0;
4253 		}
4254 		break;
4255 	case MR_DRIVER_IOCTL_PCI_INFORMATION:
4256 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4257 		    "MR_DRIVER_IOCTL_PCI_INFORMAITON"));
4258 
4259 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip,
4260 		    0, "reg", &props, &num_props)) {
4261 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4262 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4263 			    "ddi_prop_look_int_array failed\n"));
4264 			rval = 1;
4265 		} else {
4266 
4267 			pi.busNumber = (props[0] >> 16) & 0xFF;
4268 			pi.deviceNumber = (props[0] >> 11) & 0x1f;
4269 			pi.functionNumber = (props[0] >> 8) & 0x7;
4270 			ddi_prop_free((void *)props);
4271 		}
4272 
4273 		pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo;
4274 
4275 		for (i = 0; i < (sizeof (struct megasas_pci_information) -
4276 		    offsetof(struct megasas_pci_information, pciHeaderInfo));
4277 		    i++) {
4278 			pci_conf_buf[i] =
4279 			    pci_config_get8(instance->pci_handle, i);
4280 		}
4281 
4282 		if (ddi_copyout(&pi, ubuf, xferlen, mode)) {
4283 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4284 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4285 			    "copy to user space failed\n"));
4286 			kdcmd->cmd_status = 1;
4287 			rval = 1;
4288 		} else {
4289 			kdcmd->cmd_status = 0;
4290 		}
4291 		break;
4292 	default:
4293 		con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4294 		    "invalid driver specific IOCTL opcode = 0x%x",
4295 		    kdcmd->opcode));
4296 		kdcmd->cmd_status = 1;
4297 		rval = 1;
4298 		break;
4299 	}
4300 
4301 	return (rval);
4302 }
4303 
4304 /*
4305  * handle_mfi_ioctl
4306  */
4307 static int
4308 handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4309     int mode)
4310 {
4311 	int	rval = 0;
4312 
4313 	struct megasas_header	*hdr;
4314 	struct megasas_cmd	*cmd;
4315 
4316 	cmd = get_mfi_pkt(instance);
4317 
4318 	if (!cmd) {
4319 		con_log(CL_ANN, (CE_WARN, "megasas: "
4320 		    "failed to get a cmd packet\n"));
4321 		return (1);
4322 	}
4323 
4324 	hdr = (struct megasas_header *)&ioctl->frame[0];
4325 
4326 	switch (hdr->cmd) {
4327 	case MFI_CMD_OP_DCMD:
4328 		rval = issue_mfi_dcmd(instance, ioctl, cmd, mode);
4329 		break;
4330 	case MFI_CMD_OP_SMP:
4331 		rval = issue_mfi_smp(instance, ioctl, cmd, mode);
4332 		break;
4333 	case MFI_CMD_OP_STP:
4334 		rval = issue_mfi_stp(instance, ioctl, cmd, mode);
4335 		break;
4336 	case MFI_CMD_OP_LD_SCSI:
4337 	case MFI_CMD_OP_PD_SCSI:
4338 		rval = issue_mfi_pthru(instance, ioctl, cmd, mode);
4339 		break;
4340 	default:
4341 		con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: "
4342 		    "invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd));
4343 		rval = 1;
4344 		break;
4345 	}
4346 
4347 
4348 	return_mfi_pkt(instance, cmd);
4349 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS)
4350 		rval = 1;
4351 	return (rval);
4352 }
4353 
4354 /*
4355  * AEN
4356  */
4357 static int
4358 handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen)
4359 {
4360 	int	rval = 0;
4361 
4362 	rval = register_mfi_aen(instance, instance->aen_seq_num,
4363 	    aen->class_locale_word);
4364 
4365 	aen->cmd_status = (uint8_t)rval;
4366 
4367 	return (rval);
4368 }
4369 
4370 static int
4371 register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num,
4372     uint32_t class_locale_word)
4373 {
4374 	int	ret_val;
4375 
4376 	struct megasas_cmd		*cmd;
4377 	struct megasas_dcmd_frame	*dcmd;
4378 	union megasas_evt_class_locale	curr_aen;
4379 	union megasas_evt_class_locale	prev_aen;
4380 
4381 	/*
4382 	 * If there an AEN pending already (aen_cmd), check if the
4383 	 * class_locale of that pending AEN is inclusive of the new
4384 	 * AEN request we currently have. If it is, then we don't have
4385 	 * to do anything. In other words, whichever events the current
4386 	 * AEN request is subscribing to, have already been subscribed
4387 	 * to.
4388 	 *
4389 	 * If the old_cmd is _not_ inclusive, then we have to abort
4390 	 * that command, form a class_locale that is superset of both
4391 	 * old and current and re-issue to the FW
4392 	 */
4393 
4394 	curr_aen.word = class_locale_word;
4395 
4396 	if (instance->aen_cmd) {
4397 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
4398 
4399 		/*
4400 		 * A class whose enum value is smaller is inclusive of all
4401 		 * higher values. If a PROGRESS (= -1) was previously
4402 		 * registered, then a new registration requests for higher
4403 		 * classes need not be sent to FW. They are automatically
4404 		 * included.
4405 		 *
4406 		 * Locale numbers don't have such hierarchy. They are bitmap
4407 		 * values
4408 		 */
4409 		if ((prev_aen.members.class <= curr_aen.members.class) &&
4410 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
4411 		    curr_aen.members.locale)) {
4412 			/*
4413 			 * Previously issued event registration includes
4414 			 * current request. Nothing to do.
4415 			 */
4416 
4417 			return (0);
4418 		} else {
4419 			curr_aen.members.locale |= prev_aen.members.locale;
4420 
4421 			if (prev_aen.members.class < curr_aen.members.class)
4422 				curr_aen.members.class = prev_aen.members.class;
4423 
4424 			ret_val = abort_aen_cmd(instance, instance->aen_cmd);
4425 
4426 			if (ret_val) {
4427 				con_log(CL_ANN, (CE_WARN, "register_mfi_aen: "
4428 				    "failed to abort prevous AEN command\n"));
4429 
4430 				return (ret_val);
4431 			}
4432 		}
4433 	} else {
4434 		curr_aen.word = class_locale_word;
4435 	}
4436 
4437 	cmd = get_mfi_pkt(instance);
4438 
4439 	if (!cmd)
4440 		return (-ENOMEM);
4441 
4442 	dcmd = &cmd->frame->dcmd;
4443 
4444 	/* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */
4445 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
4446 
4447 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
4448 	    sizeof (struct megasas_evt_detail));
4449 
4450 	/* Prepare DCMD for aen registration */
4451 	dcmd->cmd = MFI_CMD_OP_DCMD;
4452 	dcmd->cmd_status = 0x0;
4453 	dcmd->sge_count = 1;
4454 	dcmd->flags = MFI_FRAME_DIR_READ;
4455 	dcmd->timeout = 0;
4456 	dcmd->data_xfer_len = sizeof (struct megasas_evt_detail);
4457 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
4458 	dcmd->mbox.w[0] = seq_num;
4459 	dcmd->mbox.w[1] = curr_aen.word;
4460 	dcmd->sgl.sge32[0].phys_addr =
4461 	    instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address;
4462 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail);
4463 
4464 	instance->aen_seq_num = seq_num;
4465 
4466 	/*
4467 	 * Store reference to the cmd used to register for AEN. When an
4468 	 * application wants us to register for AEN, we have to abort this
4469 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
4470 	 */
4471 	instance->aen_cmd = cmd;
4472 
4473 	cmd->frame_count = 1;
4474 
4475 	/* Issue the aen registration frame */
4476 	/* atomic_add_16 (&instance->fw_outstanding, 1); */
4477 	instance->func_ptr->issue_cmd(cmd, instance);
4478 
4479 	return (0);
4480 }
4481 
4482 static void
4483 display_scsi_inquiry(caddr_t scsi_inq)
4484 {
4485 #define	MAX_SCSI_DEVICE_CODE	14
4486 	int		i;
4487 	char		inquiry_buf[256] = {0};
4488 	int		len;
4489 	const char	*const scsi_device_types[] = {
4490 		"Direct-Access    ",
4491 		"Sequential-Access",
4492 		"Printer          ",
4493 		"Processor        ",
4494 		"WORM             ",
4495 		"CD-ROM           ",
4496 		"Scanner          ",
4497 		"Optical Device   ",
4498 		"Medium Changer   ",
4499 		"Communications   ",
4500 		"Unknown          ",
4501 		"Unknown          ",
4502 		"Unknown          ",
4503 		"Enclosure        ",
4504 	};
4505 
4506 	len = 0;
4507 
4508 	len += snprintf(inquiry_buf + len, 265 - len, "  Vendor: ");
4509 	for (i = 8; i < 16; i++) {
4510 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4511 		    scsi_inq[i]);
4512 	}
4513 
4514 	len += snprintf(inquiry_buf + len, 265 - len, "  Model: ");
4515 
4516 	for (i = 16; i < 32; i++) {
4517 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4518 		    scsi_inq[i]);
4519 	}
4520 
4521 	len += snprintf(inquiry_buf + len, 265 - len, "  Rev: ");
4522 
4523 	for (i = 32; i < 36; i++) {
4524 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4525 		    scsi_inq[i]);
4526 	}
4527 
4528 	len += snprintf(inquiry_buf + len, 265 - len, "\n");
4529 
4530 
4531 	i = scsi_inq[0] & 0x1f;
4532 
4533 
4534 	len += snprintf(inquiry_buf + len, 265 - len, "  Type:   %s ",
4535 	    i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
4536 	    "Unknown          ");
4537 
4538 
4539 	len += snprintf(inquiry_buf + len, 265 - len,
4540 	    "                 ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
4541 
4542 	if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) {
4543 		len += snprintf(inquiry_buf + len, 265 - len, " CCS\n");
4544 	} else {
4545 		len += snprintf(inquiry_buf + len, 265 - len, "\n");
4546 	}
4547 
4548 	con_log(CL_ANN1, (CE_CONT, inquiry_buf));
4549 }
4550 
4551 static int
4552 read_fw_status_reg_xscale(struct megasas_instance *instance)
4553 {
4554 	return ((int)RD_OB_MSG_0(instance));
4555 }
4556 
4557 static int
4558 read_fw_status_reg_ppc(struct megasas_instance *instance)
4559 {
4560 	return ((int)RD_OB_SCRATCH_PAD_0(instance));
4561 }
4562 
4563 static void
4564 issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance)
4565 {
4566 	atomic_add_16(&instance->fw_outstanding, 1);
4567 
4568 	/* Issue the command to the FW */
4569 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4570 	    (cmd->frame_count - 1), instance);
4571 }
4572 
4573 static void
4574 issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance)
4575 {
4576 	atomic_add_16(&instance->fw_outstanding, 1);
4577 
4578 	/* Issue the command to the FW */
4579 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4580 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4581 }
4582 
4583 /*
4584  * issue_cmd_in_sync_mode
4585  */
4586 static int
4587 issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance,
4588     struct megasas_cmd *cmd)
4589 {
4590 	int		i;
4591 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4592 
4593 	cmd->cmd_status	= ENODATA;
4594 
4595 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4596 	    (cmd->frame_count - 1), instance);
4597 
4598 	mutex_enter(&instance->int_cmd_mtx);
4599 
4600 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4601 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4602 	}
4603 
4604 	mutex_exit(&instance->int_cmd_mtx);
4605 
4606 	if (i < (msecs -1)) {
4607 		return (0);
4608 	} else {
4609 		return (1);
4610 	}
4611 }
4612 
4613 static int
4614 issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance,
4615     struct megasas_cmd *cmd)
4616 {
4617 	int		i;
4618 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4619 
4620 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n"));
4621 
4622 	cmd->cmd_status	= ENODATA;
4623 
4624 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4625 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4626 
4627 	mutex_enter(&instance->int_cmd_mtx);
4628 
4629 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4630 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4631 	}
4632 
4633 	mutex_exit(&instance->int_cmd_mtx);
4634 
4635 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n"));
4636 
4637 	if (i < (msecs -1)) {
4638 		return (0);
4639 	} else {
4640 		return (1);
4641 	}
4642 }
4643 
4644 /*
4645  * issue_cmd_in_poll_mode
4646  */
4647 static int
4648 issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance,
4649     struct megasas_cmd *cmd)
4650 {
4651 	int		i;
4652 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4653 	struct megasas_header *frame_hdr;
4654 
4655 	frame_hdr = (struct megasas_header *)cmd->frame;
4656 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4657 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4658 
4659 	/* issue the frame using inbound queue port */
4660 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4661 	    (cmd->frame_count - 1), instance);
4662 
4663 	/* wait for cmd_status to change from 0xFF */
4664 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4665 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4666 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4667 	}
4668 
4669 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4670 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4671 		    "cmd polling timed out"));
4672 		return (DDI_FAILURE);
4673 	}
4674 
4675 	return (DDI_SUCCESS);
4676 }
4677 
4678 static int
4679 issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance,
4680     struct megasas_cmd *cmd)
4681 {
4682 	int		i;
4683 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4684 	struct megasas_header *frame_hdr;
4685 
4686 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n"));
4687 
4688 	frame_hdr = (struct megasas_header *)cmd->frame;
4689 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4690 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4691 
4692 	/* issue the frame using inbound queue port */
4693 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4694 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4695 
4696 	/* wait for cmd_status to change from 0xFF */
4697 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4698 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4699 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4700 	}
4701 
4702 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4703 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4704 		    "cmd polling timed out"));
4705 		return (DDI_FAILURE);
4706 	}
4707 
4708 	return (DDI_SUCCESS);
4709 }
4710 
4711 static void
4712 enable_intr_xscale(struct megasas_instance *instance)
4713 {
4714 	MFI_ENABLE_INTR(instance);
4715 }
4716 
4717 static void
4718 enable_intr_ppc(struct megasas_instance *instance)
4719 {
4720 	uint32_t	mask;
4721 
4722 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n"));
4723 
4724 	/* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */
4725 	WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance);
4726 
4727 	/*
4728 	 * As 1078DE is same as 1078 chip, the interrupt mask
4729 	 * remains the same.
4730 	 */
4731 	/* WR_OB_INTR_MASK(~0x80000000, instance); */
4732 	WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance);
4733 
4734 	/* dummy read to force PCI flush */
4735 	mask = RD_OB_INTR_MASK(instance);
4736 
4737 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: "
4738 	    "outbound_intr_mask = 0x%x\n", mask));
4739 }
4740 
4741 static void
4742 disable_intr_xscale(struct megasas_instance *instance)
4743 {
4744 	MFI_DISABLE_INTR(instance);
4745 }
4746 
4747 static void
4748 disable_intr_ppc(struct megasas_instance *instance)
4749 {
4750 	uint32_t	mask;
4751 
4752 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n"));
4753 
4754 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : "
4755 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4756 
4757 	/* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */
4758 	WR_OB_INTR_MASK(OB_INTR_MASK, instance);
4759 
4760 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : "
4761 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4762 
4763 	/* dummy read to force PCI flush */
4764 	mask = RD_OB_INTR_MASK(instance);
4765 #ifdef lint
4766 	mask = mask;
4767 #endif
4768 }
4769 
4770 static int
4771 intr_ack_xscale(struct megasas_instance *instance)
4772 {
4773 	uint32_t	status;
4774 
4775 	/* check if it is our interrupt */
4776 	status = RD_OB_INTR_STATUS(instance);
4777 
4778 	if (!(status & MFI_OB_INTR_STATUS_MASK)) {
4779 		return (DDI_INTR_UNCLAIMED);
4780 	}
4781 
4782 	/* clear the interrupt by writing back the same value */
4783 	WR_OB_INTR_STATUS(status, instance);
4784 
4785 	return (DDI_INTR_CLAIMED);
4786 }
4787 
4788 static int
4789 intr_ack_ppc(struct megasas_instance *instance)
4790 {
4791 	uint32_t	status;
4792 
4793 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n"));
4794 
4795 	/* check if it is our interrupt */
4796 	status = RD_OB_INTR_STATUS(instance);
4797 
4798 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status));
4799 
4800 	/*
4801 	 * As 1078DE is same as 1078 chip, the status field
4802 	 * remains the same.
4803 	 */
4804 	if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) {
4805 		return (DDI_INTR_UNCLAIMED);
4806 	}
4807 
4808 	/* clear the interrupt by writing back the same value */
4809 	WR_OB_DOORBELL_CLEAR(status, instance);
4810 
4811 	/* dummy READ */
4812 	status = RD_OB_INTR_STATUS(instance);
4813 
4814 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n"));
4815 
4816 	return (DDI_INTR_CLAIMED);
4817 }
4818 
4819 static int
4820 megasas_common_check(struct megasas_instance *instance,
4821     struct  megasas_cmd *cmd)
4822 {
4823 	int ret = DDI_SUCCESS;
4824 
4825 	if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
4826 	    DDI_SUCCESS) {
4827 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4828 		if (cmd->pkt != NULL) {
4829 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4830 			cmd->pkt->pkt_statistics = 0;
4831 		}
4832 		ret = DDI_FAILURE;
4833 	}
4834 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
4835 	    != DDI_SUCCESS) {
4836 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4837 		if (cmd->pkt != NULL) {
4838 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4839 			cmd->pkt->pkt_statistics = 0;
4840 		}
4841 		ret = DDI_FAILURE;
4842 	}
4843 	if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) !=
4844 	    DDI_SUCCESS) {
4845 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4846 		if (cmd->pkt != NULL) {
4847 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4848 			cmd->pkt->pkt_statistics = 0;
4849 		}
4850 		ret = DDI_FAILURE;
4851 	}
4852 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
4853 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4854 		ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0);
4855 		if (cmd->pkt != NULL) {
4856 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4857 			cmd->pkt->pkt_statistics = 0;
4858 		}
4859 		ret = DDI_FAILURE;
4860 	}
4861 
4862 	return (ret);
4863 }
4864 
4865 /*ARGSUSED*/
4866 static int
4867 megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4868 {
4869 	/*
4870 	 * as the driver can always deal with an error in any dma or
4871 	 * access handle, we can just return the fme_status value.
4872 	 */
4873 	pci_ereport_post(dip, err, NULL);
4874 	return (err->fme_status);
4875 }
4876 
4877 static void
4878 megasas_fm_init(struct megasas_instance *instance)
4879 {
4880 	/* Need to change iblock to priority for new MSI intr */
4881 	ddi_iblock_cookie_t fm_ibc;
4882 
4883 	/* Only register with IO Fault Services if we have some capability */
4884 	if (instance->fm_capabilities) {
4885 		/* Adjust access and dma attributes for FMA */
4886 		endian_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4887 		megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
4888 
4889 		/*
4890 		 * Register capabilities with IO Fault Services.
4891 		 * fm_capabilities will be updated to indicate
4892 		 * capabilities actually supported (not requested.)
4893 		 */
4894 
4895 		ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc);
4896 
4897 		/*
4898 		 * Initialize pci ereport capabilities if ereport
4899 		 * capable (should always be.)
4900 		 */
4901 
4902 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4903 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4904 			pci_ereport_setup(instance->dip);
4905 		}
4906 
4907 		/*
4908 		 * Register error callback if error callback capable.
4909 		 */
4910 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4911 			ddi_fm_handler_register(instance->dip,
4912 			    megasas_fm_error_cb, (void*) instance);
4913 		}
4914 	} else {
4915 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4916 		megasas_generic_dma_attr.dma_attr_flags = 0;
4917 	}
4918 }
4919 
4920 static void
4921 megasas_fm_fini(struct megasas_instance *instance)
4922 {
4923 	/* Only unregister FMA capabilities if registered */
4924 	if (instance->fm_capabilities) {
4925 		/*
4926 		 * Un-register error callback if error callback capable.
4927 		 */
4928 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4929 			ddi_fm_handler_unregister(instance->dip);
4930 		}
4931 
4932 		/*
4933 		 * Release any resources allocated by pci_ereport_setup()
4934 		 */
4935 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4936 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4937 			pci_ereport_teardown(instance->dip);
4938 		}
4939 
4940 		/* Unregister from IO Fault Services */
4941 		ddi_fm_fini(instance->dip);
4942 
4943 		/* Adjust access and dma attributes for FMA */
4944 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4945 		megasas_generic_dma_attr.dma_attr_flags = 0;
4946 	}
4947 }
4948 
4949 int
4950 megasas_check_acc_handle(ddi_acc_handle_t handle)
4951 {
4952 	ddi_fm_error_t de;
4953 
4954 	if (handle == NULL) {
4955 		return (DDI_FAILURE);
4956 	}
4957 
4958 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4959 
4960 	return (de.fme_status);
4961 }
4962 
4963 int
4964 megasas_check_dma_handle(ddi_dma_handle_t handle)
4965 {
4966 	ddi_fm_error_t de;
4967 
4968 	if (handle == NULL) {
4969 		return (DDI_FAILURE);
4970 	}
4971 
4972 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4973 
4974 	return (de.fme_status);
4975 }
4976 
4977 void
4978 megasas_fm_ereport(struct megasas_instance *instance, char *detail)
4979 {
4980 	uint64_t ena;
4981 	char buf[FM_MAX_CLASS];
4982 
4983 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4984 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4985 	if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) {
4986 		ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP,
4987 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL);
4988 	}
4989 }
4990