xref: /illumos-gate/usr/src/uts/common/io/mac/mac_sched.c (revision ef16f6b5e980be84e2248939502c5aa269ef026d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2011 Joyent, Inc.  All rights reserved.
25  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/callb.h>
30 #include <sys/sdt.h>
31 #include <sys/strsubr.h>
32 #include <sys/strsun.h>
33 #include <sys/vlan.h>
34 #include <sys/stack.h>
35 #include <sys/archsystm.h>
36 #include <inet/ipsec_impl.h>
37 #include <inet/ip_impl.h>
38 #include <inet/sadb.h>
39 #include <inet/ipsecesp.h>
40 #include <inet/ipsecah.h>
41 #include <inet/ip6.h>
42 
43 #include <sys/mac_impl.h>
44 #include <sys/mac_client_impl.h>
45 #include <sys/mac_client_priv.h>
46 #include <sys/mac_soft_ring.h>
47 #include <sys/mac_flow_impl.h>
48 
49 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *,
50     uintptr_t, uint16_t, mblk_t **);
51 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *,
52     uintptr_t, uint16_t, mblk_t **);
53 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *,
54     uintptr_t, uint16_t, mblk_t **);
55 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *,
56     uintptr_t, uint16_t, mblk_t **);
57 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *,
58     uintptr_t, uint16_t, mblk_t **);
59 
60 typedef struct mac_tx_mode_s {
61 	mac_tx_srs_mode_t	mac_tx_mode;
62 	mac_tx_func_t		mac_tx_func;
63 } mac_tx_mode_t;
64 
65 /*
66  * There are seven modes of operation on the Tx side. These modes get set
67  * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
68  * none of the other modes are user configurable. They get selected by
69  * the system depending upon whether the link (or flow) has multiple Tx
70  * rings or a bandwidth configured, or if the link is an aggr, etc.
71  *
72  * When the Tx SRS is operating in aggr mode (st_mode) or if there are
73  * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
74  * otherwise) will have a soft ring associated with it. These soft rings
75  * are stored in srs_tx_soft_rings[] array.
76  *
77  * Additionally in the case of aggr, there is the st_soft_rings[] array
78  * in the mac_srs_tx_t structure. This array is used to store the same
79  * set of soft rings that are present in srs_tx_soft_rings[] array but
80  * in a different manner. The soft ring associated with the pseudo Tx
81  * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
82  * array. This helps in quickly getting the soft ring associated with the
83  * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
84  * be used for transmit.
85  */
86 mac_tx_mode_t mac_tx_mode_list[] = {
87 	{SRS_TX_DEFAULT,	mac_tx_single_ring_mode},
88 	{SRS_TX_SERIALIZE,	mac_tx_serializer_mode},
89 	{SRS_TX_FANOUT,		mac_tx_fanout_mode},
90 	{SRS_TX_BW,		mac_tx_bw_mode},
91 	{SRS_TX_BW_FANOUT,	mac_tx_bw_mode},
92 	{SRS_TX_AGGR,		mac_tx_aggr_mode},
93 	{SRS_TX_BW_AGGR,	mac_tx_bw_mode}
94 };
95 
96 /*
97  * Soft Ring Set (SRS) - The Run time code that deals with
98  * dynamic polling from the hardware, bandwidth enforcement,
99  * fanout etc.
100  *
101  * We try to use H/W classification on NIC and assign traffic for
102  * a MAC address to a particular Rx ring or ring group. There is a
103  * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
104  * switches the underlying Rx ring between interrupt and
105  * polling mode and enforces any specified B/W control.
106  *
107  * There is always a SRS created and tied to each H/W and S/W rule.
108  * Whenever we create a H/W rule, we always add the the same rule to
109  * S/W classifier and tie a SRS to it.
110  *
111  * In case a B/W control is specified, it is broken into bytes
112  * per ticks and as soon as the quota for a tick is exhausted,
113  * the underlying Rx ring is forced into poll mode for remainder of
114  * the tick. The SRS poll thread only polls for bytes that are
115  * allowed to come in the SRS. We typically let 4x the configured
116  * B/W worth of packets to come in the SRS (to prevent unnecessary
117  * drops due to bursts) but only process the specified amount.
118  *
119  * A MAC client (e.g. a VNIC or aggr) can have 1 or more
120  * Rx rings (and corresponding SRSs) assigned to it. The SRS
121  * in turn can have softrings to do protocol level fanout or
122  * softrings to do S/W based fanout or both. In case the NIC
123  * has no Rx rings, we do S/W classification to respective SRS.
124  * The S/W classification rule is always setup and ready. This
125  * allows the MAC layer to reassign Rx rings whenever needed
126  * but packets still continue to flow via the default path and
127  * getting S/W classified to correct SRS.
128  *
129  * The SRS's are used on both Tx and Rx side. They use the same
130  * data structure but the processing routines have slightly different
131  * semantics due to the fact that Rx side needs to do dynamic
132  * polling etc.
133  *
134  * Dynamic Polling Notes
135  * =====================
136  *
137  * Each Soft ring set is capable of switching its Rx ring between
138  * interrupt and poll mode and actively 'polls' for packets in
139  * poll mode. If the SRS is implementing a B/W limit, it makes
140  * sure that only Max allowed packets are pulled in poll mode
141  * and goes to poll mode as soon as B/W limit is exceeded. As
142  * such, there are no overheads to implement B/W limits.
143  *
144  * In poll mode, its better to keep the pipeline going where the
145  * SRS worker thread keeps processing packets and poll thread
146  * keeps bringing more packets (specially if they get to run
147  * on different CPUs). This also prevents the overheads associated
148  * by excessive signalling (on NUMA machines, this can be
149  * pretty devastating). The exception is latency optimized case
150  * where worker thread does no work and interrupt and poll thread
151  * are allowed to do their own drain.
152  *
153  * We use the following policy to control Dynamic Polling:
154  * 1) We switch to poll mode anytime the processing
155  *    thread causes a backlog to build up in SRS and
156  *    its associated Soft Rings (sr_poll_pkt_cnt > 0).
157  * 2) As long as the backlog stays under the low water
158  *    mark (sr_lowat), we poll the H/W for more packets.
159  * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
160  *    water mark, we stay in poll mode but don't poll
161  *    the H/W for more packets.
162  * 4) Anytime in polling mode, if we poll the H/W for
163  *    packets and find nothing plus we have an existing
164  *    backlog (sr_poll_pkt_cnt > 0), we stay in polling
165  *    mode but don't poll the H/W for packets anymore
166  *    (let the polling thread go to sleep).
167  * 5) Once the backlog is relived (packets are processed)
168  *    we reenable polling (by signalling the poll thread)
169  *    only when the backlog dips below sr_poll_thres.
170  * 6) sr_hiwat is used exclusively when we are not
171  *    polling capable and is used to decide when to
172  *    drop packets so the SRS queue length doesn't grow
173  *    infinitely.
174  *
175  * NOTE: Also see the block level comment on top of mac_soft_ring.c
176  */
177 
178 /*
179  * mac_latency_optimize
180  *
181  * Controls whether the poll thread can process the packets inline
182  * or let the SRS worker thread do the processing. This applies if
183  * the SRS was not being processed. For latency sensitive traffic,
184  * this needs to be true to allow inline processing. For throughput
185  * under load, this should be false.
186  *
187  * This (and other similar) tunable should be rolled into a link
188  * or flow specific workload hint that can be set using dladm
189  * linkprop (instead of multiple such tunables).
190  */
191 boolean_t mac_latency_optimize = B_TRUE;
192 
193 /*
194  * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
195  *
196  * queue a mp or chain in soft ring set and increment the
197  * local count (srs_count) for the SRS and the shared counter
198  * (srs_poll_pkt_cnt - shared between SRS and its soft rings
199  * to track the total unprocessed packets for polling to work
200  * correctly).
201  *
202  * The size (total bytes queued) counters are incremented only
203  * if we are doing B/W control.
204  */
205 #define	MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {		\
206 	ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));			\
207 	if ((mac_srs)->srs_last != NULL)				\
208 		(mac_srs)->srs_last->b_next = (head);			\
209 	else								\
210 		(mac_srs)->srs_first = (head);				\
211 	(mac_srs)->srs_last = (tail);					\
212 	(mac_srs)->srs_count += count;					\
213 }
214 
215 #define	MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {	\
216 	mac_srs_rx_t	*srs_rx = &(mac_srs)->srs_rx;			\
217 									\
218 	MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz);		\
219 	srs_rx->sr_poll_pkt_cnt += count;				\
220 	ASSERT(srs_rx->sr_poll_pkt_cnt > 0);				\
221 	if ((mac_srs)->srs_type & SRST_BW_CONTROL) {			\
222 		(mac_srs)->srs_size += (sz);				\
223 		mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock);		\
224 		(mac_srs)->srs_bw->mac_bw_sz += (sz);			\
225 		mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock);		\
226 	}								\
227 }
228 
229 #define	MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {	\
230 	mac_srs->srs_state |= SRS_ENQUEUED;				\
231 	MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz);		\
232 	if ((mac_srs)->srs_type & SRST_BW_CONTROL) {			\
233 		(mac_srs)->srs_size += (sz);				\
234 		(mac_srs)->srs_bw->mac_bw_sz += (sz);			\
235 	}								\
236 }
237 
238 /*
239  * Turn polling on routines
240  */
241 #define	MAC_SRS_POLLING_ON(mac_srs) {					\
242 	ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));			\
243 	if (((mac_srs)->srs_state &					\
244 	    (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) {	\
245 		(mac_srs)->srs_state |= SRS_POLLING;			\
246 		(void) mac_hwring_disable_intr((mac_ring_handle_t)	\
247 		    (mac_srs)->srs_ring);				\
248 		(mac_srs)->srs_rx.sr_poll_on++;				\
249 	}								\
250 }
251 
252 #define	MAC_SRS_WORKER_POLLING_ON(mac_srs) {				\
253 	ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));			\
254 	if (((mac_srs)->srs_state &					\
255 	    (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == 		\
256 	    (SRS_POLLING_CAPAB|SRS_WORKER)) {				\
257 		(mac_srs)->srs_state |= SRS_POLLING;			\
258 		(void) mac_hwring_disable_intr((mac_ring_handle_t)	\
259 		    (mac_srs)->srs_ring);				\
260 		(mac_srs)->srs_rx.sr_worker_poll_on++;			\
261 	}								\
262 }
263 
264 /*
265  * MAC_SRS_POLL_RING
266  *
267  * Signal the SRS poll thread to poll the underlying H/W ring
268  * provided it wasn't already polling (SRS_GET_PKTS was set).
269  *
270  * Poll thread gets to run only from mac_rx_srs_drain() and only
271  * if the drain was being done by the worker thread.
272  */
273 #define	MAC_SRS_POLL_RING(mac_srs) {					\
274 	mac_srs_rx_t	*srs_rx = &(mac_srs)->srs_rx;			\
275 									\
276 	ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));			\
277 	srs_rx->sr_poll_thr_sig++;					\
278 	if (((mac_srs)->srs_state & 					\
279 	    (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) ==		\
280 		(SRS_WORKER|SRS_POLLING_CAPAB)) {			\
281 		(mac_srs)->srs_state |= SRS_GET_PKTS;			\
282 		cv_signal(&(mac_srs)->srs_cv);   			\
283 	} else {							\
284 		srs_rx->sr_poll_thr_busy++;				\
285 	}								\
286 }
287 
288 /*
289  * MAC_SRS_CHECK_BW_CONTROL
290  *
291  * Check to see if next tick has started so we can reset the
292  * SRS_BW_ENFORCED flag and allow more packets to come in the
293  * system.
294  */
295 #define	MAC_SRS_CHECK_BW_CONTROL(mac_srs) {				\
296 	ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));			\
297 	ASSERT(((mac_srs)->srs_type & SRST_TX) ||			\
298 	    MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock));		\
299 	clock_t now = ddi_get_lbolt();					\
300 	if ((mac_srs)->srs_bw->mac_bw_curr_time != now) {		\
301 		(mac_srs)->srs_bw->mac_bw_curr_time = now;		\
302 		(mac_srs)->srs_bw->mac_bw_used = 0;	       		\
303 		if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED)	\
304 			(mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
305 	}								\
306 }
307 
308 /*
309  * MAC_SRS_WORKER_WAKEUP
310  *
311  * Wake up the SRS worker thread to process the queue as long as
312  * no one else is processing the queue. If we are optimizing for
313  * latency, we wake up the worker thread immediately or else we
314  * wait mac_srs_worker_wakeup_ticks before worker thread gets
315  * woken up.
316  */
317 int mac_srs_worker_wakeup_ticks = 0;
318 #define	MAC_SRS_WORKER_WAKEUP(mac_srs) {				\
319 	ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));			\
320 	if (!((mac_srs)->srs_state & SRS_PROC) &&			\
321 		(mac_srs)->srs_tid == NULL) {				\
322 		if (((mac_srs)->srs_state & SRS_LATENCY_OPT) ||		\
323 			(mac_srs_worker_wakeup_ticks == 0))		\
324 			cv_signal(&(mac_srs)->srs_async);		\
325 		else							\
326 			(mac_srs)->srs_tid =				\
327 				timeout(mac_srs_fire, (mac_srs),	\
328 					mac_srs_worker_wakeup_ticks);	\
329 	}								\
330 }
331 
332 #define	TX_BANDWIDTH_MODE(mac_srs)				\
333 	((mac_srs)->srs_tx.st_mode == SRS_TX_BW ||		\
334 	    (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT ||	\
335 	    (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
336 
337 #define	TX_SRS_TO_SOFT_RING(mac_srs, head, hint) {			\
338 	if (tx_mode == SRS_TX_BW_FANOUT)				\
339 		(void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
340 	else								\
341 		(void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL);	\
342 }
343 
344 /*
345  * MAC_TX_SRS_BLOCK
346  *
347  * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
348  * will be set only if srs_tx_woken_up is FALSE. If
349  * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
350  * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
351  * attempt to transmit again and not setting SRS_TX_BLOCKED does
352  * that.
353  */
354 #define	MAC_TX_SRS_BLOCK(srs, mp)	{			\
355 	ASSERT(MUTEX_HELD(&(srs)->srs_lock));			\
356 	if ((srs)->srs_tx.st_woken_up) {			\
357 		(srs)->srs_tx.st_woken_up = B_FALSE;		\
358 	} else {						\
359 		ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED));	\
360 		(srs)->srs_state |= SRS_TX_BLOCKED;		\
361 		(srs)->srs_tx.st_stat.mts_blockcnt++;		\
362 	}							\
363 }
364 
365 /*
366  * MAC_TX_SRS_TEST_HIWAT
367  *
368  * Called before queueing a packet onto Tx SRS to test and set
369  * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
370  */
371 #define	MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) {		\
372 	boolean_t enqueue = 1;						\
373 									\
374 	if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) {		\
375 		/*							\
376 		 * flow-controlled. Store srs in cookie so that it	\
377 		 * can be returned as mac_tx_cookie_t to client		\
378 		 */							\
379 		(srs)->srs_state |= SRS_TX_HIWAT;			\
380 		cookie = (mac_tx_cookie_t)srs;				\
381 		(srs)->srs_tx.st_hiwat_cnt++;				\
382 		if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) {	\
383 			/* increment freed stats */			\
384 			(srs)->srs_tx.st_stat.mts_sdrops += cnt;	\
385 			/*						\
386 			 * b_prev may be set to the fanout hint		\
387 			 * hence can't use freemsg directly		\
388 			 */						\
389 			mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);	\
390 			DTRACE_PROBE1(tx_queued_hiwat,			\
391 			    mac_soft_ring_set_t *, srs);		\
392 			enqueue = 0;					\
393 		}							\
394 	}								\
395 	if (enqueue)							\
396 		MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz);	\
397 }
398 
399 /* Some utility macros */
400 #define	MAC_SRS_BW_LOCK(srs)						\
401 	if (!(srs->srs_type & SRST_TX))					\
402 		mutex_enter(&srs->srs_bw->mac_bw_lock);
403 
404 #define	MAC_SRS_BW_UNLOCK(srs)						\
405 	if (!(srs->srs_type & SRST_TX))					\
406 		mutex_exit(&srs->srs_bw->mac_bw_lock);
407 
408 #define	MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) {		\
409 	mac_pkt_drop(NULL, NULL, mp, B_FALSE);			\
410 	/* increment freed stats */				\
411 	mac_srs->srs_tx.st_stat.mts_sdrops++;			\
412 	cookie = (mac_tx_cookie_t)srs;				\
413 }
414 
415 #define	MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) {		\
416 	mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT;			\
417 	cookie = (mac_tx_cookie_t)srs;					\
418 	*ret_mp = mp_chain;						\
419 }
420 
421 /*
422  * MAC_RX_SRS_TOODEEP
423  *
424  * Macro called as part of receive-side processing to determine if handling
425  * can occur in situ (in the interrupt thread) or if it should be left to a
426  * worker thread.  Note that the constant used to make this determination is
427  * not entirely made-up, and is a result of some emprical validation. That
428  * said, the constant is left as a static variable to allow it to be
429  * dynamically tuned in the field if and as needed.
430  */
431 static uintptr_t mac_rx_srs_stack_needed = 10240;
432 static uint_t mac_rx_srs_stack_toodeep;
433 
434 #ifndef STACK_GROWTH_DOWN
435 #error Downward stack growth assumed.
436 #endif
437 
438 #define	MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \
439 	(uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \
440 	++mac_rx_srs_stack_toodeep)
441 
442 
443 /*
444  * Drop the rx packet and advance to the next one in the chain.
445  */
446 static void
447 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp)
448 {
449 	mac_srs_rx_t	*srs_rx = &srs->srs_rx;
450 
451 	ASSERT(mp->b_next == NULL);
452 	mutex_enter(&srs->srs_lock);
453 	MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1);
454 	MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp));
455 	mutex_exit(&srs->srs_lock);
456 
457 	srs_rx->sr_stat.mrs_sdrops++;
458 	freemsg(mp);
459 }
460 
461 /* DATAPATH RUNTIME ROUTINES */
462 
463 /*
464  * mac_srs_fire
465  *
466  * Timer callback routine for waking up the SRS worker thread.
467  */
468 static void
469 mac_srs_fire(void *arg)
470 {
471 	mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg;
472 
473 	mutex_enter(&mac_srs->srs_lock);
474 	if (mac_srs->srs_tid == 0) {
475 		mutex_exit(&mac_srs->srs_lock);
476 		return;
477 	}
478 
479 	mac_srs->srs_tid = 0;
480 	if (!(mac_srs->srs_state & SRS_PROC))
481 		cv_signal(&mac_srs->srs_async);
482 
483 	mutex_exit(&mac_srs->srs_lock);
484 }
485 
486 /*
487  * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
488  * and it is used on the TX path.
489  */
490 #define	HASH_HINT(hint)	\
491 	((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
492 
493 
494 /*
495  * hash based on the src address and the port information.
496  */
497 #define	HASH_ADDR(src, ports)					\
498 	(ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^	\
499 	((ports) >> 8) ^ (ports))
500 
501 #define	COMPUTE_INDEX(key, sz)	(key % sz)
502 
503 #define	FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) {	\
504 	if ((tail) != NULL) {						\
505 		ASSERT((tail)->b_next == NULL);				\
506 		(tail)->b_next = (mp);					\
507 	} else {							\
508 		ASSERT((head) == NULL);					\
509 		(head) = (mp);						\
510 	}								\
511 	(tail) = (mp);							\
512 	(cnt)++;							\
513 	if ((bw_ctl))							\
514 		(sz) += (sz0);						\
515 }
516 
517 #define	MAC_FANOUT_DEFAULT	0
518 #define	MAC_FANOUT_RND_ROBIN	1
519 int mac_fanout_type = MAC_FANOUT_DEFAULT;
520 
521 #define	MAX_SR_TYPES	3
522 /* fanout types for port based hashing */
523 enum pkt_type {
524 	V4_TCP = 0,
525 	V4_UDP,
526 	OTH,
527 	UNDEF
528 };
529 
530 /*
531  * In general we do port based hashing to spread traffic over different
532  * softrings. The below tunables allow to override that behavior. Setting one
533  * (depending on IPv6 or IPv4) to B_TRUE allows a fanout based on src
534  * IPv6 or IPv4 address. This behavior is also applicable to IPv6 packets
535  * carrying multiple optional headers and other uncommon packet types.
536  */
537 boolean_t mac_src_ipv6_fanout = B_FALSE;
538 boolean_t mac_src_ipv4_fanout = B_FALSE;
539 
540 /*
541  * Pair of local and remote ports in the transport header
542  */
543 #define	PORTS_SIZE 4
544 
545 /*
546  * mac_rx_srs_proto_fanout
547  *
548  * This routine delivers packets destined to an SRS into one of the
549  * protocol soft rings.
550  *
551  * Given a chain of packets we need to split it up into multiple sub chains
552  * destined into TCP, UDP or OTH soft ring. Instead of entering
553  * the soft ring one packet at a time, we want to enter it in the form of a
554  * chain otherwise we get this start/stop behaviour where the worker thread
555  * goes to sleep and then next packets comes in forcing it to wake up etc.
556  */
557 static void
558 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
559 {
560 	struct ether_header		*ehp;
561 	struct ether_vlan_header	*evhp;
562 	uint32_t			sap;
563 	ipha_t				*ipha;
564 	uint8_t				*dstaddr;
565 	size_t				hdrsize;
566 	mblk_t				*mp;
567 	mblk_t				*headmp[MAX_SR_TYPES];
568 	mblk_t				*tailmp[MAX_SR_TYPES];
569 	int				cnt[MAX_SR_TYPES];
570 	size_t				sz[MAX_SR_TYPES];
571 	size_t				sz1;
572 	boolean_t			bw_ctl;
573 	boolean_t			hw_classified;
574 	boolean_t			dls_bypass;
575 	boolean_t			is_ether;
576 	boolean_t			is_unicast;
577 	enum pkt_type			type;
578 	mac_client_impl_t		*mcip = mac_srs->srs_mcip;
579 
580 	is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
581 	bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
582 
583 	/*
584 	 * If we don't have a Rx ring, S/W classification would have done
585 	 * its job and its a packet meant for us. If we were polling on
586 	 * the default ring (i.e. there was a ring assigned to this SRS),
587 	 * then we need to make sure that the mac address really belongs
588 	 * to us.
589 	 */
590 	hw_classified = mac_srs->srs_ring != NULL &&
591 	    mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
592 
593 	/*
594 	 * Special clients (eg. VLAN, non ether, etc) need DLS
595 	 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
596 	 * such SRSs. Another way of disabling bypass is to set the
597 	 * MCIS_RX_BYPASS_DISABLE flag.
598 	 */
599 	dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
600 	    ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
601 
602 	bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *));
603 	bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *));
604 	bzero(cnt, MAX_SR_TYPES * sizeof (int));
605 	bzero(sz, MAX_SR_TYPES * sizeof (size_t));
606 
607 	/*
608 	 * We got a chain from SRS that we need to send to the soft rings.
609 	 * Since squeues for TCP & IPv4 sap poll their soft rings (for
610 	 * performance reasons), we need to separate out v4_tcp, v4_udp
611 	 * and the rest goes in other.
612 	 */
613 	while (head != NULL) {
614 		mp = head;
615 		head = head->b_next;
616 		mp->b_next = NULL;
617 
618 		type = OTH;
619 		sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
620 
621 		if (is_ether) {
622 			/*
623 			 * At this point we can be sure the packet at least
624 			 * has an ether header.
625 			 */
626 			if (sz1 < sizeof (struct ether_header)) {
627 				mac_rx_drop_pkt(mac_srs, mp);
628 				continue;
629 			}
630 			ehp = (struct ether_header *)mp->b_rptr;
631 
632 			/*
633 			 * Determine if this is a VLAN or non-VLAN packet.
634 			 */
635 			if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
636 				evhp = (struct ether_vlan_header *)mp->b_rptr;
637 				sap = ntohs(evhp->ether_type);
638 				hdrsize = sizeof (struct ether_vlan_header);
639 				/*
640 				 * Check if the VID of the packet, if any,
641 				 * belongs to this client.
642 				 */
643 				if (!mac_client_check_flow_vid(mcip,
644 				    VLAN_ID(ntohs(evhp->ether_tci)))) {
645 					mac_rx_drop_pkt(mac_srs, mp);
646 					continue;
647 				}
648 			} else {
649 				hdrsize = sizeof (struct ether_header);
650 			}
651 			is_unicast =
652 			    ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
653 			dstaddr = (uint8_t *)&ehp->ether_dhost;
654 		} else {
655 			mac_header_info_t		mhi;
656 
657 			if (mac_header_info((mac_handle_t)mcip->mci_mip,
658 			    mp, &mhi) != 0) {
659 				mac_rx_drop_pkt(mac_srs, mp);
660 				continue;
661 			}
662 			hdrsize = mhi.mhi_hdrsize;
663 			sap = mhi.mhi_bindsap;
664 			is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
665 			dstaddr = (uint8_t *)mhi.mhi_daddr;
666 		}
667 
668 		if (!dls_bypass) {
669 			FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
670 			    cnt[type], bw_ctl, sz[type], sz1, mp);
671 			continue;
672 		}
673 
674 		if (sap == ETHERTYPE_IP) {
675 			/*
676 			 * If we are H/W classified, but we have promisc
677 			 * on, then we need to check for the unicast address.
678 			 */
679 			if (hw_classified && mcip->mci_promisc_list != NULL) {
680 				mac_address_t		*map;
681 
682 				rw_enter(&mcip->mci_rw_lock, RW_READER);
683 				map = mcip->mci_unicast;
684 				if (bcmp(dstaddr, map->ma_addr,
685 				    map->ma_len) == 0)
686 					type = UNDEF;
687 				rw_exit(&mcip->mci_rw_lock);
688 			} else if (is_unicast) {
689 				type = UNDEF;
690 			}
691 		}
692 
693 		/*
694 		 * This needs to become a contract with the driver for
695 		 * the fast path.
696 		 *
697 		 * In the normal case the packet will have at least the L2
698 		 * header and the IP + Transport header in the same mblk.
699 		 * This is usually the case when the NIC driver sends up
700 		 * the packet. This is also true when the stack generates
701 		 * a packet that is looped back and when the stack uses the
702 		 * fastpath mechanism. The normal case is optimized for
703 		 * performance and may bypass DLS. All other cases go through
704 		 * the 'OTH' type path without DLS bypass.
705 		 */
706 
707 		ipha = (ipha_t *)(mp->b_rptr + hdrsize);
708 		if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha))
709 			type = OTH;
710 
711 		if (type == OTH) {
712 			FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
713 			    cnt[type], bw_ctl, sz[type], sz1, mp);
714 			continue;
715 		}
716 
717 		ASSERT(type == UNDEF);
718 		/*
719 		 * We look for at least 4 bytes past the IP header to get
720 		 * the port information. If we get an IP fragment, we don't
721 		 * have the port information, and we use just the protocol
722 		 * information.
723 		 */
724 		switch (ipha->ipha_protocol) {
725 		case IPPROTO_TCP:
726 			type = V4_TCP;
727 			mp->b_rptr += hdrsize;
728 			break;
729 		case IPPROTO_UDP:
730 			type = V4_UDP;
731 			mp->b_rptr += hdrsize;
732 			break;
733 		default:
734 			type = OTH;
735 			break;
736 		}
737 
738 		FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type],
739 		    bw_ctl, sz[type], sz1, mp);
740 	}
741 
742 	for (type = V4_TCP; type < UNDEF; type++) {
743 		if (headmp[type] != NULL) {
744 			mac_soft_ring_t			*softring;
745 
746 			ASSERT(tailmp[type]->b_next == NULL);
747 			switch (type) {
748 			case V4_TCP:
749 				softring = mac_srs->srs_tcp_soft_rings[0];
750 				break;
751 			case V4_UDP:
752 				softring = mac_srs->srs_udp_soft_rings[0];
753 				break;
754 			case OTH:
755 				softring = mac_srs->srs_oth_soft_rings[0];
756 			}
757 			mac_rx_soft_ring_process(mcip, softring,
758 			    headmp[type], tailmp[type], cnt[type], sz[type]);
759 		}
760 	}
761 }
762 
763 int	fanout_unaligned = 0;
764 
765 /*
766  * mac_rx_srs_long_fanout
767  *
768  * The fanout routine for VLANs, and for anything else that isn't performing
769  * explicit dls bypass.  Returns -1 on an error (drop the packet due to a
770  * malformed packet), 0 on success, with values written in *indx and *type.
771  */
772 static int
773 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp,
774     uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx)
775 {
776 	ip6_t		*ip6h;
777 	ipha_t		*ipha;
778 	uint8_t		*whereptr;
779 	uint_t		hash;
780 	uint16_t	remlen;
781 	uint8_t		nexthdr;
782 	uint16_t	hdr_len;
783 	uint32_t	src_val;
784 	boolean_t	modifiable = B_TRUE;
785 	boolean_t	v6;
786 
787 	ASSERT(MBLKL(mp) >= hdrsize);
788 
789 	if (sap == ETHERTYPE_IPV6) {
790 		v6 = B_TRUE;
791 		hdr_len = IPV6_HDR_LEN;
792 	} else if (sap == ETHERTYPE_IP) {
793 		v6 = B_FALSE;
794 		hdr_len = IP_SIMPLE_HDR_LENGTH;
795 	} else {
796 		*indx = 0;
797 		*type = OTH;
798 		return (0);
799 	}
800 
801 	ip6h = (ip6_t *)(mp->b_rptr + hdrsize);
802 	ipha = (ipha_t *)ip6h;
803 
804 	if ((uint8_t *)ip6h == mp->b_wptr) {
805 		/*
806 		 * The first mblk_t only includes the mac header.
807 		 * Note that it is safe to change the mp pointer here,
808 		 * as the subsequent operation does not assume mp
809 		 * points to the start of the mac header.
810 		 */
811 		mp = mp->b_cont;
812 
813 		/*
814 		 * Make sure the IP header points to an entire one.
815 		 */
816 		if (mp == NULL)
817 			return (-1);
818 
819 		if (MBLKL(mp) < hdr_len) {
820 			modifiable = (DB_REF(mp) == 1);
821 
822 			if (modifiable && !pullupmsg(mp, hdr_len))
823 				return (-1);
824 		}
825 
826 		ip6h = (ip6_t *)mp->b_rptr;
827 		ipha = (ipha_t *)ip6h;
828 	}
829 
830 	if (!modifiable || !(OK_32PTR((char *)ip6h)) ||
831 	    ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) {
832 		/*
833 		 * If either the IP header is not aligned, or it does not hold
834 		 * the complete simple structure (a pullupmsg() is not an
835 		 * option since it would result in an unaligned IP header),
836 		 * fanout to the default ring.
837 		 *
838 		 * Note that this may cause packet reordering.
839 		 */
840 		*indx = 0;
841 		*type = OTH;
842 		fanout_unaligned++;
843 		return (0);
844 	}
845 
846 	/*
847 	 * Extract next-header, full header length, and source-hash value
848 	 * using v4/v6 specific fields.
849 	 */
850 	if (v6) {
851 		remlen = ntohs(ip6h->ip6_plen);
852 		nexthdr = ip6h->ip6_nxt;
853 		src_val = V4_PART_OF_V6(ip6h->ip6_src);
854 		/*
855 		 * Do src based fanout if below tunable is set to B_TRUE or
856 		 * when mac_ip_hdr_length_v6() fails because of malformed
857 		 * packets or because mblks need to be concatenated using
858 		 * pullupmsg().
859 		 */
860 		if (mac_src_ipv6_fanout || !mac_ip_hdr_length_v6(ip6h,
861 		    mp->b_wptr, &hdr_len, &nexthdr, NULL)) {
862 			goto src_based_fanout;
863 		}
864 	} else {
865 		hdr_len = IPH_HDR_LENGTH(ipha);
866 		remlen = ntohs(ipha->ipha_length) - hdr_len;
867 		nexthdr = ipha->ipha_protocol;
868 		src_val = (uint32_t)ipha->ipha_src;
869 		/*
870 		 * Catch IPv4 fragment case here.  IPv6 has nexthdr == FRAG
871 		 * for its equivalent case.
872 		 */
873 		if (mac_src_ipv4_fanout ||
874 		    (ntohs(ipha->ipha_fragment_offset_and_flags) &
875 		    (IPH_MF | IPH_OFFSET)) != 0) {
876 			goto src_based_fanout;
877 		}
878 	}
879 	if (remlen < MIN_EHDR_LEN)
880 		return (-1);
881 	whereptr = (uint8_t *)ip6h + hdr_len;
882 
883 	/* If the transport is one of below, we do port/SPI based fanout */
884 	switch (nexthdr) {
885 	case IPPROTO_TCP:
886 	case IPPROTO_UDP:
887 	case IPPROTO_SCTP:
888 	case IPPROTO_ESP:
889 		/*
890 		 * If the ports or SPI in the transport header is not part of
891 		 * the mblk, do src_based_fanout, instead of calling
892 		 * pullupmsg().
893 		 */
894 		if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr)
895 			break;	/* out of switch... */
896 		/* FALLTHRU */
897 	default:
898 		goto src_based_fanout;
899 	}
900 
901 	switch (nexthdr) {
902 	case IPPROTO_TCP:
903 		hash = HASH_ADDR(src_val, *(uint32_t *)whereptr);
904 		*indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
905 		*type = OTH;
906 		break;
907 	case IPPROTO_UDP:
908 	case IPPROTO_SCTP:
909 	case IPPROTO_ESP:
910 		if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
911 			hash = HASH_ADDR(src_val, *(uint32_t *)whereptr);
912 			*indx = COMPUTE_INDEX(hash,
913 			    mac_srs->srs_udp_ring_count);
914 		} else {
915 			*indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count;
916 			mac_srs->srs_ind++;
917 		}
918 		*type = OTH;
919 		break;
920 	}
921 	return (0);
922 
923 src_based_fanout:
924 	hash = HASH_ADDR(src_val, (uint32_t)0);
925 	*indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count);
926 	*type = OTH;
927 	return (0);
928 }
929 
930 /*
931  * mac_rx_srs_fanout
932  *
933  * This routine delivers packets destined to an SRS into a soft ring member
934  * of the set.
935  *
936  * Given a chain of packets we need to split it up into multiple sub chains
937  * destined for one of the TCP, UDP or OTH soft rings. Instead of entering
938  * the soft ring one packet at a time, we want to enter it in the form of a
939  * chain otherwise we get this start/stop behaviour where the worker thread
940  * goes to sleep and then next packets comes in forcing it to wake up etc.
941  *
942  * Note:
943  * Since we know what is the maximum fanout possible, we create a 2D array
944  * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
945  * variables so that we can enter the softrings with chain. We need the
946  * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
947  * for each packet would be expensive). If we ever want to have the
948  * ability to have unlimited fanout, we should probably declare a head,
949  * tail, cnt, sz with each soft ring (a data struct which contains a softring
950  * along with these members) and create an array of this uber struct so we
951  * don't have to do kmem_alloc.
952  */
953 int	fanout_oth1 = 0;
954 int	fanout_oth2 = 0;
955 int	fanout_oth3 = 0;
956 int	fanout_oth4 = 0;
957 int	fanout_oth5 = 0;
958 
959 static void
960 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
961 {
962 	struct ether_header		*ehp;
963 	struct ether_vlan_header	*evhp;
964 	uint32_t			sap;
965 	ipha_t				*ipha;
966 	uint8_t				*dstaddr;
967 	uint_t				indx;
968 	size_t				ports_offset;
969 	size_t				ipha_len;
970 	size_t				hdrsize;
971 	uint_t				hash;
972 	mblk_t				*mp;
973 	mblk_t				*headmp[MAX_SR_TYPES][MAX_SR_FANOUT];
974 	mblk_t				*tailmp[MAX_SR_TYPES][MAX_SR_FANOUT];
975 	int				cnt[MAX_SR_TYPES][MAX_SR_FANOUT];
976 	size_t				sz[MAX_SR_TYPES][MAX_SR_FANOUT];
977 	size_t				sz1;
978 	boolean_t			bw_ctl;
979 	boolean_t			hw_classified;
980 	boolean_t			dls_bypass;
981 	boolean_t			is_ether;
982 	boolean_t			is_unicast;
983 	int				fanout_cnt;
984 	enum pkt_type			type;
985 	mac_client_impl_t		*mcip = mac_srs->srs_mcip;
986 
987 	is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
988 	bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
989 
990 	/*
991 	 * If we don't have a Rx ring, S/W classification would have done
992 	 * its job and its a packet meant for us. If we were polling on
993 	 * the default ring (i.e. there was a ring assigned to this SRS),
994 	 * then we need to make sure that the mac address really belongs
995 	 * to us.
996 	 */
997 	hw_classified = mac_srs->srs_ring != NULL &&
998 	    mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
999 
1000 	/*
1001 	 * Special clients (eg. VLAN, non ether, etc) need DLS
1002 	 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1003 	 * such SRSs. Another way of disabling bypass is to set the
1004 	 * MCIS_RX_BYPASS_DISABLE flag.
1005 	 */
1006 	dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1007 	    ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1008 
1009 	/*
1010 	 * Since the softrings are never destroyed and we always
1011 	 * create equal number of softrings for TCP, UDP and rest,
1012 	 * its OK to check one of them for count and use it without
1013 	 * any lock. In future, if soft rings get destroyed because
1014 	 * of reduction in fanout, we will need to ensure that happens
1015 	 * behind the SRS_PROC.
1016 	 */
1017 	fanout_cnt = mac_srs->srs_tcp_ring_count;
1018 
1019 	bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1020 	bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1021 	bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int));
1022 	bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t));
1023 
1024 	/*
1025 	 * We got a chain from SRS that we need to send to the soft rings.
1026 	 * Since squeues for TCP & IPv4 sap poll their soft rings (for
1027 	 * performance reasons), we need to separate out v4_tcp, v4_udp
1028 	 * and the rest goes in other.
1029 	 */
1030 	while (head != NULL) {
1031 		mp = head;
1032 		head = head->b_next;
1033 		mp->b_next = NULL;
1034 
1035 		type = OTH;
1036 		sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1037 
1038 		if (is_ether) {
1039 			/*
1040 			 * At this point we can be sure the packet at least
1041 			 * has an ether header.
1042 			 */
1043 			if (sz1 < sizeof (struct ether_header)) {
1044 				mac_rx_drop_pkt(mac_srs, mp);
1045 				continue;
1046 			}
1047 			ehp = (struct ether_header *)mp->b_rptr;
1048 
1049 			/*
1050 			 * Determine if this is a VLAN or non-VLAN packet.
1051 			 */
1052 			if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1053 				evhp = (struct ether_vlan_header *)mp->b_rptr;
1054 				sap = ntohs(evhp->ether_type);
1055 				hdrsize = sizeof (struct ether_vlan_header);
1056 				/*
1057 				 * Check if the VID of the packet, if any,
1058 				 * belongs to this client.
1059 				 */
1060 				if (!mac_client_check_flow_vid(mcip,
1061 				    VLAN_ID(ntohs(evhp->ether_tci)))) {
1062 					mac_rx_drop_pkt(mac_srs, mp);
1063 					continue;
1064 				}
1065 			} else {
1066 				hdrsize = sizeof (struct ether_header);
1067 			}
1068 			is_unicast =
1069 			    ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
1070 			dstaddr = (uint8_t *)&ehp->ether_dhost;
1071 		} else {
1072 			mac_header_info_t		mhi;
1073 
1074 			if (mac_header_info((mac_handle_t)mcip->mci_mip,
1075 			    mp, &mhi) != 0) {
1076 				mac_rx_drop_pkt(mac_srs, mp);
1077 				continue;
1078 			}
1079 			hdrsize = mhi.mhi_hdrsize;
1080 			sap = mhi.mhi_bindsap;
1081 			is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
1082 			dstaddr = (uint8_t *)mhi.mhi_daddr;
1083 		}
1084 
1085 		if (!dls_bypass) {
1086 			if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
1087 			    hdrsize, &type, &indx) == -1) {
1088 				mac_rx_drop_pkt(mac_srs, mp);
1089 				continue;
1090 			}
1091 
1092 			FANOUT_ENQUEUE_MP(headmp[type][indx],
1093 			    tailmp[type][indx], cnt[type][indx], bw_ctl,
1094 			    sz[type][indx], sz1, mp);
1095 			continue;
1096 		}
1097 
1098 
1099 		/*
1100 		 * If we are using the default Rx ring where H/W or S/W
1101 		 * classification has not happened, we need to verify if
1102 		 * this unicast packet really belongs to us.
1103 		 */
1104 		if (sap == ETHERTYPE_IP) {
1105 			/*
1106 			 * If we are H/W classified, but we have promisc
1107 			 * on, then we need to check for the unicast address.
1108 			 */
1109 			if (hw_classified && mcip->mci_promisc_list != NULL) {
1110 				mac_address_t		*map;
1111 
1112 				rw_enter(&mcip->mci_rw_lock, RW_READER);
1113 				map = mcip->mci_unicast;
1114 				if (bcmp(dstaddr, map->ma_addr,
1115 				    map->ma_len) == 0)
1116 					type = UNDEF;
1117 				rw_exit(&mcip->mci_rw_lock);
1118 			} else if (is_unicast) {
1119 				type = UNDEF;
1120 			}
1121 		}
1122 
1123 		/*
1124 		 * This needs to become a contract with the driver for
1125 		 * the fast path.
1126 		 */
1127 
1128 		ipha = (ipha_t *)(mp->b_rptr + hdrsize);
1129 		if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) {
1130 			type = OTH;
1131 			fanout_oth1++;
1132 		}
1133 
1134 		if (type != OTH) {
1135 			uint16_t	frag_offset_flags;
1136 
1137 			switch (ipha->ipha_protocol) {
1138 			case IPPROTO_TCP:
1139 			case IPPROTO_UDP:
1140 			case IPPROTO_SCTP:
1141 			case IPPROTO_ESP:
1142 				ipha_len = IPH_HDR_LENGTH(ipha);
1143 				if ((uchar_t *)ipha + ipha_len + PORTS_SIZE >
1144 				    mp->b_wptr) {
1145 					type = OTH;
1146 					break;
1147 				}
1148 				frag_offset_flags =
1149 				    ntohs(ipha->ipha_fragment_offset_and_flags);
1150 				if ((frag_offset_flags &
1151 				    (IPH_MF | IPH_OFFSET)) != 0) {
1152 					type = OTH;
1153 					fanout_oth3++;
1154 					break;
1155 				}
1156 				ports_offset = hdrsize + ipha_len;
1157 				break;
1158 			default:
1159 				type = OTH;
1160 				fanout_oth4++;
1161 				break;
1162 			}
1163 		}
1164 
1165 		if (type == OTH) {
1166 			if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
1167 			    hdrsize, &type, &indx) == -1) {
1168 				mac_rx_drop_pkt(mac_srs, mp);
1169 				continue;
1170 			}
1171 
1172 			FANOUT_ENQUEUE_MP(headmp[type][indx],
1173 			    tailmp[type][indx], cnt[type][indx], bw_ctl,
1174 			    sz[type][indx], sz1, mp);
1175 			continue;
1176 		}
1177 
1178 		ASSERT(type == UNDEF);
1179 
1180 		/*
1181 		 * XXX-Sunay: We should hold srs_lock since ring_count
1182 		 * below can change. But if we are always called from
1183 		 * mac_rx_srs_drain and SRS_PROC is set, then we can
1184 		 * enforce that ring_count can't be changed i.e.
1185 		 * to change fanout type or ring count, the calling
1186 		 * thread needs to be behind SRS_PROC.
1187 		 */
1188 		switch (ipha->ipha_protocol) {
1189 		case IPPROTO_TCP:
1190 			/*
1191 			 * Note that for ESP, we fanout on SPI and it is at the
1192 			 * same offset as the 2x16-bit ports. So it is clumped
1193 			 * along with TCP, UDP and SCTP.
1194 			 */
1195 			hash = HASH_ADDR(ipha->ipha_src,
1196 			    *(uint32_t *)(mp->b_rptr + ports_offset));
1197 			indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
1198 			type = V4_TCP;
1199 			mp->b_rptr += hdrsize;
1200 			break;
1201 		case IPPROTO_UDP:
1202 		case IPPROTO_SCTP:
1203 		case IPPROTO_ESP:
1204 			if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
1205 				hash = HASH_ADDR(ipha->ipha_src,
1206 				    *(uint32_t *)(mp->b_rptr + ports_offset));
1207 				indx = COMPUTE_INDEX(hash,
1208 				    mac_srs->srs_udp_ring_count);
1209 			} else {
1210 				indx = mac_srs->srs_ind %
1211 				    mac_srs->srs_udp_ring_count;
1212 				mac_srs->srs_ind++;
1213 			}
1214 			type = V4_UDP;
1215 			mp->b_rptr += hdrsize;
1216 			break;
1217 		default:
1218 			indx = 0;
1219 			type = OTH;
1220 		}
1221 
1222 		FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx],
1223 		    cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp);
1224 	}
1225 
1226 	for (type = V4_TCP; type < UNDEF; type++) {
1227 		int	i;
1228 
1229 		for (i = 0; i < fanout_cnt; i++) {
1230 			if (headmp[type][i] != NULL) {
1231 				mac_soft_ring_t	*softring;
1232 
1233 				ASSERT(tailmp[type][i]->b_next == NULL);
1234 				switch (type) {
1235 				case V4_TCP:
1236 					softring =
1237 					    mac_srs->srs_tcp_soft_rings[i];
1238 					break;
1239 				case V4_UDP:
1240 					softring =
1241 					    mac_srs->srs_udp_soft_rings[i];
1242 					break;
1243 				case OTH:
1244 					softring =
1245 					    mac_srs->srs_oth_soft_rings[i];
1246 					break;
1247 				}
1248 				mac_rx_soft_ring_process(mcip,
1249 				    softring, headmp[type][i], tailmp[type][i],
1250 				    cnt[type][i], sz[type][i]);
1251 			}
1252 		}
1253 	}
1254 }
1255 
1256 #define	SRS_BYTES_TO_PICKUP	150000
1257 ssize_t	max_bytes_to_pickup = SRS_BYTES_TO_PICKUP;
1258 
1259 /*
1260  * mac_rx_srs_poll_ring
1261  *
1262  * This SRS Poll thread uses this routine to poll the underlying hardware
1263  * Rx ring to get a chain of packets. It can inline process that chain
1264  * if mac_latency_optimize is set (default) or signal the SRS worker thread
1265  * to do the remaining processing.
1266  *
1267  * Since packets come in the system via interrupt or poll path, we also
1268  * update the stats and deal with promiscous clients here.
1269  */
1270 void
1271 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs)
1272 {
1273 	kmutex_t 		*lock = &mac_srs->srs_lock;
1274 	kcondvar_t 		*async = &mac_srs->srs_cv;
1275 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1276 	mblk_t 			*head, *tail, *mp;
1277 	callb_cpr_t 		cprinfo;
1278 	ssize_t 		bytes_to_pickup;
1279 	size_t 			sz;
1280 	int			count;
1281 	mac_client_impl_t	*smcip;
1282 
1283 	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll");
1284 	mutex_enter(lock);
1285 
1286 start:
1287 	for (;;) {
1288 		if (mac_srs->srs_state & SRS_PAUSE)
1289 			goto done;
1290 
1291 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1292 		cv_wait(async, lock);
1293 		CALLB_CPR_SAFE_END(&cprinfo, lock);
1294 
1295 		if (mac_srs->srs_state & SRS_PAUSE)
1296 			goto done;
1297 
1298 check_again:
1299 		if (mac_srs->srs_type & SRST_BW_CONTROL) {
1300 			/*
1301 			 * We pick as many bytes as we are allowed to queue.
1302 			 * Its possible that we will exceed the total
1303 			 * packets queued in case this SRS is part of the
1304 			 * Rx ring group since > 1 poll thread can be pulling
1305 			 * upto the max allowed packets at the same time
1306 			 * but that should be OK.
1307 			 */
1308 			mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1309 			bytes_to_pickup =
1310 			    mac_srs->srs_bw->mac_bw_drop_threshold -
1311 			    mac_srs->srs_bw->mac_bw_sz;
1312 			/*
1313 			 * We shouldn't have been signalled if we
1314 			 * have 0 or less bytes to pick but since
1315 			 * some of the bytes accounting is driver
1316 			 * dependant, we do the safety check.
1317 			 */
1318 			if (bytes_to_pickup < 0)
1319 				bytes_to_pickup = 0;
1320 			mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1321 		} else {
1322 			/*
1323 			 * ToDO: Need to change the polling API
1324 			 * to add a packet count and a flag which
1325 			 * tells the driver whether we want packets
1326 			 * based on a count, or bytes, or all the
1327 			 * packets queued in the driver/HW. This
1328 			 * way, we never have to check the limits
1329 			 * on poll path. We truly let only as many
1330 			 * packets enter the system as we are willing
1331 			 * to process or queue.
1332 			 *
1333 			 * Something along the lines of
1334 			 * pkts_to_pickup = mac_soft_ring_max_q_cnt -
1335 			 *	mac_srs->srs_poll_pkt_cnt
1336 			 */
1337 
1338 			/*
1339 			 * Since we are not doing B/W control, pick
1340 			 * as many packets as allowed.
1341 			 */
1342 			bytes_to_pickup = max_bytes_to_pickup;
1343 		}
1344 
1345 		/* Poll the underlying Hardware */
1346 		mutex_exit(lock);
1347 		head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup);
1348 		mutex_enter(lock);
1349 
1350 		ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
1351 		    SRS_POLL_THR_OWNER);
1352 
1353 		mp = tail = head;
1354 		count = 0;
1355 		sz = 0;
1356 		while (mp != NULL) {
1357 			tail = mp;
1358 			sz += msgdsize(mp);
1359 			mp = mp->b_next;
1360 			count++;
1361 		}
1362 
1363 		if (head != NULL) {
1364 			tail->b_next = NULL;
1365 			smcip = mac_srs->srs_mcip;
1366 
1367 			SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz);
1368 			SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count);
1369 
1370 			/*
1371 			 * If there are any promiscuous mode callbacks
1372 			 * defined for this MAC client, pass them a copy
1373 			 * if appropriate and also update the counters.
1374 			 */
1375 			if (smcip != NULL) {
1376 				if (smcip->mci_mip->mi_promisc_list != NULL) {
1377 					mutex_exit(lock);
1378 					mac_promisc_dispatch(smcip->mci_mip,
1379 					    head, NULL);
1380 					mutex_enter(lock);
1381 				}
1382 			}
1383 			if (mac_srs->srs_type & SRST_BW_CONTROL) {
1384 				mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1385 				mac_srs->srs_bw->mac_bw_polled += sz;
1386 				mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1387 			}
1388 			MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail,
1389 			    count, sz);
1390 			if (count <= 10)
1391 				srs_rx->sr_stat.mrs_chaincntundr10++;
1392 			else if (count > 10 && count <= 50)
1393 				srs_rx->sr_stat.mrs_chaincnt10to50++;
1394 			else
1395 				srs_rx->sr_stat.mrs_chaincntover50++;
1396 		}
1397 
1398 		/*
1399 		 * We are guaranteed that SRS_PROC will be set if we
1400 		 * are here. Also, poll thread gets to run only if
1401 		 * the drain was being done by a worker thread although
1402 		 * its possible that worker thread is still running
1403 		 * and poll thread was sent down to keep the pipeline
1404 		 * going instead of doing a complete drain and then
1405 		 * trying to poll the NIC.
1406 		 *
1407 		 * So we need to check SRS_WORKER flag to make sure
1408 		 * that the worker thread is not processing the queue
1409 		 * in parallel to us. The flags and conditions are
1410 		 * protected by the srs_lock to prevent any race. We
1411 		 * ensure that we don't drop the srs_lock from now
1412 		 * till the end and similarly we don't drop the srs_lock
1413 		 * in mac_rx_srs_drain() till similar condition check
1414 		 * are complete. The mac_rx_srs_drain() needs to ensure
1415 		 * that SRS_WORKER flag remains set as long as its
1416 		 * processing the queue.
1417 		 */
1418 		if (!(mac_srs->srs_state & SRS_WORKER) &&
1419 		    (mac_srs->srs_first != NULL)) {
1420 			/*
1421 			 * We have packets to process and worker thread
1422 			 * is not running. Check to see if poll thread is
1423 			 * allowed to process.
1424 			 */
1425 			if (mac_srs->srs_state & SRS_LATENCY_OPT) {
1426 				mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC);
1427 				if (!(mac_srs->srs_state & SRS_PAUSE) &&
1428 				    srs_rx->sr_poll_pkt_cnt <=
1429 				    srs_rx->sr_lowat) {
1430 					srs_rx->sr_poll_again++;
1431 					goto check_again;
1432 				}
1433 				/*
1434 				 * We are already above low water mark
1435 				 * so stay in the polling mode but no
1436 				 * need to poll. Once we dip below
1437 				 * the polling threshold, the processing
1438 				 * thread (soft ring) will signal us
1439 				 * to poll again (MAC_UPDATE_SRS_COUNT)
1440 				 */
1441 				srs_rx->sr_poll_drain_no_poll++;
1442 				mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
1443 				/*
1444 				 * In B/W control case, its possible
1445 				 * that the backlog built up due to
1446 				 * B/W limit being reached and packets
1447 				 * are queued only in SRS. In this case,
1448 				 * we should schedule worker thread
1449 				 * since no one else will wake us up.
1450 				 */
1451 				if ((mac_srs->srs_type & SRST_BW_CONTROL) &&
1452 				    (mac_srs->srs_tid == NULL)) {
1453 					mac_srs->srs_tid =
1454 					    timeout(mac_srs_fire, mac_srs, 1);
1455 					srs_rx->sr_poll_worker_wakeup++;
1456 				}
1457 			} else {
1458 				/*
1459 				 * Wakeup the worker thread for more processing.
1460 				 * We optimize for throughput in this case.
1461 				 */
1462 				mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
1463 				MAC_SRS_WORKER_WAKEUP(mac_srs);
1464 				srs_rx->sr_poll_sig_worker++;
1465 			}
1466 		} else if ((mac_srs->srs_first == NULL) &&
1467 		    !(mac_srs->srs_state & SRS_WORKER)) {
1468 			/*
1469 			 * There is nothing queued in SRS and
1470 			 * no worker thread running. Plus we
1471 			 * didn't get anything from the H/W
1472 			 * as well (head == NULL);
1473 			 */
1474 			ASSERT(head == NULL);
1475 			mac_srs->srs_state &=
1476 			    ~(SRS_PROC|SRS_GET_PKTS);
1477 
1478 			/*
1479 			 * If we have a packets in soft ring, don't allow
1480 			 * more packets to come into this SRS by keeping the
1481 			 * interrupts off but not polling the H/W. The
1482 			 * poll thread will get signaled as soon as
1483 			 * srs_poll_pkt_cnt dips below poll threshold.
1484 			 */
1485 			if (srs_rx->sr_poll_pkt_cnt == 0) {
1486 				srs_rx->sr_poll_intr_enable++;
1487 				MAC_SRS_POLLING_OFF(mac_srs);
1488 			} else {
1489 				/*
1490 				 * We know nothing is queued in SRS
1491 				 * since we are here after checking
1492 				 * srs_first is NULL. The backlog
1493 				 * is entirely due to packets queued
1494 				 * in Soft ring which will wake us up
1495 				 * and get the interface out of polling
1496 				 * mode once the backlog dips below
1497 				 * sr_poll_thres.
1498 				 */
1499 				srs_rx->sr_poll_no_poll++;
1500 			}
1501 		} else {
1502 			/*
1503 			 * Worker thread is already running.
1504 			 * Nothing much to do. If the polling
1505 			 * was enabled, worker thread will deal
1506 			 * with that.
1507 			 */
1508 			mac_srs->srs_state &= ~SRS_GET_PKTS;
1509 			srs_rx->sr_poll_goto_sleep++;
1510 		}
1511 	}
1512 done:
1513 	mac_srs->srs_state |= SRS_POLL_THR_QUIESCED;
1514 	cv_signal(&mac_srs->srs_async);
1515 	/*
1516 	 * If this is a temporary quiesce then wait for the restart signal
1517 	 * from the srs worker. Then clear the flags and signal the srs worker
1518 	 * to ensure a positive handshake and go back to start.
1519 	 */
1520 	while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART)))
1521 		cv_wait(async, lock);
1522 	if (mac_srs->srs_state & SRS_POLL_THR_RESTART) {
1523 		ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
1524 		mac_srs->srs_state &=
1525 		    ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART);
1526 		cv_signal(&mac_srs->srs_async);
1527 		goto start;
1528 	} else {
1529 		mac_srs->srs_state |= SRS_POLL_THR_EXITED;
1530 		cv_signal(&mac_srs->srs_async);
1531 		CALLB_CPR_EXIT(&cprinfo);
1532 		thread_exit();
1533 	}
1534 }
1535 
1536 /*
1537  * mac_srs_pick_chain
1538  *
1539  * In Bandwidth control case, checks how many packets can be processed
1540  * and return them in a sub chain.
1541  */
1542 static mblk_t *
1543 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail,
1544     size_t *chain_sz, int *chain_cnt)
1545 {
1546 	mblk_t 			*head = NULL;
1547 	mblk_t 			*tail = NULL;
1548 	size_t			sz;
1549 	size_t 			tsz = 0;
1550 	int			cnt = 0;
1551 	mblk_t 			*mp;
1552 
1553 	ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
1554 	mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1555 	if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <=
1556 	    mac_srs->srs_bw->mac_bw_limit) ||
1557 	    (mac_srs->srs_bw->mac_bw_limit == 0)) {
1558 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1559 		head = mac_srs->srs_first;
1560 		mac_srs->srs_first = NULL;
1561 		*chain_tail = mac_srs->srs_last;
1562 		mac_srs->srs_last = NULL;
1563 		*chain_sz = mac_srs->srs_size;
1564 		*chain_cnt = mac_srs->srs_count;
1565 		mac_srs->srs_count = 0;
1566 		mac_srs->srs_size = 0;
1567 		return (head);
1568 	}
1569 
1570 	/*
1571 	 * Can't clear the entire backlog.
1572 	 * Need to find how many packets to pick
1573 	 */
1574 	ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock));
1575 	while ((mp = mac_srs->srs_first) != NULL) {
1576 		sz = msgdsize(mp);
1577 		if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) >
1578 		    mac_srs->srs_bw->mac_bw_limit) {
1579 			if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED))
1580 				mac_srs->srs_bw->mac_bw_state |=
1581 				    SRS_BW_ENFORCED;
1582 			break;
1583 		}
1584 
1585 		/*
1586 		 * The _size & cnt is  decremented from the softrings
1587 		 * when they send up the packet for polling to work
1588 		 * properly.
1589 		 */
1590 		tsz += sz;
1591 		cnt++;
1592 		mac_srs->srs_count--;
1593 		mac_srs->srs_size -= sz;
1594 		if (tail != NULL)
1595 			tail->b_next = mp;
1596 		else
1597 			head = mp;
1598 		tail = mp;
1599 		mac_srs->srs_first = mac_srs->srs_first->b_next;
1600 	}
1601 	mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1602 	if (mac_srs->srs_first == NULL)
1603 		mac_srs->srs_last = NULL;
1604 
1605 	if (tail != NULL)
1606 		tail->b_next = NULL;
1607 	*chain_tail = tail;
1608 	*chain_cnt = cnt;
1609 	*chain_sz = tsz;
1610 
1611 	return (head);
1612 }
1613 
1614 /*
1615  * mac_rx_srs_drain
1616  *
1617  * The SRS drain routine. Gets to run to clear the queue. Any thread
1618  * (worker, interrupt, poll) can call this based on processing model.
1619  * The first thing we do is disable interrupts if possible and then
1620  * drain the queue. we also try to poll the underlying hardware if
1621  * there is a dedicated hardware Rx ring assigned to this SRS.
1622  *
1623  * There is a equivalent drain routine in bandwidth control mode
1624  * mac_rx_srs_drain_bw. There is some code duplication between the two
1625  * routines but they are highly performance sensitive and are easier
1626  * to read/debug if they stay separate. Any code changes here might
1627  * also apply to mac_rx_srs_drain_bw as well.
1628  */
1629 void
1630 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
1631 {
1632 	mblk_t 			*head;
1633 	mblk_t			*tail;
1634 	timeout_id_t 		tid;
1635 	int			cnt = 0;
1636 	mac_client_impl_t	*mcip = mac_srs->srs_mcip;
1637 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1638 
1639 	ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
1640 	ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL));
1641 
1642 	/* If we are blanked i.e. can't do upcalls, then we are done */
1643 	if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
1644 		ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
1645 		    (mac_srs->srs_state & SRS_PAUSE));
1646 		goto out;
1647 	}
1648 
1649 	if (mac_srs->srs_first == NULL)
1650 		goto out;
1651 
1652 	if (!(mac_srs->srs_state & SRS_LATENCY_OPT) &&
1653 	    (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) {
1654 		/*
1655 		 * In the normal case, the SRS worker thread does no
1656 		 * work and we wait for a backlog to build up before
1657 		 * we switch into polling mode. In case we are
1658 		 * optimizing for throughput, we use the worker thread
1659 		 * as well. The goal is to let worker thread process
1660 		 * the queue and poll thread to feed packets into
1661 		 * the queue. As such, we should signal the poll
1662 		 * thread to try and get more packets.
1663 		 *
1664 		 * We could have pulled this check in the POLL_RING
1665 		 * macro itself but keeping it explicit here makes
1666 		 * the architecture more human understandable.
1667 		 */
1668 		MAC_SRS_POLL_RING(mac_srs);
1669 	}
1670 
1671 again:
1672 	head = mac_srs->srs_first;
1673 	mac_srs->srs_first = NULL;
1674 	tail = mac_srs->srs_last;
1675 	mac_srs->srs_last = NULL;
1676 	cnt = mac_srs->srs_count;
1677 	mac_srs->srs_count = 0;
1678 
1679 	ASSERT(head != NULL);
1680 	ASSERT(tail != NULL);
1681 
1682 	if ((tid = mac_srs->srs_tid) != 0)
1683 		mac_srs->srs_tid = 0;
1684 
1685 	mac_srs->srs_state |= (SRS_PROC|proc_type);
1686 
1687 
1688 	/*
1689 	 * mcip is NULL for broadcast and multicast flows. The promisc
1690 	 * callbacks for broadcast and multicast packets are delivered from
1691 	 * mac_rx() and we don't need to worry about that case in this path
1692 	 */
1693 	if (mcip != NULL) {
1694 		if (mcip->mci_promisc_list != NULL) {
1695 			mutex_exit(&mac_srs->srs_lock);
1696 			mac_promisc_client_dispatch(mcip, head);
1697 			mutex_enter(&mac_srs->srs_lock);
1698 		}
1699 		if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
1700 			mutex_exit(&mac_srs->srs_lock);
1701 			mac_protect_intercept_dhcp(mcip, head);
1702 			mutex_enter(&mac_srs->srs_lock);
1703 		}
1704 	}
1705 
1706 	/*
1707 	 * Check if SRS itself is doing the processing
1708 	 * This direct path does not apply when subflows are present. In this
1709 	 * case, packets need to be dispatched to a soft ring according to the
1710 	 * flow's bandwidth and other resources contraints.
1711 	 */
1712 	if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
1713 		mac_direct_rx_t		proc;
1714 		void			*arg1;
1715 		mac_resource_handle_t	arg2;
1716 
1717 		/*
1718 		 * This is the case when a Rx is directly
1719 		 * assigned and we have a fully classified
1720 		 * protocol chain. We can deal with it in
1721 		 * one shot.
1722 		 */
1723 		proc = srs_rx->sr_func;
1724 		arg1 = srs_rx->sr_arg1;
1725 		arg2 = srs_rx->sr_arg2;
1726 
1727 		mac_srs->srs_state |= SRS_CLIENT_PROC;
1728 		mutex_exit(&mac_srs->srs_lock);
1729 		if (tid != 0) {
1730 			(void) untimeout(tid);
1731 			tid = 0;
1732 		}
1733 
1734 		proc(arg1, arg2, head, NULL);
1735 		/*
1736 		 * Decrement the size and count here itelf
1737 		 * since the packet has been processed.
1738 		 */
1739 		mutex_enter(&mac_srs->srs_lock);
1740 		MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
1741 		if (mac_srs->srs_state & SRS_CLIENT_WAIT)
1742 			cv_signal(&mac_srs->srs_client_cv);
1743 		mac_srs->srs_state &= ~SRS_CLIENT_PROC;
1744 	} else {
1745 		/* Some kind of softrings based fanout is required */
1746 		mutex_exit(&mac_srs->srs_lock);
1747 		if (tid != 0) {
1748 			(void) untimeout(tid);
1749 			tid = 0;
1750 		}
1751 
1752 		/*
1753 		 * Since the fanout routines can deal with chains,
1754 		 * shoot the entire chain up.
1755 		 */
1756 		if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
1757 			mac_rx_srs_fanout(mac_srs, head);
1758 		else
1759 			mac_rx_srs_proto_fanout(mac_srs, head);
1760 		mutex_enter(&mac_srs->srs_lock);
1761 	}
1762 
1763 	if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) &&
1764 	    (mac_srs->srs_first != NULL)) {
1765 		/*
1766 		 * More packets arrived while we were clearing the
1767 		 * SRS. This can be possible because of one of
1768 		 * three conditions below:
1769 		 * 1) The driver is using multiple worker threads
1770 		 *    to send the packets to us.
1771 		 * 2) The driver has a race in switching
1772 		 *    between interrupt and polling mode or
1773 		 * 3) Packets are arriving in this SRS via the
1774 		 *    S/W classification as well.
1775 		 *
1776 		 * We should switch to polling mode and see if we
1777 		 * need to send the poll thread down. Also, signal
1778 		 * the worker thread to process whats just arrived.
1779 		 */
1780 		MAC_SRS_POLLING_ON(mac_srs);
1781 		if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) {
1782 			srs_rx->sr_drain_poll_sig++;
1783 			MAC_SRS_POLL_RING(mac_srs);
1784 		}
1785 
1786 		/*
1787 		 * If we didn't signal the poll thread, we need
1788 		 * to deal with the pending packets ourselves.
1789 		 */
1790 		if (proc_type == SRS_WORKER) {
1791 			srs_rx->sr_drain_again++;
1792 			goto again;
1793 		} else {
1794 			srs_rx->sr_drain_worker_sig++;
1795 			cv_signal(&mac_srs->srs_async);
1796 		}
1797 	}
1798 
1799 out:
1800 	if (mac_srs->srs_state & SRS_GET_PKTS) {
1801 		/*
1802 		 * Poll thread is already running. Leave the
1803 		 * SRS_RPOC set and hand over the control to
1804 		 * poll thread.
1805 		 */
1806 		mac_srs->srs_state &= ~proc_type;
1807 		srs_rx->sr_drain_poll_running++;
1808 		return;
1809 	}
1810 
1811 	/*
1812 	 * Even if there are no packets queued in SRS, we
1813 	 * need to make sure that the shared counter is
1814 	 * clear and any associated softrings have cleared
1815 	 * all the backlog. Otherwise, leave the interface
1816 	 * in polling mode and the poll thread will get
1817 	 * signalled once the count goes down to zero.
1818 	 *
1819 	 * If someone is already draining the queue (SRS_PROC is
1820 	 * set) when the srs_poll_pkt_cnt goes down to zero,
1821 	 * then it means that drain is already running and we
1822 	 * will turn off polling at that time if there is
1823 	 * no backlog.
1824 	 *
1825 	 * As long as there are packets queued either
1826 	 * in soft ring set or its soft rings, we will leave
1827 	 * the interface in polling mode (even if the drain
1828 	 * was done being the interrupt thread). We signal
1829 	 * the poll thread as well if we have dipped below
1830 	 * low water mark.
1831 	 *
1832 	 * NOTE: We can't use the MAC_SRS_POLLING_ON macro
1833 	 * since that turn polling on only for worker thread.
1834 	 * Its not worth turning polling on for interrupt
1835 	 * thread (since NIC will not issue another interrupt)
1836 	 * unless a backlog builds up.
1837 	 */
1838 	if ((srs_rx->sr_poll_pkt_cnt > 0) &&
1839 	    (mac_srs->srs_state & SRS_POLLING_CAPAB)) {
1840 		mac_srs->srs_state &= ~(SRS_PROC|proc_type);
1841 		srs_rx->sr_drain_keep_polling++;
1842 		MAC_SRS_POLLING_ON(mac_srs);
1843 		if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)
1844 			MAC_SRS_POLL_RING(mac_srs);
1845 		return;
1846 	}
1847 
1848 	/* Nothing else to do. Get out of poll mode */
1849 	MAC_SRS_POLLING_OFF(mac_srs);
1850 	mac_srs->srs_state &= ~(SRS_PROC|proc_type);
1851 	srs_rx->sr_drain_finish_intr++;
1852 }
1853 
1854 /*
1855  * mac_rx_srs_drain_bw
1856  *
1857  * The SRS BW drain routine. Gets to run to clear the queue. Any thread
1858  * (worker, interrupt, poll) can call this based on processing model.
1859  * The first thing we do is disable interrupts if possible and then
1860  * drain the queue. we also try to poll the underlying hardware if
1861  * there is a dedicated hardware Rx ring assigned to this SRS.
1862  *
1863  * There is a equivalent drain routine in non bandwidth control mode
1864  * mac_rx_srs_drain. There is some code duplication between the two
1865  * routines but they are highly performance sensitive and are easier
1866  * to read/debug if they stay separate. Any code changes here might
1867  * also apply to mac_rx_srs_drain as well.
1868  */
1869 void
1870 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
1871 {
1872 	mblk_t 			*head;
1873 	mblk_t			*tail;
1874 	timeout_id_t 		tid;
1875 	size_t			sz = 0;
1876 	int			cnt = 0;
1877 	mac_client_impl_t	*mcip = mac_srs->srs_mcip;
1878 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1879 	clock_t			now;
1880 
1881 	ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
1882 	ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
1883 again:
1884 	/* Check if we are doing B/W control */
1885 	mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1886 	now = ddi_get_lbolt();
1887 	if (mac_srs->srs_bw->mac_bw_curr_time != now) {
1888 		mac_srs->srs_bw->mac_bw_curr_time = now;
1889 		mac_srs->srs_bw->mac_bw_used = 0;
1890 		if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
1891 			mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED;
1892 	} else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) {
1893 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1894 		goto done;
1895 	} else if (mac_srs->srs_bw->mac_bw_used >
1896 	    mac_srs->srs_bw->mac_bw_limit) {
1897 		mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
1898 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1899 		goto done;
1900 	}
1901 	mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1902 
1903 	/* If we are blanked i.e. can't do upcalls, then we are done */
1904 	if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
1905 		ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
1906 		    (mac_srs->srs_state & SRS_PAUSE));
1907 		goto done;
1908 	}
1909 
1910 	sz = 0;
1911 	cnt = 0;
1912 	if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) {
1913 		/*
1914 		 * We couldn't pick up a single packet.
1915 		 */
1916 		mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1917 		if ((mac_srs->srs_bw->mac_bw_used == 0) &&
1918 		    (mac_srs->srs_size != 0) &&
1919 		    !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
1920 			/*
1921 			 * Seems like configured B/W doesn't
1922 			 * even allow processing of 1 packet
1923 			 * per tick.
1924 			 *
1925 			 * XXX: raise the limit to processing
1926 			 * at least 1 packet per tick.
1927 			 */
1928 			mac_srs->srs_bw->mac_bw_limit +=
1929 			    mac_srs->srs_bw->mac_bw_limit;
1930 			mac_srs->srs_bw->mac_bw_drop_threshold +=
1931 			    mac_srs->srs_bw->mac_bw_drop_threshold;
1932 			cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) "
1933 			    "raised B/W limit to %d since not even a "
1934 			    "single packet can be processed per "
1935 			    "tick %d\n", (void *)mac_srs,
1936 			    (int)mac_srs->srs_bw->mac_bw_limit,
1937 			    (int)msgdsize(mac_srs->srs_first));
1938 		}
1939 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1940 		goto done;
1941 	}
1942 
1943 	ASSERT(head != NULL);
1944 	ASSERT(tail != NULL);
1945 
1946 	/* zero bandwidth: drop all and return to interrupt mode */
1947 	mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1948 	if (mac_srs->srs_bw->mac_bw_limit == 0) {
1949 		srs_rx->sr_stat.mrs_sdrops += cnt;
1950 		ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz);
1951 		mac_srs->srs_bw->mac_bw_sz -= sz;
1952 		mac_srs->srs_bw->mac_bw_drop_bytes += sz;
1953 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1954 		mac_pkt_drop(NULL, NULL, head, B_FALSE);
1955 		goto leave_poll;
1956 	} else {
1957 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1958 	}
1959 
1960 	if ((tid = mac_srs->srs_tid) != 0)
1961 		mac_srs->srs_tid = 0;
1962 
1963 	mac_srs->srs_state |= (SRS_PROC|proc_type);
1964 	MAC_SRS_WORKER_POLLING_ON(mac_srs);
1965 
1966 	/*
1967 	 * mcip is NULL for broadcast and multicast flows. The promisc
1968 	 * callbacks for broadcast and multicast packets are delivered from
1969 	 * mac_rx() and we don't need to worry about that case in this path
1970 	 */
1971 	if (mcip != NULL) {
1972 		if (mcip->mci_promisc_list != NULL) {
1973 			mutex_exit(&mac_srs->srs_lock);
1974 			mac_promisc_client_dispatch(mcip, head);
1975 			mutex_enter(&mac_srs->srs_lock);
1976 		}
1977 		if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
1978 			mutex_exit(&mac_srs->srs_lock);
1979 			mac_protect_intercept_dhcp(mcip, head);
1980 			mutex_enter(&mac_srs->srs_lock);
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * Check if SRS itself is doing the processing
1986 	 * This direct path does not apply when subflows are present. In this
1987 	 * case, packets need to be dispatched to a soft ring according to the
1988 	 * flow's bandwidth and other resources contraints.
1989 	 */
1990 	if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
1991 		mac_direct_rx_t		proc;
1992 		void			*arg1;
1993 		mac_resource_handle_t	arg2;
1994 
1995 		/*
1996 		 * This is the case when a Rx is directly
1997 		 * assigned and we have a fully classified
1998 		 * protocol chain. We can deal with it in
1999 		 * one shot.
2000 		 */
2001 		proc = srs_rx->sr_func;
2002 		arg1 = srs_rx->sr_arg1;
2003 		arg2 = srs_rx->sr_arg2;
2004 
2005 		mac_srs->srs_state |= SRS_CLIENT_PROC;
2006 		mutex_exit(&mac_srs->srs_lock);
2007 		if (tid != 0) {
2008 			(void) untimeout(tid);
2009 			tid = 0;
2010 		}
2011 
2012 		proc(arg1, arg2, head, NULL);
2013 		/*
2014 		 * Decrement the size and count here itelf
2015 		 * since the packet has been processed.
2016 		 */
2017 		mutex_enter(&mac_srs->srs_lock);
2018 		MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2019 		MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
2020 
2021 		if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2022 			cv_signal(&mac_srs->srs_client_cv);
2023 		mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2024 	} else {
2025 		/* Some kind of softrings based fanout is required */
2026 		mutex_exit(&mac_srs->srs_lock);
2027 		if (tid != 0) {
2028 			(void) untimeout(tid);
2029 			tid = 0;
2030 		}
2031 
2032 		/*
2033 		 * Since the fanout routines can deal with chains,
2034 		 * shoot the entire chain up.
2035 		 */
2036 		if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2037 			mac_rx_srs_fanout(mac_srs, head);
2038 		else
2039 			mac_rx_srs_proto_fanout(mac_srs, head);
2040 		mutex_enter(&mac_srs->srs_lock);
2041 	}
2042 
2043 	/*
2044 	 * Send the poll thread to pick up any packets arrived
2045 	 * so far. This also serves as the last check in case
2046 	 * nothing else is queued in the SRS. The poll thread
2047 	 * is signalled only in the case the drain was done
2048 	 * by the worker thread and SRS_WORKER is set. The
2049 	 * worker thread can run in parallel as long as the
2050 	 * SRS_WORKER flag is set. We we have nothing else to
2051 	 * process, we can exit while leaving SRS_PROC set
2052 	 * which gives the poll thread control to process and
2053 	 * cleanup once it returns from the NIC.
2054 	 *
2055 	 * If we have nothing else to process, we need to
2056 	 * ensure that we keep holding the srs_lock till
2057 	 * all the checks below are done and control is
2058 	 * handed to the poll thread if it was running.
2059 	 */
2060 	mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2061 	if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2062 		if (mac_srs->srs_first != NULL) {
2063 			if (proc_type == SRS_WORKER) {
2064 				mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2065 				if (srs_rx->sr_poll_pkt_cnt <=
2066 				    srs_rx->sr_lowat)
2067 					MAC_SRS_POLL_RING(mac_srs);
2068 				goto again;
2069 			} else {
2070 				cv_signal(&mac_srs->srs_async);
2071 			}
2072 		}
2073 	}
2074 	mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2075 
2076 done:
2077 
2078 	if (mac_srs->srs_state & SRS_GET_PKTS) {
2079 		/*
2080 		 * Poll thread is already running. Leave the
2081 		 * SRS_RPOC set and hand over the control to
2082 		 * poll thread.
2083 		 */
2084 		mac_srs->srs_state &= ~proc_type;
2085 		return;
2086 	}
2087 
2088 	/*
2089 	 * If we can't process packets because we have exceeded
2090 	 * B/W limit for this tick, just set the timeout
2091 	 * and leave.
2092 	 *
2093 	 * Even if there are no packets queued in SRS, we
2094 	 * need to make sure that the shared counter is
2095 	 * clear and any associated softrings have cleared
2096 	 * all the backlog. Otherwise, leave the interface
2097 	 * in polling mode and the poll thread will get
2098 	 * signalled once the count goes down to zero.
2099 	 *
2100 	 * If someone is already draining the queue (SRS_PROC is
2101 	 * set) when the srs_poll_pkt_cnt goes down to zero,
2102 	 * then it means that drain is already running and we
2103 	 * will turn off polling at that time if there is
2104 	 * no backlog. As long as there are packets queued either
2105 	 * is soft ring set or its soft rings, we will leave
2106 	 * the interface in polling mode.
2107 	 */
2108 	mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2109 	if ((mac_srs->srs_state & SRS_POLLING_CAPAB) &&
2110 	    ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) ||
2111 	    (srs_rx->sr_poll_pkt_cnt > 0))) {
2112 		MAC_SRS_POLLING_ON(mac_srs);
2113 		mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2114 		if ((mac_srs->srs_first != NULL) &&
2115 		    (mac_srs->srs_tid == NULL))
2116 			mac_srs->srs_tid = timeout(mac_srs_fire,
2117 			    mac_srs, 1);
2118 		mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2119 		return;
2120 	}
2121 	mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2122 
2123 leave_poll:
2124 
2125 	/* Nothing else to do. Get out of poll mode */
2126 	MAC_SRS_POLLING_OFF(mac_srs);
2127 	mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2128 }
2129 
2130 /*
2131  * mac_srs_worker
2132  *
2133  * The SRS worker routine. Drains the queue when no one else is
2134  * processing it.
2135  */
2136 void
2137 mac_srs_worker(mac_soft_ring_set_t *mac_srs)
2138 {
2139 	kmutex_t 		*lock = &mac_srs->srs_lock;
2140 	kcondvar_t 		*async = &mac_srs->srs_async;
2141 	callb_cpr_t		cprinfo;
2142 	boolean_t		bw_ctl_flag;
2143 
2144 	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker");
2145 	mutex_enter(lock);
2146 
2147 start:
2148 	for (;;) {
2149 		bw_ctl_flag = B_FALSE;
2150 		if (mac_srs->srs_type & SRST_BW_CONTROL) {
2151 			MAC_SRS_BW_LOCK(mac_srs);
2152 			MAC_SRS_CHECK_BW_CONTROL(mac_srs);
2153 			if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
2154 				bw_ctl_flag = B_TRUE;
2155 			MAC_SRS_BW_UNLOCK(mac_srs);
2156 		}
2157 		/*
2158 		 * The SRS_BW_ENFORCED flag may change since we have dropped
2159 		 * the mac_bw_lock. However the drain function can handle both
2160 		 * a drainable SRS or a bandwidth controlled SRS, and the
2161 		 * effect of scheduling a timeout is to wakeup the worker
2162 		 * thread which in turn will call the drain function. Since
2163 		 * we release the srs_lock atomically only in the cv_wait there
2164 		 * isn't a fear of waiting for ever.
2165 		 */
2166 		while (((mac_srs->srs_state & SRS_PROC) ||
2167 		    (mac_srs->srs_first == NULL) || bw_ctl_flag ||
2168 		    (mac_srs->srs_state & SRS_TX_BLOCKED)) &&
2169 		    !(mac_srs->srs_state & SRS_PAUSE)) {
2170 			/*
2171 			 * If we have packets queued and we are here
2172 			 * because B/W control is in place, we better
2173 			 * schedule the worker wakeup after 1 tick
2174 			 * to see if bandwidth control can be relaxed.
2175 			 */
2176 			if (bw_ctl_flag && mac_srs->srs_tid == NULL) {
2177 				/*
2178 				 * We need to ensure that a timer  is already
2179 				 * scheduled or we force  schedule one for
2180 				 * later so that we can continue processing
2181 				 * after this  quanta is over.
2182 				 */
2183 				mac_srs->srs_tid = timeout(mac_srs_fire,
2184 				    mac_srs, 1);
2185 			}
2186 wait:
2187 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2188 			cv_wait(async, lock);
2189 			CALLB_CPR_SAFE_END(&cprinfo, lock);
2190 
2191 			if (mac_srs->srs_state & SRS_PAUSE)
2192 				goto done;
2193 			if (mac_srs->srs_state & SRS_PROC)
2194 				goto wait;
2195 
2196 			if (mac_srs->srs_first != NULL &&
2197 			    mac_srs->srs_type & SRST_BW_CONTROL) {
2198 				MAC_SRS_BW_LOCK(mac_srs);
2199 				if (mac_srs->srs_bw->mac_bw_state &
2200 				    SRS_BW_ENFORCED) {
2201 					MAC_SRS_CHECK_BW_CONTROL(mac_srs);
2202 				}
2203 				bw_ctl_flag = mac_srs->srs_bw->mac_bw_state &
2204 				    SRS_BW_ENFORCED;
2205 				MAC_SRS_BW_UNLOCK(mac_srs);
2206 			}
2207 		}
2208 
2209 		if (mac_srs->srs_state & SRS_PAUSE)
2210 			goto done;
2211 		mac_srs->srs_drain_func(mac_srs, SRS_WORKER);
2212 	}
2213 done:
2214 	/*
2215 	 * The Rx SRS quiesce logic first cuts off packet supply to the SRS
2216 	 * from both hard and soft classifications and waits for such threads
2217 	 * to finish before signaling the worker. So at this point the only
2218 	 * thread left that could be competing with the worker is the poll
2219 	 * thread. In the case of Tx, there shouldn't be any thread holding
2220 	 * SRS_PROC at this point.
2221 	 */
2222 	if (!(mac_srs->srs_state & SRS_PROC)) {
2223 		mac_srs->srs_state |= SRS_PROC;
2224 	} else {
2225 		ASSERT((mac_srs->srs_type & SRST_TX) == 0);
2226 		/*
2227 		 * Poll thread still owns the SRS and is still running
2228 		 */
2229 		ASSERT((mac_srs->srs_poll_thr == NULL) ||
2230 		    ((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
2231 		    SRS_POLL_THR_OWNER));
2232 	}
2233 	mac_srs_worker_quiesce(mac_srs);
2234 	/*
2235 	 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
2236 	 * of the quiesce operation
2237 	 */
2238 	while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART)))
2239 		cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock);
2240 
2241 	if (mac_srs->srs_state & SRS_RESTART) {
2242 		ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
2243 		mac_srs_worker_restart(mac_srs);
2244 		mac_srs->srs_state &= ~SRS_PROC;
2245 		goto start;
2246 	}
2247 
2248 	if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE))
2249 		mac_srs_worker_quiesce(mac_srs);
2250 
2251 	mac_srs->srs_state &= ~SRS_PROC;
2252 	/* The macro drops the srs_lock */
2253 	CALLB_CPR_EXIT(&cprinfo);
2254 	thread_exit();
2255 }
2256 
2257 /*
2258  * mac_rx_srs_subflow_process
2259  *
2260  * Receive side routine called from interrupt path when there are
2261  * sub flows present on this SRS.
2262  */
2263 /* ARGSUSED */
2264 void
2265 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs,
2266     mblk_t *mp_chain, boolean_t loopback)
2267 {
2268 	flow_entry_t		*flent = NULL;
2269 	flow_entry_t		*prev_flent = NULL;
2270 	mblk_t			*mp = NULL;
2271 	mblk_t			*tail = NULL;
2272 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
2273 	mac_client_impl_t	*mcip;
2274 
2275 	mcip = mac_srs->srs_mcip;
2276 	ASSERT(mcip != NULL);
2277 
2278 	/*
2279 	 * We need to determine the SRS for every packet
2280 	 * by walking the flow table, if we don't get any,
2281 	 * then we proceed using the SRS we came with.
2282 	 */
2283 	mp = tail = mp_chain;
2284 	while (mp != NULL) {
2285 
2286 		/*
2287 		 * We will increment the stats for the mactching subflow.
2288 		 * when we get the bytes/pkt count for the classified packets
2289 		 * later in mac_rx_srs_process.
2290 		 */
2291 		(void) mac_flow_lookup(mcip->mci_subflow_tab, mp,
2292 		    FLOW_INBOUND, &flent);
2293 
2294 		if (mp == mp_chain || flent == prev_flent) {
2295 			if (prev_flent != NULL)
2296 				FLOW_REFRELE(prev_flent);
2297 			prev_flent = flent;
2298 			flent = NULL;
2299 			tail = mp;
2300 			mp = mp->b_next;
2301 			continue;
2302 		}
2303 		tail->b_next = NULL;
2304 		/*
2305 		 * A null indicates, this is for the mac_srs itself.
2306 		 * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
2307 		 */
2308 		if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
2309 			mac_rx_srs_process(arg,
2310 			    (mac_resource_handle_t)mac_srs, mp_chain,
2311 			    loopback);
2312 		} else {
2313 			(prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
2314 			    prev_flent->fe_cb_arg2, mp_chain, loopback);
2315 			FLOW_REFRELE(prev_flent);
2316 		}
2317 		prev_flent = flent;
2318 		flent = NULL;
2319 		mp_chain = mp;
2320 		tail = mp;
2321 		mp = mp->b_next;
2322 	}
2323 	/* Last chain */
2324 	ASSERT(mp_chain != NULL);
2325 	if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
2326 		mac_rx_srs_process(arg,
2327 		    (mac_resource_handle_t)mac_srs, mp_chain, loopback);
2328 	} else {
2329 		(prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
2330 		    prev_flent->fe_cb_arg2, mp_chain, loopback);
2331 		FLOW_REFRELE(prev_flent);
2332 	}
2333 }
2334 
2335 /*
2336  * mac_rx_srs_process
2337  *
2338  * Receive side routine called from the interrupt path.
2339  *
2340  * loopback is set to force a context switch on the loopback
2341  * path between MAC clients.
2342  */
2343 /* ARGSUSED */
2344 void
2345 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain,
2346     boolean_t loopback)
2347 {
2348 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
2349 	mblk_t			*mp, *tail, *head;
2350 	int			count = 0;
2351 	int			count1;
2352 	size_t			sz = 0;
2353 	size_t			chain_sz, sz1;
2354 	mac_bw_ctl_t		*mac_bw;
2355 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
2356 
2357 	/*
2358 	 * Set the tail, count and sz. We set the sz irrespective
2359 	 * of whether we are doing B/W control or not for the
2360 	 * purpose of updating the stats.
2361 	 */
2362 	mp = tail = mp_chain;
2363 	while (mp != NULL) {
2364 		tail = mp;
2365 		count++;
2366 		sz += msgdsize(mp);
2367 		mp = mp->b_next;
2368 	}
2369 
2370 	mutex_enter(&mac_srs->srs_lock);
2371 
2372 	if (loopback) {
2373 		SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz);
2374 		SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count);
2375 
2376 	} else {
2377 		SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz);
2378 		SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count);
2379 	}
2380 
2381 	/*
2382 	 * If the SRS in already being processed; has been blanked;
2383 	 * can be processed by worker thread only; or the B/W limit
2384 	 * has been reached, then queue the chain and check if
2385 	 * worker thread needs to be awakend.
2386 	 */
2387 	if (mac_srs->srs_type & SRST_BW_CONTROL) {
2388 		mac_bw = mac_srs->srs_bw;
2389 		ASSERT(mac_bw != NULL);
2390 		mutex_enter(&mac_bw->mac_bw_lock);
2391 		mac_bw->mac_bw_intr += sz;
2392 		if (mac_bw->mac_bw_limit == 0) {
2393 			/* zero bandwidth: drop all */
2394 			srs_rx->sr_stat.mrs_sdrops += count;
2395 			mac_bw->mac_bw_drop_bytes += sz;
2396 			mutex_exit(&mac_bw->mac_bw_lock);
2397 			mutex_exit(&mac_srs->srs_lock);
2398 			mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
2399 			return;
2400 		} else {
2401 			if ((mac_bw->mac_bw_sz + sz) <=
2402 			    mac_bw->mac_bw_drop_threshold) {
2403 				mutex_exit(&mac_bw->mac_bw_lock);
2404 				MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain,
2405 				    tail, count, sz);
2406 			} else {
2407 				mp = mp_chain;
2408 				chain_sz = 0;
2409 				count1 = 0;
2410 				tail = NULL;
2411 				head = NULL;
2412 				while (mp != NULL) {
2413 					sz1 = msgdsize(mp);
2414 					if (mac_bw->mac_bw_sz + chain_sz + sz1 >
2415 					    mac_bw->mac_bw_drop_threshold)
2416 						break;
2417 					chain_sz += sz1;
2418 					count1++;
2419 					tail = mp;
2420 					mp = mp->b_next;
2421 				}
2422 				mutex_exit(&mac_bw->mac_bw_lock);
2423 				if (tail != NULL) {
2424 					head = tail->b_next;
2425 					tail->b_next = NULL;
2426 					MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs,
2427 					    mp_chain, tail, count1, chain_sz);
2428 					sz -= chain_sz;
2429 					count -= count1;
2430 				} else {
2431 					/* Can't pick up any */
2432 					head = mp_chain;
2433 				}
2434 				if (head != NULL) {
2435 					/* Drop any packet over the threshold */
2436 					srs_rx->sr_stat.mrs_sdrops += count;
2437 					mutex_enter(&mac_bw->mac_bw_lock);
2438 					mac_bw->mac_bw_drop_bytes += sz;
2439 					mutex_exit(&mac_bw->mac_bw_lock);
2440 					freemsgchain(head);
2441 				}
2442 			}
2443 			MAC_SRS_WORKER_WAKEUP(mac_srs);
2444 			mutex_exit(&mac_srs->srs_lock);
2445 			return;
2446 		}
2447 	}
2448 
2449 	/*
2450 	 * If the total number of packets queued in the SRS and
2451 	 * its associated soft rings exceeds the max allowed,
2452 	 * then drop the chain. If we are polling capable, this
2453 	 * shouldn't be happening.
2454 	 */
2455 	if (!(mac_srs->srs_type & SRST_BW_CONTROL) &&
2456 	    (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) {
2457 		mac_bw = mac_srs->srs_bw;
2458 		srs_rx->sr_stat.mrs_sdrops += count;
2459 		mutex_enter(&mac_bw->mac_bw_lock);
2460 		mac_bw->mac_bw_drop_bytes += sz;
2461 		mutex_exit(&mac_bw->mac_bw_lock);
2462 		freemsgchain(mp_chain);
2463 		mutex_exit(&mac_srs->srs_lock);
2464 		return;
2465 	}
2466 
2467 	MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz);
2468 
2469 	if (!(mac_srs->srs_state & SRS_PROC)) {
2470 		/*
2471 		 * If we are coming via loopback, if we are not optimizing for
2472 		 * latency, or if our stack is running deep, we should signal
2473 		 * the worker thread.
2474 		 */
2475 		if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) ||
2476 		    MAC_RX_SRS_TOODEEP()) {
2477 			/*
2478 			 * For loopback, We need to let the worker take
2479 			 * over as we don't want to continue in the same
2480 			 * thread even if we can. This could lead to stack
2481 			 * overflows and may also end up using
2482 			 * resources (cpu) incorrectly.
2483 			 */
2484 			cv_signal(&mac_srs->srs_async);
2485 		} else {
2486 			/*
2487 			 * Seems like no one is processing the SRS and
2488 			 * there is no backlog. We also inline process
2489 			 * our packet if its a single packet in non
2490 			 * latency optimized case (in latency optimized
2491 			 * case, we inline process chains of any size).
2492 			 */
2493 			mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST);
2494 		}
2495 	}
2496 	mutex_exit(&mac_srs->srs_lock);
2497 }
2498 
2499 /* TX SIDE ROUTINES (RUNTIME) */
2500 
2501 /*
2502  * mac_tx_srs_no_desc
2503  *
2504  * This routine is called by Tx single ring default mode
2505  * when Tx ring runs out of descs.
2506  */
2507 mac_tx_cookie_t
2508 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2509     uint16_t flag, mblk_t **ret_mp)
2510 {
2511 	mac_tx_cookie_t cookie = NULL;
2512 	mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
2513 	boolean_t wakeup_worker = B_TRUE;
2514 	uint32_t tx_mode = srs_tx->st_mode;
2515 	int cnt, sz;
2516 	mblk_t *tail;
2517 
2518 	ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW);
2519 	if (flag & MAC_DROP_ON_NO_DESC) {
2520 		MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
2521 	} else {
2522 		if (mac_srs->srs_first != NULL)
2523 			wakeup_worker = B_FALSE;
2524 		MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2525 		if (flag & MAC_TX_NO_ENQUEUE) {
2526 			/*
2527 			 * If TX_QUEUED is not set, queue the
2528 			 * packet and let mac_tx_srs_drain()
2529 			 * set the TX_BLOCKED bit for the
2530 			 * reasons explained above. Otherwise,
2531 			 * return the mblks.
2532 			 */
2533 			if (wakeup_worker) {
2534 				MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2535 				    mp_chain, tail, cnt, sz);
2536 			} else {
2537 				MAC_TX_SET_NO_ENQUEUE(mac_srs,
2538 				    mp_chain, ret_mp, cookie);
2539 			}
2540 		} else {
2541 			MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
2542 			    tail, cnt, sz, cookie);
2543 		}
2544 		if (wakeup_worker)
2545 			cv_signal(&mac_srs->srs_async);
2546 	}
2547 	return (cookie);
2548 }
2549 
2550 /*
2551  * mac_tx_srs_enqueue
2552  *
2553  * This routine is called when Tx SRS is operating in either serializer
2554  * or bandwidth mode. In serializer mode, a packet will get enqueued
2555  * when a thread cannot enter SRS exclusively. In bandwidth mode,
2556  * packets gets queued if allowed byte-count limit for a tick is
2557  * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
2558  * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
2559  * the default mode or fanout mode. Here packets get dropped or
2560  * returned back to the caller only after hi-watermark worth of data
2561  * is queued.
2562  */
2563 static mac_tx_cookie_t
2564 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2565     uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp)
2566 {
2567 	mac_tx_cookie_t cookie = NULL;
2568 	int cnt, sz;
2569 	mblk_t *tail;
2570 	boolean_t wakeup_worker = B_TRUE;
2571 
2572 	/*
2573 	 * Ignore fanout hint if we don't have multiple tx rings.
2574 	 */
2575 	if (!MAC_TX_SOFT_RINGS(mac_srs))
2576 		fanout_hint = 0;
2577 
2578 	if (mac_srs->srs_first != NULL)
2579 		wakeup_worker = B_FALSE;
2580 	MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2581 	if (flag & MAC_DROP_ON_NO_DESC) {
2582 		if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) {
2583 			MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
2584 		} else {
2585 			MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2586 			    mp_chain, tail, cnt, sz);
2587 		}
2588 	} else if (flag & MAC_TX_NO_ENQUEUE) {
2589 		if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) ||
2590 		    (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) {
2591 			MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain,
2592 			    ret_mp, cookie);
2593 		} else {
2594 			mp_chain->b_prev = (mblk_t *)fanout_hint;
2595 			MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2596 			    mp_chain, tail, cnt, sz);
2597 		}
2598 	} else {
2599 		/*
2600 		 * If you are BW_ENFORCED, just enqueue the
2601 		 * packet. srs_worker will drain it at the
2602 		 * prescribed rate. Before enqueueing, save
2603 		 * the fanout hint.
2604 		 */
2605 		mp_chain->b_prev = (mblk_t *)fanout_hint;
2606 		MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
2607 		    tail, cnt, sz, cookie);
2608 	}
2609 	if (wakeup_worker)
2610 		cv_signal(&mac_srs->srs_async);
2611 	return (cookie);
2612 }
2613 
2614 /*
2615  * There are seven tx modes:
2616  *
2617  * 1) Default mode (SRS_TX_DEFAULT)
2618  * 2) Serialization mode (SRS_TX_SERIALIZE)
2619  * 3) Fanout mode (SRS_TX_FANOUT)
2620  * 4) Bandwdith mode (SRS_TX_BW)
2621  * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
2622  * 6) aggr Tx mode (SRS_TX_AGGR)
2623  * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
2624  *
2625  * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
2626  * based on the number of Tx rings requested for an SRS and whether
2627  * bandwidth control is requested or not.
2628  *
2629  * The default mode (i.e., no fanout/no bandwidth) is used when the
2630  * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
2631  * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
2632  * When the underlying Tx ring runs out of Tx descs, it starts queueing up
2633  * packets in SRS. When flow-control is relieved, the srs_worker drains
2634  * the queued packets and informs blocked clients to restart sending
2635  * packets.
2636  *
2637  * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
2638  * mode is used when the link has no Tx rings or only one Tx ring.
2639  *
2640  * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
2641  * Tx rings. Each Tx ring will have a soft ring associated with it.
2642  * These soft rings will be hung off the Tx SRS. Queueing if it happens
2643  * due to lack of Tx desc will be in individual soft ring (and not srs)
2644  * associated with Tx ring.
2645  *
2646  * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
2647  * only if bw is available. Otherwise the packets will be queued in
2648  * SRS. If fanout to multiple Tx rings is configured, the packets will
2649  * be fanned out among the soft rings associated with the Tx rings.
2650  *
2651  * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
2652  * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
2653  * belonging to a port on which the packet has to be sent. Aggr will
2654  * always have a pseudo Tx ring associated with it even when it is an
2655  * aggregation over a single NIC that has no Tx rings. Even in such a
2656  * case, the single pseudo Tx ring will have a soft ring associated with
2657  * it and the soft ring will hang off the SRS.
2658  *
2659  * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
2660  * In this mode, the bandwidth is first applied on the outgoing packets
2661  * and later mac_tx_addr_mode() function is called to send the packet out
2662  * of one of the pseudo Tx rings.
2663  *
2664  * Four flags are used in srs_state for indicating flow control
2665  * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
2666  * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
2667  * driver below.
2668  * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
2669  * and flow-control pressure is applied back to clients. The clients expect
2670  * wakeup when flow-control is relieved.
2671  * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
2672  * got returned back to client either due to lack of Tx descs or due to bw
2673  * control reasons. The clients expect a wakeup when condition is relieved.
2674  *
2675  * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
2676  * some clients set the following values too: MAC_DROP_ON_NO_DESC,
2677  * MAC_TX_NO_ENQUEUE
2678  * Mac clients that do not want packets to be enqueued in the mac layer set
2679  * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
2680  * Tx soft rings but instead get dropped when the NIC runs out of desc. The
2681  * behaviour of this flag is different when the Tx is running in serializer
2682  * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
2683  * get dropped when Tx high watermark is reached.
2684  * There are some mac clients like vsw, aggr that want the mblks to be
2685  * returned back to clients instead of being queued in Tx SRS (or Tx soft
2686  * rings) under flow-control (i.e., out of desc or exceeding bw limits)
2687  * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
2688  * In the default and Tx fanout mode, the un-transmitted mblks will be
2689  * returned back to the clients when the driver runs out of Tx descs.
2690  * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
2691  * soft ring) so that the clients can be woken up when Tx desc become
2692  * available. When running in serializer or bandwidth mode mode,
2693  * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
2694  */
2695 
2696 mac_tx_func_t
2697 mac_tx_get_func(uint32_t mode)
2698 {
2699 	return (mac_tx_mode_list[mode].mac_tx_func);
2700 }
2701 
2702 /* ARGSUSED */
2703 static mac_tx_cookie_t
2704 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2705     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2706 {
2707 	mac_srs_tx_t		*srs_tx = &mac_srs->srs_tx;
2708 	mac_tx_stats_t		stats;
2709 	mac_tx_cookie_t		cookie = NULL;
2710 
2711 	ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT);
2712 
2713 	/* Regular case with a single Tx ring */
2714 	/*
2715 	 * SRS_TX_BLOCKED is set when underlying NIC runs
2716 	 * out of Tx descs and messages start getting
2717 	 * queued. It won't get reset until
2718 	 * tx_srs_drain() completely drains out the
2719 	 * messages.
2720 	 */
2721 	if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
2722 		/* Tx descs/resources not available */
2723 		mutex_enter(&mac_srs->srs_lock);
2724 		if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
2725 			cookie = mac_tx_srs_no_desc(mac_srs, mp_chain,
2726 			    flag, ret_mp);
2727 			mutex_exit(&mac_srs->srs_lock);
2728 			return (cookie);
2729 		}
2730 		/*
2731 		 * While we were computing mblk count, the
2732 		 * flow control condition got relieved.
2733 		 * Continue with the transmission.
2734 		 */
2735 		mutex_exit(&mac_srs->srs_lock);
2736 	}
2737 
2738 	mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
2739 	    mp_chain, &stats);
2740 
2741 	/*
2742 	 * Multiple threads could be here sending packets.
2743 	 * Under such conditions, it is not possible to
2744 	 * automically set SRS_TX_BLOCKED bit to indicate
2745 	 * out of tx desc condition. To atomically set
2746 	 * this, we queue the returned packet and do
2747 	 * the setting of SRS_TX_BLOCKED in
2748 	 * mac_tx_srs_drain().
2749 	 */
2750 	if (mp_chain != NULL) {
2751 		mutex_enter(&mac_srs->srs_lock);
2752 		cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp);
2753 		mutex_exit(&mac_srs->srs_lock);
2754 		return (cookie);
2755 	}
2756 	SRS_TX_STATS_UPDATE(mac_srs, &stats);
2757 
2758 	return (NULL);
2759 }
2760 
2761 /*
2762  * mac_tx_serialize_mode
2763  *
2764  * This is an experimental mode implemented as per the request of PAE.
2765  * In this mode, all callers attempting to send a packet to the NIC
2766  * will get serialized. Only one thread at any time will access the
2767  * NIC to send the packet out.
2768  */
2769 /* ARGSUSED */
2770 static mac_tx_cookie_t
2771 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2772     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2773 {
2774 	mac_tx_stats_t		stats;
2775 	mac_tx_cookie_t		cookie = NULL;
2776 	mac_srs_tx_t		*srs_tx = &mac_srs->srs_tx;
2777 
2778 	/* Single ring, serialize below */
2779 	ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE);
2780 	mutex_enter(&mac_srs->srs_lock);
2781 	if ((mac_srs->srs_first != NULL) ||
2782 	    (mac_srs->srs_state & SRS_PROC)) {
2783 		/*
2784 		 * In serialization mode, queue all packets until
2785 		 * TX_HIWAT is set.
2786 		 * If drop bit is set, drop if TX_HIWAT is set.
2787 		 * If no_enqueue is set, still enqueue until hiwat
2788 		 * is set and return mblks after TX_HIWAT is set.
2789 		 */
2790 		cookie = mac_tx_srs_enqueue(mac_srs, mp_chain,
2791 		    flag, NULL, ret_mp);
2792 		mutex_exit(&mac_srs->srs_lock);
2793 		return (cookie);
2794 	}
2795 	/*
2796 	 * No packets queued, nothing on proc and no flow
2797 	 * control condition. Fast-path, ok. Do inline
2798 	 * processing.
2799 	 */
2800 	mac_srs->srs_state |= SRS_PROC;
2801 	mutex_exit(&mac_srs->srs_lock);
2802 
2803 	mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
2804 	    mp_chain, &stats);
2805 
2806 	mutex_enter(&mac_srs->srs_lock);
2807 	mac_srs->srs_state &= ~SRS_PROC;
2808 	if (mp_chain != NULL) {
2809 		cookie = mac_tx_srs_enqueue(mac_srs,
2810 		    mp_chain, flag, NULL, ret_mp);
2811 	}
2812 	if (mac_srs->srs_first != NULL) {
2813 		/*
2814 		 * We processed inline our packet and a new
2815 		 * packet/s got queued while we were
2816 		 * processing. Wakeup srs worker
2817 		 */
2818 		cv_signal(&mac_srs->srs_async);
2819 	}
2820 	mutex_exit(&mac_srs->srs_lock);
2821 
2822 	if (cookie == NULL)
2823 		SRS_TX_STATS_UPDATE(mac_srs, &stats);
2824 
2825 	return (cookie);
2826 }
2827 
2828 /*
2829  * mac_tx_fanout_mode
2830  *
2831  * In this mode, the SRS will have access to multiple Tx rings to send
2832  * the packet out. The fanout hint that is passed as an argument is
2833  * used to find an appropriate ring to fanout the traffic. Each Tx
2834  * ring, in turn,  will have a soft ring associated with it. If a Tx
2835  * ring runs out of Tx desc's the returned packet will be queued in
2836  * the soft ring associated with that Tx ring. The srs itself will not
2837  * queue any packets.
2838  */
2839 
2840 #define	MAC_TX_SOFT_RING_PROCESS(chain) {		       		\
2841 	index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count),	\
2842 	softring = mac_srs->srs_tx_soft_rings[index];			\
2843 	cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
2844 	DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index);	\
2845 }
2846 
2847 static mac_tx_cookie_t
2848 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2849     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2850 {
2851 	mac_soft_ring_t		*softring;
2852 	uint64_t		hash;
2853 	uint_t			index;
2854 	mac_tx_cookie_t		cookie = NULL;
2855 
2856 	ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
2857 	    mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT);
2858 	if (fanout_hint != 0) {
2859 		/*
2860 		 * The hint is specified by the caller, simply pass the
2861 		 * whole chain to the soft ring.
2862 		 */
2863 		hash = HASH_HINT(fanout_hint);
2864 		MAC_TX_SOFT_RING_PROCESS(mp_chain);
2865 	} else {
2866 		mblk_t *last_mp, *cur_mp, *sub_chain;
2867 		uint64_t last_hash = 0;
2868 		uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media;
2869 
2870 		/*
2871 		 * Compute the hash from the contents (headers) of the
2872 		 * packets of the mblk chain. Split the chains into
2873 		 * subchains of the same conversation.
2874 		 *
2875 		 * Since there may be more than one ring used for
2876 		 * sub-chains of the same call, and since the caller
2877 		 * does not maintain per conversation state since it
2878 		 * passed a zero hint, unsent subchains will be
2879 		 * dropped.
2880 		 */
2881 
2882 		flag |= MAC_DROP_ON_NO_DESC;
2883 		ret_mp = NULL;
2884 
2885 		ASSERT(ret_mp == NULL);
2886 
2887 		sub_chain = NULL;
2888 		last_mp = NULL;
2889 
2890 		for (cur_mp = mp_chain; cur_mp != NULL;
2891 		    cur_mp = cur_mp->b_next) {
2892 			hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4,
2893 			    B_TRUE);
2894 			if (last_hash != 0 && hash != last_hash) {
2895 				/*
2896 				 * Starting a different subchain, send current
2897 				 * chain out.
2898 				 */
2899 				ASSERT(last_mp != NULL);
2900 				last_mp->b_next = NULL;
2901 				MAC_TX_SOFT_RING_PROCESS(sub_chain);
2902 				sub_chain = NULL;
2903 			}
2904 
2905 			/* add packet to subchain */
2906 			if (sub_chain == NULL)
2907 				sub_chain = cur_mp;
2908 			last_mp = cur_mp;
2909 			last_hash = hash;
2910 		}
2911 
2912 		if (sub_chain != NULL) {
2913 			/* send last subchain */
2914 			ASSERT(last_mp != NULL);
2915 			last_mp->b_next = NULL;
2916 			MAC_TX_SOFT_RING_PROCESS(sub_chain);
2917 		}
2918 
2919 		cookie = NULL;
2920 	}
2921 
2922 	return (cookie);
2923 }
2924 
2925 /*
2926  * mac_tx_bw_mode
2927  *
2928  * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
2929  * only if bw is available. Otherwise the packets will be queued in
2930  * SRS. If the SRS has multiple Tx rings, then packets will get fanned
2931  * out to a Tx rings.
2932  */
2933 static mac_tx_cookie_t
2934 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2935     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2936 {
2937 	int			cnt, sz;
2938 	mblk_t			*tail;
2939 	mac_tx_cookie_t		cookie = NULL;
2940 	mac_srs_tx_t		*srs_tx = &mac_srs->srs_tx;
2941 	clock_t			now;
2942 
2943 	ASSERT(TX_BANDWIDTH_MODE(mac_srs));
2944 	ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
2945 	mutex_enter(&mac_srs->srs_lock);
2946 	if (mac_srs->srs_bw->mac_bw_limit == 0) {
2947 		/*
2948 		 * zero bandwidth, no traffic is sent: drop the packets,
2949 		 * or return the whole chain if the caller requests all
2950 		 * unsent packets back.
2951 		 */
2952 		if (flag & MAC_TX_NO_ENQUEUE) {
2953 			cookie = (mac_tx_cookie_t)mac_srs;
2954 			*ret_mp = mp_chain;
2955 		} else {
2956 			MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
2957 		}
2958 		mutex_exit(&mac_srs->srs_lock);
2959 		return (cookie);
2960 	} else if ((mac_srs->srs_first != NULL) ||
2961 	    (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2962 		cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
2963 		    fanout_hint, ret_mp);
2964 		mutex_exit(&mac_srs->srs_lock);
2965 		return (cookie);
2966 	}
2967 	MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2968 	now = ddi_get_lbolt();
2969 	if (mac_srs->srs_bw->mac_bw_curr_time != now) {
2970 		mac_srs->srs_bw->mac_bw_curr_time = now;
2971 		mac_srs->srs_bw->mac_bw_used = 0;
2972 	} else if (mac_srs->srs_bw->mac_bw_used >
2973 	    mac_srs->srs_bw->mac_bw_limit) {
2974 		mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
2975 		MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2976 		    mp_chain, tail, cnt, sz);
2977 		/*
2978 		 * Wakeup worker thread. Note that worker
2979 		 * thread has to be woken up so that it
2980 		 * can fire up the timer to be woken up
2981 		 * on the next tick. Also once
2982 		 * BW_ENFORCED is set, it can only be
2983 		 * reset by srs_worker thread. Until then
2984 		 * all packets will get queued up in SRS
2985 		 * and hence this this code path won't be
2986 		 * entered until BW_ENFORCED is reset.
2987 		 */
2988 		cv_signal(&mac_srs->srs_async);
2989 		mutex_exit(&mac_srs->srs_lock);
2990 		return (cookie);
2991 	}
2992 
2993 	mac_srs->srs_bw->mac_bw_used += sz;
2994 	mutex_exit(&mac_srs->srs_lock);
2995 
2996 	if (srs_tx->st_mode == SRS_TX_BW_FANOUT) {
2997 		mac_soft_ring_t *softring;
2998 		uint_t indx, hash;
2999 
3000 		hash = HASH_HINT(fanout_hint);
3001 		indx = COMPUTE_INDEX(hash,
3002 		    mac_srs->srs_tx_ring_count);
3003 		softring = mac_srs->srs_tx_soft_rings[indx];
3004 		return (mac_tx_soft_ring_process(softring, mp_chain, flag,
3005 		    ret_mp));
3006 	} else if (srs_tx->st_mode == SRS_TX_BW_AGGR) {
3007 		return (mac_tx_aggr_mode(mac_srs, mp_chain,
3008 		    fanout_hint, flag, ret_mp));
3009 	} else {
3010 		mac_tx_stats_t		stats;
3011 
3012 		mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3013 		    mp_chain, &stats);
3014 
3015 		if (mp_chain != NULL) {
3016 			mutex_enter(&mac_srs->srs_lock);
3017 			MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3018 			if (mac_srs->srs_bw->mac_bw_used > sz)
3019 				mac_srs->srs_bw->mac_bw_used -= sz;
3020 			else
3021 				mac_srs->srs_bw->mac_bw_used = 0;
3022 			cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3023 			    fanout_hint, ret_mp);
3024 			mutex_exit(&mac_srs->srs_lock);
3025 			return (cookie);
3026 		}
3027 		SRS_TX_STATS_UPDATE(mac_srs, &stats);
3028 
3029 		return (NULL);
3030 	}
3031 }
3032 
3033 /*
3034  * mac_tx_aggr_mode
3035  *
3036  * This routine invokes an aggr function, aggr_find_tx_ring(), to find
3037  * a (pseudo) Tx ring belonging to a port on which the packet has to
3038  * be sent. aggr_find_tx_ring() first finds the outgoing port based on
3039  * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
3040  * a Tx ring from the selected port.
3041  *
3042  * Note that a port can be deleted from the aggregation. In such a case,
3043  * the aggregation layer first separates the port from the rest of the
3044  * ports making sure that port (and thus any Tx rings associated with
3045  * it) won't get selected in the call to aggr_find_tx_ring() function.
3046  * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
3047  * handles one by one which in turn will quiesce the Tx SRS and remove
3048  * the soft ring associated with the pseudo Tx ring. Unlike Rx side
3049  * where a cookie is used to protect against mac_rx_ring() calls on
3050  * rings that have been removed, no such cookie is needed on the Tx
3051  * side as the pseudo Tx ring won't be available anymore to
3052  * aggr_find_tx_ring() once the port has been removed.
3053  */
3054 static mac_tx_cookie_t
3055 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3056     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3057 {
3058 	mac_srs_tx_t		*srs_tx = &mac_srs->srs_tx;
3059 	mac_tx_ring_fn_t	find_tx_ring_fn;
3060 	mac_ring_handle_t	ring = NULL;
3061 	void			*arg;
3062 	mac_soft_ring_t		*sringp;
3063 
3064 	find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn;
3065 	arg = srs_tx->st_capab_aggr.mca_arg;
3066 	if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL)
3067 		return (NULL);
3068 	sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index];
3069 	return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp));
3070 }
3071 
3072 void
3073 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie)
3074 {
3075 	mac_cb_t *mcb;
3076 	mac_tx_notify_cb_t *mtnfp;
3077 
3078 	/* Wakeup callback registered clients */
3079 	MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info);
3080 	for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL;
3081 	    mcb = mcb->mcb_nextp) {
3082 		mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp;
3083 		mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie);
3084 	}
3085 	MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info,
3086 	    &mcip->mci_tx_notify_cb_list);
3087 }
3088 
3089 /* ARGSUSED */
3090 void
3091 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
3092 {
3093 	mblk_t			*head, *tail;
3094 	size_t			sz;
3095 	uint32_t		tx_mode;
3096 	uint_t			saved_pkt_count;
3097 	mac_tx_stats_t		stats;
3098 	mac_srs_tx_t		*srs_tx = &mac_srs->srs_tx;
3099 	clock_t			now;
3100 
3101 	saved_pkt_count = 0;
3102 	ASSERT(mutex_owned(&mac_srs->srs_lock));
3103 	ASSERT(!(mac_srs->srs_state & SRS_PROC));
3104 
3105 	mac_srs->srs_state |= SRS_PROC;
3106 
3107 	tx_mode = srs_tx->st_mode;
3108 	if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) {
3109 		if (mac_srs->srs_first != NULL) {
3110 			head = mac_srs->srs_first;
3111 			tail = mac_srs->srs_last;
3112 			saved_pkt_count = mac_srs->srs_count;
3113 			mac_srs->srs_first = NULL;
3114 			mac_srs->srs_last = NULL;
3115 			mac_srs->srs_count = 0;
3116 			mutex_exit(&mac_srs->srs_lock);
3117 
3118 			head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3119 			    head, &stats);
3120 
3121 			mutex_enter(&mac_srs->srs_lock);
3122 			if (head != NULL) {
3123 				/* Device out of tx desc, set block */
3124 				if (head->b_next == NULL)
3125 					VERIFY(head == tail);
3126 				tail->b_next = mac_srs->srs_first;
3127 				mac_srs->srs_first = head;
3128 				mac_srs->srs_count +=
3129 				    (saved_pkt_count - stats.mts_opackets);
3130 				if (mac_srs->srs_last == NULL)
3131 					mac_srs->srs_last = tail;
3132 				MAC_TX_SRS_BLOCK(mac_srs, head);
3133 			} else {
3134 				srs_tx->st_woken_up = B_FALSE;
3135 				SRS_TX_STATS_UPDATE(mac_srs, &stats);
3136 			}
3137 		}
3138 	} else if (tx_mode == SRS_TX_BW) {
3139 		/*
3140 		 * We are here because the timer fired and we have some data
3141 		 * to tranmit. Also mac_tx_srs_worker should have reset
3142 		 * SRS_BW_ENFORCED flag
3143 		 */
3144 		ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED));
3145 		head = tail = mac_srs->srs_first;
3146 		while (mac_srs->srs_first != NULL) {
3147 			tail = mac_srs->srs_first;
3148 			tail->b_prev = NULL;
3149 			mac_srs->srs_first = tail->b_next;
3150 			if (mac_srs->srs_first == NULL)
3151 				mac_srs->srs_last = NULL;
3152 			mac_srs->srs_count--;
3153 			sz = msgdsize(tail);
3154 			mac_srs->srs_size -= sz;
3155 			saved_pkt_count++;
3156 			MAC_TX_UPDATE_BW_INFO(mac_srs, sz);
3157 
3158 			if (mac_srs->srs_bw->mac_bw_used <
3159 			    mac_srs->srs_bw->mac_bw_limit)
3160 				continue;
3161 
3162 			now = ddi_get_lbolt();
3163 			if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3164 				mac_srs->srs_bw->mac_bw_curr_time = now;
3165 				mac_srs->srs_bw->mac_bw_used = sz;
3166 				continue;
3167 			}
3168 			mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3169 			break;
3170 		}
3171 
3172 		ASSERT((head == NULL && tail == NULL) ||
3173 		    (head != NULL && tail != NULL));
3174 		if (tail != NULL) {
3175 			tail->b_next = NULL;
3176 			mutex_exit(&mac_srs->srs_lock);
3177 
3178 			head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3179 			    head, &stats);
3180 
3181 			mutex_enter(&mac_srs->srs_lock);
3182 			if (head != NULL) {
3183 				uint_t size_sent;
3184 
3185 				/* Device out of tx desc, set block */
3186 				if (head->b_next == NULL)
3187 					VERIFY(head == tail);
3188 				tail->b_next = mac_srs->srs_first;
3189 				mac_srs->srs_first = head;
3190 				mac_srs->srs_count +=
3191 				    (saved_pkt_count - stats.mts_opackets);
3192 				if (mac_srs->srs_last == NULL)
3193 					mac_srs->srs_last = tail;
3194 				size_sent = sz - stats.mts_obytes;
3195 				mac_srs->srs_size += size_sent;
3196 				mac_srs->srs_bw->mac_bw_sz += size_sent;
3197 				if (mac_srs->srs_bw->mac_bw_used > size_sent) {
3198 					mac_srs->srs_bw->mac_bw_used -=
3199 					    size_sent;
3200 				} else {
3201 					mac_srs->srs_bw->mac_bw_used = 0;
3202 				}
3203 				MAC_TX_SRS_BLOCK(mac_srs, head);
3204 			} else {
3205 				srs_tx->st_woken_up = B_FALSE;
3206 				SRS_TX_STATS_UPDATE(mac_srs, &stats);
3207 			}
3208 		}
3209 	} else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) {
3210 		mblk_t *prev;
3211 		uint64_t hint;
3212 
3213 		/*
3214 		 * We are here because the timer fired and we
3215 		 * have some quota to tranmit.
3216 		 */
3217 		prev = NULL;
3218 		head = tail = mac_srs->srs_first;
3219 		while (mac_srs->srs_first != NULL) {
3220 			tail = mac_srs->srs_first;
3221 			mac_srs->srs_first = tail->b_next;
3222 			if (mac_srs->srs_first == NULL)
3223 				mac_srs->srs_last = NULL;
3224 			mac_srs->srs_count--;
3225 			sz = msgdsize(tail);
3226 			mac_srs->srs_size -= sz;
3227 			mac_srs->srs_bw->mac_bw_used += sz;
3228 			if (prev == NULL)
3229 				hint = (ulong_t)tail->b_prev;
3230 			if (hint != (ulong_t)tail->b_prev) {
3231 				prev->b_next = NULL;
3232 				mutex_exit(&mac_srs->srs_lock);
3233 				TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
3234 				head = tail;
3235 				hint = (ulong_t)tail->b_prev;
3236 				mutex_enter(&mac_srs->srs_lock);
3237 			}
3238 
3239 			prev = tail;
3240 			tail->b_prev = NULL;
3241 			if (mac_srs->srs_bw->mac_bw_used <
3242 			    mac_srs->srs_bw->mac_bw_limit)
3243 				continue;
3244 
3245 			now = ddi_get_lbolt();
3246 			if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3247 				mac_srs->srs_bw->mac_bw_curr_time = now;
3248 				mac_srs->srs_bw->mac_bw_used = 0;
3249 				continue;
3250 			}
3251 			mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3252 			break;
3253 		}
3254 		ASSERT((head == NULL && tail == NULL) ||
3255 		    (head != NULL && tail != NULL));
3256 		if (tail != NULL) {
3257 			tail->b_next = NULL;
3258 			mutex_exit(&mac_srs->srs_lock);
3259 			TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
3260 			mutex_enter(&mac_srs->srs_lock);
3261 		}
3262 	}
3263 	/*
3264 	 * SRS_TX_FANOUT case not considered here because packets
3265 	 * won't be queued in the SRS for this case. Packets will
3266 	 * be sent directly to soft rings underneath and if there
3267 	 * is any queueing at all, it would be in Tx side soft
3268 	 * rings.
3269 	 */
3270 
3271 	/*
3272 	 * When srs_count becomes 0, reset SRS_TX_HIWAT and
3273 	 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
3274 	 */
3275 	if (mac_srs->srs_count == 0 && (mac_srs->srs_state &
3276 	    (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) {
3277 		mac_client_impl_t *mcip = mac_srs->srs_mcip;
3278 		boolean_t wakeup_required = B_FALSE;
3279 
3280 		if (mac_srs->srs_state &
3281 		    (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) {
3282 			wakeup_required = B_TRUE;
3283 		}
3284 		mac_srs->srs_state &= ~(SRS_TX_HIWAT |
3285 		    SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED);
3286 		mutex_exit(&mac_srs->srs_lock);
3287 		if (wakeup_required) {
3288 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs);
3289 			/*
3290 			 * If the client is not the primary MAC client, then we
3291 			 * need to send the notification to the clients upper
3292 			 * MAC, i.e. mci_upper_mip.
3293 			 */
3294 			mac_tx_notify(mcip->mci_upper_mip != NULL ?
3295 			    mcip->mci_upper_mip : mcip->mci_mip);
3296 		}
3297 		mutex_enter(&mac_srs->srs_lock);
3298 	}
3299 	mac_srs->srs_state &= ~SRS_PROC;
3300 }
3301 
3302 /*
3303  * Given a packet, get the flow_entry that identifies the flow
3304  * to which that packet belongs. The flow_entry will contain
3305  * the transmit function to be used to send the packet. If the
3306  * function returns NULL, the packet should be sent using the
3307  * underlying NIC.
3308  */
3309 static flow_entry_t *
3310 mac_tx_classify(mac_impl_t *mip, mblk_t *mp)
3311 {
3312 	flow_entry_t		*flent = NULL;
3313 	mac_client_impl_t	*mcip;
3314 	int	err;
3315 
3316 	/*
3317 	 * Do classification on the packet.
3318 	 */
3319 	err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent);
3320 	if (err != 0)
3321 		return (NULL);
3322 
3323 	/*
3324 	 * This flent might just be an additional one on the MAC client,
3325 	 * i.e. for classification purposes (different fdesc), however
3326 	 * the resources, SRS et. al., are in the mci_flent, so if
3327 	 * this isn't the mci_flent, we need to get it.
3328 	 */
3329 	if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) {
3330 		FLOW_REFRELE(flent);
3331 		flent = mcip->mci_flent;
3332 		FLOW_TRY_REFHOLD(flent, err);
3333 		if (err != 0)
3334 			return (NULL);
3335 	}
3336 
3337 	return (flent);
3338 }
3339 
3340 /*
3341  * This macro is only meant to be used by mac_tx_send().
3342  */
3343 #define	CHECK_VID_AND_ADD_TAG(mp) {			\
3344 	if (vid_check) {				\
3345 		int err = 0;				\
3346 							\
3347 		MAC_VID_CHECK(src_mcip, (mp), err);	\
3348 		if (err != 0) {				\
3349 			freemsg((mp));			\
3350 			(mp) = next;			\
3351 			oerrors++;			\
3352 			continue;			\
3353 		}					\
3354 	}						\
3355 	if (add_tag) {					\
3356 		(mp) = mac_add_vlan_tag((mp), 0, vid);	\
3357 		if ((mp) == NULL) {			\
3358 			(mp) = next;			\
3359 			oerrors++;			\
3360 			continue;			\
3361 		}					\
3362 	}						\
3363 }
3364 
3365 mblk_t *
3366 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain,
3367     mac_tx_stats_t *stats)
3368 {
3369 	mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch;
3370 	mac_impl_t *mip = src_mcip->mci_mip;
3371 	uint_t obytes = 0, opackets = 0, oerrors = 0;
3372 	mblk_t *mp = NULL, *next;
3373 	boolean_t vid_check, add_tag;
3374 	uint16_t vid = 0;
3375 
3376 	if (mip->mi_nclients > 1) {
3377 		vid_check = MAC_VID_CHECK_NEEDED(src_mcip);
3378 		add_tag = MAC_TAG_NEEDED(src_mcip);
3379 		if (add_tag)
3380 			vid = mac_client_vid(mch);
3381 	} else {
3382 		ASSERT(mip->mi_nclients == 1);
3383 		vid_check = add_tag = B_FALSE;
3384 	}
3385 
3386 	/*
3387 	 * Fastpath: if there's only one client, we simply send
3388 	 * the packet down to the underlying NIC.
3389 	 */
3390 	if (mip->mi_nactiveclients == 1) {
3391 		DTRACE_PROBE2(fastpath,
3392 		    mac_client_impl_t *, src_mcip, mblk_t *, mp_chain);
3393 
3394 		mp = mp_chain;
3395 		while (mp != NULL) {
3396 			next = mp->b_next;
3397 			mp->b_next = NULL;
3398 			opackets++;
3399 			obytes += (mp->b_cont == NULL ? MBLKL(mp) :
3400 			    msgdsize(mp));
3401 
3402 			CHECK_VID_AND_ADD_TAG(mp);
3403 			MAC_TX(mip, ring, mp, src_mcip);
3404 
3405 			/*
3406 			 * If the driver is out of descriptors and does a
3407 			 * partial send it will return a chain of unsent
3408 			 * mblks. Adjust the accounting stats.
3409 			 */
3410 			if (mp != NULL) {
3411 				opackets--;
3412 				obytes -= msgdsize(mp);
3413 				mp->b_next = next;
3414 				break;
3415 			}
3416 			mp = next;
3417 		}
3418 		goto done;
3419 	}
3420 
3421 	/*
3422 	 * No fastpath, we either have more than one MAC client
3423 	 * defined on top of the same MAC, or one or more MAC
3424 	 * client promiscuous callbacks.
3425 	 */
3426 	DTRACE_PROBE3(slowpath, mac_client_impl_t *,
3427 	    src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain);
3428 
3429 	mp = mp_chain;
3430 	while (mp != NULL) {
3431 		flow_entry_t *dst_flow_ent;
3432 		void *flow_cookie;
3433 		size_t	pkt_size;
3434 		mblk_t *mp1;
3435 
3436 		next = mp->b_next;
3437 		mp->b_next = NULL;
3438 		opackets++;
3439 		pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp));
3440 		obytes += pkt_size;
3441 		CHECK_VID_AND_ADD_TAG(mp);
3442 
3443 		/*
3444 		 * Find the destination.
3445 		 */
3446 		dst_flow_ent = mac_tx_classify(mip, mp);
3447 
3448 		if (dst_flow_ent != NULL) {
3449 			size_t	hdrsize;
3450 			int	err = 0;
3451 
3452 			if (mip->mi_info.mi_nativemedia == DL_ETHER) {
3453 				struct ether_vlan_header *evhp =
3454 				    (struct ether_vlan_header *)mp->b_rptr;
3455 
3456 				if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN)
3457 					hdrsize = sizeof (*evhp);
3458 				else
3459 					hdrsize = sizeof (struct ether_header);
3460 			} else {
3461 				mac_header_info_t	mhi;
3462 
3463 				err = mac_header_info((mac_handle_t)mip,
3464 				    mp, &mhi);
3465 				if (err == 0)
3466 					hdrsize = mhi.mhi_hdrsize;
3467 			}
3468 
3469 			/*
3470 			 * Got a matching flow. It's either another
3471 			 * MAC client, or a broadcast/multicast flow.
3472 			 * Make sure the packet size is within the
3473 			 * allowed size. If not drop the packet and
3474 			 * move to next packet.
3475 			 */
3476 			if (err != 0 ||
3477 			    (pkt_size - hdrsize) > mip->mi_sdu_max) {
3478 				oerrors++;
3479 				DTRACE_PROBE2(loopback__drop, size_t, pkt_size,
3480 				    mblk_t *, mp);
3481 				freemsg(mp);
3482 				mp = next;
3483 				FLOW_REFRELE(dst_flow_ent);
3484 				continue;
3485 			}
3486 			flow_cookie = mac_flow_get_client_cookie(dst_flow_ent);
3487 			if (flow_cookie != NULL) {
3488 				/*
3489 				 * The vnic_bcast_send function expects
3490 				 * to receive the sender MAC client
3491 				 * as value for arg2.
3492 				 */
3493 				mac_bcast_send(flow_cookie, src_mcip, mp,
3494 				    B_TRUE);
3495 			} else {
3496 				/*
3497 				 * loopback the packet to a local MAC
3498 				 * client. We force a context switch
3499 				 * if both source and destination MAC
3500 				 * clients are used by IP, i.e.
3501 				 * bypass is set.
3502 				 */
3503 				boolean_t do_switch;
3504 				mac_client_impl_t *dst_mcip =
3505 				    dst_flow_ent->fe_mcip;
3506 
3507 				/*
3508 				 * Check if there are promiscuous mode
3509 				 * callbacks defined. This check is
3510 				 * done here in the 'else' case and
3511 				 * not in other cases because this
3512 				 * path is for local loopback
3513 				 * communication which does not go
3514 				 * through MAC_TX(). For paths that go
3515 				 * through MAC_TX(), the promisc_list
3516 				 * check is done inside the MAC_TX()
3517 				 * macro.
3518 				 */
3519 				if (mip->mi_promisc_list != NULL)
3520 					mac_promisc_dispatch(mip, mp, src_mcip);
3521 
3522 				do_switch = ((src_mcip->mci_state_flags &
3523 				    dst_mcip->mci_state_flags &
3524 				    MCIS_CLIENT_POLL_CAPABLE) != 0);
3525 
3526 				if ((mp1 = mac_fix_cksum(mp)) != NULL) {
3527 					(dst_flow_ent->fe_cb_fn)(
3528 					    dst_flow_ent->fe_cb_arg1,
3529 					    dst_flow_ent->fe_cb_arg2,
3530 					    mp1, do_switch);
3531 				}
3532 			}
3533 			FLOW_REFRELE(dst_flow_ent);
3534 		} else {
3535 			/*
3536 			 * Unknown destination, send via the underlying
3537 			 * NIC.
3538 			 */
3539 			MAC_TX(mip, ring, mp, src_mcip);
3540 			if (mp != NULL) {
3541 				/*
3542 				 * Adjust for the last packet that
3543 				 * could not be transmitted
3544 				 */
3545 				opackets--;
3546 				obytes -= pkt_size;
3547 				mp->b_next = next;
3548 				break;
3549 			}
3550 		}
3551 		mp = next;
3552 	}
3553 
3554 done:
3555 	stats->mts_obytes = obytes;
3556 	stats->mts_opackets = opackets;
3557 	stats->mts_oerrors = oerrors;
3558 	return (mp);
3559 }
3560 
3561 /*
3562  * mac_tx_srs_ring_present
3563  *
3564  * Returns whether the specified ring is part of the specified SRS.
3565  */
3566 boolean_t
3567 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
3568 {
3569 	int i;
3570 	mac_soft_ring_t *soft_ring;
3571 
3572 	if (srs->srs_tx.st_arg2 == tx_ring)
3573 		return (B_TRUE);
3574 
3575 	for (i = 0; i < srs->srs_tx_ring_count; i++) {
3576 		soft_ring =  srs->srs_tx_soft_rings[i];
3577 		if (soft_ring->s_ring_tx_arg2 == tx_ring)
3578 			return (B_TRUE);
3579 	}
3580 
3581 	return (B_FALSE);
3582 }
3583 
3584 /*
3585  * mac_tx_srs_get_soft_ring
3586  *
3587  * Returns the TX soft ring associated with the given ring, if present.
3588  */
3589 mac_soft_ring_t *
3590 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
3591 {
3592 	int		i;
3593 	mac_soft_ring_t	*soft_ring;
3594 
3595 	if (srs->srs_tx.st_arg2 == tx_ring)
3596 		return (NULL);
3597 
3598 	for (i = 0; i < srs->srs_tx_ring_count; i++) {
3599 		soft_ring =  srs->srs_tx_soft_rings[i];
3600 		if (soft_ring->s_ring_tx_arg2 == tx_ring)
3601 			return (soft_ring);
3602 	}
3603 
3604 	return (NULL);
3605 }
3606 
3607 /*
3608  * mac_tx_srs_wakeup
3609  *
3610  * Called when Tx desc become available. Wakeup the appropriate worker
3611  * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
3612  * state field.
3613  */
3614 void
3615 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring)
3616 {
3617 	int i;
3618 	mac_soft_ring_t *sringp;
3619 	mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3620 
3621 	mutex_enter(&mac_srs->srs_lock);
3622 	/*
3623 	 * srs_tx_ring_count == 0 is the single ring mode case. In
3624 	 * this mode, there will not be Tx soft rings associated
3625 	 * with the SRS.
3626 	 */
3627 	if (!MAC_TX_SOFT_RINGS(mac_srs)) {
3628 		if (srs_tx->st_arg2 == ring &&
3629 		    mac_srs->srs_state & SRS_TX_BLOCKED) {
3630 			mac_srs->srs_state &= ~SRS_TX_BLOCKED;
3631 			srs_tx->st_stat.mts_unblockcnt++;
3632 			cv_signal(&mac_srs->srs_async);
3633 		}
3634 		/*
3635 		 * A wakeup can come before tx_srs_drain() could
3636 		 * grab srs lock and set SRS_TX_BLOCKED. So
3637 		 * always set woken_up flag when we come here.
3638 		 */
3639 		srs_tx->st_woken_up = B_TRUE;
3640 		mutex_exit(&mac_srs->srs_lock);
3641 		return;
3642 	}
3643 
3644 	/*
3645 	 * If you are here, it is for FANOUT, BW_FANOUT,
3646 	 * AGGR_MODE or AGGR_BW_MODE case
3647 	 */
3648 	for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3649 		sringp = mac_srs->srs_tx_soft_rings[i];
3650 		mutex_enter(&sringp->s_ring_lock);
3651 		if (sringp->s_ring_tx_arg2 == ring) {
3652 			if (sringp->s_ring_state & S_RING_BLOCK) {
3653 				sringp->s_ring_state &= ~S_RING_BLOCK;
3654 				sringp->s_st_stat.mts_unblockcnt++;
3655 				cv_signal(&sringp->s_ring_async);
3656 			}
3657 			sringp->s_ring_tx_woken_up = B_TRUE;
3658 		}
3659 		mutex_exit(&sringp->s_ring_lock);
3660 	}
3661 	mutex_exit(&mac_srs->srs_lock);
3662 }
3663 
3664 /*
3665  * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
3666  * the blocked clients again.
3667  */
3668 void
3669 mac_tx_notify(mac_impl_t *mip)
3670 {
3671 	i_mac_notify(mip, MAC_NOTE_TX);
3672 }
3673 
3674 /*
3675  * RX SOFTRING RELATED FUNCTIONS
3676  *
3677  * These functions really belong in mac_soft_ring.c and here for
3678  * a short period.
3679  */
3680 
3681 #define	SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) {	       	\
3682 	/*								\
3683 	 * Enqueue our mblk chain.					\
3684 	 */								\
3685 	ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock));			\
3686 									\
3687 	if ((ringp)->s_ring_last != NULL)				\
3688 		(ringp)->s_ring_last->b_next = (mp);			\
3689 	else								\
3690 		(ringp)->s_ring_first = (mp);				\
3691 	(ringp)->s_ring_last = (tail);					\
3692 	(ringp)->s_ring_count += (cnt);					\
3693 	ASSERT((ringp)->s_ring_count > 0);				\
3694 	if ((ringp)->s_ring_type & ST_RING_BW_CTL) {			\
3695 		(ringp)->s_ring_size += sz;				\
3696 	}								\
3697 }
3698 
3699 /*
3700  * Default entry point to deliver a packet chain to a MAC client.
3701  * If the MAC client has flows, do the classification with these
3702  * flows as well.
3703  */
3704 /* ARGSUSED */
3705 void
3706 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain,
3707     mac_header_info_t *arg3)
3708 {
3709 	mac_client_impl_t *mcip = arg1;
3710 
3711 	if (mcip->mci_nvids == 1 &&
3712 	    !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) {
3713 		/*
3714 		 * If the client has exactly one VID associated with it
3715 		 * and striping of VLAN header is not disabled,
3716 		 * remove the VLAN tag from the packet before
3717 		 * passing it on to the client's receive callback.
3718 		 * Note that this needs to be done after we dispatch
3719 		 * the packet to the promiscuous listeners of the
3720 		 * client, since they expect to see the whole
3721 		 * frame including the VLAN headers.
3722 		 */
3723 		mp_chain = mac_strip_vlan_tag_chain(mp_chain);
3724 	}
3725 
3726 	mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE);
3727 }
3728 
3729 /*
3730  * mac_rx_soft_ring_process
3731  *
3732  * process a chain for a given soft ring. The number of packets queued
3733  * in the SRS and its associated soft rings (including this one) is
3734  * very small (tracked by srs_poll_pkt_cnt), then allow the entering
3735  * thread (interrupt or poll thread) to do inline processing. This
3736  * helps keep the latency down under low load.
3737  *
3738  * The proc and arg for each mblk is already stored in the mblk in
3739  * appropriate places.
3740  */
3741 /* ARGSUSED */
3742 void
3743 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp,
3744     mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz)
3745 {
3746 	mac_direct_rx_t		proc;
3747 	void			*arg1;
3748 	mac_resource_handle_t	arg2;
3749 	mac_soft_ring_set_t	*mac_srs = ringp->s_ring_set;
3750 
3751 	ASSERT(ringp != NULL);
3752 	ASSERT(mp_chain != NULL);
3753 	ASSERT(tail != NULL);
3754 	ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
3755 
3756 	mutex_enter(&ringp->s_ring_lock);
3757 	ringp->s_ring_total_inpkt += cnt;
3758 	ringp->s_ring_total_rbytes += sz;
3759 	if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) &&
3760 	    !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) {
3761 		/* If on processor or blanking on, then enqueue and return */
3762 		if (ringp->s_ring_state & S_RING_BLANK ||
3763 		    ringp->s_ring_state & S_RING_PROC) {
3764 			SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
3765 			mutex_exit(&ringp->s_ring_lock);
3766 			return;
3767 		}
3768 		proc = ringp->s_ring_rx_func;
3769 		arg1 = ringp->s_ring_rx_arg1;
3770 		arg2 = ringp->s_ring_rx_arg2;
3771 		/*
3772 		 * See if anything is already queued. If we are the
3773 		 * first packet, do inline processing else queue the
3774 		 * packet and do the drain.
3775 		 */
3776 		if (ringp->s_ring_first == NULL) {
3777 			/*
3778 			 * Fast-path, ok to process and nothing queued.
3779 			 */
3780 			ringp->s_ring_run = curthread;
3781 			ringp->s_ring_state |= (S_RING_PROC);
3782 
3783 			mutex_exit(&ringp->s_ring_lock);
3784 
3785 			/*
3786 			 * We are the chain of 1 packet so
3787 			 * go through this fast path.
3788 			 */
3789 			ASSERT(mp_chain->b_next == NULL);
3790 
3791 			(*proc)(arg1, arg2, mp_chain, NULL);
3792 
3793 			ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
3794 			/*
3795 			 * If we have a soft ring set which is doing
3796 			 * bandwidth control, we need to decrement
3797 			 * srs_size and count so it the SRS can have a
3798 			 * accurate idea of what is the real data
3799 			 * queued between SRS and its soft rings. We
3800 			 * decrement the counters only when the packet
3801 			 * gets processed by both SRS and the soft ring.
3802 			 */
3803 			mutex_enter(&mac_srs->srs_lock);
3804 			MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
3805 			MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
3806 			mutex_exit(&mac_srs->srs_lock);
3807 
3808 			mutex_enter(&ringp->s_ring_lock);
3809 			ringp->s_ring_run = NULL;
3810 			ringp->s_ring_state &= ~S_RING_PROC;
3811 			if (ringp->s_ring_state & S_RING_CLIENT_WAIT)
3812 				cv_signal(&ringp->s_ring_client_cv);
3813 
3814 			if ((ringp->s_ring_first == NULL) ||
3815 			    (ringp->s_ring_state & S_RING_BLANK)) {
3816 				/*
3817 				 * We processed inline our packet and
3818 				 * nothing new has arrived or our
3819 				 * receiver doesn't want to receive
3820 				 * any packets. We are done.
3821 				 */
3822 				mutex_exit(&ringp->s_ring_lock);
3823 				return;
3824 			}
3825 		} else {
3826 			SOFT_RING_ENQUEUE_CHAIN(ringp,
3827 			    mp_chain, tail, cnt, sz);
3828 		}
3829 
3830 		/*
3831 		 * We are here because either we couldn't do inline
3832 		 * processing (because something was already
3833 		 * queued), or we had a chain of more than one
3834 		 * packet, or something else arrived after we were
3835 		 * done with inline processing.
3836 		 */
3837 		ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
3838 		ASSERT(ringp->s_ring_first != NULL);
3839 
3840 		ringp->s_ring_drain_func(ringp);
3841 		mutex_exit(&ringp->s_ring_lock);
3842 		return;
3843 	} else {
3844 		/* ST_RING_WORKER_ONLY case */
3845 		SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
3846 		mac_soft_ring_worker_wakeup(ringp);
3847 		mutex_exit(&ringp->s_ring_lock);
3848 	}
3849 }
3850 
3851 /*
3852  * TX SOFTRING RELATED FUNCTIONS
3853  *
3854  * These functions really belong in mac_soft_ring.c and here for
3855  * a short period.
3856  */
3857 
3858 #define	TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) {	       	\
3859 	ASSERT(MUTEX_HELD(&ringp->s_ring_lock));			\
3860 	ringp->s_ring_state |= S_RING_ENQUEUED;				\
3861 	SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);	\
3862 }
3863 
3864 /*
3865  * mac_tx_sring_queued
3866  *
3867  * When we are out of transmit descriptors and we already have a
3868  * queue that exceeds hiwat (or the client called us with
3869  * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
3870  * soft ring pointer as the opaque cookie for the client enable
3871  * flow control.
3872  */
3873 static mac_tx_cookie_t
3874 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag,
3875     mblk_t **ret_mp)
3876 {
3877 	int cnt;
3878 	size_t sz;
3879 	mblk_t *tail;
3880 	mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
3881 	mac_tx_cookie_t cookie = NULL;
3882 	boolean_t wakeup_worker = B_TRUE;
3883 
3884 	ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
3885 	MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3886 	if (flag & MAC_DROP_ON_NO_DESC) {
3887 		mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
3888 		/* increment freed stats */
3889 		ringp->s_ring_drops += cnt;
3890 		cookie = (mac_tx_cookie_t)ringp;
3891 	} else {
3892 		if (ringp->s_ring_first != NULL)
3893 			wakeup_worker = B_FALSE;
3894 
3895 		if (flag & MAC_TX_NO_ENQUEUE) {
3896 			/*
3897 			 * If QUEUED is not set, queue the packet
3898 			 * and let mac_tx_soft_ring_drain() set
3899 			 * the TX_BLOCKED bit for the reasons
3900 			 * explained above. Otherwise, return the
3901 			 * mblks.
3902 			 */
3903 			if (wakeup_worker) {
3904 				TX_SOFT_RING_ENQUEUE_CHAIN(ringp,
3905 				    mp_chain, tail, cnt, sz);
3906 			} else {
3907 				ringp->s_ring_state |= S_RING_WAKEUP_CLIENT;
3908 				cookie = (mac_tx_cookie_t)ringp;
3909 				*ret_mp = mp_chain;
3910 			}
3911 		} else {
3912 			boolean_t enqueue = B_TRUE;
3913 
3914 			if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
3915 				/*
3916 				 * flow-controlled. Store ringp in cookie
3917 				 * so that it can be returned as
3918 				 * mac_tx_cookie_t to client
3919 				 */
3920 				ringp->s_ring_state |= S_RING_TX_HIWAT;
3921 				cookie = (mac_tx_cookie_t)ringp;
3922 				ringp->s_ring_hiwat_cnt++;
3923 				if (ringp->s_ring_count >
3924 				    ringp->s_ring_tx_max_q_cnt) {
3925 					/* increment freed stats */
3926 					ringp->s_ring_drops += cnt;
3927 					/*
3928 					 * b_prev may be set to the fanout hint
3929 					 * hence can't use freemsg directly
3930 					 */
3931 					mac_pkt_drop(NULL, NULL,
3932 					    mp_chain, B_FALSE);
3933 					DTRACE_PROBE1(tx_queued_hiwat,
3934 					    mac_soft_ring_t *, ringp);
3935 					enqueue = B_FALSE;
3936 				}
3937 			}
3938 			if (enqueue) {
3939 				TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain,
3940 				    tail, cnt, sz);
3941 			}
3942 		}
3943 		if (wakeup_worker)
3944 			cv_signal(&ringp->s_ring_async);
3945 	}
3946 	return (cookie);
3947 }
3948 
3949 
3950 /*
3951  * mac_tx_soft_ring_process
3952  *
3953  * This routine is called when fanning out outgoing traffic among
3954  * multipe Tx rings.
3955  * Note that a soft ring is associated with a h/w Tx ring.
3956  */
3957 mac_tx_cookie_t
3958 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain,
3959     uint16_t flag, mblk_t **ret_mp)
3960 {
3961 	mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
3962 	int	cnt;
3963 	size_t	sz;
3964 	mblk_t	*tail;
3965 	mac_tx_cookie_t cookie = NULL;
3966 
3967 	ASSERT(ringp != NULL);
3968 	ASSERT(mp_chain != NULL);
3969 	ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
3970 	/*
3971 	 * The following modes can come here: SRS_TX_BW_FANOUT,
3972 	 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
3973 	 */
3974 	ASSERT(MAC_TX_SOFT_RINGS(mac_srs));
3975 	ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3976 	    mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT ||
3977 	    mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
3978 	    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
3979 
3980 	if (ringp->s_ring_type & ST_RING_WORKER_ONLY) {
3981 		/* Serialization mode */
3982 
3983 		mutex_enter(&ringp->s_ring_lock);
3984 		if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
3985 			cookie = mac_tx_sring_enqueue(ringp, mp_chain,
3986 			    flag, ret_mp);
3987 			mutex_exit(&ringp->s_ring_lock);
3988 			return (cookie);
3989 		}
3990 		MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3991 		TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
3992 		if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) {
3993 			/*
3994 			 * If ring is blocked due to lack of Tx
3995 			 * descs, just return. Worker thread
3996 			 * will get scheduled when Tx desc's
3997 			 * become available.
3998 			 */
3999 			mutex_exit(&ringp->s_ring_lock);
4000 			return (cookie);
4001 		}
4002 		mac_soft_ring_worker_wakeup(ringp);
4003 		mutex_exit(&ringp->s_ring_lock);
4004 		return (cookie);
4005 	} else {
4006 		/* Default fanout mode */
4007 		/*
4008 		 * S_RING_BLOCKED is set when underlying NIC runs
4009 		 * out of Tx descs and messages start getting
4010 		 * queued. It won't get reset until
4011 		 * tx_srs_drain() completely drains out the
4012 		 * messages.
4013 		 */
4014 		mac_tx_stats_t		stats;
4015 
4016 		if (ringp->s_ring_state & S_RING_ENQUEUED) {
4017 			/* Tx descs/resources not available */
4018 			mutex_enter(&ringp->s_ring_lock);
4019 			if (ringp->s_ring_state & S_RING_ENQUEUED) {
4020 				cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4021 				    flag, ret_mp);
4022 				mutex_exit(&ringp->s_ring_lock);
4023 				return (cookie);
4024 			}
4025 			/*
4026 			 * While we were computing mblk count, the
4027 			 * flow control condition got relieved.
4028 			 * Continue with the transmission.
4029 			 */
4030 			mutex_exit(&ringp->s_ring_lock);
4031 		}
4032 
4033 		mp_chain = mac_tx_send(ringp->s_ring_tx_arg1,
4034 		    ringp->s_ring_tx_arg2, mp_chain, &stats);
4035 
4036 		/*
4037 		 * Multiple threads could be here sending packets.
4038 		 * Under such conditions, it is not possible to
4039 		 * automically set S_RING_BLOCKED bit to indicate
4040 		 * out of tx desc condition. To atomically set
4041 		 * this, we queue the returned packet and do
4042 		 * the setting of S_RING_BLOCKED in
4043 		 * mac_tx_soft_ring_drain().
4044 		 */
4045 		if (mp_chain != NULL) {
4046 			mutex_enter(&ringp->s_ring_lock);
4047 			cookie =
4048 			    mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp);
4049 			mutex_exit(&ringp->s_ring_lock);
4050 			return (cookie);
4051 		}
4052 		SRS_TX_STATS_UPDATE(mac_srs, &stats);
4053 		SOFTRING_TX_STATS_UPDATE(ringp, &stats);
4054 
4055 		return (NULL);
4056 	}
4057 }
4058