1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/conf.h> 29 #include <sys/id_space.h> 30 #include <sys/esunddi.h> 31 #include <sys/stat.h> 32 #include <sys/mkdev.h> 33 #include <sys/stream.h> 34 #include <sys/strsubr.h> 35 #include <sys/dlpi.h> 36 #include <sys/modhash.h> 37 #include <sys/mac.h> 38 #include <sys/mac_provider.h> 39 #include <sys/mac_impl.h> 40 #include <sys/mac_client_impl.h> 41 #include <sys/mac_client_priv.h> 42 #include <sys/mac_soft_ring.h> 43 #include <sys/mac_stat.h> 44 #include <sys/dld.h> 45 #include <sys/modctl.h> 46 #include <sys/fs/dv_node.h> 47 #include <sys/thread.h> 48 #include <sys/proc.h> 49 #include <sys/callb.h> 50 #include <sys/cpuvar.h> 51 #include <sys/atomic.h> 52 #include <sys/sdt.h> 53 #include <sys/mac_flow.h> 54 #include <sys/ddi_intr_impl.h> 55 #include <sys/disp.h> 56 #include <sys/sdt.h> 57 #include <sys/pattr.h> 58 #include <sys/strsun.h> 59 60 /* 61 * MAC Provider Interface. 62 * 63 * Interface for GLDv3 compatible NIC drivers. 64 */ 65 66 static void i_mac_notify_thread(void *); 67 68 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 69 70 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 71 mac_fanout_recompute, /* MAC_NOTE_LINK */ 72 NULL, /* MAC_NOTE_UNICST */ 73 NULL, /* MAC_NOTE_TX */ 74 NULL, /* MAC_NOTE_DEVPROMISC */ 75 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 76 NULL, /* MAC_NOTE_SDU_SIZE */ 77 NULL, /* MAC_NOTE_MARGIN */ 78 NULL, /* MAC_NOTE_CAPAB_CHG */ 79 NULL /* MAC_NOTE_LOWLINK */ 80 }; 81 82 /* 83 * Driver support functions. 84 */ 85 86 /* REGISTRATION */ 87 88 mac_register_t * 89 mac_alloc(uint_t mac_version) 90 { 91 mac_register_t *mregp; 92 93 /* 94 * Make sure there isn't a version mismatch between the driver and 95 * the framework. In the future, if multiple versions are 96 * supported, this check could become more sophisticated. 97 */ 98 if (mac_version != MAC_VERSION) 99 return (NULL); 100 101 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 102 mregp->m_version = mac_version; 103 return (mregp); 104 } 105 106 void 107 mac_free(mac_register_t *mregp) 108 { 109 kmem_free(mregp, sizeof (mac_register_t)); 110 } 111 112 /* 113 * mac_register() is how drivers register new MACs with the GLDv3 114 * framework. The mregp argument is allocated by drivers using the 115 * mac_alloc() function, and can be freed using mac_free() immediately upon 116 * return from mac_register(). Upon success (0 return value), the mhp 117 * opaque pointer becomes the driver's handle to its MAC interface, and is 118 * the argument to all other mac module entry points. 119 */ 120 /* ARGSUSED */ 121 int 122 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 123 { 124 mac_impl_t *mip; 125 mactype_t *mtype; 126 int err = EINVAL; 127 struct devnames *dnp = NULL; 128 uint_t instance; 129 boolean_t style1_created = B_FALSE; 130 boolean_t style2_created = B_FALSE; 131 char *driver; 132 minor_t minor = 0; 133 134 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 135 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 136 return (EINVAL); 137 138 /* Find the required MAC-Type plugin. */ 139 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 140 return (EINVAL); 141 142 /* Create a mac_impl_t to represent this MAC. */ 143 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 144 145 /* 146 * The mac is not ready for open yet. 147 */ 148 mip->mi_state_flags |= MIS_DISABLED; 149 150 /* 151 * When a mac is registered, the m_instance field can be set to: 152 * 153 * 0: Get the mac's instance number from m_dip. 154 * This is usually used for physical device dips. 155 * 156 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 157 * For example, when an aggregation is created with the key option, 158 * "key" will be used as the instance number. 159 * 160 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 161 * This is often used when a MAC of a virtual link is registered 162 * (e.g., aggregation when "key" is not specified, or vnic). 163 * 164 * Note that the instance number is used to derive the mi_minor field 165 * of mac_impl_t, which will then be used to derive the name of kstats 166 * and the devfs nodes. The first 2 cases are needed to preserve 167 * backward compatibility. 168 */ 169 switch (mregp->m_instance) { 170 case 0: 171 instance = ddi_get_instance(mregp->m_dip); 172 break; 173 case ((uint_t)-1): 174 minor = mac_minor_hold(B_TRUE); 175 if (minor == 0) { 176 err = ENOSPC; 177 goto fail; 178 } 179 instance = minor - 1; 180 break; 181 default: 182 instance = mregp->m_instance; 183 if (instance >= MAC_MAX_MINOR) { 184 err = EINVAL; 185 goto fail; 186 } 187 break; 188 } 189 190 mip->mi_minor = (minor_t)(instance + 1); 191 mip->mi_dip = mregp->m_dip; 192 mip->mi_clients_list = NULL; 193 mip->mi_nclients = 0; 194 195 /* Set the default IEEE Port VLAN Identifier */ 196 mip->mi_pvid = 1; 197 198 /* Default bridge link learning protection values */ 199 mip->mi_llimit = 1000; 200 mip->mi_ldecay = 200; 201 202 driver = (char *)ddi_driver_name(mip->mi_dip); 203 204 /* Construct the MAC name as <drvname><instance> */ 205 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 206 driver, instance); 207 208 mip->mi_driver = mregp->m_driver; 209 210 mip->mi_type = mtype; 211 mip->mi_margin = mregp->m_margin; 212 mip->mi_info.mi_media = mtype->mt_type; 213 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 214 if (mregp->m_max_sdu <= mregp->m_min_sdu) 215 goto fail; 216 if (mregp->m_multicast_sdu == 0) 217 mregp->m_multicast_sdu = mregp->m_max_sdu; 218 if (mregp->m_multicast_sdu < mregp->m_min_sdu || 219 mregp->m_multicast_sdu > mregp->m_max_sdu) 220 goto fail; 221 mip->mi_sdu_min = mregp->m_min_sdu; 222 mip->mi_sdu_max = mregp->m_max_sdu; 223 mip->mi_sdu_multicast = mregp->m_multicast_sdu; 224 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 225 /* 226 * If the media supports a broadcast address, cache a pointer to it 227 * in the mac_info_t so that upper layers can use it. 228 */ 229 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 230 231 mip->mi_v12n_level = mregp->m_v12n; 232 233 /* 234 * Copy the unicast source address into the mac_info_t, but only if 235 * the MAC-Type defines a non-zero address length. We need to 236 * handle MAC-Types that have an address length of 0 237 * (point-to-point protocol MACs for example). 238 */ 239 if (mip->mi_type->mt_addr_length > 0) { 240 if (mregp->m_src_addr == NULL) 241 goto fail; 242 mip->mi_info.mi_unicst_addr = 243 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 244 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 245 mip->mi_type->mt_addr_length); 246 247 /* 248 * Copy the fixed 'factory' MAC address from the immutable 249 * info. This is taken to be the MAC address currently in 250 * use. 251 */ 252 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 253 mip->mi_type->mt_addr_length); 254 255 /* 256 * At this point, we should set up the classification 257 * rules etc but we delay it till mac_open() so that 258 * the resource discovery has taken place and we 259 * know someone wants to use the device. Otherwise 260 * memory gets allocated for Rx ring structures even 261 * during probe. 262 */ 263 264 /* Copy the destination address if one is provided. */ 265 if (mregp->m_dst_addr != NULL) { 266 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 267 mip->mi_type->mt_addr_length); 268 mip->mi_dstaddr_set = B_TRUE; 269 } 270 } else if (mregp->m_src_addr != NULL) { 271 goto fail; 272 } 273 274 /* 275 * The format of the m_pdata is specific to the plugin. It is 276 * passed in as an argument to all of the plugin callbacks. The 277 * driver can update this information by calling 278 * mac_pdata_update(). 279 */ 280 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 281 /* 282 * Verify if the supplied plugin data is valid. Note that 283 * even if the caller passed in a NULL pointer as plugin data, 284 * we still need to verify if that's valid as the plugin may 285 * require plugin data to function. 286 */ 287 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 288 mregp->m_pdata_size)) { 289 goto fail; 290 } 291 if (mregp->m_pdata != NULL) { 292 mip->mi_pdata = 293 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 294 bcopy(mregp->m_pdata, mip->mi_pdata, 295 mregp->m_pdata_size); 296 mip->mi_pdata_size = mregp->m_pdata_size; 297 } 298 } else if (mregp->m_pdata != NULL) { 299 /* 300 * The caller supplied non-NULL plugin data, but the plugin 301 * does not recognize plugin data. 302 */ 303 err = EINVAL; 304 goto fail; 305 } 306 307 /* 308 * Register the private properties. 309 */ 310 mac_register_priv_prop(mip, mregp->m_priv_props); 311 312 /* 313 * Stash the driver callbacks into the mac_impl_t, but first sanity 314 * check to make sure all mandatory callbacks are set. 315 */ 316 if (mregp->m_callbacks->mc_getstat == NULL || 317 mregp->m_callbacks->mc_start == NULL || 318 mregp->m_callbacks->mc_stop == NULL || 319 mregp->m_callbacks->mc_setpromisc == NULL || 320 mregp->m_callbacks->mc_multicst == NULL) { 321 goto fail; 322 } 323 mip->mi_callbacks = mregp->m_callbacks; 324 325 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 326 &mip->mi_capab_legacy)) { 327 mip->mi_state_flags |= MIS_LEGACY; 328 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 329 } else { 330 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 331 mip->mi_minor); 332 } 333 334 /* 335 * Allocate a notification thread. thread_create blocks for memory 336 * if needed, it never fails. 337 */ 338 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 339 mip, 0, &p0, TS_RUN, minclsyspri); 340 341 /* 342 * Initialize the capabilities 343 */ 344 345 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 346 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 347 348 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 349 mip->mi_state_flags |= MIS_IS_VNIC; 350 351 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 352 mip->mi_state_flags |= MIS_IS_AGGR; 353 354 mac_addr_factory_init(mip); 355 356 /* 357 * Enforce the virtrualization level registered. 358 */ 359 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 360 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 361 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 362 goto fail; 363 364 /* 365 * The driver needs to register at least rx rings for this 366 * virtualization level. 367 */ 368 if (mip->mi_rx_groups == NULL) 369 goto fail; 370 } 371 372 /* 373 * The driver must set mc_unicst entry point to NULL when it advertises 374 * CAP_RINGS for rx groups. 375 */ 376 if (mip->mi_rx_groups != NULL) { 377 if (mregp->m_callbacks->mc_unicst != NULL) 378 goto fail; 379 } else { 380 if (mregp->m_callbacks->mc_unicst == NULL) 381 goto fail; 382 } 383 384 /* 385 * Initialize MAC addresses. Must be called after mac_init_rings(). 386 */ 387 mac_init_macaddr(mip); 388 389 mip->mi_share_capab.ms_snum = 0; 390 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 391 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 392 &mip->mi_share_capab); 393 } 394 395 /* 396 * Initialize the kstats for this device. 397 */ 398 mac_driver_stat_create(mip); 399 400 /* Zero out any properties. */ 401 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 402 403 if (mip->mi_minor <= MAC_MAX_MINOR) { 404 /* Create a style-2 DLPI device */ 405 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 406 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 407 goto fail; 408 style2_created = B_TRUE; 409 410 /* Create a style-1 DLPI device */ 411 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 412 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 413 goto fail; 414 style1_created = B_TRUE; 415 } 416 417 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 418 419 rw_enter(&i_mac_impl_lock, RW_WRITER); 420 if (mod_hash_insert(i_mac_impl_hash, 421 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 422 rw_exit(&i_mac_impl_lock); 423 err = EEXIST; 424 goto fail; 425 } 426 427 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 428 (mac_impl_t *), mip); 429 430 /* 431 * Mark the MAC to be ready for open. 432 */ 433 mip->mi_state_flags &= ~MIS_DISABLED; 434 rw_exit(&i_mac_impl_lock); 435 436 atomic_inc_32(&i_mac_impl_count); 437 438 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 439 *mhp = (mac_handle_t)mip; 440 return (0); 441 442 fail: 443 if (style1_created) 444 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 445 446 if (style2_created) 447 ddi_remove_minor_node(mip->mi_dip, driver); 448 449 mac_addr_factory_fini(mip); 450 451 /* Clean up registered MAC addresses */ 452 mac_fini_macaddr(mip); 453 454 /* Clean up registered rings */ 455 mac_free_rings(mip, MAC_RING_TYPE_RX); 456 mac_free_rings(mip, MAC_RING_TYPE_TX); 457 458 /* Clean up notification thread */ 459 if (mip->mi_notify_thread != NULL) 460 i_mac_notify_exit(mip); 461 462 if (mip->mi_info.mi_unicst_addr != NULL) { 463 kmem_free(mip->mi_info.mi_unicst_addr, 464 mip->mi_type->mt_addr_length); 465 mip->mi_info.mi_unicst_addr = NULL; 466 } 467 468 mac_driver_stat_delete(mip); 469 470 if (mip->mi_type != NULL) { 471 atomic_dec_32(&mip->mi_type->mt_ref); 472 mip->mi_type = NULL; 473 } 474 475 if (mip->mi_pdata != NULL) { 476 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 477 mip->mi_pdata = NULL; 478 mip->mi_pdata_size = 0; 479 } 480 481 if (minor != 0) { 482 ASSERT(minor > MAC_MAX_MINOR); 483 mac_minor_rele(minor); 484 } 485 486 mip->mi_state_flags = 0; 487 mac_unregister_priv_prop(mip); 488 489 /* 490 * Clear the state before destroying the mac_impl_t 491 */ 492 mip->mi_state_flags = 0; 493 494 kmem_cache_free(i_mac_impl_cachep, mip); 495 return (err); 496 } 497 498 /* 499 * Unregister from the GLDv3 framework 500 */ 501 int 502 mac_unregister(mac_handle_t mh) 503 { 504 int err; 505 mac_impl_t *mip = (mac_impl_t *)mh; 506 mod_hash_val_t val; 507 mac_margin_req_t *mmr, *nextmmr; 508 509 /* Fail the unregister if there are any open references to this mac. */ 510 if ((err = mac_disable_nowait(mh)) != 0) 511 return (err); 512 513 /* 514 * Clean up notification thread and wait for it to exit. 515 */ 516 i_mac_notify_exit(mip); 517 518 /* 519 * Prior to acquiring the MAC perimeter, remove the MAC instance from 520 * the internal hash table. Such removal means table-walkers that 521 * acquire the perimeter will not do so on behalf of what we are 522 * unregistering, which prevents a deadlock. 523 */ 524 rw_enter(&i_mac_impl_lock, RW_WRITER); 525 (void) mod_hash_remove(i_mac_impl_hash, 526 (mod_hash_key_t)mip->mi_name, &val); 527 rw_exit(&i_mac_impl_lock); 528 ASSERT(mip == (mac_impl_t *)val); 529 530 i_mac_perim_enter(mip); 531 532 /* 533 * There is still resource properties configured over this mac. 534 */ 535 if (mip->mi_resource_props.mrp_mask != 0) 536 mac_fastpath_enable((mac_handle_t)mip); 537 538 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 539 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 540 ddi_remove_minor_node(mip->mi_dip, 541 (char *)ddi_driver_name(mip->mi_dip)); 542 } 543 544 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 545 MIS_EXCLUSIVE)); 546 547 mac_driver_stat_delete(mip); 548 549 ASSERT(i_mac_impl_count > 0); 550 atomic_dec_32(&i_mac_impl_count); 551 552 if (mip->mi_pdata != NULL) 553 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 554 mip->mi_pdata = NULL; 555 mip->mi_pdata_size = 0; 556 557 /* 558 * Free the list of margin request. 559 */ 560 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 561 nextmmr = mmr->mmr_nextp; 562 kmem_free(mmr, sizeof (mac_margin_req_t)); 563 } 564 mip->mi_mmrp = NULL; 565 566 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 567 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 568 mip->mi_info.mi_unicst_addr = NULL; 569 570 atomic_dec_32(&mip->mi_type->mt_ref); 571 mip->mi_type = NULL; 572 573 /* 574 * Free the primary MAC address. 575 */ 576 mac_fini_macaddr(mip); 577 578 /* 579 * free all rings 580 */ 581 mac_free_rings(mip, MAC_RING_TYPE_RX); 582 mac_free_rings(mip, MAC_RING_TYPE_TX); 583 584 mac_addr_factory_fini(mip); 585 586 bzero(mip->mi_addr, MAXMACADDRLEN); 587 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 588 mip->mi_dstaddr_set = B_FALSE; 589 590 /* and the flows */ 591 mac_flow_tab_destroy(mip->mi_flow_tab); 592 mip->mi_flow_tab = NULL; 593 594 if (mip->mi_minor > MAC_MAX_MINOR) 595 mac_minor_rele(mip->mi_minor); 596 597 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 598 599 /* 600 * Reset the perim related fields to default values before 601 * kmem_cache_free 602 */ 603 i_mac_perim_exit(mip); 604 mip->mi_state_flags = 0; 605 606 mac_unregister_priv_prop(mip); 607 608 ASSERT(mip->mi_bridge_link == NULL); 609 kmem_cache_free(i_mac_impl_cachep, mip); 610 611 return (0); 612 } 613 614 /* DATA RECEPTION */ 615 616 /* 617 * This function is invoked for packets received by the MAC driver in 618 * interrupt context. The ring generation number provided by the driver 619 * is matched with the ring generation number held in MAC. If they do not 620 * match, received packets are considered stale packets coming from an older 621 * assignment of the ring. Drop them. 622 */ 623 void 624 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 625 uint64_t mr_gen_num) 626 { 627 mac_ring_t *mr = (mac_ring_t *)mrh; 628 629 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 630 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 631 mr->mr_gen_num, uint64_t, mr_gen_num); 632 freemsgchain(mp_chain); 633 return; 634 } 635 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 636 } 637 638 /* 639 * This function is invoked for each packet received by the underlying driver. 640 */ 641 void 642 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 643 { 644 mac_impl_t *mip = (mac_impl_t *)mh; 645 646 /* 647 * Check if the link is part of a bridge. If not, then we don't need 648 * to take the lock to remain consistent. Make this common case 649 * lock-free and tail-call optimized. 650 */ 651 if (mip->mi_bridge_link == NULL) { 652 mac_rx_common(mh, mrh, mp_chain); 653 } else { 654 /* 655 * Once we take a reference on the bridge link, the bridge 656 * module itself can't unload, so the callback pointers are 657 * stable. 658 */ 659 mutex_enter(&mip->mi_bridge_lock); 660 if ((mh = mip->mi_bridge_link) != NULL) 661 mac_bridge_ref_cb(mh, B_TRUE); 662 mutex_exit(&mip->mi_bridge_lock); 663 if (mh == NULL) { 664 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 665 } else { 666 mac_bridge_rx_cb(mh, mrh, mp_chain); 667 mac_bridge_ref_cb(mh, B_FALSE); 668 } 669 } 670 } 671 672 /* 673 * Special case function: this allows snooping of packets transmitted and 674 * received by TRILL. By design, they go directly into the TRILL module. 675 */ 676 void 677 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 678 { 679 mac_impl_t *mip = (mac_impl_t *)mh; 680 681 if (mip->mi_promisc_list != NULL) 682 mac_promisc_dispatch(mip, mp, NULL); 683 } 684 685 /* 686 * This is the upward reentry point for packets arriving from the bridging 687 * module and from mac_rx for links not part of a bridge. 688 */ 689 void 690 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 691 { 692 mac_impl_t *mip = (mac_impl_t *)mh; 693 mac_ring_t *mr = (mac_ring_t *)mrh; 694 mac_soft_ring_set_t *mac_srs; 695 mblk_t *bp = mp_chain; 696 boolean_t hw_classified = B_FALSE; 697 698 /* 699 * If there are any promiscuous mode callbacks defined for 700 * this MAC, pass them a copy if appropriate. 701 */ 702 if (mip->mi_promisc_list != NULL) 703 mac_promisc_dispatch(mip, mp_chain, NULL); 704 705 if (mr != NULL) { 706 /* 707 * If the SRS teardown has started, just return. The 'mr' 708 * continues to be valid until the driver unregisters the mac. 709 * Hardware classified packets will not make their way up 710 * beyond this point once the teardown has started. The driver 711 * is never passed a pointer to a flow entry or SRS or any 712 * structure that can be freed much before mac_unregister. 713 */ 714 mutex_enter(&mr->mr_lock); 715 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 716 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 717 mutex_exit(&mr->mr_lock); 718 freemsgchain(mp_chain); 719 return; 720 } 721 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 722 hw_classified = B_TRUE; 723 MR_REFHOLD_LOCKED(mr); 724 } 725 mutex_exit(&mr->mr_lock); 726 727 /* 728 * We check if an SRS is controlling this ring. 729 * If so, we can directly call the srs_lower_proc 730 * routine otherwise we need to go through mac_rx_classify 731 * to reach the right place. 732 */ 733 if (hw_classified) { 734 mac_srs = mr->mr_srs; 735 /* 736 * This is supposed to be the fast path. 737 * All packets received though here were steered by 738 * the hardware classifier, and share the same 739 * MAC header info. 740 */ 741 mac_srs->srs_rx.sr_lower_proc(mh, 742 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 743 MR_REFRELE(mr); 744 return; 745 } 746 /* We'll fall through to software classification */ 747 } else { 748 flow_entry_t *flent; 749 int err; 750 751 rw_enter(&mip->mi_rw_lock, RW_READER); 752 if (mip->mi_single_active_client != NULL) { 753 flent = mip->mi_single_active_client->mci_flent_list; 754 FLOW_TRY_REFHOLD(flent, err); 755 rw_exit(&mip->mi_rw_lock); 756 if (err == 0) { 757 (flent->fe_cb_fn)(flent->fe_cb_arg1, 758 flent->fe_cb_arg2, mp_chain, B_FALSE); 759 FLOW_REFRELE(flent); 760 return; 761 } 762 } else { 763 rw_exit(&mip->mi_rw_lock); 764 } 765 } 766 767 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 768 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 769 return; 770 } 771 772 freemsgchain(bp); 773 } 774 775 /* DATA TRANSMISSION */ 776 777 /* 778 * A driver's notification to resume transmission, in case of a provider 779 * without TX rings. 780 */ 781 void 782 mac_tx_update(mac_handle_t mh) 783 { 784 mac_tx_ring_update(mh, NULL); 785 } 786 787 /* 788 * A driver's notification to resume transmission on the specified TX ring. 789 */ 790 void 791 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 792 { 793 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 794 } 795 796 /* LINK STATE */ 797 /* 798 * Notify the MAC layer about a link state change 799 */ 800 void 801 mac_link_update(mac_handle_t mh, link_state_t link) 802 { 803 mac_impl_t *mip = (mac_impl_t *)mh; 804 805 /* 806 * Save the link state. 807 */ 808 mip->mi_lowlinkstate = link; 809 810 /* 811 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 812 * thread to deliver both lower and upper notifications. 813 */ 814 i_mac_notify(mip, MAC_NOTE_LOWLINK); 815 } 816 817 /* 818 * Notify the MAC layer about a link state change due to bridging. 819 */ 820 void 821 mac_link_redo(mac_handle_t mh, link_state_t link) 822 { 823 mac_impl_t *mip = (mac_impl_t *)mh; 824 825 /* 826 * Save the link state. 827 */ 828 mip->mi_linkstate = link; 829 830 /* 831 * Send a MAC_NOTE_LINK notification. Only upper notifications are 832 * made. 833 */ 834 i_mac_notify(mip, MAC_NOTE_LINK); 835 } 836 837 /* MINOR NODE HANDLING */ 838 839 /* 840 * Given a dev_t, return the instance number (PPA) associated with it. 841 * Drivers can use this in their getinfo(9e) implementation to lookup 842 * the instance number (i.e. PPA) of the device, to use as an index to 843 * their own array of soft state structures. 844 * 845 * Returns -1 on error. 846 */ 847 int 848 mac_devt_to_instance(dev_t devt) 849 { 850 return (dld_devt_to_instance(devt)); 851 } 852 853 /* 854 * This function returns the first minor number that is available for 855 * driver private use. All minor numbers smaller than this are 856 * reserved for GLDv3 use. 857 */ 858 minor_t 859 mac_private_minor(void) 860 { 861 return (MAC_PRIVATE_MINOR); 862 } 863 864 /* OTHER CONTROL INFORMATION */ 865 866 /* 867 * A driver notified us that its primary MAC address has changed. 868 */ 869 void 870 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 871 { 872 mac_impl_t *mip = (mac_impl_t *)mh; 873 874 if (mip->mi_type->mt_addr_length == 0) 875 return; 876 877 i_mac_perim_enter(mip); 878 879 /* 880 * If address changes, freshen the MAC address value and update 881 * all MAC clients that share this MAC address. 882 */ 883 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 884 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 885 (uint8_t *)addr); 886 } 887 888 i_mac_perim_exit(mip); 889 890 /* 891 * Send a MAC_NOTE_UNICST notification. 892 */ 893 i_mac_notify(mip, MAC_NOTE_UNICST); 894 } 895 896 void 897 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 898 { 899 mac_impl_t *mip = (mac_impl_t *)mh; 900 901 if (mip->mi_type->mt_addr_length == 0) 902 return; 903 904 i_mac_perim_enter(mip); 905 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 906 i_mac_perim_exit(mip); 907 i_mac_notify(mip, MAC_NOTE_DEST); 908 } 909 910 /* 911 * MAC plugin information changed. 912 */ 913 int 914 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 915 { 916 mac_impl_t *mip = (mac_impl_t *)mh; 917 918 /* 919 * Verify that the plugin supports MAC plugin data and that the 920 * supplied data is valid. 921 */ 922 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 923 return (EINVAL); 924 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 925 return (EINVAL); 926 927 if (mip->mi_pdata != NULL) 928 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 929 930 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 931 bcopy(mac_pdata, mip->mi_pdata, dsize); 932 mip->mi_pdata_size = dsize; 933 934 /* 935 * Since the MAC plugin data is used to construct MAC headers that 936 * were cached in fast-path headers, we need to flush fast-path 937 * information for links associated with this mac. 938 */ 939 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 940 return (0); 941 } 942 943 /* 944 * Invoked by driver as well as the framework to notify its capability change. 945 */ 946 void 947 mac_capab_update(mac_handle_t mh) 948 { 949 /* Send MAC_NOTE_CAPAB_CHG notification */ 950 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 951 } 952 953 /* 954 * Used by normal drivers to update the max sdu size. 955 * We need to handle the case of a smaller mi_sdu_multicast 956 * since this is called by mac_set_mtu() even for drivers that 957 * have differing unicast and multicast mtu and we don't want to 958 * increase the multicast mtu by accident in that case. 959 */ 960 int 961 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 962 { 963 mac_impl_t *mip = (mac_impl_t *)mh; 964 965 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 966 return (EINVAL); 967 mip->mi_sdu_max = sdu_max; 968 if (mip->mi_sdu_multicast > mip->mi_sdu_max) 969 mip->mi_sdu_multicast = mip->mi_sdu_max; 970 971 /* Send a MAC_NOTE_SDU_SIZE notification. */ 972 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 973 return (0); 974 } 975 976 /* 977 * Version of the above function that is used by drivers that have a different 978 * max sdu size for multicast/broadcast vs. unicast. 979 */ 980 int 981 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast) 982 { 983 mac_impl_t *mip = (mac_impl_t *)mh; 984 985 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 986 return (EINVAL); 987 if (sdu_multicast == 0) 988 sdu_multicast = sdu_max; 989 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min) 990 return (EINVAL); 991 mip->mi_sdu_max = sdu_max; 992 mip->mi_sdu_multicast = sdu_multicast; 993 994 /* Send a MAC_NOTE_SDU_SIZE notification. */ 995 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 996 return (0); 997 } 998 999 static void 1000 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 1001 { 1002 mac_client_impl_t *mcip; 1003 flow_entry_t *flent; 1004 mac_soft_ring_set_t *mac_rx_srs; 1005 mac_cpus_t *srs_cpu; 1006 int i; 1007 1008 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 1009 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 1010 /* interrupt can be re-targeted */ 1011 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 1012 flent = mcip->mci_flent; 1013 if (ring->mr_type == MAC_RING_TYPE_RX) { 1014 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1015 mac_rx_srs = flent->fe_rx_srs[i]; 1016 if (mac_rx_srs->srs_ring != ring) 1017 continue; 1018 srs_cpu = &mac_rx_srs->srs_cpu; 1019 mutex_enter(&cpu_lock); 1020 mac_rx_srs_retarget_intr(mac_rx_srs, 1021 srs_cpu->mc_rx_intr_cpu); 1022 mutex_exit(&cpu_lock); 1023 break; 1024 } 1025 } else { 1026 if (flent->fe_tx_srs != NULL) { 1027 mutex_enter(&cpu_lock); 1028 mac_tx_srs_retarget_intr( 1029 flent->fe_tx_srs); 1030 mutex_exit(&cpu_lock); 1031 } 1032 } 1033 } 1034 } 1035 1036 /* 1037 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 1038 * their clients. There is a 1-1 mapping pseudo ring and the hardware 1039 * ring. ddi interrupt handles are exported from the hardware ring to 1040 * the pseudo ring. Thus when the interrupt handle changes, clients of 1041 * aggr that are using the handle need to use the new handle and 1042 * re-target their interrupts. 1043 */ 1044 static void 1045 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 1046 ddi_intr_handle_t ddh) 1047 { 1048 mac_ring_t *pring; 1049 mac_group_t *pgroup; 1050 mac_impl_t *pmip; 1051 char macname[MAXNAMELEN]; 1052 mac_perim_handle_t p_mph; 1053 uint64_t saved_gen_num; 1054 1055 again: 1056 pring = (mac_ring_t *)ring->mr_prh; 1057 pgroup = (mac_group_t *)pring->mr_gh; 1058 pmip = (mac_impl_t *)pgroup->mrg_mh; 1059 saved_gen_num = ring->mr_gen_num; 1060 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1061 /* 1062 * We need to enter aggr's perimeter. The locking hierarchy 1063 * dictates that aggr's perimeter should be entered first 1064 * and then the port's perimeter. So drop the port's 1065 * perimeter, enter aggr's and then re-enter port's 1066 * perimeter. 1067 */ 1068 i_mac_perim_exit(mip); 1069 /* 1070 * While we know pmip is the aggr's mip, there is a 1071 * possibility that aggr could have unregistered by 1072 * the time we exit port's perimeter (mip) and 1073 * enter aggr's perimeter (pmip). To avoid that 1074 * scenario, enter aggr's perimeter using its name. 1075 */ 1076 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1077 return; 1078 i_mac_perim_enter(mip); 1079 /* 1080 * Check if the ring got assigned to another aggregation before 1081 * be could enter aggr's and the port's perimeter. When a ring 1082 * gets deleted from an aggregation, it calls mac_stop_ring() 1083 * which increments the generation number. So checking 1084 * generation number will be enough. 1085 */ 1086 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1087 i_mac_perim_exit(mip); 1088 mac_perim_exit(p_mph); 1089 i_mac_perim_enter(mip); 1090 goto again; 1091 } 1092 1093 /* Check if pseudo ring is still present */ 1094 if (ring->mr_prh != NULL) { 1095 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1096 pring->mr_info.mri_intr.mi_ddi_shared = 1097 ring->mr_info.mri_intr.mi_ddi_shared; 1098 if (ddh != NULL) 1099 mac_ring_intr_retarget(pgroup, pring); 1100 } 1101 i_mac_perim_exit(mip); 1102 mac_perim_exit(p_mph); 1103 } 1104 /* 1105 * API called by driver to provide new interrupt handle for TX/RX rings. 1106 * This usually happens when IRM (Interrupt Resource Manangement) 1107 * framework either gives the driver more MSI-x interrupts or takes 1108 * away MSI-x interrupts from the driver. 1109 */ 1110 void 1111 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1112 { 1113 mac_ring_t *ring = (mac_ring_t *)mrh; 1114 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1115 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1116 1117 i_mac_perim_enter(mip); 1118 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1119 if (ddh == NULL) { 1120 /* Interrupts being reset */ 1121 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1122 if (ring->mr_prh != NULL) { 1123 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1124 return; 1125 } 1126 } else { 1127 /* New interrupt handle */ 1128 mac_compare_ddi_handle(mip->mi_rx_groups, 1129 mip->mi_rx_group_count, ring); 1130 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1131 mac_compare_ddi_handle(mip->mi_tx_groups, 1132 mip->mi_tx_group_count, ring); 1133 } 1134 if (ring->mr_prh != NULL) { 1135 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1136 return; 1137 } else { 1138 mac_ring_intr_retarget(group, ring); 1139 } 1140 } 1141 i_mac_perim_exit(mip); 1142 } 1143 1144 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1145 1146 /* 1147 * Updates the mac_impl structure with the current state of the link 1148 */ 1149 static void 1150 i_mac_log_link_state(mac_impl_t *mip) 1151 { 1152 /* 1153 * If no change, then it is not interesting. 1154 */ 1155 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1156 return; 1157 1158 switch (mip->mi_lowlinkstate) { 1159 case LINK_STATE_UP: 1160 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1161 char det[200]; 1162 1163 mip->mi_type->mt_ops.mtops_link_details(det, 1164 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1165 1166 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1167 } else { 1168 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1169 } 1170 break; 1171 1172 case LINK_STATE_DOWN: 1173 /* 1174 * Only transitions from UP to DOWN are interesting 1175 */ 1176 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1177 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1178 break; 1179 1180 case LINK_STATE_UNKNOWN: 1181 /* 1182 * This case is normally not interesting. 1183 */ 1184 break; 1185 } 1186 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1187 } 1188 1189 /* 1190 * Main routine for the callbacks notifications thread 1191 */ 1192 static void 1193 i_mac_notify_thread(void *arg) 1194 { 1195 mac_impl_t *mip = arg; 1196 callb_cpr_t cprinfo; 1197 mac_cb_t *mcb; 1198 mac_cb_info_t *mcbi; 1199 mac_notify_cb_t *mncb; 1200 1201 mcbi = &mip->mi_notify_cb_info; 1202 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1203 "i_mac_notify_thread"); 1204 1205 mutex_enter(mcbi->mcbi_lockp); 1206 1207 for (;;) { 1208 uint32_t bits; 1209 uint32_t type; 1210 1211 bits = mip->mi_notify_bits; 1212 if (bits == 0) { 1213 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1214 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1215 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1216 continue; 1217 } 1218 mip->mi_notify_bits = 0; 1219 if ((bits & (1 << MAC_NNOTE)) != 0) { 1220 /* request to quit */ 1221 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1222 break; 1223 } 1224 1225 mutex_exit(mcbi->mcbi_lockp); 1226 1227 /* 1228 * Log link changes on the actual link, but then do reports on 1229 * synthetic state (if part of a bridge). 1230 */ 1231 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1232 link_state_t newstate; 1233 mac_handle_t mh; 1234 1235 i_mac_log_link_state(mip); 1236 newstate = mip->mi_lowlinkstate; 1237 if (mip->mi_bridge_link != NULL) { 1238 mutex_enter(&mip->mi_bridge_lock); 1239 if ((mh = mip->mi_bridge_link) != NULL) { 1240 newstate = mac_bridge_ls_cb(mh, 1241 newstate); 1242 } 1243 mutex_exit(&mip->mi_bridge_lock); 1244 } 1245 if (newstate != mip->mi_linkstate) { 1246 mip->mi_linkstate = newstate; 1247 bits |= 1 << MAC_NOTE_LINK; 1248 } 1249 } 1250 1251 /* 1252 * Do notification callbacks for each notification type. 1253 */ 1254 for (type = 0; type < MAC_NNOTE; type++) { 1255 if ((bits & (1 << type)) == 0) { 1256 continue; 1257 } 1258 1259 if (mac_notify_cb_list[type] != NULL) 1260 (*mac_notify_cb_list[type])(mip); 1261 1262 /* 1263 * Walk the list of notifications. 1264 */ 1265 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1266 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1267 mcb = mcb->mcb_nextp) { 1268 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1269 mncb->mncb_fn(mncb->mncb_arg, type); 1270 } 1271 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1272 &mip->mi_notify_cb_list); 1273 } 1274 1275 mutex_enter(mcbi->mcbi_lockp); 1276 } 1277 1278 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1279 cv_broadcast(&mcbi->mcbi_cv); 1280 1281 /* CALLB_CPR_EXIT drops the lock */ 1282 CALLB_CPR_EXIT(&cprinfo); 1283 thread_exit(); 1284 } 1285 1286 /* 1287 * Signal the i_mac_notify_thread asking it to quit. 1288 * Then wait till it is done. 1289 */ 1290 void 1291 i_mac_notify_exit(mac_impl_t *mip) 1292 { 1293 mac_cb_info_t *mcbi; 1294 1295 mcbi = &mip->mi_notify_cb_info; 1296 1297 mutex_enter(mcbi->mcbi_lockp); 1298 mip->mi_notify_bits = (1 << MAC_NNOTE); 1299 cv_broadcast(&mcbi->mcbi_cv); 1300 1301 1302 while ((mip->mi_notify_thread != NULL) && 1303 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1304 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1305 } 1306 1307 /* Necessary clean up before doing kmem_cache_free */ 1308 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1309 mip->mi_notify_bits = 0; 1310 mip->mi_notify_thread = NULL; 1311 mutex_exit(mcbi->mcbi_lockp); 1312 } 1313 1314 /* 1315 * Entry point invoked by drivers to dynamically add a ring to an 1316 * existing group. 1317 */ 1318 int 1319 mac_group_add_ring(mac_group_handle_t gh, int index) 1320 { 1321 mac_group_t *group = (mac_group_t *)gh; 1322 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1323 int ret; 1324 1325 i_mac_perim_enter(mip); 1326 ret = i_mac_group_add_ring(group, NULL, index); 1327 i_mac_perim_exit(mip); 1328 return (ret); 1329 } 1330 1331 /* 1332 * Entry point invoked by drivers to dynamically remove a ring 1333 * from an existing group. The specified ring handle must no longer 1334 * be used by the driver after a call to this function. 1335 */ 1336 void 1337 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1338 { 1339 mac_group_t *group = (mac_group_t *)gh; 1340 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1341 1342 i_mac_perim_enter(mip); 1343 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1344 i_mac_perim_exit(mip); 1345 } 1346 1347 /* 1348 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1349 * entry points. 1350 */ 1351 1352 void 1353 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1354 { 1355 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1356 1357 /* nothing to do if the caller doesn't want the default value */ 1358 if (pr->pr_default == NULL) 1359 return; 1360 1361 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1362 1363 *(uint8_t *)(pr->pr_default) = val; 1364 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1365 } 1366 1367 void 1368 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1369 { 1370 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1371 1372 /* nothing to do if the caller doesn't want the default value */ 1373 if (pr->pr_default == NULL) 1374 return; 1375 1376 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1377 1378 bcopy(&val, pr->pr_default, sizeof (val)); 1379 1380 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1381 } 1382 1383 void 1384 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1385 { 1386 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1387 1388 /* nothing to do if the caller doesn't want the default value */ 1389 if (pr->pr_default == NULL) 1390 return; 1391 1392 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1393 1394 bcopy(&val, pr->pr_default, sizeof (val)); 1395 1396 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1397 } 1398 1399 void 1400 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1401 { 1402 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1403 1404 /* nothing to do if the caller doesn't want the default value */ 1405 if (pr->pr_default == NULL) 1406 return; 1407 1408 if (strlen(str) >= pr->pr_default_size) 1409 pr->pr_errno = ENOBUFS; 1410 else 1411 (void) strlcpy(pr->pr_default, str, pr->pr_default_size); 1412 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1413 } 1414 1415 void 1416 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1417 link_flowctrl_t val) 1418 { 1419 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1420 1421 /* nothing to do if the caller doesn't want the default value */ 1422 if (pr->pr_default == NULL) 1423 return; 1424 1425 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1426 1427 bcopy(&val, pr->pr_default, sizeof (val)); 1428 1429 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1430 } 1431 1432 void 1433 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1434 uint32_t max) 1435 { 1436 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1437 mac_propval_range_t *range = pr->pr_range; 1438 mac_propval_uint32_range_t *range32; 1439 1440 /* nothing to do if the caller doesn't want the range info */ 1441 if (range == NULL) 1442 return; 1443 1444 if (pr->pr_range_cur_count++ == 0) { 1445 /* first range */ 1446 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1447 range->mpr_type = MAC_PROPVAL_UINT32; 1448 } else { 1449 /* all ranges of a property should be of the same type */ 1450 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1451 if (pr->pr_range_cur_count > range->mpr_count) { 1452 pr->pr_errno = ENOSPC; 1453 return; 1454 } 1455 } 1456 1457 range32 = range->mpr_range_uint32; 1458 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1459 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1460 } 1461 1462 void 1463 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1464 { 1465 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1466 1467 pr->pr_perm = perm; 1468 pr->pr_flags |= MAC_PROP_INFO_PERM; 1469 } 1470 1471 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1472 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1473 { 1474 uint32_t flags; 1475 1476 ASSERT(DB_TYPE(mp) == M_DATA); 1477 1478 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1479 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1480 if (value != NULL) 1481 *value = (uint32_t)DB_CKSUM16(mp); 1482 if ((flags & HCK_PARTIALCKSUM) != 0) { 1483 if (start != NULL) 1484 *start = (uint32_t)DB_CKSUMSTART(mp); 1485 if (stuff != NULL) 1486 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1487 if (end != NULL) 1488 *end = (uint32_t)DB_CKSUMEND(mp); 1489 } 1490 } 1491 1492 if (flags_ptr != NULL) 1493 *flags_ptr = flags; 1494 } 1495 1496 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1497 uint32_t end, uint32_t value, uint32_t flags) 1498 { 1499 ASSERT(DB_TYPE(mp) == M_DATA); 1500 1501 DB_CKSUMSTART(mp) = (intptr_t)start; 1502 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1503 DB_CKSUMEND(mp) = (intptr_t)end; 1504 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1505 DB_CKSUM16(mp) = (uint16_t)value; 1506 } 1507 1508 void 1509 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1510 { 1511 ASSERT(DB_TYPE(mp) == M_DATA); 1512 1513 if (flags != NULL) { 1514 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1515 if ((*flags != 0) && (mss != NULL)) 1516 *mss = (uint32_t)DB_LSOMSS(mp); 1517 } 1518 } 1519