xref: /illumos-gate/usr/src/uts/common/io/mac/mac_provider.c (revision 311330e6823a3a919ff127757c2f0cf9eb17aa0e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright 2020 RackTop Systems, Inc.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/conf.h>
31 #include <sys/id_space.h>
32 #include <sys/esunddi.h>
33 #include <sys/stat.h>
34 #include <sys/mkdev.h>
35 #include <sys/stream.h>
36 #include <sys/strsubr.h>
37 #include <sys/dlpi.h>
38 #include <sys/modhash.h>
39 #include <sys/mac.h>
40 #include <sys/mac_provider.h>
41 #include <sys/mac_impl.h>
42 #include <sys/mac_client_impl.h>
43 #include <sys/mac_client_priv.h>
44 #include <sys/mac_soft_ring.h>
45 #include <sys/mac_stat.h>
46 #include <sys/dld.h>
47 #include <sys/modctl.h>
48 #include <sys/fs/dv_node.h>
49 #include <sys/thread.h>
50 #include <sys/proc.h>
51 #include <sys/callb.h>
52 #include <sys/cpuvar.h>
53 #include <sys/atomic.h>
54 #include <sys/sdt.h>
55 #include <sys/mac_flow.h>
56 #include <sys/ddi_intr_impl.h>
57 #include <sys/disp.h>
58 #include <sys/sdt.h>
59 #include <sys/pattr.h>
60 #include <sys/strsun.h>
61 #include <sys/vlan.h>
62 #include <inet/ip.h>
63 #include <inet/tcp.h>
64 #include <netinet/udp.h>
65 #include <netinet/sctp.h>
66 
67 /*
68  * MAC Provider Interface.
69  *
70  * Interface for GLDv3 compatible NIC drivers.
71  */
72 
73 static void i_mac_notify_thread(void *);
74 
75 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
76 
77 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
78 	mac_fanout_recompute,	/* MAC_NOTE_LINK */
79 	NULL,		/* MAC_NOTE_UNICST */
80 	NULL,		/* MAC_NOTE_TX */
81 	NULL,		/* MAC_NOTE_DEVPROMISC */
82 	NULL,		/* MAC_NOTE_FASTPATH_FLUSH */
83 	NULL,		/* MAC_NOTE_SDU_SIZE */
84 	NULL,		/* MAC_NOTE_MARGIN */
85 	NULL,		/* MAC_NOTE_CAPAB_CHG */
86 	NULL		/* MAC_NOTE_LOWLINK */
87 };
88 
89 /*
90  * Driver support functions.
91  */
92 
93 /* REGISTRATION */
94 
95 mac_register_t *
96 mac_alloc(uint_t mac_version)
97 {
98 	mac_register_t *mregp;
99 
100 	/*
101 	 * Make sure there isn't a version mismatch between the driver and
102 	 * the framework.  In the future, if multiple versions are
103 	 * supported, this check could become more sophisticated.
104 	 */
105 	if (mac_version != MAC_VERSION)
106 		return (NULL);
107 
108 	mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
109 	mregp->m_version = mac_version;
110 	return (mregp);
111 }
112 
113 void
114 mac_free(mac_register_t *mregp)
115 {
116 	kmem_free(mregp, sizeof (mac_register_t));
117 }
118 
119 /*
120  * Convert a MAC's offload features into the equivalent DB_CKSUMFLAGS
121  * value.
122  */
123 static uint16_t
124 mac_features_to_flags(mac_handle_t mh)
125 {
126 	uint16_t flags = 0;
127 	uint32_t cap_sum = 0;
128 	mac_capab_lso_t cap_lso;
129 
130 	if (mac_capab_get(mh, MAC_CAPAB_HCKSUM, &cap_sum)) {
131 		if (cap_sum & HCKSUM_IPHDRCKSUM)
132 			flags |= HCK_IPV4_HDRCKSUM;
133 
134 		if (cap_sum & HCKSUM_INET_PARTIAL)
135 			flags |= HCK_PARTIALCKSUM;
136 		else if (cap_sum & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
137 			flags |= HCK_FULLCKSUM;
138 	}
139 
140 	/*
141 	 * We don't need the information stored in 'cap_lso', but we
142 	 * need to pass a non-NULL pointer to appease the driver.
143 	 */
144 	if (mac_capab_get(mh, MAC_CAPAB_LSO, &cap_lso))
145 		flags |= HW_LSO;
146 
147 	return (flags);
148 }
149 
150 /*
151  * mac_register() is how drivers register new MACs with the GLDv3
152  * framework.  The mregp argument is allocated by drivers using the
153  * mac_alloc() function, and can be freed using mac_free() immediately upon
154  * return from mac_register().  Upon success (0 return value), the mhp
155  * opaque pointer becomes the driver's handle to its MAC interface, and is
156  * the argument to all other mac module entry points.
157  */
158 /* ARGSUSED */
159 int
160 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
161 {
162 	mac_impl_t		*mip;
163 	mactype_t		*mtype;
164 	int			err = EINVAL;
165 	struct devnames		*dnp = NULL;
166 	uint_t			instance;
167 	boolean_t		style1_created = B_FALSE;
168 	boolean_t		style2_created = B_FALSE;
169 	char			*driver;
170 	minor_t			minor = 0;
171 
172 	/* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
173 	if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
174 		return (EINVAL);
175 
176 	/* Find the required MAC-Type plugin. */
177 	if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
178 		return (EINVAL);
179 
180 	/* Create a mac_impl_t to represent this MAC. */
181 	mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
182 
183 	/*
184 	 * The mac is not ready for open yet.
185 	 */
186 	mip->mi_state_flags |= MIS_DISABLED;
187 
188 	/*
189 	 * When a mac is registered, the m_instance field can be set to:
190 	 *
191 	 *  0:	Get the mac's instance number from m_dip.
192 	 *	This is usually used for physical device dips.
193 	 *
194 	 *  [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
195 	 *	For example, when an aggregation is created with the key option,
196 	 *	"key" will be used as the instance number.
197 	 *
198 	 *  -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
199 	 *	This is often used when a MAC of a virtual link is registered
200 	 *	(e.g., aggregation when "key" is not specified, or vnic).
201 	 *
202 	 * Note that the instance number is used to derive the mi_minor field
203 	 * of mac_impl_t, which will then be used to derive the name of kstats
204 	 * and the devfs nodes.  The first 2 cases are needed to preserve
205 	 * backward compatibility.
206 	 */
207 	switch (mregp->m_instance) {
208 	case 0:
209 		instance = ddi_get_instance(mregp->m_dip);
210 		break;
211 	case ((uint_t)-1):
212 		minor = mac_minor_hold(B_TRUE);
213 		if (minor == 0) {
214 			err = ENOSPC;
215 			goto fail;
216 		}
217 		instance = minor - 1;
218 		break;
219 	default:
220 		instance = mregp->m_instance;
221 		if (instance >= MAC_MAX_MINOR) {
222 			err = EINVAL;
223 			goto fail;
224 		}
225 		break;
226 	}
227 
228 	mip->mi_minor = (minor_t)(instance + 1);
229 	mip->mi_dip = mregp->m_dip;
230 	mip->mi_clients_list = NULL;
231 	mip->mi_nclients = 0;
232 
233 	/* Set the default IEEE Port VLAN Identifier */
234 	mip->mi_pvid = 1;
235 
236 	/* Default bridge link learning protection values */
237 	mip->mi_llimit = 1000;
238 	mip->mi_ldecay = 200;
239 
240 	driver = (char *)ddi_driver_name(mip->mi_dip);
241 
242 	/* Construct the MAC name as <drvname><instance> */
243 	(void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
244 	    driver, instance);
245 
246 	mip->mi_driver = mregp->m_driver;
247 
248 	mip->mi_type = mtype;
249 	mip->mi_margin = mregp->m_margin;
250 	mip->mi_info.mi_media = mtype->mt_type;
251 	mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
252 	if (mregp->m_max_sdu <= mregp->m_min_sdu)
253 		goto fail;
254 	if (mregp->m_multicast_sdu == 0)
255 		mregp->m_multicast_sdu = mregp->m_max_sdu;
256 	if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
257 	    mregp->m_multicast_sdu > mregp->m_max_sdu)
258 		goto fail;
259 	mip->mi_sdu_min = mregp->m_min_sdu;
260 	mip->mi_sdu_max = mregp->m_max_sdu;
261 	mip->mi_sdu_multicast = mregp->m_multicast_sdu;
262 	mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
263 	/*
264 	 * If the media supports a broadcast address, cache a pointer to it
265 	 * in the mac_info_t so that upper layers can use it.
266 	 */
267 	mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
268 
269 	mip->mi_v12n_level = mregp->m_v12n;
270 
271 	/*
272 	 * Copy the unicast source address into the mac_info_t, but only if
273 	 * the MAC-Type defines a non-zero address length.  We need to
274 	 * handle MAC-Types that have an address length of 0
275 	 * (point-to-point protocol MACs for example).
276 	 */
277 	if (mip->mi_type->mt_addr_length > 0) {
278 		if (mregp->m_src_addr == NULL)
279 			goto fail;
280 		mip->mi_info.mi_unicst_addr =
281 		    kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
282 		bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
283 		    mip->mi_type->mt_addr_length);
284 
285 		/*
286 		 * Copy the fixed 'factory' MAC address from the immutable
287 		 * info.  This is taken to be the MAC address currently in
288 		 * use.
289 		 */
290 		bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
291 		    mip->mi_type->mt_addr_length);
292 
293 		/*
294 		 * At this point, we should set up the classification
295 		 * rules etc but we delay it till mac_open() so that
296 		 * the resource discovery has taken place and we
297 		 * know someone wants to use the device. Otherwise
298 		 * memory gets allocated for Rx ring structures even
299 		 * during probe.
300 		 */
301 
302 		/* Copy the destination address if one is provided. */
303 		if (mregp->m_dst_addr != NULL) {
304 			bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
305 			    mip->mi_type->mt_addr_length);
306 			mip->mi_dstaddr_set = B_TRUE;
307 		}
308 	} else if (mregp->m_src_addr != NULL) {
309 		goto fail;
310 	}
311 
312 	/*
313 	 * The format of the m_pdata is specific to the plugin.  It is
314 	 * passed in as an argument to all of the plugin callbacks.  The
315 	 * driver can update this information by calling
316 	 * mac_pdata_update().
317 	 */
318 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
319 		/*
320 		 * Verify if the supplied plugin data is valid.  Note that
321 		 * even if the caller passed in a NULL pointer as plugin data,
322 		 * we still need to verify if that's valid as the plugin may
323 		 * require plugin data to function.
324 		 */
325 		if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
326 		    mregp->m_pdata_size)) {
327 			goto fail;
328 		}
329 		if (mregp->m_pdata != NULL) {
330 			mip->mi_pdata =
331 			    kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
332 			bcopy(mregp->m_pdata, mip->mi_pdata,
333 			    mregp->m_pdata_size);
334 			mip->mi_pdata_size = mregp->m_pdata_size;
335 		}
336 	} else if (mregp->m_pdata != NULL) {
337 		/*
338 		 * The caller supplied non-NULL plugin data, but the plugin
339 		 * does not recognize plugin data.
340 		 */
341 		err = EINVAL;
342 		goto fail;
343 	}
344 
345 	/*
346 	 * Register the private properties.
347 	 */
348 	mac_register_priv_prop(mip, mregp->m_priv_props);
349 
350 	/*
351 	 * Stash the driver callbacks into the mac_impl_t, but first sanity
352 	 * check to make sure all mandatory callbacks are set.
353 	 */
354 	if (mregp->m_callbacks->mc_getstat == NULL ||
355 	    mregp->m_callbacks->mc_start == NULL ||
356 	    mregp->m_callbacks->mc_stop == NULL ||
357 	    mregp->m_callbacks->mc_setpromisc == NULL ||
358 	    mregp->m_callbacks->mc_multicst == NULL) {
359 		goto fail;
360 	}
361 	mip->mi_callbacks = mregp->m_callbacks;
362 
363 	if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
364 	    &mip->mi_capab_legacy)) {
365 		mip->mi_state_flags |= MIS_LEGACY;
366 		mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
367 	} else {
368 		mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
369 		    mip->mi_minor);
370 	}
371 
372 	/*
373 	 * Allocate a notification thread. thread_create blocks for memory
374 	 * if needed, it never fails.
375 	 */
376 	mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
377 	    mip, 0, &p0, TS_RUN, minclsyspri);
378 
379 	/*
380 	 * Cache the DB_CKSUMFLAGS that this MAC supports.
381 	 */
382 	mip->mi_tx_cksum_flags = mac_features_to_flags((mac_handle_t)mip);
383 
384 	/*
385 	 * Initialize the capabilities
386 	 */
387 	bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
388 	bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
389 
390 	if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
391 		mip->mi_state_flags |= MIS_IS_VNIC;
392 
393 	if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
394 		mip->mi_state_flags |= MIS_IS_AGGR;
395 
396 	if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_OVERLAY, NULL))
397 		mip->mi_state_flags |= MIS_IS_OVERLAY;
398 
399 	mac_addr_factory_init(mip);
400 
401 	mac_transceiver_init(mip);
402 
403 	mac_led_init(mip);
404 
405 	/*
406 	 * Enforce the virtrualization level registered.
407 	 */
408 	if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
409 		if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
410 		    mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
411 			goto fail;
412 
413 		/*
414 		 * The driver needs to register at least rx rings for this
415 		 * virtualization level.
416 		 */
417 		if (mip->mi_rx_groups == NULL)
418 			goto fail;
419 	}
420 
421 	/*
422 	 * The driver must set mc_unicst entry point to NULL when it advertises
423 	 * CAP_RINGS for rx groups.
424 	 */
425 	if (mip->mi_rx_groups != NULL) {
426 		if (mregp->m_callbacks->mc_unicst != NULL)
427 			goto fail;
428 	} else {
429 		if (mregp->m_callbacks->mc_unicst == NULL)
430 			goto fail;
431 	}
432 
433 	/*
434 	 * Initialize MAC addresses. Must be called after mac_init_rings().
435 	 */
436 	mac_init_macaddr(mip);
437 
438 	mip->mi_share_capab.ms_snum = 0;
439 	if (mip->mi_v12n_level & MAC_VIRT_HIO) {
440 		(void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
441 		    &mip->mi_share_capab);
442 	}
443 
444 	/*
445 	 * Initialize the kstats for this device.
446 	 */
447 	mac_driver_stat_create(mip);
448 
449 	/* Zero out any properties. */
450 	bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
451 
452 	if (mip->mi_minor <= MAC_MAX_MINOR) {
453 		/* Create a style-2 DLPI device */
454 		if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
455 		    DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
456 			goto fail;
457 		style2_created = B_TRUE;
458 
459 		/* Create a style-1 DLPI device */
460 		if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
461 		    mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
462 			goto fail;
463 		style1_created = B_TRUE;
464 	}
465 
466 	mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
467 
468 	rw_enter(&i_mac_impl_lock, RW_WRITER);
469 	if (mod_hash_insert(i_mac_impl_hash,
470 	    (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
471 		rw_exit(&i_mac_impl_lock);
472 		err = EEXIST;
473 		goto fail;
474 	}
475 
476 	DTRACE_PROBE2(mac__register, struct devnames *, dnp,
477 	    (mac_impl_t *), mip);
478 
479 	/*
480 	 * Mark the MAC to be ready for open.
481 	 */
482 	mip->mi_state_flags &= ~MIS_DISABLED;
483 	rw_exit(&i_mac_impl_lock);
484 
485 	atomic_inc_32(&i_mac_impl_count);
486 
487 	cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
488 	*mhp = (mac_handle_t)mip;
489 	return (0);
490 
491 fail:
492 	if (style1_created)
493 		ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
494 
495 	if (style2_created)
496 		ddi_remove_minor_node(mip->mi_dip, driver);
497 
498 	mac_addr_factory_fini(mip);
499 
500 	/* Clean up registered MAC addresses */
501 	mac_fini_macaddr(mip);
502 
503 	/* Clean up registered rings */
504 	mac_free_rings(mip, MAC_RING_TYPE_RX);
505 	mac_free_rings(mip, MAC_RING_TYPE_TX);
506 
507 	/* Clean up notification thread */
508 	if (mip->mi_notify_thread != NULL)
509 		i_mac_notify_exit(mip);
510 
511 	if (mip->mi_info.mi_unicst_addr != NULL) {
512 		kmem_free(mip->mi_info.mi_unicst_addr,
513 		    mip->mi_type->mt_addr_length);
514 		mip->mi_info.mi_unicst_addr = NULL;
515 	}
516 
517 	mac_driver_stat_delete(mip);
518 
519 	if (mip->mi_type != NULL) {
520 		atomic_dec_32(&mip->mi_type->mt_ref);
521 		mip->mi_type = NULL;
522 	}
523 
524 	if (mip->mi_pdata != NULL) {
525 		kmem_free(mip->mi_pdata, mip->mi_pdata_size);
526 		mip->mi_pdata = NULL;
527 		mip->mi_pdata_size = 0;
528 	}
529 
530 	if (minor != 0) {
531 		ASSERT(minor > MAC_MAX_MINOR);
532 		mac_minor_rele(minor);
533 	}
534 
535 	mip->mi_state_flags = 0;
536 	mac_unregister_priv_prop(mip);
537 
538 	/*
539 	 * Clear the state before destroying the mac_impl_t
540 	 */
541 	mip->mi_state_flags = 0;
542 
543 	kmem_cache_free(i_mac_impl_cachep, mip);
544 	return (err);
545 }
546 
547 /*
548  * Unregister from the GLDv3 framework
549  */
550 int
551 mac_unregister(mac_handle_t mh)
552 {
553 	int			err;
554 	mac_impl_t		*mip = (mac_impl_t *)mh;
555 	mod_hash_val_t		val;
556 	mac_margin_req_t	*mmr, *nextmmr;
557 
558 	/* Fail the unregister if there are any open references to this mac. */
559 	if ((err = mac_disable_nowait(mh)) != 0)
560 		return (err);
561 
562 	/*
563 	 * Clean up notification thread and wait for it to exit.
564 	 */
565 	i_mac_notify_exit(mip);
566 
567 	/*
568 	 * Prior to acquiring the MAC perimeter, remove the MAC instance from
569 	 * the internal hash table. Such removal means table-walkers that
570 	 * acquire the perimeter will not do so on behalf of what we are
571 	 * unregistering, which prevents a deadlock.
572 	 */
573 	rw_enter(&i_mac_impl_lock, RW_WRITER);
574 	(void) mod_hash_remove(i_mac_impl_hash,
575 	    (mod_hash_key_t)mip->mi_name, &val);
576 	rw_exit(&i_mac_impl_lock);
577 	ASSERT(mip == (mac_impl_t *)val);
578 
579 	i_mac_perim_enter(mip);
580 
581 	/*
582 	 * There is still resource properties configured over this mac.
583 	 */
584 	if (mip->mi_resource_props.mrp_mask != 0)
585 		mac_fastpath_enable((mac_handle_t)mip);
586 
587 	if (mip->mi_minor < MAC_MAX_MINOR + 1) {
588 		ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
589 		ddi_remove_minor_node(mip->mi_dip,
590 		    (char *)ddi_driver_name(mip->mi_dip));
591 	}
592 
593 	ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
594 	    MIS_EXCLUSIVE));
595 
596 	mac_driver_stat_delete(mip);
597 
598 	ASSERT(i_mac_impl_count > 0);
599 	atomic_dec_32(&i_mac_impl_count);
600 
601 	if (mip->mi_pdata != NULL)
602 		kmem_free(mip->mi_pdata, mip->mi_pdata_size);
603 	mip->mi_pdata = NULL;
604 	mip->mi_pdata_size = 0;
605 
606 	/*
607 	 * Free the list of margin request.
608 	 */
609 	for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
610 		nextmmr = mmr->mmr_nextp;
611 		kmem_free(mmr, sizeof (mac_margin_req_t));
612 	}
613 	mip->mi_mmrp = NULL;
614 
615 	mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
616 	kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
617 	mip->mi_info.mi_unicst_addr = NULL;
618 
619 	atomic_dec_32(&mip->mi_type->mt_ref);
620 	mip->mi_type = NULL;
621 
622 	/*
623 	 * Free the primary MAC address.
624 	 */
625 	mac_fini_macaddr(mip);
626 
627 	/*
628 	 * free all rings
629 	 */
630 	mac_free_rings(mip, MAC_RING_TYPE_RX);
631 	mac_free_rings(mip, MAC_RING_TYPE_TX);
632 
633 	mac_addr_factory_fini(mip);
634 
635 	bzero(mip->mi_addr, MAXMACADDRLEN);
636 	bzero(mip->mi_dstaddr, MAXMACADDRLEN);
637 	mip->mi_dstaddr_set = B_FALSE;
638 
639 	/* and the flows */
640 	mac_flow_tab_destroy(mip->mi_flow_tab);
641 	mip->mi_flow_tab = NULL;
642 
643 	if (mip->mi_minor > MAC_MAX_MINOR)
644 		mac_minor_rele(mip->mi_minor);
645 
646 	cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
647 
648 	/*
649 	 * Reset the perim related fields to default values before
650 	 * kmem_cache_free
651 	 */
652 	i_mac_perim_exit(mip);
653 	mip->mi_state_flags = 0;
654 
655 	mac_unregister_priv_prop(mip);
656 
657 	ASSERT(mip->mi_bridge_link == NULL);
658 	kmem_cache_free(i_mac_impl_cachep, mip);
659 
660 	return (0);
661 }
662 
663 /* DATA RECEPTION */
664 
665 /*
666  * This function is invoked for packets received by the MAC driver in
667  * interrupt context. The ring generation number provided by the driver
668  * is matched with the ring generation number held in MAC. If they do not
669  * match, received packets are considered stale packets coming from an older
670  * assignment of the ring. Drop them.
671  */
672 void
673 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
674     uint64_t mr_gen_num)
675 {
676 	mac_ring_t		*mr = (mac_ring_t *)mrh;
677 
678 	if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
679 		DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
680 		    mr->mr_gen_num, uint64_t, mr_gen_num);
681 		freemsgchain(mp_chain);
682 		return;
683 	}
684 	mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
685 }
686 
687 /*
688  * This function is invoked for each packet received by the underlying driver.
689  */
690 void
691 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
692 {
693 	mac_impl_t *mip = (mac_impl_t *)mh;
694 
695 	/*
696 	 * Check if the link is part of a bridge.  If not, then we don't need
697 	 * to take the lock to remain consistent.  Make this common case
698 	 * lock-free and tail-call optimized.
699 	 */
700 	if (mip->mi_bridge_link == NULL) {
701 		mac_rx_common(mh, mrh, mp_chain);
702 	} else {
703 		/*
704 		 * Once we take a reference on the bridge link, the bridge
705 		 * module itself can't unload, so the callback pointers are
706 		 * stable.
707 		 */
708 		mutex_enter(&mip->mi_bridge_lock);
709 		if ((mh = mip->mi_bridge_link) != NULL)
710 			mac_bridge_ref_cb(mh, B_TRUE);
711 		mutex_exit(&mip->mi_bridge_lock);
712 		if (mh == NULL) {
713 			mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
714 		} else {
715 			mac_bridge_rx_cb(mh, mrh, mp_chain);
716 			mac_bridge_ref_cb(mh, B_FALSE);
717 		}
718 	}
719 }
720 
721 /*
722  * Special case function: this allows snooping of packets transmitted and
723  * received by TRILL. By design, they go directly into the TRILL module.
724  */
725 void
726 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
727 {
728 	mac_impl_t *mip = (mac_impl_t *)mh;
729 
730 	if (mip->mi_promisc_list != NULL)
731 		mac_promisc_dispatch(mip, mp, NULL, B_FALSE);
732 }
733 
734 /*
735  * This is the upward reentry point for packets arriving from the bridging
736  * module and from mac_rx for links not part of a bridge.
737  */
738 void
739 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
740 {
741 	mac_impl_t		*mip = (mac_impl_t *)mh;
742 	mac_ring_t		*mr = (mac_ring_t *)mrh;
743 	mac_soft_ring_set_t	*mac_srs;
744 	mblk_t			*bp = mp_chain;
745 
746 	/*
747 	 * If there are any promiscuous mode callbacks defined for
748 	 * this MAC, pass them a copy if appropriate.
749 	 */
750 	if (mip->mi_promisc_list != NULL)
751 		mac_promisc_dispatch(mip, mp_chain, NULL, B_FALSE);
752 
753 	if (mr != NULL) {
754 		/*
755 		 * If the SRS teardown has started, just return. The 'mr'
756 		 * continues to be valid until the driver unregisters the MAC.
757 		 * Hardware classified packets will not make their way up
758 		 * beyond this point once the teardown has started. The driver
759 		 * is never passed a pointer to a flow entry or SRS or any
760 		 * structure that can be freed much before mac_unregister.
761 		 */
762 		mutex_enter(&mr->mr_lock);
763 		if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
764 		    (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
765 			mutex_exit(&mr->mr_lock);
766 			freemsgchain(mp_chain);
767 			return;
768 		}
769 
770 		/*
771 		 * The ring is in passthru mode; pass the chain up to
772 		 * the pseudo ring.
773 		 */
774 		if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) {
775 			MR_REFHOLD_LOCKED(mr);
776 			mutex_exit(&mr->mr_lock);
777 			mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain,
778 			    B_FALSE);
779 			MR_REFRELE(mr);
780 			return;
781 		}
782 
783 		/*
784 		 * The passthru callback should only be set when in
785 		 * MAC_PASSTHRU_CLASSIFIER mode.
786 		 */
787 		ASSERT3P(mr->mr_pt_fn, ==, NULL);
788 
789 		/*
790 		 * We check if an SRS is controlling this ring.
791 		 * If so, we can directly call the srs_lower_proc
792 		 * routine otherwise we need to go through mac_rx_classify
793 		 * to reach the right place.
794 		 */
795 		if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
796 			MR_REFHOLD_LOCKED(mr);
797 			mutex_exit(&mr->mr_lock);
798 			ASSERT3P(mr->mr_srs, !=, NULL);
799 			mac_srs = mr->mr_srs;
800 
801 			/*
802 			 * This is the fast path. All packets received
803 			 * on this ring are hardware classified and
804 			 * share the same MAC header info.
805 			 */
806 			mac_srs->srs_rx.sr_lower_proc(mh,
807 			    (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
808 			MR_REFRELE(mr);
809 			return;
810 		}
811 
812 		mutex_exit(&mr->mr_lock);
813 		/* We'll fall through to software classification */
814 	} else {
815 		flow_entry_t *flent;
816 		int err;
817 
818 		rw_enter(&mip->mi_rw_lock, RW_READER);
819 		if (mip->mi_single_active_client != NULL) {
820 			flent = mip->mi_single_active_client->mci_flent_list;
821 			FLOW_TRY_REFHOLD(flent, err);
822 			rw_exit(&mip->mi_rw_lock);
823 			if (err == 0) {
824 				(flent->fe_cb_fn)(flent->fe_cb_arg1,
825 				    flent->fe_cb_arg2, mp_chain, B_FALSE);
826 				FLOW_REFRELE(flent);
827 				return;
828 			}
829 		} else {
830 			rw_exit(&mip->mi_rw_lock);
831 		}
832 	}
833 
834 	if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
835 		if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
836 			return;
837 	}
838 
839 	freemsgchain(bp);
840 }
841 
842 /* DATA TRANSMISSION */
843 
844 /*
845  * A driver's notification to resume transmission, in case of a provider
846  * without TX rings.
847  */
848 void
849 mac_tx_update(mac_handle_t mh)
850 {
851 	mac_tx_ring_update(mh, NULL);
852 }
853 
854 /*
855  * A driver's notification to resume transmission on the specified TX ring.
856  */
857 void
858 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
859 {
860 	i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
861 }
862 
863 /* LINK STATE */
864 /*
865  * Notify the MAC layer about a link state change
866  */
867 void
868 mac_link_update(mac_handle_t mh, link_state_t link)
869 {
870 	mac_impl_t	*mip = (mac_impl_t *)mh;
871 
872 	/*
873 	 * Save the link state.
874 	 */
875 	mip->mi_lowlinkstate = link;
876 
877 	/*
878 	 * Send a MAC_NOTE_LOWLINK notification.  This tells the notification
879 	 * thread to deliver both lower and upper notifications.
880 	 */
881 	i_mac_notify(mip, MAC_NOTE_LOWLINK);
882 }
883 
884 /*
885  * Notify the MAC layer about a link state change due to bridging.
886  */
887 void
888 mac_link_redo(mac_handle_t mh, link_state_t link)
889 {
890 	mac_impl_t	*mip = (mac_impl_t *)mh;
891 
892 	/*
893 	 * Save the link state.
894 	 */
895 	mip->mi_linkstate = link;
896 
897 	/*
898 	 * Send a MAC_NOTE_LINK notification.  Only upper notifications are
899 	 * made.
900 	 */
901 	i_mac_notify(mip, MAC_NOTE_LINK);
902 }
903 
904 /* MINOR NODE HANDLING */
905 
906 /*
907  * Given a dev_t, return the instance number (PPA) associated with it.
908  * Drivers can use this in their getinfo(9e) implementation to lookup
909  * the instance number (i.e. PPA) of the device, to use as an index to
910  * their own array of soft state structures.
911  *
912  * Returns -1 on error.
913  */
914 int
915 mac_devt_to_instance(dev_t devt)
916 {
917 	return (dld_devt_to_instance(devt));
918 }
919 
920 /*
921  * This function returns the first minor number that is available for
922  * driver private use.  All minor numbers smaller than this are
923  * reserved for GLDv3 use.
924  */
925 minor_t
926 mac_private_minor(void)
927 {
928 	return (MAC_PRIVATE_MINOR);
929 }
930 
931 /* OTHER CONTROL INFORMATION */
932 
933 /*
934  * A driver notified us that its primary MAC address has changed.
935  */
936 void
937 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
938 {
939 	mac_impl_t	*mip = (mac_impl_t *)mh;
940 
941 	if (mip->mi_type->mt_addr_length == 0)
942 		return;
943 
944 	i_mac_perim_enter(mip);
945 
946 	/*
947 	 * If address changes, freshen the MAC address value and update
948 	 * all MAC clients that share this MAC address.
949 	 */
950 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
951 		mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
952 		    (uint8_t *)addr);
953 	}
954 
955 	i_mac_perim_exit(mip);
956 
957 	/*
958 	 * Send a MAC_NOTE_UNICST notification.
959 	 */
960 	i_mac_notify(mip, MAC_NOTE_UNICST);
961 }
962 
963 void
964 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
965 {
966 	mac_impl_t	*mip = (mac_impl_t *)mh;
967 
968 	if (mip->mi_type->mt_addr_length == 0)
969 		return;
970 
971 	i_mac_perim_enter(mip);
972 	bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
973 	i_mac_perim_exit(mip);
974 	i_mac_notify(mip, MAC_NOTE_DEST);
975 }
976 
977 /*
978  * MAC plugin information changed.
979  */
980 int
981 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
982 {
983 	mac_impl_t	*mip = (mac_impl_t *)mh;
984 
985 	/*
986 	 * Verify that the plugin supports MAC plugin data and that the
987 	 * supplied data is valid.
988 	 */
989 	if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
990 		return (EINVAL);
991 	if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
992 		return (EINVAL);
993 
994 	if (mip->mi_pdata != NULL)
995 		kmem_free(mip->mi_pdata, mip->mi_pdata_size);
996 
997 	mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
998 	bcopy(mac_pdata, mip->mi_pdata, dsize);
999 	mip->mi_pdata_size = dsize;
1000 
1001 	/*
1002 	 * Since the MAC plugin data is used to construct MAC headers that
1003 	 * were cached in fast-path headers, we need to flush fast-path
1004 	 * information for links associated with this mac.
1005 	 */
1006 	i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
1007 	return (0);
1008 }
1009 
1010 /*
1011  * The mac provider or mac frameowrk calls this function when it wants
1012  * to notify upstream consumers that the capabilities have changed and
1013  * that they should modify their own internal state accordingly.
1014  *
1015  * We currently have no regard for the fact that a provider could
1016  * decide to drop capabilities which would invalidate pending traffic.
1017  * For example, if one was to disable the Tx checksum offload while
1018  * TCP/IP traffic was being sent by mac clients relying on that
1019  * feature, then those packets would hit the write with missing or
1020  * partial checksums. A proper solution involves not only providing
1021  * notfication, but also performing client quiescing. That is, a capab
1022  * change should be treated as an atomic transaction that forms a
1023  * barrier between traffic relying on the current capabs and traffic
1024  * relying on the new capabs. In practice, simnet is currently the
1025  * only provider that could hit this, and it's an easily avoidable
1026  * situation (and at worst it should only lead to some dropped
1027  * packets). But if we ever want better on-the-fly capab change to
1028  * actual hardware providers, then we should give this update
1029  * mechanism a proper implementation.
1030  */
1031 void
1032 mac_capab_update(mac_handle_t mh)
1033 {
1034 	/*
1035 	 * Send a MAC_NOTE_CAPAB_CHG notification to alert upstream
1036 	 * clients to renegotiate capabilities.
1037 	 */
1038 	i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
1039 }
1040 
1041 /*
1042  * Used by normal drivers to update the max sdu size.
1043  * We need to handle the case of a smaller mi_sdu_multicast
1044  * since this is called by mac_set_mtu() even for drivers that
1045  * have differing unicast and multicast mtu and we don't want to
1046  * increase the multicast mtu by accident in that case.
1047  */
1048 int
1049 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
1050 {
1051 	mac_impl_t	*mip = (mac_impl_t *)mh;
1052 
1053 	if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1054 		return (EINVAL);
1055 	mip->mi_sdu_max = sdu_max;
1056 	if (mip->mi_sdu_multicast > mip->mi_sdu_max)
1057 		mip->mi_sdu_multicast = mip->mi_sdu_max;
1058 
1059 	/* Send a MAC_NOTE_SDU_SIZE notification. */
1060 	i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1061 	return (0);
1062 }
1063 
1064 /*
1065  * Version of the above function that is used by drivers that have a different
1066  * max sdu size for multicast/broadcast vs. unicast.
1067  */
1068 int
1069 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
1070 {
1071 	mac_impl_t	*mip = (mac_impl_t *)mh;
1072 
1073 	if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1074 		return (EINVAL);
1075 	if (sdu_multicast == 0)
1076 		sdu_multicast = sdu_max;
1077 	if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
1078 		return (EINVAL);
1079 	mip->mi_sdu_max = sdu_max;
1080 	mip->mi_sdu_multicast = sdu_multicast;
1081 
1082 	/* Send a MAC_NOTE_SDU_SIZE notification. */
1083 	i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1084 	return (0);
1085 }
1086 
1087 static void
1088 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1089 {
1090 	mac_client_impl_t *mcip;
1091 	flow_entry_t *flent;
1092 	mac_soft_ring_set_t *mac_rx_srs;
1093 	mac_cpus_t *srs_cpu;
1094 	int i;
1095 
1096 	if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1097 	    (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1098 		/* interrupt can be re-targeted */
1099 		ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1100 		flent = mcip->mci_flent;
1101 		if (ring->mr_type == MAC_RING_TYPE_RX) {
1102 			for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1103 				mac_rx_srs = flent->fe_rx_srs[i];
1104 				if (mac_rx_srs->srs_ring != ring)
1105 					continue;
1106 				srs_cpu = &mac_rx_srs->srs_cpu;
1107 				mutex_enter(&cpu_lock);
1108 				mac_rx_srs_retarget_intr(mac_rx_srs,
1109 				    srs_cpu->mc_rx_intr_cpu);
1110 				mutex_exit(&cpu_lock);
1111 				break;
1112 			}
1113 		} else {
1114 			if (flent->fe_tx_srs != NULL) {
1115 				mutex_enter(&cpu_lock);
1116 				mac_tx_srs_retarget_intr(
1117 				    flent->fe_tx_srs);
1118 				mutex_exit(&cpu_lock);
1119 			}
1120 		}
1121 	}
1122 }
1123 
1124 /*
1125  * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1126  * their clients. There is a 1-1 mapping pseudo ring and the hardware
1127  * ring. ddi interrupt handles are exported from the hardware ring to
1128  * the pseudo ring. Thus when the interrupt handle changes, clients of
1129  * aggr that are using the handle need to use the new handle and
1130  * re-target their interrupts.
1131  */
1132 static void
1133 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1134     ddi_intr_handle_t ddh)
1135 {
1136 	mac_ring_t *pring;
1137 	mac_group_t *pgroup;
1138 	mac_impl_t *pmip;
1139 	char macname[MAXNAMELEN];
1140 	mac_perim_handle_t p_mph;
1141 	uint64_t saved_gen_num;
1142 
1143 again:
1144 	pring = (mac_ring_t *)ring->mr_prh;
1145 	pgroup = (mac_group_t *)pring->mr_gh;
1146 	pmip = (mac_impl_t *)pgroup->mrg_mh;
1147 	saved_gen_num = ring->mr_gen_num;
1148 	(void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1149 	/*
1150 	 * We need to enter aggr's perimeter. The locking hierarchy
1151 	 * dictates that aggr's perimeter should be entered first
1152 	 * and then the port's perimeter. So drop the port's
1153 	 * perimeter, enter aggr's and then re-enter port's
1154 	 * perimeter.
1155 	 */
1156 	i_mac_perim_exit(mip);
1157 	/*
1158 	 * While we know pmip is the aggr's mip, there is a
1159 	 * possibility that aggr could have unregistered by
1160 	 * the time we exit port's perimeter (mip) and
1161 	 * enter aggr's perimeter (pmip). To avoid that
1162 	 * scenario, enter aggr's perimeter using its name.
1163 	 */
1164 	if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1165 		return;
1166 	i_mac_perim_enter(mip);
1167 	/*
1168 	 * Check if the ring got assigned to another aggregation before
1169 	 * be could enter aggr's and the port's perimeter. When a ring
1170 	 * gets deleted from an aggregation, it calls mac_stop_ring()
1171 	 * which increments the generation number. So checking
1172 	 * generation number will be enough.
1173 	 */
1174 	if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1175 		i_mac_perim_exit(mip);
1176 		mac_perim_exit(p_mph);
1177 		i_mac_perim_enter(mip);
1178 		goto again;
1179 	}
1180 
1181 	/* Check if pseudo ring is still present */
1182 	if (ring->mr_prh != NULL) {
1183 		pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1184 		pring->mr_info.mri_intr.mi_ddi_shared =
1185 		    ring->mr_info.mri_intr.mi_ddi_shared;
1186 		if (ddh != NULL)
1187 			mac_ring_intr_retarget(pgroup, pring);
1188 	}
1189 	i_mac_perim_exit(mip);
1190 	mac_perim_exit(p_mph);
1191 }
1192 /*
1193  * API called by driver to provide new interrupt handle for TX/RX rings.
1194  * This usually happens when IRM (Interrupt Resource Manangement)
1195  * framework either gives the driver more MSI-x interrupts or takes
1196  * away MSI-x interrupts from the driver.
1197  */
1198 void
1199 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1200 {
1201 	mac_ring_t	*ring = (mac_ring_t *)mrh;
1202 	mac_group_t	*group = (mac_group_t *)ring->mr_gh;
1203 	mac_impl_t	*mip = (mac_impl_t *)group->mrg_mh;
1204 
1205 	i_mac_perim_enter(mip);
1206 	ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1207 	if (ddh == NULL) {
1208 		/* Interrupts being reset */
1209 		ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1210 		if (ring->mr_prh != NULL) {
1211 			mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1212 			return;
1213 		}
1214 	} else {
1215 		/* New interrupt handle */
1216 		mac_compare_ddi_handle(mip->mi_rx_groups,
1217 		    mip->mi_rx_group_count, ring);
1218 		if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1219 			mac_compare_ddi_handle(mip->mi_tx_groups,
1220 			    mip->mi_tx_group_count, ring);
1221 		}
1222 		if (ring->mr_prh != NULL) {
1223 			mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1224 			return;
1225 		} else {
1226 			mac_ring_intr_retarget(group, ring);
1227 		}
1228 	}
1229 	i_mac_perim_exit(mip);
1230 }
1231 
1232 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1233 
1234 /*
1235  * Updates the mac_impl structure with the current state of the link
1236  */
1237 static void
1238 i_mac_log_link_state(mac_impl_t *mip)
1239 {
1240 	/*
1241 	 * If no change, then it is not interesting.
1242 	 */
1243 	if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1244 		return;
1245 
1246 	switch (mip->mi_lowlinkstate) {
1247 	case LINK_STATE_UP:
1248 		if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1249 			char det[200];
1250 
1251 			mip->mi_type->mt_ops.mtops_link_details(det,
1252 			    sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1253 
1254 			cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1255 		} else {
1256 			cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1257 		}
1258 		break;
1259 
1260 	case LINK_STATE_DOWN:
1261 		/*
1262 		 * Only transitions from UP to DOWN are interesting
1263 		 */
1264 		if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1265 			cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1266 		break;
1267 
1268 	case LINK_STATE_UNKNOWN:
1269 		/*
1270 		 * This case is normally not interesting.
1271 		 */
1272 		break;
1273 	}
1274 	mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1275 }
1276 
1277 /*
1278  * Main routine for the callbacks notifications thread
1279  */
1280 static void
1281 i_mac_notify_thread(void *arg)
1282 {
1283 	mac_impl_t	*mip = arg;
1284 	callb_cpr_t	cprinfo;
1285 	mac_cb_t	*mcb;
1286 	mac_cb_info_t	*mcbi;
1287 	mac_notify_cb_t	*mncb;
1288 
1289 	mcbi = &mip->mi_notify_cb_info;
1290 	CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1291 	    "i_mac_notify_thread");
1292 
1293 	mutex_enter(mcbi->mcbi_lockp);
1294 
1295 	for (;;) {
1296 		uint32_t	bits;
1297 		uint32_t	type;
1298 
1299 		bits = mip->mi_notify_bits;
1300 		if (bits == 0) {
1301 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1302 			cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1303 			CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1304 			continue;
1305 		}
1306 		mip->mi_notify_bits = 0;
1307 		if ((bits & (1 << MAC_NNOTE)) != 0) {
1308 			/* request to quit */
1309 			ASSERT(mip->mi_state_flags & MIS_DISABLED);
1310 			break;
1311 		}
1312 
1313 		mutex_exit(mcbi->mcbi_lockp);
1314 
1315 		/*
1316 		 * Log link changes on the actual link, but then do reports on
1317 		 * synthetic state (if part of a bridge).
1318 		 */
1319 		if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1320 			link_state_t newstate;
1321 			mac_handle_t mh;
1322 
1323 			i_mac_log_link_state(mip);
1324 			newstate = mip->mi_lowlinkstate;
1325 			if (mip->mi_bridge_link != NULL) {
1326 				mutex_enter(&mip->mi_bridge_lock);
1327 				if ((mh = mip->mi_bridge_link) != NULL) {
1328 					newstate = mac_bridge_ls_cb(mh,
1329 					    newstate);
1330 				}
1331 				mutex_exit(&mip->mi_bridge_lock);
1332 			}
1333 			if (newstate != mip->mi_linkstate) {
1334 				mip->mi_linkstate = newstate;
1335 				bits |= 1 << MAC_NOTE_LINK;
1336 			}
1337 		}
1338 
1339 		/*
1340 		 * Depending on which capabs have changed, the Tx
1341 		 * checksum flags may also need to be updated.
1342 		 */
1343 		if ((bits & (1 << MAC_NOTE_CAPAB_CHG)) != 0) {
1344 			mac_perim_handle_t mph;
1345 			mac_handle_t mh = (mac_handle_t)mip;
1346 
1347 			mac_perim_enter_by_mh(mh, &mph);
1348 			mip->mi_tx_cksum_flags = mac_features_to_flags(mh);
1349 			mac_perim_exit(mph);
1350 		}
1351 
1352 		/*
1353 		 * Do notification callbacks for each notification type.
1354 		 */
1355 		for (type = 0; type < MAC_NNOTE; type++) {
1356 			if ((bits & (1 << type)) == 0) {
1357 				continue;
1358 			}
1359 
1360 			if (mac_notify_cb_list[type] != NULL)
1361 				(*mac_notify_cb_list[type])(mip);
1362 
1363 			/*
1364 			 * Walk the list of notifications.
1365 			 */
1366 			MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1367 			for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1368 			    mcb = mcb->mcb_nextp) {
1369 				mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1370 				mncb->mncb_fn(mncb->mncb_arg, type);
1371 			}
1372 			MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1373 			    &mip->mi_notify_cb_list);
1374 		}
1375 
1376 		mutex_enter(mcbi->mcbi_lockp);
1377 	}
1378 
1379 	mip->mi_state_flags |= MIS_NOTIFY_DONE;
1380 	cv_broadcast(&mcbi->mcbi_cv);
1381 
1382 	/* CALLB_CPR_EXIT drops the lock */
1383 	CALLB_CPR_EXIT(&cprinfo);
1384 	thread_exit();
1385 }
1386 
1387 /*
1388  * Signal the i_mac_notify_thread asking it to quit.
1389  * Then wait till it is done.
1390  */
1391 void
1392 i_mac_notify_exit(mac_impl_t *mip)
1393 {
1394 	mac_cb_info_t	*mcbi;
1395 
1396 	mcbi = &mip->mi_notify_cb_info;
1397 
1398 	mutex_enter(mcbi->mcbi_lockp);
1399 	mip->mi_notify_bits = (1 << MAC_NNOTE);
1400 	cv_broadcast(&mcbi->mcbi_cv);
1401 
1402 
1403 	while ((mip->mi_notify_thread != NULL) &&
1404 	    !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1405 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1406 	}
1407 
1408 	/* Necessary clean up before doing kmem_cache_free */
1409 	mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1410 	mip->mi_notify_bits = 0;
1411 	mip->mi_notify_thread = NULL;
1412 	mutex_exit(mcbi->mcbi_lockp);
1413 }
1414 
1415 /*
1416  * Entry point invoked by drivers to dynamically add a ring to an
1417  * existing group.
1418  */
1419 int
1420 mac_group_add_ring(mac_group_handle_t gh, int index)
1421 {
1422 	mac_group_t *group = (mac_group_t *)gh;
1423 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1424 	int ret;
1425 
1426 	i_mac_perim_enter(mip);
1427 	ret = i_mac_group_add_ring(group, NULL, index);
1428 	i_mac_perim_exit(mip);
1429 	return (ret);
1430 }
1431 
1432 /*
1433  * Entry point invoked by drivers to dynamically remove a ring
1434  * from an existing group. The specified ring handle must no longer
1435  * be used by the driver after a call to this function.
1436  */
1437 void
1438 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1439 {
1440 	mac_group_t *group = (mac_group_t *)gh;
1441 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1442 
1443 	i_mac_perim_enter(mip);
1444 	i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1445 	i_mac_perim_exit(mip);
1446 }
1447 
1448 /*
1449  * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1450  * entry points.
1451  */
1452 
1453 void
1454 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1455 {
1456 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1457 
1458 	/* nothing to do if the caller doesn't want the default value */
1459 	if (pr->pr_default == NULL)
1460 		return;
1461 
1462 	ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1463 
1464 	*(uint8_t *)(pr->pr_default) = val;
1465 	pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1466 }
1467 
1468 void
1469 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1470 {
1471 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1472 
1473 	/* nothing to do if the caller doesn't want the default value */
1474 	if (pr->pr_default == NULL)
1475 		return;
1476 
1477 	ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1478 
1479 	bcopy(&val, pr->pr_default, sizeof (val));
1480 
1481 	pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1482 }
1483 
1484 void
1485 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1486 {
1487 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1488 
1489 	/* nothing to do if the caller doesn't want the default value */
1490 	if (pr->pr_default == NULL)
1491 		return;
1492 
1493 	ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1494 
1495 	bcopy(&val, pr->pr_default, sizeof (val));
1496 
1497 	pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1498 }
1499 
1500 void
1501 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1502 {
1503 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1504 
1505 	/* nothing to do if the caller doesn't want the default value */
1506 	if (pr->pr_default == NULL)
1507 		return;
1508 
1509 	if (strlen(str) >= pr->pr_default_size)
1510 		pr->pr_errno = ENOBUFS;
1511 	else
1512 		(void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1513 	pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1514 }
1515 
1516 void
1517 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1518     link_flowctrl_t val)
1519 {
1520 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1521 
1522 	/* nothing to do if the caller doesn't want the default value */
1523 	if (pr->pr_default == NULL)
1524 		return;
1525 
1526 	ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1527 
1528 	bcopy(&val, pr->pr_default, sizeof (val));
1529 
1530 	pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1531 }
1532 
1533 void
1534 mac_prop_info_set_default_fec(mac_prop_info_handle_t ph, link_fec_t val)
1535 {
1536 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1537 
1538 	/* nothing to do if the caller doesn't want the default value */
1539 	if (pr->pr_default == NULL)
1540 		return;
1541 
1542 	ASSERT(pr->pr_default_size >= sizeof (link_fec_t));
1543 
1544 	bcopy(&val, pr->pr_default, sizeof (val));
1545 
1546 	pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1547 }
1548 
1549 void
1550 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1551     uint32_t max)
1552 {
1553 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1554 	mac_propval_range_t *range = pr->pr_range;
1555 	mac_propval_uint32_range_t *range32;
1556 
1557 	/* nothing to do if the caller doesn't want the range info */
1558 	if (range == NULL)
1559 		return;
1560 
1561 	if (pr->pr_range_cur_count++ == 0) {
1562 		/* first range */
1563 		pr->pr_flags |= MAC_PROP_INFO_RANGE;
1564 		range->mpr_type = MAC_PROPVAL_UINT32;
1565 	} else {
1566 		/* all ranges of a property should be of the same type */
1567 		ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1568 		if (pr->pr_range_cur_count > range->mpr_count) {
1569 			pr->pr_errno = ENOSPC;
1570 			return;
1571 		}
1572 	}
1573 
1574 	range32 = range->mpr_range_uint32;
1575 	range32[pr->pr_range_cur_count - 1].mpur_min = min;
1576 	range32[pr->pr_range_cur_count - 1].mpur_max = max;
1577 }
1578 
1579 void
1580 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1581 {
1582 	mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1583 
1584 	pr->pr_perm = perm;
1585 	pr->pr_flags |= MAC_PROP_INFO_PERM;
1586 }
1587 
1588 void
1589 mac_hcksum_get(const mblk_t *mp, uint32_t *start, uint32_t *stuff,
1590     uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1591 {
1592 	uint32_t flags;
1593 
1594 	ASSERT(DB_TYPE(mp) == M_DATA);
1595 
1596 	flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1597 	if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1598 		if (value != NULL)
1599 			*value = (uint32_t)DB_CKSUM16(mp);
1600 		if ((flags & HCK_PARTIALCKSUM) != 0) {
1601 			if (start != NULL)
1602 				*start = (uint32_t)DB_CKSUMSTART(mp);
1603 			if (stuff != NULL)
1604 				*stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1605 			if (end != NULL)
1606 				*end = (uint32_t)DB_CKSUMEND(mp);
1607 		}
1608 	}
1609 
1610 	if (flags_ptr != NULL)
1611 		*flags_ptr = flags;
1612 }
1613 
1614 void
1615 mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, uint32_t end,
1616     uint32_t value, uint32_t flags)
1617 {
1618 	ASSERT(DB_TYPE(mp) == M_DATA);
1619 
1620 	DB_CKSUMSTART(mp) = (intptr_t)start;
1621 	DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1622 	DB_CKSUMEND(mp) = (intptr_t)end;
1623 	DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1624 	DB_CKSUM16(mp) = (uint16_t)value;
1625 }
1626 
1627 void
1628 mac_hcksum_clone(const mblk_t *src, mblk_t *dst)
1629 {
1630 	ASSERT3U(DB_TYPE(src), ==, M_DATA);
1631 	ASSERT3U(DB_TYPE(dst), ==, M_DATA);
1632 
1633 	/*
1634 	 * Do these assignments unconditionally, rather than only when
1635 	 * flags is non-zero. This protects a situation where zeroed
1636 	 * hcksum data does not make the jump onto an mblk_t with
1637 	 * stale data in those fields. It's important to copy all
1638 	 * possible flags (HCK_* as well as HW_*) and not just the
1639 	 * checksum specific flags. Dropping flags during a clone
1640 	 * could result in dropped packets. If the caller has good
1641 	 * reason to drop those flags then it should do it manually,
1642 	 * after the clone.
1643 	 */
1644 	DB_CKSUMFLAGS(dst) = DB_CKSUMFLAGS(src);
1645 	DB_CKSUMSTART(dst) = DB_CKSUMSTART(src);
1646 	DB_CKSUMSTUFF(dst) = DB_CKSUMSTUFF(src);
1647 	DB_CKSUMEND(dst) = DB_CKSUMEND(src);
1648 	DB_CKSUM16(dst) = DB_CKSUM16(src);
1649 	DB_LSOMSS(dst) = DB_LSOMSS(src);
1650 }
1651 
1652 void
1653 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1654 {
1655 	ASSERT(DB_TYPE(mp) == M_DATA);
1656 
1657 	if (flags != NULL) {
1658 		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1659 		if ((*flags != 0) && (mss != NULL))
1660 			*mss = (uint32_t)DB_LSOMSS(mp);
1661 	}
1662 }
1663 
1664 void
1665 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1666     boolean_t present)
1667 {
1668 	infop->mti_present = present;
1669 }
1670 
1671 void
1672 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1673     boolean_t usable)
1674 {
1675 	infop->mti_usable = usable;
1676 }
1677 
1678 /*
1679  * We should really keep track of our offset and not walk everything every
1680  * time. I can't imagine that this will be kind to us at high packet rates;
1681  * however, for the moment, let's leave that.
1682  *
1683  * This walks a message block chain without pulling up to fill in the context
1684  * information. Note that the data we care about could be hidden across more
1685  * than one mblk_t.
1686  */
1687 static int
1688 mac_meoi_get_uint8(mblk_t *mp, off_t off, uint8_t *out)
1689 {
1690 	size_t mpsize;
1691 	uint8_t *bp;
1692 
1693 	mpsize = msgsize(mp);
1694 	/* Check for overflow */
1695 	if (off + sizeof (uint16_t) > mpsize)
1696 		return (-1);
1697 
1698 	mpsize = MBLKL(mp);
1699 	while (off >= mpsize) {
1700 		mp = mp->b_cont;
1701 		off -= mpsize;
1702 		mpsize = MBLKL(mp);
1703 	}
1704 
1705 	bp = mp->b_rptr + off;
1706 	*out = *bp;
1707 	return (0);
1708 
1709 }
1710 
1711 static int
1712 mac_meoi_get_uint16(mblk_t *mp, off_t off, uint16_t *out)
1713 {
1714 	size_t mpsize;
1715 	uint8_t *bp;
1716 
1717 	mpsize = msgsize(mp);
1718 	/* Check for overflow */
1719 	if (off + sizeof (uint16_t) > mpsize)
1720 		return (-1);
1721 
1722 	mpsize = MBLKL(mp);
1723 	while (off >= mpsize) {
1724 		mp = mp->b_cont;
1725 		off -= mpsize;
1726 		mpsize = MBLKL(mp);
1727 	}
1728 
1729 	/*
1730 	 * Data is in network order. Note the second byte of data might be in
1731 	 * the next mp.
1732 	 */
1733 	bp = mp->b_rptr + off;
1734 	*out = *bp << 8;
1735 	if (off + 1 == mpsize) {
1736 		mp = mp->b_cont;
1737 		bp = mp->b_rptr;
1738 	} else {
1739 		bp++;
1740 	}
1741 
1742 	*out |= *bp;
1743 	return (0);
1744 
1745 }
1746 
1747 
1748 int
1749 mac_ether_offload_info(mblk_t *mp, mac_ether_offload_info_t *meoi)
1750 {
1751 	size_t off;
1752 	uint16_t ether;
1753 	uint8_t ipproto, iplen, l4len, maclen;
1754 
1755 	bzero(meoi, sizeof (mac_ether_offload_info_t));
1756 
1757 	meoi->meoi_len = msgsize(mp);
1758 	off = offsetof(struct ether_header, ether_type);
1759 	if (mac_meoi_get_uint16(mp, off, &ether) != 0)
1760 		return (-1);
1761 
1762 	if (ether == ETHERTYPE_VLAN) {
1763 		off = offsetof(struct ether_vlan_header, ether_type);
1764 		if (mac_meoi_get_uint16(mp, off, &ether) != 0)
1765 			return (-1);
1766 		meoi->meoi_flags |= MEOI_VLAN_TAGGED;
1767 		maclen = sizeof (struct ether_vlan_header);
1768 	} else {
1769 		maclen = sizeof (struct ether_header);
1770 	}
1771 	meoi->meoi_flags |= MEOI_L2INFO_SET;
1772 	meoi->meoi_l2hlen = maclen;
1773 	meoi->meoi_l3proto = ether;
1774 
1775 	switch (ether) {
1776 	case ETHERTYPE_IP:
1777 		/*
1778 		 * For IPv4 we need to get the length of the header, as it can
1779 		 * be variable.
1780 		 */
1781 		off = offsetof(ipha_t, ipha_version_and_hdr_length) + maclen;
1782 		if (mac_meoi_get_uint8(mp, off, &iplen) != 0)
1783 			return (-1);
1784 		iplen &= 0x0f;
1785 		if (iplen < 5 || iplen > 0x0f)
1786 			return (-1);
1787 		iplen *= 4;
1788 		off = offsetof(ipha_t, ipha_protocol) + maclen;
1789 		if (mac_meoi_get_uint8(mp, off, &ipproto) == -1)
1790 			return (-1);
1791 		break;
1792 	case ETHERTYPE_IPV6:
1793 		iplen = 40;
1794 		off = offsetof(ip6_t, ip6_nxt) + maclen;
1795 		if (mac_meoi_get_uint8(mp, off, &ipproto) == -1)
1796 			return (-1);
1797 		break;
1798 	default:
1799 		return (0);
1800 	}
1801 	meoi->meoi_l3hlen = iplen;
1802 	meoi->meoi_l4proto = ipproto;
1803 	meoi->meoi_flags |= MEOI_L3INFO_SET;
1804 
1805 	switch (ipproto) {
1806 	case IPPROTO_TCP:
1807 		off = offsetof(tcph_t, th_offset_and_rsrvd) + maclen + iplen;
1808 		if (mac_meoi_get_uint8(mp, off, &l4len) == -1)
1809 			return (-1);
1810 		l4len = (l4len & 0xf0) >> 4;
1811 		if (l4len < 5 || l4len > 0xf)
1812 			return (-1);
1813 		l4len *= 4;
1814 		break;
1815 	case IPPROTO_UDP:
1816 		l4len = sizeof (struct udphdr);
1817 		break;
1818 	case IPPROTO_SCTP:
1819 		l4len = sizeof (sctp_hdr_t);
1820 		break;
1821 	default:
1822 		return (0);
1823 	}
1824 
1825 	meoi->meoi_l4hlen = l4len;
1826 	meoi->meoi_flags |= MEOI_L4INFO_SET;
1827 	return (0);
1828 }
1829