1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright 2017 RackTop Systems. 26 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 /* 30 * - General Introduction: 31 * 32 * This file contains the implementation of the MAC client kernel 33 * API and related code. The MAC client API allows a kernel module 34 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 35 * It allows a MAC client to associate itself with a MAC address, 36 * VLANs, callback functions for data traffic and for promiscuous mode. 37 * The MAC client API is also used to specify the properties associated 38 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 39 * These properties are further used to determine the hardware resources 40 * to allocate to the various MAC clients. 41 * 42 * - Primary MAC clients: 43 * 44 * The MAC client API refers to "primary MAC clients". A primary MAC 45 * client is a client which "owns" the primary MAC address of 46 * the underlying MAC instance. The primary MAC address is called out 47 * since it is associated with specific semantics: the primary MAC 48 * address is the MAC address which is assigned to the IP interface 49 * when it is plumbed, and the primary MAC address is assigned 50 * to VLAN data-links. The primary address of a MAC instance can 51 * also change dynamically from under the MAC client, for example 52 * as a result of a change of state of a link aggregation. In that 53 * case the MAC layer automatically updates all data-structures which 54 * refer to the current value of the primary MAC address. Typical 55 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 56 * MAC client is the vnic driver. 57 * 58 * - Virtual Switching: 59 * 60 * The MAC layer implements a virtual switch between the MAC clients 61 * (primary and non-primary) defined on top of the same underlying 62 * NIC (physical, link aggregation, etc). The virtual switch is 63 * VLAN-aware, i.e. it allows multiple MAC clients to be member 64 * of one or more VLANs, and the virtual switch will distribute 65 * multicast tagged packets only to the member of the corresponding 66 * VLANs. 67 * 68 * - Upper vs Lower MAC: 69 * 70 * Creating a VNIC on top of a MAC instance effectively causes 71 * two MAC instances to be layered on top of each other, one for 72 * the VNIC(s), one for the underlying MAC instance (physical NIC, 73 * link aggregation, etc). In the code below we refer to the 74 * underlying NIC as the "lower MAC", and we refer to VNICs as 75 * the "upper MAC". 76 * 77 * - Pass-through for VNICs: 78 * 79 * When VNICs are created on top of an underlying MAC, this causes 80 * a layering of two MAC instances. Since the lower MAC already 81 * does the switching and demultiplexing to its MAC clients, the 82 * upper MAC would simply have to pass packets to the layer below 83 * or above it, which would introduce overhead. In order to avoid 84 * this overhead, the MAC layer implements a pass-through mechanism 85 * for VNICs. When a VNIC opens the lower MAC instance, it saves 86 * the MAC client handle it optains from the MAC layer. When a MAC 87 * client opens a VNIC (upper MAC), the MAC layer detects that 88 * the MAC being opened is a VNIC, and gets the MAC client handle 89 * that the VNIC driver obtained from the lower MAC. This exchange 90 * is done through a private capability between the MAC layer 91 * and the VNIC driver. The upper MAC then returns that handle 92 * directly to its MAC client. Any operation done by the upper 93 * MAC client is now done on the lower MAC client handle, which 94 * allows the VNIC driver to be completely bypassed for the 95 * performance sensitive data-path. 96 * 97 * - Secondary MACs for VNICs: 98 * 99 * VNICs support multiple upper mac clients to enable support for 100 * multiple MAC addresses on the VNIC. When the VNIC is created the 101 * initial mac client is the primary upper mac. Any additional mac 102 * clients are secondary macs. These are kept in sync with the primary 103 * (for things such as the rx function and resource control settings) 104 * using the same private capability interface between the MAC layer 105 * and the VNIC layer. 106 * 107 */ 108 109 #include <sys/types.h> 110 #include <sys/conf.h> 111 #include <sys/id_space.h> 112 #include <sys/esunddi.h> 113 #include <sys/stat.h> 114 #include <sys/mkdev.h> 115 #include <sys/stream.h> 116 #include <sys/strsun.h> 117 #include <sys/strsubr.h> 118 #include <sys/dlpi.h> 119 #include <sys/modhash.h> 120 #include <sys/mac_impl.h> 121 #include <sys/mac_client_impl.h> 122 #include <sys/mac_soft_ring.h> 123 #include <sys/mac_stat.h> 124 #include <sys/dls.h> 125 #include <sys/dld.h> 126 #include <sys/modctl.h> 127 #include <sys/fs/dv_node.h> 128 #include <sys/thread.h> 129 #include <sys/proc.h> 130 #include <sys/callb.h> 131 #include <sys/cpuvar.h> 132 #include <sys/atomic.h> 133 #include <sys/sdt.h> 134 #include <sys/mac_flow.h> 135 #include <sys/ddi_intr_impl.h> 136 #include <sys/disp.h> 137 #include <sys/sdt.h> 138 #include <sys/vnic.h> 139 #include <sys/vnic_impl.h> 140 #include <sys/vlan.h> 141 #include <inet/ip.h> 142 #include <inet/ip6.h> 143 #include <sys/exacct.h> 144 #include <sys/exacct_impl.h> 145 #include <inet/nd.h> 146 #include <sys/ethernet.h> 147 148 kmem_cache_t *mac_client_impl_cache; 149 kmem_cache_t *mac_promisc_impl_cache; 150 151 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 152 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 153 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 154 mac_unicast_impl_t *); 155 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 156 flow_entry_t *); 157 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 158 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 159 static void mac_virtual_link_update(mac_impl_t *); 160 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t, 161 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *); 162 static void mac_client_datapath_teardown(mac_client_handle_t, 163 mac_unicast_impl_t *, flow_entry_t *); 164 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *); 165 166 /* ARGSUSED */ 167 static int 168 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 169 { 170 int i; 171 mac_client_impl_t *mcip = buf; 172 173 bzero(buf, MAC_CLIENT_IMPL_SIZE); 174 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 175 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 176 177 ASSERT(mac_tx_percpu_cnt >= 0); 178 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 179 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 180 MUTEX_DRIVER, NULL); 181 } 182 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 183 184 return (0); 185 } 186 187 /* ARGSUSED */ 188 static void 189 i_mac_client_impl_dtor(void *buf, void *arg) 190 { 191 int i; 192 mac_client_impl_t *mcip = buf; 193 194 ASSERT(mcip->mci_promisc_list == NULL); 195 ASSERT(mcip->mci_unicast_list == NULL); 196 ASSERT(mcip->mci_state_flags == 0); 197 ASSERT(mcip->mci_tx_flag == 0); 198 199 mutex_destroy(&mcip->mci_tx_cb_lock); 200 201 ASSERT(mac_tx_percpu_cnt >= 0); 202 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 203 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 204 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 205 } 206 cv_destroy(&mcip->mci_tx_cv); 207 } 208 209 /* ARGSUSED */ 210 static int 211 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 212 { 213 mac_promisc_impl_t *mpip = buf; 214 215 bzero(buf, sizeof (mac_promisc_impl_t)); 216 mpip->mpi_mci_link.mcb_objp = buf; 217 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 218 mpip->mpi_mi_link.mcb_objp = buf; 219 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 220 return (0); 221 } 222 223 /* ARGSUSED */ 224 static void 225 i_mac_promisc_impl_dtor(void *buf, void *arg) 226 { 227 mac_promisc_impl_t *mpip = buf; 228 229 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 230 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 231 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 232 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 233 234 mpip->mpi_mci_link.mcb_objp = NULL; 235 mpip->mpi_mci_link.mcb_objsize = 0; 236 mpip->mpi_mi_link.mcb_objp = NULL; 237 mpip->mpi_mi_link.mcb_objsize = 0; 238 239 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 240 mpip->mpi_mci_link.mcb_objsize = 0; 241 } 242 243 void 244 mac_client_init(void) 245 { 246 ASSERT(mac_tx_percpu_cnt >= 0); 247 248 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 249 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 250 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 251 ASSERT(mac_client_impl_cache != NULL); 252 253 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 254 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 255 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 256 ASSERT(mac_promisc_impl_cache != NULL); 257 } 258 259 void 260 mac_client_fini(void) 261 { 262 kmem_cache_destroy(mac_client_impl_cache); 263 kmem_cache_destroy(mac_promisc_impl_cache); 264 } 265 266 /* 267 * Return the lower MAC client handle from the VNIC driver for the 268 * specified VNIC MAC instance. 269 */ 270 mac_client_impl_t * 271 mac_vnic_lower(mac_impl_t *mip) 272 { 273 mac_capab_vnic_t cap; 274 mac_client_impl_t *mcip; 275 276 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 277 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 278 279 return (mcip); 280 } 281 282 /* 283 * Update the secondary macs 284 */ 285 void 286 mac_vnic_secondary_update(mac_impl_t *mip) 287 { 288 mac_capab_vnic_t cap; 289 290 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 291 cap.mcv_mac_secondary_update(cap.mcv_arg); 292 } 293 294 /* 295 * Return the MAC client handle of the primary MAC client for the 296 * specified MAC instance, or NULL otherwise. 297 */ 298 mac_client_impl_t * 299 mac_primary_client_handle(mac_impl_t *mip) 300 { 301 mac_client_impl_t *mcip; 302 303 if (mip->mi_state_flags & MIS_IS_VNIC) 304 return (mac_vnic_lower(mip)); 305 306 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 307 308 for (mcip = mip->mi_clients_list; mcip != NULL; 309 mcip = mcip->mci_client_next) { 310 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 311 return (mcip); 312 } 313 return (NULL); 314 } 315 316 /* 317 * Open a MAC specified by its MAC name. 318 */ 319 int 320 mac_open(const char *macname, mac_handle_t *mhp) 321 { 322 mac_impl_t *mip; 323 int err; 324 325 /* 326 * Look up its entry in the global hash table. 327 */ 328 if ((err = mac_hold(macname, &mip)) != 0) 329 return (err); 330 331 /* 332 * Hold the dip associated to the MAC to prevent it from being 333 * detached. For a softmac, its underlying dip is held by the 334 * mi_open() callback. 335 * 336 * This is done to be more tolerant with some defective drivers, 337 * which incorrectly handle mac_unregister() failure in their 338 * xxx_detach() routine. For example, some drivers ignore the 339 * failure of mac_unregister() and free all resources that 340 * that are needed for data transmition. 341 */ 342 e_ddi_hold_devi(mip->mi_dip); 343 344 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 345 *mhp = (mac_handle_t)mip; 346 return (0); 347 } 348 349 /* 350 * The mac perimeter is used in both mac_open and mac_close by the 351 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 352 */ 353 i_mac_perim_enter(mip); 354 mip->mi_oref++; 355 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 356 *mhp = (mac_handle_t)mip; 357 i_mac_perim_exit(mip); 358 return (0); 359 } 360 mip->mi_oref--; 361 ddi_release_devi(mip->mi_dip); 362 mac_rele(mip); 363 i_mac_perim_exit(mip); 364 return (err); 365 } 366 367 /* 368 * Open a MAC specified by its linkid. 369 */ 370 int 371 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 372 { 373 dls_dl_handle_t dlh; 374 int err; 375 376 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 377 return (err); 378 379 dls_devnet_prop_task_wait(dlh); 380 381 err = mac_open(dls_devnet_mac(dlh), mhp); 382 383 dls_devnet_rele_tmp(dlh); 384 return (err); 385 } 386 387 /* 388 * Open a MAC specified by its link name. 389 */ 390 int 391 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 392 { 393 datalink_id_t linkid; 394 int err; 395 396 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 397 return (err); 398 return (mac_open_by_linkid(linkid, mhp)); 399 } 400 401 /* 402 * Close the specified MAC. 403 */ 404 void 405 mac_close(mac_handle_t mh) 406 { 407 mac_impl_t *mip = (mac_impl_t *)mh; 408 409 i_mac_perim_enter(mip); 410 /* 411 * The mac perimeter is used in both mac_open and mac_close by the 412 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 413 */ 414 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 415 ASSERT(mip->mi_oref != 0); 416 if (--mip->mi_oref == 0) { 417 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 418 mip->mi_close(mip->mi_driver); 419 } 420 } 421 i_mac_perim_exit(mip); 422 ddi_release_devi(mip->mi_dip); 423 mac_rele(mip); 424 } 425 426 /* 427 * Misc utility functions to retrieve various information about a MAC 428 * instance or a MAC client. 429 */ 430 431 const mac_info_t * 432 mac_info(mac_handle_t mh) 433 { 434 return (&((mac_impl_t *)mh)->mi_info); 435 } 436 437 dev_info_t * 438 mac_devinfo_get(mac_handle_t mh) 439 { 440 return (((mac_impl_t *)mh)->mi_dip); 441 } 442 443 void * 444 mac_driver(mac_handle_t mh) 445 { 446 return (((mac_impl_t *)mh)->mi_driver); 447 } 448 449 const char * 450 mac_name(mac_handle_t mh) 451 { 452 return (((mac_impl_t *)mh)->mi_name); 453 } 454 455 int 456 mac_type(mac_handle_t mh) 457 { 458 return (((mac_impl_t *)mh)->mi_type->mt_type); 459 } 460 461 int 462 mac_nativetype(mac_handle_t mh) 463 { 464 return (((mac_impl_t *)mh)->mi_type->mt_nativetype); 465 } 466 467 char * 468 mac_client_name(mac_client_handle_t mch) 469 { 470 return (((mac_client_impl_t *)mch)->mci_name); 471 } 472 473 minor_t 474 mac_minor(mac_handle_t mh) 475 { 476 return (((mac_impl_t *)mh)->mi_minor); 477 } 478 479 /* 480 * Return the VID associated with a MAC client. This function should 481 * be called for clients which are associated with only one VID. 482 */ 483 uint16_t 484 mac_client_vid(mac_client_handle_t mch) 485 { 486 uint16_t vid = VLAN_ID_NONE; 487 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 488 flow_desc_t flow_desc; 489 490 if (mcip->mci_nflents == 0) 491 return (vid); 492 493 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 494 495 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 496 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 497 vid = flow_desc.fd_vid; 498 499 return (vid); 500 } 501 502 /* 503 * Return whether the specified MAC client corresponds to a VLAN VNIC. 504 */ 505 boolean_t 506 mac_client_is_vlan_vnic(mac_client_handle_t mch) 507 { 508 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 509 510 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) && 511 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0)); 512 } 513 514 /* 515 * Return the link speed associated with the specified MAC client. 516 * 517 * The link speed of a MAC client is equal to the smallest value of 518 * 1) the current link speed of the underlying NIC, or 519 * 2) the bandwidth limit set for the MAC client. 520 * 521 * Note that the bandwidth limit can be higher than the speed 522 * of the underlying NIC. This is allowed to avoid spurious 523 * administration action failures or artifically lowering the 524 * bandwidth limit of a link that may have temporarily lowered 525 * its link speed due to hardware problem or administrator action. 526 */ 527 static uint64_t 528 mac_client_ifspeed(mac_client_impl_t *mcip) 529 { 530 mac_impl_t *mip = mcip->mci_mip; 531 uint64_t nic_speed; 532 533 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 534 535 if (nic_speed == 0) { 536 return (0); 537 } else { 538 uint64_t policy_limit = (uint64_t)-1; 539 540 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 541 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 542 543 return (MIN(policy_limit, nic_speed)); 544 } 545 } 546 547 /* 548 * Return the link state of the specified client. If here are more 549 * than one clients of the underying mac_impl_t, the link state 550 * will always be UP regardless of the link state of the underlying 551 * mac_impl_t. This is needed to allow the MAC clients to continue 552 * to communicate with each other even when the physical link of 553 * their mac_impl_t is down. 554 */ 555 static uint64_t 556 mac_client_link_state(mac_client_impl_t *mcip) 557 { 558 mac_impl_t *mip = mcip->mci_mip; 559 uint16_t vid; 560 mac_client_impl_t *mci_list; 561 mac_unicast_impl_t *mui_list, *oth_mui_list; 562 563 /* 564 * Returns LINK_STATE_UP if there are other MAC clients defined on 565 * mac_impl_t which share same VLAN ID as that of mcip. Note that 566 * if 'mcip' has more than one VID's then we match ANY one of the 567 * VID's with other MAC client's VID's and return LINK_STATE_UP. 568 */ 569 rw_enter(&mcip->mci_rw_lock, RW_READER); 570 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 571 mui_list = mui_list->mui_next) { 572 vid = mui_list->mui_vid; 573 for (mci_list = mip->mi_clients_list; mci_list != NULL; 574 mci_list = mci_list->mci_client_next) { 575 if (mci_list == mcip) 576 continue; 577 for (oth_mui_list = mci_list->mci_unicast_list; 578 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 579 mui_next) { 580 if (vid == oth_mui_list->mui_vid) { 581 rw_exit(&mcip->mci_rw_lock); 582 return (LINK_STATE_UP); 583 } 584 } 585 } 586 } 587 rw_exit(&mcip->mci_rw_lock); 588 589 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 590 } 591 592 /* 593 * These statistics are consumed by dladm show-link -s <vnic>, 594 * dladm show-vnic -s and netstat. With the introduction of dlstat, 595 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while 596 * netstat will consume from kstats introduced for dlstat. This code 597 * will be removed at that time. 598 */ 599 600 /* 601 * Return the statistics of a MAC client. These statistics are different 602 * then the statistics of the underlying MAC which are returned by 603 * mac_stat_get(). 604 * 605 * Note that for things based on the tx and rx stats, mac will end up clobbering 606 * those stats when the underlying set of rings in the srs changes. As such, we 607 * need to source not only the current set, but also the historical set when 608 * returning to the client, lest our counters appear to go backwards. 609 */ 610 uint64_t 611 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 612 { 613 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 614 mac_impl_t *mip = mcip->mci_mip; 615 flow_entry_t *flent = mcip->mci_flent; 616 mac_soft_ring_set_t *mac_srs; 617 mac_rx_stats_t *mac_rx_stat, *old_rx_stat; 618 mac_tx_stats_t *mac_tx_stat, *old_tx_stat; 619 int i; 620 uint64_t val = 0; 621 622 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 623 mac_tx_stat = &mac_srs->srs_tx.st_stat; 624 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats; 625 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats; 626 627 switch (stat) { 628 case MAC_STAT_LINK_STATE: 629 val = mac_client_link_state(mcip); 630 break; 631 case MAC_STAT_LINK_UP: 632 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 633 break; 634 case MAC_STAT_PROMISC: 635 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 636 break; 637 case MAC_STAT_LOWLINK_STATE: 638 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE); 639 break; 640 case MAC_STAT_IFSPEED: 641 val = mac_client_ifspeed(mcip); 642 break; 643 case MAC_STAT_MULTIRCV: 644 val = mcip->mci_misc_stat.mms_multircv; 645 break; 646 case MAC_STAT_BRDCSTRCV: 647 val = mcip->mci_misc_stat.mms_brdcstrcv; 648 break; 649 case MAC_STAT_MULTIXMT: 650 val = mcip->mci_misc_stat.mms_multixmt; 651 break; 652 case MAC_STAT_BRDCSTXMT: 653 val = mcip->mci_misc_stat.mms_brdcstxmt; 654 break; 655 case MAC_STAT_OBYTES: 656 val = mac_tx_stat->mts_obytes; 657 val += old_tx_stat->mts_obytes; 658 break; 659 case MAC_STAT_OPACKETS: 660 val = mac_tx_stat->mts_opackets; 661 val += old_tx_stat->mts_opackets; 662 break; 663 case MAC_STAT_OERRORS: 664 val = mac_tx_stat->mts_oerrors; 665 val += old_tx_stat->mts_oerrors; 666 break; 667 case MAC_STAT_IPACKETS: 668 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 669 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 670 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 671 val += mac_rx_stat->mrs_intrcnt + 672 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 673 } 674 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt + 675 old_rx_stat->mrs_lclcnt; 676 break; 677 case MAC_STAT_RBYTES: 678 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 679 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 680 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 681 val += mac_rx_stat->mrs_intrbytes + 682 mac_rx_stat->mrs_pollbytes + 683 mac_rx_stat->mrs_lclbytes; 684 } 685 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes + 686 old_rx_stat->mrs_lclbytes; 687 break; 688 case MAC_STAT_IERRORS: 689 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 690 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 691 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 692 val += mac_rx_stat->mrs_ierrors; 693 } 694 val += old_rx_stat->mrs_ierrors; 695 break; 696 default: 697 val = mac_driver_stat_default(mip, stat); 698 break; 699 } 700 701 return (val); 702 } 703 704 /* 705 * Return the statistics of the specified MAC instance. 706 */ 707 uint64_t 708 mac_stat_get(mac_handle_t mh, uint_t stat) 709 { 710 mac_impl_t *mip = (mac_impl_t *)mh; 711 uint64_t val; 712 int ret; 713 714 /* 715 * The range of stat determines where it is maintained. Stat 716 * values from 0 up to (but not including) MAC_STAT_MIN are 717 * mainteined by the mac module itself. Everything else is 718 * maintained by the driver. 719 * 720 * If the mac_impl_t being queried corresponds to a VNIC, 721 * the stats need to be queried from the lower MAC client 722 * corresponding to the VNIC. (The mac_link_update() 723 * invoked by the driver to the lower MAC causes the *lower 724 * MAC* to update its mi_linkstate, and send a notification 725 * to its MAC clients. Due to the VNIC passthrough, 726 * these notifications are sent to the upper MAC clients 727 * of the VNIC directly, and the upper mac_impl_t of the VNIC 728 * does not have a valid mi_linkstate. 729 */ 730 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 731 /* these stats are maintained by the mac module itself */ 732 switch (stat) { 733 case MAC_STAT_LINK_STATE: 734 return (mip->mi_linkstate); 735 case MAC_STAT_LINK_UP: 736 return (mip->mi_linkstate == LINK_STATE_UP); 737 case MAC_STAT_PROMISC: 738 return (mip->mi_devpromisc != 0); 739 case MAC_STAT_LOWLINK_STATE: 740 return (mip->mi_lowlinkstate); 741 default: 742 ASSERT(B_FALSE); 743 } 744 } 745 746 /* 747 * Call the driver to get the given statistic. 748 */ 749 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 750 if (ret != 0) { 751 /* 752 * The driver doesn't support this statistic. Get the 753 * statistic's default value. 754 */ 755 val = mac_driver_stat_default(mip, stat); 756 } 757 return (val); 758 } 759 760 /* 761 * Query hardware rx ring corresponding to the pseudo ring. 762 */ 763 uint64_t 764 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 765 { 766 return (mac_rx_ring_stat_get(handle, stat)); 767 } 768 769 /* 770 * Query hardware tx ring corresponding to the pseudo ring. 771 */ 772 uint64_t 773 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 774 { 775 return (mac_tx_ring_stat_get(handle, stat)); 776 } 777 778 /* 779 * Utility function which returns the VID associated with a flow entry. 780 */ 781 uint16_t 782 i_mac_flow_vid(flow_entry_t *flent) 783 { 784 flow_desc_t flow_desc; 785 786 mac_flow_get_desc(flent, &flow_desc); 787 788 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 789 return (flow_desc.fd_vid); 790 return (VLAN_ID_NONE); 791 } 792 793 /* 794 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 795 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 796 * length. 797 */ 798 boolean_t 799 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 800 { 801 mac_impl_t *mip = (mac_impl_t *)mh; 802 803 /* 804 * Verify the address. No lock is needed since mi_type and plugin 805 * details don't change after mac_register(). 806 */ 807 if ((len != mip->mi_type->mt_addr_length) || 808 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 809 mip->mi_pdata)) != 0) { 810 return (B_FALSE); 811 } else { 812 return (B_TRUE); 813 } 814 } 815 816 void 817 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 818 { 819 mac_impl_t *mip = (mac_impl_t *)mh; 820 821 if (min_sdu != NULL) 822 *min_sdu = mip->mi_sdu_min; 823 if (max_sdu != NULL) 824 *max_sdu = mip->mi_sdu_max; 825 } 826 827 void 828 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu, 829 uint_t *multicast_sdu) 830 { 831 mac_impl_t *mip = (mac_impl_t *)mh; 832 833 if (min_sdu != NULL) 834 *min_sdu = mip->mi_sdu_min; 835 if (max_sdu != NULL) 836 *max_sdu = mip->mi_sdu_max; 837 if (multicast_sdu != NULL) 838 *multicast_sdu = mip->mi_sdu_multicast; 839 } 840 841 /* 842 * Update the MAC unicast address of the specified client's flows. Currently 843 * only one unicast MAC unicast address is allowed per client. 844 */ 845 static void 846 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 847 { 848 mac_impl_t *mip = mcip->mci_mip; 849 flow_entry_t *flent = mcip->mci_flent; 850 mac_address_t *map = mcip->mci_unicast; 851 flow_desc_t flow_desc; 852 853 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 854 ASSERT(flent != NULL); 855 856 mac_flow_get_desc(flent, &flow_desc); 857 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 858 859 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 860 mac_flow_set_desc(flent, &flow_desc); 861 862 /* 863 * The v6 local and SLAAC addrs (used by mac protection) need to be 864 * regenerated because our mac address has changed. 865 */ 866 mac_protect_update_mac_token(mcip); 867 868 /* 869 * When there are multiple VLANs sharing the same MAC address, 870 * each gets its own MAC client, except when running on sun4v 871 * vsw. In that case the mci_flent_list is used to place 872 * multiple VLAN flows on one MAC client. If we ever get rid 873 * of vsw then this code can go, but until then we need to 874 * update all flow entries. 875 */ 876 for (flent = mcip->mci_flent_list; flent != NULL; 877 flent = flent->fe_client_next) { 878 mac_flow_get_desc(flent, &flow_desc); 879 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 880 flent->fe_type & FLOW_VNIC_MAC)) 881 continue; 882 883 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 884 mac_flow_set_desc(flent, &flow_desc); 885 } 886 } 887 888 /* 889 * Update all clients that share the same unicast address. 890 */ 891 void 892 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 893 { 894 mac_client_impl_t *mcip; 895 896 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 897 898 /* 899 * Find all clients that share the same unicast MAC address and update 900 * them appropriately. 901 */ 902 for (mcip = mip->mi_clients_list; mcip != NULL; 903 mcip = mcip->mci_client_next) { 904 /* 905 * Ignore clients that don't share this MAC address. 906 */ 907 if (map != mcip->mci_unicast) 908 continue; 909 910 /* 911 * Update those clients with same old unicast MAC address. 912 */ 913 mac_unicast_update_client_flow(mcip); 914 } 915 } 916 917 /* 918 * Update the unicast MAC address of the specified VNIC MAC client. 919 * 920 * Check whether the operation is valid. Any of following cases should fail: 921 * 922 * 1. It's a VLAN type of VNIC. 923 * 2. The new value is current "primary" MAC address. 924 * 3. The current MAC address is shared with other clients. 925 * 4. The new MAC address has been used. This case will be valid when 926 * client migration is fully supported. 927 */ 928 int 929 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 930 { 931 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 932 mac_impl_t *mip = mcip->mci_mip; 933 mac_address_t *map = mcip->mci_unicast; 934 int err; 935 936 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 937 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 938 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 939 940 i_mac_perim_enter(mip); 941 942 /* 943 * If this is a VLAN type of VNIC, it's using "primary" MAC address 944 * of the underlying interface. Must fail here. Refer to case 1 above. 945 */ 946 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 947 i_mac_perim_exit(mip); 948 return (ENOTSUP); 949 } 950 951 /* 952 * If the new address is the "primary" one, must fail. Refer to 953 * case 2 above. 954 */ 955 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 956 i_mac_perim_exit(mip); 957 return (EACCES); 958 } 959 960 /* 961 * If the address is shared by multiple clients, must fail. Refer 962 * to case 3 above. 963 */ 964 if (mac_check_macaddr_shared(map)) { 965 i_mac_perim_exit(mip); 966 return (EBUSY); 967 } 968 969 /* 970 * If the new address has been used, must fail for now. Refer to 971 * case 4 above. 972 */ 973 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 974 i_mac_perim_exit(mip); 975 return (ENOTSUP); 976 } 977 978 /* 979 * Update the MAC address. 980 */ 981 err = mac_update_macaddr(map, (uint8_t *)addr); 982 983 if (err != 0) { 984 i_mac_perim_exit(mip); 985 return (err); 986 } 987 988 /* 989 * Update all flows of this MAC client. 990 */ 991 mac_unicast_update_client_flow(mcip); 992 993 i_mac_perim_exit(mip); 994 return (0); 995 } 996 997 /* 998 * Program the new primary unicast address of the specified MAC. 999 * 1000 * Function mac_update_macaddr() takes care different types of underlying 1001 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 1002 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 1003 * which will take care of updating the MAC address of the corresponding 1004 * MAC client. 1005 * 1006 * This is the only interface that allow the client to update the "primary" 1007 * MAC address of the underlying MAC. The new value must have not been 1008 * used by other clients. 1009 */ 1010 int 1011 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 1012 { 1013 mac_impl_t *mip = (mac_impl_t *)mh; 1014 mac_address_t *map; 1015 int err; 1016 1017 /* verify the address validity */ 1018 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 1019 return (EINVAL); 1020 1021 i_mac_perim_enter(mip); 1022 1023 /* 1024 * If the new value is the same as the current primary address value, 1025 * there's nothing to do. 1026 */ 1027 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 1028 i_mac_perim_exit(mip); 1029 return (0); 1030 } 1031 1032 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 1033 i_mac_perim_exit(mip); 1034 return (EBUSY); 1035 } 1036 1037 map = mac_find_macaddr(mip, mip->mi_addr); 1038 ASSERT(map != NULL); 1039 1040 /* 1041 * Update the MAC address. 1042 */ 1043 if (mip->mi_state_flags & MIS_IS_AGGR) { 1044 mac_capab_aggr_t aggr_cap; 1045 1046 /* 1047 * If the MAC is an aggregation, other than the unicast 1048 * addresses programming, aggr must be informed about this 1049 * primary unicst address change to change its MAC address 1050 * policy to be user-specified. 1051 */ 1052 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 1053 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 1054 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 1055 if (err == 0) 1056 bcopy(addr, map->ma_addr, map->ma_len); 1057 } else { 1058 err = mac_update_macaddr(map, (uint8_t *)addr); 1059 } 1060 1061 if (err != 0) { 1062 i_mac_perim_exit(mip); 1063 return (err); 1064 } 1065 1066 mac_unicast_update_clients(mip, map); 1067 1068 /* 1069 * Save the new primary MAC address in mac_impl_t. 1070 */ 1071 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 1072 1073 i_mac_perim_exit(mip); 1074 1075 if (err == 0) 1076 i_mac_notify(mip, MAC_NOTE_UNICST); 1077 1078 return (err); 1079 } 1080 1081 /* 1082 * Return the current primary MAC address of the specified MAC. 1083 */ 1084 void 1085 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 1086 { 1087 mac_impl_t *mip = (mac_impl_t *)mh; 1088 1089 rw_enter(&mip->mi_rw_lock, RW_READER); 1090 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 1091 rw_exit(&mip->mi_rw_lock); 1092 } 1093 1094 /* 1095 * Return the secondary MAC address for the specified handle 1096 */ 1097 void 1098 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr) 1099 { 1100 mac_client_impl_t *mcip = (mac_client_impl_t *)mh; 1101 1102 ASSERT(mcip->mci_unicast != NULL); 1103 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len); 1104 } 1105 1106 /* 1107 * Return information about the use of the primary MAC address of the 1108 * specified MAC instance: 1109 * 1110 * - if client_name is non-NULL, it must point to a string of at 1111 * least MAXNAMELEN bytes, and will be set to the name of the MAC 1112 * client which uses the primary MAC address. 1113 * 1114 * - if in_use is non-NULL, used to return whether the primary MAC 1115 * address is currently in use. 1116 */ 1117 void 1118 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 1119 { 1120 mac_impl_t *mip = (mac_impl_t *)mh; 1121 mac_client_impl_t *cur_client; 1122 1123 if (in_use != NULL) 1124 *in_use = B_FALSE; 1125 if (client_name != NULL) 1126 bzero(client_name, MAXNAMELEN); 1127 1128 /* 1129 * The mi_rw_lock is used to protect threads that don't hold the 1130 * mac perimeter to get a consistent view of the mi_clients_list. 1131 * Threads that modify the list must hold both the mac perimeter and 1132 * mi_rw_lock(RW_WRITER) 1133 */ 1134 rw_enter(&mip->mi_rw_lock, RW_READER); 1135 for (cur_client = mip->mi_clients_list; cur_client != NULL; 1136 cur_client = cur_client->mci_client_next) { 1137 if (mac_is_primary_client(cur_client) || 1138 (mip->mi_state_flags & MIS_IS_VNIC)) { 1139 rw_exit(&mip->mi_rw_lock); 1140 if (in_use != NULL) 1141 *in_use = B_TRUE; 1142 if (client_name != NULL) { 1143 bcopy(cur_client->mci_name, client_name, 1144 MAXNAMELEN); 1145 } 1146 return; 1147 } 1148 } 1149 rw_exit(&mip->mi_rw_lock); 1150 } 1151 1152 /* 1153 * Return the current destination MAC address of the specified MAC. 1154 */ 1155 boolean_t 1156 mac_dst_get(mac_handle_t mh, uint8_t *addr) 1157 { 1158 mac_impl_t *mip = (mac_impl_t *)mh; 1159 1160 rw_enter(&mip->mi_rw_lock, RW_READER); 1161 if (mip->mi_dstaddr_set) 1162 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length); 1163 rw_exit(&mip->mi_rw_lock); 1164 return (mip->mi_dstaddr_set); 1165 } 1166 1167 /* 1168 * Add the specified MAC client to the list of clients which opened 1169 * the specified MAC. 1170 */ 1171 static void 1172 mac_client_add(mac_client_impl_t *mcip) 1173 { 1174 mac_impl_t *mip = mcip->mci_mip; 1175 1176 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1177 1178 /* add VNIC to the front of the list */ 1179 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1180 mcip->mci_client_next = mip->mi_clients_list; 1181 mip->mi_clients_list = mcip; 1182 mip->mi_nclients++; 1183 rw_exit(&mip->mi_rw_lock); 1184 } 1185 1186 /* 1187 * Remove the specified MAC client from the list of clients which opened 1188 * the specified MAC. 1189 */ 1190 static void 1191 mac_client_remove(mac_client_impl_t *mcip) 1192 { 1193 mac_impl_t *mip = mcip->mci_mip; 1194 mac_client_impl_t **prev, *cclient; 1195 1196 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1197 1198 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1199 prev = &mip->mi_clients_list; 1200 cclient = *prev; 1201 while (cclient != NULL && cclient != mcip) { 1202 prev = &cclient->mci_client_next; 1203 cclient = *prev; 1204 } 1205 ASSERT(cclient != NULL); 1206 *prev = cclient->mci_client_next; 1207 mip->mi_nclients--; 1208 rw_exit(&mip->mi_rw_lock); 1209 } 1210 1211 static mac_unicast_impl_t * 1212 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1213 { 1214 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1215 1216 while ((muip != NULL) && (muip->mui_vid != vid)) 1217 muip = muip->mui_next; 1218 1219 return (muip); 1220 } 1221 1222 /* 1223 * Return whether the specified (MAC address, VID) tuple is already used by 1224 * one of the MAC clients associated with the specified MAC. 1225 */ 1226 static boolean_t 1227 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1228 { 1229 mac_client_impl_t *client; 1230 mac_address_t *map; 1231 1232 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1233 1234 for (client = mip->mi_clients_list; client != NULL; 1235 client = client->mci_client_next) { 1236 1237 /* 1238 * Ignore clients that don't have unicast address. 1239 */ 1240 if (client->mci_unicast_list == NULL) 1241 continue; 1242 1243 map = client->mci_unicast; 1244 1245 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1246 (mac_client_find_vid(client, vid) != NULL)) { 1247 return (B_TRUE); 1248 } 1249 } 1250 1251 return (B_FALSE); 1252 } 1253 1254 /* 1255 * Generate a random MAC address. The MAC address prefix is 1256 * stored in the array pointed to by mac_addr, and its length, in bytes, 1257 * is specified by prefix_len. The least significant bits 1258 * after prefix_len bytes are generated, and stored after the prefix 1259 * in the mac_addr array. 1260 */ 1261 int 1262 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1263 uint8_t *mac_addr, mac_diag_t *diag) 1264 { 1265 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1266 mac_impl_t *mip = mcip->mci_mip; 1267 size_t addr_len = mip->mi_type->mt_addr_length; 1268 1269 if (prefix_len >= addr_len) { 1270 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1271 return (EINVAL); 1272 } 1273 1274 /* check the prefix value */ 1275 if (prefix_len > 0) { 1276 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1277 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1278 addr_len)) { 1279 *diag = MAC_DIAG_MACPREFIX_INVALID; 1280 return (EINVAL); 1281 } 1282 } 1283 1284 /* generate the MAC address */ 1285 if (prefix_len < addr_len) { 1286 (void) random_get_pseudo_bytes(mac_addr + 1287 prefix_len, addr_len - prefix_len); 1288 } 1289 1290 *diag = MAC_DIAG_NONE; 1291 return (0); 1292 } 1293 1294 /* 1295 * Set the priority range for this MAC client. This will be used to 1296 * determine the absolute priority for the threads created for this 1297 * MAC client using the specified "low", "medium" and "high" level. 1298 * This will also be used for any subflows on this MAC client. 1299 */ 1300 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1301 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1302 MAXCLSYSPRI, (pri)); \ 1303 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1304 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1305 } 1306 1307 /* 1308 * MAC client open entry point. Return a new MAC client handle. Each 1309 * MAC client is associated with a name, specified through the 'name' 1310 * argument. 1311 */ 1312 int 1313 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1314 uint16_t flags) 1315 { 1316 mac_impl_t *mip = (mac_impl_t *)mh; 1317 mac_client_impl_t *mcip; 1318 int err = 0; 1319 boolean_t share_desired; 1320 flow_entry_t *flent = NULL; 1321 1322 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0; 1323 *mchp = NULL; 1324 1325 i_mac_perim_enter(mip); 1326 1327 if (mip->mi_state_flags & MIS_IS_VNIC) { 1328 /* 1329 * The underlying MAC is a VNIC. Return the MAC client 1330 * handle of the lower MAC which was obtained by 1331 * the VNIC driver when it did its mac_client_open(). 1332 */ 1333 1334 mcip = mac_vnic_lower(mip); 1335 1336 /* 1337 * Note that multiple mac clients share the same mcip in 1338 * this case. 1339 */ 1340 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1341 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1342 1343 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1344 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1345 1346 mip->mi_clients_list = mcip; 1347 i_mac_perim_exit(mip); 1348 *mchp = (mac_client_handle_t)mcip; 1349 1350 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *, 1351 mcip->mci_mip, mac_client_impl_t *, mcip); 1352 1353 return (err); 1354 } 1355 1356 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1357 1358 mcip->mci_mip = mip; 1359 mcip->mci_upper_mip = NULL; 1360 mcip->mci_rx_fn = mac_pkt_drop; 1361 mcip->mci_rx_arg = NULL; 1362 mcip->mci_rx_p_fn = NULL; 1363 mcip->mci_rx_p_arg = NULL; 1364 mcip->mci_p_unicast_list = NULL; 1365 mcip->mci_direct_rx_fn = NULL; 1366 mcip->mci_direct_rx_arg = NULL; 1367 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 1368 1369 mcip->mci_unicast_list = NULL; 1370 1371 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1372 mcip->mci_state_flags |= MCIS_IS_VNIC; 1373 1374 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1375 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1376 1377 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1378 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1379 1380 if (mip->mi_state_flags & MIS_IS_AGGR) 1381 mcip->mci_state_flags |= MCIS_IS_AGGR_CLIENT; 1382 1383 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1384 datalink_id_t linkid; 1385 1386 ASSERT(name == NULL); 1387 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1388 &linkid)) != 0) { 1389 goto done; 1390 } 1391 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1392 NULL, NULL)) != 0) { 1393 /* 1394 * Use mac name if dlmgmtd is not available. 1395 */ 1396 if (err == EBADF) { 1397 (void) strlcpy(mcip->mci_name, mip->mi_name, 1398 sizeof (mcip->mci_name)); 1399 err = 0; 1400 } else { 1401 goto done; 1402 } 1403 } 1404 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1405 } else { 1406 ASSERT(name != NULL); 1407 if (strlen(name) > MAXNAMELEN) { 1408 err = EINVAL; 1409 goto done; 1410 } 1411 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1412 } 1413 1414 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1415 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1416 1417 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR) 1418 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR; 1419 1420 mac_protect_init(mcip); 1421 1422 /* the subflow table will be created dynamically */ 1423 mcip->mci_subflow_tab = NULL; 1424 1425 mcip->mci_misc_stat.mms_multircv = 0; 1426 mcip->mci_misc_stat.mms_brdcstrcv = 0; 1427 mcip->mci_misc_stat.mms_multixmt = 0; 1428 mcip->mci_misc_stat.mms_brdcstxmt = 0; 1429 1430 /* Create an initial flow */ 1431 1432 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1433 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1434 FLOW_PRIMARY_MAC, &flent); 1435 if (err != 0) 1436 goto done; 1437 mcip->mci_flent = flent; 1438 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1439 flent->fe_mcip = mcip; 1440 1441 /* 1442 * Place initial creation reference on the flow. This reference 1443 * is released in the corresponding delete action viz. 1444 * mac_unicast_remove after waiting for all transient refs to 1445 * to go away. The wait happens in mac_flow_wait. 1446 */ 1447 FLOW_REFHOLD(flent); 1448 1449 /* 1450 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1451 * will have the right value for mac_rx_srs_setup(). 1452 */ 1453 mac_client_add(mcip); 1454 1455 mcip->mci_share = 0; 1456 if (share_desired) 1457 i_mac_share_alloc(mcip); 1458 1459 /* 1460 * We will do mimimal datapath setup to allow a MAC client to 1461 * transmit or receive non-unicast packets without waiting 1462 * for mac_unicast_add. 1463 */ 1464 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1465 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE, 1466 NULL, NULL, B_TRUE, NULL)) != 0) { 1467 goto done; 1468 } 1469 } 1470 1471 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1472 mcip->mci_mip, mac_client_impl_t *, mcip); 1473 1474 *mchp = (mac_client_handle_t)mcip; 1475 i_mac_perim_exit(mip); 1476 return (0); 1477 1478 done: 1479 i_mac_perim_exit(mip); 1480 mcip->mci_state_flags = 0; 1481 mcip->mci_tx_flag = 0; 1482 kmem_cache_free(mac_client_impl_cache, mcip); 1483 return (err); 1484 } 1485 1486 /* 1487 * Close the specified MAC client handle. 1488 */ 1489 void 1490 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1491 { 1492 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1493 mac_impl_t *mip = mcip->mci_mip; 1494 flow_entry_t *flent; 1495 1496 i_mac_perim_enter(mip); 1497 1498 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1499 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1500 1501 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1502 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1503 /* 1504 * This is an upper VNIC client initiated operation. 1505 * The lower MAC client will be closed by the VNIC driver 1506 * when the VNIC is deleted. 1507 */ 1508 1509 i_mac_perim_exit(mip); 1510 return; 1511 } 1512 1513 /* If we have only setup up minimal datapth setup, tear it down */ 1514 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1515 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL, 1516 mcip->mci_flent); 1517 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR; 1518 } 1519 1520 /* 1521 * Remove the flent associated with the MAC client 1522 */ 1523 flent = mcip->mci_flent; 1524 mcip->mci_flent = NULL; 1525 FLOW_FINAL_REFRELE(flent); 1526 1527 /* 1528 * MAC clients must remove the unicast addresses and promisc callbacks 1529 * they added before issuing a mac_client_close(). 1530 */ 1531 ASSERT(mcip->mci_unicast_list == NULL); 1532 ASSERT(mcip->mci_promisc_list == NULL); 1533 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1534 1535 i_mac_share_free(mcip); 1536 mac_protect_fini(mcip); 1537 mac_client_remove(mcip); 1538 1539 i_mac_perim_exit(mip); 1540 mcip->mci_subflow_tab = NULL; 1541 mcip->mci_state_flags = 0; 1542 mcip->mci_tx_flag = 0; 1543 kmem_cache_free(mac_client_impl_cache, mch); 1544 } 1545 1546 /* 1547 * Set the Rx bypass receive callback and return B_TRUE. Return 1548 * B_FALSE if it's not possible to enable bypass. 1549 */ 1550 boolean_t 1551 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1552 { 1553 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1554 mac_impl_t *mip = mcip->mci_mip; 1555 1556 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1557 1558 /* 1559 * If the client has more than one VLAN then process packets 1560 * through DLS. This should happen only when sun4v vsw is on 1561 * the scene. 1562 */ 1563 if (mcip->mci_nvids > 1) 1564 return (B_FALSE); 1565 1566 /* 1567 * These are not accessed directly in the data path, and hence 1568 * don't need any protection 1569 */ 1570 mcip->mci_direct_rx_fn = rx_fn; 1571 mcip->mci_direct_rx_arg = arg1; 1572 return (B_TRUE); 1573 } 1574 1575 /* 1576 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled. 1577 */ 1578 void 1579 mac_rx_bypass_enable(mac_client_handle_t mch) 1580 { 1581 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE; 1582 } 1583 1584 void 1585 mac_rx_bypass_disable(mac_client_handle_t mch) 1586 { 1587 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE; 1588 } 1589 1590 /* 1591 * Set the receive callback for the specified MAC client. There can be 1592 * at most one such callback per MAC client. 1593 */ 1594 void 1595 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1596 { 1597 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1598 mac_impl_t *mip = mcip->mci_mip; 1599 mac_impl_t *umip = mcip->mci_upper_mip; 1600 1601 /* 1602 * Instead of adding an extra set of locks and refcnts in 1603 * the datapath at the mac client boundary, we temporarily quiesce 1604 * the SRS and related entities. We then change the receive function 1605 * without interference from any receive data thread and then reenable 1606 * the data flow subsequently. 1607 */ 1608 i_mac_perim_enter(mip); 1609 mac_rx_client_quiesce(mch); 1610 1611 mcip->mci_rx_fn = rx_fn; 1612 mcip->mci_rx_arg = arg; 1613 mac_rx_client_restart(mch); 1614 i_mac_perim_exit(mip); 1615 1616 /* 1617 * If we're changing the Rx function on the primary MAC of a VNIC, 1618 * make sure any secondary addresses on the VNIC are updated as well. 1619 */ 1620 if (umip != NULL) { 1621 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 1622 mac_vnic_secondary_update(umip); 1623 } 1624 } 1625 1626 /* 1627 * Reset the receive callback for the specified MAC client. 1628 */ 1629 void 1630 mac_rx_clear(mac_client_handle_t mch) 1631 { 1632 mac_rx_set(mch, mac_pkt_drop, NULL); 1633 } 1634 1635 void 1636 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch) 1637 { 1638 mac_client_impl_t *smcip = (mac_client_impl_t *)smch; 1639 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch; 1640 flow_entry_t *flent = dmcip->mci_flent; 1641 1642 /* This should only be called to setup secondary macs */ 1643 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1644 1645 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg); 1646 dmcip->mci_promisc_list = smcip->mci_promisc_list; 1647 1648 /* 1649 * Duplicate the primary mac resources to the secondary. 1650 * Since we already validated the resource controls when setting 1651 * them on the primary, we can ignore errors here. 1652 */ 1653 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip)); 1654 } 1655 1656 /* 1657 * Called when removing a secondary MAC. Currently only clears the promisc_list 1658 * since we share the primary mac's promisc_list. 1659 */ 1660 void 1661 mac_secondary_cleanup(mac_client_handle_t mch) 1662 { 1663 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1664 flow_entry_t *flent = mcip->mci_flent; 1665 1666 /* This should only be called for secondary macs */ 1667 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1668 mcip->mci_promisc_list = NULL; 1669 } 1670 1671 /* 1672 * Walk the MAC client subflow table and updates their priority values. 1673 */ 1674 static int 1675 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1676 { 1677 mac_flow_update_priority(arg, flent); 1678 return (0); 1679 } 1680 1681 void 1682 mac_update_subflow_priority(mac_client_impl_t *mcip) 1683 { 1684 (void) mac_flow_walk(mcip->mci_subflow_tab, 1685 mac_update_subflow_priority_cb, mcip); 1686 } 1687 1688 /* 1689 * Modify the TX or RX ring properties. We could either just move around 1690 * rings, i.e add/remove rings given to a client. Or this might cause the 1691 * client to move from hardware based to software or the other way around. 1692 * If we want to reset this property, then we clear the mask, additionally 1693 * if the client was given a non-default group we remove all rings except 1694 * for 1 and give it back to the default group. 1695 */ 1696 int 1697 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp, 1698 mac_resource_props_t *tmrp) 1699 { 1700 mac_impl_t *mip = mcip->mci_mip; 1701 flow_entry_t *flent = mcip->mci_flent; 1702 uint8_t *mac_addr; 1703 int err = 0; 1704 mac_group_t *defgrp; 1705 mac_group_t *group; 1706 mac_group_t *ngrp; 1707 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip); 1708 uint_t ringcnt; 1709 boolean_t unspec; 1710 1711 if (mcip->mci_share != 0) 1712 return (EINVAL); 1713 1714 if (mrp->mrp_mask & MRP_RX_RINGS) { 1715 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 1716 group = flent->fe_rx_ring_group; 1717 defgrp = MAC_DEFAULT_RX_GROUP(mip); 1718 mac_addr = flent->fe_flow_desc.fd_dst_mac; 1719 1720 /* 1721 * No resulting change. If we are resetting on a client on 1722 * which there was no rx rings property. For dynamic group 1723 * if we are setting the same number of rings already set. 1724 * For static group if we are requesting a group again. 1725 */ 1726 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1727 if (!(tmrp->mrp_mask & MRP_RX_RINGS)) 1728 return (0); 1729 } else { 1730 if (unspec) { 1731 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 1732 return (0); 1733 } else if (mip->mi_rx_group_type == 1734 MAC_GROUP_TYPE_DYNAMIC) { 1735 if ((tmrp->mrp_mask & MRP_RX_RINGS) && 1736 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) && 1737 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) { 1738 return (0); 1739 } 1740 } 1741 } 1742 /* Resetting the prop */ 1743 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1744 /* 1745 * We will just keep one ring and give others back if 1746 * we are not the primary. For the primary we give 1747 * all the rings in the default group except the 1748 * default ring. If it is a static group, then 1749 * we don't do anything, but clear the MRP_RX_RINGS 1750 * flag. 1751 */ 1752 if (group != defgrp) { 1753 if (mip->mi_rx_group_type == 1754 MAC_GROUP_TYPE_DYNAMIC) { 1755 /* 1756 * This group has reserved rings 1757 * that need to be released now, 1758 * so does the group. 1759 */ 1760 MAC_RX_RING_RELEASED(mip, 1761 group->mrg_cur_count); 1762 MAC_RX_GRP_RELEASED(mip); 1763 if ((flent->fe_type & 1764 FLOW_PRIMARY_MAC) != 0) { 1765 if (mip->mi_nactiveclients == 1766 1) { 1767 (void) 1768 mac_rx_switch_group( 1769 mcip, group, 1770 defgrp); 1771 return (0); 1772 } else { 1773 cmrp->mrp_nrxrings = 1774 group-> 1775 mrg_cur_count + 1776 defgrp-> 1777 mrg_cur_count - 1; 1778 } 1779 } else { 1780 cmrp->mrp_nrxrings = 1; 1781 } 1782 (void) mac_group_ring_modify(mcip, 1783 group, defgrp); 1784 } else { 1785 /* 1786 * If this is a static group, we 1787 * need to release the group. The 1788 * client will remain in the same 1789 * group till some other client 1790 * needs this group. 1791 */ 1792 MAC_RX_GRP_RELEASED(mip); 1793 } 1794 /* Let check if we can give this an excl group */ 1795 } else if (group == defgrp) { 1796 /* 1797 * If multiple clients share an 1798 * address then they must stay on the 1799 * default group. 1800 */ 1801 if (mac_check_macaddr_shared(mcip->mci_unicast)) 1802 return (0); 1803 1804 ngrp = mac_reserve_rx_group(mcip, mac_addr, 1805 B_TRUE); 1806 /* Couldn't give it a group, that's fine */ 1807 if (ngrp == NULL) 1808 return (0); 1809 /* Switch to H/W */ 1810 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 1811 0) { 1812 mac_stop_group(ngrp); 1813 return (0); 1814 } 1815 } 1816 /* 1817 * If the client is in the default group, we will 1818 * just clear the MRP_RX_RINGS and leave it as 1819 * it rather than look for an exclusive group 1820 * for it. 1821 */ 1822 return (0); 1823 } 1824 1825 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) { 1826 /* 1827 * We are requesting Rx rings. Try to reserve 1828 * a non-default group. 1829 * 1830 * If multiple clients share an address then 1831 * they must stay on the default group. 1832 */ 1833 if (mac_check_macaddr_shared(mcip->mci_unicast)) 1834 return (EINVAL); 1835 1836 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 1837 if (ngrp == NULL) 1838 return (ENOSPC); 1839 1840 /* Switch to H/W */ 1841 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 1842 mac_release_rx_group(mcip, ngrp); 1843 return (ENOSPC); 1844 } 1845 MAC_RX_GRP_RESERVED(mip); 1846 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1847 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1848 } else if (group != defgrp && !unspec && 1849 mrp->mrp_nrxrings == 0) { 1850 /* Switch to S/W */ 1851 ringcnt = group->mrg_cur_count; 1852 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 1853 return (ENOSPC); 1854 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1855 MAC_RX_GRP_RELEASED(mip); 1856 if (mip->mi_rx_group_type == 1857 MAC_GROUP_TYPE_DYNAMIC) { 1858 MAC_RX_RING_RELEASED(mip, ringcnt); 1859 } 1860 } 1861 } else if (group != defgrp && mip->mi_rx_group_type == 1862 MAC_GROUP_TYPE_DYNAMIC) { 1863 ringcnt = group->mrg_cur_count; 1864 err = mac_group_ring_modify(mcip, group, defgrp); 1865 if (err != 0) 1866 return (err); 1867 /* 1868 * Update the accounting. If this group 1869 * already had explicitly reserved rings, 1870 * we need to update the rings based on 1871 * the new ring count. If this group 1872 * had not explicitly reserved rings, 1873 * then we just reserve the rings asked for 1874 * and reserve the group. 1875 */ 1876 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1877 if (ringcnt > group->mrg_cur_count) { 1878 MAC_RX_RING_RELEASED(mip, 1879 ringcnt - group->mrg_cur_count); 1880 } else { 1881 MAC_RX_RING_RESERVED(mip, 1882 group->mrg_cur_count - ringcnt); 1883 } 1884 } else { 1885 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count); 1886 MAC_RX_GRP_RESERVED(mip); 1887 } 1888 } 1889 } 1890 if (mrp->mrp_mask & MRP_TX_RINGS) { 1891 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 1892 group = flent->fe_tx_ring_group; 1893 defgrp = MAC_DEFAULT_TX_GROUP(mip); 1894 1895 /* 1896 * For static groups we only allow rings=0 or resetting the 1897 * rings property. 1898 */ 1899 if (mrp->mrp_ntxrings > 0 && 1900 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 1901 return (ENOTSUP); 1902 } 1903 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1904 if (!(tmrp->mrp_mask & MRP_TX_RINGS)) 1905 return (0); 1906 } else { 1907 if (unspec) { 1908 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 1909 return (0); 1910 } else if (mip->mi_tx_group_type == 1911 MAC_GROUP_TYPE_DYNAMIC) { 1912 if ((tmrp->mrp_mask & MRP_TX_RINGS) && 1913 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) && 1914 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) { 1915 return (0); 1916 } 1917 } 1918 } 1919 /* Resetting the prop */ 1920 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1921 if (group != defgrp) { 1922 if (mip->mi_tx_group_type == 1923 MAC_GROUP_TYPE_DYNAMIC) { 1924 ringcnt = group->mrg_cur_count; 1925 if ((flent->fe_type & 1926 FLOW_PRIMARY_MAC) != 0) { 1927 mac_tx_client_quiesce( 1928 (mac_client_handle_t) 1929 mcip); 1930 mac_tx_switch_group(mcip, 1931 group, defgrp); 1932 mac_tx_client_restart( 1933 (mac_client_handle_t) 1934 mcip); 1935 MAC_TX_GRP_RELEASED(mip); 1936 MAC_TX_RING_RELEASED(mip, 1937 ringcnt); 1938 return (0); 1939 } 1940 cmrp->mrp_ntxrings = 1; 1941 (void) mac_group_ring_modify(mcip, 1942 group, defgrp); 1943 /* 1944 * This group has reserved rings 1945 * that need to be released now. 1946 */ 1947 MAC_TX_RING_RELEASED(mip, ringcnt); 1948 } 1949 /* 1950 * If this is a static group, we 1951 * need to release the group. The 1952 * client will remain in the same 1953 * group till some other client 1954 * needs this group. 1955 */ 1956 MAC_TX_GRP_RELEASED(mip); 1957 } else if (group == defgrp && 1958 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) { 1959 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1960 if (ngrp == NULL) 1961 return (0); 1962 mac_tx_client_quiesce( 1963 (mac_client_handle_t)mcip); 1964 mac_tx_switch_group(mcip, defgrp, ngrp); 1965 mac_tx_client_restart( 1966 (mac_client_handle_t)mcip); 1967 } 1968 /* 1969 * If the client is in the default group, we will 1970 * just clear the MRP_TX_RINGS and leave it as 1971 * it rather than look for an exclusive group 1972 * for it. 1973 */ 1974 return (0); 1975 } 1976 1977 /* Switch to H/W */ 1978 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) { 1979 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1980 if (ngrp == NULL) 1981 return (ENOSPC); 1982 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1983 mac_tx_switch_group(mcip, defgrp, ngrp); 1984 mac_tx_client_restart((mac_client_handle_t)mcip); 1985 MAC_TX_GRP_RESERVED(mip); 1986 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1987 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1988 /* Switch to S/W */ 1989 } else if (group != defgrp && !unspec && 1990 mrp->mrp_ntxrings == 0) { 1991 /* Switch to S/W */ 1992 ringcnt = group->mrg_cur_count; 1993 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1994 mac_tx_switch_group(mcip, group, defgrp); 1995 mac_tx_client_restart((mac_client_handle_t)mcip); 1996 if (tmrp->mrp_mask & MRP_TX_RINGS) { 1997 MAC_TX_GRP_RELEASED(mip); 1998 if (mip->mi_tx_group_type == 1999 MAC_GROUP_TYPE_DYNAMIC) { 2000 MAC_TX_RING_RELEASED(mip, ringcnt); 2001 } 2002 } 2003 } else if (group != defgrp && mip->mi_tx_group_type == 2004 MAC_GROUP_TYPE_DYNAMIC) { 2005 ringcnt = group->mrg_cur_count; 2006 err = mac_group_ring_modify(mcip, group, defgrp); 2007 if (err != 0) 2008 return (err); 2009 /* 2010 * Update the accounting. If this group 2011 * already had explicitly reserved rings, 2012 * we need to update the rings based on 2013 * the new ring count. If this group 2014 * had not explicitly reserved rings, 2015 * then we just reserve the rings asked for 2016 * and reserve the group. 2017 */ 2018 if (tmrp->mrp_mask & MRP_TX_RINGS) { 2019 if (ringcnt > group->mrg_cur_count) { 2020 MAC_TX_RING_RELEASED(mip, 2021 ringcnt - group->mrg_cur_count); 2022 } else { 2023 MAC_TX_RING_RESERVED(mip, 2024 group->mrg_cur_count - ringcnt); 2025 } 2026 } else { 2027 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count); 2028 MAC_TX_GRP_RESERVED(mip); 2029 } 2030 } 2031 } 2032 return (0); 2033 } 2034 2035 /* 2036 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 2037 * to initialize the cpu and resource control structure in the 2038 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 2039 * properties before the flow entry for the unicast address was created). 2040 */ 2041 static int 2042 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2043 { 2044 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2045 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2046 mac_impl_t *umip = mcip->mci_upper_mip; 2047 int err = 0; 2048 flow_entry_t *flent = mcip->mci_flent; 2049 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip); 2050 2051 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2052 2053 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 2054 mcip->mci_upper_mip : mip, mrp); 2055 if (err != 0) 2056 return (err); 2057 2058 /* 2059 * Copy over the existing properties since mac_update_resources 2060 * will modify the client's mrp. Currently, the saved property 2061 * is used to determine the difference between existing and 2062 * modified rings property. 2063 */ 2064 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 2065 bcopy(nmrp, omrp, sizeof (*omrp)); 2066 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2067 if (MCIP_DATAPATH_SETUP(mcip)) { 2068 /* 2069 * We support rings only for primary client when there are 2070 * multiple clients sharing the same MAC address (e.g. VLAN). 2071 */ 2072 if (mrp->mrp_mask & MRP_RX_RINGS || 2073 mrp->mrp_mask & MRP_TX_RINGS) { 2074 2075 if ((err = mac_client_set_rings_prop(mcip, mrp, 2076 omrp)) != 0) { 2077 if (omrp->mrp_mask & MRP_RX_RINGS) { 2078 nmrp->mrp_mask |= MRP_RX_RINGS; 2079 nmrp->mrp_nrxrings = omrp->mrp_nrxrings; 2080 } else { 2081 nmrp->mrp_mask &= ~MRP_RX_RINGS; 2082 nmrp->mrp_nrxrings = 0; 2083 } 2084 if (omrp->mrp_mask & MRP_TX_RINGS) { 2085 nmrp->mrp_mask |= MRP_TX_RINGS; 2086 nmrp->mrp_ntxrings = omrp->mrp_ntxrings; 2087 } else { 2088 nmrp->mrp_mask &= ~MRP_TX_RINGS; 2089 nmrp->mrp_ntxrings = 0; 2090 } 2091 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC) 2092 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 2093 else 2094 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 2095 2096 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC) 2097 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 2098 else 2099 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 2100 kmem_free(omrp, sizeof (*omrp)); 2101 return (err); 2102 } 2103 2104 /* 2105 * If we modified the rings property of the primary 2106 * we need to update the property fields of its 2107 * VLANs as they inherit the primary's properites. 2108 */ 2109 if (mac_is_primary_client(mcip)) { 2110 mac_set_prim_vlan_rings(mip, 2111 MCIP_RESOURCE_PROPS(mcip)); 2112 } 2113 } 2114 /* 2115 * We have to set this prior to calling mac_flow_modify. 2116 */ 2117 if (mrp->mrp_mask & MRP_PRIORITY) { 2118 if (mrp->mrp_priority == MPL_RESET) { 2119 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2120 MPL_LINK_DEFAULT); 2121 } else { 2122 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2123 mrp->mrp_priority); 2124 } 2125 } 2126 2127 mac_flow_modify(mip->mi_flow_tab, flent, mrp); 2128 if (mrp->mrp_mask & MRP_PRIORITY) 2129 mac_update_subflow_priority(mcip); 2130 2131 /* Apply these resource settings to any secondary macs */ 2132 if (umip != NULL) { 2133 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 2134 mac_vnic_secondary_update(umip); 2135 } 2136 } 2137 kmem_free(omrp, sizeof (*omrp)); 2138 return (0); 2139 } 2140 2141 static int 2142 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 2143 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 2144 flow_entry_t **flent, mac_resource_props_t *mrp) 2145 { 2146 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2147 flow_desc_t flow_desc; 2148 char flowname[MAXFLOWNAMELEN]; 2149 int err; 2150 uint_t flent_flags; 2151 2152 /* 2153 * First unicast address being added, create a new flow 2154 * for that MAC client. 2155 */ 2156 bzero(&flow_desc, sizeof (flow_desc)); 2157 2158 ASSERT(mac_addr != NULL || 2159 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)); 2160 if (mac_addr != NULL) { 2161 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 2162 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 2163 } 2164 flow_desc.fd_mask = FLOW_LINK_DST; 2165 if (vid != 0) { 2166 flow_desc.fd_vid = vid; 2167 flow_desc.fd_mask |= FLOW_LINK_VID; 2168 } 2169 2170 /* 2171 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 2172 * and FLOW_VNIC. Even though they're a hack inherited 2173 * from the SRS code, we'll keep them for now. They're currently 2174 * consumed by mac_datapath_setup() to create the SRS. 2175 * That code should be eventually moved out of 2176 * mac_datapath_setup() and moved to a mac_srs_create() 2177 * function of some sort to keep things clean. 2178 * 2179 * Also, there's no reason why the SRS for the primary MAC 2180 * client should be different than any other MAC client. Until 2181 * this is cleaned-up, we support only one MAC unicast address 2182 * per client. 2183 * 2184 * We set FLOW_PRIMARY_MAC for the primary MAC address, 2185 * FLOW_VNIC for everything else. 2186 */ 2187 if (is_primary) 2188 flent_flags = FLOW_PRIMARY_MAC; 2189 else 2190 flent_flags = FLOW_VNIC_MAC; 2191 2192 /* 2193 * For the first flow we use the MAC client's name - mci_name, for 2194 * subsequent ones we just create a name with the VID. This is 2195 * so that we can add these flows to the same flow table. This is 2196 * fine as the flow name (except for the one with the MAC client's 2197 * name) is not visible. When the first flow is removed, we just replace 2198 * its fdesc with another from the list, so we will still retain the 2199 * flent with the MAC client's flow name. 2200 */ 2201 if (first_flow) { 2202 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 2203 } else { 2204 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 2205 flent_flags = FLOW_NO_STATS; 2206 } 2207 2208 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 2209 flent_flags, flent)) != 0) 2210 return (err); 2211 2212 mac_misc_stat_create(*flent); 2213 FLOW_MARK(*flent, FE_INCIPIENT); 2214 (*flent)->fe_mcip = mcip; 2215 2216 /* 2217 * Place initial creation reference on the flow. This reference 2218 * is released in the corresponding delete action viz. 2219 * mac_unicast_remove after waiting for all transient refs to 2220 * to go away. The wait happens in mac_flow_wait. 2221 * We have already held the reference in mac_client_open(). 2222 */ 2223 if (!first_flow) 2224 FLOW_REFHOLD(*flent); 2225 return (0); 2226 } 2227 2228 /* Refresh the multicast grouping for this VID. */ 2229 int 2230 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 2231 { 2232 flow_entry_t *flent = arg; 2233 mac_client_impl_t *mcip = flent->fe_mcip; 2234 uint16_t vid; 2235 flow_desc_t flow_desc; 2236 2237 mac_flow_get_desc(flent, &flow_desc); 2238 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 2239 flow_desc.fd_vid : VLAN_ID_NONE; 2240 2241 /* 2242 * We don't call mac_multicast_add()/mac_multicast_remove() as 2243 * we want to add/remove for this specific vid. 2244 */ 2245 if (add) { 2246 return (mac_bcast_add(mcip, addrp, vid, 2247 MAC_ADDRTYPE_MULTICAST)); 2248 } else { 2249 mac_bcast_delete(mcip, addrp, vid); 2250 return (0); 2251 } 2252 } 2253 2254 static void 2255 mac_update_single_active_client(mac_impl_t *mip) 2256 { 2257 mac_client_impl_t *client = NULL; 2258 2259 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2260 2261 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2262 if (mip->mi_nactiveclients == 1) { 2263 /* 2264 * Find the one active MAC client from the list of MAC 2265 * clients. The active MAC client has at least one 2266 * unicast address. 2267 */ 2268 for (client = mip->mi_clients_list; client != NULL; 2269 client = client->mci_client_next) { 2270 if (client->mci_unicast_list != NULL) 2271 break; 2272 } 2273 ASSERT(client != NULL); 2274 } 2275 2276 /* 2277 * mi_single_active_client is protected by the MAC impl's read/writer 2278 * lock, which allows mac_rx() to check the value of that pointer 2279 * as a reader. 2280 */ 2281 mip->mi_single_active_client = client; 2282 rw_exit(&mip->mi_rw_lock); 2283 } 2284 2285 /* 2286 * Set up the data path. Called from i_mac_unicast_add after having 2287 * done all the validations including making sure this is an active 2288 * client (i.e that is ready to process packets.) 2289 */ 2290 static int 2291 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid, 2292 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary, 2293 mac_unicast_impl_t *muip) 2294 { 2295 mac_impl_t *mip = mcip->mci_mip; 2296 boolean_t mac_started = B_FALSE; 2297 boolean_t bcast_added = B_FALSE; 2298 boolean_t nactiveclients_added = B_FALSE; 2299 flow_entry_t *flent; 2300 int err = 0; 2301 boolean_t no_unicast; 2302 2303 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2304 2305 if ((err = mac_start((mac_handle_t)mip)) != 0) 2306 goto bail; 2307 2308 mac_started = B_TRUE; 2309 2310 /* add the MAC client to the broadcast address group by default */ 2311 if (mip->mi_type->mt_brdcst_addr != NULL) { 2312 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 2313 MAC_ADDRTYPE_BROADCAST); 2314 if (err != 0) 2315 goto bail; 2316 bcast_added = B_TRUE; 2317 } 2318 2319 /* 2320 * If this is the first unicast address addition for this 2321 * client, reuse the pre-allocated larval flow entry associated with 2322 * the MAC client. 2323 */ 2324 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 2325 2326 /* We are configuring the unicast flow now */ 2327 if (!MCIP_DATAPATH_SETUP(mcip)) { 2328 2329 if (mrp != NULL) { 2330 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2331 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority : 2332 MPL_LINK_DEFAULT); 2333 } 2334 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2335 isprimary, B_TRUE, &flent, mrp)) != 0) 2336 goto bail; 2337 2338 mip->mi_nactiveclients++; 2339 nactiveclients_added = B_TRUE; 2340 2341 /* 2342 * This will allocate the RX ring group if possible for the 2343 * flow and program the software classifier as needed. 2344 */ 2345 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 2346 goto bail; 2347 2348 if (no_unicast) 2349 goto done_setup; 2350 /* 2351 * The unicast MAC address must have been added successfully. 2352 */ 2353 ASSERT(mcip->mci_unicast != NULL); 2354 2355 /* 2356 * Push down the sub-flows that were defined on this link 2357 * hitherto. The flows are added to the active flow table 2358 * and SRS, softrings etc. are created as needed. 2359 */ 2360 mac_link_init_flows((mac_client_handle_t)mcip); 2361 } else { 2362 mac_address_t *map = mcip->mci_unicast; 2363 2364 ASSERT(!no_unicast); 2365 /* 2366 * A unicast flow already exists for that MAC client 2367 * so this flow must be the same MAC address but with 2368 * a different VID. It has been checked by 2369 * mac_addr_in_use(). 2370 * 2371 * We will use the SRS etc. from the initial 2372 * mci_flent. We don't need to create a kstat for 2373 * this, as except for the fdesc, everything will be 2374 * used from the first flent. 2375 * 2376 * The only time we should see multiple flents on the 2377 * same MAC client is on the sun4v vsw. If we removed 2378 * that code we should be able to remove the entire 2379 * notion of multiple flents on a MAC client (this 2380 * doesn't affect sub/user flows because they have 2381 * their own list unrelated to mci_flent_list). 2382 */ 2383 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 2384 err = EINVAL; 2385 goto bail; 2386 } 2387 2388 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2389 isprimary, B_FALSE, &flent, NULL)) != 0) { 2390 goto bail; 2391 } 2392 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 2393 FLOW_FINAL_REFRELE(flent); 2394 goto bail; 2395 } 2396 2397 /* update the multicast group for this vid */ 2398 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2399 (void *)flent, B_TRUE); 2400 2401 } 2402 2403 /* populate the shared MAC address */ 2404 muip->mui_map = mcip->mci_unicast; 2405 2406 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2407 muip->mui_next = mcip->mci_unicast_list; 2408 mcip->mci_unicast_list = muip; 2409 rw_exit(&mcip->mci_rw_lock); 2410 2411 done_setup: 2412 /* 2413 * First add the flent to the flow list of this mcip. Then set 2414 * the mip's mi_single_active_client if needed. The Rx path assumes 2415 * that mip->mi_single_active_client will always have an associated 2416 * flent. 2417 */ 2418 mac_client_add_to_flow_list(mcip, flent); 2419 if (nactiveclients_added) 2420 mac_update_single_active_client(mip); 2421 /* 2422 * Trigger a renegotiation of the capabilities when the number of 2423 * active clients changes from 1 to 2, since some of the capabilities 2424 * might have to be disabled. Also send a MAC_NOTE_LINK notification 2425 * to all the MAC clients whenever physical link is DOWN. 2426 */ 2427 if (mip->mi_nactiveclients == 2) { 2428 mac_capab_update((mac_handle_t)mip); 2429 mac_virtual_link_update(mip); 2430 } 2431 /* 2432 * Now that the setup is complete, clear the INCIPIENT flag. 2433 * The flag was set to avoid incoming packets seeing inconsistent 2434 * structures while the setup was in progress. Clear the mci_tx_flag 2435 * by calling mac_tx_client_block. It is possible that 2436 * mac_unicast_remove was called prior to this mac_unicast_add which 2437 * could have set the MCI_TX_QUIESCE flag. 2438 */ 2439 if (flent->fe_rx_ring_group != NULL) 2440 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 2441 FLOW_UNMARK(flent, FE_INCIPIENT); 2442 2443 /* 2444 * If this is an aggr port client, don't enable the flow's 2445 * datapath at this stage. Otherwise, bcast traffic could 2446 * arrive while the aggr port is in the process of 2447 * initializing. Instead, the flow's datapath is started later 2448 * when mac_client_set_flow_cb() is called. 2449 */ 2450 if ((mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) 2451 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 2452 2453 mac_tx_client_unblock(mcip); 2454 return (0); 2455 bail: 2456 if (bcast_added) 2457 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 2458 2459 if (nactiveclients_added) 2460 mip->mi_nactiveclients--; 2461 2462 if (mac_started) 2463 mac_stop((mac_handle_t)mip); 2464 2465 return (err); 2466 } 2467 2468 /* 2469 * Return the passive primary MAC client, if present. The passive client is 2470 * a stand-by client that has the same unicast address as another that is 2471 * currenly active. Once the active client goes away, the passive client 2472 * becomes active. 2473 */ 2474 static mac_client_impl_t * 2475 mac_get_passive_primary_client(mac_impl_t *mip) 2476 { 2477 mac_client_impl_t *mcip; 2478 2479 for (mcip = mip->mi_clients_list; mcip != NULL; 2480 mcip = mcip->mci_client_next) { 2481 if (mac_is_primary_client(mcip) && 2482 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2483 return (mcip); 2484 } 2485 } 2486 return (NULL); 2487 } 2488 2489 /* 2490 * Add a new unicast address to the MAC client. 2491 * 2492 * The MAC address can be specified either by value, or the MAC client 2493 * can specify that it wants to use the primary MAC address of the 2494 * underlying MAC. See the introductory comments at the beginning 2495 * of this file for more more information on primary MAC addresses. 2496 * 2497 * Note also the tuple (MAC address, VID) must be unique 2498 * for the MAC clients defined on top of the same underlying MAC 2499 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 2500 * 2501 * In no case can a client use the PVID for the MAC, if the MAC has one set. 2502 */ 2503 int 2504 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2505 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2506 { 2507 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2508 mac_impl_t *mip = mcip->mci_mip; 2509 int err; 2510 uint_t mac_len = mip->mi_type->mt_addr_length; 2511 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 2512 boolean_t fastpath_disabled = B_FALSE; 2513 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 2514 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 2515 mac_resource_props_t *mrp; 2516 boolean_t passive_client = B_FALSE; 2517 mac_unicast_impl_t *muip; 2518 boolean_t is_vnic_primary = 2519 (flags & MAC_UNICAST_VNIC_PRIMARY); 2520 2521 /* 2522 * When the VID is non-zero the underlying MAC cannot be a 2523 * VNIC. I.e., dladm create-vlan cannot take a VNIC as 2524 * argument, only the primary MAC client. 2525 */ 2526 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != VLAN_ID_NONE))); 2527 2528 *diag = MAC_DIAG_NONE; 2529 2530 /* 2531 * Can't unicast add if the client asked only for minimal datapath 2532 * setup. 2533 */ 2534 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) 2535 return (ENOTSUP); 2536 2537 /* 2538 * Check for an attempted use of the current Port VLAN ID, if enabled. 2539 * No client may use it. 2540 */ 2541 if (mip->mi_pvid != VLAN_ID_NONE && vid == mip->mi_pvid) 2542 return (EBUSY); 2543 2544 /* 2545 * Check whether it's the primary client and flag it. 2546 */ 2547 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2548 vid == VLAN_ID_NONE) 2549 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 2550 2551 /* 2552 * is_vnic_primary is true when we come here as a VLAN VNIC 2553 * which uses the primary MAC client's address but with a non-zero 2554 * VID. In this case the MAC address is not specified by an upper 2555 * MAC client. 2556 */ 2557 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2558 !is_vnic_primary) { 2559 /* 2560 * The address is being set by the upper MAC client 2561 * of a VNIC. The MAC address was already set by the 2562 * VNIC driver during VNIC creation. 2563 * 2564 * Note: a VNIC has only one MAC address. We return 2565 * the MAC unicast address handle of the lower MAC client 2566 * corresponding to the VNIC. We allocate a new entry 2567 * which is flagged appropriately, so that mac_unicast_remove() 2568 * doesn't attempt to free the original entry that 2569 * was allocated by the VNIC driver. 2570 */ 2571 ASSERT(mcip->mci_unicast != NULL); 2572 2573 /* Check for VLAN flags, if present */ 2574 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2575 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2576 2577 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2578 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2579 2580 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2581 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2582 2583 /* 2584 * Ensure that the primary unicast address of the VNIC 2585 * is added only once unless we have the 2586 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not 2587 * a passive MAC client). 2588 */ 2589 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) { 2590 if ((mcip->mci_flags & 2591 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2592 (mcip->mci_flags & 2593 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2594 return (EBUSY); 2595 } 2596 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2597 passive_client = B_TRUE; 2598 } 2599 2600 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2601 2602 /* 2603 * Create a handle for vid 0. 2604 */ 2605 ASSERT(vid == VLAN_ID_NONE); 2606 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2607 muip->mui_vid = vid; 2608 *mah = (mac_unicast_handle_t)muip; 2609 /* 2610 * This will be used by the caller to defer setting the 2611 * rx functions. 2612 */ 2613 if (passive_client) 2614 return (EAGAIN); 2615 return (0); 2616 } 2617 2618 /* primary MAC clients cannot be opened on top of anchor VNICs */ 2619 if ((is_vnic_primary || is_primary) && 2620 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 2621 return (ENXIO); 2622 } 2623 2624 /* 2625 * If this is a VNIC/VLAN, disable softmac fast-path. This is 2626 * only relevant to legacy devices which use softmac to 2627 * interface with GLDv3. 2628 */ 2629 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2630 err = mac_fastpath_disable((mac_handle_t)mip); 2631 if (err != 0) 2632 return (err); 2633 fastpath_disabled = B_TRUE; 2634 } 2635 2636 /* 2637 * Return EBUSY if: 2638 * - there is an exclusively active mac client exists. 2639 * - this is an exclusive active mac client but 2640 * a. there is already active mac clients exist, or 2641 * b. fastpath streams are already plumbed on this legacy device 2642 * - the mac creator has disallowed active mac clients. 2643 */ 2644 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) { 2645 if (fastpath_disabled) 2646 mac_fastpath_enable((mac_handle_t)mip); 2647 return (EBUSY); 2648 } 2649 2650 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2651 ASSERT(!fastpath_disabled); 2652 if (mip->mi_nactiveclients != 0) 2653 return (EBUSY); 2654 2655 if ((mip->mi_state_flags & MIS_LEGACY) && 2656 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) { 2657 return (EBUSY); 2658 } 2659 mip->mi_state_flags |= MIS_EXCLUSIVE; 2660 } 2661 2662 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 2663 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 2664 MCIS_IS_AGGR_PORT))) { 2665 /* 2666 * Apply the property cached in the mac_impl_t to the primary 2667 * mac client. If the mac client is a VNIC or an aggregation 2668 * port, its property should be set in the mcip when the 2669 * VNIC/aggr was created. 2670 */ 2671 mac_get_resources((mac_handle_t)mip, mrp); 2672 (void) mac_client_set_resources(mch, mrp); 2673 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2674 /* 2675 * This is a VLAN client sharing the address of the 2676 * primary MAC client; i.e., one created via dladm 2677 * create-vlan. We don't support specifying ring 2678 * properties for this type of client as it inherits 2679 * these from the primary MAC client. 2680 */ 2681 if (is_vnic_primary) { 2682 mac_resource_props_t *vmrp; 2683 2684 vmrp = MCIP_RESOURCE_PROPS(mcip); 2685 if (vmrp->mrp_mask & MRP_RX_RINGS || 2686 vmrp->mrp_mask & MRP_TX_RINGS) { 2687 if (fastpath_disabled) 2688 mac_fastpath_enable((mac_handle_t)mip); 2689 kmem_free(mrp, sizeof (*mrp)); 2690 return (ENOTSUP); 2691 } 2692 /* 2693 * Additionally we also need to inherit any 2694 * rings property from the MAC. 2695 */ 2696 mac_get_resources((mac_handle_t)mip, mrp); 2697 if (mrp->mrp_mask & MRP_RX_RINGS) { 2698 vmrp->mrp_mask |= MRP_RX_RINGS; 2699 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 2700 } 2701 if (mrp->mrp_mask & MRP_TX_RINGS) { 2702 vmrp->mrp_mask |= MRP_TX_RINGS; 2703 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 2704 } 2705 } 2706 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp)); 2707 } 2708 2709 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2710 muip->mui_vid = vid; 2711 2712 if (is_primary || is_vnic_primary) { 2713 mac_addr = mip->mi_addr; 2714 } else { 2715 2716 /* 2717 * Verify the validity of the specified MAC addresses value. 2718 */ 2719 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 2720 *diag = MAC_DIAG_MACADDR_INVALID; 2721 err = EINVAL; 2722 goto bail_out; 2723 } 2724 2725 /* 2726 * Make sure that the specified MAC address is different 2727 * than the unicast MAC address of the underlying NIC. 2728 */ 2729 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 2730 *diag = MAC_DIAG_MACADDR_NIC; 2731 err = EINVAL; 2732 goto bail_out; 2733 } 2734 } 2735 2736 /* 2737 * Set the flags here so that if this is a passive client, we 2738 * can return and set it when we call mac_client_datapath_setup 2739 * when this becomes the active client. If we defer to using these 2740 * flags to mac_client_datapath_setup, then for a passive client, 2741 * we'd have to store the flags somewhere (probably fe_flags) 2742 * and then use it. 2743 */ 2744 if (!MCIP_DATAPATH_SETUP(mcip)) { 2745 if (is_unicast_hw) { 2746 /* 2747 * The client requires a hardware MAC address slot 2748 * for that unicast address. Since we support only 2749 * one unicast MAC address per client, flag the 2750 * MAC client itself. 2751 */ 2752 mcip->mci_state_flags |= MCIS_UNICAST_HW; 2753 } 2754 2755 /* Check for VLAN flags, if present */ 2756 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2757 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2758 2759 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2760 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2761 2762 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2763 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2764 } else { 2765 /* 2766 * Assert that the specified flags are consistent with the 2767 * flags specified by previous calls to mac_unicast_add(). 2768 */ 2769 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 && 2770 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) || 2771 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 && 2772 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0)); 2773 2774 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 && 2775 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) || 2776 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 && 2777 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0)); 2778 2779 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 && 2780 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) || 2781 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 && 2782 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0)); 2783 2784 /* 2785 * Make sure the client is consistent about its requests 2786 * for MAC addresses. I.e. all requests from the clients 2787 * must have the MAC_UNICAST_HW flag set or clear. 2788 */ 2789 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 2790 !is_unicast_hw) || 2791 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 2792 is_unicast_hw)) { 2793 err = EINVAL; 2794 goto bail_out; 2795 } 2796 } 2797 /* 2798 * Make sure the MAC address is not already used by 2799 * another MAC client defined on top of the same 2800 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY 2801 * set when we allow a passive client to be present which will 2802 * be activated when the currently active client goes away - this 2803 * works only with primary addresses. 2804 */ 2805 if ((check_dups || is_primary || is_vnic_primary) && 2806 mac_addr_in_use(mip, mac_addr, vid)) { 2807 /* 2808 * Must have set the multiple primary address flag when 2809 * we did a mac_client_open AND this should be a primary 2810 * MAC client AND there should not already be a passive 2811 * primary. If all is true then we let this succeed 2812 * even if the address is a dup. 2813 */ 2814 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2815 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 || 2816 mac_get_passive_primary_client(mip) != NULL) { 2817 *diag = MAC_DIAG_MACADDR_INUSE; 2818 err = EEXIST; 2819 goto bail_out; 2820 } 2821 ASSERT((mcip->mci_flags & 2822 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0); 2823 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2824 kmem_free(mrp, sizeof (*mrp)); 2825 2826 /* 2827 * Stash the unicast address handle, we will use it when 2828 * we set up the passive client. 2829 */ 2830 mcip->mci_p_unicast_list = muip; 2831 *mah = (mac_unicast_handle_t)muip; 2832 return (0); 2833 } 2834 2835 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp, 2836 is_primary || is_vnic_primary, muip); 2837 if (err != 0) 2838 goto bail_out; 2839 2840 kmem_free(mrp, sizeof (*mrp)); 2841 *mah = (mac_unicast_handle_t)muip; 2842 return (0); 2843 2844 bail_out: 2845 if (fastpath_disabled) 2846 mac_fastpath_enable((mac_handle_t)mip); 2847 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2848 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2849 if (mip->mi_state_flags & MIS_LEGACY) { 2850 mip->mi_capab_legacy.ml_active_clear( 2851 mip->mi_driver); 2852 } 2853 } 2854 kmem_free(mrp, sizeof (*mrp)); 2855 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2856 return (err); 2857 } 2858 2859 /* 2860 * Wrapper function to mac_unicast_add when we want to have the same mac 2861 * client open for two instances, one that is currently active and another 2862 * that will become active when the current one is removed. In this case 2863 * mac_unicast_add will return EGAIN and we will save the rx function and 2864 * arg which will be used when we activate the passive client in 2865 * mac_unicast_remove. 2866 */ 2867 int 2868 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr, 2869 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag, 2870 mac_rx_t rx_fn, void *arg) 2871 { 2872 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2873 uint_t err; 2874 2875 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2876 if (err != 0 && err != EAGAIN) 2877 return (err); 2878 if (err == EAGAIN) { 2879 if (rx_fn != NULL) { 2880 mcip->mci_rx_p_fn = rx_fn; 2881 mcip->mci_rx_p_arg = arg; 2882 } 2883 return (0); 2884 } 2885 if (rx_fn != NULL) 2886 mac_rx_set(mch, rx_fn, arg); 2887 return (err); 2888 } 2889 2890 int 2891 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2892 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2893 { 2894 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 2895 uint_t err; 2896 2897 i_mac_perim_enter(mip); 2898 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2899 i_mac_perim_exit(mip); 2900 2901 return (err); 2902 } 2903 2904 static void 2905 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip, 2906 flow_entry_t *flent) 2907 { 2908 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2909 mac_impl_t *mip = mcip->mci_mip; 2910 boolean_t no_unicast; 2911 2912 /* 2913 * If we have not added a unicast address for this MAC client, just 2914 * teardown the datapath. 2915 */ 2916 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2917 2918 if (!no_unicast) { 2919 /* 2920 * We would have initialized subflows etc. only if we brought 2921 * up the primary client and set the unicast unicast address 2922 * etc. Deactivate the flows. The flow entry will be removed 2923 * from the active flow tables, and the associated SRS, 2924 * softrings etc will be deleted. But the flow entry itself 2925 * won't be destroyed, instead it will continue to be archived 2926 * off the the global flow hash list, for a possible future 2927 * activation when say IP is plumbed again. 2928 */ 2929 mac_link_release_flows(mch); 2930 } 2931 mip->mi_nactiveclients--; 2932 mac_update_single_active_client(mip); 2933 2934 /* Tear down the data path */ 2935 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2936 2937 /* 2938 * Prevent any future access to the flow entry through the mci_flent 2939 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2940 * mac_bcast_send is also under mi_rw_lock. 2941 */ 2942 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2943 flent = mcip->mci_flent; 2944 mac_client_remove_flow_from_list(mcip, flent); 2945 2946 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2947 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2948 2949 /* 2950 * This is the last unicast address being removed and there shouldn't 2951 * be any outbound data threads at this point coming down from mac 2952 * clients. We have waited for the data threads to finish before 2953 * starting dld_str_detach. Non-data threads must access TX SRS 2954 * under mi_rw_lock. 2955 */ 2956 rw_exit(&mip->mi_rw_lock); 2957 2958 /* 2959 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2960 * contain other flags, such as FE_CONDEMNED, which we need to 2961 * cleared. We don't call mac_flow_cleanup() for this unicast 2962 * flow as we have a already cleaned up SRSs etc. (via the teadown 2963 * path). We just clear the stats and reset the initial callback 2964 * function, the rest will be set when we call mac_flow_create, 2965 * if at all. 2966 */ 2967 mutex_enter(&flent->fe_lock); 2968 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2969 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2970 flent->fe_flags = FE_MC_NO_DATAPATH; 2971 flow_stat_destroy(flent); 2972 mac_misc_stat_delete(flent); 2973 2974 /* Initialize the receiver function to a safe routine */ 2975 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2976 flent->fe_cb_arg1 = NULL; 2977 flent->fe_cb_arg2 = NULL; 2978 2979 flent->fe_index = -1; 2980 mutex_exit(&flent->fe_lock); 2981 2982 if (mip->mi_type->mt_brdcst_addr != NULL) { 2983 ASSERT(muip != NULL || no_unicast); 2984 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2985 muip != NULL ? muip->mui_vid : VLAN_ID_NONE); 2986 } 2987 2988 if (mip->mi_nactiveclients == 1) { 2989 mac_capab_update((mac_handle_t)mip); 2990 mac_virtual_link_update(mip); 2991 } 2992 2993 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2994 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2995 2996 if (mip->mi_state_flags & MIS_LEGACY) 2997 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2998 } 2999 3000 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 3001 3002 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3003 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3004 3005 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3006 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3007 3008 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3009 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3010 3011 if (muip != NULL) 3012 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3013 mac_protect_cancel_timer(mcip); 3014 mac_protect_flush_dynamic(mcip); 3015 3016 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat)); 3017 /* 3018 * Disable fastpath if this is a VNIC or a VLAN. 3019 */ 3020 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3021 mac_fastpath_enable((mac_handle_t)mip); 3022 mac_stop((mac_handle_t)mip); 3023 } 3024 3025 /* 3026 * Remove a MAC address which was previously added by mac_unicast_add(). 3027 */ 3028 int 3029 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 3030 { 3031 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3032 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 3033 mac_unicast_impl_t *pre; 3034 mac_impl_t *mip = mcip->mci_mip; 3035 flow_entry_t *flent; 3036 uint16_t mui_vid; 3037 3038 i_mac_perim_enter(mip); 3039 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 3040 /* 3041 * Call made by the upper MAC client of a VNIC. 3042 * There's nothing much to do, the unicast address will 3043 * be removed by the VNIC driver when the VNIC is deleted, 3044 * but let's ensure that all our transmit is done before 3045 * the client does a mac_client_stop lest it trigger an 3046 * assert in the driver. 3047 */ 3048 ASSERT(muip->mui_vid == VLAN_ID_NONE); 3049 3050 mac_tx_client_flush(mcip); 3051 3052 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3053 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3054 if (mcip->mci_rx_p_fn != NULL) { 3055 mac_rx_set(mch, mcip->mci_rx_p_fn, 3056 mcip->mci_rx_p_arg); 3057 mcip->mci_rx_p_fn = NULL; 3058 mcip->mci_rx_p_arg = NULL; 3059 } 3060 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3061 i_mac_perim_exit(mip); 3062 return (0); 3063 } 3064 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 3065 3066 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3067 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3068 3069 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3070 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3071 3072 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3073 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3074 3075 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3076 i_mac_perim_exit(mip); 3077 return (0); 3078 } 3079 3080 ASSERT(muip != NULL); 3081 3082 /* 3083 * We are removing a passive client, we haven't setup the datapath 3084 * for this yet, so nothing much to do. 3085 */ 3086 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3087 3088 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0); 3089 ASSERT(mcip->mci_p_unicast_list == muip); 3090 3091 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3092 3093 mcip->mci_p_unicast_list = NULL; 3094 mcip->mci_rx_p_fn = NULL; 3095 mcip->mci_rx_p_arg = NULL; 3096 3097 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 3098 3099 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3100 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3101 3102 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3103 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3104 3105 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3106 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3107 3108 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3109 i_mac_perim_exit(mip); 3110 return (0); 3111 } 3112 3113 /* 3114 * Remove the VID from the list of client's VIDs. 3115 */ 3116 pre = mcip->mci_unicast_list; 3117 if (muip == pre) { 3118 mcip->mci_unicast_list = muip->mui_next; 3119 } else { 3120 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 3121 pre = pre->mui_next; 3122 ASSERT(pre->mui_next == muip); 3123 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3124 pre->mui_next = muip->mui_next; 3125 rw_exit(&mcip->mci_rw_lock); 3126 } 3127 3128 if (!mac_client_single_rcvr(mcip)) { 3129 /* 3130 * This MAC client is shared by more than one unicast 3131 * addresses, so we will just remove the flent 3132 * corresponding to the address being removed. We don't invoke 3133 * mac_rx_classify_flow_rem() since the additional flow is 3134 * not associated with its own separate set of SRS and rings, 3135 * and these constructs are still needed for the remaining 3136 * flows. 3137 */ 3138 flent = mac_client_get_flow(mcip, muip); 3139 VERIFY3P(flent, !=, NULL); 3140 3141 /* 3142 * The first one is disappearing, need to make sure 3143 * we replace it with another from the list of 3144 * shared clients. 3145 */ 3146 if (flent == mcip->mci_flent) 3147 flent = mac_client_swap_mciflent(mcip); 3148 mac_client_remove_flow_from_list(mcip, flent); 3149 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 3150 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 3151 3152 /* 3153 * The multicast groups that were added by the client so 3154 * far must be removed from the brodcast domain corresponding 3155 * to the VID being removed. 3156 */ 3157 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 3158 (void *)flent, B_FALSE); 3159 3160 if (mip->mi_type->mt_brdcst_addr != NULL) { 3161 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 3162 muip->mui_vid); 3163 } 3164 3165 FLOW_FINAL_REFRELE(flent); 3166 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE)); 3167 3168 /* 3169 * Enable fastpath if this is a VNIC or a VLAN. 3170 */ 3171 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3172 mac_fastpath_enable((mac_handle_t)mip); 3173 mac_stop((mac_handle_t)mip); 3174 i_mac_perim_exit(mip); 3175 return (0); 3176 } 3177 3178 mui_vid = muip->mui_vid; 3179 mac_client_datapath_teardown(mch, muip, flent); 3180 3181 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && 3182 mui_vid == VLAN_ID_NONE) { 3183 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 3184 } else { 3185 i_mac_perim_exit(mip); 3186 return (0); 3187 } 3188 3189 /* 3190 * If we are removing the primary, check if we have a passive primary 3191 * client that we need to activate now. 3192 */ 3193 mcip = mac_get_passive_primary_client(mip); 3194 if (mcip != NULL) { 3195 mac_resource_props_t *mrp; 3196 mac_unicast_impl_t *muip; 3197 3198 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3199 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3200 3201 /* 3202 * Apply the property cached in the mac_impl_t to the 3203 * primary mac client. 3204 */ 3205 mac_get_resources((mac_handle_t)mip, mrp); 3206 (void) mac_client_set_resources(mch, mrp); 3207 ASSERT(mcip->mci_p_unicast_list != NULL); 3208 muip = mcip->mci_p_unicast_list; 3209 mcip->mci_p_unicast_list = NULL; 3210 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE, 3211 mip->mi_addr, mrp, B_TRUE, muip) == 0) { 3212 if (mcip->mci_rx_p_fn != NULL) { 3213 mac_rx_set(mch, mcip->mci_rx_p_fn, 3214 mcip->mci_rx_p_arg); 3215 mcip->mci_rx_p_fn = NULL; 3216 mcip->mci_rx_p_arg = NULL; 3217 } 3218 } else { 3219 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3220 } 3221 kmem_free(mrp, sizeof (*mrp)); 3222 } 3223 i_mac_perim_exit(mip); 3224 return (0); 3225 } 3226 3227 /* 3228 * Multicast add function invoked by MAC clients. 3229 */ 3230 int 3231 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 3232 { 3233 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3234 mac_impl_t *mip = mcip->mci_mip; 3235 flow_entry_t *flent = mcip->mci_flent_list; 3236 flow_entry_t *prev_fe = NULL; 3237 uint16_t vid; 3238 int err = 0; 3239 3240 /* Verify the address is a valid multicast address */ 3241 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 3242 mip->mi_pdata)) != 0) 3243 return (err); 3244 3245 i_mac_perim_enter(mip); 3246 while (flent != NULL) { 3247 vid = i_mac_flow_vid(flent); 3248 3249 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 3250 MAC_ADDRTYPE_MULTICAST); 3251 if (err != 0) 3252 break; 3253 prev_fe = flent; 3254 flent = flent->fe_client_next; 3255 } 3256 3257 /* 3258 * If we failed adding, then undo all, rather than partial 3259 * success. 3260 */ 3261 if (flent != NULL && prev_fe != NULL) { 3262 flent = mcip->mci_flent_list; 3263 while (flent != prev_fe->fe_client_next) { 3264 vid = i_mac_flow_vid(flent); 3265 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3266 flent = flent->fe_client_next; 3267 } 3268 } 3269 i_mac_perim_exit(mip); 3270 return (err); 3271 } 3272 3273 /* 3274 * Multicast delete function invoked by MAC clients. 3275 */ 3276 void 3277 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 3278 { 3279 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3280 mac_impl_t *mip = mcip->mci_mip; 3281 flow_entry_t *flent; 3282 uint16_t vid; 3283 3284 i_mac_perim_enter(mip); 3285 for (flent = mcip->mci_flent_list; flent != NULL; 3286 flent = flent->fe_client_next) { 3287 vid = i_mac_flow_vid(flent); 3288 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3289 } 3290 i_mac_perim_exit(mip); 3291 } 3292 3293 /* 3294 * When a MAC client desires to capture packets on an interface, 3295 * it registers a promiscuous call back with mac_promisc_add(). 3296 * There are three types of promiscuous callbacks: 3297 * 3298 * * MAC_CLIENT_PROMISC_ALL 3299 * Captures all packets sent and received by the MAC client, 3300 * the physical interface, as well as all other MAC clients 3301 * defined on top of the same MAC. 3302 * 3303 * * MAC_CLIENT_PROMISC_FILTERED 3304 * Captures all packets sent and received by the MAC client, 3305 * plus all multicast traffic sent and received by the phyisical 3306 * interface and the other MAC clients. 3307 * 3308 * * MAC_CLIENT_PROMISC_MULTI 3309 * Captures all broadcast and multicast packets sent and 3310 * received by the MAC clients as well as the physical interface. 3311 * 3312 * In all cases, the underlying MAC is put in promiscuous mode. 3313 */ 3314 int 3315 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 3316 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 3317 { 3318 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3319 mac_impl_t *mip = mcip->mci_mip; 3320 mac_promisc_impl_t *mpip; 3321 mac_cb_info_t *mcbi; 3322 int rc; 3323 3324 i_mac_perim_enter(mip); 3325 3326 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 3327 i_mac_perim_exit(mip); 3328 return (rc); 3329 } 3330 3331 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 3332 type == MAC_CLIENT_PROMISC_ALL && 3333 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) { 3334 /* 3335 * The function is being invoked by the upper MAC client 3336 * of a VNIC. The VNIC should only see the traffic 3337 * it is entitled to. 3338 */ 3339 type = MAC_CLIENT_PROMISC_FILTERED; 3340 } 3341 3342 3343 /* 3344 * Turn on promiscuous mode for the underlying NIC. 3345 * This is needed even for filtered callbacks which 3346 * expect to receive all multicast traffic on the wire. 3347 * 3348 * Physical promiscuous mode should not be turned on if 3349 * MAC_PROMISC_FLAGS_NO_PHYS is set. 3350 */ 3351 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 3352 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) { 3353 mac_stop((mac_handle_t)mip); 3354 i_mac_perim_exit(mip); 3355 return (rc); 3356 } 3357 } 3358 3359 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 3360 3361 mpip->mpi_type = type; 3362 mpip->mpi_fn = fn; 3363 mpip->mpi_arg = arg; 3364 mpip->mpi_mcip = mcip; 3365 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 3366 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 3367 mpip->mpi_strip_vlan_tag = 3368 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 3369 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0); 3370 3371 mcbi = &mip->mi_promisc_cb_info; 3372 mutex_enter(mcbi->mcbi_lockp); 3373 3374 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 3375 &mpip->mpi_mci_link); 3376 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 3377 &mpip->mpi_mi_link); 3378 3379 mutex_exit(mcbi->mcbi_lockp); 3380 3381 *mphp = (mac_promisc_handle_t)mpip; 3382 3383 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3384 mac_impl_t *umip = mcip->mci_upper_mip; 3385 3386 ASSERT(umip != NULL); 3387 mac_vnic_secondary_update(umip); 3388 } 3389 3390 i_mac_perim_exit(mip); 3391 3392 return (0); 3393 } 3394 3395 /* 3396 * Remove a multicast address previously aded through mac_promisc_add(). 3397 */ 3398 void 3399 mac_promisc_remove(mac_promisc_handle_t mph) 3400 { 3401 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 3402 mac_client_impl_t *mcip = mpip->mpi_mcip; 3403 mac_impl_t *mip = mcip->mci_mip; 3404 mac_cb_info_t *mcbi; 3405 int rv; 3406 3407 i_mac_perim_enter(mip); 3408 3409 /* 3410 * Even if the device can't be reset into normal mode, we still 3411 * need to clear the client promisc callbacks. The client may want 3412 * to close the mac end point and we can't have stale callbacks. 3413 */ 3414 if (!(mpip->mpi_no_phys)) { 3415 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) { 3416 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous" 3417 " mode because of error 0x%x", mip->mi_name, rv); 3418 } 3419 } 3420 mcbi = &mip->mi_promisc_cb_info; 3421 mutex_enter(mcbi->mcbi_lockp); 3422 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 3423 &mpip->mpi_mi_link)) { 3424 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 3425 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 3426 kmem_cache_free(mac_promisc_impl_cache, mpip); 3427 } else { 3428 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 3429 } 3430 3431 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3432 mac_impl_t *umip = mcip->mci_upper_mip; 3433 3434 ASSERT(umip != NULL); 3435 mac_vnic_secondary_update(umip); 3436 } 3437 3438 mutex_exit(mcbi->mcbi_lockp); 3439 mac_stop((mac_handle_t)mip); 3440 3441 i_mac_perim_exit(mip); 3442 } 3443 3444 /* 3445 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 3446 * that a control operation wants to quiesce the Tx data flow in which case 3447 * we return an error. Holding any of the per cpu locks ensures that the 3448 * mci_tx_flag won't change. 3449 * 3450 * 'CPU' must be accessed just once and used to compute the index into the 3451 * percpu array, and that index must be used for the entire duration of the 3452 * packet send operation. Note that the thread may be preempted and run on 3453 * another cpu any time and so we can't use 'CPU' more than once for the 3454 * operation. 3455 */ 3456 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 3457 { \ 3458 (error) = 0; \ 3459 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 3460 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3461 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 3462 (mytx)->pcpu_tx_refcnt++; \ 3463 } else { \ 3464 (error) = -1; \ 3465 } \ 3466 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3467 } 3468 3469 /* 3470 * Release the reference. If needed, signal any control operation waiting 3471 * for Tx quiescence. The wait and signal are always done using the 3472 * mci_tx_pcpu[0]'s lock 3473 */ 3474 #define MAC_TX_RELE(mcip, mytx) { \ 3475 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3476 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 3477 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 3478 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3479 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3480 cv_signal(&(mcip)->mci_tx_cv); \ 3481 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3482 } else { \ 3483 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3484 } \ 3485 } 3486 3487 /* 3488 * Send function invoked by MAC clients. 3489 */ 3490 mac_tx_cookie_t 3491 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 3492 uint16_t flag, mblk_t **ret_mp) 3493 { 3494 mac_tx_cookie_t cookie = 0; 3495 int error; 3496 mac_tx_percpu_t *mytx; 3497 mac_soft_ring_set_t *srs; 3498 flow_entry_t *flent; 3499 boolean_t is_subflow = B_FALSE; 3500 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3501 mac_impl_t *mip = mcip->mci_mip; 3502 mac_srs_tx_t *srs_tx; 3503 3504 /* 3505 * Check whether the active Tx threads count is bumped already. 3506 */ 3507 if (!(flag & MAC_TX_NO_HOLD)) { 3508 MAC_TX_TRY_HOLD(mcip, mytx, error); 3509 if (error != 0) { 3510 freemsgchain(mp_chain); 3511 return (0); 3512 } 3513 } 3514 3515 /* 3516 * If mac protection is enabled, only the permissible packets will be 3517 * returned by mac_protect_check(). 3518 */ 3519 if ((mcip->mci_flent-> 3520 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 && 3521 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL) 3522 goto done; 3523 3524 if (mcip->mci_subflow_tab != NULL && 3525 mcip->mci_subflow_tab->ft_flow_count > 0 && 3526 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 3527 FLOW_OUTBOUND, &flent) == 0) { 3528 /* 3529 * The main assumption here is that if in the event 3530 * we get a chain, all the packets will be classified 3531 * to the same Flow/SRS. If this changes for any 3532 * reason, the following logic should change as well. 3533 * I suppose the fanout_hint also assumes this . 3534 */ 3535 ASSERT(flent != NULL); 3536 is_subflow = B_TRUE; 3537 } else { 3538 flent = mcip->mci_flent; 3539 } 3540 3541 srs = flent->fe_tx_srs; 3542 /* 3543 * This is to avoid panics with PF_PACKET that can call mac_tx() 3544 * against an interface that is not capable of sending. A rewrite 3545 * of the mac datapath is required to remove this limitation. 3546 */ 3547 if (srs == NULL) { 3548 freemsgchain(mp_chain); 3549 goto done; 3550 } 3551 3552 srs_tx = &srs->srs_tx; 3553 if (srs_tx->st_mode == SRS_TX_DEFAULT && 3554 (srs->srs_state & SRS_ENQUEUED) == 0 && 3555 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) { 3556 uint64_t obytes; 3557 3558 /* 3559 * Since dls always opens the underlying MAC, nclients equals 3560 * to 1 means that the only active client is dls itself acting 3561 * as a primary client of the MAC instance. Since dls will not 3562 * send tagged packets in that case, and dls is trusted to send 3563 * packets for its allowed VLAN(s), the VLAN tag insertion and 3564 * check is required only if nclients is greater than 1. 3565 */ 3566 if (mip->mi_nclients > 1) { 3567 if (MAC_VID_CHECK_NEEDED(mcip)) { 3568 int err = 0; 3569 3570 MAC_VID_CHECK(mcip, mp_chain, err); 3571 if (err != 0) { 3572 freemsg(mp_chain); 3573 mcip->mci_misc_stat.mms_txerrors++; 3574 goto done; 3575 } 3576 } 3577 if (MAC_TAG_NEEDED(mcip)) { 3578 mp_chain = mac_add_vlan_tag(mp_chain, 0, 3579 mac_client_vid(mch)); 3580 if (mp_chain == NULL) { 3581 mcip->mci_misc_stat.mms_txerrors++; 3582 goto done; 3583 } 3584 } 3585 } 3586 3587 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 3588 msgdsize(mp_chain)); 3589 3590 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 3591 if (mp_chain == NULL) { 3592 cookie = 0; 3593 SRS_TX_STAT_UPDATE(srs, opackets, 1); 3594 SRS_TX_STAT_UPDATE(srs, obytes, obytes); 3595 } else { 3596 mutex_enter(&srs->srs_lock); 3597 cookie = mac_tx_srs_no_desc(srs, mp_chain, 3598 flag, ret_mp); 3599 mutex_exit(&srs->srs_lock); 3600 } 3601 } else { 3602 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 3603 } 3604 3605 done: 3606 if (is_subflow) 3607 FLOW_REFRELE(flent); 3608 3609 if (!(flag & MAC_TX_NO_HOLD)) 3610 MAC_TX_RELE(mcip, mytx); 3611 3612 return (cookie); 3613 } 3614 3615 /* 3616 * mac_tx_is_blocked 3617 * 3618 * Given a cookie, it returns if the ring identified by the cookie is 3619 * flow-controlled or not. If NULL is passed in place of a cookie, 3620 * then it finds out if any of the underlying rings belonging to the 3621 * SRS is flow controlled or not and returns that status. 3622 */ 3623 /* ARGSUSED */ 3624 boolean_t 3625 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 3626 { 3627 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3628 mac_soft_ring_set_t *mac_srs; 3629 mac_soft_ring_t *sringp; 3630 boolean_t blocked = B_FALSE; 3631 mac_tx_percpu_t *mytx; 3632 int err; 3633 int i; 3634 3635 /* 3636 * Bump the reference count so that mac_srs won't be deleted. 3637 * If the client is currently quiesced and we failed to bump 3638 * the reference, return B_TRUE so that flow control stays 3639 * as enabled. 3640 * 3641 * Flow control will then be disabled once the client is no 3642 * longer quiesced. 3643 */ 3644 MAC_TX_TRY_HOLD(mcip, mytx, err); 3645 if (err != 0) 3646 return (B_TRUE); 3647 3648 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 3649 MAC_TX_RELE(mcip, mytx); 3650 return (B_FALSE); 3651 } 3652 3653 mutex_enter(&mac_srs->srs_lock); 3654 /* 3655 * Only in the case of TX_FANOUT and TX_AGGR, the underlying 3656 * softring (s_ring_state) will have the HIWAT set. This is 3657 * the multiple Tx ring flow control case. For all other 3658 * case, SRS (srs_state) will store the condition. 3659 */ 3660 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3661 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) { 3662 if (cookie != 0) { 3663 sringp = (mac_soft_ring_t *)cookie; 3664 mutex_enter(&sringp->s_ring_lock); 3665 if (sringp->s_ring_state & S_RING_TX_HIWAT) 3666 blocked = B_TRUE; 3667 mutex_exit(&sringp->s_ring_lock); 3668 } else { 3669 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) { 3670 sringp = mac_srs->srs_tx_soft_rings[i]; 3671 mutex_enter(&sringp->s_ring_lock); 3672 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 3673 blocked = B_TRUE; 3674 mutex_exit(&sringp->s_ring_lock); 3675 break; 3676 } 3677 mutex_exit(&sringp->s_ring_lock); 3678 } 3679 } 3680 } else { 3681 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 3682 } 3683 mutex_exit(&mac_srs->srs_lock); 3684 MAC_TX_RELE(mcip, mytx); 3685 return (blocked); 3686 } 3687 3688 /* 3689 * Check if the MAC client is the primary MAC client. 3690 */ 3691 boolean_t 3692 mac_is_primary_client(mac_client_impl_t *mcip) 3693 { 3694 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 3695 } 3696 3697 void 3698 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 3699 { 3700 mac_impl_t *mip = (mac_impl_t *)mh; 3701 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 3702 3703 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 3704 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 3705 /* 3706 * If ndd props were registered, call them. 3707 * Note that ndd ioctls are Obsolete 3708 */ 3709 mac_ndd_ioctl(mip, wq, bp); 3710 return; 3711 } 3712 3713 /* 3714 * Call the driver to handle the ioctl. The driver may not support 3715 * any ioctls, in which case we reply with a NAK on its behalf. 3716 */ 3717 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 3718 mip->mi_ioctl(mip->mi_driver, wq, bp); 3719 else 3720 miocnak(wq, bp, 0, EINVAL); 3721 } 3722 3723 /* 3724 * Return the link state of the specified MAC instance. 3725 */ 3726 link_state_t 3727 mac_link_get(mac_handle_t mh) 3728 { 3729 return (((mac_impl_t *)mh)->mi_linkstate); 3730 } 3731 3732 /* 3733 * Add a mac client specified notification callback. Please see the comments 3734 * above mac_callback_add() for general information about mac callback 3735 * addition/deletion in the presence of mac callback list walkers 3736 */ 3737 mac_notify_handle_t 3738 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 3739 { 3740 mac_impl_t *mip = (mac_impl_t *)mh; 3741 mac_notify_cb_t *mncb; 3742 mac_cb_info_t *mcbi; 3743 3744 /* 3745 * Allocate a notify callback structure, fill in the details and 3746 * use the mac callback list manipulation functions to chain into 3747 * the list of callbacks. 3748 */ 3749 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 3750 mncb->mncb_fn = notify_fn; 3751 mncb->mncb_arg = arg; 3752 mncb->mncb_mip = mip; 3753 mncb->mncb_link.mcb_objp = mncb; 3754 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 3755 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 3756 3757 mcbi = &mip->mi_notify_cb_info; 3758 3759 i_mac_perim_enter(mip); 3760 mutex_enter(mcbi->mcbi_lockp); 3761 3762 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 3763 &mncb->mncb_link); 3764 3765 mutex_exit(mcbi->mcbi_lockp); 3766 i_mac_perim_exit(mip); 3767 return ((mac_notify_handle_t)mncb); 3768 } 3769 3770 void 3771 mac_notify_remove_wait(mac_handle_t mh) 3772 { 3773 mac_impl_t *mip = (mac_impl_t *)mh; 3774 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 3775 3776 mutex_enter(mcbi->mcbi_lockp); 3777 mac_callback_remove_wait(&mip->mi_notify_cb_info); 3778 mutex_exit(mcbi->mcbi_lockp); 3779 } 3780 3781 /* 3782 * Remove a mac client specified notification callback 3783 */ 3784 int 3785 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 3786 { 3787 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 3788 mac_impl_t *mip = mncb->mncb_mip; 3789 mac_cb_info_t *mcbi; 3790 int err = 0; 3791 3792 mcbi = &mip->mi_notify_cb_info; 3793 3794 i_mac_perim_enter(mip); 3795 mutex_enter(mcbi->mcbi_lockp); 3796 3797 ASSERT(mncb->mncb_link.mcb_objp == mncb); 3798 /* 3799 * If there aren't any list walkers, the remove would succeed 3800 * inline, else we wait for the deferred remove to complete 3801 */ 3802 if (mac_callback_remove(&mip->mi_notify_cb_info, 3803 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 3804 kmem_free(mncb, sizeof (mac_notify_cb_t)); 3805 } else { 3806 err = EBUSY; 3807 } 3808 3809 mutex_exit(mcbi->mcbi_lockp); 3810 i_mac_perim_exit(mip); 3811 3812 /* 3813 * If we failed to remove the notification callback and "wait" is set 3814 * to be B_TRUE, wait for the callback to finish after we exit the 3815 * mac perimeter. 3816 */ 3817 if (err != 0 && wait) { 3818 mac_notify_remove_wait((mac_handle_t)mip); 3819 return (0); 3820 } 3821 3822 return (err); 3823 } 3824 3825 /* 3826 * Associate resource management callbacks with the specified MAC 3827 * clients. 3828 */ 3829 3830 void 3831 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 3832 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 3833 mac_resource_restart_t restart, mac_resource_bind_t bind, 3834 void *arg) 3835 { 3836 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3837 3838 mcip->mci_resource_add = add; 3839 mcip->mci_resource_remove = remove; 3840 mcip->mci_resource_quiesce = quiesce; 3841 mcip->mci_resource_restart = restart; 3842 mcip->mci_resource_bind = bind; 3843 mcip->mci_resource_arg = arg; 3844 } 3845 3846 void 3847 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 3848 { 3849 /* update the 'resource_add' callback */ 3850 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 3851 } 3852 3853 /* 3854 * Sets up the client resources and enable the polling interface over all the 3855 * SRS's and the soft rings of the client 3856 */ 3857 void 3858 mac_client_poll_enable(mac_client_handle_t mch) 3859 { 3860 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3861 mac_soft_ring_set_t *mac_srs; 3862 flow_entry_t *flent; 3863 int i; 3864 3865 flent = mcip->mci_flent; 3866 ASSERT(flent != NULL); 3867 3868 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 3869 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3870 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3871 ASSERT(mac_srs->srs_mcip == mcip); 3872 mac_srs_client_poll_enable(mcip, mac_srs); 3873 } 3874 } 3875 3876 /* 3877 * Tears down the client resources and disable the polling interface over all 3878 * the SRS's and the soft rings of the client 3879 */ 3880 void 3881 mac_client_poll_disable(mac_client_handle_t mch) 3882 { 3883 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3884 mac_soft_ring_set_t *mac_srs; 3885 flow_entry_t *flent; 3886 int i; 3887 3888 flent = mcip->mci_flent; 3889 ASSERT(flent != NULL); 3890 3891 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 3892 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3893 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3894 ASSERT(mac_srs->srs_mcip == mcip); 3895 mac_srs_client_poll_disable(mcip, mac_srs); 3896 } 3897 } 3898 3899 /* 3900 * Associate the CPUs specified by the given property with a MAC client. 3901 */ 3902 int 3903 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 3904 { 3905 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3906 mac_impl_t *mip = mcip->mci_mip; 3907 int err = 0; 3908 3909 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3910 3911 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 3912 mcip->mci_upper_mip : mip, mrp)) != 0) { 3913 return (err); 3914 } 3915 if (MCIP_DATAPATH_SETUP(mcip)) 3916 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 3917 3918 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 3919 return (0); 3920 } 3921 3922 /* 3923 * Apply the specified properties to the specified MAC client. 3924 */ 3925 int 3926 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3927 { 3928 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3929 mac_impl_t *mip = mcip->mci_mip; 3930 int err = 0; 3931 3932 i_mac_perim_enter(mip); 3933 3934 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 3935 err = mac_resource_ctl_set(mch, mrp); 3936 if (err != 0) 3937 goto done; 3938 } 3939 3940 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) { 3941 err = mac_cpu_set(mch, mrp); 3942 if (err != 0) 3943 goto done; 3944 } 3945 3946 if (mrp->mrp_mask & MRP_PROTECT) { 3947 err = mac_protect_set(mch, mrp); 3948 if (err != 0) 3949 goto done; 3950 } 3951 3952 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS)) 3953 err = mac_resource_ctl_set(mch, mrp); 3954 3955 done: 3956 i_mac_perim_exit(mip); 3957 return (err); 3958 } 3959 3960 /* 3961 * Return the properties currently associated with the specified MAC client. 3962 */ 3963 void 3964 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3965 { 3966 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3967 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 3968 3969 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3970 } 3971 3972 /* 3973 * Return the effective properties currently associated with the specified 3974 * MAC client. 3975 */ 3976 void 3977 mac_client_get_effective_resources(mac_client_handle_t mch, 3978 mac_resource_props_t *mrp) 3979 { 3980 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3981 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip); 3982 3983 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3984 } 3985 3986 /* 3987 * Pass a copy of the specified packet to the promiscuous callbacks 3988 * of the specified MAC. 3989 * 3990 * If sender is NULL, the function is being invoked for a packet chain 3991 * received from the wire. If sender is non-NULL, it points to 3992 * the MAC client from which the packet is being sent. 3993 * 3994 * The packets are distributed to the promiscuous callbacks as follows: 3995 * 3996 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 3997 * - all broadcast and multicast packets are sent to the 3998 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 3999 * 4000 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 4001 * after classification by mac_rx_deliver(). 4002 */ 4003 4004 static void 4005 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 4006 boolean_t loopback) 4007 { 4008 mblk_t *mp_copy, *mp_next; 4009 4010 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) { 4011 mp_copy = copymsg(mp); 4012 if (mp_copy == NULL) 4013 return; 4014 4015 if (mpip->mpi_strip_vlan_tag) { 4016 mp_copy = mac_strip_vlan_tag_chain(mp_copy); 4017 if (mp_copy == NULL) 4018 return; 4019 } 4020 mp_next = NULL; 4021 } else { 4022 mp_copy = mp; 4023 mp_next = mp->b_next; 4024 } 4025 mp_copy->b_next = NULL; 4026 4027 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 4028 if (mp_copy == mp) 4029 mp->b_next = mp_next; 4030 } 4031 4032 /* 4033 * Return the VID of a packet. Zero if the packet is not tagged. 4034 */ 4035 static uint16_t 4036 mac_ether_vid(mblk_t *mp) 4037 { 4038 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 4039 4040 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 4041 struct ether_vlan_header *t_evhp = 4042 (struct ether_vlan_header *)mp->b_rptr; 4043 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 4044 } 4045 4046 return (0); 4047 } 4048 4049 /* 4050 * Return whether the specified packet contains a multicast or broadcast 4051 * destination MAC address. 4052 */ 4053 static boolean_t 4054 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 4055 { 4056 mac_header_info_t hdr_info; 4057 4058 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 4059 return (B_FALSE); 4060 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 4061 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 4062 } 4063 4064 /* 4065 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 4066 * "sender" points to the sender MAC client for outbound packets, and 4067 * is set to NULL for inbound packets. 4068 */ 4069 void 4070 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 4071 mac_client_impl_t *sender) 4072 { 4073 mac_promisc_impl_t *mpip; 4074 mac_cb_t *mcb; 4075 mblk_t *mp; 4076 boolean_t is_mcast, is_sender; 4077 4078 MAC_PROMISC_WALKER_INC(mip); 4079 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4080 is_mcast = mac_is_mcast(mip, mp); 4081 /* send packet to interested callbacks */ 4082 for (mcb = mip->mi_promisc_list; mcb != NULL; 4083 mcb = mcb->mcb_nextp) { 4084 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4085 is_sender = (mpip->mpi_mcip == sender); 4086 4087 if (is_sender && mpip->mpi_no_tx_loop) 4088 /* 4089 * The sender doesn't want to receive 4090 * copies of the packets it sends. 4091 */ 4092 continue; 4093 4094 /* this client doesn't need any packets (bridge) */ 4095 if (mpip->mpi_fn == NULL) 4096 continue; 4097 4098 /* 4099 * For an ethernet MAC, don't displatch a multicast 4100 * packet to a non-PROMISC_ALL callbacks unless the VID 4101 * of the packet matches the VID of the client. 4102 */ 4103 if (is_mcast && 4104 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 4105 !mac_client_check_flow_vid(mpip->mpi_mcip, 4106 mac_ether_vid(mp))) 4107 continue; 4108 4109 if (is_sender || 4110 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 4111 is_mcast) 4112 mac_promisc_dispatch_one(mpip, mp, is_sender); 4113 } 4114 } 4115 MAC_PROMISC_WALKER_DCR(mip); 4116 } 4117 4118 void 4119 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 4120 { 4121 mac_impl_t *mip = mcip->mci_mip; 4122 mac_promisc_impl_t *mpip; 4123 boolean_t is_mcast; 4124 mblk_t *mp; 4125 mac_cb_t *mcb; 4126 4127 /* 4128 * The unicast packets for the MAC client still 4129 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 4130 * promiscuous callbacks. The broadcast and multicast 4131 * packets were delivered from mac_rx(). 4132 */ 4133 MAC_PROMISC_WALKER_INC(mip); 4134 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4135 is_mcast = mac_is_mcast(mip, mp); 4136 for (mcb = mcip->mci_promisc_list; mcb != NULL; 4137 mcb = mcb->mcb_nextp) { 4138 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4139 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 4140 !is_mcast) { 4141 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 4142 } 4143 } 4144 } 4145 MAC_PROMISC_WALKER_DCR(mip); 4146 } 4147 4148 /* 4149 * Return the margin value currently assigned to the specified MAC instance. 4150 */ 4151 void 4152 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 4153 { 4154 mac_impl_t *mip = (mac_impl_t *)mh; 4155 4156 rw_enter(&(mip->mi_rw_lock), RW_READER); 4157 *marginp = mip->mi_margin; 4158 rw_exit(&(mip->mi_rw_lock)); 4159 } 4160 4161 /* 4162 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 4163 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 4164 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 4165 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 4166 * cannot disappear while we are accessing it. 4167 */ 4168 typedef struct i_mac_info_state_s { 4169 const char *mi_name; 4170 mac_info_t *mi_infop; 4171 } i_mac_info_state_t; 4172 4173 /*ARGSUSED*/ 4174 static uint_t 4175 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4176 { 4177 i_mac_info_state_t *statep = arg; 4178 mac_impl_t *mip = (mac_impl_t *)val; 4179 4180 if (mip->mi_state_flags & MIS_DISABLED) 4181 return (MH_WALK_CONTINUE); 4182 4183 if (strcmp(statep->mi_name, 4184 ddi_driver_name(mip->mi_dip)) != 0) 4185 return (MH_WALK_CONTINUE); 4186 4187 statep->mi_infop = &mip->mi_info; 4188 return (MH_WALK_TERMINATE); 4189 } 4190 4191 boolean_t 4192 mac_info_get(const char *name, mac_info_t *minfop) 4193 { 4194 i_mac_info_state_t state; 4195 4196 rw_enter(&i_mac_impl_lock, RW_READER); 4197 state.mi_name = name; 4198 state.mi_infop = NULL; 4199 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 4200 if (state.mi_infop == NULL) { 4201 rw_exit(&i_mac_impl_lock); 4202 return (B_FALSE); 4203 } 4204 *minfop = *state.mi_infop; 4205 rw_exit(&i_mac_impl_lock); 4206 return (B_TRUE); 4207 } 4208 4209 /* 4210 * To get the capabilities that MAC layer cares about, such as rings, factory 4211 * mac address, vnic or not, it should directly invoke this function. If the 4212 * link is part of a bridge, then the only "capability" it has is the inability 4213 * to do zero copy. 4214 */ 4215 boolean_t 4216 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4217 { 4218 mac_impl_t *mip = (mac_impl_t *)mh; 4219 4220 if (mip->mi_bridge_link != NULL) 4221 return (cap == MAC_CAPAB_NO_ZCOPY); 4222 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 4223 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 4224 else 4225 return (B_FALSE); 4226 } 4227 4228 /* 4229 * Capability query function. If number of active mac clients is greater than 4230 * 1, only limited capabilities can be advertised to the caller no matter the 4231 * driver has certain capability or not. Else, we query the driver to get the 4232 * capability. 4233 */ 4234 boolean_t 4235 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4236 { 4237 mac_impl_t *mip = (mac_impl_t *)mh; 4238 4239 /* 4240 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM, 4241 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised. 4242 */ 4243 if (mip->mi_nactiveclients > 1) { 4244 switch (cap) { 4245 case MAC_CAPAB_NO_ZCOPY: 4246 return (B_TRUE); 4247 case MAC_CAPAB_LEGACY: 4248 case MAC_CAPAB_HCKSUM: 4249 case MAC_CAPAB_NO_NATIVEVLAN: 4250 break; 4251 default: 4252 return (B_FALSE); 4253 } 4254 } 4255 4256 /* else get capab from driver */ 4257 return (i_mac_capab_get(mh, cap, cap_data)); 4258 } 4259 4260 boolean_t 4261 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 4262 { 4263 mac_impl_t *mip = (mac_impl_t *)mh; 4264 4265 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 4266 mip->mi_pdata)); 4267 } 4268 4269 mblk_t * 4270 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 4271 size_t extra_len) 4272 { 4273 mac_impl_t *mip = (mac_impl_t *)mh; 4274 const uint8_t *hdr_daddr; 4275 4276 /* 4277 * If the MAC is point-to-point with a fixed destination address, then 4278 * we must always use that destination in the MAC header. 4279 */ 4280 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr); 4281 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap, 4282 mip->mi_pdata, payload, extra_len)); 4283 } 4284 4285 int 4286 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4287 { 4288 mac_impl_t *mip = (mac_impl_t *)mh; 4289 4290 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 4291 mhip)); 4292 } 4293 4294 int 4295 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4296 { 4297 mac_impl_t *mip = (mac_impl_t *)mh; 4298 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER); 4299 int err = 0; 4300 4301 /* 4302 * Packets should always be at least 16 bit aligned. 4303 */ 4304 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); 4305 4306 if ((err = mac_header_info(mh, mp, mhip)) != 0) 4307 return (err); 4308 4309 /* 4310 * If this is a VLAN-tagged Ethernet packet, then the SAP in the 4311 * mac_header_info_t as returned by mac_header_info() is 4312 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header. 4313 */ 4314 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) { 4315 struct ether_vlan_header *evhp; 4316 uint16_t sap; 4317 mblk_t *tmp = NULL; 4318 size_t size; 4319 4320 size = sizeof (struct ether_vlan_header); 4321 if (MBLKL(mp) < size) { 4322 /* 4323 * Pullup the message in order to get the MAC header 4324 * infomation. Note that this is a read-only function, 4325 * we keep the input packet intact. 4326 */ 4327 if ((tmp = msgpullup(mp, size)) == NULL) 4328 return (EINVAL); 4329 4330 mp = tmp; 4331 } 4332 evhp = (struct ether_vlan_header *)mp->b_rptr; 4333 sap = ntohs(evhp->ether_type); 4334 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap); 4335 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header); 4336 mhip->mhi_tci = ntohs(evhp->ether_tci); 4337 mhip->mhi_istagged = B_TRUE; 4338 freemsg(tmp); 4339 4340 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI) 4341 return (EINVAL); 4342 } else { 4343 mhip->mhi_istagged = B_FALSE; 4344 mhip->mhi_tci = 0; 4345 } 4346 4347 return (0); 4348 } 4349 4350 mblk_t * 4351 mac_header_cook(mac_handle_t mh, mblk_t *mp) 4352 { 4353 mac_impl_t *mip = (mac_impl_t *)mh; 4354 4355 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 4356 if (DB_REF(mp) > 1) { 4357 mblk_t *newmp = copymsg(mp); 4358 if (newmp == NULL) 4359 return (NULL); 4360 freemsg(mp); 4361 mp = newmp; 4362 } 4363 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 4364 mip->mi_pdata)); 4365 } 4366 return (mp); 4367 } 4368 4369 mblk_t * 4370 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 4371 { 4372 mac_impl_t *mip = (mac_impl_t *)mh; 4373 4374 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 4375 if (DB_REF(mp) > 1) { 4376 mblk_t *newmp = copymsg(mp); 4377 if (newmp == NULL) 4378 return (NULL); 4379 freemsg(mp); 4380 mp = newmp; 4381 } 4382 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 4383 mip->mi_pdata)); 4384 } 4385 return (mp); 4386 } 4387 4388 uint_t 4389 mac_addr_len(mac_handle_t mh) 4390 { 4391 mac_impl_t *mip = (mac_impl_t *)mh; 4392 4393 return (mip->mi_type->mt_addr_length); 4394 } 4395 4396 /* True if a MAC is a VNIC */ 4397 boolean_t 4398 mac_is_vnic(mac_handle_t mh) 4399 { 4400 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 4401 } 4402 4403 mac_handle_t 4404 mac_get_lower_mac_handle(mac_handle_t mh) 4405 { 4406 mac_impl_t *mip = (mac_impl_t *)mh; 4407 4408 ASSERT(mac_is_vnic(mh)); 4409 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 4410 } 4411 4412 boolean_t 4413 mac_is_vnic_primary(mac_handle_t mh) 4414 { 4415 mac_impl_t *mip = (mac_impl_t *)mh; 4416 4417 ASSERT(mac_is_vnic(mh)); 4418 return (((vnic_t *)mip->mi_driver)->vn_addr_type == 4419 VNIC_MAC_ADDR_TYPE_PRIMARY); 4420 } 4421 4422 void 4423 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 4424 boolean_t is_user_flow) 4425 { 4426 if (nmrp != NULL && cmrp != NULL) { 4427 if (nmrp->mrp_mask & MRP_PRIORITY) { 4428 if (nmrp->mrp_priority == MPL_RESET) { 4429 cmrp->mrp_mask &= ~MRP_PRIORITY; 4430 if (is_user_flow) { 4431 cmrp->mrp_priority = 4432 MPL_SUBFLOW_DEFAULT; 4433 } else { 4434 cmrp->mrp_priority = MPL_LINK_DEFAULT; 4435 } 4436 } else { 4437 cmrp->mrp_mask |= MRP_PRIORITY; 4438 cmrp->mrp_priority = nmrp->mrp_priority; 4439 } 4440 } 4441 if (nmrp->mrp_mask & MRP_MAXBW) { 4442 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) { 4443 cmrp->mrp_mask &= ~MRP_MAXBW; 4444 cmrp->mrp_maxbw = 0; 4445 } else { 4446 cmrp->mrp_mask |= MRP_MAXBW; 4447 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 4448 } 4449 } 4450 if (nmrp->mrp_mask & MRP_CPUS) 4451 MAC_COPY_CPUS(nmrp, cmrp); 4452 4453 if (nmrp->mrp_mask & MRP_POOL) { 4454 if (strlen(nmrp->mrp_pool) == 0) { 4455 cmrp->mrp_mask &= ~MRP_POOL; 4456 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool)); 4457 } else { 4458 cmrp->mrp_mask |= MRP_POOL; 4459 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool, 4460 sizeof (cmrp->mrp_pool)); 4461 } 4462 4463 } 4464 4465 if (nmrp->mrp_mask & MRP_PROTECT) 4466 mac_protect_update(nmrp, cmrp); 4467 4468 /* 4469 * Update the rings specified. 4470 */ 4471 if (nmrp->mrp_mask & MRP_RX_RINGS) { 4472 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4473 cmrp->mrp_mask &= ~MRP_RX_RINGS; 4474 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4475 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4476 cmrp->mrp_nrxrings = 0; 4477 } else { 4478 cmrp->mrp_mask |= MRP_RX_RINGS; 4479 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings; 4480 } 4481 } 4482 if (nmrp->mrp_mask & MRP_TX_RINGS) { 4483 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4484 cmrp->mrp_mask &= ~MRP_TX_RINGS; 4485 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4486 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4487 cmrp->mrp_ntxrings = 0; 4488 } else { 4489 cmrp->mrp_mask |= MRP_TX_RINGS; 4490 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings; 4491 } 4492 } 4493 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4494 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4495 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4496 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4497 4498 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4499 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4500 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4501 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4502 } 4503 } 4504 4505 /* 4506 * i_mac_set_resources: 4507 * 4508 * This routine associates properties with the primary MAC client of 4509 * the specified MAC instance. 4510 * - Cache the properties in mac_impl_t 4511 * - Apply the properties to the primary MAC client if exists 4512 */ 4513 int 4514 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4515 { 4516 mac_impl_t *mip = (mac_impl_t *)mh; 4517 mac_client_impl_t *mcip; 4518 int err = 0; 4519 uint32_t resmask, newresmask; 4520 mac_resource_props_t *tmrp, *umrp; 4521 4522 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4523 4524 err = mac_validate_props(mip, mrp); 4525 if (err != 0) 4526 return (err); 4527 4528 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP); 4529 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp)); 4530 resmask = umrp->mrp_mask; 4531 mac_update_resources(mrp, umrp, B_FALSE); 4532 newresmask = umrp->mrp_mask; 4533 4534 if (resmask == 0 && newresmask != 0) { 4535 /* 4536 * Bandwidth, priority, cpu or pool link properties configured, 4537 * must disable fastpath. 4538 */ 4539 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) { 4540 kmem_free(umrp, sizeof (*umrp)); 4541 return (err); 4542 } 4543 } 4544 4545 /* 4546 * Since bind_cpu may be modified by mac_client_set_resources() 4547 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 4548 * This allows us to cache only user edits in mip. 4549 */ 4550 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP); 4551 bcopy(mrp, tmrp, sizeof (*tmrp)); 4552 mcip = mac_primary_client_handle(mip); 4553 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 4554 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp); 4555 } else if ((mrp->mrp_mask & MRP_RX_RINGS || 4556 mrp->mrp_mask & MRP_TX_RINGS)) { 4557 mac_client_impl_t *vmcip; 4558 4559 /* 4560 * If the primary is not up, we need to check if there 4561 * are any VLANs on this primary. If there are then 4562 * we need to set this property on the VLANs since 4563 * VLANs follow the primary they are based on. Just 4564 * look for the first VLAN and change its properties, 4565 * all the other VLANs should be in the same group. 4566 */ 4567 for (vmcip = mip->mi_clients_list; vmcip != NULL; 4568 vmcip = vmcip->mci_client_next) { 4569 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) && 4570 mac_client_vid((mac_client_handle_t)vmcip) != 4571 VLAN_ID_NONE) { 4572 break; 4573 } 4574 } 4575 if (vmcip != NULL) { 4576 mac_resource_props_t *omrp; 4577 mac_resource_props_t *vmrp; 4578 4579 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 4580 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp)); 4581 /* 4582 * We dont' call mac_update_resources since we 4583 * want to take only the ring properties and 4584 * not all the properties that may have changed. 4585 */ 4586 vmrp = MCIP_RESOURCE_PROPS(vmcip); 4587 if (mrp->mrp_mask & MRP_RX_RINGS) { 4588 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4589 vmrp->mrp_mask &= ~MRP_RX_RINGS; 4590 if (vmrp->mrp_mask & 4591 MRP_RXRINGS_UNSPEC) { 4592 vmrp->mrp_mask &= 4593 ~MRP_RXRINGS_UNSPEC; 4594 } 4595 vmrp->mrp_nrxrings = 0; 4596 } else { 4597 vmrp->mrp_mask |= MRP_RX_RINGS; 4598 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 4599 } 4600 } 4601 if (mrp->mrp_mask & MRP_TX_RINGS) { 4602 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4603 vmrp->mrp_mask &= ~MRP_TX_RINGS; 4604 if (vmrp->mrp_mask & 4605 MRP_TXRINGS_UNSPEC) { 4606 vmrp->mrp_mask &= 4607 ~MRP_TXRINGS_UNSPEC; 4608 } 4609 vmrp->mrp_ntxrings = 0; 4610 } else { 4611 vmrp->mrp_mask |= MRP_TX_RINGS; 4612 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 4613 } 4614 } 4615 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4616 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4617 4618 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4619 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4620 4621 if ((err = mac_client_set_rings_prop(vmcip, mrp, 4622 omrp)) != 0) { 4623 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip), 4624 sizeof (*omrp)); 4625 } else { 4626 mac_set_prim_vlan_rings(mip, vmrp); 4627 } 4628 kmem_free(omrp, sizeof (*omrp)); 4629 } 4630 } 4631 4632 /* Only update the values if mac_client_set_resources succeeded */ 4633 if (err == 0) { 4634 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp)); 4635 /* 4636 * If bandwidth, priority or cpu link properties cleared, 4637 * renable fastpath. 4638 */ 4639 if (resmask != 0 && newresmask == 0) 4640 mac_fastpath_enable((mac_handle_t)mip); 4641 } else if (resmask == 0 && newresmask != 0) { 4642 mac_fastpath_enable((mac_handle_t)mip); 4643 } 4644 kmem_free(tmrp, sizeof (*tmrp)); 4645 kmem_free(umrp, sizeof (*umrp)); 4646 return (err); 4647 } 4648 4649 int 4650 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4651 { 4652 int err; 4653 4654 i_mac_perim_enter((mac_impl_t *)mh); 4655 err = i_mac_set_resources(mh, mrp); 4656 i_mac_perim_exit((mac_impl_t *)mh); 4657 return (err); 4658 } 4659 4660 /* 4661 * Get the properties cached for the specified MAC instance. 4662 */ 4663 void 4664 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4665 { 4666 mac_impl_t *mip = (mac_impl_t *)mh; 4667 mac_client_impl_t *mcip; 4668 4669 mcip = mac_primary_client_handle(mip); 4670 if (mcip != NULL) { 4671 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 4672 return; 4673 } 4674 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 4675 } 4676 4677 /* 4678 * Get the effective properties from the primary client of the 4679 * specified MAC instance. 4680 */ 4681 void 4682 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4683 { 4684 mac_impl_t *mip = (mac_impl_t *)mh; 4685 mac_client_impl_t *mcip; 4686 4687 mcip = mac_primary_client_handle(mip); 4688 if (mcip != NULL) { 4689 mac_client_get_effective_resources((mac_client_handle_t)mcip, 4690 mrp); 4691 return; 4692 } 4693 bzero(mrp, sizeof (mac_resource_props_t)); 4694 } 4695 4696 int 4697 mac_set_pvid(mac_handle_t mh, uint16_t pvid) 4698 { 4699 mac_impl_t *mip = (mac_impl_t *)mh; 4700 mac_client_impl_t *mcip; 4701 mac_unicast_impl_t *muip; 4702 4703 i_mac_perim_enter(mip); 4704 if (pvid != 0) { 4705 for (mcip = mip->mi_clients_list; mcip != NULL; 4706 mcip = mcip->mci_client_next) { 4707 for (muip = mcip->mci_unicast_list; muip != NULL; 4708 muip = muip->mui_next) { 4709 if (muip->mui_vid == pvid) { 4710 i_mac_perim_exit(mip); 4711 return (EBUSY); 4712 } 4713 } 4714 } 4715 } 4716 mip->mi_pvid = pvid; 4717 i_mac_perim_exit(mip); 4718 return (0); 4719 } 4720 4721 uint16_t 4722 mac_get_pvid(mac_handle_t mh) 4723 { 4724 mac_impl_t *mip = (mac_impl_t *)mh; 4725 4726 return (mip->mi_pvid); 4727 } 4728 4729 uint32_t 4730 mac_get_llimit(mac_handle_t mh) 4731 { 4732 mac_impl_t *mip = (mac_impl_t *)mh; 4733 4734 return (mip->mi_llimit); 4735 } 4736 4737 uint32_t 4738 mac_get_ldecay(mac_handle_t mh) 4739 { 4740 mac_impl_t *mip = (mac_impl_t *)mh; 4741 4742 return (mip->mi_ldecay); 4743 } 4744 4745 /* 4746 * Rename a mac client, its flow, and the kstat. 4747 */ 4748 int 4749 mac_rename_primary(mac_handle_t mh, const char *new_name) 4750 { 4751 mac_impl_t *mip = (mac_impl_t *)mh; 4752 mac_client_impl_t *cur_clnt = NULL; 4753 flow_entry_t *fep; 4754 4755 i_mac_perim_enter(mip); 4756 4757 /* 4758 * VNICs: we need to change the sys flow name and 4759 * the associated flow kstat. 4760 */ 4761 if (mip->mi_state_flags & MIS_IS_VNIC) { 4762 mac_client_impl_t *mcip = mac_vnic_lower(mip); 4763 ASSERT(new_name != NULL); 4764 mac_rename_flow_names(mcip, new_name); 4765 mac_stat_rename(mcip); 4766 goto done; 4767 } 4768 /* 4769 * This mac may itself be an aggr link, or it may have some client 4770 * which is an aggr port. For both cases, we need to change the 4771 * aggr port's mac client name, its flow name and the associated flow 4772 * kstat. 4773 */ 4774 if (mip->mi_state_flags & MIS_IS_AGGR) { 4775 mac_capab_aggr_t aggr_cap; 4776 mac_rename_fn_t rename_fn; 4777 boolean_t ret; 4778 4779 ASSERT(new_name != NULL); 4780 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 4781 (void *)(&aggr_cap)); 4782 ASSERT(ret == B_TRUE); 4783 rename_fn = aggr_cap.mca_rename_fn; 4784 rename_fn(new_name, mip->mi_driver); 4785 /* 4786 * The aggr's client name and kstat flow name will be 4787 * updated below, i.e. via mac_rename_flow_names. 4788 */ 4789 } 4790 4791 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 4792 cur_clnt = cur_clnt->mci_client_next) { 4793 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 4794 if (new_name != NULL) { 4795 char *str_st = cur_clnt->mci_name; 4796 char *str_del = strchr(str_st, '-'); 4797 4798 ASSERT(str_del != NULL); 4799 bzero(str_del + 1, MAXNAMELEN - 4800 (str_del - str_st + 1)); 4801 bcopy(new_name, str_del + 1, 4802 strlen(new_name)); 4803 } 4804 fep = cur_clnt->mci_flent; 4805 mac_rename_flow(fep, cur_clnt->mci_name); 4806 break; 4807 } else if (new_name != NULL && 4808 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 4809 mac_rename_flow_names(cur_clnt, new_name); 4810 break; 4811 } 4812 } 4813 4814 /* Recreate kstats associated with aggr pseudo rings */ 4815 if (mip->mi_state_flags & MIS_IS_AGGR) 4816 mac_pseudo_ring_stat_rename(mip); 4817 4818 done: 4819 i_mac_perim_exit(mip); 4820 return (0); 4821 } 4822 4823 /* 4824 * Rename the MAC client's flow names 4825 */ 4826 static void 4827 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 4828 { 4829 flow_entry_t *flent; 4830 uint16_t vid; 4831 char flowname[MAXFLOWNAMELEN]; 4832 mac_impl_t *mip = mcip->mci_mip; 4833 4834 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4835 4836 /* 4837 * Use mi_rw_lock to ensure that threads not in the mac perimeter 4838 * see a self-consistent value for mci_name 4839 */ 4840 rw_enter(&mip->mi_rw_lock, RW_WRITER); 4841 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 4842 rw_exit(&mip->mi_rw_lock); 4843 4844 mac_rename_flow(mcip->mci_flent, new_name); 4845 4846 if (mcip->mci_nflents == 1) 4847 return; 4848 4849 /* 4850 * We have to rename all the others too, no stats to destroy for 4851 * these. 4852 */ 4853 for (flent = mcip->mci_flent_list; flent != NULL; 4854 flent = flent->fe_client_next) { 4855 if (flent != mcip->mci_flent) { 4856 vid = i_mac_flow_vid(flent); 4857 (void) sprintf(flowname, "%s%u", new_name, vid); 4858 mac_flow_set_name(flent, flowname); 4859 } 4860 } 4861 } 4862 4863 4864 /* 4865 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 4866 * defined for the specified MAC client. 4867 */ 4868 static void 4869 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4870 { 4871 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4872 /* 4873 * The promisc Rx data path walks the mci_flent_list. Protect by 4874 * using mi_rw_lock 4875 */ 4876 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4877 4878 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 4879 4880 /* Add it to the head */ 4881 flent->fe_client_next = mcip->mci_flent_list; 4882 mcip->mci_flent_list = flent; 4883 mcip->mci_nflents++; 4884 4885 /* 4886 * Keep track of the number of non-zero VIDs addresses per MAC 4887 * client to avoid figuring it out in the data-path. 4888 */ 4889 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4890 mcip->mci_nvids++; 4891 4892 rw_exit(&mcip->mci_rw_lock); 4893 } 4894 4895 /* 4896 * Remove a flow entry from the MAC client's list. 4897 */ 4898 static void 4899 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4900 { 4901 flow_entry_t *fe = mcip->mci_flent_list; 4902 flow_entry_t *prev_fe = NULL; 4903 4904 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4905 /* 4906 * The promisc Rx data path walks the mci_flent_list. Protect by 4907 * using mci_rw_lock 4908 */ 4909 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4910 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 4911 4912 while ((fe != NULL) && (fe != flent)) { 4913 prev_fe = fe; 4914 fe = fe->fe_client_next; 4915 } 4916 4917 ASSERT(fe != NULL); 4918 if (prev_fe == NULL) { 4919 /* Deleting the first node */ 4920 mcip->mci_flent_list = fe->fe_client_next; 4921 } else { 4922 prev_fe->fe_client_next = fe->fe_client_next; 4923 } 4924 mcip->mci_nflents--; 4925 4926 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4927 mcip->mci_nvids--; 4928 4929 rw_exit(&mcip->mci_rw_lock); 4930 } 4931 4932 /* 4933 * Check if the given VID belongs to this MAC client. 4934 */ 4935 boolean_t 4936 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 4937 { 4938 flow_entry_t *flent; 4939 uint16_t mci_vid; 4940 uint32_t cache = mcip->mci_vidcache; 4941 4942 /* 4943 * In hopes of not having to touch the mci_rw_lock, check to see if 4944 * this vid matches our cached result. 4945 */ 4946 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid) 4947 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE); 4948 4949 /* The mci_flent_list is protected by mci_rw_lock */ 4950 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4951 for (flent = mcip->mci_flent_list; flent != NULL; 4952 flent = flent->fe_client_next) { 4953 mci_vid = i_mac_flow_vid(flent); 4954 if (vid == mci_vid) { 4955 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE); 4956 rw_exit(&mcip->mci_rw_lock); 4957 return (B_TRUE); 4958 } 4959 } 4960 4961 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE); 4962 rw_exit(&mcip->mci_rw_lock); 4963 return (B_FALSE); 4964 } 4965 4966 /* 4967 * Get the flow entry for the specified <MAC addr, VID> tuple. 4968 */ 4969 static flow_entry_t * 4970 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 4971 { 4972 mac_address_t *map = mcip->mci_unicast; 4973 flow_entry_t *flent; 4974 uint16_t vid; 4975 flow_desc_t flow_desc; 4976 4977 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4978 4979 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 4980 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 4981 return (NULL); 4982 4983 for (flent = mcip->mci_flent_list; flent != NULL; 4984 flent = flent->fe_client_next) { 4985 vid = i_mac_flow_vid(flent); 4986 if (vid == muip->mui_vid) { 4987 return (flent); 4988 } 4989 } 4990 4991 return (NULL); 4992 } 4993 4994 /* 4995 * Since mci_flent has the SRSs, when we want to remove it, we replace 4996 * the flow_desc_t in mci_flent with that of an existing flent and then 4997 * remove that flent instead of mci_flent. 4998 */ 4999 static flow_entry_t * 5000 mac_client_swap_mciflent(mac_client_impl_t *mcip) 5001 { 5002 flow_entry_t *flent = mcip->mci_flent; 5003 flow_tab_t *ft = flent->fe_flow_tab; 5004 flow_entry_t *flent1; 5005 flow_desc_t fl_desc; 5006 char fl_name[MAXFLOWNAMELEN]; 5007 int err; 5008 5009 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5010 ASSERT(mcip->mci_nflents > 1); 5011 5012 /* get the next flent following the primary flent */ 5013 flent1 = mcip->mci_flent_list->fe_client_next; 5014 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 5015 5016 /* 5017 * Remove the flent from the flow table before updating the 5018 * flow descriptor as the hash depends on the flow descriptor. 5019 * This also helps incoming packet classification avoid having 5020 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 5021 * flow table is done under the fe_lock so that log or stat functions 5022 * see a self-consistent fe_flow_desc. The name and desc are specific 5023 * to a flow, the rest are shared by all the clients, including 5024 * resource control etc. 5025 */ 5026 mac_flow_remove(ft, flent, B_TRUE); 5027 mac_flow_remove(ft, flent1, B_TRUE); 5028 5029 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 5030 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 5031 5032 /* update the primary flow entry */ 5033 mutex_enter(&flent->fe_lock); 5034 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 5035 sizeof (flow_desc_t)); 5036 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 5037 mutex_exit(&flent->fe_lock); 5038 5039 /* update the flow entry that is to be freed */ 5040 mutex_enter(&flent1->fe_lock); 5041 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 5042 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 5043 mutex_exit(&flent1->fe_lock); 5044 5045 /* now reinsert the flow entries in the table */ 5046 err = mac_flow_add(ft, flent); 5047 ASSERT(err == 0); 5048 5049 err = mac_flow_add(ft, flent1); 5050 ASSERT(err == 0); 5051 5052 return (flent1); 5053 } 5054 5055 /* 5056 * Return whether there is only one flow entry associated with this 5057 * MAC client. 5058 */ 5059 static boolean_t 5060 mac_client_single_rcvr(mac_client_impl_t *mcip) 5061 { 5062 return (mcip->mci_nflents == 1); 5063 } 5064 5065 int 5066 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp) 5067 { 5068 boolean_t reset; 5069 uint32_t rings_needed; 5070 uint32_t rings_avail; 5071 mac_group_type_t gtype; 5072 mac_resource_props_t *mip_mrp; 5073 5074 if (mrp == NULL) 5075 return (0); 5076 5077 if (mrp->mrp_mask & MRP_PRIORITY) { 5078 mac_priority_level_t pri = mrp->mrp_priority; 5079 5080 if (pri < MPL_LOW || pri > MPL_RESET) 5081 return (EINVAL); 5082 } 5083 5084 if (mrp->mrp_mask & MRP_MAXBW) { 5085 uint64_t maxbw = mrp->mrp_maxbw; 5086 5087 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 5088 return (EINVAL); 5089 } 5090 if (mrp->mrp_mask & MRP_CPUS) { 5091 int i, j; 5092 mac_cpu_mode_t fanout; 5093 5094 if (mrp->mrp_ncpus > ncpus) 5095 return (EINVAL); 5096 5097 for (i = 0; i < mrp->mrp_ncpus; i++) { 5098 for (j = 0; j < mrp->mrp_ncpus; j++) { 5099 if (i != j && 5100 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) { 5101 return (EINVAL); 5102 } 5103 } 5104 } 5105 5106 for (i = 0; i < mrp->mrp_ncpus; i++) { 5107 cpu_t *cp; 5108 int rv; 5109 5110 mutex_enter(&cpu_lock); 5111 cp = cpu_get(mrp->mrp_cpu[i]); 5112 if (cp != NULL) 5113 rv = cpu_is_online(cp); 5114 else 5115 rv = 0; 5116 mutex_exit(&cpu_lock); 5117 if (rv == 0) 5118 return (EINVAL); 5119 } 5120 5121 fanout = mrp->mrp_fanout_mode; 5122 if (fanout < 0 || fanout > MCM_CPUS) 5123 return (EINVAL); 5124 } 5125 5126 if (mrp->mrp_mask & MRP_PROTECT) { 5127 int err = mac_protect_validate(mrp); 5128 if (err != 0) 5129 return (err); 5130 } 5131 5132 if (!(mrp->mrp_mask & MRP_RX_RINGS) && 5133 !(mrp->mrp_mask & MRP_TX_RINGS)) { 5134 return (0); 5135 } 5136 5137 /* 5138 * mip will be null when we come from mac_flow_create or 5139 * mac_link_flow_modify. In the latter case it is a user flow, 5140 * for which we don't support rings. In the former we would 5141 * have validated the props beforehand (i_mac_unicast_add -> 5142 * mac_client_set_resources -> validate for the primary and 5143 * vnic_dev_create -> mac_client_set_resources -> validate for 5144 * a vnic. 5145 */ 5146 if (mip == NULL) 5147 return (0); 5148 5149 /* 5150 * We don't support setting rings property for a VNIC that is using a 5151 * primary address (VLAN) 5152 */ 5153 if ((mip->mi_state_flags & MIS_IS_VNIC) && 5154 mac_is_vnic_primary((mac_handle_t)mip)) { 5155 return (ENOTSUP); 5156 } 5157 5158 mip_mrp = &mip->mi_resource_props; 5159 /* 5160 * The rings property should be validated against the NICs 5161 * resources 5162 */ 5163 if (mip->mi_state_flags & MIS_IS_VNIC) 5164 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip); 5165 5166 reset = mrp->mrp_mask & MRP_RINGS_RESET; 5167 /* 5168 * If groups are not supported, return error. 5169 */ 5170 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) || 5171 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) { 5172 return (EINVAL); 5173 } 5174 /* 5175 * If we are just resetting, there is no validation needed. 5176 */ 5177 if (reset) 5178 return (0); 5179 5180 if (mrp->mrp_mask & MRP_RX_RINGS) { 5181 rings_needed = mrp->mrp_nrxrings; 5182 /* 5183 * We just want to check if the number of additional 5184 * rings requested is available. 5185 */ 5186 if (mip_mrp->mrp_mask & MRP_RX_RINGS) { 5187 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings) 5188 /* Just check for the additional rings */ 5189 rings_needed -= mip_mrp->mrp_nrxrings; 5190 else 5191 /* We are not asking for additional rings */ 5192 rings_needed = 0; 5193 } 5194 rings_avail = mip->mi_rxrings_avail; 5195 gtype = mip->mi_rx_group_type; 5196 } else { 5197 rings_needed = mrp->mrp_ntxrings; 5198 /* Similarly for the TX rings */ 5199 if (mip_mrp->mrp_mask & MRP_TX_RINGS) { 5200 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings) 5201 /* Just check for the additional rings */ 5202 rings_needed -= mip_mrp->mrp_ntxrings; 5203 else 5204 /* We are not asking for additional rings */ 5205 rings_needed = 0; 5206 } 5207 rings_avail = mip->mi_txrings_avail; 5208 gtype = mip->mi_tx_group_type; 5209 } 5210 5211 /* Error if the group is dynamic .. */ 5212 if (gtype == MAC_GROUP_TYPE_DYNAMIC) { 5213 /* 5214 * .. and rings specified are more than available. 5215 */ 5216 if (rings_needed > rings_avail) 5217 return (EINVAL); 5218 } else { 5219 /* 5220 * OR group is static and we have specified some rings. 5221 */ 5222 if (rings_needed > 0) 5223 return (EINVAL); 5224 } 5225 return (0); 5226 } 5227 5228 /* 5229 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 5230 * underlying physical link is down. This is to allow MAC clients to 5231 * communicate with other clients. 5232 */ 5233 void 5234 mac_virtual_link_update(mac_impl_t *mip) 5235 { 5236 if (mip->mi_linkstate != LINK_STATE_UP) 5237 i_mac_notify(mip, MAC_NOTE_LINK); 5238 } 5239 5240 /* 5241 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 5242 * mac handle in the client. 5243 */ 5244 void 5245 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh, 5246 mac_resource_props_t *mrp) 5247 { 5248 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5249 mac_impl_t *mip = (mac_impl_t *)mh; 5250 5251 mcip->mci_upper_mip = mip; 5252 /* If there are any properties, copy it over too */ 5253 if (mrp != NULL) { 5254 bcopy(mrp, &mip->mi_resource_props, 5255 sizeof (mac_resource_props_t)); 5256 } 5257 } 5258 5259 /* 5260 * Mark the mac as being used exclusively by the single mac client that is 5261 * doing some control operation on this mac. No further opens of this mac 5262 * will be allowed until this client calls mac_unmark_exclusive. The mac 5263 * client calling this function must already be in the mac perimeter 5264 */ 5265 int 5266 mac_mark_exclusive(mac_handle_t mh) 5267 { 5268 mac_impl_t *mip = (mac_impl_t *)mh; 5269 5270 ASSERT(MAC_PERIM_HELD(mh)); 5271 /* 5272 * Look up its entry in the global hash table. 5273 */ 5274 rw_enter(&i_mac_impl_lock, RW_WRITER); 5275 if (mip->mi_state_flags & MIS_DISABLED) { 5276 rw_exit(&i_mac_impl_lock); 5277 return (ENOENT); 5278 } 5279 5280 /* 5281 * A reference to mac is held even if the link is not plumbed. 5282 * In i_dls_link_create() we open the MAC interface and hold the 5283 * reference. There is an additional reference for the mac_open 5284 * done in acquiring the mac perimeter 5285 */ 5286 if (mip->mi_ref != 2) { 5287 rw_exit(&i_mac_impl_lock); 5288 return (EBUSY); 5289 } 5290 5291 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5292 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 5293 rw_exit(&i_mac_impl_lock); 5294 return (0); 5295 } 5296 5297 void 5298 mac_unmark_exclusive(mac_handle_t mh) 5299 { 5300 mac_impl_t *mip = (mac_impl_t *)mh; 5301 5302 ASSERT(MAC_PERIM_HELD(mh)); 5303 5304 rw_enter(&i_mac_impl_lock, RW_WRITER); 5305 /* 1 for the creation and another for the perimeter */ 5306 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5307 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 5308 rw_exit(&i_mac_impl_lock); 5309 } 5310 5311 /* 5312 * Set the MTU for the specified MAC. 5313 */ 5314 int 5315 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 5316 { 5317 mac_impl_t *mip = (mac_impl_t *)mh; 5318 uint_t old_mtu; 5319 int rv = 0; 5320 5321 i_mac_perim_enter(mip); 5322 5323 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) { 5324 rv = ENOTSUP; 5325 goto bail; 5326 } 5327 5328 old_mtu = mip->mi_sdu_max; 5329 5330 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) { 5331 rv = EINVAL; 5332 goto bail; 5333 } 5334 5335 rw_enter(&mip->mi_rw_lock, RW_READER); 5336 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) { 5337 rv = EBUSY; 5338 rw_exit(&mip->mi_rw_lock); 5339 goto bail; 5340 } 5341 rw_exit(&mip->mi_rw_lock); 5342 5343 if (old_mtu != new_mtu) { 5344 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 5345 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 5346 if (rv != 0) 5347 goto bail; 5348 rv = mac_maxsdu_update(mh, new_mtu); 5349 ASSERT(rv == 0); 5350 } 5351 5352 bail: 5353 i_mac_perim_exit(mip); 5354 5355 if (rv == 0 && old_mtu_arg != NULL) 5356 *old_mtu_arg = old_mtu; 5357 return (rv); 5358 } 5359 5360 /* 5361 * Return the RX h/w information for the group indexed by grp_num. 5362 */ 5363 void 5364 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5365 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5366 char *clnts_name) 5367 { 5368 mac_impl_t *mip = (mac_impl_t *)mh; 5369 mac_grp_client_t *mcip; 5370 uint_t i = 0, index = 0; 5371 mac_ring_t *ring; 5372 5373 /* Revisit when we implement fully dynamic group allocation */ 5374 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 5375 5376 rw_enter(&mip->mi_rw_lock, RW_READER); 5377 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 5378 *type = mip->mi_rx_groups[grp_index].mrg_type; 5379 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 5380 ring = mip->mi_rx_groups[grp_index].mrg_rings; 5381 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count; 5382 index++) { 5383 rings[index] = ring->mr_index; 5384 ring = ring->mr_next; 5385 } 5386 /* Assuming the 1st is the default group */ 5387 index = 0; 5388 if (grp_index == 0) { 5389 (void) strlcpy(clnts_name, "<default,mcast>,", 5390 MAXCLIENTNAMELEN); 5391 index += strlen("<default,mcast>,"); 5392 } 5393 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 5394 mcip = mcip->mgc_next) { 5395 int name_len = strlen(mcip->mgc_client->mci_name); 5396 5397 /* 5398 * MAXCLIENTNAMELEN is the buffer size reserved for client 5399 * names. 5400 * XXXX Formating the client name string needs to be moved 5401 * to user land when fixing the size of dhi_clnts in 5402 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5403 * dhi_clntsin instead of MAXCLIENTNAMELEN 5404 */ 5405 if (index + name_len >= MAXCLIENTNAMELEN) { 5406 index = MAXCLIENTNAMELEN; 5407 break; 5408 } 5409 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5410 name_len); 5411 index += name_len; 5412 clnts_name[index++] = ','; 5413 i++; 5414 } 5415 5416 /* Get rid of the last , */ 5417 if (index > 0) 5418 clnts_name[index - 1] = '\0'; 5419 *n_clnts = i; 5420 rw_exit(&mip->mi_rw_lock); 5421 } 5422 5423 /* 5424 * Return the TX h/w information for the group indexed by grp_num. 5425 */ 5426 void 5427 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5428 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5429 char *clnts_name) 5430 { 5431 mac_impl_t *mip = (mac_impl_t *)mh; 5432 mac_grp_client_t *mcip; 5433 uint_t i = 0, index = 0; 5434 mac_ring_t *ring; 5435 5436 /* Revisit when we implement fully dynamic group allocation */ 5437 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count); 5438 5439 rw_enter(&mip->mi_rw_lock, RW_READER); 5440 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ? 5441 mip->mi_tx_groups[grp_index].mrg_index : grp_index; 5442 *type = mip->mi_tx_groups[grp_index].mrg_type; 5443 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count; 5444 ring = mip->mi_tx_groups[grp_index].mrg_rings; 5445 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count; 5446 index++) { 5447 rings[index] = ring->mr_index; 5448 ring = ring->mr_next; 5449 } 5450 index = 0; 5451 /* Default group has an index of -1 */ 5452 if (mip->mi_tx_groups[grp_index].mrg_index < 0) { 5453 (void) strlcpy(clnts_name, "<default>,", 5454 MAXCLIENTNAMELEN); 5455 index += strlen("<default>,"); 5456 } 5457 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL; 5458 mcip = mcip->mgc_next) { 5459 int name_len = strlen(mcip->mgc_client->mci_name); 5460 5461 /* 5462 * MAXCLIENTNAMELEN is the buffer size reserved for client 5463 * names. 5464 * XXXX Formating the client name string needs to be moved 5465 * to user land when fixing the size of dhi_clnts in 5466 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5467 * dhi_clntsin instead of MAXCLIENTNAMELEN 5468 */ 5469 if (index + name_len >= MAXCLIENTNAMELEN) { 5470 index = MAXCLIENTNAMELEN; 5471 break; 5472 } 5473 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5474 name_len); 5475 index += name_len; 5476 clnts_name[index++] = ','; 5477 i++; 5478 } 5479 5480 /* Get rid of the last , */ 5481 if (index > 0) 5482 clnts_name[index - 1] = '\0'; 5483 *n_clnts = i; 5484 rw_exit(&mip->mi_rw_lock); 5485 } 5486 5487 /* 5488 * Return the group count for RX or TX. 5489 */ 5490 uint_t 5491 mac_hwgrp_num(mac_handle_t mh, int type) 5492 { 5493 mac_impl_t *mip = (mac_impl_t *)mh; 5494 5495 /* 5496 * Return the Rx and Tx group count; for the Tx we need to 5497 * include the default too. 5498 */ 5499 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count : 5500 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0); 5501 } 5502 5503 /* 5504 * The total number of free TX rings for this MAC. 5505 */ 5506 uint_t 5507 mac_txavail_get(mac_handle_t mh) 5508 { 5509 mac_impl_t *mip = (mac_impl_t *)mh; 5510 5511 return (mip->mi_txrings_avail); 5512 } 5513 5514 /* 5515 * The total number of free RX rings for this MAC. 5516 */ 5517 uint_t 5518 mac_rxavail_get(mac_handle_t mh) 5519 { 5520 mac_impl_t *mip = (mac_impl_t *)mh; 5521 5522 return (mip->mi_rxrings_avail); 5523 } 5524 5525 /* 5526 * The total number of reserved RX rings on this MAC. 5527 */ 5528 uint_t 5529 mac_rxrsvd_get(mac_handle_t mh) 5530 { 5531 mac_impl_t *mip = (mac_impl_t *)mh; 5532 5533 return (mip->mi_rxrings_rsvd); 5534 } 5535 5536 /* 5537 * The total number of reserved TX rings on this MAC. 5538 */ 5539 uint_t 5540 mac_txrsvd_get(mac_handle_t mh) 5541 { 5542 mac_impl_t *mip = (mac_impl_t *)mh; 5543 5544 return (mip->mi_txrings_rsvd); 5545 } 5546 5547 /* 5548 * Total number of free RX groups on this MAC. 5549 */ 5550 uint_t 5551 mac_rxhwlnksavail_get(mac_handle_t mh) 5552 { 5553 mac_impl_t *mip = (mac_impl_t *)mh; 5554 5555 return (mip->mi_rxhwclnt_avail); 5556 } 5557 5558 /* 5559 * Total number of RX groups reserved on this MAC. 5560 */ 5561 uint_t 5562 mac_rxhwlnksrsvd_get(mac_handle_t mh) 5563 { 5564 mac_impl_t *mip = (mac_impl_t *)mh; 5565 5566 return (mip->mi_rxhwclnt_used); 5567 } 5568 5569 /* 5570 * Total number of free TX groups on this MAC. 5571 */ 5572 uint_t 5573 mac_txhwlnksavail_get(mac_handle_t mh) 5574 { 5575 mac_impl_t *mip = (mac_impl_t *)mh; 5576 5577 return (mip->mi_txhwclnt_avail); 5578 } 5579 5580 /* 5581 * Total number of TX groups reserved on this MAC. 5582 */ 5583 uint_t 5584 mac_txhwlnksrsvd_get(mac_handle_t mh) 5585 { 5586 mac_impl_t *mip = (mac_impl_t *)mh; 5587 5588 return (mip->mi_txhwclnt_used); 5589 } 5590 5591 /* 5592 * Initialize the rings property for a mac client. A non-0 value for 5593 * rxring or txring specifies the number of rings required, a value 5594 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need 5595 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE 5596 * means the system can decide whether it can give any rings or not. 5597 */ 5598 void 5599 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings) 5600 { 5601 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5602 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 5603 5604 if (rxrings != MAC_RXRINGS_DONTCARE) { 5605 mrp->mrp_mask |= MRP_RX_RINGS; 5606 mrp->mrp_nrxrings = rxrings; 5607 } 5608 5609 if (txrings != MAC_TXRINGS_DONTCARE) { 5610 mrp->mrp_mask |= MRP_TX_RINGS; 5611 mrp->mrp_ntxrings = txrings; 5612 } 5613 } 5614 5615 boolean_t 5616 mac_get_promisc_filtered(mac_client_handle_t mch) 5617 { 5618 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5619 5620 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED); 5621 } 5622 5623 void 5624 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable) 5625 { 5626 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5627 5628 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5629 if (enable) 5630 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED; 5631 else 5632 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED; 5633 } 5634