1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * - General Introduction: 29 * 30 * This file contains the implementation of the MAC client kernel 31 * API and related code. The MAC client API allows a kernel module 32 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 33 * It allows a MAC client to associate itself with a MAC address, 34 * VLANs, callback functions for data traffic and for promiscuous mode. 35 * The MAC client API is also used to specify the properties associated 36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 37 * These properties are further used to determine the hardware resources 38 * to allocate to the various MAC clients. 39 * 40 * - Primary MAC clients: 41 * 42 * The MAC client API refers to "primary MAC clients". A primary MAC 43 * client is a client which "owns" the primary MAC address of 44 * the underlying MAC instance. The primary MAC address is called out 45 * since it is associated with specific semantics: the primary MAC 46 * address is the MAC address which is assigned to the IP interface 47 * when it is plumbed, and the primary MAC address is assigned 48 * to VLAN data-links. The primary address of a MAC instance can 49 * also change dynamically from under the MAC client, for example 50 * as a result of a change of state of a link aggregation. In that 51 * case the MAC layer automatically updates all data-structures which 52 * refer to the current value of the primary MAC address. Typical 53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 54 * MAC client is the vnic driver. 55 * 56 * - Virtual Switching: 57 * 58 * The MAC layer implements a virtual switch between the MAC clients 59 * (primary and non-primary) defined on top of the same underlying 60 * NIC (physical, link aggregation, etc). The virtual switch is 61 * VLAN-aware, i.e. it allows multiple MAC clients to be member 62 * of one or more VLANs, and the virtual switch will distribute 63 * multicast tagged packets only to the member of the corresponding 64 * VLANs. 65 * 66 * - Upper vs Lower MAC: 67 * 68 * Creating a VNIC on top of a MAC instance effectively causes 69 * two MAC instances to be layered on top of each other, one for 70 * the VNIC(s), one for the underlying MAC instance (physical NIC, 71 * link aggregation, etc). In the code below we refer to the 72 * underlying NIC as the "lower MAC", and we refer to VNICs as 73 * the "upper MAC". 74 * 75 * - Pass-through for VNICs: 76 * 77 * When VNICs are created on top of an underlying MAC, this causes 78 * a layering of two MAC instances. Since the lower MAC already 79 * does the switching and demultiplexing to its MAC clients, the 80 * upper MAC would simply have to pass packets to the layer below 81 * or above it, which would introduce overhead. In order to avoid 82 * this overhead, the MAC layer implements a pass-through mechanism 83 * for VNICs. When a VNIC opens the lower MAC instance, it saves 84 * the MAC client handle it optains from the MAC layer. When a MAC 85 * client opens a VNIC (upper MAC), the MAC layer detects that 86 * the MAC being opened is a VNIC, and gets the MAC client handle 87 * that the VNIC driver obtained from the lower MAC. This exchange 88 * is doing through a private capability between the MAC layer 89 * and the VNIC driver. The upper MAC then returns that handle 90 * directly to its MAC client. Any operation done by the upper 91 * MAC client is now done on the lower MAC client handle, which 92 * allows the VNIC driver to be completely bypassed for the 93 * performance sensitive data-path. 94 * 95 */ 96 97 #include <sys/types.h> 98 #include <sys/conf.h> 99 #include <sys/id_space.h> 100 #include <sys/esunddi.h> 101 #include <sys/stat.h> 102 #include <sys/mkdev.h> 103 #include <sys/stream.h> 104 #include <sys/strsun.h> 105 #include <sys/strsubr.h> 106 #include <sys/dlpi.h> 107 #include <sys/modhash.h> 108 #include <sys/mac_impl.h> 109 #include <sys/mac_client_impl.h> 110 #include <sys/mac_soft_ring.h> 111 #include <sys/dls.h> 112 #include <sys/dld.h> 113 #include <sys/modctl.h> 114 #include <sys/fs/dv_node.h> 115 #include <sys/thread.h> 116 #include <sys/proc.h> 117 #include <sys/callb.h> 118 #include <sys/cpuvar.h> 119 #include <sys/atomic.h> 120 #include <sys/sdt.h> 121 #include <sys/mac_flow.h> 122 #include <sys/ddi_intr_impl.h> 123 #include <sys/disp.h> 124 #include <sys/sdt.h> 125 #include <sys/vnic.h> 126 #include <sys/vnic_impl.h> 127 #include <sys/vlan.h> 128 #include <inet/ip.h> 129 #include <inet/ip6.h> 130 #include <sys/exacct.h> 131 #include <sys/exacct_impl.h> 132 #include <inet/nd.h> 133 #include <sys/ethernet.h> 134 135 kmem_cache_t *mac_client_impl_cache; 136 kmem_cache_t *mac_promisc_impl_cache; 137 138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 141 mac_unicast_impl_t *); 142 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 143 flow_entry_t *); 144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 145 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 146 static void mac_virtual_link_update(mac_impl_t *); 147 148 /* ARGSUSED */ 149 static int 150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 151 { 152 int i; 153 mac_client_impl_t *mcip = buf; 154 155 bzero(buf, MAC_CLIENT_IMPL_SIZE); 156 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 157 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 158 159 ASSERT(mac_tx_percpu_cnt >= 0); 160 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 161 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 162 MUTEX_DRIVER, NULL); 163 } 164 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 165 166 return (0); 167 } 168 169 /* ARGSUSED */ 170 static void 171 i_mac_client_impl_dtor(void *buf, void *arg) 172 { 173 int i; 174 mac_client_impl_t *mcip = buf; 175 176 ASSERT(mcip->mci_promisc_list == NULL); 177 ASSERT(mcip->mci_unicast_list == NULL); 178 ASSERT(mcip->mci_state_flags == 0); 179 ASSERT(mcip->mci_tx_flag == 0); 180 181 mutex_destroy(&mcip->mci_tx_cb_lock); 182 183 ASSERT(mac_tx_percpu_cnt >= 0); 184 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 185 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 186 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 187 } 188 cv_destroy(&mcip->mci_tx_cv); 189 } 190 191 /* ARGSUSED */ 192 static int 193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 194 { 195 mac_promisc_impl_t *mpip = buf; 196 197 bzero(buf, sizeof (mac_promisc_impl_t)); 198 mpip->mpi_mci_link.mcb_objp = buf; 199 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 200 mpip->mpi_mi_link.mcb_objp = buf; 201 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static void 207 i_mac_promisc_impl_dtor(void *buf, void *arg) 208 { 209 mac_promisc_impl_t *mpip = buf; 210 211 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 212 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 213 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 214 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 215 216 mpip->mpi_mci_link.mcb_objp = NULL; 217 mpip->mpi_mci_link.mcb_objsize = 0; 218 mpip->mpi_mi_link.mcb_objp = NULL; 219 mpip->mpi_mi_link.mcb_objsize = 0; 220 221 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 222 mpip->mpi_mci_link.mcb_objsize = 0; 223 } 224 225 void 226 mac_client_init(void) 227 { 228 ASSERT(mac_tx_percpu_cnt >= 0); 229 230 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 231 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 232 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 233 ASSERT(mac_client_impl_cache != NULL); 234 235 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 236 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 237 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 238 ASSERT(mac_promisc_impl_cache != NULL); 239 } 240 241 void 242 mac_client_fini(void) 243 { 244 kmem_cache_destroy(mac_client_impl_cache); 245 kmem_cache_destroy(mac_promisc_impl_cache); 246 } 247 248 /* 249 * Return the lower MAC client handle from the VNIC driver for the 250 * specified VNIC MAC instance. 251 */ 252 mac_client_impl_t * 253 mac_vnic_lower(mac_impl_t *mip) 254 { 255 mac_capab_vnic_t cap; 256 mac_client_impl_t *mcip; 257 258 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 259 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 260 261 return (mcip); 262 } 263 264 /* 265 * Return the MAC client handle of the primary MAC client for the 266 * specified MAC instance, or NULL otherwise. 267 */ 268 mac_client_impl_t * 269 mac_primary_client_handle(mac_impl_t *mip) 270 { 271 mac_client_impl_t *mcip; 272 273 if (mip->mi_state_flags & MIS_IS_VNIC) 274 return (mac_vnic_lower(mip)); 275 276 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 277 278 for (mcip = mip->mi_clients_list; mcip != NULL; 279 mcip = mcip->mci_client_next) { 280 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 281 return (mcip); 282 } 283 return (NULL); 284 } 285 286 /* 287 * Open a MAC specified by its MAC name. 288 */ 289 int 290 mac_open(const char *macname, mac_handle_t *mhp) 291 { 292 mac_impl_t *mip; 293 int err; 294 295 /* 296 * Look up its entry in the global hash table. 297 */ 298 if ((err = mac_hold(macname, &mip)) != 0) 299 return (err); 300 301 /* 302 * Hold the dip associated to the MAC to prevent it from being 303 * detached. For a softmac, its underlying dip is held by the 304 * mi_open() callback. 305 * 306 * This is done to be more tolerant with some defective drivers, 307 * which incorrectly handle mac_unregister() failure in their 308 * xxx_detach() routine. For example, some drivers ignore the 309 * failure of mac_unregister() and free all resources that 310 * that are needed for data transmition. 311 */ 312 e_ddi_hold_devi(mip->mi_dip); 313 314 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 315 *mhp = (mac_handle_t)mip; 316 return (0); 317 } 318 319 /* 320 * The mac perimeter is used in both mac_open and mac_close by the 321 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 322 */ 323 i_mac_perim_enter(mip); 324 mip->mi_oref++; 325 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 326 *mhp = (mac_handle_t)mip; 327 i_mac_perim_exit(mip); 328 return (0); 329 } 330 mip->mi_oref--; 331 ddi_release_devi(mip->mi_dip); 332 mac_rele(mip); 333 i_mac_perim_exit(mip); 334 return (err); 335 } 336 337 /* 338 * Open a MAC specified by its linkid. 339 */ 340 int 341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 342 { 343 dls_dl_handle_t dlh; 344 int err; 345 346 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 347 return (err); 348 349 dls_devnet_prop_task_wait(dlh); 350 351 err = mac_open(dls_devnet_mac(dlh), mhp); 352 353 dls_devnet_rele_tmp(dlh); 354 return (err); 355 } 356 357 /* 358 * Open a MAC specified by its link name. 359 */ 360 int 361 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 362 { 363 datalink_id_t linkid; 364 int err; 365 366 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 367 return (err); 368 return (mac_open_by_linkid(linkid, mhp)); 369 } 370 371 /* 372 * Close the specified MAC. 373 */ 374 void 375 mac_close(mac_handle_t mh) 376 { 377 mac_impl_t *mip = (mac_impl_t *)mh; 378 379 i_mac_perim_enter(mip); 380 /* 381 * The mac perimeter is used in both mac_open and mac_close by the 382 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 383 */ 384 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 385 ASSERT(mip->mi_oref != 0); 386 if (--mip->mi_oref == 0) { 387 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 388 mip->mi_close(mip->mi_driver); 389 } 390 } 391 i_mac_perim_exit(mip); 392 ddi_release_devi(mip->mi_dip); 393 mac_rele(mip); 394 } 395 396 /* 397 * Misc utility functions to retrieve various information about a MAC 398 * instance or a MAC client. 399 */ 400 401 const mac_info_t * 402 mac_info(mac_handle_t mh) 403 { 404 return (&((mac_impl_t *)mh)->mi_info); 405 } 406 407 dev_info_t * 408 mac_devinfo_get(mac_handle_t mh) 409 { 410 return (((mac_impl_t *)mh)->mi_dip); 411 } 412 413 const char * 414 mac_name(mac_handle_t mh) 415 { 416 return (((mac_impl_t *)mh)->mi_name); 417 } 418 419 char * 420 mac_client_name(mac_client_handle_t mch) 421 { 422 return (((mac_client_impl_t *)mch)->mci_name); 423 } 424 425 minor_t 426 mac_minor(mac_handle_t mh) 427 { 428 return (((mac_impl_t *)mh)->mi_minor); 429 } 430 431 /* 432 * Return the VID associated with a MAC client. This function should 433 * be called for clients which are associated with only one VID. 434 */ 435 uint16_t 436 mac_client_vid(mac_client_handle_t mch) 437 { 438 uint16_t vid = VLAN_ID_NONE; 439 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 440 flow_desc_t flow_desc; 441 442 if (mcip->mci_nflents == 0) 443 return (vid); 444 445 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 446 447 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 448 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 449 vid = flow_desc.fd_vid; 450 451 return (vid); 452 } 453 454 /* 455 * Return the link speed associated with the specified MAC client. 456 * 457 * The link speed of a MAC client is equal to the smallest value of 458 * 1) the current link speed of the underlying NIC, or 459 * 2) the bandwidth limit set for the MAC client. 460 * 461 * Note that the bandwidth limit can be higher than the speed 462 * of the underlying NIC. This is allowed to avoid spurious 463 * administration action failures or artifically lowering the 464 * bandwidth limit of a link that may have temporarily lowered 465 * its link speed due to hardware problem or administrator action. 466 */ 467 static uint64_t 468 mac_client_ifspeed(mac_client_impl_t *mcip) 469 { 470 mac_impl_t *mip = mcip->mci_mip; 471 uint64_t nic_speed; 472 473 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 474 475 if (nic_speed == 0) { 476 return (0); 477 } else { 478 uint64_t policy_limit = (uint64_t)-1; 479 480 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 481 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 482 483 return (MIN(policy_limit, nic_speed)); 484 } 485 } 486 487 /* 488 * Return the link state of the specified client. If here are more 489 * than one clients of the underying mac_impl_t, the link state 490 * will always be UP regardless of the link state of the underlying 491 * mac_impl_t. This is needed to allow the MAC clients to continue 492 * to communicate with each other even when the physical link of 493 * their mac_impl_t is down. 494 */ 495 static uint64_t 496 mac_client_link_state(mac_client_impl_t *mcip) 497 { 498 mac_impl_t *mip = mcip->mci_mip; 499 uint16_t vid; 500 mac_client_impl_t *mci_list; 501 mac_unicast_impl_t *mui_list, *oth_mui_list; 502 503 /* 504 * Returns LINK_STATE_UP if there are other MAC clients defined on 505 * mac_impl_t which share same VLAN ID as that of mcip. Note that 506 * if 'mcip' has more than one VID's then we match ANY one of the 507 * VID's with other MAC client's VID's and return LINK_STATE_UP. 508 */ 509 rw_enter(&mcip->mci_rw_lock, RW_READER); 510 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 511 mui_list = mui_list->mui_next) { 512 vid = mui_list->mui_vid; 513 for (mci_list = mip->mi_clients_list; mci_list != NULL; 514 mci_list = mci_list->mci_client_next) { 515 if (mci_list == mcip) 516 continue; 517 for (oth_mui_list = mci_list->mci_unicast_list; 518 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 519 mui_next) { 520 if (vid == oth_mui_list->mui_vid) { 521 rw_exit(&mcip->mci_rw_lock); 522 return (LINK_STATE_UP); 523 } 524 } 525 } 526 } 527 rw_exit(&mcip->mci_rw_lock); 528 529 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 530 } 531 532 /* 533 * Return the statistics of a MAC client. These statistics are different 534 * then the statistics of the underlying MAC which are returned by 535 * mac_stat_get(). 536 */ 537 uint64_t 538 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 539 { 540 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 541 mac_impl_t *mip = mcip->mci_mip; 542 uint64_t val; 543 544 switch (stat) { 545 case MAC_STAT_LINK_STATE: 546 val = mac_client_link_state(mcip); 547 break; 548 case MAC_STAT_LINK_UP: 549 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 550 break; 551 case MAC_STAT_PROMISC: 552 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 553 break; 554 case MAC_STAT_IFSPEED: 555 val = mac_client_ifspeed(mcip); 556 break; 557 case MAC_STAT_MULTIRCV: 558 val = mcip->mci_stat_multircv; 559 break; 560 case MAC_STAT_BRDCSTRCV: 561 val = mcip->mci_stat_brdcstrcv; 562 break; 563 case MAC_STAT_MULTIXMT: 564 val = mcip->mci_stat_multixmt; 565 break; 566 case MAC_STAT_BRDCSTXMT: 567 val = mcip->mci_stat_brdcstxmt; 568 break; 569 case MAC_STAT_OBYTES: 570 val = mcip->mci_stat_obytes; 571 break; 572 case MAC_STAT_OPACKETS: 573 val = mcip->mci_stat_opackets; 574 break; 575 case MAC_STAT_OERRORS: 576 val = mcip->mci_stat_oerrors; 577 break; 578 case MAC_STAT_IPACKETS: 579 val = mcip->mci_stat_ipackets; 580 break; 581 case MAC_STAT_RBYTES: 582 val = mcip->mci_stat_ibytes; 583 break; 584 case MAC_STAT_IERRORS: 585 val = mcip->mci_stat_ierrors; 586 break; 587 default: 588 val = mac_stat_default(mip, stat); 589 break; 590 } 591 592 return (val); 593 } 594 595 /* 596 * Return the statistics of the specified MAC instance. 597 */ 598 uint64_t 599 mac_stat_get(mac_handle_t mh, uint_t stat) 600 { 601 mac_impl_t *mip = (mac_impl_t *)mh; 602 uint64_t val; 603 int ret; 604 605 /* 606 * The range of stat determines where it is maintained. Stat 607 * values from 0 up to (but not including) MAC_STAT_MIN are 608 * mainteined by the mac module itself. Everything else is 609 * maintained by the driver. 610 * 611 * If the mac_impl_t being queried corresponds to a VNIC, 612 * the stats need to be queried from the lower MAC client 613 * corresponding to the VNIC. (The mac_link_update() 614 * invoked by the driver to the lower MAC causes the *lower 615 * MAC* to update its mi_linkstate, and send a notification 616 * to its MAC clients. Due to the VNIC passthrough, 617 * these notifications are sent to the upper MAC clients 618 * of the VNIC directly, and the upper mac_impl_t of the VNIC 619 * does not have a valid mi_linkstate. 620 */ 621 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 622 /* these stats are maintained by the mac module itself */ 623 switch (stat) { 624 case MAC_STAT_LINK_STATE: 625 return (mip->mi_linkstate); 626 case MAC_STAT_LINK_UP: 627 return (mip->mi_linkstate == LINK_STATE_UP); 628 case MAC_STAT_PROMISC: 629 return (mip->mi_devpromisc != 0); 630 default: 631 ASSERT(B_FALSE); 632 } 633 } 634 635 /* 636 * Call the driver to get the given statistic. 637 */ 638 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 639 if (ret != 0) { 640 /* 641 * The driver doesn't support this statistic. Get the 642 * statistic's default value. 643 */ 644 val = mac_stat_default(mip, stat); 645 } 646 return (val); 647 } 648 649 /* 650 * Utility function which returns the VID associated with a flow entry. 651 */ 652 uint16_t 653 i_mac_flow_vid(flow_entry_t *flent) 654 { 655 flow_desc_t flow_desc; 656 657 mac_flow_get_desc(flent, &flow_desc); 658 659 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 660 return (flow_desc.fd_vid); 661 return (VLAN_ID_NONE); 662 } 663 664 /* 665 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 666 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 667 * length. 668 */ 669 boolean_t 670 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 671 { 672 mac_impl_t *mip = (mac_impl_t *)mh; 673 674 /* 675 * Verify the address. No lock is needed since mi_type and plugin 676 * details don't change after mac_register(). 677 */ 678 if ((len != mip->mi_type->mt_addr_length) || 679 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 680 mip->mi_pdata)) != 0) { 681 return (B_FALSE); 682 } else { 683 return (B_TRUE); 684 } 685 } 686 687 void 688 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 689 { 690 mac_impl_t *mip = (mac_impl_t *)mh; 691 692 if (min_sdu != NULL) 693 *min_sdu = mip->mi_sdu_min; 694 if (max_sdu != NULL) 695 *max_sdu = mip->mi_sdu_max; 696 } 697 698 /* 699 * Update the MAC unicast address of the specified client's flows. Currently 700 * only one unicast MAC unicast address is allowed per client. 701 */ 702 static void 703 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 704 { 705 mac_impl_t *mip = mcip->mci_mip; 706 flow_entry_t *flent = mcip->mci_flent; 707 mac_address_t *map = mcip->mci_unicast; 708 flow_desc_t flow_desc; 709 710 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 711 ASSERT(flent != NULL); 712 713 mac_flow_get_desc(flent, &flow_desc); 714 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 715 716 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 717 mac_flow_set_desc(flent, &flow_desc); 718 719 /* 720 * A MAC client could have one MAC address but multiple 721 * VLANs. In that case update the flow entries corresponding 722 * to all VLANs of the MAC client. 723 */ 724 for (flent = mcip->mci_flent_list; flent != NULL; 725 flent = flent->fe_client_next) { 726 mac_flow_get_desc(flent, &flow_desc); 727 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 728 flent->fe_type & FLOW_VNIC_MAC)) 729 continue; 730 731 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 732 mac_flow_set_desc(flent, &flow_desc); 733 } 734 } 735 736 /* 737 * Update all clients that share the same unicast address. 738 */ 739 void 740 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 741 { 742 mac_client_impl_t *mcip; 743 744 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 745 746 /* 747 * Find all clients that share the same unicast MAC address and update 748 * them appropriately. 749 */ 750 for (mcip = mip->mi_clients_list; mcip != NULL; 751 mcip = mcip->mci_client_next) { 752 /* 753 * Ignore clients that don't share this MAC address. 754 */ 755 if (map != mcip->mci_unicast) 756 continue; 757 758 /* 759 * Update those clients with same old unicast MAC address. 760 */ 761 mac_unicast_update_client_flow(mcip); 762 } 763 } 764 765 /* 766 * Update the unicast MAC address of the specified VNIC MAC client. 767 * 768 * Check whether the operation is valid. Any of following cases should fail: 769 * 770 * 1. It's a VLAN type of VNIC. 771 * 2. The new value is current "primary" MAC address. 772 * 3. The current MAC address is shared with other clients. 773 * 4. The new MAC address has been used. This case will be valid when 774 * client migration is fully supported. 775 */ 776 int 777 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 778 { 779 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 780 mac_impl_t *mip = mcip->mci_mip; 781 mac_address_t *map = mcip->mci_unicast; 782 int err; 783 784 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 785 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 786 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 787 788 i_mac_perim_enter(mip); 789 790 /* 791 * If this is a VLAN type of VNIC, it's using "primary" MAC address 792 * of the underlying interface. Must fail here. Refer to case 1 above. 793 */ 794 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 795 i_mac_perim_exit(mip); 796 return (ENOTSUP); 797 } 798 799 /* 800 * If the new address is the "primary" one, must fail. Refer to 801 * case 2 above. 802 */ 803 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 804 i_mac_perim_exit(mip); 805 return (EACCES); 806 } 807 808 /* 809 * If the address is shared by multiple clients, must fail. Refer 810 * to case 3 above. 811 */ 812 if (mac_check_macaddr_shared(map)) { 813 i_mac_perim_exit(mip); 814 return (EBUSY); 815 } 816 817 /* 818 * If the new address has been used, must fail for now. Refer to 819 * case 4 above. 820 */ 821 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 822 i_mac_perim_exit(mip); 823 return (ENOTSUP); 824 } 825 826 /* 827 * Update the MAC address. 828 */ 829 err = mac_update_macaddr(map, (uint8_t *)addr); 830 831 if (err != 0) { 832 i_mac_perim_exit(mip); 833 return (err); 834 } 835 836 /* 837 * Update all flows of this MAC client. 838 */ 839 mac_unicast_update_client_flow(mcip); 840 841 i_mac_perim_exit(mip); 842 return (0); 843 } 844 845 /* 846 * Program the new primary unicast address of the specified MAC. 847 * 848 * Function mac_update_macaddr() takes care different types of underlying 849 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 850 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 851 * which will take care of updating the MAC address of the corresponding 852 * MAC client. 853 * 854 * This is the only interface that allow the client to update the "primary" 855 * MAC address of the underlying MAC. The new value must have not been 856 * used by other clients. 857 */ 858 int 859 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 860 { 861 mac_impl_t *mip = (mac_impl_t *)mh; 862 mac_address_t *map; 863 int err; 864 865 /* verify the address validity */ 866 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 867 return (EINVAL); 868 869 i_mac_perim_enter(mip); 870 871 /* 872 * If the new value is the same as the current primary address value, 873 * there's nothing to do. 874 */ 875 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 876 i_mac_perim_exit(mip); 877 return (0); 878 } 879 880 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) { 881 i_mac_perim_exit(mip); 882 return (EBUSY); 883 } 884 885 map = mac_find_macaddr(mip, mip->mi_addr); 886 ASSERT(map != NULL); 887 888 /* 889 * Update the MAC address. 890 */ 891 if (mip->mi_state_flags & MIS_IS_AGGR) { 892 mac_capab_aggr_t aggr_cap; 893 894 /* 895 * If the mac is an aggregation, other than the unicast 896 * addresses programming, aggr must be informed about this 897 * primary unicst address change to change its mac address 898 * policy to be user-specified. 899 */ 900 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 901 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 902 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 903 if (err == 0) 904 bcopy(addr, map->ma_addr, map->ma_len); 905 } else { 906 err = mac_update_macaddr(map, (uint8_t *)addr); 907 } 908 909 if (err != 0) { 910 i_mac_perim_exit(mip); 911 return (err); 912 } 913 914 mac_unicast_update_clients(mip, map); 915 916 /* 917 * Save the new primary MAC address in mac_impl_t. 918 */ 919 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 920 921 i_mac_perim_exit(mip); 922 923 if (err == 0) 924 i_mac_notify(mip, MAC_NOTE_UNICST); 925 926 return (err); 927 } 928 929 /* 930 * Return the current primary MAC address of the specified MAC. 931 */ 932 void 933 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 934 { 935 mac_impl_t *mip = (mac_impl_t *)mh; 936 937 rw_enter(&mip->mi_rw_lock, RW_READER); 938 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 939 rw_exit(&mip->mi_rw_lock); 940 } 941 942 /* 943 * Return information about the use of the primary MAC address of the 944 * specified MAC instance: 945 * 946 * - if client_name is non-NULL, it must point to a string of at 947 * least MAXNAMELEN bytes, and will be set to the name of the MAC 948 * client which uses the primary MAC address. 949 * 950 * - if in_use is non-NULL, used to return whether the primary MAC 951 * address is currently in use. 952 */ 953 void 954 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 955 { 956 mac_impl_t *mip = (mac_impl_t *)mh; 957 mac_client_impl_t *cur_client; 958 959 if (in_use != NULL) 960 *in_use = B_FALSE; 961 if (client_name != NULL) 962 bzero(client_name, MAXNAMELEN); 963 964 /* 965 * The mi_rw_lock is used to protect threads that don't hold the 966 * mac perimeter to get a consistent view of the mi_clients_list. 967 * Threads that modify the list must hold both the mac perimeter and 968 * mi_rw_lock(RW_WRITER) 969 */ 970 rw_enter(&mip->mi_rw_lock, RW_READER); 971 for (cur_client = mip->mi_clients_list; cur_client != NULL; 972 cur_client = cur_client->mci_client_next) { 973 if (mac_is_primary_client(cur_client) || 974 (mip->mi_state_flags & MIS_IS_VNIC)) { 975 rw_exit(&mip->mi_rw_lock); 976 if (in_use != NULL) 977 *in_use = B_TRUE; 978 if (client_name != NULL) { 979 bcopy(cur_client->mci_name, client_name, 980 MAXNAMELEN); 981 } 982 return; 983 } 984 } 985 rw_exit(&mip->mi_rw_lock); 986 } 987 988 /* 989 * Add the specified MAC client to the list of clients which opened 990 * the specified MAC. 991 */ 992 static void 993 mac_client_add(mac_client_impl_t *mcip) 994 { 995 mac_impl_t *mip = mcip->mci_mip; 996 997 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 998 999 /* add VNIC to the front of the list */ 1000 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1001 mcip->mci_client_next = mip->mi_clients_list; 1002 mip->mi_clients_list = mcip; 1003 mip->mi_nclients++; 1004 rw_exit(&mip->mi_rw_lock); 1005 } 1006 1007 /* 1008 * Remove the specified MAC client from the list of clients which opened 1009 * the specified MAC. 1010 */ 1011 static void 1012 mac_client_remove(mac_client_impl_t *mcip) 1013 { 1014 mac_impl_t *mip = mcip->mci_mip; 1015 mac_client_impl_t **prev, *cclient; 1016 1017 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1018 1019 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1020 prev = &mip->mi_clients_list; 1021 cclient = *prev; 1022 while (cclient != NULL && cclient != mcip) { 1023 prev = &cclient->mci_client_next; 1024 cclient = *prev; 1025 } 1026 ASSERT(cclient != NULL); 1027 *prev = cclient->mci_client_next; 1028 mip->mi_nclients--; 1029 rw_exit(&mip->mi_rw_lock); 1030 } 1031 1032 static mac_unicast_impl_t * 1033 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1034 { 1035 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1036 1037 while ((muip != NULL) && (muip->mui_vid != vid)) 1038 muip = muip->mui_next; 1039 1040 return (muip); 1041 } 1042 1043 /* 1044 * Return whether the specified (MAC address, VID) tuple is already used by 1045 * one of the MAC clients associated with the specified MAC. 1046 */ 1047 static boolean_t 1048 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1049 { 1050 mac_client_impl_t *client; 1051 mac_address_t *map; 1052 1053 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1054 1055 for (client = mip->mi_clients_list; client != NULL; 1056 client = client->mci_client_next) { 1057 1058 /* 1059 * Ignore clients that don't have unicast address. 1060 */ 1061 if (client->mci_unicast_list == NULL) 1062 continue; 1063 1064 map = client->mci_unicast; 1065 1066 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1067 (mac_client_find_vid(client, vid) != NULL)) { 1068 return (B_TRUE); 1069 } 1070 } 1071 1072 return (B_FALSE); 1073 } 1074 1075 /* 1076 * Generate a random MAC address. The MAC address prefix is 1077 * stored in the array pointed to by mac_addr, and its length, in bytes, 1078 * is specified by prefix_len. The least significant bits 1079 * after prefix_len bytes are generated, and stored after the prefix 1080 * in the mac_addr array. 1081 */ 1082 int 1083 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1084 uint8_t *mac_addr, mac_diag_t *diag) 1085 { 1086 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1087 mac_impl_t *mip = mcip->mci_mip; 1088 size_t addr_len = mip->mi_type->mt_addr_length; 1089 1090 if (prefix_len >= addr_len) { 1091 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1092 return (EINVAL); 1093 } 1094 1095 /* check the prefix value */ 1096 if (prefix_len > 0) { 1097 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1098 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1099 addr_len)) { 1100 *diag = MAC_DIAG_MACPREFIX_INVALID; 1101 return (EINVAL); 1102 } 1103 } 1104 1105 /* generate the MAC address */ 1106 if (prefix_len < addr_len) { 1107 (void) random_get_pseudo_bytes(mac_addr + 1108 prefix_len, addr_len - prefix_len); 1109 } 1110 1111 *diag = 0; 1112 return (0); 1113 } 1114 1115 /* 1116 * Set the priority range for this MAC client. This will be used to 1117 * determine the absolute priority for the threads created for this 1118 * MAC client using the specified "low", "medium" and "high" level. 1119 * This will also be used for any subflows on this MAC client. 1120 */ 1121 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1122 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1123 MAXCLSYSPRI, (pri)); \ 1124 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1125 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1126 } 1127 1128 /* 1129 * MAC client open entry point. Return a new MAC client handle. Each 1130 * MAC client is associated with a name, specified through the 'name' 1131 * argument. 1132 */ 1133 int 1134 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1135 uint16_t flags) 1136 { 1137 mac_impl_t *mip = (mac_impl_t *)mh; 1138 mac_client_impl_t *mcip; 1139 int err = 0; 1140 boolean_t share_desired = 1141 ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0); 1142 boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0); 1143 boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0); 1144 flow_entry_t *flent = NULL; 1145 1146 *mchp = NULL; 1147 if (share_desired && no_hwrings) { 1148 /* can't have shares but no hardware rings */ 1149 return (EINVAL); 1150 } 1151 1152 i_mac_perim_enter(mip); 1153 1154 if (mip->mi_state_flags & MIS_IS_VNIC) { 1155 /* 1156 * The underlying MAC is a VNIC. Return the MAC client 1157 * handle of the lower MAC which was obtained by 1158 * the VNIC driver when it did its mac_client_open(). 1159 */ 1160 1161 mcip = mac_vnic_lower(mip); 1162 /* 1163 * If there are multiple MAC clients of the VNIC, they 1164 * all share the same underlying MAC client handle. 1165 */ 1166 if ((flags & MAC_OPEN_FLAGS_TAG_DISABLE) != 0) 1167 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1168 1169 if ((flags & MAC_OPEN_FLAGS_STRIP_DISABLE) != 0) 1170 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1171 1172 if ((flags & MAC_OPEN_FLAGS_DISABLE_TX_VID_CHECK) != 0) 1173 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1174 1175 /* 1176 * Note that multiple mac clients share the same mcip in 1177 * this case. 1178 */ 1179 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1180 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1181 1182 mip->mi_clients_list = mcip; 1183 i_mac_perim_exit(mip); 1184 *mchp = (mac_client_handle_t)mcip; 1185 return (err); 1186 } 1187 1188 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1189 1190 mcip->mci_mip = mip; 1191 mcip->mci_upper_mip = NULL; 1192 mcip->mci_rx_fn = mac_pkt_drop; 1193 mcip->mci_rx_arg = NULL; 1194 mcip->mci_direct_rx_fn = NULL; 1195 mcip->mci_direct_rx_arg = NULL; 1196 1197 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1198 mcip->mci_state_flags |= MCIS_IS_VNIC; 1199 1200 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1201 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1202 1203 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1204 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1205 1206 if ((flags & MAC_OPEN_FLAGS_TAG_DISABLE) != 0) 1207 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1208 1209 if ((flags & MAC_OPEN_FLAGS_STRIP_DISABLE) != 0) 1210 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1211 1212 if ((flags & MAC_OPEN_FLAGS_DISABLE_TX_VID_CHECK) != 0) 1213 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1214 1215 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1216 datalink_id_t linkid; 1217 1218 ASSERT(name == NULL); 1219 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1220 &linkid)) != 0) { 1221 goto done; 1222 } 1223 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1224 NULL, NULL)) != 0) { 1225 /* 1226 * Use mac name if dlmgmtd is not available. 1227 */ 1228 if (err == EBADF) { 1229 (void) strlcpy(mcip->mci_name, mip->mi_name, 1230 sizeof (mcip->mci_name)); 1231 err = 0; 1232 } else { 1233 goto done; 1234 } 1235 } 1236 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1237 } else { 1238 ASSERT(name != NULL); 1239 if (strlen(name) > MAXNAMELEN) { 1240 err = EINVAL; 1241 goto done; 1242 } 1243 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1244 } 1245 /* the subflow table will be created dynamically */ 1246 mcip->mci_subflow_tab = NULL; 1247 mcip->mci_stat_multircv = 0; 1248 mcip->mci_stat_brdcstrcv = 0; 1249 mcip->mci_stat_multixmt = 0; 1250 mcip->mci_stat_brdcstxmt = 0; 1251 1252 mcip->mci_stat_obytes = 0; 1253 mcip->mci_stat_opackets = 0; 1254 mcip->mci_stat_oerrors = 0; 1255 mcip->mci_stat_ibytes = 0; 1256 mcip->mci_stat_ipackets = 0; 1257 mcip->mci_stat_ierrors = 0; 1258 1259 /* Create an initial flow */ 1260 1261 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1262 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1263 FLOW_PRIMARY_MAC, &flent); 1264 if (err != 0) 1265 goto done; 1266 mcip->mci_flent = flent; 1267 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1268 flent->fe_mcip = mcip; 1269 /* 1270 * Place initial creation reference on the flow. This reference 1271 * is released in the corresponding delete action viz. 1272 * mac_unicast_remove after waiting for all transient refs to 1273 * to go away. The wait happens in mac_flow_wait. 1274 */ 1275 FLOW_REFHOLD(flent); 1276 1277 /* 1278 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1279 * will have the right value for mac_rx_srs_setup(). 1280 */ 1281 mac_client_add(mcip); 1282 1283 if (no_hwrings) 1284 mcip->mci_state_flags |= MCIS_NO_HWRINGS; 1285 if (req_hwrings) 1286 mcip->mci_state_flags |= MCIS_REQ_HWRINGS; 1287 mcip->mci_share = NULL; 1288 if (share_desired) { 1289 ASSERT(!no_hwrings); 1290 i_mac_share_alloc(mcip); 1291 } 1292 1293 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1294 mcip->mci_mip, mac_client_impl_t *, mcip); 1295 *mchp = (mac_client_handle_t)mcip; 1296 1297 i_mac_perim_exit(mip); 1298 return (0); 1299 1300 done: 1301 i_mac_perim_exit(mip); 1302 mcip->mci_state_flags = 0; 1303 mcip->mci_tx_flag = 0; 1304 kmem_cache_free(mac_client_impl_cache, mcip); 1305 return (err); 1306 } 1307 1308 /* 1309 * Close the specified MAC client handle. 1310 */ 1311 void 1312 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1313 { 1314 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1315 mac_impl_t *mip = mcip->mci_mip; 1316 flow_entry_t *flent; 1317 1318 i_mac_perim_enter(mip); 1319 1320 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1321 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1322 1323 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1324 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1325 /* 1326 * This is an upper VNIC client initiated operation. 1327 * The lower MAC client will be closed by the VNIC driver 1328 * when the VNIC is deleted. 1329 */ 1330 1331 /* 1332 * Clear the flags set when the upper client initiated 1333 * open. 1334 */ 1335 mcip->mci_state_flags &= ~(MCIS_TAG_DISABLE | 1336 MCIS_STRIP_DISABLE | MCIS_DISABLE_TX_VID_CHECK); 1337 1338 i_mac_perim_exit(mip); 1339 return; 1340 } 1341 1342 /* 1343 * Remove the flent associated with the MAC client 1344 */ 1345 flent = mcip->mci_flent; 1346 mcip->mci_flent = NULL; 1347 FLOW_FINAL_REFRELE(flent); 1348 1349 /* 1350 * MAC clients must remove the unicast addresses and promisc callbacks 1351 * they added before issuing a mac_client_close(). 1352 */ 1353 ASSERT(mcip->mci_unicast_list == NULL); 1354 ASSERT(mcip->mci_promisc_list == NULL); 1355 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1356 1357 i_mac_share_free(mcip); 1358 1359 mac_client_remove(mcip); 1360 1361 i_mac_perim_exit(mip); 1362 mcip->mci_subflow_tab = NULL; 1363 mcip->mci_state_flags = 0; 1364 mcip->mci_tx_flag = 0; 1365 kmem_cache_free(mac_client_impl_cache, mch); 1366 } 1367 1368 /* 1369 * Enable bypass for the specified MAC client. 1370 */ 1371 boolean_t 1372 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1373 { 1374 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1375 mac_impl_t *mip = mcip->mci_mip; 1376 1377 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1378 1379 /* 1380 * If the mac_client is a VLAN or native media is non ethernet, we 1381 * should not do DLS bypass and instead let the packets go via the 1382 * default mac_rx_deliver route so vlan header can be stripped etc. 1383 */ 1384 if (mcip->mci_nvids > 0 || 1385 mip->mi_info.mi_nativemedia != DL_ETHER) 1386 return (B_FALSE); 1387 1388 /* 1389 * These are not accessed directly in the data path, and hence 1390 * don't need any protection 1391 */ 1392 mcip->mci_direct_rx_fn = rx_fn; 1393 mcip->mci_direct_rx_arg = arg1; 1394 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 1395 return (B_TRUE); 1396 } 1397 1398 /* 1399 * Set the receive callback for the specified MAC client. There can be 1400 * at most one such callback per MAC client. 1401 */ 1402 void 1403 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1404 { 1405 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1406 mac_impl_t *mip = mcip->mci_mip; 1407 1408 /* 1409 * Instead of adding an extra set of locks and refcnts in 1410 * the datapath at the mac client boundary, we temporarily quiesce 1411 * the SRS and related entities. We then change the receive function 1412 * without interference from any receive data thread and then reenable 1413 * the data flow subsequently. 1414 */ 1415 i_mac_perim_enter(mip); 1416 mac_rx_client_quiesce(mch); 1417 1418 mcip->mci_rx_fn = rx_fn; 1419 mcip->mci_rx_arg = arg; 1420 mac_rx_client_restart(mch); 1421 i_mac_perim_exit(mip); 1422 } 1423 1424 /* 1425 * Reset the receive callback for the specified MAC client. 1426 */ 1427 void 1428 mac_rx_clear(mac_client_handle_t mch) 1429 { 1430 mac_rx_set(mch, mac_pkt_drop, NULL); 1431 } 1432 1433 /* 1434 * Walk the MAC client subflow table and updates their priority values. 1435 */ 1436 static int 1437 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1438 { 1439 mac_flow_update_priority(arg, flent); 1440 return (0); 1441 } 1442 1443 void 1444 mac_update_subflow_priority(mac_client_impl_t *mcip) 1445 { 1446 (void) mac_flow_walk(mcip->mci_subflow_tab, 1447 mac_update_subflow_priority_cb, mcip); 1448 } 1449 1450 /* 1451 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 1452 * to initialize the cpu and resource control structure in the 1453 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 1454 * properties before the flow entry for the unicast address was created). 1455 */ 1456 int 1457 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 1458 { 1459 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1460 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1461 int err = 0; 1462 1463 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1464 1465 err = mac_validate_props(mrp); 1466 if (err != 0) 1467 return (err); 1468 1469 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 1470 if (MCIP_DATAPATH_SETUP(mcip)) { 1471 /* 1472 * We have to set this prior to calling mac_flow_modify. 1473 */ 1474 if (mrp->mrp_mask & MRP_PRIORITY) { 1475 if (mrp->mrp_priority == MPL_RESET) { 1476 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1477 MPL_LINK_DEFAULT); 1478 } else { 1479 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1480 mrp->mrp_priority); 1481 } 1482 } 1483 1484 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 1485 if (mrp->mrp_mask & MRP_PRIORITY) 1486 mac_update_subflow_priority(mcip); 1487 return (0); 1488 } 1489 return (0); 1490 } 1491 1492 void 1493 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp) 1494 { 1495 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1496 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 1497 1498 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 1499 } 1500 1501 static int 1502 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 1503 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 1504 flow_entry_t **flent, mac_resource_props_t *mrp) 1505 { 1506 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1507 flow_desc_t flow_desc; 1508 char flowname[MAXFLOWNAMELEN]; 1509 int err; 1510 uint_t flent_flags; 1511 1512 /* 1513 * First unicast address being added, create a new flow 1514 * for that MAC client. 1515 */ 1516 bzero(&flow_desc, sizeof (flow_desc)); 1517 1518 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 1519 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 1520 flow_desc.fd_mask = FLOW_LINK_DST; 1521 if (vid != 0) { 1522 flow_desc.fd_vid = vid; 1523 flow_desc.fd_mask |= FLOW_LINK_VID; 1524 } 1525 1526 /* 1527 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 1528 * and FLOW_VNIC. Even though they're a hack inherited 1529 * from the SRS code, we'll keep them for now. They're currently 1530 * consumed by mac_datapath_setup() to create the SRS. 1531 * That code should be eventually moved out of 1532 * mac_datapath_setup() and moved to a mac_srs_create() 1533 * function of some sort to keep things clean. 1534 * 1535 * Also, there's no reason why the SRS for the primary MAC 1536 * client should be different than any other MAC client. Until 1537 * this is cleaned-up, we support only one MAC unicast address 1538 * per client. 1539 * 1540 * We set FLOW_PRIMARY_MAC for the primary MAC address, 1541 * FLOW_VNIC for everything else. 1542 */ 1543 if (is_primary) 1544 flent_flags = FLOW_PRIMARY_MAC; 1545 else 1546 flent_flags = FLOW_VNIC_MAC; 1547 1548 /* 1549 * For the first flow we use the mac client's name - mci_name, for 1550 * subsequent ones we just create a name with the vid. This is 1551 * so that we can add these flows to the same flow table. This is 1552 * fine as the flow name (except for the one with the mac client's 1553 * name) is not visible. When the first flow is removed, we just replace 1554 * its fdesc with another from the list, so we will still retain the 1555 * flent with the MAC client's flow name. 1556 */ 1557 if (first_flow) { 1558 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 1559 } else { 1560 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 1561 flent_flags = FLOW_NO_STATS; 1562 } 1563 1564 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 1565 flent_flags, flent)) != 0) 1566 return (err); 1567 1568 FLOW_MARK(*flent, FE_INCIPIENT); 1569 (*flent)->fe_mcip = mcip; 1570 1571 /* 1572 * Place initial creation reference on the flow. This reference 1573 * is released in the corresponding delete action viz. 1574 * mac_unicast_remove after waiting for all transient refs to 1575 * to go away. The wait happens in mac_flow_wait. 1576 * We have already held the reference in mac_client_open(). 1577 */ 1578 if (!first_flow) 1579 FLOW_REFHOLD(*flent); 1580 return (0); 1581 } 1582 1583 /* Refresh the multicast grouping for this VID. */ 1584 int 1585 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 1586 { 1587 flow_entry_t *flent = arg; 1588 mac_client_impl_t *mcip = flent->fe_mcip; 1589 uint16_t vid; 1590 flow_desc_t flow_desc; 1591 1592 mac_flow_get_desc(flent, &flow_desc); 1593 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 1594 flow_desc.fd_vid : VLAN_ID_NONE; 1595 1596 /* 1597 * We don't call mac_multicast_add()/mac_multicast_remove() as 1598 * we want to add/remove for this specific vid. 1599 */ 1600 if (add) { 1601 return (mac_bcast_add(mcip, addrp, vid, 1602 MAC_ADDRTYPE_MULTICAST)); 1603 } else { 1604 mac_bcast_delete(mcip, addrp, vid); 1605 return (0); 1606 } 1607 } 1608 1609 /* 1610 * Add a new unicast address to the MAC client. 1611 * 1612 * The MAC address can be specified either by value, or the MAC client 1613 * can specify that it wants to use the primary MAC address of the 1614 * underlying MAC. See the introductory comments at the beginning 1615 * of this file for more more information on primary MAC addresses. 1616 * 1617 * Note also the tuple (MAC address, VID) must be unique 1618 * for the MAC clients defined on top of the same underlying MAC 1619 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 1620 */ 1621 1622 int 1623 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1624 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1625 { 1626 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1627 mac_impl_t *mip = mcip->mci_mip; 1628 mac_unicast_impl_t *muip; 1629 flow_entry_t *flent; 1630 int err; 1631 uint_t mac_len = mip->mi_type->mt_addr_length; 1632 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 1633 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 1634 boolean_t is_vnic_primary = (flags & MAC_UNICAST_VNIC_PRIMARY); 1635 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 1636 boolean_t bcast_added = B_FALSE; 1637 boolean_t nactiveclients_added = B_FALSE; 1638 boolean_t mac_started = B_FALSE; 1639 mac_resource_props_t mrp; 1640 1641 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1642 1643 /* when VID is non-zero, the underlying MAC can not be VNIC */ 1644 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0))); 1645 1646 /* 1647 * Check whether it's the primary client and flag it. 1648 */ 1649 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0) 1650 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 1651 1652 /* 1653 * is_vnic_primary is true when we come here as a VLAN VNIC 1654 * which uses the primary mac client's address but with a non-zero 1655 * VID. In this case the MAC address is not specified by an upper 1656 * MAC client. 1657 */ 1658 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 1659 !is_vnic_primary) { 1660 /* 1661 * The address is being set by the upper MAC client 1662 * of a VNIC. The MAC address was already set by the 1663 * VNIC driver during VNIC creation. 1664 * 1665 * Note: a VNIC has only one MAC address. We return 1666 * the MAC unicast address handle of the lower MAC client 1667 * corresponding to the VNIC. We allocate a new entry 1668 * which is flagged appropriately, so that mac_unicast_remove() 1669 * doesn't attempt to free the original entry that 1670 * was allocated by the VNIC driver. 1671 */ 1672 ASSERT(mcip->mci_unicast != NULL); 1673 1674 /* 1675 * Ensure that the primary unicast address of the VNIC 1676 * is added only once. 1677 */ 1678 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) 1679 return (EBUSY); 1680 1681 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1682 1683 /* 1684 * Create a handle for vid 0. 1685 */ 1686 ASSERT(vid == 0); 1687 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1688 muip->mui_vid = vid; 1689 *mah = (mac_unicast_handle_t)muip; 1690 return (0); 1691 } 1692 1693 /* primary MAC clients cannot be opened on top of anchor VNICs */ 1694 if ((is_vnic_primary || is_primary) && 1695 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 1696 return (ENXIO); 1697 } 1698 1699 /* 1700 * Return EBUSY if: 1701 * - this is an exclusive active mac client and there already exist 1702 * active mac clients, or 1703 * - there already exist an exclusively active mac client. 1704 */ 1705 if ((mcip->mci_state_flags & MCIS_EXCLUSIVE) && 1706 (mip->mi_nactiveclients != 0) || (mip->mi_state_flags & 1707 MIS_EXCLUSIVE)) { 1708 return (EBUSY); 1709 } 1710 1711 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 1712 mip->mi_state_flags |= MIS_EXCLUSIVE; 1713 1714 bzero(&mrp, sizeof (mac_resource_props_t)); 1715 if (is_primary && !(mcip->mci_state_flags & MCIS_IS_VNIC)) { 1716 /* 1717 * Apply the property cached in the mac_impl_t to the primary 1718 * mac client. If the mac client is a VNIC, its property were 1719 * already set in the mcip when the VNIC was created. 1720 */ 1721 mac_get_resources((mac_handle_t)mip, &mrp); 1722 (void) mac_client_set_resources(mch, &mrp); 1723 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 1724 bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp, 1725 sizeof (mac_resource_props_t)); 1726 } 1727 1728 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1729 muip->mui_vid = vid; 1730 1731 if (is_primary || is_vnic_primary) { 1732 mac_addr = mip->mi_addr; 1733 check_dups = B_TRUE; 1734 } else { 1735 1736 /* 1737 * Verify the validity of the specified MAC addresses value. 1738 */ 1739 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 1740 *diag = MAC_DIAG_MACADDR_INVALID; 1741 err = EINVAL; 1742 goto bail; 1743 } 1744 1745 /* 1746 * Make sure that the specified MAC address is different 1747 * than the unicast MAC address of the underlying NIC. 1748 */ 1749 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 1750 *diag = MAC_DIAG_MACADDR_NIC; 1751 err = EINVAL; 1752 goto bail; 1753 } 1754 } 1755 1756 /* 1757 * Make sure the MAC address is not already used by 1758 * another MAC client defined on top of the same 1759 * underlying NIC. 1760 * xxx-venu mac_unicast_add doesnt' seem to be called 1761 * with MAC_UNICAST_NODUPCHECK currently, if it does 1762 * get called we need to do mac_addr_in_use() just 1763 * to check for addr_in_use till 6697876 is fixed. 1764 */ 1765 if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) { 1766 *diag = MAC_DIAG_MACADDR_INUSE; 1767 err = EEXIST; 1768 goto bail; 1769 } 1770 1771 if ((err = mac_start(mip)) != 0) 1772 goto bail; 1773 1774 mac_started = B_TRUE; 1775 1776 /* add the MAC client to the broadcast address group by default */ 1777 if (mip->mi_type->mt_brdcst_addr != NULL) { 1778 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 1779 MAC_ADDRTYPE_BROADCAST); 1780 if (err != 0) 1781 goto bail; 1782 bcast_added = B_TRUE; 1783 } 1784 flent = mcip->mci_flent; 1785 ASSERT(flent != NULL); 1786 1787 /* We are configuring the unicast flow now */ 1788 if (!MCIP_DATAPATH_SETUP(mcip)) { 1789 if (is_unicast_hw) { 1790 /* 1791 * The client requires a hardware MAC address slot 1792 * for that unicast address. Since we support only 1793 * one unicast MAC address per client, flag the 1794 * MAC client itself. 1795 */ 1796 mcip->mci_state_flags |= MCIS_UNICAST_HW; 1797 } 1798 1799 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1800 (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority : 1801 MPL_LINK_DEFAULT); 1802 1803 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1804 is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0) 1805 goto bail; 1806 1807 mip->mi_nactiveclients++; 1808 nactiveclients_added = B_TRUE; 1809 /* 1810 * This will allocate the RX ring group if possible for the 1811 * flow and program the software classifier as needed. 1812 */ 1813 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 1814 goto bail; 1815 1816 /* 1817 * The unicast MAC address must have been added successfully. 1818 */ 1819 ASSERT(mcip->mci_unicast != NULL); 1820 } else { 1821 mac_address_t *map = mcip->mci_unicast; 1822 1823 /* 1824 * A unicast flow already exists for that MAC client, 1825 * this flow must be the same mac address but with 1826 * different VID. It has been checked by mac_addr_in_use(). 1827 * 1828 * We will use the SRS etc. from the mci_flent. Note that 1829 * We don't need to create kstat for this as except for 1830 * the fdesc, everything will be used from in the 1st flent. 1831 */ 1832 1833 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 1834 err = EINVAL; 1835 goto bail; 1836 } 1837 1838 /* 1839 * Make sure the client is consistent about its requests 1840 * for MAC addresses. I.e. all requests from the clients 1841 * must have the MAC_UNICAST_HW flag set or clear. 1842 */ 1843 if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 1844 !is_unicast_hw || 1845 (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 1846 is_unicast_hw) { 1847 err = EINVAL; 1848 goto bail; 1849 } 1850 1851 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1852 is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0) 1853 goto bail; 1854 1855 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 1856 FLOW_FINAL_REFRELE(flent); 1857 goto bail; 1858 } 1859 1860 /* update the multicast group for this vid */ 1861 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 1862 (void *)flent, B_TRUE); 1863 1864 } 1865 1866 /* populate the shared MAC address */ 1867 muip->mui_map = mcip->mci_unicast; 1868 1869 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1870 muip->mui_next = mcip->mci_unicast_list; 1871 mcip->mci_unicast_list = muip; 1872 rw_exit(&mcip->mci_rw_lock); 1873 1874 *mah = (mac_unicast_handle_t)muip; 1875 1876 /* add it to the flow list of this mcip */ 1877 mac_client_add_to_flow_list(mcip, flent); 1878 1879 /* 1880 * Trigger a renegotiation of the capabilities when the number of 1881 * active clients changes from 1 to 2, since some of the capabilities 1882 * might have to be disabled. Also send a MAC_NOTE_LINK notification 1883 * to all the MAC clients whenever physical link is DOWN. 1884 */ 1885 if (mip->mi_nactiveclients == 2) { 1886 mac_capab_update((mac_handle_t)mip); 1887 mac_virtual_link_update(mip); 1888 } 1889 /* 1890 * Now that the setup is complete, clear the INCIPIENT flag. 1891 * The flag was set to avoid incoming packets seeing inconsistent 1892 * structures while the setup was in progress. Clear the mci_tx_flag 1893 * by calling mac_tx_client_block. It is possible that 1894 * mac_unicast_remove was called prior to this mac_unicast_add which 1895 * could have set the MCI_TX_QUIESCE flag. 1896 */ 1897 if (flent->fe_rx_ring_group != NULL) 1898 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 1899 FLOW_UNMARK(flent, FE_INCIPIENT); 1900 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 1901 mac_tx_client_unblock(mcip); 1902 return (0); 1903 bail: 1904 if (bcast_added) 1905 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 1906 if (mac_started) 1907 mac_stop(mip); 1908 1909 if (nactiveclients_added) 1910 mip->mi_nactiveclients--; 1911 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 1912 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 1913 kmem_free(muip, sizeof (mac_unicast_impl_t)); 1914 return (err); 1915 } 1916 1917 int 1918 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1919 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1920 { 1921 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 1922 uint_t err; 1923 1924 i_mac_perim_enter(mip); 1925 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 1926 i_mac_perim_exit(mip); 1927 1928 return (err); 1929 } 1930 1931 /* 1932 * Add the primary MAC address to the MAC client. This is a convenience 1933 * function which can be called by primary MAC clients which do not 1934 * need to specify any other additional flags. 1935 * 1936 * It's called in one of following situations: 1937 * * dls as the primary MAC client 1938 * * aggr as an exclusive client 1939 * * by VNIC's client 1940 */ 1941 int 1942 mac_unicast_primary_add(mac_client_handle_t mch, mac_unicast_handle_t *mah, 1943 mac_diag_t *diag) 1944 { 1945 return (mac_unicast_add(mch, NULL, MAC_UNICAST_PRIMARY, mah, 0, diag)); 1946 } 1947 1948 /* 1949 * Remove a MAC address which was previously added by mac_unicast_add(). 1950 */ 1951 int 1952 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 1953 { 1954 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1955 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 1956 mac_unicast_impl_t *pre; 1957 mac_impl_t *mip = mcip->mci_mip; 1958 flow_entry_t *flent; 1959 1960 i_mac_perim_enter(mip); 1961 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 1962 /* 1963 * Called made by the upper MAC client of a VNIC. 1964 * There's nothing much to do, the unicast address will 1965 * be removed by the VNIC driver when the VNIC is deleted, 1966 * but let's ensure that all our transmit is done before 1967 * the client does a mac_client_stop lest it trigger an 1968 * assert in the driver. 1969 */ 1970 ASSERT(muip->mui_vid == 0); 1971 1972 mac_tx_client_flush(mcip); 1973 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1974 1975 kmem_free(muip, sizeof (mac_unicast_impl_t)); 1976 i_mac_perim_exit(mip); 1977 return (0); 1978 } 1979 1980 ASSERT(muip != NULL); 1981 1982 /* 1983 * Remove the VID from the list of client's VIDs. 1984 */ 1985 pre = mcip->mci_unicast_list; 1986 if (muip == pre) 1987 mcip->mci_unicast_list = muip->mui_next; 1988 else { 1989 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 1990 pre = pre->mui_next; 1991 ASSERT(pre->mui_next == muip); 1992 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1993 pre->mui_next = muip->mui_next; 1994 rw_exit(&mcip->mci_rw_lock); 1995 } 1996 1997 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0) 1998 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 1999 2000 /* 2001 * This MAC client is shared, so we will just remove the flent 2002 * corresponding to the address being removed. We don't invoke 2003 * mac_rx_classify_flow_rem() since the additional flow is 2004 * not associated with its own separate set of SRS and rings, 2005 * and these constructs are still needed for the remaining flows. 2006 */ 2007 if (!mac_client_single_rcvr(mcip)) { 2008 flent = mac_client_get_flow(mcip, muip); 2009 ASSERT(flent != NULL); 2010 2011 /* 2012 * The first one is disappearing, need to make sure 2013 * we replace it with another from the list of 2014 * shared clients. 2015 */ 2016 if (flent == mcip->mci_flent) 2017 flent = mac_client_swap_mciflent(mcip); 2018 mac_client_remove_flow_from_list(mcip, flent); 2019 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 2020 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2021 2022 /* 2023 * The multicast groups that were added by the client so 2024 * far must be removed from the brodcast domain corresponding 2025 * to the VID being removed. 2026 */ 2027 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2028 (void *)flent, B_FALSE); 2029 2030 if (mip->mi_type->mt_brdcst_addr != NULL) { 2031 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2032 muip->mui_vid); 2033 } 2034 mac_stop(mip); 2035 FLOW_FINAL_REFRELE(flent); 2036 i_mac_perim_exit(mip); 2037 return (0); 2038 } 2039 2040 mip->mi_nactiveclients--; 2041 2042 /* Tear down the Data path */ 2043 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2044 2045 /* 2046 * Prevent any future access to the flow entry through the mci_flent 2047 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2048 * mac_bcast_send is also under mi_rw_lock. 2049 */ 2050 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2051 flent = mcip->mci_flent; 2052 mac_client_remove_flow_from_list(mcip, flent); 2053 2054 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2055 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2056 2057 /* 2058 * This is the last unicast address being removed and there shouldn't 2059 * be any outbound data threads at this point coming down from mac 2060 * clients. We have waited for the data threads to finish before 2061 * starting dld_str_detach. Non-data threads must access TX SRS 2062 * under mi_rw_lock. 2063 */ 2064 rw_exit(&mip->mi_rw_lock); 2065 2066 /* 2067 * Update the multicast group for this vid. 2068 */ 2069 mac_client_bcast_refresh(mcip, mac_client_update_mcast, (void *)flent, 2070 B_FALSE); 2071 2072 /* 2073 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2074 * contain other flags, such as FE_CONDEMNED, which we need to 2075 * cleared. We don't call mac_flow_cleanup() for this unicast 2076 * flow as we have a already cleaned up SRSs etc. (via the teadown 2077 * path). We just clear the stats and reset the initial callback 2078 * function, the rest will be set when we call mac_flow_create, 2079 * if at all. 2080 */ 2081 mutex_enter(&flent->fe_lock); 2082 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2083 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2084 flent->fe_flags = FE_MC_NO_DATAPATH; 2085 flow_stat_destroy(flent); 2086 2087 /* Initialize the receiver function to a safe routine */ 2088 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2089 flent->fe_cb_arg1 = NULL; 2090 flent->fe_cb_arg2 = NULL; 2091 2092 flent->fe_index = -1; 2093 mutex_exit(&flent->fe_lock); 2094 2095 if (mip->mi_type->mt_brdcst_addr != NULL) { 2096 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2097 muip->mui_vid); 2098 } 2099 2100 if (mip->mi_nactiveclients == 1) { 2101 mac_capab_update((mac_handle_t)mip); 2102 mac_virtual_link_update(mip); 2103 } 2104 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 2105 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2106 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2107 2108 mac_stop(mip); 2109 2110 i_mac_perim_exit(mip); 2111 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2112 return (0); 2113 } 2114 2115 /* 2116 * Multicast add function invoked by MAC clients. 2117 */ 2118 int 2119 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 2120 { 2121 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2122 mac_impl_t *mip = mcip->mci_mip; 2123 flow_entry_t *flent = mcip->mci_flent_list; 2124 flow_entry_t *prev_fe = NULL; 2125 uint16_t vid; 2126 int err = 0; 2127 2128 /* Verify the address is a valid multicast address */ 2129 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 2130 mip->mi_pdata)) != 0) 2131 return (err); 2132 2133 i_mac_perim_enter(mip); 2134 while (flent != NULL) { 2135 vid = i_mac_flow_vid(flent); 2136 2137 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 2138 MAC_ADDRTYPE_MULTICAST); 2139 if (err != 0) 2140 break; 2141 prev_fe = flent; 2142 flent = flent->fe_client_next; 2143 } 2144 2145 /* 2146 * If we failed adding, then undo all, rather than partial 2147 * success. 2148 */ 2149 if (flent != NULL && prev_fe != NULL) { 2150 flent = mcip->mci_flent_list; 2151 while (flent != prev_fe->fe_client_next) { 2152 vid = i_mac_flow_vid(flent); 2153 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2154 flent = flent->fe_client_next; 2155 } 2156 } 2157 i_mac_perim_exit(mip); 2158 return (err); 2159 } 2160 2161 /* 2162 * Multicast delete function invoked by MAC clients. 2163 */ 2164 void 2165 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 2166 { 2167 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2168 mac_impl_t *mip = mcip->mci_mip; 2169 flow_entry_t *flent; 2170 uint16_t vid; 2171 2172 i_mac_perim_enter(mip); 2173 for (flent = mcip->mci_flent_list; flent != NULL; 2174 flent = flent->fe_client_next) { 2175 vid = i_mac_flow_vid(flent); 2176 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2177 } 2178 i_mac_perim_exit(mip); 2179 } 2180 2181 /* 2182 * When a MAC client desires to capture packets on an interface, 2183 * it registers a promiscuous call back with mac_promisc_add(). 2184 * There are three types of promiscuous callbacks: 2185 * 2186 * * MAC_CLIENT_PROMISC_ALL 2187 * Captures all packets sent and received by the MAC client, 2188 * the physical interface, as well as all other MAC clients 2189 * defined on top of the same MAC. 2190 * 2191 * * MAC_CLIENT_PROMISC_FILTERED 2192 * Captures all packets sent and received by the MAC client, 2193 * plus all multicast traffic sent and received by the phyisical 2194 * interface and the other MAC clients. 2195 * 2196 * * MAC_CLIENT_PROMISC_MULTI 2197 * Captures all broadcast and multicast packets sent and 2198 * received by the MAC clients as well as the physical interface. 2199 * 2200 * In all cases, the underlying MAC is put in promiscuous mode. 2201 */ 2202 int 2203 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 2204 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 2205 { 2206 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2207 mac_impl_t *mip = mcip->mci_mip; 2208 mac_promisc_impl_t *mpip; 2209 mac_cb_info_t *mcbi; 2210 int rc; 2211 2212 i_mac_perim_enter(mip); 2213 2214 if ((rc = mac_start(mip)) != 0) { 2215 i_mac_perim_exit(mip); 2216 return (rc); 2217 } 2218 2219 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 2220 type == MAC_CLIENT_PROMISC_ALL) { 2221 /* 2222 * The function is being invoked by the upper MAC client 2223 * of a VNIC. The VNIC should only see the traffic 2224 * it is entitled to. 2225 */ 2226 type = MAC_CLIENT_PROMISC_FILTERED; 2227 } 2228 2229 2230 /* 2231 * Turn on promiscuous mode for the underlying NIC. 2232 * This is needed even for filtered callbacks which 2233 * expect to receive all multicast traffic on the wire. 2234 * 2235 * Physical promiscuous mode should not be turned on if 2236 * MAC_PROMISC_FLAGS_NO_PHYS is set. 2237 */ 2238 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 2239 if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) 2240 != 0) { 2241 mac_stop(mip); 2242 i_mac_perim_exit(mip); 2243 return (rc); 2244 } 2245 } 2246 2247 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 2248 2249 mpip->mpi_type = type; 2250 mpip->mpi_fn = fn; 2251 mpip->mpi_arg = arg; 2252 mpip->mpi_mcip = mcip; 2253 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 2254 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 2255 2256 mcbi = &mip->mi_promisc_cb_info; 2257 mutex_enter(mcbi->mcbi_lockp); 2258 2259 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 2260 &mpip->mpi_mci_link); 2261 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 2262 &mpip->mpi_mi_link); 2263 2264 mutex_exit(mcbi->mcbi_lockp); 2265 2266 *mphp = (mac_promisc_handle_t)mpip; 2267 i_mac_perim_exit(mip); 2268 return (0); 2269 } 2270 2271 /* 2272 * Remove a multicast address previously aded through mac_promisc_add(). 2273 */ 2274 int 2275 mac_promisc_remove(mac_promisc_handle_t mph) 2276 { 2277 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 2278 mac_client_impl_t *mcip = mpip->mpi_mcip; 2279 mac_impl_t *mip = mcip->mci_mip; 2280 mac_cb_info_t *mcbi; 2281 int rc = 0; 2282 2283 i_mac_perim_enter(mip); 2284 2285 /* 2286 * Even if the device can't be reset into normal mode, we still 2287 * need to clear the client promisc callbacks. The client may want 2288 * to close the mac end point and we can't have stale callbacks. 2289 */ 2290 if (!(mpip->mpi_no_phys)) { 2291 rc = mac_promisc_set((mac_handle_t)mip, B_FALSE, 2292 MAC_DEVPROMISC); 2293 if (rc != 0) 2294 goto done; 2295 } 2296 mcbi = &mip->mi_promisc_cb_info; 2297 mutex_enter(mcbi->mcbi_lockp); 2298 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 2299 &mpip->mpi_mi_link)) { 2300 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 2301 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 2302 kmem_cache_free(mac_promisc_impl_cache, mpip); 2303 } else { 2304 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 2305 } 2306 mutex_exit(mcbi->mcbi_lockp); 2307 mac_stop(mip); 2308 2309 done: 2310 i_mac_perim_exit(mip); 2311 return (rc); 2312 } 2313 2314 /* 2315 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 2316 * that a control operation wants to quiesce the Tx data flow in which case 2317 * we return an error. Holding any of the per cpu locks ensures that the 2318 * mci_tx_flag won't change. 2319 * 2320 * 'CPU' must be accessed just once and used to compute the index into the 2321 * percpu array, and that index must be used for the entire duration of the 2322 * packet send operation. Note that the thread may be preempted and run on 2323 * another cpu any time and so we can't use 'CPU' more than once for the 2324 * operation. 2325 */ 2326 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 2327 { \ 2328 (error) = 0; \ 2329 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 2330 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2331 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 2332 (mytx)->pcpu_tx_refcnt++; \ 2333 } else { \ 2334 (error) = -1; \ 2335 } \ 2336 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2337 } 2338 2339 /* 2340 * Release the reference. If needed, signal any control operation waiting 2341 * for Tx quiescence. The wait and signal are always done using the 2342 * mci_tx_pcpu[0]'s lock 2343 */ 2344 #define MAC_TX_RELE(mcip, mytx) { \ 2345 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2346 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 2347 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 2348 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2349 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2350 cv_signal(&(mcip)->mci_tx_cv); \ 2351 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2352 } else { \ 2353 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2354 } \ 2355 } 2356 2357 /* 2358 * Bump the count of the number of active Tx threads. This is maintained as 2359 * a per CPU counter. On (CMT kind of) machines with large number of CPUs, 2360 * a single mci_tx_lock may become contended. However a count of the total 2361 * number of Tx threads per client is needed in order to quiesce the Tx side 2362 * prior to reassigning a Tx ring dynamically to another client. The thread 2363 * that needs to quiesce the Tx traffic grabs all the percpu locks and checks 2364 * the sum of the individual percpu refcnts. Each Tx data thread only grabs 2365 * its own percpu lock and increments its own refcnt. 2366 */ 2367 void * 2368 mac_tx_hold(mac_client_handle_t mch) 2369 { 2370 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2371 mac_tx_percpu_t *mytx; 2372 int error; 2373 2374 MAC_TX_TRY_HOLD(mcip, mytx, error); 2375 return (error == 0 ? (void *)mytx : NULL); 2376 } 2377 2378 void 2379 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle) 2380 { 2381 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2382 mac_tx_percpu_t *mytx = mytx_handle; 2383 2384 MAC_TX_RELE(mcip, mytx) 2385 } 2386 2387 /* 2388 * Send function invoked by MAC clients. 2389 */ 2390 mac_tx_cookie_t 2391 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 2392 uint16_t flag, mblk_t **ret_mp) 2393 { 2394 mac_tx_cookie_t cookie; 2395 int error; 2396 mac_tx_percpu_t *mytx; 2397 mac_soft_ring_set_t *srs; 2398 flow_entry_t *flent; 2399 boolean_t is_subflow = B_FALSE; 2400 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2401 mac_impl_t *mip = mcip->mci_mip; 2402 mac_srs_tx_t *srs_tx; 2403 2404 /* 2405 * Check whether the active Tx threads count is bumped already. 2406 */ 2407 if (!(flag & MAC_TX_NO_HOLD)) { 2408 MAC_TX_TRY_HOLD(mcip, mytx, error); 2409 if (error != 0) { 2410 freemsgchain(mp_chain); 2411 return (NULL); 2412 } 2413 } 2414 2415 if (mcip->mci_subflow_tab != NULL && 2416 mcip->mci_subflow_tab->ft_flow_count > 0 && 2417 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 2418 FLOW_OUTBOUND, &flent) == 0) { 2419 /* 2420 * The main assumption here is that if in the event 2421 * we get a chain, all the packets will be classified 2422 * to the same Flow/SRS. If this changes for any 2423 * reason, the following logic should change as well. 2424 * I suppose the fanout_hint also assumes this . 2425 */ 2426 ASSERT(flent != NULL); 2427 is_subflow = B_TRUE; 2428 } else { 2429 flent = mcip->mci_flent; 2430 } 2431 2432 srs = flent->fe_tx_srs; 2433 srs_tx = &srs->srs_tx; 2434 if (srs_tx->st_mode == SRS_TX_DEFAULT && 2435 (srs->srs_state & SRS_ENQUEUED) == 0 && 2436 mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL && 2437 mp_chain->b_next == NULL) { 2438 uint64_t obytes; 2439 2440 /* 2441 * Since dls always opens the underlying MAC, nclients equals 2442 * to 1 means that the only active client is dls itself acting 2443 * as a primary client of the MAC instance. Since dls will not 2444 * send tagged packets in that case, and dls is trusted to send 2445 * packets for its allowed VLAN(s), the VLAN tag insertion and 2446 * check is required only if nclients is greater than 1. 2447 */ 2448 if (mip->mi_nclients > 1) { 2449 if (MAC_VID_CHECK_NEEDED(mcip)) { 2450 int err = 0; 2451 2452 MAC_VID_CHECK(mcip, mp_chain, err); 2453 if (err != 0) { 2454 freemsg(mp_chain); 2455 mcip->mci_stat_oerrors++; 2456 goto done; 2457 } 2458 } 2459 if (MAC_TAG_NEEDED(mcip)) { 2460 mp_chain = mac_add_vlan_tag(mp_chain, 0, 2461 mac_client_vid(mch)); 2462 if (mp_chain == NULL) { 2463 mcip->mci_stat_oerrors++; 2464 goto done; 2465 } 2466 } 2467 } 2468 2469 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 2470 msgdsize(mp_chain)); 2471 2472 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 2473 2474 if (mp_chain == NULL) { 2475 cookie = NULL; 2476 mcip->mci_stat_obytes += obytes; 2477 mcip->mci_stat_opackets += 1; 2478 if ((srs->srs_type & SRST_FLOW) != 0) { 2479 FLOW_STAT_UPDATE(flent, obytes, obytes); 2480 FLOW_STAT_UPDATE(flent, opackets, 1); 2481 } 2482 } else { 2483 mutex_enter(&srs->srs_lock); 2484 cookie = mac_tx_srs_no_desc(srs, mp_chain, 2485 flag, ret_mp); 2486 mutex_exit(&srs->srs_lock); 2487 } 2488 } else { 2489 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 2490 } 2491 2492 done: 2493 if (is_subflow) 2494 FLOW_REFRELE(flent); 2495 2496 if (!(flag & MAC_TX_NO_HOLD)) 2497 MAC_TX_RELE(mcip, mytx); 2498 2499 return (cookie); 2500 } 2501 2502 /* 2503 * mac_tx_is_blocked 2504 * 2505 * Given a cookie, it returns if the ring identified by the cookie is 2506 * flow-controlled or not (this is not implemented yet). If NULL is 2507 * passed in place of a cookie, then it finds out if any of the 2508 * underlying rings belonging to the SRS is flow controlled or not 2509 * and returns that status. 2510 */ 2511 /* ARGSUSED */ 2512 boolean_t 2513 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 2514 { 2515 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2516 mac_soft_ring_set_t *mac_srs = MCIP_TX_SRS(mcip); 2517 mac_soft_ring_t *sringp; 2518 boolean_t blocked = B_FALSE; 2519 int i; 2520 2521 /* 2522 * On etherstubs, there won't be a Tx SRS or an Rx 2523 * SRS. Infact there won't even be a flow_entry. 2524 */ 2525 if (mac_srs == NULL) 2526 return (B_FALSE); 2527 2528 mutex_enter(&mac_srs->srs_lock); 2529 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) { 2530 for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { 2531 sringp = mac_srs->srs_oth_soft_rings[i]; 2532 mutex_enter(&sringp->s_ring_lock); 2533 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 2534 blocked = B_TRUE; 2535 mutex_exit(&sringp->s_ring_lock); 2536 break; 2537 } 2538 mutex_exit(&sringp->s_ring_lock); 2539 } 2540 } else { 2541 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 2542 } 2543 mutex_exit(&mac_srs->srs_lock); 2544 return (blocked); 2545 } 2546 2547 /* 2548 * Check if the MAC client is the primary MAC client. 2549 */ 2550 boolean_t 2551 mac_is_primary_client(mac_client_impl_t *mcip) 2552 { 2553 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 2554 } 2555 2556 void 2557 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 2558 { 2559 mac_impl_t *mip = (mac_impl_t *)mh; 2560 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 2561 2562 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 2563 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 2564 /* 2565 * If ndd props were registered, call them. 2566 * Note that ndd ioctls are Obsolete 2567 */ 2568 mac_ndd_ioctl(mip, wq, bp); 2569 return; 2570 } 2571 2572 /* 2573 * Call the driver to handle the ioctl. The driver may not support 2574 * any ioctls, in which case we reply with a NAK on its behalf. 2575 */ 2576 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 2577 mip->mi_ioctl(mip->mi_driver, wq, bp); 2578 else 2579 miocnak(wq, bp, 0, EINVAL); 2580 } 2581 2582 /* 2583 * Return the link state of the specified MAC instance. 2584 */ 2585 link_state_t 2586 mac_link_get(mac_handle_t mh) 2587 { 2588 return (((mac_impl_t *)mh)->mi_linkstate); 2589 } 2590 2591 /* 2592 * Add a mac client specified notification callback. Please see the comments 2593 * above mac_callback_add() for general information about mac callback 2594 * addition/deletion in the presence of mac callback list walkers 2595 */ 2596 mac_notify_handle_t 2597 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 2598 { 2599 mac_impl_t *mip = (mac_impl_t *)mh; 2600 mac_notify_cb_t *mncb; 2601 mac_cb_info_t *mcbi; 2602 2603 /* 2604 * Allocate a notify callback structure, fill in the details and 2605 * use the mac callback list manipulation functions to chain into 2606 * the list of callbacks. 2607 */ 2608 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 2609 mncb->mncb_fn = notify_fn; 2610 mncb->mncb_arg = arg; 2611 mncb->mncb_mip = mip; 2612 mncb->mncb_link.mcb_objp = mncb; 2613 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 2614 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 2615 2616 mcbi = &mip->mi_notify_cb_info; 2617 2618 i_mac_perim_enter(mip); 2619 mutex_enter(mcbi->mcbi_lockp); 2620 2621 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 2622 &mncb->mncb_link); 2623 2624 mutex_exit(mcbi->mcbi_lockp); 2625 i_mac_perim_exit(mip); 2626 return ((mac_notify_handle_t)mncb); 2627 } 2628 2629 void 2630 mac_notify_remove_wait(mac_handle_t mh) 2631 { 2632 mac_impl_t *mip = (mac_impl_t *)mh; 2633 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 2634 2635 mutex_enter(mcbi->mcbi_lockp); 2636 mac_callback_remove_wait(&mip->mi_notify_cb_info); 2637 mutex_exit(mcbi->mcbi_lockp); 2638 } 2639 2640 /* 2641 * Remove a mac client specified notification callback 2642 */ 2643 int 2644 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 2645 { 2646 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 2647 mac_impl_t *mip = mncb->mncb_mip; 2648 mac_cb_info_t *mcbi; 2649 int err = 0; 2650 2651 mcbi = &mip->mi_notify_cb_info; 2652 2653 i_mac_perim_enter(mip); 2654 mutex_enter(mcbi->mcbi_lockp); 2655 2656 ASSERT(mncb->mncb_link.mcb_objp == mncb); 2657 /* 2658 * If there aren't any list walkers, the remove would succeed 2659 * inline, else we wait for the deferred remove to complete 2660 */ 2661 if (mac_callback_remove(&mip->mi_notify_cb_info, 2662 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 2663 kmem_free(mncb, sizeof (mac_notify_cb_t)); 2664 } else { 2665 err = EBUSY; 2666 } 2667 2668 mutex_exit(mcbi->mcbi_lockp); 2669 i_mac_perim_exit(mip); 2670 2671 /* 2672 * If we failed to remove the notification callback and "wait" is set 2673 * to be B_TRUE, wait for the callback to finish after we exit the 2674 * mac perimeter. 2675 */ 2676 if (err != 0 && wait) { 2677 mac_notify_remove_wait((mac_handle_t)mip); 2678 return (0); 2679 } 2680 2681 return (err); 2682 } 2683 2684 /* 2685 * Associate resource management callbacks with the specified MAC 2686 * clients. 2687 */ 2688 2689 void 2690 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 2691 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 2692 mac_resource_restart_t restart, mac_resource_bind_t bind, 2693 void *arg) 2694 { 2695 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2696 2697 mcip->mci_resource_add = add; 2698 mcip->mci_resource_remove = remove; 2699 mcip->mci_resource_quiesce = quiesce; 2700 mcip->mci_resource_restart = restart; 2701 mcip->mci_resource_bind = bind; 2702 mcip->mci_resource_arg = arg; 2703 2704 if (arg == NULL) 2705 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 2706 } 2707 2708 void 2709 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 2710 { 2711 /* update the 'resource_add' callback */ 2712 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 2713 } 2714 2715 /* 2716 * Sets up the client resources and enable the polling interface over all the 2717 * SRS's and the soft rings of the client 2718 */ 2719 void 2720 mac_client_poll_enable(mac_client_handle_t mch) 2721 { 2722 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2723 mac_soft_ring_set_t *mac_srs; 2724 flow_entry_t *flent; 2725 int i; 2726 2727 flent = mcip->mci_flent; 2728 ASSERT(flent != NULL); 2729 2730 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2731 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2732 ASSERT(mac_srs->srs_mcip == mcip); 2733 mac_srs_client_poll_enable(mcip, mac_srs); 2734 } 2735 } 2736 2737 /* 2738 * Tears down the client resources and disable the polling interface over all 2739 * the SRS's and the soft rings of the client 2740 */ 2741 void 2742 mac_client_poll_disable(mac_client_handle_t mch) 2743 { 2744 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2745 mac_soft_ring_set_t *mac_srs; 2746 flow_entry_t *flent; 2747 int i; 2748 2749 flent = mcip->mci_flent; 2750 ASSERT(flent != NULL); 2751 2752 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2753 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2754 ASSERT(mac_srs->srs_mcip == mcip); 2755 mac_srs_client_poll_disable(mcip, mac_srs); 2756 } 2757 } 2758 2759 /* 2760 * Associate the CPUs specified by the given property with a MAC client. 2761 */ 2762 int 2763 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2764 { 2765 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2766 mac_impl_t *mip = mcip->mci_mip; 2767 int err = 0; 2768 2769 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2770 2771 if ((err = mac_validate_props(mrp)) != 0) 2772 return (err); 2773 2774 if (MCIP_DATAPATH_SETUP(mcip)) 2775 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 2776 2777 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2778 return (0); 2779 } 2780 2781 /* 2782 * Apply the specified properties to the specified MAC client. 2783 */ 2784 int 2785 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2786 { 2787 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2788 mac_impl_t *mip = mcip->mci_mip; 2789 int err = 0; 2790 2791 i_mac_perim_enter(mip); 2792 2793 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 2794 err = mac_resource_ctl_set(mch, mrp); 2795 if (err != 0) { 2796 i_mac_perim_exit(mip); 2797 return (err); 2798 } 2799 } 2800 2801 if (mrp->mrp_mask & MRP_CPUS) 2802 err = mac_cpu_set(mch, mrp); 2803 2804 i_mac_perim_exit(mip); 2805 return (err); 2806 } 2807 2808 /* 2809 * Return the properties currently associated with the specified MAC client. 2810 */ 2811 void 2812 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2813 { 2814 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2815 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 2816 2817 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 2818 } 2819 2820 /* 2821 * Pass a copy of the specified packet to the promiscuous callbacks 2822 * of the specified MAC. 2823 * 2824 * If sender is NULL, the function is being invoked for a packet chain 2825 * received from the wire. If sender is non-NULL, it points to 2826 * the MAC client from which the packet is being sent. 2827 * 2828 * The packets are distributed to the promiscuous callbacks as follows: 2829 * 2830 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 2831 * - all broadcast and multicast packets are sent to the 2832 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 2833 * 2834 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 2835 * after classification by mac_rx_deliver(). 2836 */ 2837 2838 static void 2839 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 2840 boolean_t loopback) 2841 { 2842 mblk_t *mp_copy; 2843 2844 mp_copy = copymsg(mp); 2845 if (mp_copy == NULL) 2846 return; 2847 mp_copy->b_next = NULL; 2848 2849 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 2850 } 2851 2852 /* 2853 * Return the VID of a packet. Zero if the packet is not tagged. 2854 */ 2855 static uint16_t 2856 mac_ether_vid(mblk_t *mp) 2857 { 2858 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 2859 2860 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 2861 struct ether_vlan_header *t_evhp = 2862 (struct ether_vlan_header *)mp->b_rptr; 2863 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 2864 } 2865 2866 return (0); 2867 } 2868 2869 /* 2870 * Return whether the specified packet contains a multicast or broadcast 2871 * destination MAC address. 2872 */ 2873 static boolean_t 2874 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 2875 { 2876 mac_header_info_t hdr_info; 2877 2878 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 2879 return (B_FALSE); 2880 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 2881 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 2882 } 2883 2884 /* 2885 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 2886 * "sender" points to the sender MAC client for outbound packets, and 2887 * is set to NULL for inbound packets. 2888 */ 2889 void 2890 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 2891 mac_client_impl_t *sender) 2892 { 2893 mac_promisc_impl_t *mpip; 2894 mac_cb_t *mcb; 2895 mblk_t *mp; 2896 boolean_t is_mcast, is_sender; 2897 2898 MAC_PROMISC_WALKER_INC(mip); 2899 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 2900 is_mcast = mac_is_mcast(mip, mp); 2901 /* send packet to interested callbacks */ 2902 for (mcb = mip->mi_promisc_list; mcb != NULL; 2903 mcb = mcb->mcb_nextp) { 2904 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 2905 is_sender = (mpip->mpi_mcip == sender); 2906 2907 if (is_sender && mpip->mpi_no_tx_loop) 2908 /* 2909 * The sender doesn't want to receive 2910 * copies of the packets it sends. 2911 */ 2912 continue; 2913 2914 /* 2915 * For an ethernet MAC, don't displatch a multicast 2916 * packet to a non-PROMISC_ALL callbacks unless the VID 2917 * of the packet matches the VID of the client. 2918 */ 2919 if (is_mcast && 2920 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 2921 !mac_client_check_flow_vid(mpip->mpi_mcip, 2922 mac_ether_vid(mp))) 2923 continue; 2924 2925 if (is_sender || 2926 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 2927 is_mcast) 2928 mac_promisc_dispatch_one(mpip, mp, is_sender); 2929 } 2930 } 2931 MAC_PROMISC_WALKER_DCR(mip); 2932 } 2933 2934 void 2935 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 2936 { 2937 mac_impl_t *mip = mcip->mci_mip; 2938 mac_promisc_impl_t *mpip; 2939 boolean_t is_mcast; 2940 mblk_t *mp; 2941 mac_cb_t *mcb; 2942 2943 /* 2944 * The unicast packets for the MAC client still 2945 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 2946 * promiscuous callbacks. The broadcast and multicast 2947 * packets were delivered from mac_rx(). 2948 */ 2949 MAC_PROMISC_WALKER_INC(mip); 2950 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 2951 is_mcast = mac_is_mcast(mip, mp); 2952 for (mcb = mcip->mci_promisc_list; mcb != NULL; 2953 mcb = mcb->mcb_nextp) { 2954 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 2955 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 2956 !is_mcast) { 2957 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 2958 } 2959 } 2960 } 2961 MAC_PROMISC_WALKER_DCR(mip); 2962 } 2963 2964 /* 2965 * Return the margin value currently assigned to the specified MAC instance. 2966 */ 2967 void 2968 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 2969 { 2970 mac_impl_t *mip = (mac_impl_t *)mh; 2971 2972 rw_enter(&(mip->mi_rw_lock), RW_READER); 2973 *marginp = mip->mi_margin; 2974 rw_exit(&(mip->mi_rw_lock)); 2975 } 2976 2977 /* 2978 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 2979 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 2980 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 2981 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 2982 * cannot disappear while we are accessing it. 2983 */ 2984 typedef struct i_mac_info_state_s { 2985 const char *mi_name; 2986 mac_info_t *mi_infop; 2987 } i_mac_info_state_t; 2988 2989 /*ARGSUSED*/ 2990 static uint_t 2991 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2992 { 2993 i_mac_info_state_t *statep = arg; 2994 mac_impl_t *mip = (mac_impl_t *)val; 2995 2996 if (mip->mi_state_flags & MIS_DISABLED) 2997 return (MH_WALK_CONTINUE); 2998 2999 if (strcmp(statep->mi_name, 3000 ddi_driver_name(mip->mi_dip)) != 0) 3001 return (MH_WALK_CONTINUE); 3002 3003 statep->mi_infop = &mip->mi_info; 3004 return (MH_WALK_TERMINATE); 3005 } 3006 3007 boolean_t 3008 mac_info_get(const char *name, mac_info_t *minfop) 3009 { 3010 i_mac_info_state_t state; 3011 3012 rw_enter(&i_mac_impl_lock, RW_READER); 3013 state.mi_name = name; 3014 state.mi_infop = NULL; 3015 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 3016 if (state.mi_infop == NULL) { 3017 rw_exit(&i_mac_impl_lock); 3018 return (B_FALSE); 3019 } 3020 *minfop = *state.mi_infop; 3021 rw_exit(&i_mac_impl_lock); 3022 return (B_TRUE); 3023 } 3024 3025 /* 3026 * To get the capabilities that MAC layer cares about, such as rings, factory 3027 * mac address, vnic or not, it should directly invoke this function 3028 */ 3029 boolean_t 3030 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3031 { 3032 mac_impl_t *mip = (mac_impl_t *)mh; 3033 3034 if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 3035 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 3036 else 3037 return (B_FALSE); 3038 } 3039 3040 /* 3041 * Capability query function. If number of active mac clients is greater than 3042 * 1, only limited capabilities can be advertised to the caller no matter the 3043 * driver has certain capability or not. Else, we query the driver to get the 3044 * capability. 3045 */ 3046 boolean_t 3047 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3048 { 3049 mac_impl_t *mip = (mac_impl_t *)mh; 3050 3051 /* 3052 * if mi_nactiveclients > 1, only MAC_CAPAB_HCKSUM, 3053 * MAC_CAPAB_NO_NATIVEVLAN, MAC_CAPAB_NO_ZCOPY can be advertised. 3054 */ 3055 if (mip->mi_nactiveclients > 1) { 3056 switch (cap) { 3057 case MAC_CAPAB_HCKSUM: 3058 return (i_mac_capab_get(mh, cap, cap_data)); 3059 case MAC_CAPAB_NO_NATIVEVLAN: 3060 case MAC_CAPAB_NO_ZCOPY: 3061 return (B_TRUE); 3062 default: 3063 return (B_FALSE); 3064 } 3065 } 3066 3067 /* else get capab from driver */ 3068 return (i_mac_capab_get(mh, cap, cap_data)); 3069 } 3070 3071 boolean_t 3072 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 3073 { 3074 mac_impl_t *mip = (mac_impl_t *)mh; 3075 3076 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 3077 mip->mi_pdata)); 3078 } 3079 3080 mblk_t * 3081 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 3082 size_t extra_len) 3083 { 3084 mac_impl_t *mip = (mac_impl_t *)mh; 3085 3086 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap, 3087 mip->mi_pdata, payload, extra_len)); 3088 } 3089 3090 int 3091 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 3092 { 3093 mac_impl_t *mip = (mac_impl_t *)mh; 3094 3095 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 3096 mhip)); 3097 } 3098 3099 mblk_t * 3100 mac_header_cook(mac_handle_t mh, mblk_t *mp) 3101 { 3102 mac_impl_t *mip = (mac_impl_t *)mh; 3103 3104 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 3105 if (DB_REF(mp) > 1) { 3106 mblk_t *newmp = copymsg(mp); 3107 if (newmp == NULL) 3108 return (NULL); 3109 freemsg(mp); 3110 mp = newmp; 3111 } 3112 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 3113 mip->mi_pdata)); 3114 } 3115 return (mp); 3116 } 3117 3118 mblk_t * 3119 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 3120 { 3121 mac_impl_t *mip = (mac_impl_t *)mh; 3122 3123 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 3124 if (DB_REF(mp) > 1) { 3125 mblk_t *newmp = copymsg(mp); 3126 if (newmp == NULL) 3127 return (NULL); 3128 freemsg(mp); 3129 mp = newmp; 3130 } 3131 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 3132 mip->mi_pdata)); 3133 } 3134 return (mp); 3135 } 3136 3137 uint_t 3138 mac_addr_len(mac_handle_t mh) 3139 { 3140 mac_impl_t *mip = (mac_impl_t *)mh; 3141 3142 return (mip->mi_type->mt_addr_length); 3143 } 3144 3145 /* True if a MAC is a VNIC */ 3146 boolean_t 3147 mac_is_vnic(mac_handle_t mh) 3148 { 3149 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 3150 } 3151 3152 mac_handle_t 3153 mac_get_lower_mac_handle(mac_handle_t mh) 3154 { 3155 mac_impl_t *mip = (mac_impl_t *)mh; 3156 3157 ASSERT(mac_is_vnic(mh)); 3158 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 3159 } 3160 3161 void 3162 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 3163 boolean_t is_user_flow) 3164 { 3165 if (nmrp != NULL && cmrp != NULL) { 3166 if (nmrp->mrp_mask & MRP_PRIORITY) { 3167 if (nmrp->mrp_priority == MPL_RESET) { 3168 cmrp->mrp_mask &= ~MRP_PRIORITY; 3169 if (is_user_flow) { 3170 cmrp->mrp_priority = 3171 MPL_SUBFLOW_DEFAULT; 3172 } else { 3173 cmrp->mrp_priority = MPL_LINK_DEFAULT; 3174 } 3175 } else { 3176 cmrp->mrp_mask |= MRP_PRIORITY; 3177 cmrp->mrp_priority = nmrp->mrp_priority; 3178 } 3179 } 3180 if (nmrp->mrp_mask & MRP_MAXBW) { 3181 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 3182 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) 3183 cmrp->mrp_mask &= ~MRP_MAXBW; 3184 else 3185 cmrp->mrp_mask |= MRP_MAXBW; 3186 } 3187 if (nmrp->mrp_mask & MRP_CPUS) 3188 MAC_COPY_CPUS(nmrp, cmrp); 3189 } 3190 } 3191 3192 /* 3193 * i_mac_set_resources: 3194 * 3195 * This routine associates properties with the primary MAC client of 3196 * the specified MAC instance. 3197 * - Cache the properties in mac_impl_t 3198 * - Apply the properties to the primary MAC client if exists 3199 */ 3200 int 3201 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3202 { 3203 mac_impl_t *mip = (mac_impl_t *)mh; 3204 mac_client_impl_t *mcip; 3205 int err = 0; 3206 mac_resource_props_t tmrp; 3207 3208 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3209 3210 err = mac_validate_props(mrp); 3211 if (err != 0) 3212 return (err); 3213 3214 /* 3215 * Since bind_cpu may be modified by mac_client_set_resources() 3216 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 3217 * This allows us to cache only user edits in mip. 3218 */ 3219 bcopy(mrp, &tmrp, sizeof (mac_resource_props_t)); 3220 mcip = mac_primary_client_handle(mip); 3221 if (mcip != NULL) { 3222 err = 3223 mac_client_set_resources((mac_client_handle_t)mcip, &tmrp); 3224 } 3225 /* if mac_client_set_resources failed, do not update the values */ 3226 if (err == 0) 3227 mac_update_resources(mrp, &mip->mi_resource_props, B_FALSE); 3228 return (err); 3229 } 3230 3231 int 3232 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3233 { 3234 int err; 3235 3236 i_mac_perim_enter((mac_impl_t *)mh); 3237 err = i_mac_set_resources(mh, mrp); 3238 i_mac_perim_exit((mac_impl_t *)mh); 3239 return (err); 3240 } 3241 3242 /* 3243 * Get the properties cached for the specified MAC instance. 3244 */ 3245 void 3246 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3247 { 3248 mac_impl_t *mip = (mac_impl_t *)mh; 3249 mac_client_impl_t *mcip; 3250 3251 if (mip->mi_state_flags & MIS_IS_VNIC) { 3252 mcip = mac_primary_client_handle(mip); 3253 if (mcip != NULL) { 3254 mac_client_get_resources((mac_client_handle_t)mcip, 3255 mrp); 3256 return; 3257 } 3258 } 3259 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 3260 } 3261 3262 /* 3263 * Rename a mac client, its flow, and the kstat. 3264 */ 3265 int 3266 mac_rename_primary(mac_handle_t mh, const char *new_name) 3267 { 3268 mac_impl_t *mip = (mac_impl_t *)mh; 3269 mac_client_impl_t *cur_clnt = NULL; 3270 flow_entry_t *fep; 3271 3272 i_mac_perim_enter(mip); 3273 3274 /* 3275 * VNICs: we need to change the sys flow name and 3276 * the associated flow kstat. 3277 */ 3278 if (mip->mi_state_flags & MIS_IS_VNIC) { 3279 ASSERT(new_name != NULL); 3280 mac_rename_flow_names(mac_vnic_lower(mip), new_name); 3281 goto done; 3282 } 3283 /* 3284 * This mac may itself be an aggr link, or it may have some client 3285 * which is an aggr port. For both cases, we need to change the 3286 * aggr port's mac client name, its flow name and the associated flow 3287 * kstat. 3288 */ 3289 if (mip->mi_state_flags & MIS_IS_AGGR) { 3290 mac_capab_aggr_t aggr_cap; 3291 mac_rename_fn_t rename_fn; 3292 boolean_t ret; 3293 3294 ASSERT(new_name != NULL); 3295 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 3296 (void *)(&aggr_cap)); 3297 ASSERT(ret == B_TRUE); 3298 rename_fn = aggr_cap.mca_rename_fn; 3299 rename_fn(new_name, mip->mi_driver); 3300 /* 3301 * The aggr's client name and kstat flow name will be 3302 * updated below, i.e. via mac_rename_flow_names. 3303 */ 3304 } 3305 3306 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 3307 cur_clnt = cur_clnt->mci_client_next) { 3308 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 3309 if (new_name != NULL) { 3310 char *str_st = cur_clnt->mci_name; 3311 char *str_del = strchr(str_st, '-'); 3312 3313 ASSERT(str_del != NULL); 3314 bzero(str_del + 1, MAXNAMELEN - 3315 (str_del - str_st + 1)); 3316 bcopy(new_name, str_del + 1, 3317 strlen(new_name)); 3318 } 3319 fep = cur_clnt->mci_flent; 3320 mac_rename_flow(fep, cur_clnt->mci_name); 3321 break; 3322 } else if (new_name != NULL && 3323 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 3324 mac_rename_flow_names(cur_clnt, new_name); 3325 break; 3326 } 3327 } 3328 3329 done: 3330 i_mac_perim_exit(mip); 3331 return (0); 3332 } 3333 3334 /* 3335 * Rename the MAC client's flow names 3336 */ 3337 static void 3338 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 3339 { 3340 flow_entry_t *flent; 3341 uint16_t vid; 3342 char flowname[MAXFLOWNAMELEN]; 3343 mac_impl_t *mip = mcip->mci_mip; 3344 3345 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3346 3347 /* 3348 * Use mi_rw_lock to ensure that threads not in the mac perimeter 3349 * see a self-consistent value for mci_name 3350 */ 3351 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3352 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 3353 rw_exit(&mip->mi_rw_lock); 3354 3355 mac_rename_flow(mcip->mci_flent, new_name); 3356 3357 if (mcip->mci_nflents == 1) 3358 return; 3359 3360 /* 3361 * We have to rename all the others too, no stats to destroy for 3362 * these. 3363 */ 3364 for (flent = mcip->mci_flent_list; flent != NULL; 3365 flent = flent->fe_client_next) { 3366 if (flent != mcip->mci_flent) { 3367 vid = i_mac_flow_vid(flent); 3368 (void) sprintf(flowname, "%s%u", new_name, vid); 3369 mac_flow_set_name(flent, flowname); 3370 } 3371 } 3372 } 3373 3374 3375 /* 3376 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 3377 * defined for the specified MAC client. 3378 */ 3379 static void 3380 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3381 { 3382 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3383 /* 3384 * The promisc Rx data path walks the mci_flent_list. Protect by 3385 * using mi_rw_lock 3386 */ 3387 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3388 3389 /* Add it to the head */ 3390 flent->fe_client_next = mcip->mci_flent_list; 3391 mcip->mci_flent_list = flent; 3392 mcip->mci_nflents++; 3393 3394 /* 3395 * Keep track of the number of non-zero VIDs addresses per MAC 3396 * client to avoid figuring it out in the data-path. 3397 */ 3398 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3399 mcip->mci_nvids++; 3400 3401 rw_exit(&mcip->mci_rw_lock); 3402 } 3403 3404 /* 3405 * Remove a flow entry from the MAC client's list. 3406 */ 3407 static void 3408 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3409 { 3410 flow_entry_t *fe = mcip->mci_flent_list; 3411 flow_entry_t *prev_fe = NULL; 3412 3413 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3414 /* 3415 * The promisc Rx data path walks the mci_flent_list. Protect by 3416 * using mci_rw_lock 3417 */ 3418 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3419 while ((fe != NULL) && (fe != flent)) { 3420 prev_fe = fe; 3421 fe = fe->fe_client_next; 3422 } 3423 3424 ASSERT(fe != NULL); 3425 if (prev_fe == NULL) { 3426 /* Deleting the first node */ 3427 mcip->mci_flent_list = fe->fe_client_next; 3428 } else { 3429 prev_fe->fe_client_next = fe->fe_client_next; 3430 } 3431 mcip->mci_nflents--; 3432 3433 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3434 mcip->mci_nvids--; 3435 3436 rw_exit(&mcip->mci_rw_lock); 3437 } 3438 3439 /* 3440 * Check if the given VID belongs to this MAC client. 3441 */ 3442 boolean_t 3443 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 3444 { 3445 flow_entry_t *flent; 3446 uint16_t mci_vid; 3447 3448 /* The mci_flent_list is protected by mci_rw_lock */ 3449 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3450 for (flent = mcip->mci_flent_list; flent != NULL; 3451 flent = flent->fe_client_next) { 3452 mci_vid = i_mac_flow_vid(flent); 3453 if (vid == mci_vid) { 3454 rw_exit(&mcip->mci_rw_lock); 3455 return (B_TRUE); 3456 } 3457 } 3458 rw_exit(&mcip->mci_rw_lock); 3459 return (B_FALSE); 3460 } 3461 3462 /* 3463 * Get the flow entry for the specified <MAC addr, VID> tuple. 3464 */ 3465 static flow_entry_t * 3466 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 3467 { 3468 mac_address_t *map = mcip->mci_unicast; 3469 flow_entry_t *flent; 3470 uint16_t vid; 3471 flow_desc_t flow_desc; 3472 3473 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3474 3475 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 3476 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 3477 return (NULL); 3478 3479 for (flent = mcip->mci_flent_list; flent != NULL; 3480 flent = flent->fe_client_next) { 3481 vid = i_mac_flow_vid(flent); 3482 if (vid == muip->mui_vid) { 3483 return (flent); 3484 } 3485 } 3486 3487 return (NULL); 3488 } 3489 3490 /* 3491 * Since mci_flent has the SRSs, when we want to remove it, we replace 3492 * the flow_desc_t in mci_flent with that of an existing flent and then 3493 * remove that flent instead of mci_flent. 3494 */ 3495 static flow_entry_t * 3496 mac_client_swap_mciflent(mac_client_impl_t *mcip) 3497 { 3498 flow_entry_t *flent = mcip->mci_flent; 3499 flow_tab_t *ft = flent->fe_flow_tab; 3500 flow_entry_t *flent1; 3501 flow_desc_t fl_desc; 3502 char fl_name[MAXFLOWNAMELEN]; 3503 int err; 3504 3505 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3506 ASSERT(mcip->mci_nflents > 1); 3507 3508 /* get the next flent following the primary flent */ 3509 flent1 = mcip->mci_flent_list->fe_client_next; 3510 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 3511 3512 /* 3513 * Remove the flent from the flow table before updating the 3514 * flow descriptor as the hash depends on the flow descriptor. 3515 * This also helps incoming packet classification avoid having 3516 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 3517 * flow table is done under the fe_lock so that log or stat functions 3518 * see a self-consistent fe_flow_desc. The name and desc are specific 3519 * to a flow, the rest are shared by all the clients, including 3520 * resource control etc. 3521 */ 3522 mac_flow_remove(ft, flent, B_TRUE); 3523 mac_flow_remove(ft, flent1, B_TRUE); 3524 3525 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 3526 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 3527 3528 /* update the primary flow entry */ 3529 mutex_enter(&flent->fe_lock); 3530 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 3531 sizeof (flow_desc_t)); 3532 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 3533 mutex_exit(&flent->fe_lock); 3534 3535 /* update the flow entry that is to be freed */ 3536 mutex_enter(&flent1->fe_lock); 3537 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 3538 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 3539 mutex_exit(&flent1->fe_lock); 3540 3541 /* now reinsert the flow entries in the table */ 3542 err = mac_flow_add(ft, flent); 3543 ASSERT(err == 0); 3544 3545 err = mac_flow_add(ft, flent1); 3546 ASSERT(err == 0); 3547 3548 return (flent1); 3549 } 3550 3551 /* 3552 * Return whether there is only one flow entry associated with this 3553 * MAC client. 3554 */ 3555 static boolean_t 3556 mac_client_single_rcvr(mac_client_impl_t *mcip) 3557 { 3558 return (mcip->mci_nflents == 1); 3559 } 3560 3561 int 3562 mac_validate_props(mac_resource_props_t *mrp) 3563 { 3564 if (mrp == NULL) 3565 return (0); 3566 3567 if (mrp->mrp_mask & MRP_PRIORITY) { 3568 mac_priority_level_t pri = mrp->mrp_priority; 3569 3570 if (pri < MPL_LOW || pri > MPL_RESET) 3571 return (EINVAL); 3572 } 3573 3574 if (mrp->mrp_mask & MRP_MAXBW) { 3575 uint64_t maxbw = mrp->mrp_maxbw; 3576 3577 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 3578 return (EINVAL); 3579 } 3580 if (mrp->mrp_mask & MRP_CPUS) { 3581 int i; 3582 mac_cpu_mode_t fanout; 3583 3584 if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT) 3585 return (EINVAL); 3586 3587 for (i = 0; i < mrp->mrp_ncpus; i++) { 3588 cpu_t *cp; 3589 int rv; 3590 3591 mutex_enter(&cpu_lock); 3592 cp = cpu_get(mrp->mrp_cpu[i]); 3593 if (cp != NULL) 3594 rv = cpu_is_online(cp); 3595 else 3596 rv = 0; 3597 mutex_exit(&cpu_lock); 3598 if (rv == 0) 3599 return (EINVAL); 3600 } 3601 3602 fanout = mrp->mrp_fanout_mode; 3603 if (fanout < 0 || fanout > MCM_CPUS) 3604 return (EINVAL); 3605 } 3606 return (0); 3607 } 3608 3609 /* 3610 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 3611 * underlying physical link is down. This is to allow MAC clients to 3612 * communicate with other clients. 3613 */ 3614 void 3615 mac_virtual_link_update(mac_impl_t *mip) 3616 { 3617 if (mip->mi_linkstate != LINK_STATE_UP) 3618 i_mac_notify(mip, MAC_NOTE_LINK); 3619 } 3620 3621 /* 3622 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 3623 * mac handle in the client. 3624 */ 3625 void 3626 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh) 3627 { 3628 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3629 3630 mcip->mci_upper_mip = (mac_impl_t *)mh; 3631 } 3632 3633 /* 3634 * Mark the mac as being used exclusively by the single mac client that is 3635 * doing some control operation on this mac. No further opens of this mac 3636 * will be allowed until this client calls mac_unmark_exclusive. The mac 3637 * client calling this function must already be in the mac perimeter 3638 */ 3639 int 3640 mac_mark_exclusive(mac_handle_t mh) 3641 { 3642 mac_impl_t *mip = (mac_impl_t *)mh; 3643 3644 ASSERT(MAC_PERIM_HELD(mh)); 3645 /* 3646 * Look up its entry in the global hash table. 3647 */ 3648 rw_enter(&i_mac_impl_lock, RW_WRITER); 3649 if (mip->mi_state_flags & MIS_DISABLED) { 3650 rw_exit(&i_mac_impl_lock); 3651 return (ENOENT); 3652 } 3653 3654 /* 3655 * A reference to mac is held even if the link is not plumbed. 3656 * In i_dls_link_create() we open the MAC interface and hold the 3657 * reference. There is an additional reference for the mac_open 3658 * done in acquiring the mac perimeter 3659 */ 3660 if (mip->mi_ref != 2) { 3661 rw_exit(&i_mac_impl_lock); 3662 return (EBUSY); 3663 } 3664 3665 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3666 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 3667 rw_exit(&i_mac_impl_lock); 3668 return (0); 3669 } 3670 3671 void 3672 mac_unmark_exclusive(mac_handle_t mh) 3673 { 3674 mac_impl_t *mip = (mac_impl_t *)mh; 3675 3676 ASSERT(MAC_PERIM_HELD(mh)); 3677 3678 rw_enter(&i_mac_impl_lock, RW_WRITER); 3679 /* 1 for the creation and another for the perimeter */ 3680 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3681 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 3682 rw_exit(&i_mac_impl_lock); 3683 } 3684 3685 /* 3686 * Set the MTU for the specified device. The function returns EBUSY if 3687 * another MAC client prevents the caller to become the exclusive client. 3688 * Returns EAGAIN if the client is started. 3689 */ 3690 int 3691 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 3692 { 3693 mac_impl_t *mip = (mac_impl_t *)mh; 3694 uint_t old_mtu; 3695 int rv; 3696 boolean_t exclusive = B_FALSE; 3697 3698 i_mac_perim_enter(mip); 3699 3700 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 || 3701 (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) { 3702 rv = ENOTSUP; 3703 goto bail; 3704 } 3705 3706 if ((rv = mac_mark_exclusive(mh)) != 0) 3707 goto bail; 3708 exclusive = B_TRUE; 3709 3710 if (mip->mi_active > 0) { 3711 /* 3712 * The MAC instance is started, for example due to the 3713 * presence of a promiscuous clients. Fail the operation 3714 * since the MAC's MTU cannot be changed while the NIC 3715 * is started. 3716 */ 3717 rv = EAGAIN; 3718 goto bail; 3719 } 3720 3721 mac_sdu_get(mh, NULL, &old_mtu); 3722 3723 if (old_mtu != new_mtu) { 3724 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3725 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 3726 } 3727 3728 bail: 3729 if (exclusive) 3730 mac_unmark_exclusive(mh); 3731 i_mac_perim_exit(mip); 3732 3733 if (rv == 0 && old_mtu_arg != NULL) 3734 *old_mtu_arg = old_mtu; 3735 return (rv); 3736 } 3737 3738 void 3739 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 3740 uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name) 3741 { 3742 mac_impl_t *mip = (mac_impl_t *)mh; 3743 mac_grp_client_t *mcip; 3744 uint_t i = 0, index = 0; 3745 3746 /* Revisit when we implement fully dynamic group allocation */ 3747 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 3748 3749 rw_enter(&mip->mi_rw_lock, RW_READER); 3750 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 3751 *type = mip->mi_rx_groups[grp_index].mrg_type; 3752 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 3753 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 3754 mcip = mcip->mgc_next) { 3755 int name_len = strlen(mcip->mgc_client->mci_name); 3756 3757 /* 3758 * MAXCLIENTNAMELEN is the buffer size reserved for client 3759 * names. 3760 * XXXX Formating the client name string needs to be moved 3761 * to user land when fixing the size of dhi_clnts in 3762 * dld_hwgrpinfo_t. We should use n_clients * client_name for 3763 * dhi_clntsin instead of MAXCLIENTNAMELEN 3764 */ 3765 if (index + name_len >= MAXCLIENTNAMELEN) { 3766 index = MAXCLIENTNAMELEN; 3767 break; 3768 } 3769 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 3770 name_len); 3771 index += name_len; 3772 clnts_name[index++] = ','; 3773 i++; 3774 } 3775 3776 /* Get rid of the last , */ 3777 if (index > 0) 3778 clnts_name[index - 1] = '\0'; 3779 *n_clnts = i; 3780 rw_exit(&mip->mi_rw_lock); 3781 } 3782 3783 uint_t 3784 mac_hwgrp_num(mac_handle_t mh) 3785 { 3786 mac_impl_t *mip = (mac_impl_t *)mh; 3787 3788 return (mip->mi_rx_group_count); 3789 } 3790