1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * - General Introduction: 29 * 30 * This file contains the implementation of the MAC client kernel 31 * API and related code. The MAC client API allows a kernel module 32 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 33 * It allows a MAC client to associate itself with a MAC address, 34 * VLANs, callback functions for data traffic and for promiscuous mode. 35 * The MAC client API is also used to specify the properties associated 36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 37 * These properties are further used to determine the hardware resources 38 * to allocate to the various MAC clients. 39 * 40 * - Primary MAC clients: 41 * 42 * The MAC client API refers to "primary MAC clients". A primary MAC 43 * client is a client which "owns" the primary MAC address of 44 * the underlying MAC instance. The primary MAC address is called out 45 * since it is associated with specific semantics: the primary MAC 46 * address is the MAC address which is assigned to the IP interface 47 * when it is plumbed, and the primary MAC address is assigned 48 * to VLAN data-links. The primary address of a MAC instance can 49 * also change dynamically from under the MAC client, for example 50 * as a result of a change of state of a link aggregation. In that 51 * case the MAC layer automatically updates all data-structures which 52 * refer to the current value of the primary MAC address. Typical 53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 54 * MAC client is the vnic driver. 55 * 56 * - Virtual Switching: 57 * 58 * The MAC layer implements a virtual switch between the MAC clients 59 * (primary and non-primary) defined on top of the same underlying 60 * NIC (physical, link aggregation, etc). The virtual switch is 61 * VLAN-aware, i.e. it allows multiple MAC clients to be member 62 * of one or more VLANs, and the virtual switch will distribute 63 * multicast tagged packets only to the member of the corresponding 64 * VLANs. 65 * 66 * - Upper vs Lower MAC: 67 * 68 * Creating a VNIC on top of a MAC instance effectively causes 69 * two MAC instances to be layered on top of each other, one for 70 * the VNIC(s), one for the underlying MAC instance (physical NIC, 71 * link aggregation, etc). In the code below we refer to the 72 * underlying NIC as the "lower MAC", and we refer to VNICs as 73 * the "upper MAC". 74 * 75 * - Pass-through for VNICs: 76 * 77 * When VNICs are created on top of an underlying MAC, this causes 78 * a layering of two MAC instances. Since the lower MAC already 79 * does the switching and demultiplexing to its MAC clients, the 80 * upper MAC would simply have to pass packets to the layer below 81 * or above it, which would introduce overhead. In order to avoid 82 * this overhead, the MAC layer implements a pass-through mechanism 83 * for VNICs. When a VNIC opens the lower MAC instance, it saves 84 * the MAC client handle it optains from the MAC layer. When a MAC 85 * client opens a VNIC (upper MAC), the MAC layer detects that 86 * the MAC being opened is a VNIC, and gets the MAC client handle 87 * that the VNIC driver obtained from the lower MAC. This exchange 88 * is doing through a private capability between the MAC layer 89 * and the VNIC driver. The upper MAC then returns that handle 90 * directly to its MAC client. Any operation done by the upper 91 * MAC client is now done on the lower MAC client handle, which 92 * allows the VNIC driver to be completely bypassed for the 93 * performance sensitive data-path. 94 * 95 */ 96 97 #include <sys/types.h> 98 #include <sys/conf.h> 99 #include <sys/id_space.h> 100 #include <sys/esunddi.h> 101 #include <sys/stat.h> 102 #include <sys/mkdev.h> 103 #include <sys/stream.h> 104 #include <sys/strsun.h> 105 #include <sys/strsubr.h> 106 #include <sys/dlpi.h> 107 #include <sys/modhash.h> 108 #include <sys/mac_impl.h> 109 #include <sys/mac_client_impl.h> 110 #include <sys/mac_soft_ring.h> 111 #include <sys/dls.h> 112 #include <sys/dld.h> 113 #include <sys/modctl.h> 114 #include <sys/fs/dv_node.h> 115 #include <sys/thread.h> 116 #include <sys/proc.h> 117 #include <sys/callb.h> 118 #include <sys/cpuvar.h> 119 #include <sys/atomic.h> 120 #include <sys/sdt.h> 121 #include <sys/mac_flow.h> 122 #include <sys/ddi_intr_impl.h> 123 #include <sys/disp.h> 124 #include <sys/sdt.h> 125 #include <sys/vnic.h> 126 #include <sys/vnic_impl.h> 127 #include <sys/vlan.h> 128 #include <inet/ip.h> 129 #include <inet/ip6.h> 130 #include <sys/exacct.h> 131 #include <sys/exacct_impl.h> 132 #include <inet/nd.h> 133 #include <sys/ethernet.h> 134 135 kmem_cache_t *mac_client_impl_cache; 136 kmem_cache_t *mac_promisc_impl_cache; 137 138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 141 mac_unicast_impl_t *); 142 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 143 flow_entry_t *); 144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 145 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 146 static void mac_virtual_link_update(mac_impl_t *); 147 148 /* ARGSUSED */ 149 static int 150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 151 { 152 int i; 153 mac_client_impl_t *mcip = buf; 154 155 bzero(buf, MAC_CLIENT_IMPL_SIZE); 156 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 157 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 158 159 ASSERT(mac_tx_percpu_cnt >= 0); 160 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 161 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 162 MUTEX_DRIVER, NULL); 163 } 164 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 165 166 return (0); 167 } 168 169 /* ARGSUSED */ 170 static void 171 i_mac_client_impl_dtor(void *buf, void *arg) 172 { 173 int i; 174 mac_client_impl_t *mcip = buf; 175 176 ASSERT(mcip->mci_promisc_list == NULL); 177 ASSERT(mcip->mci_unicast_list == NULL); 178 ASSERT(mcip->mci_state_flags == 0); 179 ASSERT(mcip->mci_tx_flag == 0); 180 181 mutex_destroy(&mcip->mci_tx_cb_lock); 182 183 ASSERT(mac_tx_percpu_cnt >= 0); 184 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 185 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 186 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 187 } 188 cv_destroy(&mcip->mci_tx_cv); 189 } 190 191 /* ARGSUSED */ 192 static int 193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 194 { 195 mac_promisc_impl_t *mpip = buf; 196 197 bzero(buf, sizeof (mac_promisc_impl_t)); 198 mpip->mpi_mci_link.mcb_objp = buf; 199 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 200 mpip->mpi_mi_link.mcb_objp = buf; 201 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static void 207 i_mac_promisc_impl_dtor(void *buf, void *arg) 208 { 209 mac_promisc_impl_t *mpip = buf; 210 211 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 212 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 213 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 214 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 215 216 mpip->mpi_mci_link.mcb_objp = NULL; 217 mpip->mpi_mci_link.mcb_objsize = 0; 218 mpip->mpi_mi_link.mcb_objp = NULL; 219 mpip->mpi_mi_link.mcb_objsize = 0; 220 221 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 222 mpip->mpi_mci_link.mcb_objsize = 0; 223 } 224 225 void 226 mac_client_init(void) 227 { 228 ASSERT(mac_tx_percpu_cnt >= 0); 229 230 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 231 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 232 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 233 ASSERT(mac_client_impl_cache != NULL); 234 235 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 236 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 237 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 238 ASSERT(mac_promisc_impl_cache != NULL); 239 } 240 241 void 242 mac_client_fini(void) 243 { 244 kmem_cache_destroy(mac_client_impl_cache); 245 kmem_cache_destroy(mac_promisc_impl_cache); 246 } 247 248 /* 249 * Return the lower MAC client handle from the VNIC driver for the 250 * specified VNIC MAC instance. 251 */ 252 mac_client_impl_t * 253 mac_vnic_lower(mac_impl_t *mip) 254 { 255 mac_capab_vnic_t cap; 256 mac_client_impl_t *mcip; 257 258 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 259 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 260 261 return (mcip); 262 } 263 264 /* 265 * Return the MAC client handle of the primary MAC client for the 266 * specified MAC instance, or NULL otherwise. 267 */ 268 mac_client_impl_t * 269 mac_primary_client_handle(mac_impl_t *mip) 270 { 271 mac_client_impl_t *mcip; 272 273 if (mip->mi_state_flags & MIS_IS_VNIC) 274 return (mac_vnic_lower(mip)); 275 276 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 277 278 for (mcip = mip->mi_clients_list; mcip != NULL; 279 mcip = mcip->mci_client_next) { 280 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 281 return (mcip); 282 } 283 return (NULL); 284 } 285 286 /* 287 * Open a MAC specified by its MAC name. 288 */ 289 int 290 mac_open(const char *macname, mac_handle_t *mhp) 291 { 292 mac_impl_t *mip; 293 int err; 294 295 /* 296 * Look up its entry in the global hash table. 297 */ 298 if ((err = mac_hold(macname, &mip)) != 0) 299 return (err); 300 301 /* 302 * Hold the dip associated to the MAC to prevent it from being 303 * detached. For a softmac, its underlying dip is held by the 304 * mi_open() callback. 305 * 306 * This is done to be more tolerant with some defective drivers, 307 * which incorrectly handle mac_unregister() failure in their 308 * xxx_detach() routine. For example, some drivers ignore the 309 * failure of mac_unregister() and free all resources that 310 * that are needed for data transmition. 311 */ 312 e_ddi_hold_devi(mip->mi_dip); 313 314 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 315 *mhp = (mac_handle_t)mip; 316 return (0); 317 } 318 319 /* 320 * The mac perimeter is used in both mac_open and mac_close by the 321 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 322 */ 323 i_mac_perim_enter(mip); 324 mip->mi_oref++; 325 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 326 *mhp = (mac_handle_t)mip; 327 i_mac_perim_exit(mip); 328 return (0); 329 } 330 mip->mi_oref--; 331 ddi_release_devi(mip->mi_dip); 332 mac_rele(mip); 333 i_mac_perim_exit(mip); 334 return (err); 335 } 336 337 /* 338 * Open a MAC specified by its linkid. 339 */ 340 int 341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 342 { 343 dls_dl_handle_t dlh; 344 int err; 345 346 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 347 return (err); 348 349 dls_devnet_prop_task_wait(dlh); 350 351 err = mac_open(dls_devnet_mac(dlh), mhp); 352 353 dls_devnet_rele_tmp(dlh); 354 return (err); 355 } 356 357 /* 358 * Open a MAC specified by its link name. 359 */ 360 int 361 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 362 { 363 datalink_id_t linkid; 364 int err; 365 366 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 367 return (err); 368 return (mac_open_by_linkid(linkid, mhp)); 369 } 370 371 /* 372 * Close the specified MAC. 373 */ 374 void 375 mac_close(mac_handle_t mh) 376 { 377 mac_impl_t *mip = (mac_impl_t *)mh; 378 379 i_mac_perim_enter(mip); 380 /* 381 * The mac perimeter is used in both mac_open and mac_close by the 382 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 383 */ 384 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 385 ASSERT(mip->mi_oref != 0); 386 if (--mip->mi_oref == 0) { 387 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 388 mip->mi_close(mip->mi_driver); 389 } 390 } 391 i_mac_perim_exit(mip); 392 ddi_release_devi(mip->mi_dip); 393 mac_rele(mip); 394 } 395 396 /* 397 * Misc utility functions to retrieve various information about a MAC 398 * instance or a MAC client. 399 */ 400 401 const mac_info_t * 402 mac_info(mac_handle_t mh) 403 { 404 return (&((mac_impl_t *)mh)->mi_info); 405 } 406 407 dev_info_t * 408 mac_devinfo_get(mac_handle_t mh) 409 { 410 return (((mac_impl_t *)mh)->mi_dip); 411 } 412 413 const char * 414 mac_name(mac_handle_t mh) 415 { 416 return (((mac_impl_t *)mh)->mi_name); 417 } 418 419 char * 420 mac_client_name(mac_client_handle_t mch) 421 { 422 return (((mac_client_impl_t *)mch)->mci_name); 423 } 424 425 minor_t 426 mac_minor(mac_handle_t mh) 427 { 428 return (((mac_impl_t *)mh)->mi_minor); 429 } 430 431 /* 432 * Return the VID associated with a MAC client. This function should 433 * be called for clients which are associated with only one VID. 434 */ 435 uint16_t 436 mac_client_vid(mac_client_handle_t mch) 437 { 438 uint16_t vid = VLAN_ID_NONE; 439 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 440 flow_desc_t flow_desc; 441 442 if (mcip->mci_nflents == 0) 443 return (vid); 444 445 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 446 447 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 448 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 449 vid = flow_desc.fd_vid; 450 451 return (vid); 452 } 453 454 /* 455 * Return the link speed associated with the specified MAC client. 456 * 457 * The link speed of a MAC client is equal to the smallest value of 458 * 1) the current link speed of the underlying NIC, or 459 * 2) the bandwidth limit set for the MAC client. 460 * 461 * Note that the bandwidth limit can be higher than the speed 462 * of the underlying NIC. This is allowed to avoid spurious 463 * administration action failures or artifically lowering the 464 * bandwidth limit of a link that may have temporarily lowered 465 * its link speed due to hardware problem or administrator action. 466 */ 467 static uint64_t 468 mac_client_ifspeed(mac_client_impl_t *mcip) 469 { 470 mac_impl_t *mip = mcip->mci_mip; 471 uint64_t nic_speed; 472 473 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 474 475 if (nic_speed == 0) { 476 return (0); 477 } else { 478 uint64_t policy_limit = (uint64_t)-1; 479 480 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 481 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 482 483 return (MIN(policy_limit, nic_speed)); 484 } 485 } 486 487 /* 488 * Return the link state of the specified client. If here are more 489 * than one clients of the underying mac_impl_t, the link state 490 * will always be UP regardless of the link state of the underlying 491 * mac_impl_t. This is needed to allow the MAC clients to continue 492 * to communicate with each other even when the physical link of 493 * their mac_impl_t is down. 494 */ 495 static uint64_t 496 mac_client_link_state(mac_client_impl_t *mcip) 497 { 498 mac_impl_t *mip = mcip->mci_mip; 499 uint16_t vid; 500 mac_client_impl_t *mci_list; 501 mac_unicast_impl_t *mui_list, *oth_mui_list; 502 503 /* 504 * Returns LINK_STATE_UP if there are other MAC clients defined on 505 * mac_impl_t which share same VLAN ID as that of mcip. Note that 506 * if 'mcip' has more than one VID's then we match ANY one of the 507 * VID's with other MAC client's VID's and return LINK_STATE_UP. 508 */ 509 rw_enter(&mcip->mci_rw_lock, RW_READER); 510 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 511 mui_list = mui_list->mui_next) { 512 vid = mui_list->mui_vid; 513 for (mci_list = mip->mi_clients_list; mci_list != NULL; 514 mci_list = mci_list->mci_client_next) { 515 if (mci_list == mcip) 516 continue; 517 for (oth_mui_list = mci_list->mci_unicast_list; 518 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 519 mui_next) { 520 if (vid == oth_mui_list->mui_vid) { 521 rw_exit(&mcip->mci_rw_lock); 522 return (LINK_STATE_UP); 523 } 524 } 525 } 526 } 527 rw_exit(&mcip->mci_rw_lock); 528 529 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 530 } 531 532 /* 533 * Return the statistics of a MAC client. These statistics are different 534 * then the statistics of the underlying MAC which are returned by 535 * mac_stat_get(). 536 */ 537 uint64_t 538 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 539 { 540 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 541 mac_impl_t *mip = mcip->mci_mip; 542 uint64_t val; 543 544 switch (stat) { 545 case MAC_STAT_LINK_STATE: 546 val = mac_client_link_state(mcip); 547 break; 548 case MAC_STAT_LINK_UP: 549 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 550 break; 551 case MAC_STAT_PROMISC: 552 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 553 break; 554 case MAC_STAT_IFSPEED: 555 val = mac_client_ifspeed(mcip); 556 break; 557 case MAC_STAT_MULTIRCV: 558 val = mcip->mci_stat_multircv; 559 break; 560 case MAC_STAT_BRDCSTRCV: 561 val = mcip->mci_stat_brdcstrcv; 562 break; 563 case MAC_STAT_MULTIXMT: 564 val = mcip->mci_stat_multixmt; 565 break; 566 case MAC_STAT_BRDCSTXMT: 567 val = mcip->mci_stat_brdcstxmt; 568 break; 569 case MAC_STAT_OBYTES: 570 val = mcip->mci_stat_obytes; 571 break; 572 case MAC_STAT_OPACKETS: 573 val = mcip->mci_stat_opackets; 574 break; 575 case MAC_STAT_OERRORS: 576 val = mcip->mci_stat_oerrors; 577 break; 578 case MAC_STAT_IPACKETS: 579 val = mcip->mci_stat_ipackets; 580 break; 581 case MAC_STAT_RBYTES: 582 val = mcip->mci_stat_ibytes; 583 break; 584 case MAC_STAT_IERRORS: 585 val = mcip->mci_stat_ierrors; 586 break; 587 default: 588 val = mac_stat_default(mip, stat); 589 break; 590 } 591 592 return (val); 593 } 594 595 /* 596 * Return the statistics of the specified MAC instance. 597 */ 598 uint64_t 599 mac_stat_get(mac_handle_t mh, uint_t stat) 600 { 601 mac_impl_t *mip = (mac_impl_t *)mh; 602 uint64_t val; 603 int ret; 604 605 /* 606 * The range of stat determines where it is maintained. Stat 607 * values from 0 up to (but not including) MAC_STAT_MIN are 608 * mainteined by the mac module itself. Everything else is 609 * maintained by the driver. 610 * 611 * If the mac_impl_t being queried corresponds to a VNIC, 612 * the stats need to be queried from the lower MAC client 613 * corresponding to the VNIC. (The mac_link_update() 614 * invoked by the driver to the lower MAC causes the *lower 615 * MAC* to update its mi_linkstate, and send a notification 616 * to its MAC clients. Due to the VNIC passthrough, 617 * these notifications are sent to the upper MAC clients 618 * of the VNIC directly, and the upper mac_impl_t of the VNIC 619 * does not have a valid mi_linkstate. 620 */ 621 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 622 /* these stats are maintained by the mac module itself */ 623 switch (stat) { 624 case MAC_STAT_LINK_STATE: 625 return (mip->mi_linkstate); 626 case MAC_STAT_LINK_UP: 627 return (mip->mi_linkstate == LINK_STATE_UP); 628 case MAC_STAT_PROMISC: 629 return (mip->mi_devpromisc != 0); 630 default: 631 ASSERT(B_FALSE); 632 } 633 } 634 635 /* 636 * Call the driver to get the given statistic. 637 */ 638 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 639 if (ret != 0) { 640 /* 641 * The driver doesn't support this statistic. Get the 642 * statistic's default value. 643 */ 644 val = mac_stat_default(mip, stat); 645 } 646 return (val); 647 } 648 649 /* 650 * Utility function which returns the VID associated with a flow entry. 651 */ 652 uint16_t 653 i_mac_flow_vid(flow_entry_t *flent) 654 { 655 flow_desc_t flow_desc; 656 657 mac_flow_get_desc(flent, &flow_desc); 658 659 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 660 return (flow_desc.fd_vid); 661 return (VLAN_ID_NONE); 662 } 663 664 /* 665 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 666 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 667 * length. 668 */ 669 boolean_t 670 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 671 { 672 mac_impl_t *mip = (mac_impl_t *)mh; 673 674 /* 675 * Verify the address. No lock is needed since mi_type and plugin 676 * details don't change after mac_register(). 677 */ 678 if ((len != mip->mi_type->mt_addr_length) || 679 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 680 mip->mi_pdata)) != 0) { 681 return (B_FALSE); 682 } else { 683 return (B_TRUE); 684 } 685 } 686 687 void 688 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 689 { 690 mac_impl_t *mip = (mac_impl_t *)mh; 691 692 if (min_sdu != NULL) 693 *min_sdu = mip->mi_sdu_min; 694 if (max_sdu != NULL) 695 *max_sdu = mip->mi_sdu_max; 696 } 697 698 /* 699 * Update the MAC unicast address of the specified client's flows. Currently 700 * only one unicast MAC unicast address is allowed per client. 701 */ 702 static void 703 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 704 { 705 mac_impl_t *mip = mcip->mci_mip; 706 flow_entry_t *flent = mcip->mci_flent; 707 mac_address_t *map = mcip->mci_unicast; 708 flow_desc_t flow_desc; 709 710 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 711 ASSERT(flent != NULL); 712 713 mac_flow_get_desc(flent, &flow_desc); 714 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 715 716 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 717 mac_flow_set_desc(flent, &flow_desc); 718 719 /* 720 * A MAC client could have one MAC address but multiple 721 * VLANs. In that case update the flow entries corresponding 722 * to all VLANs of the MAC client. 723 */ 724 for (flent = mcip->mci_flent_list; flent != NULL; 725 flent = flent->fe_client_next) { 726 mac_flow_get_desc(flent, &flow_desc); 727 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 728 flent->fe_type & FLOW_VNIC_MAC)) 729 continue; 730 731 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 732 mac_flow_set_desc(flent, &flow_desc); 733 } 734 } 735 736 /* 737 * Update all clients that share the same unicast address. 738 */ 739 void 740 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 741 { 742 mac_client_impl_t *mcip; 743 744 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 745 746 /* 747 * Find all clients that share the same unicast MAC address and update 748 * them appropriately. 749 */ 750 for (mcip = mip->mi_clients_list; mcip != NULL; 751 mcip = mcip->mci_client_next) { 752 /* 753 * Ignore clients that don't share this MAC address. 754 */ 755 if (map != mcip->mci_unicast) 756 continue; 757 758 /* 759 * Update those clients with same old unicast MAC address. 760 */ 761 mac_unicast_update_client_flow(mcip); 762 } 763 } 764 765 /* 766 * Update the unicast MAC address of the specified VNIC MAC client. 767 * 768 * Check whether the operation is valid. Any of following cases should fail: 769 * 770 * 1. It's a VLAN type of VNIC. 771 * 2. The new value is current "primary" MAC address. 772 * 3. The current MAC address is shared with other clients. 773 * 4. The new MAC address has been used. This case will be valid when 774 * client migration is fully supported. 775 */ 776 int 777 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 778 { 779 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 780 mac_impl_t *mip = mcip->mci_mip; 781 mac_address_t *map = mcip->mci_unicast; 782 int err; 783 784 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 785 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 786 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 787 788 i_mac_perim_enter(mip); 789 790 /* 791 * If this is a VLAN type of VNIC, it's using "primary" MAC address 792 * of the underlying interface. Must fail here. Refer to case 1 above. 793 */ 794 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 795 i_mac_perim_exit(mip); 796 return (ENOTSUP); 797 } 798 799 /* 800 * If the new address is the "primary" one, must fail. Refer to 801 * case 2 above. 802 */ 803 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 804 i_mac_perim_exit(mip); 805 return (EACCES); 806 } 807 808 /* 809 * If the address is shared by multiple clients, must fail. Refer 810 * to case 3 above. 811 */ 812 if (mac_check_macaddr_shared(map)) { 813 i_mac_perim_exit(mip); 814 return (EBUSY); 815 } 816 817 /* 818 * If the new address has been used, must fail for now. Refer to 819 * case 4 above. 820 */ 821 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 822 i_mac_perim_exit(mip); 823 return (ENOTSUP); 824 } 825 826 /* 827 * Update the MAC address. 828 */ 829 err = mac_update_macaddr(map, (uint8_t *)addr); 830 831 if (err != 0) { 832 i_mac_perim_exit(mip); 833 return (err); 834 } 835 836 /* 837 * Update all flows of this MAC client. 838 */ 839 mac_unicast_update_client_flow(mcip); 840 841 i_mac_perim_exit(mip); 842 return (0); 843 } 844 845 /* 846 * Program the new primary unicast address of the specified MAC. 847 * 848 * Function mac_update_macaddr() takes care different types of underlying 849 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 850 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 851 * which will take care of updating the MAC address of the corresponding 852 * MAC client. 853 * 854 * This is the only interface that allow the client to update the "primary" 855 * MAC address of the underlying MAC. The new value must have not been 856 * used by other clients. 857 */ 858 int 859 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 860 { 861 mac_impl_t *mip = (mac_impl_t *)mh; 862 mac_address_t *map; 863 int err; 864 865 /* verify the address validity */ 866 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 867 return (EINVAL); 868 869 i_mac_perim_enter(mip); 870 871 /* 872 * If the new value is the same as the current primary address value, 873 * there's nothing to do. 874 */ 875 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 876 i_mac_perim_exit(mip); 877 return (0); 878 } 879 880 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) { 881 i_mac_perim_exit(mip); 882 return (EBUSY); 883 } 884 885 map = mac_find_macaddr(mip, mip->mi_addr); 886 ASSERT(map != NULL); 887 888 /* 889 * Update the MAC address. 890 */ 891 if (mip->mi_state_flags & MIS_IS_AGGR) { 892 mac_capab_aggr_t aggr_cap; 893 894 /* 895 * If the mac is an aggregation, other than the unicast 896 * addresses programming, aggr must be informed about this 897 * primary unicst address change to change its mac address 898 * policy to be user-specified. 899 */ 900 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 901 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 902 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 903 if (err == 0) 904 bcopy(addr, map->ma_addr, map->ma_len); 905 } else { 906 err = mac_update_macaddr(map, (uint8_t *)addr); 907 } 908 909 if (err != 0) { 910 i_mac_perim_exit(mip); 911 return (err); 912 } 913 914 mac_unicast_update_clients(mip, map); 915 916 /* 917 * Save the new primary MAC address in mac_impl_t. 918 */ 919 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 920 921 i_mac_perim_exit(mip); 922 923 if (err == 0) 924 i_mac_notify(mip, MAC_NOTE_UNICST); 925 926 return (err); 927 } 928 929 /* 930 * Return the current primary MAC address of the specified MAC. 931 */ 932 void 933 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 934 { 935 mac_impl_t *mip = (mac_impl_t *)mh; 936 937 rw_enter(&mip->mi_rw_lock, RW_READER); 938 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 939 rw_exit(&mip->mi_rw_lock); 940 } 941 942 /* 943 * Return information about the use of the primary MAC address of the 944 * specified MAC instance: 945 * 946 * - if client_name is non-NULL, it must point to a string of at 947 * least MAXNAMELEN bytes, and will be set to the name of the MAC 948 * client which uses the primary MAC address. 949 * 950 * - if in_use is non-NULL, used to return whether the primary MAC 951 * address is currently in use. 952 */ 953 void 954 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 955 { 956 mac_impl_t *mip = (mac_impl_t *)mh; 957 mac_client_impl_t *cur_client; 958 959 if (in_use != NULL) 960 *in_use = B_FALSE; 961 if (client_name != NULL) 962 bzero(client_name, MAXNAMELEN); 963 964 /* 965 * The mi_rw_lock is used to protect threads that don't hold the 966 * mac perimeter to get a consistent view of the mi_clients_list. 967 * Threads that modify the list must hold both the mac perimeter and 968 * mi_rw_lock(RW_WRITER) 969 */ 970 rw_enter(&mip->mi_rw_lock, RW_READER); 971 for (cur_client = mip->mi_clients_list; cur_client != NULL; 972 cur_client = cur_client->mci_client_next) { 973 if (mac_is_primary_client(cur_client) || 974 (mip->mi_state_flags & MIS_IS_VNIC)) { 975 rw_exit(&mip->mi_rw_lock); 976 if (in_use != NULL) 977 *in_use = B_TRUE; 978 if (client_name != NULL) { 979 bcopy(cur_client->mci_name, client_name, 980 MAXNAMELEN); 981 } 982 return; 983 } 984 } 985 rw_exit(&mip->mi_rw_lock); 986 } 987 988 /* 989 * Add the specified MAC client to the list of clients which opened 990 * the specified MAC. 991 */ 992 static void 993 mac_client_add(mac_client_impl_t *mcip) 994 { 995 mac_impl_t *mip = mcip->mci_mip; 996 997 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 998 999 /* add VNIC to the front of the list */ 1000 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1001 mcip->mci_client_next = mip->mi_clients_list; 1002 mip->mi_clients_list = mcip; 1003 mip->mi_nclients++; 1004 rw_exit(&mip->mi_rw_lock); 1005 } 1006 1007 /* 1008 * Remove the specified MAC client from the list of clients which opened 1009 * the specified MAC. 1010 */ 1011 static void 1012 mac_client_remove(mac_client_impl_t *mcip) 1013 { 1014 mac_impl_t *mip = mcip->mci_mip; 1015 mac_client_impl_t **prev, *cclient; 1016 1017 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1018 1019 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1020 prev = &mip->mi_clients_list; 1021 cclient = *prev; 1022 while (cclient != NULL && cclient != mcip) { 1023 prev = &cclient->mci_client_next; 1024 cclient = *prev; 1025 } 1026 ASSERT(cclient != NULL); 1027 *prev = cclient->mci_client_next; 1028 mip->mi_nclients--; 1029 rw_exit(&mip->mi_rw_lock); 1030 } 1031 1032 static mac_unicast_impl_t * 1033 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1034 { 1035 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1036 1037 while ((muip != NULL) && (muip->mui_vid != vid)) 1038 muip = muip->mui_next; 1039 1040 return (muip); 1041 } 1042 1043 /* 1044 * Return whether the specified (MAC address, VID) tuple is already used by 1045 * one of the MAC clients associated with the specified MAC. 1046 */ 1047 static boolean_t 1048 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1049 { 1050 mac_client_impl_t *client; 1051 mac_address_t *map; 1052 1053 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1054 1055 for (client = mip->mi_clients_list; client != NULL; 1056 client = client->mci_client_next) { 1057 1058 /* 1059 * Ignore clients that don't have unicast address. 1060 */ 1061 if (client->mci_unicast_list == NULL) 1062 continue; 1063 1064 map = client->mci_unicast; 1065 1066 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1067 (mac_client_find_vid(client, vid) != NULL)) { 1068 return (B_TRUE); 1069 } 1070 } 1071 1072 return (B_FALSE); 1073 } 1074 1075 /* 1076 * Generate a random MAC address. The MAC address prefix is 1077 * stored in the array pointed to by mac_addr, and its length, in bytes, 1078 * is specified by prefix_len. The least significant bits 1079 * after prefix_len bytes are generated, and stored after the prefix 1080 * in the mac_addr array. 1081 */ 1082 int 1083 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1084 uint8_t *mac_addr, mac_diag_t *diag) 1085 { 1086 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1087 mac_impl_t *mip = mcip->mci_mip; 1088 size_t addr_len = mip->mi_type->mt_addr_length; 1089 1090 if (prefix_len >= addr_len) { 1091 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1092 return (EINVAL); 1093 } 1094 1095 /* check the prefix value */ 1096 if (prefix_len > 0) { 1097 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1098 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1099 addr_len)) { 1100 *diag = MAC_DIAG_MACPREFIX_INVALID; 1101 return (EINVAL); 1102 } 1103 } 1104 1105 /* generate the MAC address */ 1106 if (prefix_len < addr_len) { 1107 (void) random_get_pseudo_bytes(mac_addr + 1108 prefix_len, addr_len - prefix_len); 1109 } 1110 1111 *diag = 0; 1112 return (0); 1113 } 1114 1115 /* 1116 * Set the priority range for this MAC client. This will be used to 1117 * determine the absolute priority for the threads created for this 1118 * MAC client using the specified "low", "medium" and "high" level. 1119 * This will also be used for any subflows on this MAC client. 1120 */ 1121 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1122 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1123 MAXCLSYSPRI, (pri)); \ 1124 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1125 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1126 } 1127 1128 /* 1129 * MAC client open entry point. Return a new MAC client handle. Each 1130 * MAC client is associated with a name, specified through the 'name' 1131 * argument. 1132 */ 1133 int 1134 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1135 uint16_t flags) 1136 { 1137 mac_impl_t *mip = (mac_impl_t *)mh; 1138 mac_client_impl_t *mcip; 1139 int err = 0; 1140 boolean_t share_desired = 1141 ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0); 1142 boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0); 1143 boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0); 1144 flow_entry_t *flent = NULL; 1145 1146 *mchp = NULL; 1147 if (share_desired && no_hwrings) { 1148 /* can't have shares but no hardware rings */ 1149 return (EINVAL); 1150 } 1151 1152 i_mac_perim_enter(mip); 1153 1154 if (mip->mi_state_flags & MIS_IS_VNIC) { 1155 /* 1156 * The underlying MAC is a VNIC. Return the MAC client 1157 * handle of the lower MAC which was obtained by 1158 * the VNIC driver when it did its mac_client_open(). 1159 */ 1160 1161 mcip = mac_vnic_lower(mip); 1162 1163 /* 1164 * Note that multiple mac clients share the same mcip in 1165 * this case. 1166 */ 1167 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1168 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1169 1170 mip->mi_clients_list = mcip; 1171 i_mac_perim_exit(mip); 1172 *mchp = (mac_client_handle_t)mcip; 1173 return (err); 1174 } 1175 1176 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1177 1178 mcip->mci_mip = mip; 1179 mcip->mci_upper_mip = NULL; 1180 mcip->mci_rx_fn = mac_pkt_drop; 1181 mcip->mci_rx_arg = NULL; 1182 mcip->mci_direct_rx_fn = NULL; 1183 mcip->mci_direct_rx_arg = NULL; 1184 1185 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1186 mcip->mci_state_flags |= MCIS_IS_VNIC; 1187 1188 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1189 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1190 1191 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1192 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1193 1194 if ((flags & MAC_OPEN_FLAGS_TAG_DISABLE) != 0) 1195 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1196 1197 if ((flags & MAC_OPEN_FLAGS_STRIP_DISABLE) != 0) 1198 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1199 1200 if ((flags & MAC_OPEN_FLAGS_DISABLE_TX_VID_CHECK) != 0) 1201 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1202 1203 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1204 datalink_id_t linkid; 1205 1206 ASSERT(name == NULL); 1207 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1208 &linkid)) != 0) { 1209 goto done; 1210 } 1211 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1212 NULL, NULL)) != 0) { 1213 /* 1214 * Use mac name if dlmgmtd is not available. 1215 */ 1216 if (err == EBADF) { 1217 (void) strlcpy(mcip->mci_name, mip->mi_name, 1218 sizeof (mcip->mci_name)); 1219 err = 0; 1220 } else { 1221 goto done; 1222 } 1223 } 1224 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1225 } else { 1226 ASSERT(name != NULL); 1227 if (strlen(name) > MAXNAMELEN) { 1228 err = EINVAL; 1229 goto done; 1230 } 1231 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1232 } 1233 /* the subflow table will be created dynamically */ 1234 mcip->mci_subflow_tab = NULL; 1235 mcip->mci_stat_multircv = 0; 1236 mcip->mci_stat_brdcstrcv = 0; 1237 mcip->mci_stat_multixmt = 0; 1238 mcip->mci_stat_brdcstxmt = 0; 1239 1240 mcip->mci_stat_obytes = 0; 1241 mcip->mci_stat_opackets = 0; 1242 mcip->mci_stat_oerrors = 0; 1243 mcip->mci_stat_ibytes = 0; 1244 mcip->mci_stat_ipackets = 0; 1245 mcip->mci_stat_ierrors = 0; 1246 1247 /* Create an initial flow */ 1248 1249 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1250 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1251 FLOW_PRIMARY_MAC, &flent); 1252 if (err != 0) 1253 goto done; 1254 mcip->mci_flent = flent; 1255 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1256 flent->fe_mcip = mcip; 1257 /* 1258 * Place initial creation reference on the flow. This reference 1259 * is released in the corresponding delete action viz. 1260 * mac_unicast_remove after waiting for all transient refs to 1261 * to go away. The wait happens in mac_flow_wait. 1262 */ 1263 FLOW_REFHOLD(flent); 1264 1265 /* 1266 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1267 * will have the right value for mac_rx_srs_setup(). 1268 */ 1269 mac_client_add(mcip); 1270 1271 if (no_hwrings) 1272 mcip->mci_state_flags |= MCIS_NO_HWRINGS; 1273 if (req_hwrings) 1274 mcip->mci_state_flags |= MCIS_REQ_HWRINGS; 1275 mcip->mci_share = NULL; 1276 if (share_desired) { 1277 ASSERT(!no_hwrings); 1278 i_mac_share_alloc(mcip); 1279 } 1280 1281 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1282 mcip->mci_mip, mac_client_impl_t *, mcip); 1283 *mchp = (mac_client_handle_t)mcip; 1284 1285 i_mac_perim_exit(mip); 1286 return (0); 1287 1288 done: 1289 i_mac_perim_exit(mip); 1290 mcip->mci_state_flags = 0; 1291 mcip->mci_tx_flag = 0; 1292 kmem_cache_free(mac_client_impl_cache, mcip); 1293 return (err); 1294 } 1295 1296 /* 1297 * Close the specified MAC client handle. 1298 */ 1299 void 1300 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1301 { 1302 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1303 mac_impl_t *mip = mcip->mci_mip; 1304 flow_entry_t *flent; 1305 1306 i_mac_perim_enter(mip); 1307 1308 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1309 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1310 1311 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1312 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1313 /* 1314 * This is an upper VNIC client initiated operation. 1315 * The lower MAC client will be closed by the VNIC driver 1316 * when the VNIC is deleted. 1317 */ 1318 1319 i_mac_perim_exit(mip); 1320 return; 1321 } 1322 1323 /* 1324 * Remove the flent associated with the MAC client 1325 */ 1326 flent = mcip->mci_flent; 1327 mcip->mci_flent = NULL; 1328 FLOW_FINAL_REFRELE(flent); 1329 1330 /* 1331 * MAC clients must remove the unicast addresses and promisc callbacks 1332 * they added before issuing a mac_client_close(). 1333 */ 1334 ASSERT(mcip->mci_unicast_list == NULL); 1335 ASSERT(mcip->mci_promisc_list == NULL); 1336 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1337 1338 i_mac_share_free(mcip); 1339 1340 mac_client_remove(mcip); 1341 1342 i_mac_perim_exit(mip); 1343 mcip->mci_subflow_tab = NULL; 1344 mcip->mci_state_flags = 0; 1345 mcip->mci_tx_flag = 0; 1346 kmem_cache_free(mac_client_impl_cache, mch); 1347 } 1348 1349 /* 1350 * Enable bypass for the specified MAC client. 1351 */ 1352 boolean_t 1353 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1354 { 1355 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1356 mac_impl_t *mip = mcip->mci_mip; 1357 1358 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1359 1360 /* 1361 * If the mac_client is a VLAN, we should not do DLS bypass and 1362 * instead let the packets come up via mac_rx_deliver so the vlan 1363 * header can be stripped. 1364 */ 1365 if (mcip->mci_nvids > 0) 1366 return (B_FALSE); 1367 1368 /* 1369 * These are not accessed directly in the data path, and hence 1370 * don't need any protection 1371 */ 1372 mcip->mci_direct_rx_fn = rx_fn; 1373 mcip->mci_direct_rx_arg = arg1; 1374 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 1375 return (B_TRUE); 1376 } 1377 1378 /* 1379 * Set the receive callback for the specified MAC client. There can be 1380 * at most one such callback per MAC client. 1381 */ 1382 void 1383 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1384 { 1385 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1386 mac_impl_t *mip = mcip->mci_mip; 1387 1388 /* 1389 * Instead of adding an extra set of locks and refcnts in 1390 * the datapath at the mac client boundary, we temporarily quiesce 1391 * the SRS and related entities. We then change the receive function 1392 * without interference from any receive data thread and then reenable 1393 * the data flow subsequently. 1394 */ 1395 i_mac_perim_enter(mip); 1396 mac_rx_client_quiesce(mch); 1397 1398 mcip->mci_rx_fn = rx_fn; 1399 mcip->mci_rx_arg = arg; 1400 mac_rx_client_restart(mch); 1401 i_mac_perim_exit(mip); 1402 } 1403 1404 /* 1405 * Reset the receive callback for the specified MAC client. 1406 */ 1407 void 1408 mac_rx_clear(mac_client_handle_t mch) 1409 { 1410 mac_rx_set(mch, mac_pkt_drop, NULL); 1411 } 1412 1413 /* 1414 * Walk the MAC client subflow table and updates their priority values. 1415 */ 1416 static int 1417 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1418 { 1419 mac_flow_update_priority(arg, flent); 1420 return (0); 1421 } 1422 1423 void 1424 mac_update_subflow_priority(mac_client_impl_t *mcip) 1425 { 1426 (void) mac_flow_walk(mcip->mci_subflow_tab, 1427 mac_update_subflow_priority_cb, mcip); 1428 } 1429 1430 /* 1431 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 1432 * to initialize the cpu and resource control structure in the 1433 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 1434 * properties before the flow entry for the unicast address was created). 1435 */ 1436 int 1437 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 1438 { 1439 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1440 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1441 int err = 0; 1442 1443 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1444 1445 err = mac_validate_props(mrp); 1446 if (err != 0) 1447 return (err); 1448 1449 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 1450 if (MCIP_DATAPATH_SETUP(mcip)) { 1451 /* 1452 * We have to set this prior to calling mac_flow_modify. 1453 */ 1454 if (mrp->mrp_mask & MRP_PRIORITY) { 1455 if (mrp->mrp_priority == MPL_RESET) { 1456 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1457 MPL_LINK_DEFAULT); 1458 } else { 1459 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1460 mrp->mrp_priority); 1461 } 1462 } 1463 1464 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 1465 if (mrp->mrp_mask & MRP_PRIORITY) 1466 mac_update_subflow_priority(mcip); 1467 return (0); 1468 } 1469 return (0); 1470 } 1471 1472 void 1473 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp) 1474 { 1475 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1476 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 1477 1478 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 1479 } 1480 1481 static int 1482 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 1483 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 1484 flow_entry_t **flent, mac_resource_props_t *mrp) 1485 { 1486 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1487 flow_desc_t flow_desc; 1488 char flowname[MAXFLOWNAMELEN]; 1489 int err; 1490 uint_t flent_flags; 1491 1492 /* 1493 * First unicast address being added, create a new flow 1494 * for that MAC client. 1495 */ 1496 bzero(&flow_desc, sizeof (flow_desc)); 1497 1498 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 1499 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 1500 flow_desc.fd_mask = FLOW_LINK_DST; 1501 if (vid != 0) { 1502 flow_desc.fd_vid = vid; 1503 flow_desc.fd_mask |= FLOW_LINK_VID; 1504 } 1505 1506 /* 1507 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 1508 * and FLOW_VNIC. Even though they're a hack inherited 1509 * from the SRS code, we'll keep them for now. They're currently 1510 * consumed by mac_datapath_setup() to create the SRS. 1511 * That code should be eventually moved out of 1512 * mac_datapath_setup() and moved to a mac_srs_create() 1513 * function of some sort to keep things clean. 1514 * 1515 * Also, there's no reason why the SRS for the primary MAC 1516 * client should be different than any other MAC client. Until 1517 * this is cleaned-up, we support only one MAC unicast address 1518 * per client. 1519 * 1520 * We set FLOW_PRIMARY_MAC for the primary MAC address, 1521 * FLOW_VNIC for everything else. 1522 */ 1523 if (is_primary) 1524 flent_flags = FLOW_PRIMARY_MAC; 1525 else 1526 flent_flags = FLOW_VNIC_MAC; 1527 1528 /* 1529 * For the first flow we use the mac client's name - mci_name, for 1530 * subsequent ones we just create a name with the vid. This is 1531 * so that we can add these flows to the same flow table. This is 1532 * fine as the flow name (except for the one with the mac client's 1533 * name) is not visible. When the first flow is removed, we just replace 1534 * its fdesc with another from the list, so we will still retain the 1535 * flent with the MAC client's flow name. 1536 */ 1537 if (first_flow) { 1538 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 1539 } else { 1540 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 1541 flent_flags = FLOW_NO_STATS; 1542 } 1543 1544 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 1545 flent_flags, flent)) != 0) 1546 return (err); 1547 1548 FLOW_MARK(*flent, FE_INCIPIENT); 1549 (*flent)->fe_mcip = mcip; 1550 1551 /* 1552 * Place initial creation reference on the flow. This reference 1553 * is released in the corresponding delete action viz. 1554 * mac_unicast_remove after waiting for all transient refs to 1555 * to go away. The wait happens in mac_flow_wait. 1556 * We have already held the reference in mac_client_open(). 1557 */ 1558 if (!first_flow) 1559 FLOW_REFHOLD(*flent); 1560 return (0); 1561 } 1562 1563 /* Refresh the multicast grouping for this VID. */ 1564 int 1565 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 1566 { 1567 flow_entry_t *flent = arg; 1568 mac_client_impl_t *mcip = flent->fe_mcip; 1569 uint16_t vid; 1570 flow_desc_t flow_desc; 1571 1572 mac_flow_get_desc(flent, &flow_desc); 1573 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 1574 flow_desc.fd_vid : VLAN_ID_NONE; 1575 1576 /* 1577 * We don't call mac_multicast_add()/mac_multicast_remove() as 1578 * we want to add/remove for this specific vid. 1579 */ 1580 if (add) { 1581 return (mac_bcast_add(mcip, addrp, vid, 1582 MAC_ADDRTYPE_MULTICAST)); 1583 } else { 1584 mac_bcast_delete(mcip, addrp, vid); 1585 return (0); 1586 } 1587 } 1588 1589 static void 1590 mac_update_single_active_client(mac_impl_t *mip) 1591 { 1592 mac_client_impl_t *client = NULL; 1593 1594 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1595 1596 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1597 if (mip->mi_nactiveclients == 1) { 1598 /* 1599 * Find the one active MAC client from the list of MAC 1600 * clients. The active MAC client has at least one 1601 * unicast address. 1602 */ 1603 for (client = mip->mi_clients_list; client != NULL; 1604 client = client->mci_client_next) { 1605 if (client->mci_unicast_list != NULL) 1606 break; 1607 } 1608 ASSERT(client != NULL); 1609 } 1610 1611 /* 1612 * mi_single_active_client is protected by the MAC impl's read/writer 1613 * lock, which allows mac_rx() to check the value of that pointer 1614 * as a reader. 1615 */ 1616 mip->mi_single_active_client = client; 1617 rw_exit(&mip->mi_rw_lock); 1618 } 1619 1620 /* 1621 * Add a new unicast address to the MAC client. 1622 * 1623 * The MAC address can be specified either by value, or the MAC client 1624 * can specify that it wants to use the primary MAC address of the 1625 * underlying MAC. See the introductory comments at the beginning 1626 * of this file for more more information on primary MAC addresses. 1627 * 1628 * Note also the tuple (MAC address, VID) must be unique 1629 * for the MAC clients defined on top of the same underlying MAC 1630 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 1631 */ 1632 int 1633 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1634 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1635 { 1636 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1637 mac_impl_t *mip = mcip->mci_mip; 1638 mac_unicast_impl_t *muip; 1639 flow_entry_t *flent; 1640 int err; 1641 uint_t mac_len = mip->mi_type->mt_addr_length; 1642 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 1643 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 1644 boolean_t is_vnic_primary = (flags & MAC_UNICAST_VNIC_PRIMARY); 1645 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 1646 boolean_t bcast_added = B_FALSE; 1647 boolean_t nactiveclients_added = B_FALSE; 1648 boolean_t mac_started = B_FALSE; 1649 mac_resource_props_t mrp; 1650 1651 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1652 1653 /* when VID is non-zero, the underlying MAC can not be VNIC */ 1654 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0))); 1655 1656 /* 1657 * Check whether it's the primary client and flag it. 1658 */ 1659 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0) 1660 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 1661 1662 /* 1663 * is_vnic_primary is true when we come here as a VLAN VNIC 1664 * which uses the primary mac client's address but with a non-zero 1665 * VID. In this case the MAC address is not specified by an upper 1666 * MAC client. 1667 */ 1668 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 1669 !is_vnic_primary) { 1670 /* 1671 * The address is being set by the upper MAC client 1672 * of a VNIC. The MAC address was already set by the 1673 * VNIC driver during VNIC creation. 1674 * 1675 * Note: a VNIC has only one MAC address. We return 1676 * the MAC unicast address handle of the lower MAC client 1677 * corresponding to the VNIC. We allocate a new entry 1678 * which is flagged appropriately, so that mac_unicast_remove() 1679 * doesn't attempt to free the original entry that 1680 * was allocated by the VNIC driver. 1681 */ 1682 ASSERT(mcip->mci_unicast != NULL); 1683 1684 /* 1685 * Ensure that the primary unicast address of the VNIC 1686 * is added only once. 1687 */ 1688 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) 1689 return (EBUSY); 1690 1691 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1692 1693 /* 1694 * Create a handle for vid 0. 1695 */ 1696 ASSERT(vid == 0); 1697 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1698 muip->mui_vid = vid; 1699 *mah = (mac_unicast_handle_t)muip; 1700 return (0); 1701 } 1702 1703 /* primary MAC clients cannot be opened on top of anchor VNICs */ 1704 if ((is_vnic_primary || is_primary) && 1705 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 1706 return (ENXIO); 1707 } 1708 1709 /* 1710 * Return EBUSY if: 1711 * - this is an exclusive active mac client and there already exist 1712 * active mac clients, or 1713 * - there already exist an exclusively active mac client. 1714 */ 1715 if ((mcip->mci_state_flags & MCIS_EXCLUSIVE) && 1716 (mip->mi_nactiveclients != 0) || (mip->mi_state_flags & 1717 MIS_EXCLUSIVE)) { 1718 return (EBUSY); 1719 } 1720 1721 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 1722 mip->mi_state_flags |= MIS_EXCLUSIVE; 1723 1724 bzero(&mrp, sizeof (mac_resource_props_t)); 1725 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 1726 MCIS_IS_AGGR_PORT))) { 1727 /* 1728 * Apply the property cached in the mac_impl_t to the primary 1729 * mac client. If the mac client is a VNIC or an aggregation 1730 * port, its property should be set in the mcip when the 1731 * VNIC/aggr was created. 1732 */ 1733 mac_get_resources((mac_handle_t)mip, &mrp); 1734 (void) mac_client_set_resources(mch, &mrp); 1735 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 1736 bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp, 1737 sizeof (mac_resource_props_t)); 1738 } 1739 1740 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1741 muip->mui_vid = vid; 1742 1743 if (is_primary || is_vnic_primary) { 1744 mac_addr = mip->mi_addr; 1745 check_dups = B_TRUE; 1746 } else { 1747 1748 /* 1749 * Verify the validity of the specified MAC addresses value. 1750 */ 1751 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 1752 *diag = MAC_DIAG_MACADDR_INVALID; 1753 err = EINVAL; 1754 goto bail; 1755 } 1756 1757 /* 1758 * Make sure that the specified MAC address is different 1759 * than the unicast MAC address of the underlying NIC. 1760 */ 1761 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 1762 *diag = MAC_DIAG_MACADDR_NIC; 1763 err = EINVAL; 1764 goto bail; 1765 } 1766 } 1767 1768 /* 1769 * Make sure the MAC address is not already used by 1770 * another MAC client defined on top of the same 1771 * underlying NIC. 1772 * xxx-venu mac_unicast_add doesnt' seem to be called 1773 * with MAC_UNICAST_NODUPCHECK currently, if it does 1774 * get called we need to do mac_addr_in_use() just 1775 * to check for addr_in_use till 6697876 is fixed. 1776 */ 1777 if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) { 1778 *diag = MAC_DIAG_MACADDR_INUSE; 1779 err = EEXIST; 1780 goto bail; 1781 } 1782 1783 if ((err = mac_start((mac_handle_t)mip)) != 0) 1784 goto bail; 1785 1786 mac_started = B_TRUE; 1787 1788 /* add the MAC client to the broadcast address group by default */ 1789 if (mip->mi_type->mt_brdcst_addr != NULL) { 1790 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 1791 MAC_ADDRTYPE_BROADCAST); 1792 if (err != 0) 1793 goto bail; 1794 bcast_added = B_TRUE; 1795 } 1796 1797 /* 1798 * If this is the first unicast address addition for this 1799 * client, reuse the pre-allocated larval flow entry associated with 1800 * the MAC client. 1801 */ 1802 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 1803 1804 /* We are configuring the unicast flow now */ 1805 if (!MCIP_DATAPATH_SETUP(mcip)) { 1806 if (is_unicast_hw) { 1807 /* 1808 * The client requires a hardware MAC address slot 1809 * for that unicast address. Since we support only 1810 * one unicast MAC address per client, flag the 1811 * MAC client itself. 1812 */ 1813 mcip->mci_state_flags |= MCIS_UNICAST_HW; 1814 } 1815 1816 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1817 (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority : 1818 MPL_LINK_DEFAULT); 1819 1820 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1821 is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0) 1822 goto bail; 1823 1824 mip->mi_nactiveclients++; 1825 nactiveclients_added = B_TRUE; 1826 1827 /* 1828 * This will allocate the RX ring group if possible for the 1829 * flow and program the software classifier as needed. 1830 */ 1831 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 1832 goto bail; 1833 1834 /* 1835 * The unicast MAC address must have been added successfully. 1836 */ 1837 ASSERT(mcip->mci_unicast != NULL); 1838 /* 1839 * Push down the sub-flows that were defined on this link 1840 * hitherto. The flows are added to the active flow table 1841 * and SRS, softrings etc. are created as needed. 1842 */ 1843 mac_link_init_flows(mch); 1844 } else { 1845 mac_address_t *map = mcip->mci_unicast; 1846 1847 /* 1848 * A unicast flow already exists for that MAC client, 1849 * this flow must be the same mac address but with 1850 * different VID. It has been checked by mac_addr_in_use(). 1851 * 1852 * We will use the SRS etc. from the mci_flent. Note that 1853 * We don't need to create kstat for this as except for 1854 * the fdesc, everything will be used from in the 1st flent. 1855 */ 1856 1857 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 1858 err = EINVAL; 1859 goto bail; 1860 } 1861 1862 /* 1863 * Make sure the client is consistent about its requests 1864 * for MAC addresses. I.e. all requests from the clients 1865 * must have the MAC_UNICAST_HW flag set or clear. 1866 */ 1867 if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 1868 !is_unicast_hw || 1869 (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 1870 is_unicast_hw) { 1871 err = EINVAL; 1872 goto bail; 1873 } 1874 1875 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1876 is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0) 1877 goto bail; 1878 1879 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 1880 FLOW_FINAL_REFRELE(flent); 1881 goto bail; 1882 } 1883 1884 /* update the multicast group for this vid */ 1885 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 1886 (void *)flent, B_TRUE); 1887 1888 } 1889 1890 /* populate the shared MAC address */ 1891 muip->mui_map = mcip->mci_unicast; 1892 1893 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1894 muip->mui_next = mcip->mci_unicast_list; 1895 mcip->mci_unicast_list = muip; 1896 rw_exit(&mcip->mci_rw_lock); 1897 1898 *mah = (mac_unicast_handle_t)muip; 1899 1900 /* 1901 * First add the flent to the flow list of this mcip. Then set 1902 * the mip's mi_single_active_client if needed. The Rx path assumes 1903 * that mip->mi_single_active_client will always have an associated 1904 * flent. 1905 */ 1906 mac_client_add_to_flow_list(mcip, flent); 1907 1908 if (nactiveclients_added) 1909 mac_update_single_active_client(mip); 1910 /* 1911 * Trigger a renegotiation of the capabilities when the number of 1912 * active clients changes from 1 to 2, since some of the capabilities 1913 * might have to be disabled. Also send a MAC_NOTE_LINK notification 1914 * to all the MAC clients whenever physical link is DOWN. 1915 */ 1916 if (mip->mi_nactiveclients == 2) { 1917 mac_capab_update((mac_handle_t)mip); 1918 mac_virtual_link_update(mip); 1919 } 1920 /* 1921 * Now that the setup is complete, clear the INCIPIENT flag. 1922 * The flag was set to avoid incoming packets seeing inconsistent 1923 * structures while the setup was in progress. Clear the mci_tx_flag 1924 * by calling mac_tx_client_block. It is possible that 1925 * mac_unicast_remove was called prior to this mac_unicast_add which 1926 * could have set the MCI_TX_QUIESCE flag. 1927 */ 1928 if (flent->fe_rx_ring_group != NULL) 1929 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 1930 FLOW_UNMARK(flent, FE_INCIPIENT); 1931 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 1932 mac_tx_client_unblock(mcip); 1933 return (0); 1934 bail: 1935 if (bcast_added) 1936 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 1937 if (mac_started) 1938 mac_stop((mac_handle_t)mip); 1939 1940 if (nactiveclients_added) 1941 mip->mi_nactiveclients--; 1942 1943 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 1944 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 1945 kmem_free(muip, sizeof (mac_unicast_impl_t)); 1946 return (err); 1947 } 1948 1949 int 1950 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1951 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1952 { 1953 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 1954 uint_t err; 1955 1956 i_mac_perim_enter(mip); 1957 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 1958 i_mac_perim_exit(mip); 1959 1960 return (err); 1961 } 1962 1963 /* 1964 * Add the primary MAC address to the MAC client. This is a convenience 1965 * function which can be called by primary MAC clients which do not 1966 * need to specify any other additional flags. 1967 * 1968 * It's called in one of following situations: 1969 * * dls as the primary MAC client 1970 * * aggr as an exclusive client 1971 * * by VNIC's client 1972 */ 1973 int 1974 mac_unicast_primary_add(mac_client_handle_t mch, mac_unicast_handle_t *mah, 1975 mac_diag_t *diag) 1976 { 1977 return (mac_unicast_add(mch, NULL, MAC_UNICAST_PRIMARY, mah, 0, diag)); 1978 } 1979 1980 /* 1981 * Remove a MAC address which was previously added by mac_unicast_add(). 1982 */ 1983 int 1984 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 1985 { 1986 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1987 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 1988 mac_unicast_impl_t *pre; 1989 mac_impl_t *mip = mcip->mci_mip; 1990 flow_entry_t *flent; 1991 1992 i_mac_perim_enter(mip); 1993 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 1994 /* 1995 * Called made by the upper MAC client of a VNIC. 1996 * There's nothing much to do, the unicast address will 1997 * be removed by the VNIC driver when the VNIC is deleted, 1998 * but let's ensure that all our transmit is done before 1999 * the client does a mac_client_stop lest it trigger an 2000 * assert in the driver. 2001 */ 2002 ASSERT(muip->mui_vid == 0); 2003 2004 mac_tx_client_flush(mcip); 2005 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2006 2007 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2008 i_mac_perim_exit(mip); 2009 return (0); 2010 } 2011 2012 ASSERT(muip != NULL); 2013 2014 /* 2015 * Remove the VID from the list of client's VIDs. 2016 */ 2017 pre = mcip->mci_unicast_list; 2018 if (muip == pre) { 2019 mcip->mci_unicast_list = muip->mui_next; 2020 } else { 2021 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 2022 pre = pre->mui_next; 2023 ASSERT(pre->mui_next == muip); 2024 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2025 pre->mui_next = muip->mui_next; 2026 rw_exit(&mcip->mci_rw_lock); 2027 } 2028 2029 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0) 2030 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 2031 2032 if (!mac_client_single_rcvr(mcip)) { 2033 /* 2034 * This MAC client is shared by more than one unicast 2035 * addresses, so we will just remove the flent 2036 * corresponding to the address being removed. We don't invoke 2037 * mac_rx_classify_flow_rem() since the additional flow is 2038 * not associated with its own separate set of SRS and rings, 2039 * and these constructs are still needed for the remaining 2040 * flows. 2041 */ 2042 flent = mac_client_get_flow(mcip, muip); 2043 ASSERT(flent != NULL); 2044 2045 /* 2046 * The first one is disappearing, need to make sure 2047 * we replace it with another from the list of 2048 * shared clients. 2049 */ 2050 if (flent == mcip->mci_flent) 2051 flent = mac_client_swap_mciflent(mcip); 2052 mac_client_remove_flow_from_list(mcip, flent); 2053 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 2054 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2055 2056 /* 2057 * The multicast groups that were added by the client so 2058 * far must be removed from the brodcast domain corresponding 2059 * to the VID being removed. 2060 */ 2061 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2062 (void *)flent, B_FALSE); 2063 2064 if (mip->mi_type->mt_brdcst_addr != NULL) { 2065 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2066 muip->mui_vid); 2067 } 2068 mac_stop((mac_handle_t)mip); 2069 FLOW_FINAL_REFRELE(flent); 2070 i_mac_perim_exit(mip); 2071 return (0); 2072 } 2073 2074 /* 2075 * We would have initialized subflows etc. only if we brought up 2076 * the primary client and set the unicast unicast address etc. 2077 * Deactivate the flows. The flow entry will be removed from the 2078 * active flow tables, and the associated SRS, softrings etc will 2079 * be deleted. But the flow entry itself won't be destroyed, instead 2080 * it will continue to be archived off the the global flow hash 2081 * list, for a possible future activation when say IP is plumbed 2082 * again. 2083 */ 2084 mac_link_release_flows(mch); 2085 2086 mip->mi_nactiveclients--; 2087 mac_update_single_active_client(mip); 2088 2089 /* Tear down the Data path */ 2090 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2091 2092 /* 2093 * Prevent any future access to the flow entry through the mci_flent 2094 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2095 * mac_bcast_send is also under mi_rw_lock. 2096 */ 2097 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2098 flent = mcip->mci_flent; 2099 mac_client_remove_flow_from_list(mcip, flent); 2100 2101 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2102 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2103 2104 /* 2105 * This is the last unicast address being removed and there shouldn't 2106 * be any outbound data threads at this point coming down from mac 2107 * clients. We have waited for the data threads to finish before 2108 * starting dld_str_detach. Non-data threads must access TX SRS 2109 * under mi_rw_lock. 2110 */ 2111 rw_exit(&mip->mi_rw_lock); 2112 2113 /* 2114 * Update the multicast group for this vid. 2115 */ 2116 mac_client_bcast_refresh(mcip, mac_client_update_mcast, (void *)flent, 2117 B_FALSE); 2118 2119 /* 2120 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2121 * contain other flags, such as FE_CONDEMNED, which we need to 2122 * cleared. We don't call mac_flow_cleanup() for this unicast 2123 * flow as we have a already cleaned up SRSs etc. (via the teadown 2124 * path). We just clear the stats and reset the initial callback 2125 * function, the rest will be set when we call mac_flow_create, 2126 * if at all. 2127 */ 2128 mutex_enter(&flent->fe_lock); 2129 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2130 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2131 flent->fe_flags = FE_MC_NO_DATAPATH; 2132 flow_stat_destroy(flent); 2133 2134 /* Initialize the receiver function to a safe routine */ 2135 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2136 flent->fe_cb_arg1 = NULL; 2137 flent->fe_cb_arg2 = NULL; 2138 2139 flent->fe_index = -1; 2140 mutex_exit(&flent->fe_lock); 2141 2142 if (mip->mi_type->mt_brdcst_addr != NULL) { 2143 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2144 muip->mui_vid); 2145 } 2146 2147 if (mip->mi_nactiveclients == 1) { 2148 mac_capab_update((mac_handle_t)mip); 2149 mac_virtual_link_update(mip); 2150 } 2151 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 2152 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2153 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2154 2155 mac_stop((mac_handle_t)mip); 2156 2157 i_mac_perim_exit(mip); 2158 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2159 return (0); 2160 } 2161 2162 /* 2163 * Multicast add function invoked by MAC clients. 2164 */ 2165 int 2166 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 2167 { 2168 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2169 mac_impl_t *mip = mcip->mci_mip; 2170 flow_entry_t *flent = mcip->mci_flent_list; 2171 flow_entry_t *prev_fe = NULL; 2172 uint16_t vid; 2173 int err = 0; 2174 2175 /* Verify the address is a valid multicast address */ 2176 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 2177 mip->mi_pdata)) != 0) 2178 return (err); 2179 2180 i_mac_perim_enter(mip); 2181 while (flent != NULL) { 2182 vid = i_mac_flow_vid(flent); 2183 2184 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 2185 MAC_ADDRTYPE_MULTICAST); 2186 if (err != 0) 2187 break; 2188 prev_fe = flent; 2189 flent = flent->fe_client_next; 2190 } 2191 2192 /* 2193 * If we failed adding, then undo all, rather than partial 2194 * success. 2195 */ 2196 if (flent != NULL && prev_fe != NULL) { 2197 flent = mcip->mci_flent_list; 2198 while (flent != prev_fe->fe_client_next) { 2199 vid = i_mac_flow_vid(flent); 2200 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2201 flent = flent->fe_client_next; 2202 } 2203 } 2204 i_mac_perim_exit(mip); 2205 return (err); 2206 } 2207 2208 /* 2209 * Multicast delete function invoked by MAC clients. 2210 */ 2211 void 2212 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 2213 { 2214 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2215 mac_impl_t *mip = mcip->mci_mip; 2216 flow_entry_t *flent; 2217 uint16_t vid; 2218 2219 i_mac_perim_enter(mip); 2220 for (flent = mcip->mci_flent_list; flent != NULL; 2221 flent = flent->fe_client_next) { 2222 vid = i_mac_flow_vid(flent); 2223 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2224 } 2225 i_mac_perim_exit(mip); 2226 } 2227 2228 /* 2229 * When a MAC client desires to capture packets on an interface, 2230 * it registers a promiscuous call back with mac_promisc_add(). 2231 * There are three types of promiscuous callbacks: 2232 * 2233 * * MAC_CLIENT_PROMISC_ALL 2234 * Captures all packets sent and received by the MAC client, 2235 * the physical interface, as well as all other MAC clients 2236 * defined on top of the same MAC. 2237 * 2238 * * MAC_CLIENT_PROMISC_FILTERED 2239 * Captures all packets sent and received by the MAC client, 2240 * plus all multicast traffic sent and received by the phyisical 2241 * interface and the other MAC clients. 2242 * 2243 * * MAC_CLIENT_PROMISC_MULTI 2244 * Captures all broadcast and multicast packets sent and 2245 * received by the MAC clients as well as the physical interface. 2246 * 2247 * In all cases, the underlying MAC is put in promiscuous mode. 2248 */ 2249 int 2250 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 2251 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 2252 { 2253 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2254 mac_impl_t *mip = mcip->mci_mip; 2255 mac_promisc_impl_t *mpip; 2256 mac_cb_info_t *mcbi; 2257 int rc; 2258 2259 i_mac_perim_enter(mip); 2260 2261 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 2262 i_mac_perim_exit(mip); 2263 return (rc); 2264 } 2265 2266 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 2267 type == MAC_CLIENT_PROMISC_ALL) { 2268 /* 2269 * The function is being invoked by the upper MAC client 2270 * of a VNIC. The VNIC should only see the traffic 2271 * it is entitled to. 2272 */ 2273 type = MAC_CLIENT_PROMISC_FILTERED; 2274 } 2275 2276 2277 /* 2278 * Turn on promiscuous mode for the underlying NIC. 2279 * This is needed even for filtered callbacks which 2280 * expect to receive all multicast traffic on the wire. 2281 * 2282 * Physical promiscuous mode should not be turned on if 2283 * MAC_PROMISC_FLAGS_NO_PHYS is set. 2284 */ 2285 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 2286 if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) 2287 != 0) { 2288 mac_stop((mac_handle_t)mip); 2289 i_mac_perim_exit(mip); 2290 return (rc); 2291 } 2292 } 2293 2294 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 2295 2296 mpip->mpi_type = type; 2297 mpip->mpi_fn = fn; 2298 mpip->mpi_arg = arg; 2299 mpip->mpi_mcip = mcip; 2300 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 2301 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 2302 mpip->mpi_strip_vlan_tag = 2303 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 2304 2305 mcbi = &mip->mi_promisc_cb_info; 2306 mutex_enter(mcbi->mcbi_lockp); 2307 2308 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 2309 &mpip->mpi_mci_link); 2310 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 2311 &mpip->mpi_mi_link); 2312 2313 mutex_exit(mcbi->mcbi_lockp); 2314 2315 *mphp = (mac_promisc_handle_t)mpip; 2316 i_mac_perim_exit(mip); 2317 return (0); 2318 } 2319 2320 /* 2321 * Remove a multicast address previously aded through mac_promisc_add(). 2322 */ 2323 int 2324 mac_promisc_remove(mac_promisc_handle_t mph) 2325 { 2326 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 2327 mac_client_impl_t *mcip = mpip->mpi_mcip; 2328 mac_impl_t *mip = mcip->mci_mip; 2329 mac_cb_info_t *mcbi; 2330 int rc = 0; 2331 2332 i_mac_perim_enter(mip); 2333 2334 /* 2335 * Even if the device can't be reset into normal mode, we still 2336 * need to clear the client promisc callbacks. The client may want 2337 * to close the mac end point and we can't have stale callbacks. 2338 */ 2339 if (!(mpip->mpi_no_phys)) { 2340 rc = mac_promisc_set((mac_handle_t)mip, B_FALSE, 2341 MAC_DEVPROMISC); 2342 if (rc != 0) 2343 goto done; 2344 } 2345 mcbi = &mip->mi_promisc_cb_info; 2346 mutex_enter(mcbi->mcbi_lockp); 2347 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 2348 &mpip->mpi_mi_link)) { 2349 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 2350 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 2351 kmem_cache_free(mac_promisc_impl_cache, mpip); 2352 } else { 2353 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 2354 } 2355 mutex_exit(mcbi->mcbi_lockp); 2356 mac_stop((mac_handle_t)mip); 2357 2358 done: 2359 i_mac_perim_exit(mip); 2360 return (rc); 2361 } 2362 2363 /* 2364 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 2365 * that a control operation wants to quiesce the Tx data flow in which case 2366 * we return an error. Holding any of the per cpu locks ensures that the 2367 * mci_tx_flag won't change. 2368 * 2369 * 'CPU' must be accessed just once and used to compute the index into the 2370 * percpu array, and that index must be used for the entire duration of the 2371 * packet send operation. Note that the thread may be preempted and run on 2372 * another cpu any time and so we can't use 'CPU' more than once for the 2373 * operation. 2374 */ 2375 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 2376 { \ 2377 (error) = 0; \ 2378 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 2379 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2380 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 2381 (mytx)->pcpu_tx_refcnt++; \ 2382 } else { \ 2383 (error) = -1; \ 2384 } \ 2385 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2386 } 2387 2388 /* 2389 * Release the reference. If needed, signal any control operation waiting 2390 * for Tx quiescence. The wait and signal are always done using the 2391 * mci_tx_pcpu[0]'s lock 2392 */ 2393 #define MAC_TX_RELE(mcip, mytx) { \ 2394 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2395 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 2396 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 2397 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2398 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2399 cv_signal(&(mcip)->mci_tx_cv); \ 2400 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2401 } else { \ 2402 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2403 } \ 2404 } 2405 2406 /* 2407 * Bump the count of the number of active Tx threads. This is maintained as 2408 * a per CPU counter. On (CMT kind of) machines with large number of CPUs, 2409 * a single mci_tx_lock may become contended. However a count of the total 2410 * number of Tx threads per client is needed in order to quiesce the Tx side 2411 * prior to reassigning a Tx ring dynamically to another client. The thread 2412 * that needs to quiesce the Tx traffic grabs all the percpu locks and checks 2413 * the sum of the individual percpu refcnts. Each Tx data thread only grabs 2414 * its own percpu lock and increments its own refcnt. 2415 */ 2416 void * 2417 mac_tx_hold(mac_client_handle_t mch) 2418 { 2419 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2420 mac_tx_percpu_t *mytx; 2421 int error; 2422 2423 MAC_TX_TRY_HOLD(mcip, mytx, error); 2424 return (error == 0 ? (void *)mytx : NULL); 2425 } 2426 2427 void 2428 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle) 2429 { 2430 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2431 mac_tx_percpu_t *mytx = mytx_handle; 2432 2433 MAC_TX_RELE(mcip, mytx) 2434 } 2435 2436 /* 2437 * Send function invoked by MAC clients. 2438 */ 2439 mac_tx_cookie_t 2440 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 2441 uint16_t flag, mblk_t **ret_mp) 2442 { 2443 mac_tx_cookie_t cookie; 2444 int error; 2445 mac_tx_percpu_t *mytx; 2446 mac_soft_ring_set_t *srs; 2447 flow_entry_t *flent; 2448 boolean_t is_subflow = B_FALSE; 2449 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2450 mac_impl_t *mip = mcip->mci_mip; 2451 mac_srs_tx_t *srs_tx; 2452 2453 /* 2454 * Check whether the active Tx threads count is bumped already. 2455 */ 2456 if (!(flag & MAC_TX_NO_HOLD)) { 2457 MAC_TX_TRY_HOLD(mcip, mytx, error); 2458 if (error != 0) { 2459 freemsgchain(mp_chain); 2460 return (NULL); 2461 } 2462 } 2463 2464 if (mcip->mci_subflow_tab != NULL && 2465 mcip->mci_subflow_tab->ft_flow_count > 0 && 2466 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 2467 FLOW_OUTBOUND, &flent) == 0) { 2468 /* 2469 * The main assumption here is that if in the event 2470 * we get a chain, all the packets will be classified 2471 * to the same Flow/SRS. If this changes for any 2472 * reason, the following logic should change as well. 2473 * I suppose the fanout_hint also assumes this . 2474 */ 2475 ASSERT(flent != NULL); 2476 is_subflow = B_TRUE; 2477 } else { 2478 flent = mcip->mci_flent; 2479 } 2480 2481 srs = flent->fe_tx_srs; 2482 srs_tx = &srs->srs_tx; 2483 if (srs_tx->st_mode == SRS_TX_DEFAULT && 2484 (srs->srs_state & SRS_ENQUEUED) == 0 && 2485 mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL && 2486 mp_chain->b_next == NULL) { 2487 uint64_t obytes; 2488 2489 /* 2490 * Since dls always opens the underlying MAC, nclients equals 2491 * to 1 means that the only active client is dls itself acting 2492 * as a primary client of the MAC instance. Since dls will not 2493 * send tagged packets in that case, and dls is trusted to send 2494 * packets for its allowed VLAN(s), the VLAN tag insertion and 2495 * check is required only if nclients is greater than 1. 2496 */ 2497 if (mip->mi_nclients > 1) { 2498 if (MAC_VID_CHECK_NEEDED(mcip)) { 2499 int err = 0; 2500 2501 MAC_VID_CHECK(mcip, mp_chain, err); 2502 if (err != 0) { 2503 freemsg(mp_chain); 2504 mcip->mci_stat_oerrors++; 2505 goto done; 2506 } 2507 } 2508 if (MAC_TAG_NEEDED(mcip)) { 2509 mp_chain = mac_add_vlan_tag(mp_chain, 0, 2510 mac_client_vid(mch)); 2511 if (mp_chain == NULL) { 2512 mcip->mci_stat_oerrors++; 2513 goto done; 2514 } 2515 } 2516 } 2517 2518 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 2519 msgdsize(mp_chain)); 2520 2521 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 2522 2523 if (mp_chain == NULL) { 2524 cookie = NULL; 2525 mcip->mci_stat_obytes += obytes; 2526 mcip->mci_stat_opackets += 1; 2527 if ((srs->srs_type & SRST_FLOW) != 0) { 2528 FLOW_STAT_UPDATE(flent, obytes, obytes); 2529 FLOW_STAT_UPDATE(flent, opackets, 1); 2530 } 2531 } else { 2532 mutex_enter(&srs->srs_lock); 2533 cookie = mac_tx_srs_no_desc(srs, mp_chain, 2534 flag, ret_mp); 2535 mutex_exit(&srs->srs_lock); 2536 } 2537 } else { 2538 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 2539 } 2540 2541 done: 2542 if (is_subflow) 2543 FLOW_REFRELE(flent); 2544 2545 if (!(flag & MAC_TX_NO_HOLD)) 2546 MAC_TX_RELE(mcip, mytx); 2547 2548 return (cookie); 2549 } 2550 2551 /* 2552 * mac_tx_is_blocked 2553 * 2554 * Given a cookie, it returns if the ring identified by the cookie is 2555 * flow-controlled or not. If NULL is passed in place of a cookie, 2556 * then it finds out if any of the underlying rings belonging to the 2557 * SRS is flow controlled or not and returns that status. 2558 */ 2559 /* ARGSUSED */ 2560 boolean_t 2561 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 2562 { 2563 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2564 mac_soft_ring_set_t *mac_srs; 2565 mac_soft_ring_t *sringp; 2566 boolean_t blocked = B_FALSE; 2567 mac_tx_percpu_t *mytx; 2568 int err; 2569 int i; 2570 2571 /* 2572 * Bump the reference count so that mac_srs won't be deleted. 2573 * If the client is currently quiesced and we failed to bump 2574 * the reference, return B_TRUE so that flow control stays 2575 * as enabled. 2576 * 2577 * Flow control will then be disabled once the client is no 2578 * longer quiesced. 2579 */ 2580 MAC_TX_TRY_HOLD(mcip, mytx, err); 2581 if (err != 0) 2582 return (B_TRUE); 2583 2584 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 2585 MAC_TX_RELE(mcip, mytx); 2586 return (B_FALSE); 2587 } 2588 2589 mutex_enter(&mac_srs->srs_lock); 2590 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) { 2591 if (cookie != NULL) { 2592 sringp = (mac_soft_ring_t *)cookie; 2593 mutex_enter(&sringp->s_ring_lock); 2594 if (sringp->s_ring_state & S_RING_TX_HIWAT) 2595 blocked = B_TRUE; 2596 mutex_exit(&sringp->s_ring_lock); 2597 } else { 2598 for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { 2599 sringp = mac_srs->srs_oth_soft_rings[i]; 2600 mutex_enter(&sringp->s_ring_lock); 2601 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 2602 blocked = B_TRUE; 2603 mutex_exit(&sringp->s_ring_lock); 2604 break; 2605 } 2606 mutex_exit(&sringp->s_ring_lock); 2607 } 2608 } 2609 } else { 2610 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 2611 } 2612 mutex_exit(&mac_srs->srs_lock); 2613 MAC_TX_RELE(mcip, mytx); 2614 return (blocked); 2615 } 2616 2617 /* 2618 * Check if the MAC client is the primary MAC client. 2619 */ 2620 boolean_t 2621 mac_is_primary_client(mac_client_impl_t *mcip) 2622 { 2623 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 2624 } 2625 2626 void 2627 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 2628 { 2629 mac_impl_t *mip = (mac_impl_t *)mh; 2630 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 2631 2632 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 2633 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 2634 /* 2635 * If ndd props were registered, call them. 2636 * Note that ndd ioctls are Obsolete 2637 */ 2638 mac_ndd_ioctl(mip, wq, bp); 2639 return; 2640 } 2641 2642 /* 2643 * Call the driver to handle the ioctl. The driver may not support 2644 * any ioctls, in which case we reply with a NAK on its behalf. 2645 */ 2646 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 2647 mip->mi_ioctl(mip->mi_driver, wq, bp); 2648 else 2649 miocnak(wq, bp, 0, EINVAL); 2650 } 2651 2652 /* 2653 * Return the link state of the specified MAC instance. 2654 */ 2655 link_state_t 2656 mac_link_get(mac_handle_t mh) 2657 { 2658 return (((mac_impl_t *)mh)->mi_linkstate); 2659 } 2660 2661 /* 2662 * Add a mac client specified notification callback. Please see the comments 2663 * above mac_callback_add() for general information about mac callback 2664 * addition/deletion in the presence of mac callback list walkers 2665 */ 2666 mac_notify_handle_t 2667 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 2668 { 2669 mac_impl_t *mip = (mac_impl_t *)mh; 2670 mac_notify_cb_t *mncb; 2671 mac_cb_info_t *mcbi; 2672 2673 /* 2674 * Allocate a notify callback structure, fill in the details and 2675 * use the mac callback list manipulation functions to chain into 2676 * the list of callbacks. 2677 */ 2678 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 2679 mncb->mncb_fn = notify_fn; 2680 mncb->mncb_arg = arg; 2681 mncb->mncb_mip = mip; 2682 mncb->mncb_link.mcb_objp = mncb; 2683 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 2684 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 2685 2686 mcbi = &mip->mi_notify_cb_info; 2687 2688 i_mac_perim_enter(mip); 2689 mutex_enter(mcbi->mcbi_lockp); 2690 2691 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 2692 &mncb->mncb_link); 2693 2694 mutex_exit(mcbi->mcbi_lockp); 2695 i_mac_perim_exit(mip); 2696 return ((mac_notify_handle_t)mncb); 2697 } 2698 2699 void 2700 mac_notify_remove_wait(mac_handle_t mh) 2701 { 2702 mac_impl_t *mip = (mac_impl_t *)mh; 2703 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 2704 2705 mutex_enter(mcbi->mcbi_lockp); 2706 mac_callback_remove_wait(&mip->mi_notify_cb_info); 2707 mutex_exit(mcbi->mcbi_lockp); 2708 } 2709 2710 /* 2711 * Remove a mac client specified notification callback 2712 */ 2713 int 2714 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 2715 { 2716 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 2717 mac_impl_t *mip = mncb->mncb_mip; 2718 mac_cb_info_t *mcbi; 2719 int err = 0; 2720 2721 mcbi = &mip->mi_notify_cb_info; 2722 2723 i_mac_perim_enter(mip); 2724 mutex_enter(mcbi->mcbi_lockp); 2725 2726 ASSERT(mncb->mncb_link.mcb_objp == mncb); 2727 /* 2728 * If there aren't any list walkers, the remove would succeed 2729 * inline, else we wait for the deferred remove to complete 2730 */ 2731 if (mac_callback_remove(&mip->mi_notify_cb_info, 2732 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 2733 kmem_free(mncb, sizeof (mac_notify_cb_t)); 2734 } else { 2735 err = EBUSY; 2736 } 2737 2738 mutex_exit(mcbi->mcbi_lockp); 2739 i_mac_perim_exit(mip); 2740 2741 /* 2742 * If we failed to remove the notification callback and "wait" is set 2743 * to be B_TRUE, wait for the callback to finish after we exit the 2744 * mac perimeter. 2745 */ 2746 if (err != 0 && wait) { 2747 mac_notify_remove_wait((mac_handle_t)mip); 2748 return (0); 2749 } 2750 2751 return (err); 2752 } 2753 2754 /* 2755 * Associate resource management callbacks with the specified MAC 2756 * clients. 2757 */ 2758 2759 void 2760 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 2761 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 2762 mac_resource_restart_t restart, mac_resource_bind_t bind, 2763 void *arg) 2764 { 2765 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2766 2767 mcip->mci_resource_add = add; 2768 mcip->mci_resource_remove = remove; 2769 mcip->mci_resource_quiesce = quiesce; 2770 mcip->mci_resource_restart = restart; 2771 mcip->mci_resource_bind = bind; 2772 mcip->mci_resource_arg = arg; 2773 2774 if (arg == NULL) 2775 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 2776 } 2777 2778 void 2779 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 2780 { 2781 /* update the 'resource_add' callback */ 2782 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 2783 } 2784 2785 /* 2786 * Sets up the client resources and enable the polling interface over all the 2787 * SRS's and the soft rings of the client 2788 */ 2789 void 2790 mac_client_poll_enable(mac_client_handle_t mch) 2791 { 2792 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2793 mac_soft_ring_set_t *mac_srs; 2794 flow_entry_t *flent; 2795 int i; 2796 2797 flent = mcip->mci_flent; 2798 ASSERT(flent != NULL); 2799 2800 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2801 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2802 ASSERT(mac_srs->srs_mcip == mcip); 2803 mac_srs_client_poll_enable(mcip, mac_srs); 2804 } 2805 } 2806 2807 /* 2808 * Tears down the client resources and disable the polling interface over all 2809 * the SRS's and the soft rings of the client 2810 */ 2811 void 2812 mac_client_poll_disable(mac_client_handle_t mch) 2813 { 2814 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2815 mac_soft_ring_set_t *mac_srs; 2816 flow_entry_t *flent; 2817 int i; 2818 2819 flent = mcip->mci_flent; 2820 ASSERT(flent != NULL); 2821 2822 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2823 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2824 ASSERT(mac_srs->srs_mcip == mcip); 2825 mac_srs_client_poll_disable(mcip, mac_srs); 2826 } 2827 } 2828 2829 /* 2830 * Associate the CPUs specified by the given property with a MAC client. 2831 */ 2832 int 2833 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2834 { 2835 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2836 mac_impl_t *mip = mcip->mci_mip; 2837 int err = 0; 2838 2839 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2840 2841 if ((err = mac_validate_props(mrp)) != 0) 2842 return (err); 2843 2844 if (MCIP_DATAPATH_SETUP(mcip)) 2845 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 2846 2847 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2848 return (0); 2849 } 2850 2851 /* 2852 * Apply the specified properties to the specified MAC client. 2853 */ 2854 int 2855 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2856 { 2857 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2858 mac_impl_t *mip = mcip->mci_mip; 2859 int err = 0; 2860 2861 i_mac_perim_enter(mip); 2862 2863 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 2864 err = mac_resource_ctl_set(mch, mrp); 2865 if (err != 0) { 2866 i_mac_perim_exit(mip); 2867 return (err); 2868 } 2869 } 2870 2871 if (mrp->mrp_mask & MRP_CPUS) 2872 err = mac_cpu_set(mch, mrp); 2873 2874 i_mac_perim_exit(mip); 2875 return (err); 2876 } 2877 2878 /* 2879 * Return the properties currently associated with the specified MAC client. 2880 */ 2881 void 2882 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2883 { 2884 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2885 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 2886 2887 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 2888 } 2889 2890 /* 2891 * Pass a copy of the specified packet to the promiscuous callbacks 2892 * of the specified MAC. 2893 * 2894 * If sender is NULL, the function is being invoked for a packet chain 2895 * received from the wire. If sender is non-NULL, it points to 2896 * the MAC client from which the packet is being sent. 2897 * 2898 * The packets are distributed to the promiscuous callbacks as follows: 2899 * 2900 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 2901 * - all broadcast and multicast packets are sent to the 2902 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 2903 * 2904 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 2905 * after classification by mac_rx_deliver(). 2906 */ 2907 2908 static void 2909 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 2910 boolean_t loopback) 2911 { 2912 mblk_t *mp_copy; 2913 2914 mp_copy = copymsg(mp); 2915 if (mp_copy == NULL) 2916 return; 2917 mp_copy->b_next = NULL; 2918 2919 if (mpip->mpi_strip_vlan_tag) { 2920 if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL) 2921 return; 2922 } 2923 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 2924 } 2925 2926 /* 2927 * Return the VID of a packet. Zero if the packet is not tagged. 2928 */ 2929 static uint16_t 2930 mac_ether_vid(mblk_t *mp) 2931 { 2932 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 2933 2934 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 2935 struct ether_vlan_header *t_evhp = 2936 (struct ether_vlan_header *)mp->b_rptr; 2937 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 2938 } 2939 2940 return (0); 2941 } 2942 2943 /* 2944 * Return whether the specified packet contains a multicast or broadcast 2945 * destination MAC address. 2946 */ 2947 static boolean_t 2948 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 2949 { 2950 mac_header_info_t hdr_info; 2951 2952 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 2953 return (B_FALSE); 2954 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 2955 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 2956 } 2957 2958 /* 2959 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 2960 * "sender" points to the sender MAC client for outbound packets, and 2961 * is set to NULL for inbound packets. 2962 */ 2963 void 2964 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 2965 mac_client_impl_t *sender) 2966 { 2967 mac_promisc_impl_t *mpip; 2968 mac_cb_t *mcb; 2969 mblk_t *mp; 2970 boolean_t is_mcast, is_sender; 2971 2972 MAC_PROMISC_WALKER_INC(mip); 2973 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 2974 is_mcast = mac_is_mcast(mip, mp); 2975 /* send packet to interested callbacks */ 2976 for (mcb = mip->mi_promisc_list; mcb != NULL; 2977 mcb = mcb->mcb_nextp) { 2978 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 2979 is_sender = (mpip->mpi_mcip == sender); 2980 2981 if (is_sender && mpip->mpi_no_tx_loop) 2982 /* 2983 * The sender doesn't want to receive 2984 * copies of the packets it sends. 2985 */ 2986 continue; 2987 2988 /* 2989 * For an ethernet MAC, don't displatch a multicast 2990 * packet to a non-PROMISC_ALL callbacks unless the VID 2991 * of the packet matches the VID of the client. 2992 */ 2993 if (is_mcast && 2994 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 2995 !mac_client_check_flow_vid(mpip->mpi_mcip, 2996 mac_ether_vid(mp))) 2997 continue; 2998 2999 if (is_sender || 3000 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 3001 is_mcast) 3002 mac_promisc_dispatch_one(mpip, mp, is_sender); 3003 } 3004 } 3005 MAC_PROMISC_WALKER_DCR(mip); 3006 } 3007 3008 void 3009 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 3010 { 3011 mac_impl_t *mip = mcip->mci_mip; 3012 mac_promisc_impl_t *mpip; 3013 boolean_t is_mcast; 3014 mblk_t *mp; 3015 mac_cb_t *mcb; 3016 3017 /* 3018 * The unicast packets for the MAC client still 3019 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 3020 * promiscuous callbacks. The broadcast and multicast 3021 * packets were delivered from mac_rx(). 3022 */ 3023 MAC_PROMISC_WALKER_INC(mip); 3024 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 3025 is_mcast = mac_is_mcast(mip, mp); 3026 for (mcb = mcip->mci_promisc_list; mcb != NULL; 3027 mcb = mcb->mcb_nextp) { 3028 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 3029 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 3030 !is_mcast) { 3031 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 3032 } 3033 } 3034 } 3035 MAC_PROMISC_WALKER_DCR(mip); 3036 } 3037 3038 /* 3039 * Return the margin value currently assigned to the specified MAC instance. 3040 */ 3041 void 3042 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 3043 { 3044 mac_impl_t *mip = (mac_impl_t *)mh; 3045 3046 rw_enter(&(mip->mi_rw_lock), RW_READER); 3047 *marginp = mip->mi_margin; 3048 rw_exit(&(mip->mi_rw_lock)); 3049 } 3050 3051 /* 3052 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 3053 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 3054 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 3055 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 3056 * cannot disappear while we are accessing it. 3057 */ 3058 typedef struct i_mac_info_state_s { 3059 const char *mi_name; 3060 mac_info_t *mi_infop; 3061 } i_mac_info_state_t; 3062 3063 /*ARGSUSED*/ 3064 static uint_t 3065 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 3066 { 3067 i_mac_info_state_t *statep = arg; 3068 mac_impl_t *mip = (mac_impl_t *)val; 3069 3070 if (mip->mi_state_flags & MIS_DISABLED) 3071 return (MH_WALK_CONTINUE); 3072 3073 if (strcmp(statep->mi_name, 3074 ddi_driver_name(mip->mi_dip)) != 0) 3075 return (MH_WALK_CONTINUE); 3076 3077 statep->mi_infop = &mip->mi_info; 3078 return (MH_WALK_TERMINATE); 3079 } 3080 3081 boolean_t 3082 mac_info_get(const char *name, mac_info_t *minfop) 3083 { 3084 i_mac_info_state_t state; 3085 3086 rw_enter(&i_mac_impl_lock, RW_READER); 3087 state.mi_name = name; 3088 state.mi_infop = NULL; 3089 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 3090 if (state.mi_infop == NULL) { 3091 rw_exit(&i_mac_impl_lock); 3092 return (B_FALSE); 3093 } 3094 *minfop = *state.mi_infop; 3095 rw_exit(&i_mac_impl_lock); 3096 return (B_TRUE); 3097 } 3098 3099 /* 3100 * To get the capabilities that MAC layer cares about, such as rings, factory 3101 * mac address, vnic or not, it should directly invoke this function 3102 */ 3103 boolean_t 3104 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3105 { 3106 mac_impl_t *mip = (mac_impl_t *)mh; 3107 3108 if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 3109 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 3110 else 3111 return (B_FALSE); 3112 } 3113 3114 /* 3115 * Capability query function. If number of active mac clients is greater than 3116 * 1, only limited capabilities can be advertised to the caller no matter the 3117 * driver has certain capability or not. Else, we query the driver to get the 3118 * capability. 3119 */ 3120 boolean_t 3121 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3122 { 3123 mac_impl_t *mip = (mac_impl_t *)mh; 3124 3125 /* 3126 * if mi_nactiveclients > 1, only MAC_CAPAB_HCKSUM, 3127 * MAC_CAPAB_NO_NATIVEVLAN, MAC_CAPAB_NO_ZCOPY can be advertised. 3128 */ 3129 if (mip->mi_nactiveclients > 1) { 3130 switch (cap) { 3131 case MAC_CAPAB_HCKSUM: 3132 return (i_mac_capab_get(mh, cap, cap_data)); 3133 case MAC_CAPAB_NO_NATIVEVLAN: 3134 case MAC_CAPAB_NO_ZCOPY: 3135 return (B_TRUE); 3136 default: 3137 return (B_FALSE); 3138 } 3139 } 3140 3141 /* else get capab from driver */ 3142 return (i_mac_capab_get(mh, cap, cap_data)); 3143 } 3144 3145 boolean_t 3146 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 3147 { 3148 mac_impl_t *mip = (mac_impl_t *)mh; 3149 3150 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 3151 mip->mi_pdata)); 3152 } 3153 3154 mblk_t * 3155 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 3156 size_t extra_len) 3157 { 3158 mac_impl_t *mip = (mac_impl_t *)mh; 3159 3160 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap, 3161 mip->mi_pdata, payload, extra_len)); 3162 } 3163 3164 int 3165 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 3166 { 3167 mac_impl_t *mip = (mac_impl_t *)mh; 3168 3169 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 3170 mhip)); 3171 } 3172 3173 mblk_t * 3174 mac_header_cook(mac_handle_t mh, mblk_t *mp) 3175 { 3176 mac_impl_t *mip = (mac_impl_t *)mh; 3177 3178 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 3179 if (DB_REF(mp) > 1) { 3180 mblk_t *newmp = copymsg(mp); 3181 if (newmp == NULL) 3182 return (NULL); 3183 freemsg(mp); 3184 mp = newmp; 3185 } 3186 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 3187 mip->mi_pdata)); 3188 } 3189 return (mp); 3190 } 3191 3192 mblk_t * 3193 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 3194 { 3195 mac_impl_t *mip = (mac_impl_t *)mh; 3196 3197 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 3198 if (DB_REF(mp) > 1) { 3199 mblk_t *newmp = copymsg(mp); 3200 if (newmp == NULL) 3201 return (NULL); 3202 freemsg(mp); 3203 mp = newmp; 3204 } 3205 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 3206 mip->mi_pdata)); 3207 } 3208 return (mp); 3209 } 3210 3211 uint_t 3212 mac_addr_len(mac_handle_t mh) 3213 { 3214 mac_impl_t *mip = (mac_impl_t *)mh; 3215 3216 return (mip->mi_type->mt_addr_length); 3217 } 3218 3219 /* True if a MAC is a VNIC */ 3220 boolean_t 3221 mac_is_vnic(mac_handle_t mh) 3222 { 3223 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 3224 } 3225 3226 mac_handle_t 3227 mac_get_lower_mac_handle(mac_handle_t mh) 3228 { 3229 mac_impl_t *mip = (mac_impl_t *)mh; 3230 3231 ASSERT(mac_is_vnic(mh)); 3232 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 3233 } 3234 3235 void 3236 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 3237 boolean_t is_user_flow) 3238 { 3239 if (nmrp != NULL && cmrp != NULL) { 3240 if (nmrp->mrp_mask & MRP_PRIORITY) { 3241 if (nmrp->mrp_priority == MPL_RESET) { 3242 cmrp->mrp_mask &= ~MRP_PRIORITY; 3243 if (is_user_flow) { 3244 cmrp->mrp_priority = 3245 MPL_SUBFLOW_DEFAULT; 3246 } else { 3247 cmrp->mrp_priority = MPL_LINK_DEFAULT; 3248 } 3249 } else { 3250 cmrp->mrp_mask |= MRP_PRIORITY; 3251 cmrp->mrp_priority = nmrp->mrp_priority; 3252 } 3253 } 3254 if (nmrp->mrp_mask & MRP_MAXBW) { 3255 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 3256 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) 3257 cmrp->mrp_mask &= ~MRP_MAXBW; 3258 else 3259 cmrp->mrp_mask |= MRP_MAXBW; 3260 } 3261 if (nmrp->mrp_mask & MRP_CPUS) 3262 MAC_COPY_CPUS(nmrp, cmrp); 3263 } 3264 } 3265 3266 /* 3267 * i_mac_set_resources: 3268 * 3269 * This routine associates properties with the primary MAC client of 3270 * the specified MAC instance. 3271 * - Cache the properties in mac_impl_t 3272 * - Apply the properties to the primary MAC client if exists 3273 */ 3274 int 3275 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3276 { 3277 mac_impl_t *mip = (mac_impl_t *)mh; 3278 mac_client_impl_t *mcip; 3279 int err = 0; 3280 mac_resource_props_t tmrp; 3281 3282 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3283 3284 err = mac_validate_props(mrp); 3285 if (err != 0) 3286 return (err); 3287 3288 /* 3289 * Since bind_cpu may be modified by mac_client_set_resources() 3290 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 3291 * This allows us to cache only user edits in mip. 3292 */ 3293 bcopy(mrp, &tmrp, sizeof (mac_resource_props_t)); 3294 mcip = mac_primary_client_handle(mip); 3295 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 3296 err = 3297 mac_client_set_resources((mac_client_handle_t)mcip, &tmrp); 3298 } 3299 /* if mac_client_set_resources failed, do not update the values */ 3300 if (err == 0) 3301 mac_update_resources(mrp, &mip->mi_resource_props, B_FALSE); 3302 return (err); 3303 } 3304 3305 int 3306 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3307 { 3308 int err; 3309 3310 i_mac_perim_enter((mac_impl_t *)mh); 3311 err = i_mac_set_resources(mh, mrp); 3312 i_mac_perim_exit((mac_impl_t *)mh); 3313 return (err); 3314 } 3315 3316 /* 3317 * Get the properties cached for the specified MAC instance. 3318 */ 3319 void 3320 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3321 { 3322 mac_impl_t *mip = (mac_impl_t *)mh; 3323 mac_client_impl_t *mcip; 3324 3325 if (mip->mi_state_flags & MIS_IS_VNIC) { 3326 mcip = mac_primary_client_handle(mip); 3327 if (mcip != NULL) { 3328 mac_client_get_resources((mac_client_handle_t)mcip, 3329 mrp); 3330 return; 3331 } 3332 } 3333 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 3334 } 3335 3336 /* 3337 * Rename a mac client, its flow, and the kstat. 3338 */ 3339 int 3340 mac_rename_primary(mac_handle_t mh, const char *new_name) 3341 { 3342 mac_impl_t *mip = (mac_impl_t *)mh; 3343 mac_client_impl_t *cur_clnt = NULL; 3344 flow_entry_t *fep; 3345 3346 i_mac_perim_enter(mip); 3347 3348 /* 3349 * VNICs: we need to change the sys flow name and 3350 * the associated flow kstat. 3351 */ 3352 if (mip->mi_state_flags & MIS_IS_VNIC) { 3353 ASSERT(new_name != NULL); 3354 mac_rename_flow_names(mac_vnic_lower(mip), new_name); 3355 goto done; 3356 } 3357 /* 3358 * This mac may itself be an aggr link, or it may have some client 3359 * which is an aggr port. For both cases, we need to change the 3360 * aggr port's mac client name, its flow name and the associated flow 3361 * kstat. 3362 */ 3363 if (mip->mi_state_flags & MIS_IS_AGGR) { 3364 mac_capab_aggr_t aggr_cap; 3365 mac_rename_fn_t rename_fn; 3366 boolean_t ret; 3367 3368 ASSERT(new_name != NULL); 3369 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 3370 (void *)(&aggr_cap)); 3371 ASSERT(ret == B_TRUE); 3372 rename_fn = aggr_cap.mca_rename_fn; 3373 rename_fn(new_name, mip->mi_driver); 3374 /* 3375 * The aggr's client name and kstat flow name will be 3376 * updated below, i.e. via mac_rename_flow_names. 3377 */ 3378 } 3379 3380 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 3381 cur_clnt = cur_clnt->mci_client_next) { 3382 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 3383 if (new_name != NULL) { 3384 char *str_st = cur_clnt->mci_name; 3385 char *str_del = strchr(str_st, '-'); 3386 3387 ASSERT(str_del != NULL); 3388 bzero(str_del + 1, MAXNAMELEN - 3389 (str_del - str_st + 1)); 3390 bcopy(new_name, str_del + 1, 3391 strlen(new_name)); 3392 } 3393 fep = cur_clnt->mci_flent; 3394 mac_rename_flow(fep, cur_clnt->mci_name); 3395 break; 3396 } else if (new_name != NULL && 3397 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 3398 mac_rename_flow_names(cur_clnt, new_name); 3399 break; 3400 } 3401 } 3402 3403 done: 3404 i_mac_perim_exit(mip); 3405 return (0); 3406 } 3407 3408 /* 3409 * Rename the MAC client's flow names 3410 */ 3411 static void 3412 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 3413 { 3414 flow_entry_t *flent; 3415 uint16_t vid; 3416 char flowname[MAXFLOWNAMELEN]; 3417 mac_impl_t *mip = mcip->mci_mip; 3418 3419 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3420 3421 /* 3422 * Use mi_rw_lock to ensure that threads not in the mac perimeter 3423 * see a self-consistent value for mci_name 3424 */ 3425 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3426 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 3427 rw_exit(&mip->mi_rw_lock); 3428 3429 mac_rename_flow(mcip->mci_flent, new_name); 3430 3431 if (mcip->mci_nflents == 1) 3432 return; 3433 3434 /* 3435 * We have to rename all the others too, no stats to destroy for 3436 * these. 3437 */ 3438 for (flent = mcip->mci_flent_list; flent != NULL; 3439 flent = flent->fe_client_next) { 3440 if (flent != mcip->mci_flent) { 3441 vid = i_mac_flow_vid(flent); 3442 (void) sprintf(flowname, "%s%u", new_name, vid); 3443 mac_flow_set_name(flent, flowname); 3444 } 3445 } 3446 } 3447 3448 3449 /* 3450 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 3451 * defined for the specified MAC client. 3452 */ 3453 static void 3454 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3455 { 3456 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3457 /* 3458 * The promisc Rx data path walks the mci_flent_list. Protect by 3459 * using mi_rw_lock 3460 */ 3461 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3462 3463 /* Add it to the head */ 3464 flent->fe_client_next = mcip->mci_flent_list; 3465 mcip->mci_flent_list = flent; 3466 mcip->mci_nflents++; 3467 3468 /* 3469 * Keep track of the number of non-zero VIDs addresses per MAC 3470 * client to avoid figuring it out in the data-path. 3471 */ 3472 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3473 mcip->mci_nvids++; 3474 3475 rw_exit(&mcip->mci_rw_lock); 3476 } 3477 3478 /* 3479 * Remove a flow entry from the MAC client's list. 3480 */ 3481 static void 3482 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3483 { 3484 flow_entry_t *fe = mcip->mci_flent_list; 3485 flow_entry_t *prev_fe = NULL; 3486 3487 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3488 /* 3489 * The promisc Rx data path walks the mci_flent_list. Protect by 3490 * using mci_rw_lock 3491 */ 3492 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3493 while ((fe != NULL) && (fe != flent)) { 3494 prev_fe = fe; 3495 fe = fe->fe_client_next; 3496 } 3497 3498 ASSERT(fe != NULL); 3499 if (prev_fe == NULL) { 3500 /* Deleting the first node */ 3501 mcip->mci_flent_list = fe->fe_client_next; 3502 } else { 3503 prev_fe->fe_client_next = fe->fe_client_next; 3504 } 3505 mcip->mci_nflents--; 3506 3507 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3508 mcip->mci_nvids--; 3509 3510 rw_exit(&mcip->mci_rw_lock); 3511 } 3512 3513 /* 3514 * Check if the given VID belongs to this MAC client. 3515 */ 3516 boolean_t 3517 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 3518 { 3519 flow_entry_t *flent; 3520 uint16_t mci_vid; 3521 3522 /* The mci_flent_list is protected by mci_rw_lock */ 3523 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3524 for (flent = mcip->mci_flent_list; flent != NULL; 3525 flent = flent->fe_client_next) { 3526 mci_vid = i_mac_flow_vid(flent); 3527 if (vid == mci_vid) { 3528 rw_exit(&mcip->mci_rw_lock); 3529 return (B_TRUE); 3530 } 3531 } 3532 rw_exit(&mcip->mci_rw_lock); 3533 return (B_FALSE); 3534 } 3535 3536 /* 3537 * Get the flow entry for the specified <MAC addr, VID> tuple. 3538 */ 3539 static flow_entry_t * 3540 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 3541 { 3542 mac_address_t *map = mcip->mci_unicast; 3543 flow_entry_t *flent; 3544 uint16_t vid; 3545 flow_desc_t flow_desc; 3546 3547 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3548 3549 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 3550 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 3551 return (NULL); 3552 3553 for (flent = mcip->mci_flent_list; flent != NULL; 3554 flent = flent->fe_client_next) { 3555 vid = i_mac_flow_vid(flent); 3556 if (vid == muip->mui_vid) { 3557 return (flent); 3558 } 3559 } 3560 3561 return (NULL); 3562 } 3563 3564 /* 3565 * Since mci_flent has the SRSs, when we want to remove it, we replace 3566 * the flow_desc_t in mci_flent with that of an existing flent and then 3567 * remove that flent instead of mci_flent. 3568 */ 3569 static flow_entry_t * 3570 mac_client_swap_mciflent(mac_client_impl_t *mcip) 3571 { 3572 flow_entry_t *flent = mcip->mci_flent; 3573 flow_tab_t *ft = flent->fe_flow_tab; 3574 flow_entry_t *flent1; 3575 flow_desc_t fl_desc; 3576 char fl_name[MAXFLOWNAMELEN]; 3577 int err; 3578 3579 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3580 ASSERT(mcip->mci_nflents > 1); 3581 3582 /* get the next flent following the primary flent */ 3583 flent1 = mcip->mci_flent_list->fe_client_next; 3584 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 3585 3586 /* 3587 * Remove the flent from the flow table before updating the 3588 * flow descriptor as the hash depends on the flow descriptor. 3589 * This also helps incoming packet classification avoid having 3590 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 3591 * flow table is done under the fe_lock so that log or stat functions 3592 * see a self-consistent fe_flow_desc. The name and desc are specific 3593 * to a flow, the rest are shared by all the clients, including 3594 * resource control etc. 3595 */ 3596 mac_flow_remove(ft, flent, B_TRUE); 3597 mac_flow_remove(ft, flent1, B_TRUE); 3598 3599 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 3600 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 3601 3602 /* update the primary flow entry */ 3603 mutex_enter(&flent->fe_lock); 3604 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 3605 sizeof (flow_desc_t)); 3606 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 3607 mutex_exit(&flent->fe_lock); 3608 3609 /* update the flow entry that is to be freed */ 3610 mutex_enter(&flent1->fe_lock); 3611 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 3612 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 3613 mutex_exit(&flent1->fe_lock); 3614 3615 /* now reinsert the flow entries in the table */ 3616 err = mac_flow_add(ft, flent); 3617 ASSERT(err == 0); 3618 3619 err = mac_flow_add(ft, flent1); 3620 ASSERT(err == 0); 3621 3622 return (flent1); 3623 } 3624 3625 /* 3626 * Return whether there is only one flow entry associated with this 3627 * MAC client. 3628 */ 3629 static boolean_t 3630 mac_client_single_rcvr(mac_client_impl_t *mcip) 3631 { 3632 return (mcip->mci_nflents == 1); 3633 } 3634 3635 int 3636 mac_validate_props(mac_resource_props_t *mrp) 3637 { 3638 if (mrp == NULL) 3639 return (0); 3640 3641 if (mrp->mrp_mask & MRP_PRIORITY) { 3642 mac_priority_level_t pri = mrp->mrp_priority; 3643 3644 if (pri < MPL_LOW || pri > MPL_RESET) 3645 return (EINVAL); 3646 } 3647 3648 if (mrp->mrp_mask & MRP_MAXBW) { 3649 uint64_t maxbw = mrp->mrp_maxbw; 3650 3651 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 3652 return (EINVAL); 3653 } 3654 if (mrp->mrp_mask & MRP_CPUS) { 3655 int i; 3656 mac_cpu_mode_t fanout; 3657 3658 if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT) 3659 return (EINVAL); 3660 3661 for (i = 0; i < mrp->mrp_ncpus; i++) { 3662 cpu_t *cp; 3663 int rv; 3664 3665 mutex_enter(&cpu_lock); 3666 cp = cpu_get(mrp->mrp_cpu[i]); 3667 if (cp != NULL) 3668 rv = cpu_is_online(cp); 3669 else 3670 rv = 0; 3671 mutex_exit(&cpu_lock); 3672 if (rv == 0) 3673 return (EINVAL); 3674 } 3675 3676 fanout = mrp->mrp_fanout_mode; 3677 if (fanout < 0 || fanout > MCM_CPUS) 3678 return (EINVAL); 3679 } 3680 return (0); 3681 } 3682 3683 /* 3684 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 3685 * underlying physical link is down. This is to allow MAC clients to 3686 * communicate with other clients. 3687 */ 3688 void 3689 mac_virtual_link_update(mac_impl_t *mip) 3690 { 3691 if (mip->mi_linkstate != LINK_STATE_UP) 3692 i_mac_notify(mip, MAC_NOTE_LINK); 3693 } 3694 3695 /* 3696 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 3697 * mac handle in the client. 3698 */ 3699 void 3700 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh) 3701 { 3702 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3703 3704 mcip->mci_upper_mip = (mac_impl_t *)mh; 3705 } 3706 3707 /* 3708 * Mark the mac as being used exclusively by the single mac client that is 3709 * doing some control operation on this mac. No further opens of this mac 3710 * will be allowed until this client calls mac_unmark_exclusive. The mac 3711 * client calling this function must already be in the mac perimeter 3712 */ 3713 int 3714 mac_mark_exclusive(mac_handle_t mh) 3715 { 3716 mac_impl_t *mip = (mac_impl_t *)mh; 3717 3718 ASSERT(MAC_PERIM_HELD(mh)); 3719 /* 3720 * Look up its entry in the global hash table. 3721 */ 3722 rw_enter(&i_mac_impl_lock, RW_WRITER); 3723 if (mip->mi_state_flags & MIS_DISABLED) { 3724 rw_exit(&i_mac_impl_lock); 3725 return (ENOENT); 3726 } 3727 3728 /* 3729 * A reference to mac is held even if the link is not plumbed. 3730 * In i_dls_link_create() we open the MAC interface and hold the 3731 * reference. There is an additional reference for the mac_open 3732 * done in acquiring the mac perimeter 3733 */ 3734 if (mip->mi_ref != 2) { 3735 rw_exit(&i_mac_impl_lock); 3736 return (EBUSY); 3737 } 3738 3739 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3740 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 3741 rw_exit(&i_mac_impl_lock); 3742 return (0); 3743 } 3744 3745 void 3746 mac_unmark_exclusive(mac_handle_t mh) 3747 { 3748 mac_impl_t *mip = (mac_impl_t *)mh; 3749 3750 ASSERT(MAC_PERIM_HELD(mh)); 3751 3752 rw_enter(&i_mac_impl_lock, RW_WRITER); 3753 /* 1 for the creation and another for the perimeter */ 3754 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3755 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 3756 rw_exit(&i_mac_impl_lock); 3757 } 3758 3759 /* 3760 * Set the MTU for the specified device. The function returns EBUSY if 3761 * another MAC client prevents the caller to become the exclusive client. 3762 * Returns EAGAIN if the client is started. 3763 */ 3764 int 3765 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 3766 { 3767 mac_impl_t *mip = (mac_impl_t *)mh; 3768 uint_t old_mtu; 3769 int rv; 3770 boolean_t exclusive = B_FALSE; 3771 3772 i_mac_perim_enter(mip); 3773 3774 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 || 3775 (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) { 3776 rv = ENOTSUP; 3777 goto bail; 3778 } 3779 3780 if ((rv = mac_mark_exclusive(mh)) != 0) 3781 goto bail; 3782 exclusive = B_TRUE; 3783 3784 if (mip->mi_active > 0) { 3785 /* 3786 * The MAC instance is started, for example due to the 3787 * presence of a promiscuous clients. Fail the operation 3788 * since the MAC's MTU cannot be changed while the NIC 3789 * is started. 3790 */ 3791 rv = EAGAIN; 3792 goto bail; 3793 } 3794 3795 mac_sdu_get(mh, NULL, &old_mtu); 3796 3797 if (old_mtu != new_mtu) { 3798 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3799 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 3800 } 3801 3802 bail: 3803 if (exclusive) 3804 mac_unmark_exclusive(mh); 3805 i_mac_perim_exit(mip); 3806 3807 if (rv == 0 && old_mtu_arg != NULL) 3808 *old_mtu_arg = old_mtu; 3809 return (rv); 3810 } 3811 3812 void 3813 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 3814 uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name) 3815 { 3816 mac_impl_t *mip = (mac_impl_t *)mh; 3817 mac_grp_client_t *mcip; 3818 uint_t i = 0, index = 0; 3819 3820 /* Revisit when we implement fully dynamic group allocation */ 3821 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 3822 3823 rw_enter(&mip->mi_rw_lock, RW_READER); 3824 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 3825 *type = mip->mi_rx_groups[grp_index].mrg_type; 3826 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 3827 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 3828 mcip = mcip->mgc_next) { 3829 int name_len = strlen(mcip->mgc_client->mci_name); 3830 3831 /* 3832 * MAXCLIENTNAMELEN is the buffer size reserved for client 3833 * names. 3834 * XXXX Formating the client name string needs to be moved 3835 * to user land when fixing the size of dhi_clnts in 3836 * dld_hwgrpinfo_t. We should use n_clients * client_name for 3837 * dhi_clntsin instead of MAXCLIENTNAMELEN 3838 */ 3839 if (index + name_len >= MAXCLIENTNAMELEN) { 3840 index = MAXCLIENTNAMELEN; 3841 break; 3842 } 3843 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 3844 name_len); 3845 index += name_len; 3846 clnts_name[index++] = ','; 3847 i++; 3848 } 3849 3850 /* Get rid of the last , */ 3851 if (index > 0) 3852 clnts_name[index - 1] = '\0'; 3853 *n_clnts = i; 3854 rw_exit(&mip->mi_rw_lock); 3855 } 3856 3857 uint_t 3858 mac_hwgrp_num(mac_handle_t mh) 3859 { 3860 mac_impl_t *mip = (mac_impl_t *)mh; 3861 3862 return (mip->mi_rx_group_count); 3863 } 3864