xref: /illumos-gate/usr/src/uts/common/io/mac/mac_client.c (revision 09ce0d4acf1a79c720d7e54b60e87cbfa0f1b2d6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * - General Introduction:
29  *
30  * This file contains the implementation of the MAC client kernel
31  * API and related code. The MAC client API allows a kernel module
32  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33  * It allows a MAC client to associate itself with a MAC address,
34  * VLANs, callback functions for data traffic and for promiscuous mode.
35  * The MAC client API is also used to specify the properties associated
36  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37  * These properties are further used to determine the hardware resources
38  * to allocate to the various MAC clients.
39  *
40  * - Primary MAC clients:
41  *
42  * The MAC client API refers to "primary MAC clients". A primary MAC
43  * client is a client which "owns" the primary MAC address of
44  * the underlying MAC instance. The primary MAC address is called out
45  * since it is associated with specific semantics: the primary MAC
46  * address is the MAC address which is assigned to the IP interface
47  * when it is plumbed, and the primary MAC address is assigned
48  * to VLAN data-links. The primary address of a MAC instance can
49  * also change dynamically from under the MAC client, for example
50  * as a result of a change of state of a link aggregation. In that
51  * case the MAC layer automatically updates all data-structures which
52  * refer to the current value of the primary MAC address. Typical
53  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54  * MAC client is the vnic driver.
55  *
56  * - Virtual Switching:
57  *
58  * The MAC layer implements a virtual switch between the MAC clients
59  * (primary and non-primary) defined on top of the same underlying
60  * NIC (physical, link aggregation, etc). The virtual switch is
61  * VLAN-aware, i.e. it allows multiple MAC clients to be member
62  * of one or more VLANs, and the virtual switch will distribute
63  * multicast tagged packets only to the member of the corresponding
64  * VLANs.
65  *
66  * - Upper vs Lower MAC:
67  *
68  * Creating a VNIC on top of a MAC instance effectively causes
69  * two MAC instances to be layered on top of each other, one for
70  * the VNIC(s), one for the underlying MAC instance (physical NIC,
71  * link aggregation, etc). In the code below we refer to the
72  * underlying NIC as the "lower MAC", and we refer to VNICs as
73  * the "upper MAC".
74  *
75  * - Pass-through for VNICs:
76  *
77  * When VNICs are created on top of an underlying MAC, this causes
78  * a layering of two MAC instances. Since the lower MAC already
79  * does the switching and demultiplexing to its MAC clients, the
80  * upper MAC would simply have to pass packets to the layer below
81  * or above it, which would introduce overhead. In order to avoid
82  * this overhead, the MAC layer implements a pass-through mechanism
83  * for VNICs. When a VNIC opens the lower MAC instance, it saves
84  * the MAC client handle it optains from the MAC layer. When a MAC
85  * client opens a VNIC (upper MAC), the MAC layer detects that
86  * the MAC being opened is a VNIC, and gets the MAC client handle
87  * that the VNIC driver obtained from the lower MAC. This exchange
88  * is doing through a private capability between the MAC layer
89  * and the VNIC driver. The upper MAC then returns that handle
90  * directly to its MAC client. Any operation done by the upper
91  * MAC client is now done on the lower MAC client handle, which
92  * allows the VNIC driver to be completely bypassed for the
93  * performance sensitive data-path.
94  *
95  */
96 
97 #include <sys/types.h>
98 #include <sys/conf.h>
99 #include <sys/id_space.h>
100 #include <sys/esunddi.h>
101 #include <sys/stat.h>
102 #include <sys/mkdev.h>
103 #include <sys/stream.h>
104 #include <sys/strsun.h>
105 #include <sys/strsubr.h>
106 #include <sys/dlpi.h>
107 #include <sys/modhash.h>
108 #include <sys/mac_impl.h>
109 #include <sys/mac_client_impl.h>
110 #include <sys/mac_soft_ring.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 
148 /* ARGSUSED */
149 static int
150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
151 {
152 	int	i;
153 	mac_client_impl_t	*mcip = buf;
154 
155 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
156 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
157 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
158 
159 	ASSERT(mac_tx_percpu_cnt >= 0);
160 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
161 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
162 		    MUTEX_DRIVER, NULL);
163 	}
164 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
165 
166 	return (0);
167 }
168 
169 /* ARGSUSED */
170 static void
171 i_mac_client_impl_dtor(void *buf, void *arg)
172 {
173 	int	i;
174 	mac_client_impl_t *mcip = buf;
175 
176 	ASSERT(mcip->mci_promisc_list == NULL);
177 	ASSERT(mcip->mci_unicast_list == NULL);
178 	ASSERT(mcip->mci_state_flags == 0);
179 	ASSERT(mcip->mci_tx_flag == 0);
180 
181 	mutex_destroy(&mcip->mci_tx_cb_lock);
182 
183 	ASSERT(mac_tx_percpu_cnt >= 0);
184 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
185 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
186 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
187 	}
188 	cv_destroy(&mcip->mci_tx_cv);
189 }
190 
191 /* ARGSUSED */
192 static int
193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
194 {
195 	mac_promisc_impl_t	*mpip = buf;
196 
197 	bzero(buf, sizeof (mac_promisc_impl_t));
198 	mpip->mpi_mci_link.mcb_objp = buf;
199 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
200 	mpip->mpi_mi_link.mcb_objp = buf;
201 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static void
207 i_mac_promisc_impl_dtor(void *buf, void *arg)
208 {
209 	mac_promisc_impl_t	*mpip = buf;
210 
211 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
212 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
213 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
214 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
215 
216 	mpip->mpi_mci_link.mcb_objp = NULL;
217 	mpip->mpi_mci_link.mcb_objsize = 0;
218 	mpip->mpi_mi_link.mcb_objp = NULL;
219 	mpip->mpi_mi_link.mcb_objsize = 0;
220 
221 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
222 	mpip->mpi_mci_link.mcb_objsize = 0;
223 }
224 
225 void
226 mac_client_init(void)
227 {
228 	ASSERT(mac_tx_percpu_cnt >= 0);
229 
230 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
231 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
232 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
233 	ASSERT(mac_client_impl_cache != NULL);
234 
235 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
236 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
237 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
238 	ASSERT(mac_promisc_impl_cache != NULL);
239 }
240 
241 void
242 mac_client_fini(void)
243 {
244 	kmem_cache_destroy(mac_client_impl_cache);
245 	kmem_cache_destroy(mac_promisc_impl_cache);
246 }
247 
248 /*
249  * Return the lower MAC client handle from the VNIC driver for the
250  * specified VNIC MAC instance.
251  */
252 mac_client_impl_t *
253 mac_vnic_lower(mac_impl_t *mip)
254 {
255 	mac_capab_vnic_t cap;
256 	mac_client_impl_t *mcip;
257 
258 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
259 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
260 
261 	return (mcip);
262 }
263 
264 /*
265  * Return the MAC client handle of the primary MAC client for the
266  * specified MAC instance, or NULL otherwise.
267  */
268 mac_client_impl_t *
269 mac_primary_client_handle(mac_impl_t *mip)
270 {
271 	mac_client_impl_t *mcip;
272 
273 	if (mip->mi_state_flags & MIS_IS_VNIC)
274 		return (mac_vnic_lower(mip));
275 
276 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
277 
278 	for (mcip = mip->mi_clients_list; mcip != NULL;
279 	    mcip = mcip->mci_client_next) {
280 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
281 			return (mcip);
282 	}
283 	return (NULL);
284 }
285 
286 /*
287  * Open a MAC specified by its MAC name.
288  */
289 int
290 mac_open(const char *macname, mac_handle_t *mhp)
291 {
292 	mac_impl_t	*mip;
293 	int		err;
294 
295 	/*
296 	 * Look up its entry in the global hash table.
297 	 */
298 	if ((err = mac_hold(macname, &mip)) != 0)
299 		return (err);
300 
301 	/*
302 	 * Hold the dip associated to the MAC to prevent it from being
303 	 * detached. For a softmac, its underlying dip is held by the
304 	 * mi_open() callback.
305 	 *
306 	 * This is done to be more tolerant with some defective drivers,
307 	 * which incorrectly handle mac_unregister() failure in their
308 	 * xxx_detach() routine. For example, some drivers ignore the
309 	 * failure of mac_unregister() and free all resources that
310 	 * that are needed for data transmition.
311 	 */
312 	e_ddi_hold_devi(mip->mi_dip);
313 
314 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
315 		*mhp = (mac_handle_t)mip;
316 		return (0);
317 	}
318 
319 	/*
320 	 * The mac perimeter is used in both mac_open and mac_close by the
321 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
322 	 */
323 	i_mac_perim_enter(mip);
324 	mip->mi_oref++;
325 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
326 		*mhp = (mac_handle_t)mip;
327 		i_mac_perim_exit(mip);
328 		return (0);
329 	}
330 	mip->mi_oref--;
331 	ddi_release_devi(mip->mi_dip);
332 	mac_rele(mip);
333 	i_mac_perim_exit(mip);
334 	return (err);
335 }
336 
337 /*
338  * Open a MAC specified by its linkid.
339  */
340 int
341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
342 {
343 	dls_dl_handle_t	dlh;
344 	int		err;
345 
346 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
347 		return (err);
348 
349 	dls_devnet_prop_task_wait(dlh);
350 
351 	err = mac_open(dls_devnet_mac(dlh), mhp);
352 
353 	dls_devnet_rele_tmp(dlh);
354 	return (err);
355 }
356 
357 /*
358  * Open a MAC specified by its link name.
359  */
360 int
361 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
362 {
363 	datalink_id_t	linkid;
364 	int		err;
365 
366 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
367 		return (err);
368 	return (mac_open_by_linkid(linkid, mhp));
369 }
370 
371 /*
372  * Close the specified MAC.
373  */
374 void
375 mac_close(mac_handle_t mh)
376 {
377 	mac_impl_t	*mip = (mac_impl_t *)mh;
378 
379 	i_mac_perim_enter(mip);
380 	/*
381 	 * The mac perimeter is used in both mac_open and mac_close by the
382 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
383 	 */
384 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
385 		ASSERT(mip->mi_oref != 0);
386 		if (--mip->mi_oref == 0) {
387 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
388 				mip->mi_close(mip->mi_driver);
389 		}
390 	}
391 	i_mac_perim_exit(mip);
392 	ddi_release_devi(mip->mi_dip);
393 	mac_rele(mip);
394 }
395 
396 /*
397  * Misc utility functions to retrieve various information about a MAC
398  * instance or a MAC client.
399  */
400 
401 const mac_info_t *
402 mac_info(mac_handle_t mh)
403 {
404 	return (&((mac_impl_t *)mh)->mi_info);
405 }
406 
407 dev_info_t *
408 mac_devinfo_get(mac_handle_t mh)
409 {
410 	return (((mac_impl_t *)mh)->mi_dip);
411 }
412 
413 void *
414 mac_driver(mac_handle_t mh)
415 {
416 	return (((mac_impl_t *)mh)->mi_driver);
417 }
418 
419 const char *
420 mac_name(mac_handle_t mh)
421 {
422 	return (((mac_impl_t *)mh)->mi_name);
423 }
424 
425 char *
426 mac_client_name(mac_client_handle_t mch)
427 {
428 	return (((mac_client_impl_t *)mch)->mci_name);
429 }
430 
431 minor_t
432 mac_minor(mac_handle_t mh)
433 {
434 	return (((mac_impl_t *)mh)->mi_minor);
435 }
436 
437 /*
438  * Return the VID associated with a MAC client. This function should
439  * be called for clients which are associated with only one VID.
440  */
441 uint16_t
442 mac_client_vid(mac_client_handle_t mch)
443 {
444 	uint16_t		vid = VLAN_ID_NONE;
445 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
446 	flow_desc_t		flow_desc;
447 
448 	if (mcip->mci_nflents == 0)
449 		return (vid);
450 
451 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
452 
453 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
454 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
455 		vid = flow_desc.fd_vid;
456 
457 	return (vid);
458 }
459 
460 /*
461  * Return the link speed associated with the specified MAC client.
462  *
463  * The link speed of a MAC client is equal to the smallest value of
464  * 1) the current link speed of the underlying NIC, or
465  * 2) the bandwidth limit set for the MAC client.
466  *
467  * Note that the bandwidth limit can be higher than the speed
468  * of the underlying NIC. This is allowed to avoid spurious
469  * administration action failures or artifically lowering the
470  * bandwidth limit of a link that may  have temporarily lowered
471  * its link speed due to hardware problem or administrator action.
472  */
473 static uint64_t
474 mac_client_ifspeed(mac_client_impl_t *mcip)
475 {
476 	mac_impl_t *mip = mcip->mci_mip;
477 	uint64_t nic_speed;
478 
479 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
480 
481 	if (nic_speed == 0) {
482 		return (0);
483 	} else {
484 		uint64_t policy_limit = (uint64_t)-1;
485 
486 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
487 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
488 
489 		return (MIN(policy_limit, nic_speed));
490 	}
491 }
492 
493 /*
494  * Return the link state of the specified client. If here are more
495  * than one clients of the underying mac_impl_t, the link state
496  * will always be UP regardless of the link state of the underlying
497  * mac_impl_t. This is needed to allow the MAC clients to continue
498  * to communicate with each other even when the physical link of
499  * their mac_impl_t is down.
500  */
501 static uint64_t
502 mac_client_link_state(mac_client_impl_t *mcip)
503 {
504 	mac_impl_t *mip = mcip->mci_mip;
505 	uint16_t vid;
506 	mac_client_impl_t *mci_list;
507 	mac_unicast_impl_t *mui_list, *oth_mui_list;
508 
509 	/*
510 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
511 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
512 	 * if 'mcip' has more than one VID's then we match ANY one of the
513 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
514 	 */
515 	rw_enter(&mcip->mci_rw_lock, RW_READER);
516 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
517 	    mui_list = mui_list->mui_next) {
518 		vid = mui_list->mui_vid;
519 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
520 		    mci_list = mci_list->mci_client_next) {
521 			if (mci_list == mcip)
522 				continue;
523 			for (oth_mui_list = mci_list->mci_unicast_list;
524 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
525 			    mui_next) {
526 				if (vid == oth_mui_list->mui_vid) {
527 					rw_exit(&mcip->mci_rw_lock);
528 					return (LINK_STATE_UP);
529 				}
530 			}
531 		}
532 	}
533 	rw_exit(&mcip->mci_rw_lock);
534 
535 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
536 }
537 
538 /*
539  * Return the statistics of a MAC client. These statistics are different
540  * then the statistics of the underlying MAC which are returned by
541  * mac_stat_get().
542  */
543 uint64_t
544 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
545 {
546 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
547 	mac_impl_t *mip = mcip->mci_mip;
548 	uint64_t val;
549 
550 	switch (stat) {
551 	case MAC_STAT_LINK_STATE:
552 		val = mac_client_link_state(mcip);
553 		break;
554 	case MAC_STAT_LINK_UP:
555 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
556 		break;
557 	case MAC_STAT_PROMISC:
558 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
559 		break;
560 	case MAC_STAT_IFSPEED:
561 		val = mac_client_ifspeed(mcip);
562 		break;
563 	case MAC_STAT_MULTIRCV:
564 		val = mcip->mci_stat_multircv;
565 		break;
566 	case MAC_STAT_BRDCSTRCV:
567 		val = mcip->mci_stat_brdcstrcv;
568 		break;
569 	case MAC_STAT_MULTIXMT:
570 		val = mcip->mci_stat_multixmt;
571 		break;
572 	case MAC_STAT_BRDCSTXMT:
573 		val = mcip->mci_stat_brdcstxmt;
574 		break;
575 	case MAC_STAT_OBYTES:
576 		val = mcip->mci_stat_obytes;
577 		break;
578 	case MAC_STAT_OPACKETS:
579 		val = mcip->mci_stat_opackets;
580 		break;
581 	case MAC_STAT_OERRORS:
582 		val = mcip->mci_stat_oerrors;
583 		break;
584 	case MAC_STAT_IPACKETS:
585 		val = mcip->mci_stat_ipackets;
586 		break;
587 	case MAC_STAT_RBYTES:
588 		val = mcip->mci_stat_ibytes;
589 		break;
590 	case MAC_STAT_IERRORS:
591 		val = mcip->mci_stat_ierrors;
592 		break;
593 	default:
594 		val = mac_stat_default(mip, stat);
595 		break;
596 	}
597 
598 	return (val);
599 }
600 
601 /*
602  * Return the statistics of the specified MAC instance.
603  */
604 uint64_t
605 mac_stat_get(mac_handle_t mh, uint_t stat)
606 {
607 	mac_impl_t	*mip = (mac_impl_t *)mh;
608 	uint64_t	val;
609 	int		ret;
610 
611 	/*
612 	 * The range of stat determines where it is maintained.  Stat
613 	 * values from 0 up to (but not including) MAC_STAT_MIN are
614 	 * mainteined by the mac module itself.  Everything else is
615 	 * maintained by the driver.
616 	 *
617 	 * If the mac_impl_t being queried corresponds to a VNIC,
618 	 * the stats need to be queried from the lower MAC client
619 	 * corresponding to the VNIC. (The mac_link_update()
620 	 * invoked by the driver to the lower MAC causes the *lower
621 	 * MAC* to update its mi_linkstate, and send a notification
622 	 * to its MAC clients. Due to the VNIC passthrough,
623 	 * these notifications are sent to the upper MAC clients
624 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
625 	 * does not have a valid mi_linkstate.
626 	 */
627 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
628 		/* these stats are maintained by the mac module itself */
629 		switch (stat) {
630 		case MAC_STAT_LINK_STATE:
631 			return (mip->mi_linkstate);
632 		case MAC_STAT_LINK_UP:
633 			return (mip->mi_linkstate == LINK_STATE_UP);
634 		case MAC_STAT_PROMISC:
635 			return (mip->mi_devpromisc != 0);
636 		default:
637 			ASSERT(B_FALSE);
638 		}
639 	}
640 
641 	/*
642 	 * Call the driver to get the given statistic.
643 	 */
644 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
645 	if (ret != 0) {
646 		/*
647 		 * The driver doesn't support this statistic.  Get the
648 		 * statistic's default value.
649 		 */
650 		val = mac_stat_default(mip, stat);
651 	}
652 	return (val);
653 }
654 
655 /*
656  * Utility function which returns the VID associated with a flow entry.
657  */
658 uint16_t
659 i_mac_flow_vid(flow_entry_t *flent)
660 {
661 	flow_desc_t	flow_desc;
662 
663 	mac_flow_get_desc(flent, &flow_desc);
664 
665 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
666 		return (flow_desc.fd_vid);
667 	return (VLAN_ID_NONE);
668 }
669 
670 /*
671  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
672  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
673  * length.
674  */
675 boolean_t
676 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
677 {
678 	mac_impl_t	*mip = (mac_impl_t *)mh;
679 
680 	/*
681 	 * Verify the address. No lock is needed since mi_type and plugin
682 	 * details don't change after mac_register().
683 	 */
684 	if ((len != mip->mi_type->mt_addr_length) ||
685 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
686 	    mip->mi_pdata)) != 0) {
687 		return (B_FALSE);
688 	} else {
689 		return (B_TRUE);
690 	}
691 }
692 
693 void
694 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
695 {
696 	mac_impl_t	*mip = (mac_impl_t *)mh;
697 
698 	if (min_sdu != NULL)
699 		*min_sdu = mip->mi_sdu_min;
700 	if (max_sdu != NULL)
701 		*max_sdu = mip->mi_sdu_max;
702 }
703 
704 /*
705  * Update the MAC unicast address of the specified client's flows. Currently
706  * only one unicast MAC unicast address is allowed per client.
707  */
708 static void
709 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
710 {
711 	mac_impl_t *mip = mcip->mci_mip;
712 	flow_entry_t *flent = mcip->mci_flent;
713 	mac_address_t *map = mcip->mci_unicast;
714 	flow_desc_t flow_desc;
715 
716 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
717 	ASSERT(flent != NULL);
718 
719 	mac_flow_get_desc(flent, &flow_desc);
720 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
721 
722 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
723 	mac_flow_set_desc(flent, &flow_desc);
724 
725 	/*
726 	 * A MAC client could have one MAC address but multiple
727 	 * VLANs. In that case update the flow entries corresponding
728 	 * to all VLANs of the MAC client.
729 	 */
730 	for (flent = mcip->mci_flent_list; flent != NULL;
731 	    flent = flent->fe_client_next) {
732 		mac_flow_get_desc(flent, &flow_desc);
733 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
734 		    flent->fe_type & FLOW_VNIC_MAC))
735 			continue;
736 
737 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
738 		mac_flow_set_desc(flent, &flow_desc);
739 	}
740 }
741 
742 /*
743  * Update all clients that share the same unicast address.
744  */
745 void
746 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
747 {
748 	mac_client_impl_t *mcip;
749 
750 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
751 
752 	/*
753 	 * Find all clients that share the same unicast MAC address and update
754 	 * them appropriately.
755 	 */
756 	for (mcip = mip->mi_clients_list; mcip != NULL;
757 	    mcip = mcip->mci_client_next) {
758 		/*
759 		 * Ignore clients that don't share this MAC address.
760 		 */
761 		if (map != mcip->mci_unicast)
762 			continue;
763 
764 		/*
765 		 * Update those clients with same old unicast MAC address.
766 		 */
767 		mac_unicast_update_client_flow(mcip);
768 	}
769 }
770 
771 /*
772  * Update the unicast MAC address of the specified VNIC MAC client.
773  *
774  * Check whether the operation is valid. Any of following cases should fail:
775  *
776  * 1. It's a VLAN type of VNIC.
777  * 2. The new value is current "primary" MAC address.
778  * 3. The current MAC address is shared with other clients.
779  * 4. The new MAC address has been used. This case will be valid when
780  *    client migration is fully supported.
781  */
782 int
783 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
784 {
785 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
786 	mac_impl_t *mip = mcip->mci_mip;
787 	mac_address_t *map = mcip->mci_unicast;
788 	int err;
789 
790 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
791 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
792 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
793 
794 	i_mac_perim_enter(mip);
795 
796 	/*
797 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
798 	 * of the underlying interface. Must fail here. Refer to case 1 above.
799 	 */
800 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
801 		i_mac_perim_exit(mip);
802 		return (ENOTSUP);
803 	}
804 
805 	/*
806 	 * If the new address is the "primary" one, must fail. Refer to
807 	 * case 2 above.
808 	 */
809 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
810 		i_mac_perim_exit(mip);
811 		return (EACCES);
812 	}
813 
814 	/*
815 	 * If the address is shared by multiple clients, must fail. Refer
816 	 * to case 3 above.
817 	 */
818 	if (mac_check_macaddr_shared(map)) {
819 		i_mac_perim_exit(mip);
820 		return (EBUSY);
821 	}
822 
823 	/*
824 	 * If the new address has been used, must fail for now. Refer to
825 	 * case 4 above.
826 	 */
827 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
828 		i_mac_perim_exit(mip);
829 		return (ENOTSUP);
830 	}
831 
832 	/*
833 	 * Update the MAC address.
834 	 */
835 	err = mac_update_macaddr(map, (uint8_t *)addr);
836 
837 	if (err != 0) {
838 		i_mac_perim_exit(mip);
839 		return (err);
840 	}
841 
842 	/*
843 	 * Update all flows of this MAC client.
844 	 */
845 	mac_unicast_update_client_flow(mcip);
846 
847 	i_mac_perim_exit(mip);
848 	return (0);
849 }
850 
851 /*
852  * Program the new primary unicast address of the specified MAC.
853  *
854  * Function mac_update_macaddr() takes care different types of underlying
855  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
856  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
857  * which will take care of updating the MAC address of the corresponding
858  * MAC client.
859  *
860  * This is the only interface that allow the client to update the "primary"
861  * MAC address of the underlying MAC. The new value must have not been
862  * used by other clients.
863  */
864 int
865 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
866 {
867 	mac_impl_t *mip = (mac_impl_t *)mh;
868 	mac_address_t *map;
869 	int err;
870 
871 	/* verify the address validity */
872 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
873 		return (EINVAL);
874 
875 	i_mac_perim_enter(mip);
876 
877 	/*
878 	 * If the new value is the same as the current primary address value,
879 	 * there's nothing to do.
880 	 */
881 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
882 		i_mac_perim_exit(mip);
883 		return (0);
884 	}
885 
886 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
887 		i_mac_perim_exit(mip);
888 		return (EBUSY);
889 	}
890 
891 	map = mac_find_macaddr(mip, mip->mi_addr);
892 	ASSERT(map != NULL);
893 
894 	/*
895 	 * Update the MAC address.
896 	 */
897 	if (mip->mi_state_flags & MIS_IS_AGGR) {
898 		mac_capab_aggr_t aggr_cap;
899 
900 		/*
901 		 * If the mac is an aggregation, other than the unicast
902 		 * addresses programming, aggr must be informed about this
903 		 * primary unicst address change to change its mac address
904 		 * policy to be user-specified.
905 		 */
906 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
907 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
908 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
909 		if (err == 0)
910 			bcopy(addr, map->ma_addr, map->ma_len);
911 	} else {
912 		err = mac_update_macaddr(map, (uint8_t *)addr);
913 	}
914 
915 	if (err != 0) {
916 		i_mac_perim_exit(mip);
917 		return (err);
918 	}
919 
920 	mac_unicast_update_clients(mip, map);
921 
922 	/*
923 	 * Save the new primary MAC address in mac_impl_t.
924 	 */
925 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
926 
927 	i_mac_perim_exit(mip);
928 
929 	if (err == 0)
930 		i_mac_notify(mip, MAC_NOTE_UNICST);
931 
932 	return (err);
933 }
934 
935 /*
936  * Return the current primary MAC address of the specified MAC.
937  */
938 void
939 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
940 {
941 	mac_impl_t *mip = (mac_impl_t *)mh;
942 
943 	rw_enter(&mip->mi_rw_lock, RW_READER);
944 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
945 	rw_exit(&mip->mi_rw_lock);
946 }
947 
948 /*
949  * Return information about the use of the primary MAC address of the
950  * specified MAC instance:
951  *
952  * - if client_name is non-NULL, it must point to a string of at
953  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
954  *   client which uses the primary MAC address.
955  *
956  * - if in_use is non-NULL, used to return whether the primary MAC
957  *   address is currently in use.
958  */
959 void
960 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
961 {
962 	mac_impl_t *mip = (mac_impl_t *)mh;
963 	mac_client_impl_t *cur_client;
964 
965 	if (in_use != NULL)
966 		*in_use = B_FALSE;
967 	if (client_name != NULL)
968 		bzero(client_name, MAXNAMELEN);
969 
970 	/*
971 	 * The mi_rw_lock is used to protect threads that don't hold the
972 	 * mac perimeter to get a consistent view of the mi_clients_list.
973 	 * Threads that modify the list must hold both the mac perimeter and
974 	 * mi_rw_lock(RW_WRITER)
975 	 */
976 	rw_enter(&mip->mi_rw_lock, RW_READER);
977 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
978 	    cur_client = cur_client->mci_client_next) {
979 		if (mac_is_primary_client(cur_client) ||
980 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
981 			rw_exit(&mip->mi_rw_lock);
982 			if (in_use != NULL)
983 				*in_use = B_TRUE;
984 			if (client_name != NULL) {
985 				bcopy(cur_client->mci_name, client_name,
986 				    MAXNAMELEN);
987 			}
988 			return;
989 		}
990 	}
991 	rw_exit(&mip->mi_rw_lock);
992 }
993 
994 /*
995  * Add the specified MAC client to the list of clients which opened
996  * the specified MAC.
997  */
998 static void
999 mac_client_add(mac_client_impl_t *mcip)
1000 {
1001 	mac_impl_t *mip = mcip->mci_mip;
1002 
1003 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1004 
1005 	/* add VNIC to the front of the list */
1006 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1007 	mcip->mci_client_next = mip->mi_clients_list;
1008 	mip->mi_clients_list = mcip;
1009 	mip->mi_nclients++;
1010 	rw_exit(&mip->mi_rw_lock);
1011 }
1012 
1013 /*
1014  * Remove the specified MAC client from the list of clients which opened
1015  * the specified MAC.
1016  */
1017 static void
1018 mac_client_remove(mac_client_impl_t *mcip)
1019 {
1020 	mac_impl_t *mip = mcip->mci_mip;
1021 	mac_client_impl_t **prev, *cclient;
1022 
1023 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1024 
1025 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1026 	prev = &mip->mi_clients_list;
1027 	cclient = *prev;
1028 	while (cclient != NULL && cclient != mcip) {
1029 		prev = &cclient->mci_client_next;
1030 		cclient = *prev;
1031 	}
1032 	ASSERT(cclient != NULL);
1033 	*prev = cclient->mci_client_next;
1034 	mip->mi_nclients--;
1035 	rw_exit(&mip->mi_rw_lock);
1036 }
1037 
1038 static mac_unicast_impl_t *
1039 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1040 {
1041 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1042 
1043 	while ((muip != NULL) && (muip->mui_vid != vid))
1044 		muip = muip->mui_next;
1045 
1046 	return (muip);
1047 }
1048 
1049 /*
1050  * Return whether the specified (MAC address, VID) tuple is already used by
1051  * one of the MAC clients associated with the specified MAC.
1052  */
1053 static boolean_t
1054 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1055 {
1056 	mac_client_impl_t *client;
1057 	mac_address_t *map;
1058 
1059 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1060 
1061 	for (client = mip->mi_clients_list; client != NULL;
1062 	    client = client->mci_client_next) {
1063 
1064 		/*
1065 		 * Ignore clients that don't have unicast address.
1066 		 */
1067 		if (client->mci_unicast_list == NULL)
1068 			continue;
1069 
1070 		map = client->mci_unicast;
1071 
1072 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1073 		    (mac_client_find_vid(client, vid) != NULL)) {
1074 			return (B_TRUE);
1075 		}
1076 	}
1077 
1078 	return (B_FALSE);
1079 }
1080 
1081 /*
1082  * Generate a random MAC address. The MAC address prefix is
1083  * stored in the array pointed to by mac_addr, and its length, in bytes,
1084  * is specified by prefix_len. The least significant bits
1085  * after prefix_len bytes are generated, and stored after the prefix
1086  * in the mac_addr array.
1087  */
1088 int
1089 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1090     uint8_t *mac_addr, mac_diag_t *diag)
1091 {
1092 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1093 	mac_impl_t *mip = mcip->mci_mip;
1094 	size_t addr_len = mip->mi_type->mt_addr_length;
1095 
1096 	if (prefix_len >= addr_len) {
1097 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1098 		return (EINVAL);
1099 	}
1100 
1101 	/* check the prefix value */
1102 	if (prefix_len > 0) {
1103 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1104 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1105 		    addr_len)) {
1106 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1107 			return (EINVAL);
1108 		}
1109 	}
1110 
1111 	/* generate the MAC address */
1112 	if (prefix_len < addr_len) {
1113 		(void) random_get_pseudo_bytes(mac_addr +
1114 		    prefix_len, addr_len - prefix_len);
1115 	}
1116 
1117 	*diag = 0;
1118 	return (0);
1119 }
1120 
1121 /*
1122  * Set the priority range for this MAC client. This will be used to
1123  * determine the absolute priority for the threads created for this
1124  * MAC client using the specified "low", "medium" and "high" level.
1125  * This will also be used for any subflows on this MAC client.
1126  */
1127 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1128 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1129 	    MAXCLSYSPRI, (pri));					\
1130 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1131 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1132 	}
1133 
1134 /*
1135  * MAC client open entry point. Return a new MAC client handle. Each
1136  * MAC client is associated with a name, specified through the 'name'
1137  * argument.
1138  */
1139 int
1140 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1141     uint16_t flags)
1142 {
1143 	mac_impl_t *mip = (mac_impl_t *)mh;
1144 	mac_client_impl_t *mcip;
1145 	int err = 0;
1146 	boolean_t share_desired =
1147 	    ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0);
1148 	boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0);
1149 	boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0);
1150 	flow_entry_t	*flent = NULL;
1151 
1152 	*mchp = NULL;
1153 	if (share_desired && no_hwrings) {
1154 		/* can't have shares but no hardware rings */
1155 		return (EINVAL);
1156 	}
1157 
1158 	i_mac_perim_enter(mip);
1159 
1160 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1161 		/*
1162 		 * The underlying MAC is a VNIC. Return the MAC client
1163 		 * handle of the lower MAC which was obtained by
1164 		 * the VNIC driver when it did its mac_client_open().
1165 		 */
1166 
1167 		mcip = mac_vnic_lower(mip);
1168 
1169 		/*
1170 		 * Note that multiple mac clients share the same mcip in
1171 		 * this case.
1172 		 */
1173 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1174 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1175 
1176 		mip->mi_clients_list = mcip;
1177 		i_mac_perim_exit(mip);
1178 		*mchp = (mac_client_handle_t)mcip;
1179 		return (err);
1180 	}
1181 
1182 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1183 
1184 	mcip->mci_mip = mip;
1185 	mcip->mci_upper_mip = NULL;
1186 	mcip->mci_rx_fn = mac_pkt_drop;
1187 	mcip->mci_rx_arg = NULL;
1188 	mcip->mci_direct_rx_fn = NULL;
1189 	mcip->mci_direct_rx_arg = NULL;
1190 
1191 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1192 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1193 
1194 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1195 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1196 
1197 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1198 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1199 
1200 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1201 		datalink_id_t	linkid;
1202 
1203 		ASSERT(name == NULL);
1204 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1205 		    &linkid)) != 0) {
1206 			goto done;
1207 		}
1208 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1209 		    NULL, NULL)) != 0) {
1210 			/*
1211 			 * Use mac name if dlmgmtd is not available.
1212 			 */
1213 			if (err == EBADF) {
1214 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1215 				    sizeof (mcip->mci_name));
1216 				err = 0;
1217 			} else {
1218 				goto done;
1219 			}
1220 		}
1221 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1222 	} else {
1223 		ASSERT(name != NULL);
1224 		if (strlen(name) > MAXNAMELEN) {
1225 			err = EINVAL;
1226 			goto done;
1227 		}
1228 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1229 	}
1230 	/* the subflow table will be created dynamically */
1231 	mcip->mci_subflow_tab = NULL;
1232 	mcip->mci_stat_multircv = 0;
1233 	mcip->mci_stat_brdcstrcv = 0;
1234 	mcip->mci_stat_multixmt = 0;
1235 	mcip->mci_stat_brdcstxmt = 0;
1236 
1237 	mcip->mci_stat_obytes = 0;
1238 	mcip->mci_stat_opackets = 0;
1239 	mcip->mci_stat_oerrors = 0;
1240 	mcip->mci_stat_ibytes = 0;
1241 	mcip->mci_stat_ipackets = 0;
1242 	mcip->mci_stat_ierrors = 0;
1243 
1244 	/* Create an initial flow */
1245 
1246 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1247 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1248 	    FLOW_PRIMARY_MAC, &flent);
1249 	if (err != 0)
1250 		goto done;
1251 	mcip->mci_flent = flent;
1252 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1253 	flent->fe_mcip = mcip;
1254 	/*
1255 	 * Place initial creation reference on the flow. This reference
1256 	 * is released in the corresponding delete action viz.
1257 	 * mac_unicast_remove after waiting for all transient refs to
1258 	 * to go away. The wait happens in mac_flow_wait.
1259 	 */
1260 	FLOW_REFHOLD(flent);
1261 
1262 	/*
1263 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1264 	 * will have the right value for mac_rx_srs_setup().
1265 	 */
1266 	mac_client_add(mcip);
1267 
1268 	if (no_hwrings)
1269 		mcip->mci_state_flags |= MCIS_NO_HWRINGS;
1270 	if (req_hwrings)
1271 		mcip->mci_state_flags |= MCIS_REQ_HWRINGS;
1272 	mcip->mci_share = NULL;
1273 	if (share_desired) {
1274 		ASSERT(!no_hwrings);
1275 		i_mac_share_alloc(mcip);
1276 	}
1277 
1278 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1279 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1280 	*mchp = (mac_client_handle_t)mcip;
1281 
1282 	i_mac_perim_exit(mip);
1283 	return (0);
1284 
1285 done:
1286 	i_mac_perim_exit(mip);
1287 	mcip->mci_state_flags = 0;
1288 	mcip->mci_tx_flag = 0;
1289 	kmem_cache_free(mac_client_impl_cache, mcip);
1290 	return (err);
1291 }
1292 
1293 /*
1294  * Close the specified MAC client handle.
1295  */
1296 void
1297 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1298 {
1299 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1300 	mac_impl_t		*mip = mcip->mci_mip;
1301 	flow_entry_t		*flent;
1302 
1303 	i_mac_perim_enter(mip);
1304 
1305 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1306 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1307 
1308 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1309 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1310 		/*
1311 		 * This is an upper VNIC client initiated operation.
1312 		 * The lower MAC client will be closed by the VNIC driver
1313 		 * when the VNIC is deleted.
1314 		 */
1315 
1316 		i_mac_perim_exit(mip);
1317 		return;
1318 	}
1319 
1320 	/*
1321 	 * Remove the flent associated with the MAC client
1322 	 */
1323 	flent = mcip->mci_flent;
1324 	mcip->mci_flent = NULL;
1325 	FLOW_FINAL_REFRELE(flent);
1326 
1327 	/*
1328 	 * MAC clients must remove the unicast addresses and promisc callbacks
1329 	 * they added before issuing a mac_client_close().
1330 	 */
1331 	ASSERT(mcip->mci_unicast_list == NULL);
1332 	ASSERT(mcip->mci_promisc_list == NULL);
1333 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1334 
1335 	i_mac_share_free(mcip);
1336 
1337 	mac_client_remove(mcip);
1338 
1339 	i_mac_perim_exit(mip);
1340 	mcip->mci_subflow_tab = NULL;
1341 	mcip->mci_state_flags = 0;
1342 	mcip->mci_tx_flag = 0;
1343 	kmem_cache_free(mac_client_impl_cache, mch);
1344 }
1345 
1346 /*
1347  * Enable bypass for the specified MAC client.
1348  */
1349 boolean_t
1350 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1351 {
1352 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1353 	mac_impl_t		*mip = mcip->mci_mip;
1354 
1355 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1356 
1357 	/*
1358 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1359 	 * instead let the packets come up via mac_rx_deliver so the vlan
1360 	 * header can be stripped.
1361 	 */
1362 	if (mcip->mci_nvids > 0)
1363 		return (B_FALSE);
1364 
1365 	/*
1366 	 * These are not accessed directly in the data path, and hence
1367 	 * don't need any protection
1368 	 */
1369 	mcip->mci_direct_rx_fn = rx_fn;
1370 	mcip->mci_direct_rx_arg = arg1;
1371 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
1372 	return (B_TRUE);
1373 }
1374 
1375 /*
1376  * Set the receive callback for the specified MAC client. There can be
1377  * at most one such callback per MAC client.
1378  */
1379 void
1380 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1381 {
1382 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1383 	mac_impl_t	*mip = mcip->mci_mip;
1384 
1385 	/*
1386 	 * Instead of adding an extra set of locks and refcnts in
1387 	 * the datapath at the mac client boundary, we temporarily quiesce
1388 	 * the SRS and related entities. We then change the receive function
1389 	 * without interference from any receive data thread and then reenable
1390 	 * the data flow subsequently.
1391 	 */
1392 	i_mac_perim_enter(mip);
1393 	mac_rx_client_quiesce(mch);
1394 
1395 	mcip->mci_rx_fn = rx_fn;
1396 	mcip->mci_rx_arg = arg;
1397 	mac_rx_client_restart(mch);
1398 	i_mac_perim_exit(mip);
1399 }
1400 
1401 /*
1402  * Reset the receive callback for the specified MAC client.
1403  */
1404 void
1405 mac_rx_clear(mac_client_handle_t mch)
1406 {
1407 	mac_rx_set(mch, mac_pkt_drop, NULL);
1408 }
1409 
1410 /*
1411  * Walk the MAC client subflow table and updates their priority values.
1412  */
1413 static int
1414 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1415 {
1416 	mac_flow_update_priority(arg, flent);
1417 	return (0);
1418 }
1419 
1420 void
1421 mac_update_subflow_priority(mac_client_impl_t *mcip)
1422 {
1423 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1424 	    mac_update_subflow_priority_cb, mcip);
1425 }
1426 
1427 /*
1428  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1429  * to initialize the cpu and resource control structure in the
1430  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1431  * properties before the flow entry for the unicast address was created).
1432  */
1433 int
1434 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1435 {
1436 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1437 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1438 	int			err = 0;
1439 
1440 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1441 
1442 	err = mac_validate_props(mrp);
1443 	if (err != 0)
1444 		return (err);
1445 
1446 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1447 	if (MCIP_DATAPATH_SETUP(mcip)) {
1448 		/*
1449 		 * We have to set this prior to calling mac_flow_modify.
1450 		 */
1451 		if (mrp->mrp_mask & MRP_PRIORITY) {
1452 			if (mrp->mrp_priority == MPL_RESET) {
1453 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1454 				    MPL_LINK_DEFAULT);
1455 			} else {
1456 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1457 				    mrp->mrp_priority);
1458 			}
1459 		}
1460 
1461 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
1462 		if (mrp->mrp_mask & MRP_PRIORITY)
1463 			mac_update_subflow_priority(mcip);
1464 		return (0);
1465 	}
1466 	return (0);
1467 }
1468 
1469 void
1470 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
1471 {
1472 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1473 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
1474 
1475 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
1476 }
1477 
1478 static int
1479 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
1480     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
1481     flow_entry_t **flent, mac_resource_props_t *mrp)
1482 {
1483 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
1484 	flow_desc_t	flow_desc;
1485 	char		flowname[MAXFLOWNAMELEN];
1486 	int		err;
1487 	uint_t		flent_flags;
1488 
1489 	/*
1490 	 * First unicast address being added, create a new flow
1491 	 * for that MAC client.
1492 	 */
1493 	bzero(&flow_desc, sizeof (flow_desc));
1494 
1495 	flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
1496 	bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
1497 	flow_desc.fd_mask = FLOW_LINK_DST;
1498 	if (vid != 0) {
1499 		flow_desc.fd_vid = vid;
1500 		flow_desc.fd_mask |= FLOW_LINK_VID;
1501 	}
1502 
1503 	/*
1504 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
1505 	 * and FLOW_VNIC. Even though they're a hack inherited
1506 	 * from the SRS code, we'll keep them for now. They're currently
1507 	 * consumed by mac_datapath_setup() to create the SRS.
1508 	 * That code should be eventually moved out of
1509 	 * mac_datapath_setup() and moved to a mac_srs_create()
1510 	 * function of some sort to keep things clean.
1511 	 *
1512 	 * Also, there's no reason why the SRS for the primary MAC
1513 	 * client should be different than any other MAC client. Until
1514 	 * this is cleaned-up, we support only one MAC unicast address
1515 	 * per client.
1516 	 *
1517 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
1518 	 * FLOW_VNIC for everything else.
1519 	 */
1520 	if (is_primary)
1521 		flent_flags = FLOW_PRIMARY_MAC;
1522 	else
1523 		flent_flags = FLOW_VNIC_MAC;
1524 
1525 	/*
1526 	 * For the first flow we use the mac client's name - mci_name, for
1527 	 * subsequent ones we just create a name with the vid. This is
1528 	 * so that we can add these flows to the same flow table. This is
1529 	 * fine as the flow name (except for the one with the mac client's
1530 	 * name) is not visible. When the first flow is removed, we just replace
1531 	 * its fdesc with another from the list, so we will still retain the
1532 	 * flent with the MAC client's flow name.
1533 	 */
1534 	if (first_flow) {
1535 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
1536 	} else {
1537 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
1538 		flent_flags = FLOW_NO_STATS;
1539 	}
1540 
1541 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
1542 	    flent_flags, flent)) != 0)
1543 		return (err);
1544 
1545 	FLOW_MARK(*flent, FE_INCIPIENT);
1546 	(*flent)->fe_mcip = mcip;
1547 
1548 	/*
1549 	 * Place initial creation reference on the flow. This reference
1550 	 * is released in the corresponding delete action viz.
1551 	 * mac_unicast_remove after waiting for all transient refs to
1552 	 * to go away. The wait happens in mac_flow_wait.
1553 	 * We have already held the reference in mac_client_open().
1554 	 */
1555 	if (!first_flow)
1556 		FLOW_REFHOLD(*flent);
1557 	return (0);
1558 }
1559 
1560 /* Refresh the multicast grouping for this VID. */
1561 int
1562 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
1563 {
1564 	flow_entry_t		*flent = arg;
1565 	mac_client_impl_t	*mcip = flent->fe_mcip;
1566 	uint16_t		vid;
1567 	flow_desc_t		flow_desc;
1568 
1569 	mac_flow_get_desc(flent, &flow_desc);
1570 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
1571 	    flow_desc.fd_vid : VLAN_ID_NONE;
1572 
1573 	/*
1574 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
1575 	 * we want to add/remove for this specific vid.
1576 	 */
1577 	if (add) {
1578 		return (mac_bcast_add(mcip, addrp, vid,
1579 		    MAC_ADDRTYPE_MULTICAST));
1580 	} else {
1581 		mac_bcast_delete(mcip, addrp, vid);
1582 		return (0);
1583 	}
1584 }
1585 
1586 static void
1587 mac_update_single_active_client(mac_impl_t *mip)
1588 {
1589 	mac_client_impl_t *client = NULL;
1590 
1591 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1592 
1593 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1594 	if (mip->mi_nactiveclients == 1) {
1595 		/*
1596 		 * Find the one active MAC client from the list of MAC
1597 		 * clients. The active MAC client has at least one
1598 		 * unicast address.
1599 		 */
1600 		for (client = mip->mi_clients_list; client != NULL;
1601 		    client = client->mci_client_next) {
1602 			if (client->mci_unicast_list != NULL)
1603 				break;
1604 		}
1605 		ASSERT(client != NULL);
1606 	}
1607 
1608 	/*
1609 	 * mi_single_active_client is protected by the MAC impl's read/writer
1610 	 * lock, which allows mac_rx() to check the value of that pointer
1611 	 * as a reader.
1612 	 */
1613 	mip->mi_single_active_client = client;
1614 	rw_exit(&mip->mi_rw_lock);
1615 }
1616 
1617 /*
1618  * Add a new unicast address to the MAC client.
1619  *
1620  * The MAC address can be specified either by value, or the MAC client
1621  * can specify that it wants to use the primary MAC address of the
1622  * underlying MAC. See the introductory comments at the beginning
1623  * of this file for more more information on primary MAC addresses.
1624  *
1625  * Note also the tuple (MAC address, VID) must be unique
1626  * for the MAC clients defined on top of the same underlying MAC
1627  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
1628  */
1629 int
1630 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1631     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1632 {
1633 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1634 	mac_impl_t *mip = mcip->mci_mip;
1635 	mac_unicast_impl_t *muip;
1636 	flow_entry_t *flent;
1637 	int err;
1638 	uint_t mac_len = mip->mi_type->mt_addr_length;
1639 	boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
1640 	boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
1641 	boolean_t is_vnic_primary = (flags & MAC_UNICAST_VNIC_PRIMARY);
1642 	boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
1643 	boolean_t bcast_added = B_FALSE;
1644 	boolean_t nactiveclients_added = B_FALSE;
1645 	boolean_t mac_started = B_FALSE;
1646 	boolean_t fastpath_disabled = B_FALSE;
1647 	mac_resource_props_t mrp;
1648 
1649 	/* when VID is non-zero, the underlying MAC can not be VNIC */
1650 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
1651 
1652 	/*
1653 	 * Check whether it's the primary client and flag it.
1654 	 */
1655 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
1656 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
1657 
1658 	/*
1659 	 * is_vnic_primary is true when we come here as a VLAN VNIC
1660 	 * which uses the primary mac client's address but with a non-zero
1661 	 * VID. In this case the MAC address is not specified by an upper
1662 	 * MAC client.
1663 	 */
1664 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
1665 	    !is_vnic_primary) {
1666 		/*
1667 		 * The address is being set by the upper MAC client
1668 		 * of a VNIC. The MAC address was already set by the
1669 		 * VNIC driver during VNIC creation.
1670 		 *
1671 		 * Note: a VNIC has only one MAC address. We return
1672 		 * the MAC unicast address handle of the lower MAC client
1673 		 * corresponding to the VNIC. We allocate a new entry
1674 		 * which is flagged appropriately, so that mac_unicast_remove()
1675 		 * doesn't attempt to free the original entry that
1676 		 * was allocated by the VNIC driver.
1677 		 */
1678 		ASSERT(mcip->mci_unicast != NULL);
1679 
1680 		/* Check for VLAN flags, if present */
1681 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1682 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1683 
1684 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1685 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1686 
1687 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1688 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1689 
1690 		/*
1691 		 * Ensure that the primary unicast address of the VNIC
1692 		 * is added only once.
1693 		 */
1694 		if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY)
1695 			return (EBUSY);
1696 
1697 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
1698 
1699 		/*
1700 		 * Create a handle for vid 0.
1701 		 */
1702 		ASSERT(vid == 0);
1703 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1704 		muip->mui_vid = vid;
1705 		*mah = (mac_unicast_handle_t)muip;
1706 		return (0);
1707 	}
1708 
1709 	/* primary MAC clients cannot be opened on top of anchor VNICs */
1710 	if ((is_vnic_primary || is_primary) &&
1711 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
1712 		return (ENXIO);
1713 	}
1714 
1715 	/*
1716 	 * If this is a VNIC/VLAN, disable softmac fast-path.
1717 	 */
1718 	if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1719 		err = mac_fastpath_disable((mac_handle_t)mip);
1720 		if (err != 0)
1721 			return (err);
1722 		fastpath_disabled = B_TRUE;
1723 	}
1724 
1725 	/*
1726 	 * Return EBUSY if:
1727 	 *  - there is an exclusively active mac client exists.
1728 	 *  - this is an exclusive active mac client but
1729 	 *	a. there is already active mac clients exist, or
1730 	 *	b. fastpath streams are already plumbed on this legacy device
1731 	 */
1732 	if (mip->mi_state_flags & MIS_EXCLUSIVE) {
1733 		if (fastpath_disabled)
1734 			mac_fastpath_enable((mac_handle_t)mip);
1735 		return (EBUSY);
1736 	}
1737 
1738 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
1739 		ASSERT(!fastpath_disabled);
1740 		if (mip->mi_nactiveclients != 0)
1741 			return (EBUSY);
1742 
1743 		if ((mip->mi_state_flags & MIS_LEGACY) &&
1744 		    !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
1745 			return (EBUSY);
1746 		}
1747 		mip->mi_state_flags |= MIS_EXCLUSIVE;
1748 	}
1749 
1750 	bzero(&mrp, sizeof (mac_resource_props_t));
1751 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
1752 	    MCIS_IS_AGGR_PORT))) {
1753 		/*
1754 		 * Apply the property cached in the mac_impl_t to the primary
1755 		 * mac client. If the mac client is a VNIC or an aggregation
1756 		 * port, its property should be set in the mcip when the
1757 		 * VNIC/aggr was created.
1758 		 */
1759 		mac_get_resources((mac_handle_t)mip, &mrp);
1760 		(void) mac_client_set_resources(mch, &mrp);
1761 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1762 		bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp,
1763 		    sizeof (mac_resource_props_t));
1764 	}
1765 
1766 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1767 	muip->mui_vid = vid;
1768 
1769 	if (is_primary || is_vnic_primary) {
1770 		mac_addr = mip->mi_addr;
1771 		check_dups = B_TRUE;
1772 	} else {
1773 
1774 		/*
1775 		 * Verify the validity of the specified MAC addresses value.
1776 		 */
1777 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
1778 			*diag = MAC_DIAG_MACADDR_INVALID;
1779 			err = EINVAL;
1780 			goto bail;
1781 		}
1782 
1783 		/*
1784 		 * Make sure that the specified MAC address is different
1785 		 * than the unicast MAC address of the underlying NIC.
1786 		 */
1787 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
1788 			*diag = MAC_DIAG_MACADDR_NIC;
1789 			err = EINVAL;
1790 			goto bail;
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * Make sure the MAC address is not already used by
1796 	 * another MAC client defined on top of the same
1797 	 * underlying NIC.
1798 	 * xxx-venu mac_unicast_add doesnt' seem to be called
1799 	 * with MAC_UNICAST_NODUPCHECK currently, if it does
1800 	 * get called we need to do mac_addr_in_use() just
1801 	 * to check for addr_in_use till 6697876 is fixed.
1802 	 */
1803 	if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) {
1804 		*diag = MAC_DIAG_MACADDR_INUSE;
1805 		err = EEXIST;
1806 		goto bail;
1807 	}
1808 
1809 	if ((err = mac_start((mac_handle_t)mip)) != 0)
1810 		goto bail;
1811 
1812 	mac_started = B_TRUE;
1813 
1814 	/* add the MAC client to the broadcast address group by default */
1815 	if (mip->mi_type->mt_brdcst_addr != NULL) {
1816 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
1817 		    MAC_ADDRTYPE_BROADCAST);
1818 		if (err != 0)
1819 			goto bail;
1820 		bcast_added = B_TRUE;
1821 	}
1822 
1823 	/*
1824 	 * If this is the first unicast address addition for this
1825 	 * client, reuse the pre-allocated larval flow entry associated with
1826 	 * the MAC client.
1827 	 */
1828 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
1829 
1830 	/* We are configuring the unicast flow now */
1831 	if (!MCIP_DATAPATH_SETUP(mcip)) {
1832 		if (is_unicast_hw) {
1833 			/*
1834 			 * The client requires a hardware MAC address slot
1835 			 * for that unicast address. Since we support only
1836 			 * one unicast MAC address per client, flag the
1837 			 * MAC client itself.
1838 			 */
1839 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
1840 		}
1841 
1842 		/* Check for VLAN flags, if present */
1843 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1844 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1845 
1846 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1847 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1848 
1849 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1850 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1851 
1852 		MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1853 		    (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority :
1854 		    MPL_LINK_DEFAULT);
1855 
1856 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1857 		    is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0)
1858 			goto bail;
1859 
1860 		mip->mi_nactiveclients++;
1861 		nactiveclients_added = B_TRUE;
1862 
1863 		/*
1864 		 * This will allocate the RX ring group if possible for the
1865 		 * flow and program the software classifier as needed.
1866 		 */
1867 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
1868 			goto bail;
1869 
1870 		/*
1871 		 * The unicast MAC address must have been added successfully.
1872 		 */
1873 		ASSERT(mcip->mci_unicast != NULL);
1874 		/*
1875 		 * Push down the sub-flows that were defined on this link
1876 		 * hitherto. The flows are added to the active flow table
1877 		 * and SRS, softrings etc. are created as needed.
1878 		 */
1879 		mac_link_init_flows(mch);
1880 	} else {
1881 		mac_address_t *map = mcip->mci_unicast;
1882 
1883 		/*
1884 		 * A unicast flow already exists for that MAC client,
1885 		 * this flow must be the same mac address but with
1886 		 * different VID. It has been checked by mac_addr_in_use().
1887 		 *
1888 		 * We will use the SRS etc. from the mci_flent. Note that
1889 		 * We don't need to create kstat for this as except for
1890 		 * the fdesc, everything will be used from in the 1st flent.
1891 		 */
1892 
1893 		/*
1894 		 * Assert that the specified flags are consistent with the
1895 		 * flags specified by previous calls to mac_unicast_add().
1896 		 */
1897 		ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
1898 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
1899 		    ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
1900 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
1901 
1902 		ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
1903 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
1904 		    ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
1905 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
1906 
1907 		ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
1908 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
1909 		    ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
1910 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
1911 
1912 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
1913 			err = EINVAL;
1914 			goto bail;
1915 		}
1916 
1917 		/*
1918 		 * Make sure the client is consistent about its requests
1919 		 * for MAC addresses. I.e. all requests from the clients
1920 		 * must have the MAC_UNICAST_HW flag set or clear.
1921 		 */
1922 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
1923 		    !is_unicast_hw ||
1924 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
1925 		    is_unicast_hw) {
1926 			err = EINVAL;
1927 			goto bail;
1928 		}
1929 
1930 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1931 		    is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0)
1932 			goto bail;
1933 
1934 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
1935 			FLOW_FINAL_REFRELE(flent);
1936 			goto bail;
1937 		}
1938 
1939 		/* update the multicast group for this vid */
1940 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
1941 		    (void *)flent, B_TRUE);
1942 
1943 	}
1944 
1945 	/* populate the shared MAC address */
1946 	muip->mui_map = mcip->mci_unicast;
1947 
1948 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
1949 	muip->mui_next = mcip->mci_unicast_list;
1950 	mcip->mci_unicast_list = muip;
1951 	rw_exit(&mcip->mci_rw_lock);
1952 
1953 	*mah = (mac_unicast_handle_t)muip;
1954 
1955 	/*
1956 	 * First add the flent to the flow list of this mcip. Then set
1957 	 * the mip's mi_single_active_client if needed. The Rx path assumes
1958 	 * that mip->mi_single_active_client will always have an associated
1959 	 * flent.
1960 	 */
1961 	mac_client_add_to_flow_list(mcip, flent);
1962 
1963 	if (nactiveclients_added)
1964 		mac_update_single_active_client(mip);
1965 	/*
1966 	 * Trigger a renegotiation of the capabilities when the number of
1967 	 * active clients changes from 1 to 2, since some of the capabilities
1968 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
1969 	 * to all the MAC clients whenever physical link is DOWN.
1970 	 */
1971 	if (mip->mi_nactiveclients == 2) {
1972 		mac_capab_update((mac_handle_t)mip);
1973 		mac_virtual_link_update(mip);
1974 	}
1975 	/*
1976 	 * Now that the setup is complete, clear the INCIPIENT flag.
1977 	 * The flag was set to avoid incoming packets seeing inconsistent
1978 	 * structures while the setup was in progress. Clear the mci_tx_flag
1979 	 * by calling mac_tx_client_block. It is possible that
1980 	 * mac_unicast_remove was called prior to this mac_unicast_add which
1981 	 * could have set the MCI_TX_QUIESCE flag.
1982 	 */
1983 	if (flent->fe_rx_ring_group != NULL)
1984 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
1985 	FLOW_UNMARK(flent, FE_INCIPIENT);
1986 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
1987 	mac_tx_client_unblock(mcip);
1988 	return (0);
1989 bail:
1990 	if (bcast_added)
1991 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
1992 	if (mac_started)
1993 		mac_stop((mac_handle_t)mip);
1994 
1995 	if (nactiveclients_added)
1996 		mip->mi_nactiveclients--;
1997 
1998 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
1999 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2000 		if (mip->mi_state_flags & MIS_LEGACY)
2001 			mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2002 	}
2003 
2004 	if (fastpath_disabled)
2005 		mac_fastpath_enable((mac_handle_t)mip);
2006 
2007 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2008 	return (err);
2009 }
2010 
2011 int
2012 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2013     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2014 {
2015 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2016 	uint_t err;
2017 
2018 	i_mac_perim_enter(mip);
2019 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2020 	i_mac_perim_exit(mip);
2021 
2022 	return (err);
2023 }
2024 
2025 /*
2026  * Remove a MAC address which was previously added by mac_unicast_add().
2027  */
2028 int
2029 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2030 {
2031 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2032 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2033 	mac_unicast_impl_t *pre;
2034 	mac_impl_t *mip = mcip->mci_mip;
2035 	flow_entry_t *flent;
2036 
2037 	i_mac_perim_enter(mip);
2038 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2039 		/*
2040 		 * Called made by the upper MAC client of a VNIC.
2041 		 * There's nothing much to do, the unicast address will
2042 		 * be removed by the VNIC driver when the VNIC is deleted,
2043 		 * but let's ensure that all our transmit is done before
2044 		 * the client does a mac_client_stop lest it trigger an
2045 		 * assert in the driver.
2046 		 */
2047 		ASSERT(muip->mui_vid == 0);
2048 
2049 		mac_tx_client_flush(mcip);
2050 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2051 
2052 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2053 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2054 
2055 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2056 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2057 
2058 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2059 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2060 
2061 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2062 		i_mac_perim_exit(mip);
2063 		return (0);
2064 	}
2065 
2066 	ASSERT(muip != NULL);
2067 
2068 	/*
2069 	 * Remove the VID from the list of client's VIDs.
2070 	 */
2071 	pre = mcip->mci_unicast_list;
2072 	if (muip == pre) {
2073 		mcip->mci_unicast_list = muip->mui_next;
2074 	} else {
2075 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2076 			pre = pre->mui_next;
2077 		ASSERT(pre->mui_next == muip);
2078 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2079 		pre->mui_next = muip->mui_next;
2080 		rw_exit(&mcip->mci_rw_lock);
2081 	}
2082 
2083 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0)
2084 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
2085 
2086 	if (!mac_client_single_rcvr(mcip)) {
2087 		/*
2088 		 * This MAC client is shared by more than one unicast
2089 		 * addresses, so we will just remove the flent
2090 		 * corresponding to the address being removed. We don't invoke
2091 		 * mac_rx_classify_flow_rem() since the additional flow is
2092 		 * not associated with its own separate set of SRS and rings,
2093 		 * and these constructs are still needed for the remaining
2094 		 * flows.
2095 		 */
2096 		flent = mac_client_get_flow(mcip, muip);
2097 		ASSERT(flent != NULL);
2098 
2099 		/*
2100 		 * The first one is disappearing, need to make sure
2101 		 * we replace it with another from the list of
2102 		 * shared clients.
2103 		 */
2104 		if (flent == mcip->mci_flent)
2105 			flent = mac_client_swap_mciflent(mcip);
2106 		mac_client_remove_flow_from_list(mcip, flent);
2107 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2108 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2109 
2110 		/*
2111 		 * The multicast groups that were added by the client so
2112 		 * far must be removed from the brodcast domain corresponding
2113 		 * to the VID being removed.
2114 		 */
2115 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2116 		    (void *)flent, B_FALSE);
2117 
2118 		if (mip->mi_type->mt_brdcst_addr != NULL) {
2119 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2120 			    muip->mui_vid);
2121 		}
2122 
2123 		FLOW_FINAL_REFRELE(flent);
2124 		ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
2125 		goto done;
2126 	}
2127 
2128 	/*
2129 	 * We would have initialized subflows etc. only if we brought up
2130 	 * the primary client and set the unicast unicast address etc.
2131 	 * Deactivate the flows. The flow entry will be removed from the
2132 	 * active flow tables, and the associated SRS, softrings etc will
2133 	 * be deleted. But the flow entry itself won't be destroyed, instead
2134 	 * it will continue to be archived off the  the global flow hash
2135 	 * list, for a possible future activation when say IP is plumbed
2136 	 * again.
2137 	 */
2138 	mac_link_release_flows(mch);
2139 
2140 	mip->mi_nactiveclients--;
2141 	mac_update_single_active_client(mip);
2142 
2143 	/* Tear down the Data path */
2144 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2145 
2146 	/*
2147 	 * Prevent any future access to the flow entry through the mci_flent
2148 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2149 	 * mac_bcast_send is also under mi_rw_lock.
2150 	 */
2151 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2152 	flent = mcip->mci_flent;
2153 	mac_client_remove_flow_from_list(mcip, flent);
2154 
2155 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2156 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2157 
2158 	/*
2159 	 * This is the last unicast address being removed and there shouldn't
2160 	 * be any outbound data threads at this point coming down from mac
2161 	 * clients. We have waited for the data threads to finish before
2162 	 * starting dld_str_detach. Non-data threads must access TX SRS
2163 	 * under mi_rw_lock.
2164 	 */
2165 	rw_exit(&mip->mi_rw_lock);
2166 
2167 	/*
2168 	 * Update the multicast group for this vid.
2169 	 */
2170 	mac_client_bcast_refresh(mcip, mac_client_update_mcast, (void *)flent,
2171 	    B_FALSE);
2172 
2173 	/*
2174 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2175 	 * contain other flags, such as FE_CONDEMNED, which we need to
2176 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2177 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2178 	 * path). We just clear the stats and reset the initial callback
2179 	 * function, the rest will be set when we call mac_flow_create,
2180 	 * if at all.
2181 	 */
2182 	mutex_enter(&flent->fe_lock);
2183 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2184 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2185 	flent->fe_flags = FE_MC_NO_DATAPATH;
2186 	flow_stat_destroy(flent);
2187 
2188 	/* Initialize the receiver function to a safe routine */
2189 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2190 	flent->fe_cb_arg1 = NULL;
2191 	flent->fe_cb_arg2 = NULL;
2192 
2193 	flent->fe_index = -1;
2194 	mutex_exit(&flent->fe_lock);
2195 
2196 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2197 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2198 		    muip->mui_vid);
2199 	}
2200 
2201 	if (mip->mi_nactiveclients == 1) {
2202 		mac_capab_update((mac_handle_t)mip);
2203 		mac_virtual_link_update(mip);
2204 	}
2205 
2206 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2207 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2208 
2209 		if (mip->mi_state_flags & MIS_LEGACY)
2210 			mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2211 	}
2212 
2213 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2214 
2215 	if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2216 		mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2217 
2218 	if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2219 		mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2220 
2221 	if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2222 		mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2223 
2224 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2225 
2226 done:
2227 	/*
2228 	 * Disable fastpath if this is a VNIC or a VLAN.
2229 	 */
2230 	if (mcip->mci_state_flags & MCIS_IS_VNIC)
2231 		mac_fastpath_enable((mac_handle_t)mip);
2232 	mac_stop((mac_handle_t)mip);
2233 	i_mac_perim_exit(mip);
2234 	return (0);
2235 }
2236 
2237 /*
2238  * Multicast add function invoked by MAC clients.
2239  */
2240 int
2241 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
2242 {
2243 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2244 	mac_impl_t		*mip = mcip->mci_mip;
2245 	flow_entry_t		*flent = mcip->mci_flent_list;
2246 	flow_entry_t		*prev_fe = NULL;
2247 	uint16_t		vid;
2248 	int			err = 0;
2249 
2250 	/* Verify the address is a valid multicast address */
2251 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
2252 	    mip->mi_pdata)) != 0)
2253 		return (err);
2254 
2255 	i_mac_perim_enter(mip);
2256 	while (flent != NULL) {
2257 		vid = i_mac_flow_vid(flent);
2258 
2259 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
2260 		    MAC_ADDRTYPE_MULTICAST);
2261 		if (err != 0)
2262 			break;
2263 		prev_fe = flent;
2264 		flent = flent->fe_client_next;
2265 	}
2266 
2267 	/*
2268 	 * If we failed adding, then undo all, rather than partial
2269 	 * success.
2270 	 */
2271 	if (flent != NULL && prev_fe != NULL) {
2272 		flent = mcip->mci_flent_list;
2273 		while (flent != prev_fe->fe_client_next) {
2274 			vid = i_mac_flow_vid(flent);
2275 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2276 			flent = flent->fe_client_next;
2277 		}
2278 	}
2279 	i_mac_perim_exit(mip);
2280 	return (err);
2281 }
2282 
2283 /*
2284  * Multicast delete function invoked by MAC clients.
2285  */
2286 void
2287 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
2288 {
2289 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2290 	mac_impl_t		*mip = mcip->mci_mip;
2291 	flow_entry_t		*flent;
2292 	uint16_t		vid;
2293 
2294 	i_mac_perim_enter(mip);
2295 	for (flent = mcip->mci_flent_list; flent != NULL;
2296 	    flent = flent->fe_client_next) {
2297 		vid = i_mac_flow_vid(flent);
2298 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2299 	}
2300 	i_mac_perim_exit(mip);
2301 }
2302 
2303 /*
2304  * When a MAC client desires to capture packets on an interface,
2305  * it registers a promiscuous call back with mac_promisc_add().
2306  * There are three types of promiscuous callbacks:
2307  *
2308  * * MAC_CLIENT_PROMISC_ALL
2309  *   Captures all packets sent and received by the MAC client,
2310  *   the physical interface, as well as all other MAC clients
2311  *   defined on top of the same MAC.
2312  *
2313  * * MAC_CLIENT_PROMISC_FILTERED
2314  *   Captures all packets sent and received by the MAC client,
2315  *   plus all multicast traffic sent and received by the phyisical
2316  *   interface and the other MAC clients.
2317  *
2318  * * MAC_CLIENT_PROMISC_MULTI
2319  *   Captures all broadcast and multicast packets sent and
2320  *   received by the MAC clients as well as the physical interface.
2321  *
2322  * In all cases, the underlying MAC is put in promiscuous mode.
2323  */
2324 int
2325 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
2326     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
2327 {
2328 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2329 	mac_impl_t *mip = mcip->mci_mip;
2330 	mac_promisc_impl_t *mpip;
2331 	mac_cb_info_t	*mcbi;
2332 	int rc;
2333 
2334 	i_mac_perim_enter(mip);
2335 
2336 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
2337 		i_mac_perim_exit(mip);
2338 		return (rc);
2339 	}
2340 
2341 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
2342 	    type == MAC_CLIENT_PROMISC_ALL) {
2343 		/*
2344 		 * The function is being invoked by the upper MAC client
2345 		 * of a VNIC. The VNIC should only see the traffic
2346 		 * it is entitled to.
2347 		 */
2348 		type = MAC_CLIENT_PROMISC_FILTERED;
2349 	}
2350 
2351 
2352 	/*
2353 	 * Turn on promiscuous mode for the underlying NIC.
2354 	 * This is needed even for filtered callbacks which
2355 	 * expect to receive all multicast traffic on the wire.
2356 	 *
2357 	 * Physical promiscuous mode should not be turned on if
2358 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
2359 	 */
2360 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
2361 		if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC))
2362 		    != 0) {
2363 			mac_stop((mac_handle_t)mip);
2364 			i_mac_perim_exit(mip);
2365 			return (rc);
2366 		}
2367 	}
2368 
2369 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
2370 
2371 	mpip->mpi_type = type;
2372 	mpip->mpi_fn = fn;
2373 	mpip->mpi_arg = arg;
2374 	mpip->mpi_mcip = mcip;
2375 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
2376 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
2377 	mpip->mpi_strip_vlan_tag =
2378 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
2379 
2380 	mcbi = &mip->mi_promisc_cb_info;
2381 	mutex_enter(mcbi->mcbi_lockp);
2382 
2383 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
2384 	    &mpip->mpi_mci_link);
2385 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
2386 	    &mpip->mpi_mi_link);
2387 
2388 	mutex_exit(mcbi->mcbi_lockp);
2389 
2390 	*mphp = (mac_promisc_handle_t)mpip;
2391 	i_mac_perim_exit(mip);
2392 	return (0);
2393 }
2394 
2395 /*
2396  * Remove a multicast address previously aded through mac_promisc_add().
2397  */
2398 void
2399 mac_promisc_remove(mac_promisc_handle_t mph)
2400 {
2401 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
2402 	mac_client_impl_t *mcip = mpip->mpi_mcip;
2403 	mac_impl_t *mip = mcip->mci_mip;
2404 	mac_cb_info_t *mcbi;
2405 
2406 	i_mac_perim_enter(mip);
2407 
2408 	/*
2409 	 * Even if the device can't be reset into normal mode, we still
2410 	 * need to clear the client promisc callbacks. The client may want
2411 	 * to close the mac end point and we can't have stale callbacks.
2412 	 */
2413 	if (!(mpip->mpi_no_phys)) {
2414 		(void) mac_promisc_set((mac_handle_t)mip, B_FALSE,
2415 		    MAC_DEVPROMISC);
2416 	}
2417 	mcbi = &mip->mi_promisc_cb_info;
2418 	mutex_enter(mcbi->mcbi_lockp);
2419 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
2420 	    &mpip->mpi_mi_link)) {
2421 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
2422 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
2423 		kmem_cache_free(mac_promisc_impl_cache, mpip);
2424 	} else {
2425 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
2426 	}
2427 	mutex_exit(mcbi->mcbi_lockp);
2428 	mac_stop((mac_handle_t)mip);
2429 
2430 	i_mac_perim_exit(mip);
2431 }
2432 
2433 /*
2434  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
2435  * that a control operation wants to quiesce the Tx data flow in which case
2436  * we return an error. Holding any of the per cpu locks ensures that the
2437  * mci_tx_flag won't change.
2438  *
2439  * 'CPU' must be accessed just once and used to compute the index into the
2440  * percpu array, and that index must be used for the entire duration of the
2441  * packet send operation. Note that the thread may be preempted and run on
2442  * another cpu any time and so we can't use 'CPU' more than once for the
2443  * operation.
2444  */
2445 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
2446 {									\
2447 	(error) = 0;							\
2448 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
2449 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2450 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
2451 		(mytx)->pcpu_tx_refcnt++;				\
2452 	} else {							\
2453 		(error) = -1;						\
2454 	}								\
2455 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
2456 }
2457 
2458 /*
2459  * Release the reference. If needed, signal any control operation waiting
2460  * for Tx quiescence. The wait and signal are always done using the
2461  * mci_tx_pcpu[0]'s lock
2462  */
2463 #define	MAC_TX_RELE(mcip, mytx) {					\
2464 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2465 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
2466 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
2467 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2468 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2469 		cv_signal(&(mcip)->mci_tx_cv);				\
2470 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2471 	} else {							\
2472 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2473 	}								\
2474 }
2475 
2476 /*
2477  * Bump the count of the number of active Tx threads. This is maintained as
2478  * a per CPU counter. On (CMT kind of) machines with large number of CPUs,
2479  * a single mci_tx_lock may become contended. However a count of the total
2480  * number of Tx threads per client is needed in order to quiesce the Tx side
2481  * prior to reassigning a Tx ring dynamically to another client. The thread
2482  * that needs to quiesce the Tx traffic grabs all the percpu locks and checks
2483  * the sum of the individual percpu refcnts. Each Tx data thread only grabs
2484  * its own percpu lock and increments its own refcnt.
2485  */
2486 void *
2487 mac_tx_hold(mac_client_handle_t mch)
2488 {
2489 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2490 	mac_tx_percpu_t	*mytx;
2491 	int error;
2492 
2493 	MAC_TX_TRY_HOLD(mcip, mytx, error);
2494 	return (error == 0 ? (void *)mytx : NULL);
2495 }
2496 
2497 void
2498 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle)
2499 {
2500 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2501 	mac_tx_percpu_t	*mytx = mytx_handle;
2502 
2503 	MAC_TX_RELE(mcip, mytx)
2504 }
2505 
2506 /*
2507  * Send function invoked by MAC clients.
2508  */
2509 mac_tx_cookie_t
2510 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
2511     uint16_t flag, mblk_t **ret_mp)
2512 {
2513 	mac_tx_cookie_t		cookie;
2514 	int			error;
2515 	mac_tx_percpu_t		*mytx;
2516 	mac_soft_ring_set_t	*srs;
2517 	flow_entry_t		*flent;
2518 	boolean_t		is_subflow = B_FALSE;
2519 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2520 	mac_impl_t		*mip = mcip->mci_mip;
2521 	mac_srs_tx_t		*srs_tx;
2522 
2523 	/*
2524 	 * Check whether the active Tx threads count is bumped already.
2525 	 */
2526 	if (!(flag & MAC_TX_NO_HOLD)) {
2527 		MAC_TX_TRY_HOLD(mcip, mytx, error);
2528 		if (error != 0) {
2529 			freemsgchain(mp_chain);
2530 			return (NULL);
2531 		}
2532 	}
2533 
2534 	if (mcip->mci_subflow_tab != NULL &&
2535 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
2536 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
2537 	    FLOW_OUTBOUND, &flent) == 0) {
2538 		/*
2539 		 * The main assumption here is that if in the event
2540 		 * we get a chain, all the packets will be classified
2541 		 * to the same Flow/SRS. If this changes for any
2542 		 * reason, the following logic should change as well.
2543 		 * I suppose the fanout_hint also assumes this .
2544 		 */
2545 		ASSERT(flent != NULL);
2546 		is_subflow = B_TRUE;
2547 	} else {
2548 		flent = mcip->mci_flent;
2549 	}
2550 
2551 	srs = flent->fe_tx_srs;
2552 	srs_tx = &srs->srs_tx;
2553 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
2554 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
2555 	    mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL &&
2556 	    mp_chain->b_next == NULL) {
2557 		uint64_t	obytes;
2558 
2559 		/*
2560 		 * Since dls always opens the underlying MAC, nclients equals
2561 		 * to 1 means that the only active client is dls itself acting
2562 		 * as a primary client of the MAC instance. Since dls will not
2563 		 * send tagged packets in that case, and dls is trusted to send
2564 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
2565 		 * check is required only if nclients is greater than 1.
2566 		 */
2567 		if (mip->mi_nclients > 1) {
2568 			if (MAC_VID_CHECK_NEEDED(mcip)) {
2569 				int	err = 0;
2570 
2571 				MAC_VID_CHECK(mcip, mp_chain, err);
2572 				if (err != 0) {
2573 					freemsg(mp_chain);
2574 					mcip->mci_stat_oerrors++;
2575 					goto done;
2576 				}
2577 			}
2578 			if (MAC_TAG_NEEDED(mcip)) {
2579 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
2580 				    mac_client_vid(mch));
2581 				if (mp_chain == NULL) {
2582 					mcip->mci_stat_oerrors++;
2583 					goto done;
2584 				}
2585 			}
2586 		}
2587 
2588 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
2589 		    msgdsize(mp_chain));
2590 
2591 		MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
2592 
2593 		if (mp_chain == NULL) {
2594 			cookie = NULL;
2595 			mcip->mci_stat_obytes += obytes;
2596 			mcip->mci_stat_opackets += 1;
2597 			if ((srs->srs_type & SRST_FLOW) != 0) {
2598 				FLOW_STAT_UPDATE(flent, obytes, obytes);
2599 				FLOW_STAT_UPDATE(flent, opackets, 1);
2600 			}
2601 		} else {
2602 			mutex_enter(&srs->srs_lock);
2603 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
2604 			    flag, ret_mp);
2605 			mutex_exit(&srs->srs_lock);
2606 		}
2607 	} else {
2608 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
2609 	}
2610 
2611 done:
2612 	if (is_subflow)
2613 		FLOW_REFRELE(flent);
2614 
2615 	if (!(flag & MAC_TX_NO_HOLD))
2616 		MAC_TX_RELE(mcip, mytx);
2617 
2618 	return (cookie);
2619 }
2620 
2621 /*
2622  * mac_tx_is_blocked
2623  *
2624  * Given a cookie, it returns if the ring identified by the cookie is
2625  * flow-controlled or not. If NULL is passed in place of a cookie,
2626  * then it finds out if any of the underlying rings belonging to the
2627  * SRS is flow controlled or not and returns that status.
2628  */
2629 /* ARGSUSED */
2630 boolean_t
2631 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
2632 {
2633 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2634 	mac_soft_ring_set_t *mac_srs;
2635 	mac_soft_ring_t *sringp;
2636 	boolean_t blocked = B_FALSE;
2637 	mac_tx_percpu_t *mytx;
2638 	int err;
2639 	int i;
2640 
2641 	/*
2642 	 * Bump the reference count so that mac_srs won't be deleted.
2643 	 * If the client is currently quiesced and we failed to bump
2644 	 * the reference, return B_TRUE so that flow control stays
2645 	 * as enabled.
2646 	 *
2647 	 * Flow control will then be disabled once the client is no
2648 	 * longer quiesced.
2649 	 */
2650 	MAC_TX_TRY_HOLD(mcip, mytx, err);
2651 	if (err != 0)
2652 		return (B_TRUE);
2653 
2654 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
2655 		MAC_TX_RELE(mcip, mytx);
2656 		return (B_FALSE);
2657 	}
2658 
2659 	mutex_enter(&mac_srs->srs_lock);
2660 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) {
2661 		if (cookie != NULL) {
2662 			sringp = (mac_soft_ring_t *)cookie;
2663 			mutex_enter(&sringp->s_ring_lock);
2664 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
2665 				blocked = B_TRUE;
2666 			mutex_exit(&sringp->s_ring_lock);
2667 		} else {
2668 			for (i = 0; i < mac_srs->srs_oth_ring_count; i++) {
2669 				sringp = mac_srs->srs_oth_soft_rings[i];
2670 				mutex_enter(&sringp->s_ring_lock);
2671 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
2672 					blocked = B_TRUE;
2673 					mutex_exit(&sringp->s_ring_lock);
2674 					break;
2675 				}
2676 				mutex_exit(&sringp->s_ring_lock);
2677 			}
2678 		}
2679 	} else {
2680 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
2681 	}
2682 	mutex_exit(&mac_srs->srs_lock);
2683 	MAC_TX_RELE(mcip, mytx);
2684 	return (blocked);
2685 }
2686 
2687 /*
2688  * Check if the MAC client is the primary MAC client.
2689  */
2690 boolean_t
2691 mac_is_primary_client(mac_client_impl_t *mcip)
2692 {
2693 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
2694 }
2695 
2696 void
2697 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
2698 {
2699 	mac_impl_t	*mip = (mac_impl_t *)mh;
2700 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
2701 
2702 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
2703 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
2704 		/*
2705 		 * If ndd props were registered, call them.
2706 		 * Note that ndd ioctls are Obsolete
2707 		 */
2708 		mac_ndd_ioctl(mip, wq, bp);
2709 		return;
2710 	}
2711 
2712 	/*
2713 	 * Call the driver to handle the ioctl.  The driver may not support
2714 	 * any ioctls, in which case we reply with a NAK on its behalf.
2715 	 */
2716 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
2717 		mip->mi_ioctl(mip->mi_driver, wq, bp);
2718 	else
2719 		miocnak(wq, bp, 0, EINVAL);
2720 }
2721 
2722 /*
2723  * Return the link state of the specified MAC instance.
2724  */
2725 link_state_t
2726 mac_link_get(mac_handle_t mh)
2727 {
2728 	return (((mac_impl_t *)mh)->mi_linkstate);
2729 }
2730 
2731 /*
2732  * Add a mac client specified notification callback. Please see the comments
2733  * above mac_callback_add() for general information about mac callback
2734  * addition/deletion in the presence of mac callback list walkers
2735  */
2736 mac_notify_handle_t
2737 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
2738 {
2739 	mac_impl_t		*mip = (mac_impl_t *)mh;
2740 	mac_notify_cb_t		*mncb;
2741 	mac_cb_info_t		*mcbi;
2742 
2743 	/*
2744 	 * Allocate a notify callback structure, fill in the details and
2745 	 * use the mac callback list manipulation functions to chain into
2746 	 * the list of callbacks.
2747 	 */
2748 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
2749 	mncb->mncb_fn = notify_fn;
2750 	mncb->mncb_arg = arg;
2751 	mncb->mncb_mip = mip;
2752 	mncb->mncb_link.mcb_objp = mncb;
2753 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
2754 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
2755 
2756 	mcbi = &mip->mi_notify_cb_info;
2757 
2758 	i_mac_perim_enter(mip);
2759 	mutex_enter(mcbi->mcbi_lockp);
2760 
2761 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
2762 	    &mncb->mncb_link);
2763 
2764 	mutex_exit(mcbi->mcbi_lockp);
2765 	i_mac_perim_exit(mip);
2766 	return ((mac_notify_handle_t)mncb);
2767 }
2768 
2769 void
2770 mac_notify_remove_wait(mac_handle_t mh)
2771 {
2772 	mac_impl_t	*mip = (mac_impl_t *)mh;
2773 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
2774 
2775 	mutex_enter(mcbi->mcbi_lockp);
2776 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
2777 	mutex_exit(mcbi->mcbi_lockp);
2778 }
2779 
2780 /*
2781  * Remove a mac client specified notification callback
2782  */
2783 int
2784 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
2785 {
2786 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
2787 	mac_impl_t	*mip = mncb->mncb_mip;
2788 	mac_cb_info_t	*mcbi;
2789 	int		err = 0;
2790 
2791 	mcbi = &mip->mi_notify_cb_info;
2792 
2793 	i_mac_perim_enter(mip);
2794 	mutex_enter(mcbi->mcbi_lockp);
2795 
2796 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
2797 	/*
2798 	 * If there aren't any list walkers, the remove would succeed
2799 	 * inline, else we wait for the deferred remove to complete
2800 	 */
2801 	if (mac_callback_remove(&mip->mi_notify_cb_info,
2802 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
2803 		kmem_free(mncb, sizeof (mac_notify_cb_t));
2804 	} else {
2805 		err = EBUSY;
2806 	}
2807 
2808 	mutex_exit(mcbi->mcbi_lockp);
2809 	i_mac_perim_exit(mip);
2810 
2811 	/*
2812 	 * If we failed to remove the notification callback and "wait" is set
2813 	 * to be B_TRUE, wait for the callback to finish after we exit the
2814 	 * mac perimeter.
2815 	 */
2816 	if (err != 0 && wait) {
2817 		mac_notify_remove_wait((mac_handle_t)mip);
2818 		return (0);
2819 	}
2820 
2821 	return (err);
2822 }
2823 
2824 /*
2825  * Associate resource management callbacks with the specified MAC
2826  * clients.
2827  */
2828 
2829 void
2830 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
2831     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
2832     mac_resource_restart_t restart, mac_resource_bind_t bind,
2833     void *arg)
2834 {
2835 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2836 
2837 	mcip->mci_resource_add = add;
2838 	mcip->mci_resource_remove = remove;
2839 	mcip->mci_resource_quiesce = quiesce;
2840 	mcip->mci_resource_restart = restart;
2841 	mcip->mci_resource_bind = bind;
2842 	mcip->mci_resource_arg = arg;
2843 
2844 	if (arg == NULL)
2845 		mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
2846 }
2847 
2848 void
2849 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
2850 {
2851 	/* update the 'resource_add' callback */
2852 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
2853 }
2854 
2855 /*
2856  * Sets up the client resources and enable the polling interface over all the
2857  * SRS's and the soft rings of the client
2858  */
2859 void
2860 mac_client_poll_enable(mac_client_handle_t mch)
2861 {
2862 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2863 	mac_soft_ring_set_t	*mac_srs;
2864 	flow_entry_t		*flent;
2865 	int			i;
2866 
2867 	flent = mcip->mci_flent;
2868 	ASSERT(flent != NULL);
2869 
2870 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2871 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
2872 		ASSERT(mac_srs->srs_mcip == mcip);
2873 		mac_srs_client_poll_enable(mcip, mac_srs);
2874 	}
2875 }
2876 
2877 /*
2878  * Tears down the client resources and disable the polling interface over all
2879  * the SRS's and the soft rings of the client
2880  */
2881 void
2882 mac_client_poll_disable(mac_client_handle_t mch)
2883 {
2884 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2885 	mac_soft_ring_set_t	*mac_srs;
2886 	flow_entry_t		*flent;
2887 	int			i;
2888 
2889 	flent = mcip->mci_flent;
2890 	ASSERT(flent != NULL);
2891 
2892 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2893 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
2894 		ASSERT(mac_srs->srs_mcip == mcip);
2895 		mac_srs_client_poll_disable(mcip, mac_srs);
2896 	}
2897 }
2898 
2899 /*
2900  * Associate the CPUs specified by the given property with a MAC client.
2901  */
2902 int
2903 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2904 {
2905 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2906 	mac_impl_t *mip = mcip->mci_mip;
2907 	int err = 0;
2908 
2909 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2910 
2911 	if ((err = mac_validate_props(mrp)) != 0)
2912 		return (err);
2913 
2914 	if (MCIP_DATAPATH_SETUP(mcip))
2915 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
2916 
2917 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2918 	return (0);
2919 }
2920 
2921 /*
2922  * Apply the specified properties to the specified MAC client.
2923  */
2924 int
2925 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
2926 {
2927 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2928 	mac_impl_t *mip = mcip->mci_mip;
2929 	int err = 0;
2930 
2931 	i_mac_perim_enter(mip);
2932 
2933 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
2934 		err = mac_resource_ctl_set(mch, mrp);
2935 		if (err != 0) {
2936 			i_mac_perim_exit(mip);
2937 			return (err);
2938 		}
2939 	}
2940 
2941 	if (mrp->mrp_mask & MRP_CPUS)
2942 		err = mac_cpu_set(mch, mrp);
2943 
2944 	i_mac_perim_exit(mip);
2945 	return (err);
2946 }
2947 
2948 /*
2949  * Return the properties currently associated with the specified MAC client.
2950  */
2951 void
2952 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
2953 {
2954 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2955 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
2956 
2957 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
2958 }
2959 
2960 /*
2961  * Pass a copy of the specified packet to the promiscuous callbacks
2962  * of the specified MAC.
2963  *
2964  * If sender is NULL, the function is being invoked for a packet chain
2965  * received from the wire. If sender is non-NULL, it points to
2966  * the MAC client from which the packet is being sent.
2967  *
2968  * The packets are distributed to the promiscuous callbacks as follows:
2969  *
2970  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
2971  * - all broadcast and multicast packets are sent to the
2972  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
2973  *
2974  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
2975  * after classification by mac_rx_deliver().
2976  */
2977 
2978 static void
2979 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
2980     boolean_t loopback)
2981 {
2982 	mblk_t *mp_copy;
2983 
2984 	mp_copy = copymsg(mp);
2985 	if (mp_copy == NULL)
2986 		return;
2987 	mp_copy->b_next = NULL;
2988 
2989 	if (mpip->mpi_strip_vlan_tag) {
2990 		if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL)
2991 			return;
2992 	}
2993 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
2994 }
2995 
2996 /*
2997  * Return the VID of a packet. Zero if the packet is not tagged.
2998  */
2999 static uint16_t
3000 mac_ether_vid(mblk_t *mp)
3001 {
3002 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3003 
3004 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3005 		struct ether_vlan_header *t_evhp =
3006 		    (struct ether_vlan_header *)mp->b_rptr;
3007 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3008 	}
3009 
3010 	return (0);
3011 }
3012 
3013 /*
3014  * Return whether the specified packet contains a multicast or broadcast
3015  * destination MAC address.
3016  */
3017 static boolean_t
3018 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3019 {
3020 	mac_header_info_t hdr_info;
3021 
3022 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
3023 		return (B_FALSE);
3024 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
3025 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
3026 }
3027 
3028 /*
3029  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
3030  * "sender" points to the sender MAC client for outbound packets, and
3031  * is set to NULL for inbound packets.
3032  */
3033 void
3034 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
3035     mac_client_impl_t *sender)
3036 {
3037 	mac_promisc_impl_t *mpip;
3038 	mac_cb_t *mcb;
3039 	mblk_t *mp;
3040 	boolean_t is_mcast, is_sender;
3041 
3042 	MAC_PROMISC_WALKER_INC(mip);
3043 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3044 		is_mcast = mac_is_mcast(mip, mp);
3045 		/* send packet to interested callbacks */
3046 		for (mcb = mip->mi_promisc_list; mcb != NULL;
3047 		    mcb = mcb->mcb_nextp) {
3048 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3049 			is_sender = (mpip->mpi_mcip == sender);
3050 
3051 			if (is_sender && mpip->mpi_no_tx_loop)
3052 				/*
3053 				 * The sender doesn't want to receive
3054 				 * copies of the packets it sends.
3055 				 */
3056 				continue;
3057 
3058 			/*
3059 			 * For an ethernet MAC, don't displatch a multicast
3060 			 * packet to a non-PROMISC_ALL callbacks unless the VID
3061 			 * of the packet matches the VID of the client.
3062 			 */
3063 			if (is_mcast &&
3064 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
3065 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
3066 			    mac_ether_vid(mp)))
3067 				continue;
3068 
3069 			if (is_sender ||
3070 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3071 			    is_mcast)
3072 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3073 		}
3074 	}
3075 	MAC_PROMISC_WALKER_DCR(mip);
3076 }
3077 
3078 void
3079 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3080 {
3081 	mac_impl_t		*mip = mcip->mci_mip;
3082 	mac_promisc_impl_t	*mpip;
3083 	boolean_t		is_mcast;
3084 	mblk_t			*mp;
3085 	mac_cb_t		*mcb;
3086 
3087 	/*
3088 	 * The unicast packets for the MAC client still
3089 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3090 	 * promiscuous callbacks. The broadcast and multicast
3091 	 * packets were delivered from mac_rx().
3092 	 */
3093 	MAC_PROMISC_WALKER_INC(mip);
3094 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3095 		is_mcast = mac_is_mcast(mip, mp);
3096 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3097 		    mcb = mcb->mcb_nextp) {
3098 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3099 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3100 			    !is_mcast) {
3101 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3102 			}
3103 		}
3104 	}
3105 	MAC_PROMISC_WALKER_DCR(mip);
3106 }
3107 
3108 /*
3109  * Return the margin value currently assigned to the specified MAC instance.
3110  */
3111 void
3112 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3113 {
3114 	mac_impl_t *mip = (mac_impl_t *)mh;
3115 
3116 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3117 	*marginp = mip->mi_margin;
3118 	rw_exit(&(mip->mi_rw_lock));
3119 }
3120 
3121 /*
3122  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3123  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3124  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3125  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3126  * cannot disappear while we are accessing it.
3127  */
3128 typedef struct i_mac_info_state_s {
3129 	const char	*mi_name;
3130 	mac_info_t	*mi_infop;
3131 } i_mac_info_state_t;
3132 
3133 /*ARGSUSED*/
3134 static uint_t
3135 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3136 {
3137 	i_mac_info_state_t *statep = arg;
3138 	mac_impl_t *mip = (mac_impl_t *)val;
3139 
3140 	if (mip->mi_state_flags & MIS_DISABLED)
3141 		return (MH_WALK_CONTINUE);
3142 
3143 	if (strcmp(statep->mi_name,
3144 	    ddi_driver_name(mip->mi_dip)) != 0)
3145 		return (MH_WALK_CONTINUE);
3146 
3147 	statep->mi_infop = &mip->mi_info;
3148 	return (MH_WALK_TERMINATE);
3149 }
3150 
3151 boolean_t
3152 mac_info_get(const char *name, mac_info_t *minfop)
3153 {
3154 	i_mac_info_state_t state;
3155 
3156 	rw_enter(&i_mac_impl_lock, RW_READER);
3157 	state.mi_name = name;
3158 	state.mi_infop = NULL;
3159 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
3160 	if (state.mi_infop == NULL) {
3161 		rw_exit(&i_mac_impl_lock);
3162 		return (B_FALSE);
3163 	}
3164 	*minfop = *state.mi_infop;
3165 	rw_exit(&i_mac_impl_lock);
3166 	return (B_TRUE);
3167 }
3168 
3169 /*
3170  * To get the capabilities that MAC layer cares about, such as rings, factory
3171  * mac address, vnic or not, it should directly invoke this function
3172  */
3173 boolean_t
3174 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3175 {
3176 	mac_impl_t *mip = (mac_impl_t *)mh;
3177 
3178 	if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
3179 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
3180 	else
3181 		return (B_FALSE);
3182 }
3183 
3184 /*
3185  * Capability query function. If number of active mac clients is greater than
3186  * 1, only limited capabilities can be advertised to the caller no matter the
3187  * driver has certain capability or not. Else, we query the driver to get the
3188  * capability.
3189  */
3190 boolean_t
3191 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3192 {
3193 	mac_impl_t *mip = (mac_impl_t *)mh;
3194 
3195 	/*
3196 	 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
3197 	 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
3198 	 */
3199 	if (mip->mi_nactiveclients > 1) {
3200 		switch (cap) {
3201 		case MAC_CAPAB_NO_NATIVEVLAN:
3202 		case MAC_CAPAB_NO_ZCOPY:
3203 			return (B_TRUE);
3204 		case MAC_CAPAB_LEGACY:
3205 		case MAC_CAPAB_HCKSUM:
3206 			break;
3207 		default:
3208 			return (B_FALSE);
3209 		}
3210 	}
3211 
3212 	/* else get capab from driver */
3213 	return (i_mac_capab_get(mh, cap, cap_data));
3214 }
3215 
3216 boolean_t
3217 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
3218 {
3219 	mac_impl_t *mip = (mac_impl_t *)mh;
3220 
3221 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
3222 	    mip->mi_pdata));
3223 }
3224 
3225 mblk_t *
3226 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
3227     size_t extra_len)
3228 {
3229 	mac_impl_t *mip = (mac_impl_t *)mh;
3230 
3231 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap,
3232 	    mip->mi_pdata, payload, extra_len));
3233 }
3234 
3235 int
3236 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
3237 {
3238 	mac_impl_t *mip = (mac_impl_t *)mh;
3239 
3240 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
3241 	    mhip));
3242 }
3243 
3244 mblk_t *
3245 mac_header_cook(mac_handle_t mh, mblk_t *mp)
3246 {
3247 	mac_impl_t *mip = (mac_impl_t *)mh;
3248 
3249 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
3250 		if (DB_REF(mp) > 1) {
3251 			mblk_t *newmp = copymsg(mp);
3252 			if (newmp == NULL)
3253 				return (NULL);
3254 			freemsg(mp);
3255 			mp = newmp;
3256 		}
3257 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
3258 		    mip->mi_pdata));
3259 	}
3260 	return (mp);
3261 }
3262 
3263 mblk_t *
3264 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
3265 {
3266 	mac_impl_t *mip = (mac_impl_t *)mh;
3267 
3268 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
3269 		if (DB_REF(mp) > 1) {
3270 			mblk_t *newmp = copymsg(mp);
3271 			if (newmp == NULL)
3272 				return (NULL);
3273 			freemsg(mp);
3274 			mp = newmp;
3275 		}
3276 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
3277 		    mip->mi_pdata));
3278 	}
3279 	return (mp);
3280 }
3281 
3282 uint_t
3283 mac_addr_len(mac_handle_t mh)
3284 {
3285 	mac_impl_t *mip = (mac_impl_t *)mh;
3286 
3287 	return (mip->mi_type->mt_addr_length);
3288 }
3289 
3290 /* True if a MAC is a VNIC */
3291 boolean_t
3292 mac_is_vnic(mac_handle_t mh)
3293 {
3294 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
3295 }
3296 
3297 mac_handle_t
3298 mac_get_lower_mac_handle(mac_handle_t mh)
3299 {
3300 	mac_impl_t *mip = (mac_impl_t *)mh;
3301 
3302 	ASSERT(mac_is_vnic(mh));
3303 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
3304 }
3305 
3306 void
3307 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
3308     boolean_t is_user_flow)
3309 {
3310 	if (nmrp != NULL && cmrp != NULL) {
3311 		if (nmrp->mrp_mask & MRP_PRIORITY) {
3312 			if (nmrp->mrp_priority == MPL_RESET) {
3313 				cmrp->mrp_mask &= ~MRP_PRIORITY;
3314 				if (is_user_flow) {
3315 					cmrp->mrp_priority =
3316 					    MPL_SUBFLOW_DEFAULT;
3317 				} else {
3318 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
3319 				}
3320 			} else {
3321 				cmrp->mrp_mask |= MRP_PRIORITY;
3322 				cmrp->mrp_priority = nmrp->mrp_priority;
3323 			}
3324 		}
3325 		if (nmrp->mrp_mask & MRP_MAXBW) {
3326 			cmrp->mrp_maxbw = nmrp->mrp_maxbw;
3327 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL)
3328 				cmrp->mrp_mask &= ~MRP_MAXBW;
3329 			else
3330 				cmrp->mrp_mask |= MRP_MAXBW;
3331 		}
3332 		if (nmrp->mrp_mask & MRP_CPUS)
3333 			MAC_COPY_CPUS(nmrp, cmrp);
3334 	}
3335 }
3336 
3337 /*
3338  * i_mac_set_resources:
3339  *
3340  * This routine associates properties with the primary MAC client of
3341  * the specified MAC instance.
3342  * - Cache the properties in mac_impl_t
3343  * - Apply the properties to the primary MAC client if exists
3344  */
3345 int
3346 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3347 {
3348 	mac_impl_t		*mip = (mac_impl_t *)mh;
3349 	mac_client_impl_t	*mcip;
3350 	int			err = 0;
3351 	uint32_t		resmask, newresmask;
3352 	mac_resource_props_t	tmrp, umrp;
3353 
3354 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3355 
3356 	err = mac_validate_props(mrp);
3357 	if (err != 0)
3358 		return (err);
3359 
3360 	bcopy(&mip->mi_resource_props, &umrp, sizeof (mac_resource_props_t));
3361 	resmask = umrp.mrp_mask;
3362 	mac_update_resources(mrp, &umrp, B_FALSE);
3363 	newresmask = umrp.mrp_mask;
3364 
3365 	if (resmask == 0 && newresmask != 0) {
3366 		/*
3367 		 * Bandwidth, priority or cpu link properties configured,
3368 		 * must disable fastpath.
3369 		 */
3370 		if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0)
3371 			return (err);
3372 	}
3373 
3374 	/*
3375 	 * Since bind_cpu may be modified by mac_client_set_resources()
3376 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
3377 	 * This allows us to cache only user edits in mip.
3378 	 */
3379 	bcopy(mrp, &tmrp, sizeof (mac_resource_props_t));
3380 	mcip = mac_primary_client_handle(mip);
3381 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
3382 		err =
3383 		    mac_client_set_resources((mac_client_handle_t)mcip, &tmrp);
3384 	}
3385 
3386 	/* Only update the values if mac_client_set_resources succeeded */
3387 	if (err == 0) {
3388 		bcopy(&umrp, &mip->mi_resource_props,
3389 		    sizeof (mac_resource_props_t));
3390 		/*
3391 		 * If bankwidth, priority or cpu link properties cleared,
3392 		 * renable fastpath.
3393 		 */
3394 		if (resmask != 0 && newresmask == 0)
3395 			mac_fastpath_enable((mac_handle_t)mip);
3396 	} else if (resmask == 0 && newresmask != 0) {
3397 		mac_fastpath_enable((mac_handle_t)mip);
3398 	}
3399 	return (err);
3400 }
3401 
3402 int
3403 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3404 {
3405 	int err;
3406 
3407 	i_mac_perim_enter((mac_impl_t *)mh);
3408 	err = i_mac_set_resources(mh, mrp);
3409 	i_mac_perim_exit((mac_impl_t *)mh);
3410 	return (err);
3411 }
3412 
3413 /*
3414  * Get the properties cached for the specified MAC instance.
3415  */
3416 void
3417 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3418 {
3419 	mac_impl_t 		*mip = (mac_impl_t *)mh;
3420 	mac_client_impl_t	*mcip;
3421 
3422 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3423 		mcip = mac_primary_client_handle(mip);
3424 		if (mcip != NULL) {
3425 			mac_client_get_resources((mac_client_handle_t)mcip,
3426 			    mrp);
3427 			return;
3428 		}
3429 	}
3430 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
3431 }
3432 
3433 /*
3434  * Rename a mac client, its flow, and the kstat.
3435  */
3436 int
3437 mac_rename_primary(mac_handle_t mh, const char *new_name)
3438 {
3439 	mac_impl_t		*mip = (mac_impl_t *)mh;
3440 	mac_client_impl_t	*cur_clnt = NULL;
3441 	flow_entry_t		*fep;
3442 
3443 	i_mac_perim_enter(mip);
3444 
3445 	/*
3446 	 * VNICs: we need to change the sys flow name and
3447 	 * the associated flow kstat.
3448 	 */
3449 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3450 		ASSERT(new_name != NULL);
3451 		mac_rename_flow_names(mac_vnic_lower(mip), new_name);
3452 		goto done;
3453 	}
3454 	/*
3455 	 * This mac may itself be an aggr link, or it may have some client
3456 	 * which is an aggr port. For both cases, we need to change the
3457 	 * aggr port's mac client name, its flow name and the associated flow
3458 	 * kstat.
3459 	 */
3460 	if (mip->mi_state_flags & MIS_IS_AGGR) {
3461 		mac_capab_aggr_t aggr_cap;
3462 		mac_rename_fn_t rename_fn;
3463 		boolean_t ret;
3464 
3465 		ASSERT(new_name != NULL);
3466 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
3467 		    (void *)(&aggr_cap));
3468 		ASSERT(ret == B_TRUE);
3469 		rename_fn = aggr_cap.mca_rename_fn;
3470 		rename_fn(new_name, mip->mi_driver);
3471 		/*
3472 		 * The aggr's client name and kstat flow name will be
3473 		 * updated below, i.e. via mac_rename_flow_names.
3474 		 */
3475 	}
3476 
3477 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
3478 	    cur_clnt = cur_clnt->mci_client_next) {
3479 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
3480 			if (new_name != NULL) {
3481 				char *str_st = cur_clnt->mci_name;
3482 				char *str_del = strchr(str_st, '-');
3483 
3484 				ASSERT(str_del != NULL);
3485 				bzero(str_del + 1, MAXNAMELEN -
3486 				    (str_del - str_st + 1));
3487 				bcopy(new_name, str_del + 1,
3488 				    strlen(new_name));
3489 			}
3490 			fep = cur_clnt->mci_flent;
3491 			mac_rename_flow(fep, cur_clnt->mci_name);
3492 			break;
3493 		} else if (new_name != NULL &&
3494 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
3495 			mac_rename_flow_names(cur_clnt, new_name);
3496 			break;
3497 		}
3498 	}
3499 
3500 done:
3501 	i_mac_perim_exit(mip);
3502 	return (0);
3503 }
3504 
3505 /*
3506  * Rename the MAC client's flow names
3507  */
3508 static void
3509 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
3510 {
3511 	flow_entry_t	*flent;
3512 	uint16_t	vid;
3513 	char		flowname[MAXFLOWNAMELEN];
3514 	mac_impl_t	*mip = mcip->mci_mip;
3515 
3516 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3517 
3518 	/*
3519 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
3520 	 * see a self-consistent value for mci_name
3521 	 */
3522 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3523 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
3524 	rw_exit(&mip->mi_rw_lock);
3525 
3526 	mac_rename_flow(mcip->mci_flent, new_name);
3527 
3528 	if (mcip->mci_nflents == 1)
3529 		return;
3530 
3531 	/*
3532 	 * We have to rename all the others too, no stats to destroy for
3533 	 * these.
3534 	 */
3535 	for (flent = mcip->mci_flent_list; flent != NULL;
3536 	    flent = flent->fe_client_next) {
3537 		if (flent != mcip->mci_flent) {
3538 			vid = i_mac_flow_vid(flent);
3539 			(void) sprintf(flowname, "%s%u", new_name, vid);
3540 			mac_flow_set_name(flent, flowname);
3541 		}
3542 	}
3543 }
3544 
3545 
3546 /*
3547  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
3548  * defined for the specified MAC client.
3549  */
3550 static void
3551 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3552 {
3553 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3554 	/*
3555 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3556 	 * using mi_rw_lock
3557 	 */
3558 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3559 
3560 	/* Add it to the head */
3561 	flent->fe_client_next = mcip->mci_flent_list;
3562 	mcip->mci_flent_list = flent;
3563 	mcip->mci_nflents++;
3564 
3565 	/*
3566 	 * Keep track of the number of non-zero VIDs addresses per MAC
3567 	 * client to avoid figuring it out in the data-path.
3568 	 */
3569 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3570 		mcip->mci_nvids++;
3571 
3572 	rw_exit(&mcip->mci_rw_lock);
3573 }
3574 
3575 /*
3576  * Remove a flow entry from the MAC client's list.
3577  */
3578 static void
3579 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3580 {
3581 	flow_entry_t	*fe = mcip->mci_flent_list;
3582 	flow_entry_t	*prev_fe = NULL;
3583 
3584 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3585 	/*
3586 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3587 	 * using mci_rw_lock
3588 	 */
3589 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3590 	while ((fe != NULL) && (fe != flent)) {
3591 		prev_fe = fe;
3592 		fe = fe->fe_client_next;
3593 	}
3594 
3595 	ASSERT(fe != NULL);
3596 	if (prev_fe == NULL) {
3597 		/* Deleting the first node */
3598 		mcip->mci_flent_list = fe->fe_client_next;
3599 	} else {
3600 		prev_fe->fe_client_next = fe->fe_client_next;
3601 	}
3602 	mcip->mci_nflents--;
3603 
3604 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3605 		mcip->mci_nvids--;
3606 
3607 	rw_exit(&mcip->mci_rw_lock);
3608 }
3609 
3610 /*
3611  * Check if the given VID belongs to this MAC client.
3612  */
3613 boolean_t
3614 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
3615 {
3616 	flow_entry_t	*flent;
3617 	uint16_t	mci_vid;
3618 
3619 	/* The mci_flent_list is protected by mci_rw_lock */
3620 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3621 	for (flent = mcip->mci_flent_list; flent != NULL;
3622 	    flent = flent->fe_client_next) {
3623 		mci_vid = i_mac_flow_vid(flent);
3624 		if (vid == mci_vid) {
3625 			rw_exit(&mcip->mci_rw_lock);
3626 			return (B_TRUE);
3627 		}
3628 	}
3629 	rw_exit(&mcip->mci_rw_lock);
3630 	return (B_FALSE);
3631 }
3632 
3633 /*
3634  * Get the flow entry for the specified <MAC addr, VID> tuple.
3635  */
3636 static flow_entry_t *
3637 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
3638 {
3639 	mac_address_t *map = mcip->mci_unicast;
3640 	flow_entry_t *flent;
3641 	uint16_t vid;
3642 	flow_desc_t flow_desc;
3643 
3644 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3645 
3646 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
3647 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
3648 		return (NULL);
3649 
3650 	for (flent = mcip->mci_flent_list; flent != NULL;
3651 	    flent = flent->fe_client_next) {
3652 		vid = i_mac_flow_vid(flent);
3653 		if (vid == muip->mui_vid) {
3654 			return (flent);
3655 		}
3656 	}
3657 
3658 	return (NULL);
3659 }
3660 
3661 /*
3662  * Since mci_flent has the SRSs, when we want to remove it, we replace
3663  * the flow_desc_t in mci_flent with that of an existing flent and then
3664  * remove that flent instead of mci_flent.
3665  */
3666 static flow_entry_t *
3667 mac_client_swap_mciflent(mac_client_impl_t *mcip)
3668 {
3669 	flow_entry_t	*flent = mcip->mci_flent;
3670 	flow_tab_t	*ft = flent->fe_flow_tab;
3671 	flow_entry_t	*flent1;
3672 	flow_desc_t	fl_desc;
3673 	char		fl_name[MAXFLOWNAMELEN];
3674 	int		err;
3675 
3676 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3677 	ASSERT(mcip->mci_nflents > 1);
3678 
3679 	/* get the next flent following the primary flent  */
3680 	flent1 = mcip->mci_flent_list->fe_client_next;
3681 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
3682 
3683 	/*
3684 	 * Remove the flent from the flow table before updating the
3685 	 * flow descriptor as the hash depends on the flow descriptor.
3686 	 * This also helps incoming packet classification avoid having
3687 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
3688 	 * flow table is done under the fe_lock so that log or stat functions
3689 	 * see a self-consistent fe_flow_desc. The name and desc are specific
3690 	 * to a flow, the rest are shared by all the clients, including
3691 	 * resource control etc.
3692 	 */
3693 	mac_flow_remove(ft, flent, B_TRUE);
3694 	mac_flow_remove(ft, flent1, B_TRUE);
3695 
3696 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
3697 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
3698 
3699 	/* update the primary flow entry */
3700 	mutex_enter(&flent->fe_lock);
3701 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
3702 	    sizeof (flow_desc_t));
3703 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
3704 	mutex_exit(&flent->fe_lock);
3705 
3706 	/* update the flow entry that is to be freed */
3707 	mutex_enter(&flent1->fe_lock);
3708 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
3709 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
3710 	mutex_exit(&flent1->fe_lock);
3711 
3712 	/* now reinsert the flow entries in the table */
3713 	err = mac_flow_add(ft, flent);
3714 	ASSERT(err == 0);
3715 
3716 	err = mac_flow_add(ft, flent1);
3717 	ASSERT(err == 0);
3718 
3719 	return (flent1);
3720 }
3721 
3722 /*
3723  * Return whether there is only one flow entry associated with this
3724  * MAC client.
3725  */
3726 static boolean_t
3727 mac_client_single_rcvr(mac_client_impl_t *mcip)
3728 {
3729 	return (mcip->mci_nflents == 1);
3730 }
3731 
3732 int
3733 mac_validate_props(mac_resource_props_t *mrp)
3734 {
3735 	if (mrp == NULL)
3736 		return (0);
3737 
3738 	if (mrp->mrp_mask & MRP_PRIORITY) {
3739 		mac_priority_level_t	pri = mrp->mrp_priority;
3740 
3741 		if (pri < MPL_LOW || pri > MPL_RESET)
3742 			return (EINVAL);
3743 	}
3744 
3745 	if (mrp->mrp_mask & MRP_MAXBW) {
3746 		uint64_t maxbw = mrp->mrp_maxbw;
3747 
3748 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
3749 			return (EINVAL);
3750 	}
3751 	if (mrp->mrp_mask & MRP_CPUS) {
3752 		int i, j;
3753 		mac_cpu_mode_t	fanout;
3754 
3755 		if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT)
3756 			return (EINVAL);
3757 
3758 		for (i = 0; i < mrp->mrp_ncpus; i++) {
3759 			for (j = 0; j < mrp->mrp_ncpus; j++) {
3760 				if (i != j &&
3761 				    mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
3762 					return (EINVAL);
3763 				}
3764 			}
3765 		}
3766 
3767 		for (i = 0; i < mrp->mrp_ncpus; i++) {
3768 			cpu_t *cp;
3769 			int rv;
3770 
3771 			mutex_enter(&cpu_lock);
3772 			cp = cpu_get(mrp->mrp_cpu[i]);
3773 			if (cp != NULL)
3774 				rv = cpu_is_online(cp);
3775 			else
3776 				rv = 0;
3777 			mutex_exit(&cpu_lock);
3778 			if (rv == 0)
3779 				return (EINVAL);
3780 		}
3781 
3782 		fanout = mrp->mrp_fanout_mode;
3783 		if (fanout < 0 || fanout > MCM_CPUS)
3784 			return (EINVAL);
3785 	}
3786 	return (0);
3787 }
3788 
3789 /*
3790  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
3791  * underlying physical link is down. This is to allow MAC clients to
3792  * communicate with other clients.
3793  */
3794 void
3795 mac_virtual_link_update(mac_impl_t *mip)
3796 {
3797 	if (mip->mi_linkstate != LINK_STATE_UP)
3798 		i_mac_notify(mip, MAC_NOTE_LINK);
3799 }
3800 
3801 /*
3802  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
3803  * mac handle in the client.
3804  */
3805 void
3806 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh)
3807 {
3808 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3809 
3810 	mcip->mci_upper_mip = (mac_impl_t *)mh;
3811 }
3812 
3813 /*
3814  * Mark the mac as being used exclusively by the single mac client that is
3815  * doing some control operation on this mac. No further opens of this mac
3816  * will be allowed until this client calls mac_unmark_exclusive. The mac
3817  * client calling this function must already be in the mac perimeter
3818  */
3819 int
3820 mac_mark_exclusive(mac_handle_t mh)
3821 {
3822 	mac_impl_t	*mip = (mac_impl_t *)mh;
3823 
3824 	ASSERT(MAC_PERIM_HELD(mh));
3825 	/*
3826 	 * Look up its entry in the global hash table.
3827 	 */
3828 	rw_enter(&i_mac_impl_lock, RW_WRITER);
3829 	if (mip->mi_state_flags & MIS_DISABLED) {
3830 		rw_exit(&i_mac_impl_lock);
3831 		return (ENOENT);
3832 	}
3833 
3834 	/*
3835 	 * A reference to mac is held even if the link is not plumbed.
3836 	 * In i_dls_link_create() we open the MAC interface and hold the
3837 	 * reference. There is an additional reference for the mac_open
3838 	 * done in acquiring the mac perimeter
3839 	 */
3840 	if (mip->mi_ref != 2) {
3841 		rw_exit(&i_mac_impl_lock);
3842 		return (EBUSY);
3843 	}
3844 
3845 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
3846 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
3847 	rw_exit(&i_mac_impl_lock);
3848 	return (0);
3849 }
3850 
3851 void
3852 mac_unmark_exclusive(mac_handle_t mh)
3853 {
3854 	mac_impl_t	*mip = (mac_impl_t *)mh;
3855 
3856 	ASSERT(MAC_PERIM_HELD(mh));
3857 
3858 	rw_enter(&i_mac_impl_lock, RW_WRITER);
3859 	/* 1 for the creation and another for the perimeter */
3860 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
3861 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
3862 	rw_exit(&i_mac_impl_lock);
3863 }
3864 
3865 /*
3866  * Set the MTU for the specified device. The function returns EBUSY if
3867  * another MAC client prevents the caller to become the exclusive client.
3868  * Returns EAGAIN if the client is started.
3869  */
3870 int
3871 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
3872 {
3873 	mac_impl_t *mip = (mac_impl_t *)mh;
3874 	uint_t old_mtu;
3875 	int rv;
3876 	boolean_t exclusive = B_FALSE;
3877 
3878 	i_mac_perim_enter(mip);
3879 
3880 	if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 ||
3881 	    (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) {
3882 		rv = ENOTSUP;
3883 		goto bail;
3884 	}
3885 
3886 	if ((rv = mac_mark_exclusive(mh)) != 0)
3887 		goto bail;
3888 	exclusive = B_TRUE;
3889 
3890 	if (mip->mi_active > 0) {
3891 		/*
3892 		 * The MAC instance is started, for example due to the
3893 		 * presence of a promiscuous clients. Fail the operation
3894 		 * since the MAC's MTU cannot be changed while the NIC
3895 		 * is started.
3896 		 */
3897 		rv = EAGAIN;
3898 		goto bail;
3899 	}
3900 
3901 	mac_sdu_get(mh, NULL, &old_mtu);
3902 
3903 	if (old_mtu != new_mtu) {
3904 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3905 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
3906 	}
3907 
3908 bail:
3909 	if (exclusive)
3910 		mac_unmark_exclusive(mh);
3911 	i_mac_perim_exit(mip);
3912 
3913 	if (rv == 0 && old_mtu_arg != NULL)
3914 		*old_mtu_arg = old_mtu;
3915 	return (rv);
3916 }
3917 
3918 void
3919 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
3920     uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name)
3921 {
3922 	mac_impl_t *mip = (mac_impl_t *)mh;
3923 	mac_grp_client_t *mcip;
3924 	uint_t i = 0, index = 0;
3925 
3926 	/* Revisit when we implement fully dynamic group allocation */
3927 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
3928 
3929 	rw_enter(&mip->mi_rw_lock, RW_READER);
3930 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
3931 	*type = mip->mi_rx_groups[grp_index].mrg_type;
3932 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
3933 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
3934 	    mcip = mcip->mgc_next) {
3935 		int name_len = strlen(mcip->mgc_client->mci_name);
3936 
3937 		/*
3938 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
3939 		 * names.
3940 		 * XXXX Formating the client name string needs to be moved
3941 		 * to user land when fixing the size of dhi_clnts in
3942 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
3943 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
3944 		 */
3945 		if (index + name_len >= MAXCLIENTNAMELEN) {
3946 			index = MAXCLIENTNAMELEN;
3947 			break;
3948 		}
3949 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
3950 		    name_len);
3951 		index += name_len;
3952 		clnts_name[index++] = ',';
3953 		i++;
3954 	}
3955 
3956 	/* Get rid of the last , */
3957 	if (index > 0)
3958 		clnts_name[index - 1] = '\0';
3959 	*n_clnts = i;
3960 	rw_exit(&mip->mi_rw_lock);
3961 }
3962 
3963 uint_t
3964 mac_hwgrp_num(mac_handle_t mh)
3965 {
3966 	mac_impl_t *mip = (mac_impl_t *)mh;
3967 
3968 	return (mip->mi_rx_group_count);
3969 }
3970