1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2020 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 #define MACTYPE_KMODDIR "mac" 347 #define MACTYPE_HASHSZ 67 348 static mod_hash_t *i_mactype_hash; 349 /* 350 * i_mactype_lock synchronizes threads that obtain references to mactype_t 351 * structures through i_mactype_getplugin(). 352 */ 353 static kmutex_t i_mactype_lock; 354 355 /* 356 * mac_tx_percpu_cnt 357 * 358 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 359 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 360 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 361 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 362 */ 363 int mac_tx_percpu_cnt; 364 int mac_tx_percpu_cnt_max = 128; 365 366 /* 367 * Call back functions for the bridge module. These are guaranteed to be valid 368 * when holding a reference on a link or when holding mip->mi_bridge_lock and 369 * mi_bridge_link is non-NULL. 370 */ 371 mac_bridge_tx_t mac_bridge_tx_cb; 372 mac_bridge_rx_t mac_bridge_rx_cb; 373 mac_bridge_ref_t mac_bridge_ref_cb; 374 mac_bridge_ls_t mac_bridge_ls_cb; 375 376 static int i_mac_constructor(void *, void *, int); 377 static void i_mac_destructor(void *, void *); 378 static int i_mac_ring_ctor(void *, void *, int); 379 static void i_mac_ring_dtor(void *, void *); 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 381 void mac_tx_client_flush(mac_client_impl_t *); 382 void mac_tx_client_block(mac_client_impl_t *); 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 384 static int mac_start_group_and_rings(mac_group_t *); 385 static void mac_stop_group_and_rings(mac_group_t *); 386 static void mac_pool_event_cb(pool_event_t, int, void *); 387 388 typedef struct netinfo_s { 389 list_node_t ni_link; 390 void *ni_record; 391 int ni_size; 392 int ni_type; 393 } netinfo_t; 394 395 /* 396 * Module initialization functions. 397 */ 398 399 void 400 mac_init(void) 401 { 402 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 403 boot_max_ncpus); 404 405 /* Upper bound is mac_tx_percpu_cnt_max */ 406 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 407 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 408 409 if (mac_tx_percpu_cnt < 1) { 410 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 411 mac_tx_percpu_cnt = 1; 412 } 413 414 ASSERT(mac_tx_percpu_cnt >= 1); 415 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 416 /* 417 * Make it of the form 2**N - 1 in the range 418 * [0 .. mac_tx_percpu_cnt_max - 1] 419 */ 420 mac_tx_percpu_cnt--; 421 422 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 423 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 424 NULL, NULL, NULL, 0); 425 ASSERT(i_mac_impl_cachep != NULL); 426 427 mac_ring_cache = kmem_cache_create("mac_ring_cache", 428 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 429 NULL, NULL, 0); 430 ASSERT(mac_ring_cache != NULL); 431 432 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 433 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 435 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 436 437 mac_flow_init(); 438 mac_soft_ring_init(); 439 mac_bcast_init(); 440 mac_client_init(); 441 442 i_mac_impl_count = 0; 443 444 i_mactype_hash = mod_hash_create_extended("mactype_hash", 445 MACTYPE_HASHSZ, 446 mod_hash_null_keydtor, mod_hash_null_valdtor, 447 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 448 449 /* 450 * Allocate an id space to manage minor numbers. The range of the 451 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 452 * leaves half of the 32-bit minors available for driver private use. 453 */ 454 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 455 MAC_PRIVATE_MINOR-1); 456 ASSERT(minor_ids != NULL); 457 minor_count = 0; 458 459 /* Let's default to 20 seconds */ 460 mac_logging_interval = 20; 461 mac_flow_log_enable = B_FALSE; 462 mac_link_log_enable = B_FALSE; 463 mac_logging_timer = NULL; 464 465 /* Register to be notified of noteworthy pools events */ 466 mac_pool_event_reg.pec_func = mac_pool_event_cb; 467 mac_pool_event_reg.pec_arg = NULL; 468 pool_event_cb_register(&mac_pool_event_reg); 469 } 470 471 int 472 mac_fini(void) 473 { 474 475 if (i_mac_impl_count > 0 || minor_count > 0) 476 return (EBUSY); 477 478 pool_event_cb_unregister(&mac_pool_event_reg); 479 480 id_space_destroy(minor_ids); 481 mac_flow_fini(); 482 483 mod_hash_destroy_hash(i_mac_impl_hash); 484 rw_destroy(&i_mac_impl_lock); 485 486 mac_client_fini(); 487 kmem_cache_destroy(mac_ring_cache); 488 489 mod_hash_destroy_hash(i_mactype_hash); 490 mac_soft_ring_finish(); 491 492 493 return (0); 494 } 495 496 /* 497 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 498 * (e.g. softmac) may pass in a NULL ops argument. 499 */ 500 void 501 mac_init_ops(struct dev_ops *ops, const char *name) 502 { 503 major_t major = ddi_name_to_major((char *)name); 504 505 /* 506 * By returning on error below, we are not letting the driver continue 507 * in an undefined context. The mac_register() function will faill if 508 * DN_GLDV3_DRIVER isn't set. 509 */ 510 if (major == DDI_MAJOR_T_NONE) 511 return; 512 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 513 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 514 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 515 if (ops != NULL) 516 dld_init_ops(ops, name); 517 } 518 519 void 520 mac_fini_ops(struct dev_ops *ops) 521 { 522 dld_fini_ops(ops); 523 } 524 525 /*ARGSUSED*/ 526 static int 527 i_mac_constructor(void *buf, void *arg, int kmflag) 528 { 529 mac_impl_t *mip = buf; 530 531 bzero(buf, sizeof (mac_impl_t)); 532 533 mip->mi_linkstate = LINK_STATE_UNKNOWN; 534 535 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 536 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 537 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 538 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 539 540 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 541 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 542 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 543 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 544 545 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 546 547 return (0); 548 } 549 550 /*ARGSUSED*/ 551 static void 552 i_mac_destructor(void *buf, void *arg) 553 { 554 mac_impl_t *mip = buf; 555 mac_cb_info_t *mcbi; 556 557 ASSERT(mip->mi_ref == 0); 558 ASSERT(mip->mi_active == 0); 559 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 560 ASSERT(mip->mi_devpromisc == 0); 561 ASSERT(mip->mi_ksp == NULL); 562 ASSERT(mip->mi_kstat_count == 0); 563 ASSERT(mip->mi_nclients == 0); 564 ASSERT(mip->mi_nactiveclients == 0); 565 ASSERT(mip->mi_single_active_client == NULL); 566 ASSERT(mip->mi_state_flags == 0); 567 ASSERT(mip->mi_factory_addr == NULL); 568 ASSERT(mip->mi_factory_addr_num == 0); 569 ASSERT(mip->mi_default_tx_ring == NULL); 570 571 mcbi = &mip->mi_notify_cb_info; 572 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 573 ASSERT(mip->mi_notify_bits == 0); 574 ASSERT(mip->mi_notify_thread == NULL); 575 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 576 mcbi->mcbi_lockp = NULL; 577 578 mcbi = &mip->mi_promisc_cb_info; 579 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 580 ASSERT(mip->mi_promisc_list == NULL); 581 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 582 mcbi->mcbi_lockp = NULL; 583 584 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 585 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 586 587 rw_destroy(&mip->mi_rw_lock); 588 589 mutex_destroy(&mip->mi_promisc_lock); 590 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 591 mutex_destroy(&mip->mi_notify_lock); 592 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 593 mutex_destroy(&mip->mi_ring_lock); 594 595 ASSERT(mip->mi_bridge_link == NULL); 596 } 597 598 /* ARGSUSED */ 599 static int 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 601 { 602 mac_ring_t *ring = (mac_ring_t *)buf; 603 604 bzero(ring, sizeof (mac_ring_t)); 605 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 606 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 607 ring->mr_state = MR_FREE; 608 return (0); 609 } 610 611 /* ARGSUSED */ 612 static void 613 i_mac_ring_dtor(void *buf, void *arg) 614 { 615 mac_ring_t *ring = (mac_ring_t *)buf; 616 617 cv_destroy(&ring->mr_cv); 618 mutex_destroy(&ring->mr_lock); 619 } 620 621 /* 622 * Common functions to do mac callback addition and deletion. Currently this is 623 * used by promisc callbacks and notify callbacks. List addition and deletion 624 * need to take care of list walkers. List walkers in general, can't hold list 625 * locks and make upcall callbacks due to potential lock order and recursive 626 * reentry issues. Instead list walkers increment the list walker count to mark 627 * the presence of a walker thread. Addition can be carefully done to ensure 628 * that the list walker always sees either the old list or the new list. 629 * However the deletion can't be done while the walker is active, instead the 630 * deleting thread simply marks the entry as logically deleted. The last walker 631 * physically deletes and frees up the logically deleted entries when the walk 632 * is complete. 633 */ 634 void 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 636 mac_cb_t *mcb_elem) 637 { 638 mac_cb_t *p; 639 mac_cb_t **pp; 640 641 /* Verify it is not already in the list */ 642 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 643 if (p == mcb_elem) 644 break; 645 } 646 VERIFY(p == NULL); 647 648 /* 649 * Add it to the head of the callback list. The membar ensures that 650 * the following list pointer manipulations reach global visibility 651 * in exactly the program order below. 652 */ 653 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 654 655 mcb_elem->mcb_nextp = *mcb_head; 656 membar_producer(); 657 *mcb_head = mcb_elem; 658 } 659 660 /* 661 * Mark the entry as logically deleted. If there aren't any walkers unlink 662 * from the list. In either case return the corresponding status. 663 */ 664 boolean_t 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 666 mac_cb_t *mcb_elem) 667 { 668 mac_cb_t *p; 669 mac_cb_t **pp; 670 671 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 672 /* 673 * Search the callback list for the entry to be removed 674 */ 675 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 676 if (p == mcb_elem) 677 break; 678 } 679 VERIFY(p != NULL); 680 681 /* 682 * If there are walkers just mark it as deleted and the last walker 683 * will remove from the list and free it. 684 */ 685 if (mcbi->mcbi_walker_cnt != 0) { 686 p->mcb_flags |= MCB_CONDEMNED; 687 mcbi->mcbi_del_cnt++; 688 return (B_FALSE); 689 } 690 691 ASSERT(mcbi->mcbi_del_cnt == 0); 692 *pp = p->mcb_nextp; 693 p->mcb_nextp = NULL; 694 return (B_TRUE); 695 } 696 697 /* 698 * Wait for all pending callback removals to be completed 699 */ 700 void 701 mac_callback_remove_wait(mac_cb_info_t *mcbi) 702 { 703 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 704 while (mcbi->mcbi_del_cnt != 0) { 705 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 706 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 707 } 708 } 709 710 /* 711 * The last mac callback walker does the cleanup. Walk the list and unlik 712 * all the logically deleted entries and construct a temporary list of 713 * removed entries. Return the list of removed entries to the caller. 714 */ 715 mac_cb_t * 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 717 { 718 mac_cb_t *p; 719 mac_cb_t **pp; 720 mac_cb_t *rmlist = NULL; /* List of removed elements */ 721 int cnt = 0; 722 723 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 724 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 725 726 pp = mcb_head; 727 while (*pp != NULL) { 728 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 729 p = *pp; 730 *pp = p->mcb_nextp; 731 p->mcb_nextp = rmlist; 732 rmlist = p; 733 cnt++; 734 continue; 735 } 736 pp = &(*pp)->mcb_nextp; 737 } 738 739 ASSERT(mcbi->mcbi_del_cnt == cnt); 740 mcbi->mcbi_del_cnt = 0; 741 return (rmlist); 742 } 743 744 boolean_t 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 746 { 747 mac_cb_t *mcb; 748 749 /* Verify it is not already in the list */ 750 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 751 if (mcb == mcb_elem) 752 return (B_TRUE); 753 } 754 755 return (B_FALSE); 756 } 757 758 boolean_t 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 760 { 761 boolean_t found; 762 763 mutex_enter(mcbi->mcbi_lockp); 764 found = mac_callback_lookup(mcb_headp, mcb_elem); 765 mutex_exit(mcbi->mcbi_lockp); 766 767 return (found); 768 } 769 770 /* Free the list of removed callbacks */ 771 void 772 mac_callback_free(mac_cb_t *rmlist) 773 { 774 mac_cb_t *mcb; 775 mac_cb_t *mcb_next; 776 777 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 778 mcb_next = mcb->mcb_nextp; 779 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 780 } 781 } 782 783 /* 784 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 785 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 786 * is only a single shared total walker count, and an entry can't be physically 787 * unlinked if a walker is active on either list. The last walker does this 788 * cleanup of logically deleted entries. 789 */ 790 void 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 792 { 793 mac_cb_t *rmlist; 794 mac_cb_t *mcb; 795 mac_cb_t *mcb_next; 796 mac_promisc_impl_t *mpip; 797 798 /* 799 * Construct a temporary list of deleted callbacks by walking the 800 * the mi_promisc_list. Then for each entry in the temporary list, 801 * remove it from the mci_promisc_list and free the entry. 802 */ 803 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 804 &mip->mi_promisc_list); 805 806 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 807 mcb_next = mcb->mcb_nextp; 808 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 809 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 810 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 811 mcb->mcb_flags = 0; 812 mcb->mcb_nextp = NULL; 813 kmem_cache_free(mac_promisc_impl_cache, mpip); 814 } 815 } 816 817 void 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 819 { 820 mac_cb_info_t *mcbi; 821 822 /* 823 * Signal the notify thread even after mi_ref has become zero and 824 * mi_disabled is set. The synchronization with the notify thread 825 * happens in mac_unregister and that implies the driver must make 826 * sure it is single-threaded (with respect to mac calls) and that 827 * all pending mac calls have returned before it calls mac_unregister 828 */ 829 rw_enter(&i_mac_impl_lock, RW_READER); 830 if (mip->mi_state_flags & MIS_DISABLED) 831 goto exit; 832 833 /* 834 * Guard against incorrect notifications. (Running a newer 835 * mac client against an older implementation?) 836 */ 837 if (type >= MAC_NNOTE) 838 goto exit; 839 840 mcbi = &mip->mi_notify_cb_info; 841 mutex_enter(mcbi->mcbi_lockp); 842 mip->mi_notify_bits |= (1 << type); 843 cv_broadcast(&mcbi->mcbi_cv); 844 mutex_exit(mcbi->mcbi_lockp); 845 846 exit: 847 rw_exit(&i_mac_impl_lock); 848 } 849 850 /* 851 * Mac serialization primitives. Please see the block comment at the 852 * top of the file. 853 */ 854 void 855 i_mac_perim_enter(mac_impl_t *mip) 856 { 857 mac_client_impl_t *mcip; 858 859 if (mip->mi_state_flags & MIS_IS_VNIC) { 860 /* 861 * This is a VNIC. Return the lower mac since that is what 862 * we want to serialize on. 863 */ 864 mcip = mac_vnic_lower(mip); 865 mip = mcip->mci_mip; 866 } 867 868 mutex_enter(&mip->mi_perim_lock); 869 if (mip->mi_perim_owner == curthread) { 870 mip->mi_perim_ocnt++; 871 mutex_exit(&mip->mi_perim_lock); 872 return; 873 } 874 875 while (mip->mi_perim_owner != NULL) 876 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 877 878 mip->mi_perim_owner = curthread; 879 ASSERT(mip->mi_perim_ocnt == 0); 880 mip->mi_perim_ocnt++; 881 #ifdef DEBUG 882 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 883 MAC_PERIM_STACK_DEPTH); 884 #endif 885 mutex_exit(&mip->mi_perim_lock); 886 } 887 888 int 889 i_mac_perim_enter_nowait(mac_impl_t *mip) 890 { 891 /* 892 * The vnic is a special case, since the serialization is done based 893 * on the lower mac. If the lower mac is busy, it does not imply the 894 * vnic can't be unregistered. But in the case of other drivers, 895 * a busy perimeter or open mac handles implies that the mac is busy 896 * and can't be unregistered. 897 */ 898 if (mip->mi_state_flags & MIS_IS_VNIC) { 899 i_mac_perim_enter(mip); 900 return (0); 901 } 902 903 mutex_enter(&mip->mi_perim_lock); 904 if (mip->mi_perim_owner != NULL) { 905 mutex_exit(&mip->mi_perim_lock); 906 return (EBUSY); 907 } 908 ASSERT(mip->mi_perim_ocnt == 0); 909 mip->mi_perim_owner = curthread; 910 mip->mi_perim_ocnt++; 911 mutex_exit(&mip->mi_perim_lock); 912 913 return (0); 914 } 915 916 void 917 i_mac_perim_exit(mac_impl_t *mip) 918 { 919 mac_client_impl_t *mcip; 920 921 if (mip->mi_state_flags & MIS_IS_VNIC) { 922 /* 923 * This is a VNIC. Return the lower mac since that is what 924 * we want to serialize on. 925 */ 926 mcip = mac_vnic_lower(mip); 927 mip = mcip->mci_mip; 928 } 929 930 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 931 932 mutex_enter(&mip->mi_perim_lock); 933 if (--mip->mi_perim_ocnt == 0) { 934 mip->mi_perim_owner = NULL; 935 cv_signal(&mip->mi_perim_cv); 936 } 937 mutex_exit(&mip->mi_perim_lock); 938 } 939 940 /* 941 * Returns whether the current thread holds the mac perimeter. Used in making 942 * assertions. 943 */ 944 boolean_t 945 mac_perim_held(mac_handle_t mh) 946 { 947 mac_impl_t *mip = (mac_impl_t *)mh; 948 mac_client_impl_t *mcip; 949 950 if (mip->mi_state_flags & MIS_IS_VNIC) { 951 /* 952 * This is a VNIC. Return the lower mac since that is what 953 * we want to serialize on. 954 */ 955 mcip = mac_vnic_lower(mip); 956 mip = mcip->mci_mip; 957 } 958 return (mip->mi_perim_owner == curthread); 959 } 960 961 /* 962 * mac client interfaces to enter the mac perimeter of a mac end point, given 963 * its mac handle, or macname or linkid. 964 */ 965 void 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 967 { 968 mac_impl_t *mip = (mac_impl_t *)mh; 969 970 i_mac_perim_enter(mip); 971 /* 972 * The mac_perim_handle_t returned encodes the 'mip' and whether a 973 * mac_open has been done internally while entering the perimeter. 974 * This information is used in mac_perim_exit 975 */ 976 MAC_ENCODE_MPH(*mphp, mip, 0); 977 } 978 979 int 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 981 { 982 int err; 983 mac_handle_t mh; 984 985 if ((err = mac_open(name, &mh)) != 0) 986 return (err); 987 988 mac_perim_enter_by_mh(mh, mphp); 989 MAC_ENCODE_MPH(*mphp, mh, 1); 990 return (0); 991 } 992 993 int 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 995 { 996 int err; 997 mac_handle_t mh; 998 999 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1000 return (err); 1001 1002 mac_perim_enter_by_mh(mh, mphp); 1003 MAC_ENCODE_MPH(*mphp, mh, 1); 1004 return (0); 1005 } 1006 1007 void 1008 mac_perim_exit(mac_perim_handle_t mph) 1009 { 1010 mac_impl_t *mip; 1011 boolean_t need_close; 1012 1013 MAC_DECODE_MPH(mph, mip, need_close); 1014 i_mac_perim_exit(mip); 1015 if (need_close) 1016 mac_close((mac_handle_t)mip); 1017 } 1018 1019 int 1020 mac_hold(const char *macname, mac_impl_t **pmip) 1021 { 1022 mac_impl_t *mip; 1023 int err; 1024 1025 /* 1026 * Check the device name length to make sure it won't overflow our 1027 * buffer. 1028 */ 1029 if (strlen(macname) >= MAXNAMELEN) 1030 return (EINVAL); 1031 1032 /* 1033 * Look up its entry in the global hash table. 1034 */ 1035 rw_enter(&i_mac_impl_lock, RW_WRITER); 1036 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1037 (mod_hash_val_t *)&mip); 1038 1039 if (err != 0) { 1040 rw_exit(&i_mac_impl_lock); 1041 return (ENOENT); 1042 } 1043 1044 if (mip->mi_state_flags & MIS_DISABLED) { 1045 rw_exit(&i_mac_impl_lock); 1046 return (ENOENT); 1047 } 1048 1049 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1050 rw_exit(&i_mac_impl_lock); 1051 return (EBUSY); 1052 } 1053 1054 mip->mi_ref++; 1055 rw_exit(&i_mac_impl_lock); 1056 1057 *pmip = mip; 1058 return (0); 1059 } 1060 1061 void 1062 mac_rele(mac_impl_t *mip) 1063 { 1064 rw_enter(&i_mac_impl_lock, RW_WRITER); 1065 ASSERT(mip->mi_ref != 0); 1066 if (--mip->mi_ref == 0) { 1067 ASSERT(mip->mi_nactiveclients == 0 && 1068 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1069 } 1070 rw_exit(&i_mac_impl_lock); 1071 } 1072 1073 /* 1074 * Private GLDv3 function to start a MAC instance. 1075 */ 1076 int 1077 mac_start(mac_handle_t mh) 1078 { 1079 mac_impl_t *mip = (mac_impl_t *)mh; 1080 int err = 0; 1081 mac_group_t *defgrp; 1082 1083 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1084 ASSERT(mip->mi_start != NULL); 1085 1086 /* 1087 * Check whether the device is already started. 1088 */ 1089 if (mip->mi_active++ == 0) { 1090 mac_ring_t *ring = NULL; 1091 1092 /* 1093 * Start the device. 1094 */ 1095 err = mip->mi_start(mip->mi_driver); 1096 if (err != 0) { 1097 mip->mi_active--; 1098 return (err); 1099 } 1100 1101 /* 1102 * Start the default tx ring. 1103 */ 1104 if (mip->mi_default_tx_ring != NULL) { 1105 1106 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1107 if (ring->mr_state != MR_INUSE) { 1108 err = mac_start_ring(ring); 1109 if (err != 0) { 1110 mip->mi_active--; 1111 return (err); 1112 } 1113 } 1114 } 1115 1116 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1117 /* 1118 * Start the default group which is responsible 1119 * for receiving broadcast and multicast 1120 * traffic for both primary and non-primary 1121 * MAC clients. 1122 */ 1123 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1124 err = mac_start_group_and_rings(defgrp); 1125 if (err != 0) { 1126 mip->mi_active--; 1127 if ((ring != NULL) && 1128 (ring->mr_state == MR_INUSE)) 1129 mac_stop_ring(ring); 1130 return (err); 1131 } 1132 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1133 } 1134 } 1135 1136 return (err); 1137 } 1138 1139 /* 1140 * Private GLDv3 function to stop a MAC instance. 1141 */ 1142 void 1143 mac_stop(mac_handle_t mh) 1144 { 1145 mac_impl_t *mip = (mac_impl_t *)mh; 1146 mac_group_t *grp; 1147 1148 ASSERT(mip->mi_stop != NULL); 1149 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1150 1151 /* 1152 * Check whether the device is still needed. 1153 */ 1154 ASSERT(mip->mi_active != 0); 1155 if (--mip->mi_active == 0) { 1156 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1157 /* 1158 * There should be no more active clients since the 1159 * MAC is being stopped. Stop the default RX group 1160 * and transition it back to registered state. 1161 * 1162 * When clients are torn down, the groups 1163 * are release via mac_release_rx_group which 1164 * knows the the default group is always in 1165 * started mode since broadcast uses it. So 1166 * we can assert that their are no clients 1167 * (since mac_bcast_add doesn't register itself 1168 * as a client) and group is in SHARED state. 1169 */ 1170 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1171 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1172 mip->mi_nactiveclients == 0); 1173 mac_stop_group_and_rings(grp); 1174 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1175 } 1176 1177 if (mip->mi_default_tx_ring != NULL) { 1178 mac_ring_t *ring; 1179 1180 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1181 if (ring->mr_state == MR_INUSE) { 1182 mac_stop_ring(ring); 1183 ring->mr_flag = 0; 1184 } 1185 } 1186 1187 /* 1188 * Stop the device. 1189 */ 1190 mip->mi_stop(mip->mi_driver); 1191 } 1192 } 1193 1194 int 1195 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1196 { 1197 int err = 0; 1198 1199 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1200 ASSERT(mip->mi_setpromisc != NULL); 1201 1202 if (on) { 1203 /* 1204 * Enable promiscuous mode on the device if not yet enabled. 1205 */ 1206 if (mip->mi_devpromisc++ == 0) { 1207 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1208 if (err != 0) { 1209 mip->mi_devpromisc--; 1210 return (err); 1211 } 1212 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1213 } 1214 } else { 1215 if (mip->mi_devpromisc == 0) 1216 return (EPROTO); 1217 1218 /* 1219 * Disable promiscuous mode on the device if this is the last 1220 * enabling. 1221 */ 1222 if (--mip->mi_devpromisc == 0) { 1223 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1224 if (err != 0) { 1225 mip->mi_devpromisc++; 1226 return (err); 1227 } 1228 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1229 } 1230 } 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * The promiscuity state can change any time. If the caller needs to take 1237 * actions that are atomic with the promiscuity state, then the caller needs 1238 * to bracket the entire sequence with mac_perim_enter/exit 1239 */ 1240 boolean_t 1241 mac_promisc_get(mac_handle_t mh) 1242 { 1243 mac_impl_t *mip = (mac_impl_t *)mh; 1244 1245 /* 1246 * Return the current promiscuity. 1247 */ 1248 return (mip->mi_devpromisc != 0); 1249 } 1250 1251 /* 1252 * Invoked at MAC instance attach time to initialize the list 1253 * of factory MAC addresses supported by a MAC instance. This function 1254 * builds a local cache in the mac_impl_t for the MAC addresses 1255 * supported by the underlying hardware. The MAC clients themselves 1256 * use the mac_addr_factory*() functions to query and reserve 1257 * factory MAC addresses. 1258 */ 1259 void 1260 mac_addr_factory_init(mac_impl_t *mip) 1261 { 1262 mac_capab_multifactaddr_t capab; 1263 uint8_t *addr; 1264 int i; 1265 1266 /* 1267 * First round to see how many factory MAC addresses are available. 1268 */ 1269 bzero(&capab, sizeof (capab)); 1270 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1271 &capab) || (capab.mcm_naddr == 0)) { 1272 /* 1273 * The MAC instance doesn't support multiple factory 1274 * MAC addresses, we're done here. 1275 */ 1276 return; 1277 } 1278 1279 /* 1280 * Allocate the space and get all the factory addresses. 1281 */ 1282 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1283 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1284 1285 mip->mi_factory_addr_num = capab.mcm_naddr; 1286 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1287 sizeof (mac_factory_addr_t), KM_SLEEP); 1288 1289 for (i = 0; i < capab.mcm_naddr; i++) { 1290 bcopy(addr + i * MAXMACADDRLEN, 1291 mip->mi_factory_addr[i].mfa_addr, 1292 mip->mi_type->mt_addr_length); 1293 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1294 } 1295 1296 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1297 } 1298 1299 void 1300 mac_addr_factory_fini(mac_impl_t *mip) 1301 { 1302 if (mip->mi_factory_addr == NULL) { 1303 ASSERT(mip->mi_factory_addr_num == 0); 1304 return; 1305 } 1306 1307 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1308 sizeof (mac_factory_addr_t)); 1309 1310 mip->mi_factory_addr = NULL; 1311 mip->mi_factory_addr_num = 0; 1312 } 1313 1314 /* 1315 * Reserve a factory MAC address. If *slot is set to -1, the function 1316 * attempts to reserve any of the available factory MAC addresses and 1317 * returns the reserved slot id. If no slots are available, the function 1318 * returns ENOSPC. If *slot is not set to -1, the function reserves 1319 * the specified slot if it is available, or returns EBUSY is the slot 1320 * is already used. Returns ENOTSUP if the underlying MAC does not 1321 * support multiple factory addresses. If the slot number is not -1 but 1322 * is invalid, returns EINVAL. 1323 */ 1324 int 1325 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1326 { 1327 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1328 mac_impl_t *mip = mcip->mci_mip; 1329 int i, ret = 0; 1330 1331 i_mac_perim_enter(mip); 1332 /* 1333 * Protect against concurrent readers that may need a self-consistent 1334 * view of the factory addresses 1335 */ 1336 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1337 1338 if (mip->mi_factory_addr_num == 0) { 1339 ret = ENOTSUP; 1340 goto bail; 1341 } 1342 1343 if (*slot != -1) { 1344 /* check the specified slot */ 1345 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1346 ret = EINVAL; 1347 goto bail; 1348 } 1349 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1350 ret = EBUSY; 1351 goto bail; 1352 } 1353 } else { 1354 /* pick the next available slot */ 1355 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1356 if (!mip->mi_factory_addr[i].mfa_in_use) 1357 break; 1358 } 1359 1360 if (i == mip->mi_factory_addr_num) { 1361 ret = ENOSPC; 1362 goto bail; 1363 } 1364 *slot = i+1; 1365 } 1366 1367 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1368 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1369 1370 bail: 1371 rw_exit(&mip->mi_rw_lock); 1372 i_mac_perim_exit(mip); 1373 return (ret); 1374 } 1375 1376 /* 1377 * Release the specified factory MAC address slot. 1378 */ 1379 void 1380 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1381 { 1382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1383 mac_impl_t *mip = mcip->mci_mip; 1384 1385 i_mac_perim_enter(mip); 1386 /* 1387 * Protect against concurrent readers that may need a self-consistent 1388 * view of the factory addresses 1389 */ 1390 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1391 1392 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1393 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1394 1395 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1396 1397 rw_exit(&mip->mi_rw_lock); 1398 i_mac_perim_exit(mip); 1399 } 1400 1401 /* 1402 * Stores in mac_addr the value of the specified MAC address. Returns 1403 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1404 * The caller must provide a string of at least MAXNAMELEN bytes. 1405 */ 1406 void 1407 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1408 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1409 { 1410 mac_impl_t *mip = (mac_impl_t *)mh; 1411 boolean_t in_use; 1412 1413 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1414 1415 /* 1416 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1417 * and mi_rw_lock 1418 */ 1419 rw_enter(&mip->mi_rw_lock, RW_READER); 1420 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1421 *addr_len = mip->mi_type->mt_addr_length; 1422 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1423 if (in_use && client_name != NULL) { 1424 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1425 client_name, MAXNAMELEN); 1426 } 1427 if (in_use_arg != NULL) 1428 *in_use_arg = in_use; 1429 rw_exit(&mip->mi_rw_lock); 1430 } 1431 1432 /* 1433 * Returns the number of factory MAC addresses (in addition to the 1434 * primary MAC address), 0 if the underlying MAC doesn't support 1435 * that feature. 1436 */ 1437 uint_t 1438 mac_addr_factory_num(mac_handle_t mh) 1439 { 1440 mac_impl_t *mip = (mac_impl_t *)mh; 1441 1442 return (mip->mi_factory_addr_num); 1443 } 1444 1445 1446 void 1447 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1448 { 1449 mac_ring_t *ring; 1450 1451 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1452 ring->mr_flag &= ~flag; 1453 } 1454 1455 /* 1456 * The following mac_hwrings_xxx() functions are private mac client functions 1457 * used by the aggr driver to access and control the underlying HW Rx group 1458 * and rings. In this case, the aggr driver has exclusive control of the 1459 * underlying HW Rx group/rings, it calls the following functions to 1460 * start/stop the HW Rx rings, disable/enable polling, add/remove MAC 1461 * addresses, or set up the Rx callback. 1462 */ 1463 /* ARGSUSED */ 1464 static void 1465 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1466 mblk_t *mp_chain, boolean_t loopback) 1467 { 1468 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1469 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1470 mac_direct_rx_t proc; 1471 void *arg1; 1472 mac_resource_handle_t arg2; 1473 1474 proc = srs_rx->sr_func; 1475 arg1 = srs_rx->sr_arg1; 1476 arg2 = mac_srs->srs_mrh; 1477 1478 proc(arg1, arg2, mp_chain, NULL); 1479 } 1480 1481 /* 1482 * This function is called to get the list of HW rings that are reserved by 1483 * an exclusive mac client. 1484 * 1485 * Return value: the number of HW rings. 1486 */ 1487 int 1488 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1489 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1490 { 1491 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1492 flow_entry_t *flent = mcip->mci_flent; 1493 mac_group_t *grp; 1494 mac_ring_t *ring; 1495 int cnt = 0; 1496 1497 if (rtype == MAC_RING_TYPE_RX) { 1498 grp = flent->fe_rx_ring_group; 1499 } else if (rtype == MAC_RING_TYPE_TX) { 1500 grp = flent->fe_tx_ring_group; 1501 } else { 1502 ASSERT(B_FALSE); 1503 return (-1); 1504 } 1505 1506 /* 1507 * The MAC client did not reserve an Rx group, return directly. 1508 * This is probably because the underlying MAC does not support 1509 * any groups. 1510 */ 1511 if (hwgh != NULL) 1512 *hwgh = NULL; 1513 if (grp == NULL) 1514 return (0); 1515 /* 1516 * This group must be reserved by this MAC client. 1517 */ 1518 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1519 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1520 1521 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1522 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1523 hwrh[cnt] = (mac_ring_handle_t)ring; 1524 } 1525 if (hwgh != NULL) 1526 *hwgh = (mac_group_handle_t)grp; 1527 1528 return (cnt); 1529 } 1530 1531 /* 1532 * Get the HW ring handles of the given group index. If the MAC 1533 * doesn't have a group at this index, or any groups at all, then 0 is 1534 * returned and hwgh is set to NULL. This is a private client API. The 1535 * MAC perimeter must be held when calling this function. 1536 * 1537 * mh: A handle to the MAC that owns the group. 1538 * 1539 * idx: The index of the HW group to be read. 1540 * 1541 * hwgh: If non-NULL, contains a handle to the HW group on return. 1542 * 1543 * hwrh: An array of ring handles pointing to the HW rings in the 1544 * group. The array must be large enough to hold a handle to each ring 1545 * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP. 1546 * 1547 * rtype: Used to determine if we are fetching Rx or Tx rings. 1548 * 1549 * Returns the number of rings in the group. 1550 */ 1551 uint_t 1552 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh, 1553 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1554 { 1555 mac_impl_t *mip = (mac_impl_t *)mh; 1556 mac_group_t *grp; 1557 mac_ring_t *ring; 1558 uint_t cnt = 0; 1559 1560 /* 1561 * The MAC perimeter must be held when accessing the 1562 * mi_{rx,tx}_groups fields. 1563 */ 1564 ASSERT(MAC_PERIM_HELD(mh)); 1565 ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX); 1566 1567 if (rtype == MAC_RING_TYPE_RX) { 1568 grp = mip->mi_rx_groups; 1569 } else { 1570 ASSERT(rtype == MAC_RING_TYPE_TX); 1571 grp = mip->mi_tx_groups; 1572 } 1573 1574 while (grp != NULL && grp->mrg_index != idx) 1575 grp = grp->mrg_next; 1576 1577 /* 1578 * If the MAC doesn't have a group at this index or doesn't 1579 * impelement RINGS capab, then set hwgh to NULL and return 0. 1580 */ 1581 if (hwgh != NULL) 1582 *hwgh = NULL; 1583 1584 if (grp == NULL) 1585 return (0); 1586 1587 ASSERT3U(idx, ==, grp->mrg_index); 1588 1589 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1590 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP); 1591 hwrh[cnt] = (mac_ring_handle_t)ring; 1592 } 1593 1594 /* A group should always have at least one ring. */ 1595 ASSERT3U(cnt, >, 0); 1596 1597 if (hwgh != NULL) 1598 *hwgh = (mac_group_handle_t)grp; 1599 1600 return (cnt); 1601 } 1602 1603 /* 1604 * This function is called to get info about Tx/Rx rings. 1605 * 1606 * Return value: returns uint_t which will have various bits set 1607 * that indicates different properties of the ring. 1608 */ 1609 uint_t 1610 mac_hwring_getinfo(mac_ring_handle_t rh) 1611 { 1612 mac_ring_t *ring = (mac_ring_t *)rh; 1613 mac_ring_info_t *info = &ring->mr_info; 1614 1615 return (info->mri_flags); 1616 } 1617 1618 /* 1619 * Set the passthru callback on the hardware ring. 1620 */ 1621 void 1622 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1, 1623 mac_resource_handle_t arg2) 1624 { 1625 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1626 1627 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1628 1629 hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER; 1630 1631 hwring->mr_pt_fn = fn; 1632 hwring->mr_pt_arg1 = arg1; 1633 hwring->mr_pt_arg2 = arg2; 1634 } 1635 1636 /* 1637 * Clear the passthru callback on the hardware ring. 1638 */ 1639 void 1640 mac_hwring_clear_passthru(mac_ring_handle_t hwrh) 1641 { 1642 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1643 1644 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1645 1646 hwring->mr_classify_type = MAC_NO_CLASSIFIER; 1647 1648 hwring->mr_pt_fn = NULL; 1649 hwring->mr_pt_arg1 = NULL; 1650 hwring->mr_pt_arg2 = NULL; 1651 } 1652 1653 void 1654 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1) 1655 { 1656 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1657 flow_entry_t *flent = mcip->mci_flent; 1658 1659 mutex_enter(&flent->fe_lock); 1660 flent->fe_cb_fn = (flow_fn_t)func; 1661 flent->fe_cb_arg1 = arg1; 1662 flent->fe_cb_arg2 = NULL; 1663 flent->fe_flags &= ~FE_MC_NO_DATAPATH; 1664 mutex_exit(&flent->fe_lock); 1665 } 1666 1667 void 1668 mac_client_clear_flow_cb(mac_client_handle_t mch) 1669 { 1670 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1671 flow_entry_t *flent = mcip->mci_flent; 1672 1673 mutex_enter(&flent->fe_lock); 1674 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 1675 flent->fe_cb_arg1 = NULL; 1676 flent->fe_cb_arg2 = NULL; 1677 flent->fe_flags |= FE_MC_NO_DATAPATH; 1678 mutex_exit(&flent->fe_lock); 1679 } 1680 1681 /* 1682 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1683 * setup the RX callback of the mac client which exclusively controls 1684 * HW ring. 1685 */ 1686 void 1687 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1688 mac_ring_handle_t pseudo_rh) 1689 { 1690 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1691 mac_ring_t *pseudo_ring; 1692 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1693 1694 if (pseudo_rh != NULL) { 1695 pseudo_ring = (mac_ring_t *)pseudo_rh; 1696 /* Export the ddi handles to pseudo ring */ 1697 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1698 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1699 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1700 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1701 /* 1702 * Save a pointer to pseudo ring in the hw ring. If 1703 * interrupt handle changes, the hw ring will be 1704 * notified of the change (see mac_ring_intr_set()) 1705 * and the appropriate change has to be made to 1706 * the pseudo ring that has exported the ddi handle. 1707 */ 1708 hw_ring->mr_prh = pseudo_rh; 1709 } 1710 1711 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1712 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1713 mac_srs->srs_mrh = prh; 1714 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1715 } 1716 } 1717 1718 void 1719 mac_hwring_teardown(mac_ring_handle_t hwrh) 1720 { 1721 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1722 mac_soft_ring_set_t *mac_srs; 1723 1724 if (hw_ring == NULL) 1725 return; 1726 hw_ring->mr_prh = NULL; 1727 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1728 mac_srs = hw_ring->mr_srs; 1729 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1730 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1731 mac_srs->srs_mrh = NULL; 1732 } 1733 } 1734 1735 int 1736 mac_hwring_disable_intr(mac_ring_handle_t rh) 1737 { 1738 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1739 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1740 1741 return (intr->mi_disable(intr->mi_handle)); 1742 } 1743 1744 int 1745 mac_hwring_enable_intr(mac_ring_handle_t rh) 1746 { 1747 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1748 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1749 1750 return (intr->mi_enable(intr->mi_handle)); 1751 } 1752 1753 /* 1754 * Start the HW ring pointed to by rh. 1755 * 1756 * This is used by special MAC clients that are MAC themselves and 1757 * need to exert control over the underlying HW rings of the NIC. 1758 */ 1759 int 1760 mac_hwring_start(mac_ring_handle_t rh) 1761 { 1762 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1763 int rv = 0; 1764 1765 if (rr_ring->mr_state != MR_INUSE) 1766 rv = mac_start_ring(rr_ring); 1767 1768 return (rv); 1769 } 1770 1771 /* 1772 * Stop the HW ring pointed to by rh. Also see mac_hwring_start(). 1773 */ 1774 void 1775 mac_hwring_stop(mac_ring_handle_t rh) 1776 { 1777 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1778 1779 if (rr_ring->mr_state != MR_FREE) 1780 mac_stop_ring(rr_ring); 1781 } 1782 1783 /* 1784 * Remove the quiesced flag from the HW ring pointed to by rh. 1785 * 1786 * This is used by special MAC clients that are MAC themselves and 1787 * need to exert control over the underlying HW rings of the NIC. 1788 */ 1789 int 1790 mac_hwring_activate(mac_ring_handle_t rh) 1791 { 1792 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1793 1794 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1795 return (0); 1796 } 1797 1798 /* 1799 * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate(). 1800 */ 1801 void 1802 mac_hwring_quiesce(mac_ring_handle_t rh) 1803 { 1804 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1805 1806 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1807 } 1808 1809 mblk_t * 1810 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1811 { 1812 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1813 mac_ring_info_t *info = &rr_ring->mr_info; 1814 1815 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1816 } 1817 1818 /* 1819 * Send packets through a selected tx ring. 1820 */ 1821 mblk_t * 1822 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1823 { 1824 mac_ring_t *ring = (mac_ring_t *)rh; 1825 mac_ring_info_t *info = &ring->mr_info; 1826 1827 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1828 ring->mr_state >= MR_INUSE); 1829 return (info->mri_tx(info->mri_driver, mp)); 1830 } 1831 1832 /* 1833 * Query stats for a particular rx/tx ring 1834 */ 1835 int 1836 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1837 { 1838 mac_ring_t *ring = (mac_ring_t *)rh; 1839 mac_ring_info_t *info = &ring->mr_info; 1840 1841 return (info->mri_stat(info->mri_driver, stat, val)); 1842 } 1843 1844 /* 1845 * Private function that is only used by aggr to send packets through 1846 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1847 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1848 * access to mac_impl_t to send packets through m_tx() entry point. 1849 * It accomplishes this by calling mac_hwring_send_priv() function. 1850 */ 1851 mblk_t * 1852 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1853 { 1854 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1855 mac_impl_t *mip = mcip->mci_mip; 1856 1857 MAC_TX(mip, rh, mp, mcip); 1858 return (mp); 1859 } 1860 1861 /* 1862 * Private function that is only used by aggr to update the default transmission 1863 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1864 * temporarily be down, it may need to update the default ring that is used by 1865 * MAC such that it refers to a link that can actively be used to send traffic. 1866 * Note that this is different from the case where the port has been removed 1867 * from the group. In those cases, all of the rings will be torn down because 1868 * the ring will no longer exist. It's important to give aggr a case where the 1869 * rings can still exist such that it may be able to continue to send LACP PDUs 1870 * to potentially restore the link. 1871 * 1872 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1873 * This is to help out aggr which doesn't really know the internal state that 1874 * MAC does about the rings and can't know that it's not quite ready for use 1875 * yet. 1876 */ 1877 void 1878 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1879 { 1880 mac_impl_t *mip = (mac_impl_t *)mh; 1881 mac_ring_t *ring = (mac_ring_t *)rh; 1882 1883 ASSERT(MAC_PERIM_HELD(mh)); 1884 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1885 1886 if (ring->mr_state != MR_INUSE) 1887 return; 1888 1889 mip->mi_default_tx_ring = rh; 1890 } 1891 1892 int 1893 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1894 { 1895 mac_group_t *group = (mac_group_t *)gh; 1896 1897 return (mac_group_addmac(group, addr)); 1898 } 1899 1900 int 1901 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1902 { 1903 mac_group_t *group = (mac_group_t *)gh; 1904 1905 return (mac_group_remmac(group, addr)); 1906 } 1907 1908 /* 1909 * Program the group's HW VLAN filter if it has such support. 1910 * Otherwise, the group will implicitly accept tagged traffic and 1911 * there is nothing to do. 1912 */ 1913 int 1914 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid) 1915 { 1916 mac_group_t *group = (mac_group_t *)gh; 1917 1918 if (!MAC_GROUP_HW_VLAN(group)) 1919 return (0); 1920 1921 return (mac_group_addvlan(group, vid)); 1922 } 1923 1924 int 1925 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid) 1926 { 1927 mac_group_t *group = (mac_group_t *)gh; 1928 1929 if (!MAC_GROUP_HW_VLAN(group)) 1930 return (0); 1931 1932 return (mac_group_remvlan(group, vid)); 1933 } 1934 1935 /* 1936 * Determine if a MAC has HW VLAN support. This is a private API 1937 * consumed by aggr. In the future it might be nice to have a bitfield 1938 * in mac_capab_rings_t to track which forms of HW filtering are 1939 * supported by the MAC. 1940 */ 1941 boolean_t 1942 mac_has_hw_vlan(mac_handle_t mh) 1943 { 1944 mac_impl_t *mip = (mac_impl_t *)mh; 1945 1946 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups)); 1947 } 1948 1949 /* 1950 * Get the number of Rx HW groups on this MAC. 1951 */ 1952 uint_t 1953 mac_get_num_rx_groups(mac_handle_t mh) 1954 { 1955 mac_impl_t *mip = (mac_impl_t *)mh; 1956 1957 ASSERT(MAC_PERIM_HELD(mh)); 1958 return (mip->mi_rx_group_count); 1959 } 1960 1961 int 1962 mac_set_promisc(mac_handle_t mh, boolean_t value) 1963 { 1964 mac_impl_t *mip = (mac_impl_t *)mh; 1965 1966 ASSERT(MAC_PERIM_HELD(mh)); 1967 return (i_mac_promisc_set(mip, value)); 1968 } 1969 1970 /* 1971 * Set the RX group to be shared/reserved. Note that the group must be 1972 * started/stopped outside of this function. 1973 */ 1974 void 1975 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1976 { 1977 /* 1978 * If there is no change in the group state, just return. 1979 */ 1980 if (grp->mrg_state == state) 1981 return; 1982 1983 switch (state) { 1984 case MAC_GROUP_STATE_RESERVED: 1985 /* 1986 * Successfully reserved the group. 1987 * 1988 * Given that there is an exclusive client controlling this 1989 * group, we enable the group level polling when available, 1990 * so that SRSs get to turn on/off individual rings they's 1991 * assigned to. 1992 */ 1993 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1994 1995 if (grp->mrg_type == MAC_RING_TYPE_RX && 1996 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1997 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1998 } 1999 break; 2000 2001 case MAC_GROUP_STATE_SHARED: 2002 /* 2003 * Set all rings of this group to software classified. 2004 * If the group has an overriding interrupt, then re-enable it. 2005 */ 2006 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2007 2008 if (grp->mrg_type == MAC_RING_TYPE_RX && 2009 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 2010 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2011 } 2012 /* The ring is not available for reservations any more */ 2013 break; 2014 2015 case MAC_GROUP_STATE_REGISTERED: 2016 /* Also callable from mac_register, perim is not held */ 2017 break; 2018 2019 default: 2020 ASSERT(B_FALSE); 2021 break; 2022 } 2023 2024 grp->mrg_state = state; 2025 } 2026 2027 /* 2028 * Quiesce future hardware classified packets for the specified Rx ring 2029 */ 2030 static void 2031 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 2032 { 2033 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 2034 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 2035 2036 mutex_enter(&rx_ring->mr_lock); 2037 rx_ring->mr_flag |= ring_flag; 2038 while (rx_ring->mr_refcnt != 0) 2039 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 2040 mutex_exit(&rx_ring->mr_lock); 2041 } 2042 2043 /* 2044 * Please see mac_tx for details about the per cpu locking scheme 2045 */ 2046 static void 2047 mac_tx_lock_all(mac_client_impl_t *mcip) 2048 { 2049 int i; 2050 2051 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2052 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2053 } 2054 2055 static void 2056 mac_tx_unlock_all(mac_client_impl_t *mcip) 2057 { 2058 int i; 2059 2060 for (i = mac_tx_percpu_cnt; i >= 0; i--) 2061 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2062 } 2063 2064 static void 2065 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 2066 { 2067 int i; 2068 2069 for (i = mac_tx_percpu_cnt; i > 0; i--) 2070 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2071 } 2072 2073 static int 2074 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 2075 { 2076 int i; 2077 int refcnt = 0; 2078 2079 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2080 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 2081 2082 return (refcnt); 2083 } 2084 2085 /* 2086 * Stop future Tx packets coming down from the client in preparation for 2087 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 2088 * of rings between clients 2089 */ 2090 void 2091 mac_tx_client_block(mac_client_impl_t *mcip) 2092 { 2093 mac_tx_lock_all(mcip); 2094 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 2095 while (mac_tx_sum_refcnt(mcip) != 0) { 2096 mac_tx_unlock_allbutzero(mcip); 2097 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2098 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2099 mac_tx_lock_all(mcip); 2100 } 2101 mac_tx_unlock_all(mcip); 2102 } 2103 2104 void 2105 mac_tx_client_unblock(mac_client_impl_t *mcip) 2106 { 2107 mac_tx_lock_all(mcip); 2108 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 2109 mac_tx_unlock_all(mcip); 2110 /* 2111 * We may fail to disable flow control for the last MAC_NOTE_TX 2112 * notification because the MAC client is quiesced. Send the 2113 * notification again. 2114 */ 2115 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 2116 } 2117 2118 /* 2119 * Wait for an SRS to quiesce. The SRS worker will signal us when the 2120 * quiesce is done. 2121 */ 2122 static void 2123 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 2124 { 2125 mutex_enter(&srs->srs_lock); 2126 while (!(srs->srs_state & srs_flag)) 2127 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 2128 mutex_exit(&srs->srs_lock); 2129 } 2130 2131 /* 2132 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 2133 * works bottom up by cutting off packet flow from the bottommost point in the 2134 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 2135 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 2136 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 2137 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 2138 * for the SRS and MR flags. In the former case the threads pause waiting for 2139 * a restart, while in the latter case the threads exit. The Tx SRS teardown 2140 * is also mostly similar to the above. 2141 * 2142 * 1. Stop future hardware classified packets at the lowest level in the mac. 2143 * Remove any hardware classification rule (CONDEMNED case) and mark the 2144 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 2145 * from increasing. Upcalls from the driver that come through hardware 2146 * classification will be dropped in mac_rx from now on. Then we wait for 2147 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 2148 * sure there aren't any upcall threads from the driver through hardware 2149 * classification. In the case of SRS teardown we also remove the 2150 * classification rule in the driver. 2151 * 2152 * 2. Stop future software classified packets by marking the flow entry with 2153 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 2154 * increasing. We also remove the flow entry from the table in the latter 2155 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 2156 * that indicates there aren't any active threads using that flow entry. 2157 * 2158 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 2159 * SRS worker thread, and the soft ring threads are quiesced in sequence 2160 * with the SRS worker thread serving as a master controller. This 2161 * mechansim is explained in mac_srs_worker_quiesce(). 2162 * 2163 * The restart mechanism to reactivate the SRS and softrings is explained 2164 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 2165 * restart sequence. 2166 */ 2167 void 2168 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2169 { 2170 flow_entry_t *flent = srs->srs_flent; 2171 uint_t mr_flag, srs_done_flag; 2172 2173 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2174 ASSERT(!(srs->srs_type & SRST_TX)); 2175 2176 if (srs_quiesce_flag == SRS_CONDEMNED) { 2177 mr_flag = MR_CONDEMNED; 2178 srs_done_flag = SRS_CONDEMNED_DONE; 2179 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2180 mac_srs_client_poll_disable(srs->srs_mcip, srs); 2181 } else { 2182 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 2183 mr_flag = MR_QUIESCE; 2184 srs_done_flag = SRS_QUIESCE_DONE; 2185 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2186 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 2187 } 2188 2189 if (srs->srs_ring != NULL) { 2190 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 2191 } else { 2192 /* 2193 * SRS is driven by software classification. In case 2194 * of CONDEMNED, the top level teardown functions will 2195 * deal with flow removal. 2196 */ 2197 if (srs_quiesce_flag != SRS_CONDEMNED) { 2198 FLOW_MARK(flent, FE_QUIESCE); 2199 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2200 } 2201 } 2202 2203 /* 2204 * Signal the SRS to quiesce itself, and then cv_wait for the 2205 * SRS quiesce to complete. The SRS worker thread will wake us 2206 * up when the quiesce is complete 2207 */ 2208 mac_srs_signal(srs, srs_quiesce_flag); 2209 mac_srs_quiesce_wait(srs, srs_done_flag); 2210 } 2211 2212 /* 2213 * Remove an SRS. 2214 */ 2215 void 2216 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 2217 { 2218 flow_entry_t *flent = srs->srs_flent; 2219 int i; 2220 2221 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 2222 /* 2223 * Locate and remove our entry in the fe_rx_srs[] array, and 2224 * adjust the fe_rx_srs array entries and array count by 2225 * moving the last entry into the vacated spot. 2226 */ 2227 mutex_enter(&flent->fe_lock); 2228 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2229 if (flent->fe_rx_srs[i] == srs) 2230 break; 2231 } 2232 2233 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 2234 if (i != flent->fe_rx_srs_cnt - 1) { 2235 flent->fe_rx_srs[i] = 2236 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2237 i = flent->fe_rx_srs_cnt - 1; 2238 } 2239 2240 flent->fe_rx_srs[i] = NULL; 2241 flent->fe_rx_srs_cnt--; 2242 mutex_exit(&flent->fe_lock); 2243 2244 mac_srs_free(srs); 2245 } 2246 2247 static void 2248 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2249 { 2250 mutex_enter(&srs->srs_lock); 2251 srs->srs_state &= ~flag; 2252 mutex_exit(&srs->srs_lock); 2253 } 2254 2255 void 2256 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2257 { 2258 flow_entry_t *flent = srs->srs_flent; 2259 mac_ring_t *mr; 2260 2261 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2262 ASSERT((srs->srs_type & SRST_TX) == 0); 2263 2264 /* 2265 * This handles a change in the number of SRSs between the quiesce and 2266 * and restart operation of a flow. 2267 */ 2268 if (!SRS_QUIESCED(srs)) 2269 return; 2270 2271 /* 2272 * Signal the SRS to restart itself. Wait for the restart to complete 2273 * Note that we only restart the SRS if it is not marked as 2274 * permanently quiesced. 2275 */ 2276 if (!SRS_QUIESCED_PERMANENT(srs)) { 2277 mac_srs_signal(srs, SRS_RESTART); 2278 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2279 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2280 2281 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2282 } 2283 2284 /* Finally clear the flags to let the packets in */ 2285 mr = srs->srs_ring; 2286 if (mr != NULL) { 2287 MAC_RING_UNMARK(mr, MR_QUIESCE); 2288 /* In case the ring was stopped, safely restart it */ 2289 if (mr->mr_state != MR_INUSE) 2290 (void) mac_start_ring(mr); 2291 } else { 2292 FLOW_UNMARK(flent, FE_QUIESCE); 2293 } 2294 } 2295 2296 /* 2297 * Temporary quiesce of a flow and associated Rx SRS. 2298 * Please see block comment above mac_rx_classify_flow_rem. 2299 */ 2300 /* ARGSUSED */ 2301 int 2302 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2303 { 2304 int i; 2305 2306 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2307 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2308 SRS_QUIESCE); 2309 } 2310 return (0); 2311 } 2312 2313 /* 2314 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2315 * Please see block comment above mac_rx_classify_flow_rem 2316 */ 2317 /* ARGSUSED */ 2318 int 2319 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2320 { 2321 int i; 2322 2323 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2324 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2325 2326 return (0); 2327 } 2328 2329 void 2330 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2331 { 2332 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2333 flow_entry_t *flent = mcip->mci_flent; 2334 mac_impl_t *mip = mcip->mci_mip; 2335 mac_soft_ring_set_t *mac_srs; 2336 int i; 2337 2338 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2339 2340 if (flent == NULL) 2341 return; 2342 2343 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2344 mac_srs = flent->fe_rx_srs[i]; 2345 mutex_enter(&mac_srs->srs_lock); 2346 if (on) 2347 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2348 else 2349 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2350 mutex_exit(&mac_srs->srs_lock); 2351 } 2352 } 2353 2354 void 2355 mac_rx_client_quiesce(mac_client_handle_t mch) 2356 { 2357 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2358 mac_impl_t *mip = mcip->mci_mip; 2359 2360 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2361 2362 if (MCIP_DATAPATH_SETUP(mcip)) { 2363 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2364 NULL); 2365 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2366 mac_rx_classify_flow_quiesce, NULL); 2367 } 2368 } 2369 2370 void 2371 mac_rx_client_restart(mac_client_handle_t mch) 2372 { 2373 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2374 mac_impl_t *mip = mcip->mci_mip; 2375 2376 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2377 2378 if (MCIP_DATAPATH_SETUP(mcip)) { 2379 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2380 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2381 mac_rx_classify_flow_restart, NULL); 2382 } 2383 } 2384 2385 /* 2386 * This function only quiesces the Tx SRS and softring worker threads. Callers 2387 * need to make sure that there aren't any mac client threads doing current or 2388 * future transmits in the mac before calling this function. 2389 */ 2390 void 2391 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2392 { 2393 mac_client_impl_t *mcip = srs->srs_mcip; 2394 2395 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2396 2397 ASSERT(srs->srs_type & SRST_TX); 2398 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2399 srs_quiesce_flag == SRS_QUIESCE); 2400 2401 /* 2402 * Signal the SRS to quiesce itself, and then cv_wait for the 2403 * SRS quiesce to complete. The SRS worker thread will wake us 2404 * up when the quiesce is complete 2405 */ 2406 mac_srs_signal(srs, srs_quiesce_flag); 2407 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2408 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2409 } 2410 2411 void 2412 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2413 { 2414 /* 2415 * Resizing the fanout could result in creation of new SRSs. 2416 * They may not necessarily be in the quiesced state in which 2417 * case it need be restarted 2418 */ 2419 if (!SRS_QUIESCED(srs)) 2420 return; 2421 2422 mac_srs_signal(srs, SRS_RESTART); 2423 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2424 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2425 } 2426 2427 /* 2428 * Temporary quiesce of a flow and associated Rx SRS. 2429 * Please see block comment above mac_rx_srs_quiesce 2430 */ 2431 /* ARGSUSED */ 2432 int 2433 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2434 { 2435 /* 2436 * The fe_tx_srs is null for a subflow on an interface that is 2437 * not plumbed 2438 */ 2439 if (flent->fe_tx_srs != NULL) 2440 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2441 return (0); 2442 } 2443 2444 /* ARGSUSED */ 2445 int 2446 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2447 { 2448 /* 2449 * The fe_tx_srs is null for a subflow on an interface that is 2450 * not plumbed 2451 */ 2452 if (flent->fe_tx_srs != NULL) 2453 mac_tx_srs_restart(flent->fe_tx_srs); 2454 return (0); 2455 } 2456 2457 static void 2458 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2459 { 2460 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2461 2462 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2463 2464 mac_tx_client_block(mcip); 2465 if (MCIP_TX_SRS(mcip) != NULL) { 2466 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2467 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2468 mac_tx_flow_quiesce, NULL); 2469 } 2470 } 2471 2472 void 2473 mac_tx_client_quiesce(mac_client_handle_t mch) 2474 { 2475 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2476 } 2477 2478 void 2479 mac_tx_client_condemn(mac_client_handle_t mch) 2480 { 2481 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2482 } 2483 2484 void 2485 mac_tx_client_restart(mac_client_handle_t mch) 2486 { 2487 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2488 2489 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2490 2491 mac_tx_client_unblock(mcip); 2492 if (MCIP_TX_SRS(mcip) != NULL) { 2493 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2494 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2495 mac_tx_flow_restart, NULL); 2496 } 2497 } 2498 2499 void 2500 mac_tx_client_flush(mac_client_impl_t *mcip) 2501 { 2502 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2503 2504 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2505 mac_tx_client_restart((mac_client_handle_t)mcip); 2506 } 2507 2508 void 2509 mac_client_quiesce(mac_client_impl_t *mcip) 2510 { 2511 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2512 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2513 } 2514 2515 void 2516 mac_client_restart(mac_client_impl_t *mcip) 2517 { 2518 mac_rx_client_restart((mac_client_handle_t)mcip); 2519 mac_tx_client_restart((mac_client_handle_t)mcip); 2520 } 2521 2522 /* 2523 * Allocate a minor number. 2524 */ 2525 minor_t 2526 mac_minor_hold(boolean_t sleep) 2527 { 2528 id_t id; 2529 2530 /* 2531 * Grab a value from the arena. 2532 */ 2533 atomic_inc_32(&minor_count); 2534 2535 if (sleep) 2536 return ((uint_t)id_alloc(minor_ids)); 2537 2538 if ((id = id_alloc_nosleep(minor_ids)) == -1) { 2539 atomic_dec_32(&minor_count); 2540 return (0); 2541 } 2542 2543 return ((uint_t)id); 2544 } 2545 2546 /* 2547 * Release a previously allocated minor number. 2548 */ 2549 void 2550 mac_minor_rele(minor_t minor) 2551 { 2552 /* 2553 * Return the value to the arena. 2554 */ 2555 id_free(minor_ids, minor); 2556 atomic_dec_32(&minor_count); 2557 } 2558 2559 uint32_t 2560 mac_no_notification(mac_handle_t mh) 2561 { 2562 mac_impl_t *mip = (mac_impl_t *)mh; 2563 2564 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2565 mip->mi_capab_legacy.ml_unsup_note : 0); 2566 } 2567 2568 /* 2569 * Prevent any new opens of this mac in preparation for unregister 2570 */ 2571 int 2572 i_mac_disable(mac_impl_t *mip) 2573 { 2574 mac_client_impl_t *mcip; 2575 2576 rw_enter(&i_mac_impl_lock, RW_WRITER); 2577 if (mip->mi_state_flags & MIS_DISABLED) { 2578 /* Already disabled, return success */ 2579 rw_exit(&i_mac_impl_lock); 2580 return (0); 2581 } 2582 /* 2583 * See if there are any other references to this mac_t (e.g., VLAN's). 2584 * If so return failure. If all the other checks below pass, then 2585 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2586 * any new VLAN's from being created or new mac client opens of this 2587 * mac end point. 2588 */ 2589 if (mip->mi_ref > 0) { 2590 rw_exit(&i_mac_impl_lock); 2591 return (EBUSY); 2592 } 2593 2594 /* 2595 * mac clients must delete all multicast groups they join before 2596 * closing. bcast groups are reference counted, the last client 2597 * to delete the group will wait till the group is physically 2598 * deleted. Since all clients have closed this mac end point 2599 * mi_bcast_ngrps must be zero at this point 2600 */ 2601 ASSERT(mip->mi_bcast_ngrps == 0); 2602 2603 /* 2604 * Don't let go of this if it has some flows. 2605 * All other code guarantees no flows are added to a disabled 2606 * mac, therefore it is sufficient to check for the flow table 2607 * only here. 2608 */ 2609 mcip = mac_primary_client_handle(mip); 2610 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2611 rw_exit(&i_mac_impl_lock); 2612 return (ENOTEMPTY); 2613 } 2614 2615 mip->mi_state_flags |= MIS_DISABLED; 2616 rw_exit(&i_mac_impl_lock); 2617 return (0); 2618 } 2619 2620 int 2621 mac_disable_nowait(mac_handle_t mh) 2622 { 2623 mac_impl_t *mip = (mac_impl_t *)mh; 2624 int err; 2625 2626 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2627 return (err); 2628 err = i_mac_disable(mip); 2629 i_mac_perim_exit(mip); 2630 return (err); 2631 } 2632 2633 int 2634 mac_disable(mac_handle_t mh) 2635 { 2636 mac_impl_t *mip = (mac_impl_t *)mh; 2637 int err; 2638 2639 i_mac_perim_enter(mip); 2640 err = i_mac_disable(mip); 2641 i_mac_perim_exit(mip); 2642 2643 /* 2644 * Clean up notification thread and wait for it to exit. 2645 */ 2646 if (err == 0) 2647 i_mac_notify_exit(mip); 2648 2649 return (err); 2650 } 2651 2652 /* 2653 * Called when the MAC instance has a non empty flow table, to de-multiplex 2654 * incoming packets to the right flow. 2655 */ 2656 /* ARGSUSED */ 2657 static mblk_t * 2658 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2659 { 2660 flow_entry_t *flent = NULL; 2661 uint_t flags = FLOW_INBOUND; 2662 int err; 2663 2664 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2665 if (err != 0) { 2666 /* no registered receive function */ 2667 return (mp); 2668 } else { 2669 mac_client_impl_t *mcip; 2670 2671 /* 2672 * This flent might just be an additional one on the MAC client, 2673 * i.e. for classification purposes (different fdesc), however 2674 * the resources, SRS et. al., are in the mci_flent, so if 2675 * this isn't the mci_flent, we need to get it. 2676 */ 2677 if ((mcip = flent->fe_mcip) != NULL && 2678 mcip->mci_flent != flent) { 2679 FLOW_REFRELE(flent); 2680 flent = mcip->mci_flent; 2681 FLOW_TRY_REFHOLD(flent, err); 2682 if (err != 0) 2683 return (mp); 2684 } 2685 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2686 B_FALSE); 2687 FLOW_REFRELE(flent); 2688 } 2689 return (NULL); 2690 } 2691 2692 mblk_t * 2693 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2694 { 2695 mac_impl_t *mip = (mac_impl_t *)mh; 2696 mblk_t *bp, *bp1, **bpp, *list = NULL; 2697 2698 /* 2699 * We walk the chain and attempt to classify each packet. 2700 * The packets that couldn't be classified will be returned 2701 * back to the caller. 2702 */ 2703 bp = mp_chain; 2704 bpp = &list; 2705 while (bp != NULL) { 2706 bp1 = bp; 2707 bp = bp->b_next; 2708 bp1->b_next = NULL; 2709 2710 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2711 *bpp = bp1; 2712 bpp = &bp1->b_next; 2713 } 2714 } 2715 return (list); 2716 } 2717 2718 static int 2719 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2720 { 2721 mac_ring_handle_t ring = arg; 2722 2723 if (flent->fe_tx_srs) 2724 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2725 return (0); 2726 } 2727 2728 void 2729 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2730 { 2731 mac_client_impl_t *cclient; 2732 mac_soft_ring_set_t *mac_srs; 2733 2734 /* 2735 * After grabbing the mi_rw_lock, the list of clients can't change. 2736 * If there are any clients mi_disabled must be B_FALSE and can't 2737 * get set since there are clients. If there aren't any clients we 2738 * don't do anything. In any case the mip has to be valid. The driver 2739 * must make sure that it goes single threaded (with respect to mac 2740 * calls) and wait for all pending mac calls to finish before calling 2741 * mac_unregister. 2742 */ 2743 rw_enter(&i_mac_impl_lock, RW_READER); 2744 if (mip->mi_state_flags & MIS_DISABLED) { 2745 rw_exit(&i_mac_impl_lock); 2746 return; 2747 } 2748 2749 /* 2750 * Get MAC tx srs from walking mac_client_handle list. 2751 */ 2752 rw_enter(&mip->mi_rw_lock, RW_READER); 2753 for (cclient = mip->mi_clients_list; cclient != NULL; 2754 cclient = cclient->mci_client_next) { 2755 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2756 mac_tx_srs_wakeup(mac_srs, ring); 2757 } else { 2758 /* 2759 * Aggr opens underlying ports in exclusive mode 2760 * and registers flow control callbacks using 2761 * mac_tx_client_notify(). When opened in 2762 * exclusive mode, Tx SRS won't be created 2763 * during mac_unicast_add(). 2764 */ 2765 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2766 mac_tx_invoke_callbacks(cclient, 2767 (mac_tx_cookie_t)ring); 2768 } 2769 } 2770 (void) mac_flow_walk(cclient->mci_subflow_tab, 2771 mac_tx_flow_srs_wakeup, ring); 2772 } 2773 rw_exit(&mip->mi_rw_lock); 2774 rw_exit(&i_mac_impl_lock); 2775 } 2776 2777 /* ARGSUSED */ 2778 void 2779 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2780 boolean_t add) 2781 { 2782 mac_impl_t *mip = (mac_impl_t *)mh; 2783 2784 i_mac_perim_enter((mac_impl_t *)mh); 2785 /* 2786 * If no specific refresh function was given then default to the 2787 * driver's m_multicst entry point. 2788 */ 2789 if (refresh == NULL) { 2790 refresh = mip->mi_multicst; 2791 arg = mip->mi_driver; 2792 } 2793 2794 mac_bcast_refresh(mip, refresh, arg, add); 2795 i_mac_perim_exit((mac_impl_t *)mh); 2796 } 2797 2798 void 2799 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2800 { 2801 mac_impl_t *mip = (mac_impl_t *)mh; 2802 2803 /* 2804 * If no specific refresh function was given then default to the 2805 * driver's m_promisc entry point. 2806 */ 2807 if (refresh == NULL) { 2808 refresh = mip->mi_setpromisc; 2809 arg = mip->mi_driver; 2810 } 2811 ASSERT(refresh != NULL); 2812 2813 /* 2814 * Call the refresh function with the current promiscuity. 2815 */ 2816 refresh(arg, (mip->mi_devpromisc != 0)); 2817 } 2818 2819 /* 2820 * The mac client requests that the mac not to change its margin size to 2821 * be less than the specified value. If "current" is B_TRUE, then the client 2822 * requests the mac not to change its margin size to be smaller than the 2823 * current size. Further, return the current margin size value in this case. 2824 * 2825 * We keep every requested size in an ordered list from largest to smallest. 2826 */ 2827 int 2828 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2829 { 2830 mac_impl_t *mip = (mac_impl_t *)mh; 2831 mac_margin_req_t **pp, *p; 2832 int err = 0; 2833 2834 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2835 if (current) 2836 *marginp = mip->mi_margin; 2837 2838 /* 2839 * If the current margin value cannot satisfy the margin requested, 2840 * return ENOTSUP directly. 2841 */ 2842 if (*marginp > mip->mi_margin) { 2843 err = ENOTSUP; 2844 goto done; 2845 } 2846 2847 /* 2848 * Check whether the given margin is already in the list. If so, 2849 * bump the reference count. 2850 */ 2851 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2852 if (p->mmr_margin == *marginp) { 2853 /* 2854 * The margin requested is already in the list, 2855 * so just bump the reference count. 2856 */ 2857 p->mmr_ref++; 2858 goto done; 2859 } 2860 if (p->mmr_margin < *marginp) 2861 break; 2862 } 2863 2864 2865 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2866 p->mmr_margin = *marginp; 2867 p->mmr_ref++; 2868 p->mmr_nextp = *pp; 2869 *pp = p; 2870 2871 done: 2872 rw_exit(&(mip->mi_rw_lock)); 2873 return (err); 2874 } 2875 2876 /* 2877 * The mac client requests to cancel its previous mac_margin_add() request. 2878 * We remove the requested margin size from the list. 2879 */ 2880 int 2881 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2882 { 2883 mac_impl_t *mip = (mac_impl_t *)mh; 2884 mac_margin_req_t **pp, *p; 2885 int err = 0; 2886 2887 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2888 /* 2889 * Find the entry in the list for the given margin. 2890 */ 2891 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2892 if (p->mmr_margin == margin) { 2893 if (--p->mmr_ref == 0) 2894 break; 2895 2896 /* 2897 * There is still a reference to this address so 2898 * there's nothing more to do. 2899 */ 2900 goto done; 2901 } 2902 } 2903 2904 /* 2905 * We did not find an entry for the given margin. 2906 */ 2907 if (p == NULL) { 2908 err = ENOENT; 2909 goto done; 2910 } 2911 2912 ASSERT(p->mmr_ref == 0); 2913 2914 /* 2915 * Remove it from the list. 2916 */ 2917 *pp = p->mmr_nextp; 2918 kmem_free(p, sizeof (mac_margin_req_t)); 2919 done: 2920 rw_exit(&(mip->mi_rw_lock)); 2921 return (err); 2922 } 2923 2924 boolean_t 2925 mac_margin_update(mac_handle_t mh, uint32_t margin) 2926 { 2927 mac_impl_t *mip = (mac_impl_t *)mh; 2928 uint32_t margin_needed = 0; 2929 2930 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2931 2932 if (mip->mi_mmrp != NULL) 2933 margin_needed = mip->mi_mmrp->mmr_margin; 2934 2935 if (margin_needed <= margin) 2936 mip->mi_margin = margin; 2937 2938 rw_exit(&(mip->mi_rw_lock)); 2939 2940 if (margin_needed <= margin) 2941 i_mac_notify(mip, MAC_NOTE_MARGIN); 2942 2943 return (margin_needed <= margin); 2944 } 2945 2946 /* 2947 * MAC clients use this interface to request that a MAC device not change its 2948 * MTU below the specified amount. At this time, that amount must be within the 2949 * range of the device's current minimum and the device's current maximum. eg. a 2950 * client cannot request a 3000 byte MTU when the device's MTU is currently 2951 * 2000. 2952 * 2953 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2954 * current underlying mac's maximum for this mac client and return it in mtup. 2955 */ 2956 int 2957 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2958 { 2959 mac_impl_t *mip = (mac_impl_t *)mh; 2960 mac_mtu_req_t *prev, *cur; 2961 mac_propval_range_t mpr; 2962 int err; 2963 2964 i_mac_perim_enter(mip); 2965 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2966 2967 if (current == B_TRUE) 2968 *mtup = mip->mi_sdu_max; 2969 mpr.mpr_count = 1; 2970 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2971 if (err != 0) { 2972 rw_exit(&mip->mi_rw_lock); 2973 i_mac_perim_exit(mip); 2974 return (err); 2975 } 2976 2977 if (*mtup > mip->mi_sdu_max || 2978 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2979 rw_exit(&mip->mi_rw_lock); 2980 i_mac_perim_exit(mip); 2981 return (ENOTSUP); 2982 } 2983 2984 prev = NULL; 2985 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2986 if (*mtup == cur->mtr_mtu) { 2987 cur->mtr_ref++; 2988 rw_exit(&mip->mi_rw_lock); 2989 i_mac_perim_exit(mip); 2990 return (0); 2991 } 2992 2993 if (*mtup > cur->mtr_mtu) 2994 break; 2995 2996 prev = cur; 2997 } 2998 2999 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 3000 cur->mtr_mtu = *mtup; 3001 cur->mtr_ref = 1; 3002 if (prev != NULL) { 3003 cur->mtr_nextp = prev->mtr_nextp; 3004 prev->mtr_nextp = cur; 3005 } else { 3006 cur->mtr_nextp = mip->mi_mtrp; 3007 mip->mi_mtrp = cur; 3008 } 3009 3010 rw_exit(&mip->mi_rw_lock); 3011 i_mac_perim_exit(mip); 3012 return (0); 3013 } 3014 3015 int 3016 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 3017 { 3018 mac_impl_t *mip = (mac_impl_t *)mh; 3019 mac_mtu_req_t *cur, *prev; 3020 3021 i_mac_perim_enter(mip); 3022 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3023 3024 prev = NULL; 3025 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3026 if (cur->mtr_mtu == mtu) { 3027 ASSERT(cur->mtr_ref > 0); 3028 cur->mtr_ref--; 3029 if (cur->mtr_ref == 0) { 3030 if (prev == NULL) { 3031 mip->mi_mtrp = cur->mtr_nextp; 3032 } else { 3033 prev->mtr_nextp = cur->mtr_nextp; 3034 } 3035 kmem_free(cur, sizeof (mac_mtu_req_t)); 3036 } 3037 rw_exit(&mip->mi_rw_lock); 3038 i_mac_perim_exit(mip); 3039 return (0); 3040 } 3041 3042 prev = cur; 3043 } 3044 3045 rw_exit(&mip->mi_rw_lock); 3046 i_mac_perim_exit(mip); 3047 return (ENOENT); 3048 } 3049 3050 /* 3051 * MAC Type Plugin functions. 3052 */ 3053 3054 mactype_t * 3055 mactype_getplugin(const char *pname) 3056 { 3057 mactype_t *mtype = NULL; 3058 boolean_t tried_modload = B_FALSE; 3059 3060 mutex_enter(&i_mactype_lock); 3061 3062 find_registered_mactype: 3063 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 3064 (mod_hash_val_t *)&mtype) != 0) { 3065 if (!tried_modload) { 3066 /* 3067 * If the plugin has not yet been loaded, then 3068 * attempt to load it now. If modload() succeeds, 3069 * the plugin should have registered using 3070 * mactype_register(), in which case we can go back 3071 * and attempt to find it again. 3072 */ 3073 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 3074 tried_modload = B_TRUE; 3075 goto find_registered_mactype; 3076 } 3077 } 3078 } else { 3079 /* 3080 * Note that there's no danger that the plugin we've loaded 3081 * could be unloaded between the modload() step and the 3082 * reference count bump here, as we're holding 3083 * i_mactype_lock, which mactype_unregister() also holds. 3084 */ 3085 atomic_inc_32(&mtype->mt_ref); 3086 } 3087 3088 mutex_exit(&i_mactype_lock); 3089 return (mtype); 3090 } 3091 3092 mactype_register_t * 3093 mactype_alloc(uint_t mactype_version) 3094 { 3095 mactype_register_t *mtrp; 3096 3097 /* 3098 * Make sure there isn't a version mismatch between the plugin and 3099 * the framework. In the future, if multiple versions are 3100 * supported, this check could become more sophisticated. 3101 */ 3102 if (mactype_version != MACTYPE_VERSION) 3103 return (NULL); 3104 3105 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 3106 mtrp->mtr_version = mactype_version; 3107 return (mtrp); 3108 } 3109 3110 void 3111 mactype_free(mactype_register_t *mtrp) 3112 { 3113 kmem_free(mtrp, sizeof (mactype_register_t)); 3114 } 3115 3116 int 3117 mactype_register(mactype_register_t *mtrp) 3118 { 3119 mactype_t *mtp; 3120 mactype_ops_t *ops = mtrp->mtr_ops; 3121 3122 /* Do some sanity checking before we register this MAC type. */ 3123 if (mtrp->mtr_ident == NULL || ops == NULL) 3124 return (EINVAL); 3125 3126 /* 3127 * Verify that all mandatory callbacks are set in the ops 3128 * vector. 3129 */ 3130 if (ops->mtops_unicst_verify == NULL || 3131 ops->mtops_multicst_verify == NULL || 3132 ops->mtops_sap_verify == NULL || 3133 ops->mtops_header == NULL || 3134 ops->mtops_header_info == NULL) { 3135 return (EINVAL); 3136 } 3137 3138 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 3139 mtp->mt_ident = mtrp->mtr_ident; 3140 mtp->mt_ops = *ops; 3141 mtp->mt_type = mtrp->mtr_mactype; 3142 mtp->mt_nativetype = mtrp->mtr_nativetype; 3143 mtp->mt_addr_length = mtrp->mtr_addrlen; 3144 if (mtrp->mtr_brdcst_addr != NULL) { 3145 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 3146 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 3147 mtrp->mtr_addrlen); 3148 } 3149 3150 mtp->mt_stats = mtrp->mtr_stats; 3151 mtp->mt_statcount = mtrp->mtr_statcount; 3152 3153 mtp->mt_mapping = mtrp->mtr_mapping; 3154 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 3155 3156 if (mod_hash_insert(i_mactype_hash, 3157 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 3158 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3159 kmem_free(mtp, sizeof (*mtp)); 3160 return (EEXIST); 3161 } 3162 return (0); 3163 } 3164 3165 int 3166 mactype_unregister(const char *ident) 3167 { 3168 mactype_t *mtp; 3169 mod_hash_val_t val; 3170 int err; 3171 3172 /* 3173 * Let's not allow MAC drivers to use this plugin while we're 3174 * trying to unregister it. Holding i_mactype_lock also prevents a 3175 * plugin from unregistering while a MAC driver is attempting to 3176 * hold a reference to it in i_mactype_getplugin(). 3177 */ 3178 mutex_enter(&i_mactype_lock); 3179 3180 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 3181 (mod_hash_val_t *)&mtp)) != 0) { 3182 /* A plugin is trying to unregister, but it never registered. */ 3183 err = ENXIO; 3184 goto done; 3185 } 3186 3187 if (mtp->mt_ref != 0) { 3188 err = EBUSY; 3189 goto done; 3190 } 3191 3192 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 3193 ASSERT(err == 0); 3194 if (err != 0) { 3195 /* This should never happen, thus the ASSERT() above. */ 3196 err = EINVAL; 3197 goto done; 3198 } 3199 ASSERT(mtp == (mactype_t *)val); 3200 3201 if (mtp->mt_brdcst_addr != NULL) 3202 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3203 kmem_free(mtp, sizeof (mactype_t)); 3204 done: 3205 mutex_exit(&i_mactype_lock); 3206 return (err); 3207 } 3208 3209 /* 3210 * Checks the size of the value size specified for a property as 3211 * part of a property operation. Returns B_TRUE if the size is 3212 * correct, B_FALSE otherwise. 3213 */ 3214 boolean_t 3215 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 3216 { 3217 uint_t minsize = 0; 3218 3219 if (is_range) 3220 return (valsize >= sizeof (mac_propval_range_t)); 3221 3222 switch (id) { 3223 case MAC_PROP_ZONE: 3224 minsize = sizeof (dld_ioc_zid_t); 3225 break; 3226 case MAC_PROP_AUTOPUSH: 3227 if (valsize != 0) 3228 minsize = sizeof (struct dlautopush); 3229 break; 3230 case MAC_PROP_TAGMODE: 3231 minsize = sizeof (link_tagmode_t); 3232 break; 3233 case MAC_PROP_RESOURCE: 3234 case MAC_PROP_RESOURCE_EFF: 3235 minsize = sizeof (mac_resource_props_t); 3236 break; 3237 case MAC_PROP_DUPLEX: 3238 minsize = sizeof (link_duplex_t); 3239 break; 3240 case MAC_PROP_SPEED: 3241 minsize = sizeof (uint64_t); 3242 break; 3243 case MAC_PROP_STATUS: 3244 minsize = sizeof (link_state_t); 3245 break; 3246 case MAC_PROP_AUTONEG: 3247 case MAC_PROP_EN_AUTONEG: 3248 minsize = sizeof (uint8_t); 3249 break; 3250 case MAC_PROP_MTU: 3251 case MAC_PROP_LLIMIT: 3252 case MAC_PROP_LDECAY: 3253 minsize = sizeof (uint32_t); 3254 break; 3255 case MAC_PROP_FLOWCTRL: 3256 minsize = sizeof (link_flowctrl_t); 3257 break; 3258 case MAC_PROP_ADV_5000FDX_CAP: 3259 case MAC_PROP_EN_5000FDX_CAP: 3260 case MAC_PROP_ADV_2500FDX_CAP: 3261 case MAC_PROP_EN_2500FDX_CAP: 3262 case MAC_PROP_ADV_100GFDX_CAP: 3263 case MAC_PROP_EN_100GFDX_CAP: 3264 case MAC_PROP_ADV_50GFDX_CAP: 3265 case MAC_PROP_EN_50GFDX_CAP: 3266 case MAC_PROP_ADV_40GFDX_CAP: 3267 case MAC_PROP_EN_40GFDX_CAP: 3268 case MAC_PROP_ADV_25GFDX_CAP: 3269 case MAC_PROP_EN_25GFDX_CAP: 3270 case MAC_PROP_ADV_10GFDX_CAP: 3271 case MAC_PROP_EN_10GFDX_CAP: 3272 case MAC_PROP_ADV_1000HDX_CAP: 3273 case MAC_PROP_EN_1000HDX_CAP: 3274 case MAC_PROP_ADV_100FDX_CAP: 3275 case MAC_PROP_EN_100FDX_CAP: 3276 case MAC_PROP_ADV_100HDX_CAP: 3277 case MAC_PROP_EN_100HDX_CAP: 3278 case MAC_PROP_ADV_10FDX_CAP: 3279 case MAC_PROP_EN_10FDX_CAP: 3280 case MAC_PROP_ADV_10HDX_CAP: 3281 case MAC_PROP_EN_10HDX_CAP: 3282 case MAC_PROP_ADV_100T4_CAP: 3283 case MAC_PROP_EN_100T4_CAP: 3284 minsize = sizeof (uint8_t); 3285 break; 3286 case MAC_PROP_PVID: 3287 minsize = sizeof (uint16_t); 3288 break; 3289 case MAC_PROP_IPTUN_HOPLIMIT: 3290 minsize = sizeof (uint32_t); 3291 break; 3292 case MAC_PROP_IPTUN_ENCAPLIMIT: 3293 minsize = sizeof (uint32_t); 3294 break; 3295 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3296 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3297 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3298 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3299 minsize = sizeof (uint_t); 3300 break; 3301 case MAC_PROP_WL_ESSID: 3302 minsize = sizeof (wl_linkstatus_t); 3303 break; 3304 case MAC_PROP_WL_BSSID: 3305 minsize = sizeof (wl_bssid_t); 3306 break; 3307 case MAC_PROP_WL_BSSTYPE: 3308 minsize = sizeof (wl_bss_type_t); 3309 break; 3310 case MAC_PROP_WL_LINKSTATUS: 3311 minsize = sizeof (wl_linkstatus_t); 3312 break; 3313 case MAC_PROP_WL_DESIRED_RATES: 3314 minsize = sizeof (wl_rates_t); 3315 break; 3316 case MAC_PROP_WL_SUPPORTED_RATES: 3317 minsize = sizeof (wl_rates_t); 3318 break; 3319 case MAC_PROP_WL_AUTH_MODE: 3320 minsize = sizeof (wl_authmode_t); 3321 break; 3322 case MAC_PROP_WL_ENCRYPTION: 3323 minsize = sizeof (wl_encryption_t); 3324 break; 3325 case MAC_PROP_WL_RSSI: 3326 minsize = sizeof (wl_rssi_t); 3327 break; 3328 case MAC_PROP_WL_PHY_CONFIG: 3329 minsize = sizeof (wl_phy_conf_t); 3330 break; 3331 case MAC_PROP_WL_CAPABILITY: 3332 minsize = sizeof (wl_capability_t); 3333 break; 3334 case MAC_PROP_WL_WPA: 3335 minsize = sizeof (wl_wpa_t); 3336 break; 3337 case MAC_PROP_WL_SCANRESULTS: 3338 minsize = sizeof (wl_wpa_ess_t); 3339 break; 3340 case MAC_PROP_WL_POWER_MODE: 3341 minsize = sizeof (wl_ps_mode_t); 3342 break; 3343 case MAC_PROP_WL_RADIO: 3344 minsize = sizeof (wl_radio_t); 3345 break; 3346 case MAC_PROP_WL_ESS_LIST: 3347 minsize = sizeof (wl_ess_list_t); 3348 break; 3349 case MAC_PROP_WL_KEY_TAB: 3350 minsize = sizeof (wl_wep_key_tab_t); 3351 break; 3352 case MAC_PROP_WL_CREATE_IBSS: 3353 minsize = sizeof (wl_create_ibss_t); 3354 break; 3355 case MAC_PROP_WL_SETOPTIE: 3356 minsize = sizeof (wl_wpa_ie_t); 3357 break; 3358 case MAC_PROP_WL_DELKEY: 3359 minsize = sizeof (wl_del_key_t); 3360 break; 3361 case MAC_PROP_WL_KEY: 3362 minsize = sizeof (wl_key_t); 3363 break; 3364 case MAC_PROP_WL_MLME: 3365 minsize = sizeof (wl_mlme_t); 3366 break; 3367 case MAC_PROP_VN_PROMISC_FILTERED: 3368 minsize = sizeof (boolean_t); 3369 break; 3370 } 3371 3372 return (valsize >= minsize); 3373 } 3374 3375 /* 3376 * mac_set_prop() sets MAC or hardware driver properties: 3377 * 3378 * - MAC-managed properties such as resource properties include maxbw, 3379 * priority, and cpu binding list, as well as the default port VID 3380 * used by bridging. These properties are consumed by the MAC layer 3381 * itself and not passed down to the driver. For resource control 3382 * properties, this function invokes mac_set_resources() which will 3383 * cache the property value in mac_impl_t and may call 3384 * mac_client_set_resource() to update property value of the primary 3385 * mac client, if it exists. 3386 * 3387 * - Properties which act on the hardware and must be passed to the 3388 * driver, such as MTU, through the driver's mc_setprop() entry point. 3389 */ 3390 int 3391 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3392 uint_t valsize) 3393 { 3394 int err = ENOTSUP; 3395 mac_impl_t *mip = (mac_impl_t *)mh; 3396 3397 ASSERT(MAC_PERIM_HELD(mh)); 3398 3399 switch (id) { 3400 case MAC_PROP_RESOURCE: { 3401 mac_resource_props_t *mrp; 3402 3403 /* call mac_set_resources() for MAC properties */ 3404 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3405 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3406 bcopy(val, mrp, sizeof (*mrp)); 3407 err = mac_set_resources(mh, mrp); 3408 kmem_free(mrp, sizeof (*mrp)); 3409 break; 3410 } 3411 3412 case MAC_PROP_PVID: 3413 ASSERT(valsize >= sizeof (uint16_t)); 3414 if (mip->mi_state_flags & MIS_IS_VNIC) 3415 return (EINVAL); 3416 err = mac_set_pvid(mh, *(uint16_t *)val); 3417 break; 3418 3419 case MAC_PROP_MTU: { 3420 uint32_t mtu; 3421 3422 ASSERT(valsize >= sizeof (uint32_t)); 3423 bcopy(val, &mtu, sizeof (mtu)); 3424 err = mac_set_mtu(mh, mtu, NULL); 3425 break; 3426 } 3427 3428 case MAC_PROP_LLIMIT: 3429 case MAC_PROP_LDECAY: { 3430 uint32_t learnval; 3431 3432 if (valsize < sizeof (learnval) || 3433 (mip->mi_state_flags & MIS_IS_VNIC)) 3434 return (EINVAL); 3435 bcopy(val, &learnval, sizeof (learnval)); 3436 if (learnval == 0 && id == MAC_PROP_LDECAY) 3437 return (EINVAL); 3438 if (id == MAC_PROP_LLIMIT) 3439 mip->mi_llimit = learnval; 3440 else 3441 mip->mi_ldecay = learnval; 3442 err = 0; 3443 break; 3444 } 3445 3446 default: 3447 /* For other driver properties, call driver's callback */ 3448 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3449 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3450 name, id, valsize, val); 3451 } 3452 } 3453 return (err); 3454 } 3455 3456 /* 3457 * mac_get_prop() gets MAC or device driver properties. 3458 * 3459 * If the property is a driver property, mac_get_prop() calls driver's callback 3460 * entry point to get it. 3461 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3462 * which returns the cached value in mac_impl_t. 3463 */ 3464 int 3465 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3466 uint_t valsize) 3467 { 3468 int err = ENOTSUP; 3469 mac_impl_t *mip = (mac_impl_t *)mh; 3470 uint_t rings; 3471 uint_t vlinks; 3472 3473 bzero(val, valsize); 3474 3475 switch (id) { 3476 case MAC_PROP_RESOURCE: { 3477 mac_resource_props_t *mrp; 3478 3479 /* If mac property, read from cache */ 3480 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3481 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3482 mac_get_resources(mh, mrp); 3483 bcopy(mrp, val, sizeof (*mrp)); 3484 kmem_free(mrp, sizeof (*mrp)); 3485 return (0); 3486 } 3487 case MAC_PROP_RESOURCE_EFF: { 3488 mac_resource_props_t *mrp; 3489 3490 /* If mac effective property, read from client */ 3491 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3492 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3493 mac_get_effective_resources(mh, mrp); 3494 bcopy(mrp, val, sizeof (*mrp)); 3495 kmem_free(mrp, sizeof (*mrp)); 3496 return (0); 3497 } 3498 3499 case MAC_PROP_PVID: 3500 ASSERT(valsize >= sizeof (uint16_t)); 3501 if (mip->mi_state_flags & MIS_IS_VNIC) 3502 return (EINVAL); 3503 *(uint16_t *)val = mac_get_pvid(mh); 3504 return (0); 3505 3506 case MAC_PROP_LLIMIT: 3507 case MAC_PROP_LDECAY: 3508 ASSERT(valsize >= sizeof (uint32_t)); 3509 if (mip->mi_state_flags & MIS_IS_VNIC) 3510 return (EINVAL); 3511 if (id == MAC_PROP_LLIMIT) 3512 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3513 else 3514 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3515 return (0); 3516 3517 case MAC_PROP_MTU: { 3518 uint32_t sdu; 3519 3520 ASSERT(valsize >= sizeof (uint32_t)); 3521 mac_sdu_get2(mh, NULL, &sdu, NULL); 3522 bcopy(&sdu, val, sizeof (sdu)); 3523 3524 return (0); 3525 } 3526 case MAC_PROP_STATUS: { 3527 link_state_t link_state; 3528 3529 if (valsize < sizeof (link_state)) 3530 return (EINVAL); 3531 link_state = mac_link_get(mh); 3532 bcopy(&link_state, val, sizeof (link_state)); 3533 3534 return (0); 3535 } 3536 3537 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3538 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3539 ASSERT(valsize >= sizeof (uint_t)); 3540 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3541 mac_rxavail_get(mh) : mac_txavail_get(mh); 3542 bcopy(&rings, val, sizeof (uint_t)); 3543 return (0); 3544 3545 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3546 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3547 ASSERT(valsize >= sizeof (uint_t)); 3548 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3549 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3550 bcopy(&vlinks, val, sizeof (uint_t)); 3551 return (0); 3552 3553 case MAC_PROP_RXRINGSRANGE: 3554 case MAC_PROP_TXRINGSRANGE: 3555 /* 3556 * The value for these properties are returned through 3557 * the MAC_PROP_RESOURCE property. 3558 */ 3559 return (0); 3560 3561 default: 3562 break; 3563 3564 } 3565 3566 /* If driver property, request from driver */ 3567 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3568 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3569 valsize, val); 3570 } 3571 3572 return (err); 3573 } 3574 3575 /* 3576 * Helper function to initialize the range structure for use in 3577 * mac_get_prop. If the type can be other than uint32, we can 3578 * pass that as an arg. 3579 */ 3580 static void 3581 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3582 { 3583 range->mpr_count = 1; 3584 range->mpr_type = MAC_PROPVAL_UINT32; 3585 range->mpr_range_uint32[0].mpur_min = min; 3586 range->mpr_range_uint32[0].mpur_max = max; 3587 } 3588 3589 /* 3590 * Returns information about the specified property, such as default 3591 * values or permissions. 3592 */ 3593 int 3594 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3595 void *default_val, uint_t default_size, mac_propval_range_t *range, 3596 uint_t *perm) 3597 { 3598 mac_prop_info_state_t state; 3599 mac_impl_t *mip = (mac_impl_t *)mh; 3600 uint_t max; 3601 3602 /* 3603 * A property is read/write by default unless the driver says 3604 * otherwise. 3605 */ 3606 if (perm != NULL) 3607 *perm = MAC_PROP_PERM_RW; 3608 3609 if (default_val != NULL) 3610 bzero(default_val, default_size); 3611 3612 /* 3613 * First, handle framework properties for which we don't need to 3614 * involve the driver. 3615 */ 3616 switch (id) { 3617 case MAC_PROP_RESOURCE: 3618 case MAC_PROP_PVID: 3619 case MAC_PROP_LLIMIT: 3620 case MAC_PROP_LDECAY: 3621 return (0); 3622 3623 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3624 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3625 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3626 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3627 if (perm != NULL) 3628 *perm = MAC_PROP_PERM_READ; 3629 return (0); 3630 3631 case MAC_PROP_RXRINGSRANGE: 3632 case MAC_PROP_TXRINGSRANGE: 3633 /* 3634 * Currently, we support range for RX and TX rings properties. 3635 * When we extend this support to maxbw, cpus and priority, 3636 * we should move this to mac_get_resources. 3637 * There is no default value for RX or TX rings. 3638 */ 3639 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3640 mac_is_vnic_primary(mh)) { 3641 /* 3642 * We don't support setting rings for a VLAN 3643 * data link because it shares its ring with the 3644 * primary MAC client. 3645 */ 3646 if (perm != NULL) 3647 *perm = MAC_PROP_PERM_READ; 3648 if (range != NULL) 3649 range->mpr_count = 0; 3650 } else if (range != NULL) { 3651 if (mip->mi_state_flags & MIS_IS_VNIC) 3652 mh = mac_get_lower_mac_handle(mh); 3653 mip = (mac_impl_t *)mh; 3654 if ((id == MAC_PROP_RXRINGSRANGE && 3655 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3656 (id == MAC_PROP_TXRINGSRANGE && 3657 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3658 if (id == MAC_PROP_RXRINGSRANGE) { 3659 if ((mac_rxhwlnksavail_get(mh) + 3660 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3661 /* 3662 * doesn't support groups or 3663 * rings 3664 */ 3665 range->mpr_count = 0; 3666 } else { 3667 /* 3668 * supports specifying groups, 3669 * but not rings 3670 */ 3671 _mac_set_range(range, 0, 0); 3672 } 3673 } else { 3674 if ((mac_txhwlnksavail_get(mh) + 3675 mac_txhwlnksrsvd_get(mh)) <= 1) { 3676 /* 3677 * doesn't support groups or 3678 * rings 3679 */ 3680 range->mpr_count = 0; 3681 } else { 3682 /* 3683 * supports specifying groups, 3684 * but not rings 3685 */ 3686 _mac_set_range(range, 0, 0); 3687 } 3688 } 3689 } else { 3690 max = id == MAC_PROP_RXRINGSRANGE ? 3691 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3692 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3693 if (max <= 1) { 3694 /* 3695 * doesn't support groups or 3696 * rings 3697 */ 3698 range->mpr_count = 0; 3699 } else { 3700 /* 3701 * -1 because we have to leave out the 3702 * default ring. 3703 */ 3704 _mac_set_range(range, 1, max - 1); 3705 } 3706 } 3707 } 3708 return (0); 3709 3710 case MAC_PROP_STATUS: 3711 if (perm != NULL) 3712 *perm = MAC_PROP_PERM_READ; 3713 return (0); 3714 } 3715 3716 /* 3717 * Get the property info from the driver if it implements the 3718 * property info entry point. 3719 */ 3720 bzero(&state, sizeof (state)); 3721 3722 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3723 state.pr_default = default_val; 3724 state.pr_default_size = default_size; 3725 3726 /* 3727 * The caller specifies the maximum number of ranges 3728 * it can accomodate using mpr_count. We don't touch 3729 * this value until the driver returns from its 3730 * mc_propinfo() callback, and ensure we don't exceed 3731 * this number of range as the driver defines 3732 * supported range from its mc_propinfo(). 3733 * 3734 * pr_range_cur_count keeps track of how many ranges 3735 * were defined by the driver from its mc_propinfo() 3736 * entry point. 3737 * 3738 * On exit, the user-specified range mpr_count returns 3739 * the number of ranges specified by the driver on 3740 * success, or the number of ranges it wanted to 3741 * define if that number of ranges could not be 3742 * accomodated by the specified range structure. In 3743 * the latter case, the caller will be able to 3744 * allocate a larger range structure, and query the 3745 * property again. 3746 */ 3747 state.pr_range_cur_count = 0; 3748 state.pr_range = range; 3749 3750 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3751 (mac_prop_info_handle_t)&state); 3752 3753 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3754 range->mpr_count = state.pr_range_cur_count; 3755 3756 /* 3757 * The operation could fail if the buffer supplied by 3758 * the user was too small for the range or default 3759 * value of the property. 3760 */ 3761 if (state.pr_errno != 0) 3762 return (state.pr_errno); 3763 3764 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3765 *perm = state.pr_perm; 3766 } 3767 3768 /* 3769 * The MAC layer may want to provide default values or allowed 3770 * ranges for properties if the driver does not provide a 3771 * property info entry point, or that entry point exists, but 3772 * it did not provide a default value or allowed ranges for 3773 * that property. 3774 */ 3775 switch (id) { 3776 case MAC_PROP_MTU: { 3777 uint32_t sdu; 3778 3779 mac_sdu_get2(mh, NULL, &sdu, NULL); 3780 3781 if (range != NULL && !(state.pr_flags & 3782 MAC_PROP_INFO_RANGE)) { 3783 /* MTU range */ 3784 _mac_set_range(range, sdu, sdu); 3785 } 3786 3787 if (default_val != NULL && !(state.pr_flags & 3788 MAC_PROP_INFO_DEFAULT)) { 3789 if (mip->mi_info.mi_media == DL_ETHER) 3790 sdu = ETHERMTU; 3791 /* default MTU value */ 3792 bcopy(&sdu, default_val, sizeof (sdu)); 3793 } 3794 } 3795 } 3796 3797 return (0); 3798 } 3799 3800 int 3801 mac_fastpath_disable(mac_handle_t mh) 3802 { 3803 mac_impl_t *mip = (mac_impl_t *)mh; 3804 3805 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3806 return (0); 3807 3808 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3809 } 3810 3811 void 3812 mac_fastpath_enable(mac_handle_t mh) 3813 { 3814 mac_impl_t *mip = (mac_impl_t *)mh; 3815 3816 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3817 return; 3818 3819 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3820 } 3821 3822 void 3823 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3824 { 3825 uint_t nprops, i; 3826 3827 if (priv_props == NULL) 3828 return; 3829 3830 nprops = 0; 3831 while (priv_props[nprops] != NULL) 3832 nprops++; 3833 if (nprops == 0) 3834 return; 3835 3836 3837 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3838 3839 for (i = 0; i < nprops; i++) { 3840 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3841 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3842 MAXLINKPROPNAME); 3843 } 3844 3845 mip->mi_priv_prop_count = nprops; 3846 } 3847 3848 void 3849 mac_unregister_priv_prop(mac_impl_t *mip) 3850 { 3851 uint_t i; 3852 3853 if (mip->mi_priv_prop_count == 0) { 3854 ASSERT(mip->mi_priv_prop == NULL); 3855 return; 3856 } 3857 3858 for (i = 0; i < mip->mi_priv_prop_count; i++) 3859 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3860 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3861 sizeof (char *)); 3862 3863 mip->mi_priv_prop = NULL; 3864 mip->mi_priv_prop_count = 0; 3865 } 3866 3867 /* 3868 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3869 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3870 * cases if MAC free's the ring structure after mac_stop_ring(), any 3871 * illegal access to the ring structure coming from the driver will panic 3872 * the system. In order to protect the system from such inadverent access, 3873 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3874 * When packets are received on free'd up rings, MAC (through the generation 3875 * count mechanism) will drop such packets. 3876 */ 3877 static mac_ring_t * 3878 mac_ring_alloc(mac_impl_t *mip) 3879 { 3880 mac_ring_t *ring; 3881 3882 mutex_enter(&mip->mi_ring_lock); 3883 if (mip->mi_ring_freelist != NULL) { 3884 ring = mip->mi_ring_freelist; 3885 mip->mi_ring_freelist = ring->mr_next; 3886 bzero(ring, sizeof (mac_ring_t)); 3887 mutex_exit(&mip->mi_ring_lock); 3888 } else { 3889 mutex_exit(&mip->mi_ring_lock); 3890 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3891 } 3892 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3893 return (ring); 3894 } 3895 3896 static void 3897 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3898 { 3899 ASSERT(ring->mr_state == MR_FREE); 3900 3901 mutex_enter(&mip->mi_ring_lock); 3902 ring->mr_state = MR_FREE; 3903 ring->mr_flag = 0; 3904 ring->mr_next = mip->mi_ring_freelist; 3905 ring->mr_mip = NULL; 3906 mip->mi_ring_freelist = ring; 3907 mac_ring_stat_delete(ring); 3908 mutex_exit(&mip->mi_ring_lock); 3909 } 3910 3911 static void 3912 mac_ring_freeall(mac_impl_t *mip) 3913 { 3914 mac_ring_t *ring_next; 3915 mutex_enter(&mip->mi_ring_lock); 3916 mac_ring_t *ring = mip->mi_ring_freelist; 3917 while (ring != NULL) { 3918 ring_next = ring->mr_next; 3919 kmem_cache_free(mac_ring_cache, ring); 3920 ring = ring_next; 3921 } 3922 mip->mi_ring_freelist = NULL; 3923 mutex_exit(&mip->mi_ring_lock); 3924 } 3925 3926 int 3927 mac_start_ring(mac_ring_t *ring) 3928 { 3929 int rv = 0; 3930 3931 ASSERT(ring->mr_state == MR_FREE); 3932 3933 if (ring->mr_start != NULL) { 3934 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3935 if (rv != 0) 3936 return (rv); 3937 } 3938 3939 ring->mr_state = MR_INUSE; 3940 return (rv); 3941 } 3942 3943 void 3944 mac_stop_ring(mac_ring_t *ring) 3945 { 3946 ASSERT(ring->mr_state == MR_INUSE); 3947 3948 if (ring->mr_stop != NULL) 3949 ring->mr_stop(ring->mr_driver); 3950 3951 ring->mr_state = MR_FREE; 3952 3953 /* 3954 * Increment the ring generation number for this ring. 3955 */ 3956 ring->mr_gen_num++; 3957 } 3958 3959 int 3960 mac_start_group(mac_group_t *group) 3961 { 3962 int rv = 0; 3963 3964 if (group->mrg_start != NULL) 3965 rv = group->mrg_start(group->mrg_driver); 3966 3967 return (rv); 3968 } 3969 3970 void 3971 mac_stop_group(mac_group_t *group) 3972 { 3973 if (group->mrg_stop != NULL) 3974 group->mrg_stop(group->mrg_driver); 3975 } 3976 3977 /* 3978 * Called from mac_start() on the default Rx group. Broadcast and multicast 3979 * packets are received only on the default group. Hence the default group 3980 * needs to be up even if the primary client is not up, for the other groups 3981 * to be functional. We do this by calling this function at mac_start time 3982 * itself. However the broadcast packets that are received can't make their 3983 * way beyond mac_rx until a mac client creates a broadcast flow. 3984 */ 3985 static int 3986 mac_start_group_and_rings(mac_group_t *group) 3987 { 3988 mac_ring_t *ring; 3989 int rv = 0; 3990 3991 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3992 if ((rv = mac_start_group(group)) != 0) 3993 return (rv); 3994 3995 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3996 ASSERT(ring->mr_state == MR_FREE); 3997 3998 if ((rv = mac_start_ring(ring)) != 0) 3999 goto error; 4000 4001 /* 4002 * When aggr_set_port_sdu() is called, it will remove 4003 * the port client's unicast address. This will cause 4004 * MAC to stop the default group's rings on the port 4005 * MAC. After it modifies the SDU, it will then re-add 4006 * the unicast address. At which time, this function is 4007 * called to start the default group's rings. Normally 4008 * this function would set the classify type to 4009 * MAC_SW_CLASSIFIER; but that will break aggr which 4010 * relies on the passthru classify mode being set for 4011 * correct delivery (see mac_rx_common()). To avoid 4012 * that, we check for a passthru callback and set the 4013 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was 4014 * before the rings were stopped. 4015 */ 4016 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ? 4017 MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER; 4018 } 4019 return (0); 4020 4021 error: 4022 mac_stop_group_and_rings(group); 4023 return (rv); 4024 } 4025 4026 /* Called from mac_stop on the default Rx group */ 4027 static void 4028 mac_stop_group_and_rings(mac_group_t *group) 4029 { 4030 mac_ring_t *ring; 4031 4032 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4033 if (ring->mr_state != MR_FREE) { 4034 mac_stop_ring(ring); 4035 ring->mr_flag = 0; 4036 ring->mr_classify_type = MAC_NO_CLASSIFIER; 4037 } 4038 } 4039 mac_stop_group(group); 4040 } 4041 4042 4043 static mac_ring_t * 4044 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 4045 mac_capab_rings_t *cap_rings) 4046 { 4047 mac_ring_t *ring, *rnext; 4048 mac_ring_info_t ring_info; 4049 ddi_intr_handle_t ddi_handle; 4050 4051 ring = mac_ring_alloc(mip); 4052 4053 /* Prepare basic information of ring */ 4054 4055 /* 4056 * Ring index is numbered to be unique across a particular device. 4057 * Ring index computation makes following assumptions: 4058 * - For drivers with static grouping (e.g. ixgbe, bge), 4059 * ring index exchanged with the driver (e.g. during mr_rget) 4060 * is unique only across the group the ring belongs to. 4061 * - Drivers with dynamic grouping (e.g. nxge), start 4062 * with single group (mrg_index = 0). 4063 */ 4064 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 4065 ring->mr_type = group->mrg_type; 4066 ring->mr_gh = (mac_group_handle_t)group; 4067 4068 /* Insert the new ring to the list. */ 4069 ring->mr_next = group->mrg_rings; 4070 group->mrg_rings = ring; 4071 4072 /* Zero to reuse the info data structure */ 4073 bzero(&ring_info, sizeof (ring_info)); 4074 4075 /* Query ring information from driver */ 4076 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 4077 index, &ring_info, (mac_ring_handle_t)ring); 4078 4079 ring->mr_info = ring_info; 4080 4081 /* 4082 * The interrupt handle could be shared among multiple rings. 4083 * Thus if there is a bunch of rings that are sharing an 4084 * interrupt, then only one ring among the bunch will be made 4085 * available for interrupt re-targeting; the rest will have 4086 * ddi_shared flag set to TRUE and would not be available for 4087 * be interrupt re-targeting. 4088 */ 4089 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 4090 rnext = ring->mr_next; 4091 while (rnext != NULL) { 4092 if (rnext->mr_info.mri_intr.mi_ddi_handle == 4093 ddi_handle) { 4094 /* 4095 * If default ring (mr_index == 0) is part 4096 * of a group of rings sharing an 4097 * interrupt, then set ddi_shared flag for 4098 * the default ring and give another ring 4099 * the chance to be re-targeted. 4100 */ 4101 if (rnext->mr_index == 0 && 4102 !rnext->mr_info.mri_intr.mi_ddi_shared) { 4103 rnext->mr_info.mri_intr.mi_ddi_shared = 4104 B_TRUE; 4105 } else { 4106 ring->mr_info.mri_intr.mi_ddi_shared = 4107 B_TRUE; 4108 } 4109 break; 4110 } 4111 rnext = rnext->mr_next; 4112 } 4113 /* 4114 * If rnext is NULL, then no matching ddi_handle was found. 4115 * Rx rings get registered first. So if this is a Tx ring, 4116 * then go through all the Rx rings and see if there is a 4117 * matching ddi handle. 4118 */ 4119 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 4120 mac_compare_ddi_handle(mip->mi_rx_groups, 4121 mip->mi_rx_group_count, ring); 4122 } 4123 } 4124 4125 /* Update ring's status */ 4126 ring->mr_state = MR_FREE; 4127 ring->mr_flag = 0; 4128 4129 /* Update the ring count of the group */ 4130 group->mrg_cur_count++; 4131 4132 /* Create per ring kstats */ 4133 if (ring->mr_stat != NULL) { 4134 ring->mr_mip = mip; 4135 mac_ring_stat_create(ring); 4136 } 4137 4138 return (ring); 4139 } 4140 4141 /* 4142 * Rings are chained together for easy regrouping. 4143 */ 4144 static void 4145 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 4146 mac_capab_rings_t *cap_rings) 4147 { 4148 int index; 4149 4150 /* 4151 * Initialize all ring members of this group. Size of zero will not 4152 * enter the loop, so it's safe for initializing an empty group. 4153 */ 4154 for (index = size - 1; index >= 0; index--) 4155 (void) mac_init_ring(mip, group, index, cap_rings); 4156 } 4157 4158 int 4159 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4160 { 4161 mac_capab_rings_t *cap_rings; 4162 mac_group_t *group; 4163 mac_group_t *groups; 4164 mac_group_info_t group_info; 4165 uint_t group_free = 0; 4166 uint_t ring_left; 4167 mac_ring_t *ring; 4168 int g; 4169 int err = 0; 4170 uint_t grpcnt; 4171 boolean_t pseudo_txgrp = B_FALSE; 4172 4173 switch (rtype) { 4174 case MAC_RING_TYPE_RX: 4175 ASSERT(mip->mi_rx_groups == NULL); 4176 4177 cap_rings = &mip->mi_rx_rings_cap; 4178 cap_rings->mr_type = MAC_RING_TYPE_RX; 4179 break; 4180 case MAC_RING_TYPE_TX: 4181 ASSERT(mip->mi_tx_groups == NULL); 4182 4183 cap_rings = &mip->mi_tx_rings_cap; 4184 cap_rings->mr_type = MAC_RING_TYPE_TX; 4185 break; 4186 default: 4187 ASSERT(B_FALSE); 4188 } 4189 4190 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 4191 return (0); 4192 grpcnt = cap_rings->mr_gnum; 4193 4194 /* 4195 * If we have multiple TX rings, but only one TX group, we can 4196 * create pseudo TX groups (one per TX ring) in the MAC layer, 4197 * except for an aggr. For an aggr currently we maintain only 4198 * one group with all the rings (for all its ports), going 4199 * forwards we might change this. 4200 */ 4201 if (rtype == MAC_RING_TYPE_TX && 4202 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 4203 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 4204 /* 4205 * The -1 here is because we create a default TX group 4206 * with all the rings in it. 4207 */ 4208 grpcnt = cap_rings->mr_rnum - 1; 4209 pseudo_txgrp = B_TRUE; 4210 } 4211 4212 /* 4213 * Allocate a contiguous buffer for all groups. 4214 */ 4215 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 4216 4217 ring_left = cap_rings->mr_rnum; 4218 4219 /* 4220 * Get all ring groups if any, and get their ring members 4221 * if any. 4222 */ 4223 for (g = 0; g < grpcnt; g++) { 4224 group = groups + g; 4225 4226 /* Prepare basic information of the group */ 4227 group->mrg_index = g; 4228 group->mrg_type = rtype; 4229 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4230 group->mrg_mh = (mac_handle_t)mip; 4231 group->mrg_next = group + 1; 4232 4233 /* Zero to reuse the info data structure */ 4234 bzero(&group_info, sizeof (group_info)); 4235 4236 if (pseudo_txgrp) { 4237 /* 4238 * This is a pseudo group that we created, apart 4239 * from setting the state there is nothing to be 4240 * done. 4241 */ 4242 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4243 group_free++; 4244 continue; 4245 } 4246 /* Query group information from driver */ 4247 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4248 (mac_group_handle_t)group); 4249 4250 switch (cap_rings->mr_group_type) { 4251 case MAC_GROUP_TYPE_DYNAMIC: 4252 if (cap_rings->mr_gaddring == NULL || 4253 cap_rings->mr_gremring == NULL) { 4254 DTRACE_PROBE3( 4255 mac__init__rings_no_addremring, 4256 char *, mip->mi_name, 4257 mac_group_add_ring_t, 4258 cap_rings->mr_gaddring, 4259 mac_group_add_ring_t, 4260 cap_rings->mr_gremring); 4261 err = EINVAL; 4262 goto bail; 4263 } 4264 4265 switch (rtype) { 4266 case MAC_RING_TYPE_RX: 4267 /* 4268 * The first RX group must have non-zero 4269 * rings, and the following groups must 4270 * have zero rings. 4271 */ 4272 if (g == 0 && group_info.mgi_count == 0) { 4273 DTRACE_PROBE1( 4274 mac__init__rings__rx__def__zero, 4275 char *, mip->mi_name); 4276 err = EINVAL; 4277 goto bail; 4278 } 4279 if (g > 0 && group_info.mgi_count != 0) { 4280 DTRACE_PROBE3( 4281 mac__init__rings__rx__nonzero, 4282 char *, mip->mi_name, 4283 int, g, int, group_info.mgi_count); 4284 err = EINVAL; 4285 goto bail; 4286 } 4287 break; 4288 case MAC_RING_TYPE_TX: 4289 /* 4290 * All TX ring groups must have zero rings. 4291 */ 4292 if (group_info.mgi_count != 0) { 4293 DTRACE_PROBE3( 4294 mac__init__rings__tx__nonzero, 4295 char *, mip->mi_name, 4296 int, g, int, group_info.mgi_count); 4297 err = EINVAL; 4298 goto bail; 4299 } 4300 break; 4301 } 4302 break; 4303 case MAC_GROUP_TYPE_STATIC: 4304 /* 4305 * Note that an empty group is allowed, e.g., an aggr 4306 * would start with an empty group. 4307 */ 4308 break; 4309 default: 4310 /* unknown group type */ 4311 DTRACE_PROBE2(mac__init__rings__unknown__type, 4312 char *, mip->mi_name, 4313 int, cap_rings->mr_group_type); 4314 err = EINVAL; 4315 goto bail; 4316 } 4317 4318 4319 /* 4320 * The driver must register some form of hardware MAC 4321 * filter in order for Rx groups to support multiple 4322 * MAC addresses. 4323 */ 4324 if (rtype == MAC_RING_TYPE_RX && 4325 (group_info.mgi_addmac == NULL || 4326 group_info.mgi_remmac == NULL)) { 4327 DTRACE_PROBE1(mac__init__rings__no__mac__filter, 4328 char *, mip->mi_name); 4329 err = EINVAL; 4330 goto bail; 4331 } 4332 4333 /* Cache driver-supplied information */ 4334 group->mrg_info = group_info; 4335 4336 /* Update the group's status and group count. */ 4337 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4338 group_free++; 4339 4340 group->mrg_rings = NULL; 4341 group->mrg_cur_count = 0; 4342 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4343 ring_left -= group_info.mgi_count; 4344 4345 /* The current group size should be equal to default value */ 4346 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4347 } 4348 4349 /* Build up a dummy group for free resources as a pool */ 4350 group = groups + grpcnt; 4351 4352 /* Prepare basic information of the group */ 4353 group->mrg_index = -1; 4354 group->mrg_type = rtype; 4355 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4356 group->mrg_mh = (mac_handle_t)mip; 4357 group->mrg_next = NULL; 4358 4359 /* 4360 * If there are ungrouped rings, allocate a continuous buffer for 4361 * remaining resources. 4362 */ 4363 if (ring_left != 0) { 4364 group->mrg_rings = NULL; 4365 group->mrg_cur_count = 0; 4366 mac_init_group(mip, group, ring_left, cap_rings); 4367 4368 /* The current group size should be equal to ring_left */ 4369 ASSERT(group->mrg_cur_count == ring_left); 4370 4371 ring_left = 0; 4372 4373 /* Update this group's status */ 4374 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4375 } else { 4376 group->mrg_rings = NULL; 4377 } 4378 4379 ASSERT(ring_left == 0); 4380 4381 bail: 4382 4383 /* Cache other important information to finalize the initialization */ 4384 switch (rtype) { 4385 case MAC_RING_TYPE_RX: 4386 mip->mi_rx_group_type = cap_rings->mr_group_type; 4387 mip->mi_rx_group_count = cap_rings->mr_gnum; 4388 mip->mi_rx_groups = groups; 4389 mip->mi_rx_donor_grp = groups; 4390 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4391 /* 4392 * The default ring is reserved since it is 4393 * used for sending the broadcast etc. packets. 4394 */ 4395 mip->mi_rxrings_avail = 4396 mip->mi_rx_groups->mrg_cur_count - 1; 4397 mip->mi_rxrings_rsvd = 1; 4398 } 4399 /* 4400 * The default group cannot be reserved. It is used by 4401 * all the clients that do not have an exclusive group. 4402 */ 4403 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4404 mip->mi_rxhwclnt_used = 1; 4405 break; 4406 case MAC_RING_TYPE_TX: 4407 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4408 cap_rings->mr_group_type; 4409 mip->mi_tx_group_count = grpcnt; 4410 mip->mi_tx_group_free = group_free; 4411 mip->mi_tx_groups = groups; 4412 4413 group = groups + grpcnt; 4414 ring = group->mrg_rings; 4415 /* 4416 * The ring can be NULL in the case of aggr. Aggr will 4417 * have an empty Tx group which will get populated 4418 * later when pseudo Tx rings are added after 4419 * mac_register() is done. 4420 */ 4421 if (ring == NULL) { 4422 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4423 /* 4424 * pass the group to aggr so it can add Tx 4425 * rings to the group later. 4426 */ 4427 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4428 (mac_group_handle_t)group); 4429 /* 4430 * Even though there are no rings at this time 4431 * (rings will come later), set the group 4432 * state to registered. 4433 */ 4434 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4435 } else { 4436 /* 4437 * Ring 0 is used as the default one and it could be 4438 * assigned to a client as well. 4439 */ 4440 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4441 ring = ring->mr_next; 4442 ASSERT(ring->mr_index == 0); 4443 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4444 } 4445 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4446 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4447 /* 4448 * The default ring cannot be reserved. 4449 */ 4450 mip->mi_txrings_rsvd = 1; 4451 } 4452 /* 4453 * The default group cannot be reserved. It will be shared 4454 * by clients that do not have an exclusive group. 4455 */ 4456 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4457 mip->mi_txhwclnt_used = 1; 4458 break; 4459 default: 4460 ASSERT(B_FALSE); 4461 } 4462 4463 if (err != 0) 4464 mac_free_rings(mip, rtype); 4465 4466 return (err); 4467 } 4468 4469 /* 4470 * The ddi interrupt handle could be shared amoung rings. If so, compare 4471 * the new ring's ddi handle with the existing ones and set ddi_shared 4472 * flag. 4473 */ 4474 void 4475 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4476 { 4477 mac_group_t *group; 4478 mac_ring_t *ring; 4479 ddi_intr_handle_t ddi_handle; 4480 int g; 4481 4482 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4483 for (g = 0; g < grpcnt; g++) { 4484 group = groups + g; 4485 for (ring = group->mrg_rings; ring != NULL; 4486 ring = ring->mr_next) { 4487 if (ring == cring) 4488 continue; 4489 if (ring->mr_info.mri_intr.mi_ddi_handle == 4490 ddi_handle) { 4491 if (cring->mr_type == MAC_RING_TYPE_RX && 4492 ring->mr_index == 0 && 4493 !ring->mr_info.mri_intr.mi_ddi_shared) { 4494 ring->mr_info.mri_intr.mi_ddi_shared = 4495 B_TRUE; 4496 } else { 4497 cring->mr_info.mri_intr.mi_ddi_shared = 4498 B_TRUE; 4499 } 4500 return; 4501 } 4502 } 4503 } 4504 } 4505 4506 /* 4507 * Called to free all groups of particular type (RX or TX). It's assumed that 4508 * no clients are using these groups. 4509 */ 4510 void 4511 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4512 { 4513 mac_group_t *group, *groups; 4514 uint_t group_count; 4515 4516 switch (rtype) { 4517 case MAC_RING_TYPE_RX: 4518 if (mip->mi_rx_groups == NULL) 4519 return; 4520 4521 groups = mip->mi_rx_groups; 4522 group_count = mip->mi_rx_group_count; 4523 4524 mip->mi_rx_groups = NULL; 4525 mip->mi_rx_donor_grp = NULL; 4526 mip->mi_rx_group_count = 0; 4527 break; 4528 case MAC_RING_TYPE_TX: 4529 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4530 4531 if (mip->mi_tx_groups == NULL) 4532 return; 4533 4534 groups = mip->mi_tx_groups; 4535 group_count = mip->mi_tx_group_count; 4536 4537 mip->mi_tx_groups = NULL; 4538 mip->mi_tx_group_count = 0; 4539 mip->mi_tx_group_free = 0; 4540 mip->mi_default_tx_ring = NULL; 4541 break; 4542 default: 4543 ASSERT(B_FALSE); 4544 } 4545 4546 for (group = groups; group != NULL; group = group->mrg_next) { 4547 mac_ring_t *ring; 4548 4549 if (group->mrg_cur_count == 0) 4550 continue; 4551 4552 ASSERT(group->mrg_rings != NULL); 4553 4554 while ((ring = group->mrg_rings) != NULL) { 4555 group->mrg_rings = ring->mr_next; 4556 mac_ring_free(mip, ring); 4557 } 4558 } 4559 4560 /* Free all the cached rings */ 4561 mac_ring_freeall(mip); 4562 /* Free the block of group data strutures */ 4563 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4564 } 4565 4566 /* 4567 * Associate the VLAN filter to the receive group. 4568 */ 4569 int 4570 mac_group_addvlan(mac_group_t *group, uint16_t vlan) 4571 { 4572 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4573 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL); 4574 4575 if (vlan > VLAN_ID_MAX) 4576 return (EINVAL); 4577 4578 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4579 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan)); 4580 } 4581 4582 /* 4583 * Dissociate the VLAN from the receive group. 4584 */ 4585 int 4586 mac_group_remvlan(mac_group_t *group, uint16_t vlan) 4587 { 4588 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4589 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL); 4590 4591 if (vlan > VLAN_ID_MAX) 4592 return (EINVAL); 4593 4594 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4595 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan)); 4596 } 4597 4598 /* 4599 * Associate a MAC address with a receive group. 4600 * 4601 * The return value of this function should always be checked properly, because 4602 * any type of failure could cause unexpected results. A group can be added 4603 * or removed with a MAC address only after it has been reserved. Ideally, 4604 * a successful reservation always leads to calling mac_group_addmac() to 4605 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4606 * always imply that the group is functioning abnormally. 4607 * 4608 * Currently this function is called everywhere, and it reflects assumptions 4609 * about MAC addresses in the implementation. CR 6735196. 4610 */ 4611 int 4612 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4613 { 4614 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4615 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL); 4616 4617 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4618 } 4619 4620 /* 4621 * Remove the association between MAC address and receive group. 4622 */ 4623 int 4624 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4625 { 4626 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4627 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL); 4628 4629 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4630 } 4631 4632 /* 4633 * This is the entry point for packets transmitted through the bridging code. 4634 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4635 * pointer may be NULL to select the default ring. 4636 */ 4637 mblk_t * 4638 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4639 { 4640 mac_handle_t mh; 4641 4642 /* 4643 * Once we take a reference on the bridge link, the bridge 4644 * module itself can't unload, so the callback pointers are 4645 * stable. 4646 */ 4647 mutex_enter(&mip->mi_bridge_lock); 4648 if ((mh = mip->mi_bridge_link) != NULL) 4649 mac_bridge_ref_cb(mh, B_TRUE); 4650 mutex_exit(&mip->mi_bridge_lock); 4651 if (mh == NULL) { 4652 MAC_RING_TX(mip, rh, mp, mp); 4653 } else { 4654 mp = mac_bridge_tx_cb(mh, rh, mp); 4655 mac_bridge_ref_cb(mh, B_FALSE); 4656 } 4657 4658 return (mp); 4659 } 4660 4661 /* 4662 * Find a ring from its index. 4663 */ 4664 mac_ring_handle_t 4665 mac_find_ring(mac_group_handle_t gh, int index) 4666 { 4667 mac_group_t *group = (mac_group_t *)gh; 4668 mac_ring_t *ring = group->mrg_rings; 4669 4670 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4671 if (ring->mr_index == index) 4672 break; 4673 4674 return ((mac_ring_handle_t)ring); 4675 } 4676 /* 4677 * Add a ring to an existing group. 4678 * 4679 * The ring must be either passed directly (for example if the ring 4680 * movement is initiated by the framework), or specified through a driver 4681 * index (for example when the ring is added by the driver. 4682 * 4683 * The caller needs to call mac_perim_enter() before calling this function. 4684 */ 4685 int 4686 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4687 { 4688 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4689 mac_capab_rings_t *cap_rings; 4690 boolean_t driver_call = (ring == NULL); 4691 mac_group_type_t group_type; 4692 int ret = 0; 4693 flow_entry_t *flent; 4694 4695 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4696 4697 switch (group->mrg_type) { 4698 case MAC_RING_TYPE_RX: 4699 cap_rings = &mip->mi_rx_rings_cap; 4700 group_type = mip->mi_rx_group_type; 4701 break; 4702 case MAC_RING_TYPE_TX: 4703 cap_rings = &mip->mi_tx_rings_cap; 4704 group_type = mip->mi_tx_group_type; 4705 break; 4706 default: 4707 ASSERT(B_FALSE); 4708 } 4709 4710 /* 4711 * There should be no ring with the same ring index in the target 4712 * group. 4713 */ 4714 ASSERT(mac_find_ring((mac_group_handle_t)group, 4715 driver_call ? index : ring->mr_index) == NULL); 4716 4717 if (driver_call) { 4718 /* 4719 * The function is called as a result of a request from 4720 * a driver to add a ring to an existing group, for example 4721 * from the aggregation driver. Allocate a new mac_ring_t 4722 * for that ring. 4723 */ 4724 ring = mac_init_ring(mip, group, index, cap_rings); 4725 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4726 } else { 4727 /* 4728 * The function is called as a result of a MAC layer request 4729 * to add a ring to an existing group. In this case the 4730 * ring is being moved between groups, which requires 4731 * the underlying driver to support dynamic grouping, 4732 * and the mac_ring_t already exists. 4733 */ 4734 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4735 ASSERT(group->mrg_driver == NULL || 4736 cap_rings->mr_gaddring != NULL); 4737 ASSERT(ring->mr_gh == NULL); 4738 } 4739 4740 /* 4741 * At this point the ring should not be in use, and it should be 4742 * of the right for the target group. 4743 */ 4744 ASSERT(ring->mr_state < MR_INUSE); 4745 ASSERT(ring->mr_srs == NULL); 4746 ASSERT(ring->mr_type == group->mrg_type); 4747 4748 if (!driver_call) { 4749 /* 4750 * Add the driver level hardware ring if the process was not 4751 * initiated by the driver, and the target group is not the 4752 * group. 4753 */ 4754 if (group->mrg_driver != NULL) { 4755 cap_rings->mr_gaddring(group->mrg_driver, 4756 ring->mr_driver, ring->mr_type); 4757 } 4758 4759 /* 4760 * Insert the ring ahead existing rings. 4761 */ 4762 ring->mr_next = group->mrg_rings; 4763 group->mrg_rings = ring; 4764 ring->mr_gh = (mac_group_handle_t)group; 4765 group->mrg_cur_count++; 4766 } 4767 4768 /* 4769 * If the group has not been actively used, we're done. 4770 */ 4771 if (group->mrg_index != -1 && 4772 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4773 return (0); 4774 4775 /* 4776 * Start the ring if needed. Failure causes to undo the grouping action. 4777 */ 4778 if (ring->mr_state != MR_INUSE) { 4779 if ((ret = mac_start_ring(ring)) != 0) { 4780 if (!driver_call) { 4781 cap_rings->mr_gremring(group->mrg_driver, 4782 ring->mr_driver, ring->mr_type); 4783 } 4784 group->mrg_cur_count--; 4785 group->mrg_rings = ring->mr_next; 4786 4787 ring->mr_gh = NULL; 4788 4789 if (driver_call) 4790 mac_ring_free(mip, ring); 4791 4792 return (ret); 4793 } 4794 } 4795 4796 /* 4797 * Set up SRS/SR according to the ring type. 4798 */ 4799 switch (ring->mr_type) { 4800 case MAC_RING_TYPE_RX: 4801 /* 4802 * Setup an SRS on top of the new ring if the group is 4803 * reserved for someone's exclusive use. 4804 */ 4805 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4806 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group); 4807 4808 VERIFY3P(mcip, !=, NULL); 4809 flent = mcip->mci_flent; 4810 VERIFY3S(flent->fe_rx_srs_cnt, >, 0); 4811 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4812 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4813 mac_rx_deliver, mcip, NULL, NULL); 4814 } else { 4815 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4816 } 4817 break; 4818 case MAC_RING_TYPE_TX: 4819 { 4820 mac_grp_client_t *mgcp = group->mrg_clients; 4821 mac_client_impl_t *mcip; 4822 mac_soft_ring_set_t *mac_srs; 4823 mac_srs_tx_t *tx; 4824 4825 if (MAC_GROUP_NO_CLIENT(group)) { 4826 if (ring->mr_state == MR_INUSE) 4827 mac_stop_ring(ring); 4828 ring->mr_flag = 0; 4829 break; 4830 } 4831 /* 4832 * If the rings are being moved to a group that has 4833 * clients using it, then add the new rings to the 4834 * clients SRS. 4835 */ 4836 while (mgcp != NULL) { 4837 boolean_t is_aggr; 4838 4839 mcip = mgcp->mgc_client; 4840 flent = mcip->mci_flent; 4841 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4842 mac_srs = MCIP_TX_SRS(mcip); 4843 tx = &mac_srs->srs_tx; 4844 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4845 /* 4846 * If we are growing from 1 to multiple rings. 4847 */ 4848 if (tx->st_mode == SRS_TX_BW || 4849 tx->st_mode == SRS_TX_SERIALIZE || 4850 tx->st_mode == SRS_TX_DEFAULT) { 4851 mac_ring_t *tx_ring = tx->st_arg2; 4852 4853 tx->st_arg2 = NULL; 4854 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4855 mac_tx_srs_add_ring(mac_srs, tx_ring); 4856 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4857 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4858 SRS_TX_BW_FANOUT; 4859 } else { 4860 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4861 SRS_TX_FANOUT; 4862 } 4863 tx->st_func = mac_tx_get_func(tx->st_mode); 4864 } 4865 mac_tx_srs_add_ring(mac_srs, ring); 4866 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4867 mac_rx_deliver, mcip, NULL, NULL); 4868 mac_tx_client_restart((mac_client_handle_t)mcip); 4869 mgcp = mgcp->mgc_next; 4870 } 4871 break; 4872 } 4873 default: 4874 ASSERT(B_FALSE); 4875 } 4876 /* 4877 * For aggr, the default ring will be NULL to begin with. If it 4878 * is NULL, then pick the first ring that gets added as the 4879 * default ring. Any ring in an aggregation can be removed at 4880 * any time (by the user action of removing a link) and if the 4881 * current default ring gets removed, then a new one gets 4882 * picked (see i_mac_group_rem_ring()). 4883 */ 4884 if (mip->mi_state_flags & MIS_IS_AGGR && 4885 mip->mi_default_tx_ring == NULL && 4886 ring->mr_type == MAC_RING_TYPE_TX) { 4887 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4888 } 4889 4890 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4891 return (0); 4892 } 4893 4894 /* 4895 * Remove a ring from it's current group. MAC internal function for dynamic 4896 * grouping. 4897 * 4898 * The caller needs to call mac_perim_enter() before calling this function. 4899 */ 4900 void 4901 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4902 boolean_t driver_call) 4903 { 4904 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4905 mac_capab_rings_t *cap_rings = NULL; 4906 mac_group_type_t group_type; 4907 4908 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4909 4910 ASSERT(mac_find_ring((mac_group_handle_t)group, 4911 ring->mr_index) == (mac_ring_handle_t)ring); 4912 ASSERT((mac_group_t *)ring->mr_gh == group); 4913 ASSERT(ring->mr_type == group->mrg_type); 4914 4915 if (ring->mr_state == MR_INUSE) 4916 mac_stop_ring(ring); 4917 switch (ring->mr_type) { 4918 case MAC_RING_TYPE_RX: 4919 group_type = mip->mi_rx_group_type; 4920 cap_rings = &mip->mi_rx_rings_cap; 4921 4922 /* 4923 * Only hardware classified packets hold a reference to the 4924 * ring all the way up the Rx path. mac_rx_srs_remove() 4925 * will take care of quiescing the Rx path and removing the 4926 * SRS. The software classified path neither holds a reference 4927 * nor any association with the ring in mac_rx. 4928 */ 4929 if (ring->mr_srs != NULL) { 4930 mac_rx_srs_remove(ring->mr_srs); 4931 ring->mr_srs = NULL; 4932 } 4933 4934 break; 4935 case MAC_RING_TYPE_TX: 4936 { 4937 mac_grp_client_t *mgcp; 4938 mac_client_impl_t *mcip; 4939 mac_soft_ring_set_t *mac_srs; 4940 mac_srs_tx_t *tx; 4941 mac_ring_t *rem_ring; 4942 mac_group_t *defgrp; 4943 uint_t ring_info = 0; 4944 4945 /* 4946 * For TX this function is invoked in three 4947 * cases: 4948 * 4949 * 1) In the case of a failure during the 4950 * initial creation of a group when a share is 4951 * associated with a MAC client. So the SRS is not 4952 * yet setup, and will be setup later after the 4953 * group has been reserved and populated. 4954 * 4955 * 2) From mac_release_tx_group() when freeing 4956 * a TX SRS. 4957 * 4958 * 3) In the case of aggr, when a port gets removed, 4959 * the pseudo Tx rings that it exposed gets removed. 4960 * 4961 * In the first two cases the SRS and its soft 4962 * rings are already quiesced. 4963 */ 4964 if (driver_call) { 4965 mac_client_impl_t *mcip; 4966 mac_soft_ring_set_t *mac_srs; 4967 mac_soft_ring_t *sringp; 4968 mac_srs_tx_t *srs_tx; 4969 4970 if (mip->mi_state_flags & MIS_IS_AGGR && 4971 mip->mi_default_tx_ring == 4972 (mac_ring_handle_t)ring) { 4973 /* pick a new default Tx ring */ 4974 mip->mi_default_tx_ring = 4975 (group->mrg_rings != ring) ? 4976 (mac_ring_handle_t)group->mrg_rings : 4977 (mac_ring_handle_t)(ring->mr_next); 4978 } 4979 /* Presently only aggr case comes here */ 4980 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4981 break; 4982 4983 mcip = MAC_GROUP_ONLY_CLIENT(group); 4984 ASSERT(mcip != NULL); 4985 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4986 mac_srs = MCIP_TX_SRS(mcip); 4987 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4988 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4989 srs_tx = &mac_srs->srs_tx; 4990 /* 4991 * Wakeup any callers blocked on this 4992 * Tx ring due to flow control. 4993 */ 4994 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4995 ASSERT(sringp != NULL); 4996 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4997 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4998 mac_tx_srs_del_ring(mac_srs, ring); 4999 mac_tx_client_restart((mac_client_handle_t)mcip); 5000 break; 5001 } 5002 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 5003 group_type = mip->mi_tx_group_type; 5004 cap_rings = &mip->mi_tx_rings_cap; 5005 /* 5006 * See if we need to take it out of the MAC clients using 5007 * this group 5008 */ 5009 if (MAC_GROUP_NO_CLIENT(group)) 5010 break; 5011 mgcp = group->mrg_clients; 5012 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5013 while (mgcp != NULL) { 5014 mcip = mgcp->mgc_client; 5015 mac_srs = MCIP_TX_SRS(mcip); 5016 tx = &mac_srs->srs_tx; 5017 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5018 /* 5019 * If we are here when removing rings from the 5020 * defgroup, mac_reserve_tx_ring would have 5021 * already deleted the ring from the MAC 5022 * clients in the group. 5023 */ 5024 if (group != defgrp) { 5025 mac_tx_invoke_callbacks(mcip, 5026 (mac_tx_cookie_t) 5027 mac_tx_srs_get_soft_ring(mac_srs, ring)); 5028 mac_tx_srs_del_ring(mac_srs, ring); 5029 } 5030 /* 5031 * Additionally, if we are left with only 5032 * one ring in the group after this, we need 5033 * to modify the mode etc. to. (We haven't 5034 * yet taken the ring out, so we check with 2). 5035 */ 5036 if (group->mrg_cur_count == 2) { 5037 if (ring->mr_next == NULL) 5038 rem_ring = group->mrg_rings; 5039 else 5040 rem_ring = ring->mr_next; 5041 mac_tx_invoke_callbacks(mcip, 5042 (mac_tx_cookie_t) 5043 mac_tx_srs_get_soft_ring(mac_srs, 5044 rem_ring)); 5045 mac_tx_srs_del_ring(mac_srs, rem_ring); 5046 if (rem_ring->mr_state != MR_INUSE) { 5047 (void) mac_start_ring(rem_ring); 5048 } 5049 tx->st_arg2 = (void *)rem_ring; 5050 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 5051 ring_info = mac_hwring_getinfo( 5052 (mac_ring_handle_t)rem_ring); 5053 /* 5054 * We are shrinking from multiple 5055 * to 1 ring. 5056 */ 5057 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5058 tx->st_mode = SRS_TX_BW; 5059 } else if (mac_tx_serialize || 5060 (ring_info & MAC_RING_TX_SERIALIZE)) { 5061 tx->st_mode = SRS_TX_SERIALIZE; 5062 } else { 5063 tx->st_mode = SRS_TX_DEFAULT; 5064 } 5065 tx->st_func = mac_tx_get_func(tx->st_mode); 5066 } 5067 mac_tx_client_restart((mac_client_handle_t)mcip); 5068 mgcp = mgcp->mgc_next; 5069 } 5070 break; 5071 } 5072 default: 5073 ASSERT(B_FALSE); 5074 } 5075 5076 /* 5077 * Remove the ring from the group. 5078 */ 5079 if (ring == group->mrg_rings) 5080 group->mrg_rings = ring->mr_next; 5081 else { 5082 mac_ring_t *pre; 5083 5084 pre = group->mrg_rings; 5085 while (pre->mr_next != ring) 5086 pre = pre->mr_next; 5087 pre->mr_next = ring->mr_next; 5088 } 5089 group->mrg_cur_count--; 5090 5091 if (!driver_call) { 5092 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 5093 ASSERT(group->mrg_driver == NULL || 5094 cap_rings->mr_gremring != NULL); 5095 5096 /* 5097 * Remove the driver level hardware ring. 5098 */ 5099 if (group->mrg_driver != NULL) { 5100 cap_rings->mr_gremring(group->mrg_driver, 5101 ring->mr_driver, ring->mr_type); 5102 } 5103 } 5104 5105 ring->mr_gh = NULL; 5106 if (driver_call) 5107 mac_ring_free(mip, ring); 5108 else 5109 ring->mr_flag = 0; 5110 } 5111 5112 /* 5113 * Move a ring to the target group. If needed, remove the ring from the group 5114 * that it currently belongs to. 5115 * 5116 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 5117 */ 5118 static int 5119 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 5120 { 5121 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 5122 int rv; 5123 5124 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5125 ASSERT(d_group != NULL); 5126 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh); 5127 5128 if (s_group == d_group) 5129 return (0); 5130 5131 /* 5132 * Remove it from current group first. 5133 */ 5134 if (s_group != NULL) 5135 i_mac_group_rem_ring(s_group, ring, B_FALSE); 5136 5137 /* 5138 * Add it to the new group. 5139 */ 5140 rv = i_mac_group_add_ring(d_group, ring, 0); 5141 if (rv != 0) { 5142 /* 5143 * Failed to add ring back to source group. If 5144 * that fails, the ring is stuck in limbo, log message. 5145 */ 5146 if (i_mac_group_add_ring(s_group, ring, 0)) { 5147 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 5148 mip->mi_name, (void *)ring); 5149 } 5150 } 5151 5152 return (rv); 5153 } 5154 5155 /* 5156 * Find a MAC address according to its value. 5157 */ 5158 mac_address_t * 5159 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 5160 { 5161 mac_address_t *map; 5162 5163 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5164 5165 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 5166 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 5167 break; 5168 } 5169 5170 return (map); 5171 } 5172 5173 /* 5174 * Check whether the MAC address is shared by multiple clients. 5175 */ 5176 boolean_t 5177 mac_check_macaddr_shared(mac_address_t *map) 5178 { 5179 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 5180 5181 return (map->ma_nusers > 1); 5182 } 5183 5184 /* 5185 * Remove the specified MAC address from the MAC address list and free it. 5186 */ 5187 static void 5188 mac_free_macaddr(mac_address_t *map) 5189 { 5190 mac_impl_t *mip = map->ma_mip; 5191 5192 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5193 VERIFY3P(mip->mi_addresses, !=, NULL); 5194 5195 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5196 VERIFY3P(map, !=, NULL); 5197 VERIFY3S(map->ma_nusers, ==, 0); 5198 VERIFY3P(map->ma_vlans, ==, NULL); 5199 5200 if (map == mip->mi_addresses) { 5201 mip->mi_addresses = map->ma_next; 5202 } else { 5203 mac_address_t *pre; 5204 5205 pre = mip->mi_addresses; 5206 while (pre->ma_next != map) 5207 pre = pre->ma_next; 5208 pre->ma_next = map->ma_next; 5209 } 5210 5211 kmem_free(map, sizeof (mac_address_t)); 5212 } 5213 5214 static mac_vlan_t * 5215 mac_find_vlan(mac_address_t *map, uint16_t vid) 5216 { 5217 mac_vlan_t *mvp; 5218 5219 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) { 5220 if (mvp->mv_vid == vid) 5221 return (mvp); 5222 } 5223 5224 return (NULL); 5225 } 5226 5227 static mac_vlan_t * 5228 mac_add_vlan(mac_address_t *map, uint16_t vid) 5229 { 5230 mac_vlan_t *mvp; 5231 5232 /* 5233 * We should never add the same {addr, VID} tuple more 5234 * than once, but let's be sure. 5235 */ 5236 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) 5237 VERIFY3U(mvp->mv_vid, !=, vid); 5238 5239 /* Add the VLAN to the head of the VLAN list. */ 5240 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP); 5241 mvp->mv_vid = vid; 5242 mvp->mv_next = map->ma_vlans; 5243 map->ma_vlans = mvp; 5244 5245 return (mvp); 5246 } 5247 5248 static void 5249 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp) 5250 { 5251 mac_vlan_t *pre; 5252 5253 if (map->ma_vlans == mvp) { 5254 map->ma_vlans = mvp->mv_next; 5255 } else { 5256 pre = map->ma_vlans; 5257 while (pre->mv_next != mvp) { 5258 pre = pre->mv_next; 5259 5260 /* 5261 * We've reached the end of the list without 5262 * finding mvp. 5263 */ 5264 VERIFY3P(pre, !=, NULL); 5265 } 5266 pre->mv_next = mvp->mv_next; 5267 } 5268 5269 kmem_free(mvp, sizeof (mac_vlan_t)); 5270 } 5271 5272 /* 5273 * Create a new mac_address_t if this is the first use of the address 5274 * or add a VID to an existing address. In either case, the 5275 * mac_address_t acts as a list of {addr, VID} tuples where each tuple 5276 * shares the same addr. If group is non-NULL then attempt to program 5277 * the MAC's HW filters for this group. Otherwise, if group is NULL, 5278 * then the MAC has no rings and there is nothing to program. 5279 */ 5280 int 5281 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr, 5282 uint16_t vid, boolean_t use_hw) 5283 { 5284 mac_address_t *map; 5285 mac_vlan_t *mvp; 5286 int err = 0; 5287 boolean_t allocated_map = B_FALSE; 5288 boolean_t hw_mac = B_FALSE; 5289 boolean_t hw_vlan = B_FALSE; 5290 5291 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5292 5293 map = mac_find_macaddr(mip, addr); 5294 5295 /* 5296 * If this is the first use of this MAC address then allocate 5297 * and initialize a new structure. 5298 */ 5299 if (map == NULL) { 5300 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5301 map->ma_len = mip->mi_type->mt_addr_length; 5302 bcopy(addr, map->ma_addr, map->ma_len); 5303 map->ma_nusers = 0; 5304 map->ma_group = group; 5305 map->ma_mip = mip; 5306 map->ma_untagged = B_FALSE; 5307 5308 /* Add the new MAC address to the head of the address list. */ 5309 map->ma_next = mip->mi_addresses; 5310 mip->mi_addresses = map; 5311 5312 allocated_map = B_TRUE; 5313 } 5314 5315 VERIFY(map->ma_group == NULL || map->ma_group == group); 5316 if (map->ma_group == NULL) 5317 map->ma_group = group; 5318 5319 if (vid == VLAN_ID_NONE) { 5320 map->ma_untagged = B_TRUE; 5321 mvp = NULL; 5322 } else { 5323 mvp = mac_add_vlan(map, vid); 5324 } 5325 5326 /* 5327 * Set the VLAN HW filter if: 5328 * 5329 * o the MAC's VLAN HW filtering is enabled, and 5330 * o the address does not currently rely on promisc mode. 5331 * 5332 * This is called even when the client specifies an untagged 5333 * address (VLAN_ID_NONE) because some MAC providers require 5334 * setting additional bits to accept untagged traffic when 5335 * VLAN HW filtering is enabled. 5336 */ 5337 if (MAC_GROUP_HW_VLAN(group) && 5338 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) { 5339 if ((err = mac_group_addvlan(group, vid)) != 0) 5340 goto bail; 5341 5342 hw_vlan = B_TRUE; 5343 } 5344 5345 VERIFY3S(map->ma_nusers, >=, 0); 5346 map->ma_nusers++; 5347 5348 /* 5349 * If this MAC address already has a HW filter then simply 5350 * increment the counter. 5351 */ 5352 if (map->ma_nusers > 1) 5353 return (0); 5354 5355 /* 5356 * All logic from here on out is executed during initial 5357 * creation only. 5358 */ 5359 VERIFY3S(map->ma_nusers, ==, 1); 5360 5361 /* 5362 * Activate this MAC address by adding it to the reserved group. 5363 */ 5364 if (group != NULL) { 5365 err = mac_group_addmac(group, (const uint8_t *)addr); 5366 5367 /* 5368 * If the driver is out of filters then we can 5369 * continue and use promisc mode. For any other error, 5370 * assume the driver is in a state where we can't 5371 * program the filters or use promisc mode; so we must 5372 * bail. 5373 */ 5374 if (err != 0 && err != ENOSPC) { 5375 map->ma_nusers--; 5376 goto bail; 5377 } 5378 5379 hw_mac = (err == 0); 5380 } 5381 5382 if (hw_mac) { 5383 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5384 return (0); 5385 } 5386 5387 /* 5388 * The MAC address addition failed. If the client requires a 5389 * hardware classified MAC address, fail the operation. This 5390 * feature is only used by sun4v vsw. 5391 */ 5392 if (use_hw && !hw_mac) { 5393 err = ENOSPC; 5394 map->ma_nusers--; 5395 goto bail; 5396 } 5397 5398 /* 5399 * If we reach this point then either the MAC doesn't have 5400 * RINGS capability or we are out of MAC address HW filters. 5401 * In any case we must put the MAC into promiscuous mode. 5402 */ 5403 VERIFY(group == NULL || !hw_mac); 5404 5405 /* 5406 * The one exception is the primary address. A non-RINGS 5407 * driver filters the primary address by default; promisc mode 5408 * is not needed. 5409 */ 5410 if ((group == NULL) && 5411 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5412 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5413 return (0); 5414 } 5415 5416 /* 5417 * Enable promiscuous mode in order to receive traffic to the 5418 * new MAC address. All existing HW filters still send their 5419 * traffic to their respective group/SRSes. But with promisc 5420 * enabled all unknown traffic is delivered to the default 5421 * group where it is SW classified via mac_rx_classify(). 5422 */ 5423 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5424 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5425 return (0); 5426 } 5427 5428 /* 5429 * We failed to set promisc mode and we are about to free 'map'. 5430 */ 5431 map->ma_nusers = 0; 5432 5433 bail: 5434 if (hw_vlan) { 5435 int err2 = mac_group_remvlan(group, vid); 5436 5437 if (err2 != 0) { 5438 cmn_err(CE_WARN, "Failed to remove VLAN %u from group" 5439 " %d on MAC %s: %d.", vid, group->mrg_index, 5440 mip->mi_name, err2); 5441 } 5442 } 5443 5444 if (mvp != NULL) 5445 mac_rem_vlan(map, mvp); 5446 5447 if (allocated_map) 5448 mac_free_macaddr(map); 5449 5450 return (err); 5451 } 5452 5453 int 5454 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid) 5455 { 5456 mac_vlan_t *mvp; 5457 mac_impl_t *mip = map->ma_mip; 5458 mac_group_t *group = map->ma_group; 5459 int err = 0; 5460 5461 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5462 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5463 5464 if (vid == VLAN_ID_NONE) { 5465 map->ma_untagged = B_FALSE; 5466 mvp = NULL; 5467 } else { 5468 mvp = mac_find_vlan(map, vid); 5469 VERIFY3P(mvp, !=, NULL); 5470 } 5471 5472 if (MAC_GROUP_HW_VLAN(group) && 5473 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED && 5474 ((err = mac_group_remvlan(group, vid)) != 0)) 5475 return (err); 5476 5477 if (mvp != NULL) 5478 mac_rem_vlan(map, mvp); 5479 5480 /* 5481 * If it's not the last client using this MAC address, only update 5482 * the MAC clients count. 5483 */ 5484 map->ma_nusers--; 5485 if (map->ma_nusers > 0) 5486 return (0); 5487 5488 VERIFY3S(map->ma_nusers, ==, 0); 5489 5490 /* 5491 * The MAC address is no longer used by any MAC client, so 5492 * remove it from its associated group. Turn off promiscuous 5493 * mode if this is the last address relying on it. 5494 */ 5495 switch (map->ma_type) { 5496 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5497 /* 5498 * Don't free the preset primary address for drivers that 5499 * don't advertise RINGS capability. 5500 */ 5501 if (group == NULL) 5502 return (0); 5503 5504 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) { 5505 if (vid == VLAN_ID_NONE) 5506 map->ma_untagged = B_TRUE; 5507 else 5508 (void) mac_add_vlan(map, vid); 5509 5510 /* 5511 * If we fail to remove the MAC address HW 5512 * filter but then also fail to re-add the 5513 * VLAN HW filter then we are in a busted 5514 * state. We do our best by logging a warning 5515 * and returning the original 'err' that got 5516 * us here. At this point, traffic for this 5517 * address + VLAN combination will be dropped 5518 * until the user reboots the system. In the 5519 * future, it would be nice to have a system 5520 * that can compare the state of expected 5521 * classification according to mac to the 5522 * actual state of the provider, and report 5523 * and fix any inconsistencies. 5524 */ 5525 if (MAC_GROUP_HW_VLAN(group)) { 5526 int err2; 5527 5528 err2 = mac_group_addvlan(group, vid); 5529 if (err2 != 0) { 5530 cmn_err(CE_WARN, "Failed to readd VLAN" 5531 " %u to group %d on MAC %s: %d.", 5532 vid, group->mrg_index, mip->mi_name, 5533 err2); 5534 } 5535 } 5536 5537 map->ma_nusers = 1; 5538 return (err); 5539 } 5540 5541 map->ma_group = NULL; 5542 break; 5543 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5544 err = i_mac_promisc_set(mip, B_FALSE); 5545 break; 5546 default: 5547 panic("Unexpected ma_type 0x%x, file: %s, line %d", 5548 map->ma_type, __FILE__, __LINE__); 5549 } 5550 5551 if (err != 0) { 5552 map->ma_nusers = 1; 5553 return (err); 5554 } 5555 5556 /* 5557 * We created MAC address for the primary one at registration, so we 5558 * won't free it here. mac_fini_macaddr() will take care of it. 5559 */ 5560 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5561 mac_free_macaddr(map); 5562 5563 return (0); 5564 } 5565 5566 /* 5567 * Update an existing MAC address. The caller need to make sure that the new 5568 * value has not been used. 5569 */ 5570 int 5571 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5572 { 5573 mac_impl_t *mip = map->ma_mip; 5574 int err = 0; 5575 5576 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5577 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5578 5579 switch (map->ma_type) { 5580 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5581 /* 5582 * Update the primary address for drivers that are not 5583 * RINGS capable. 5584 */ 5585 if (mip->mi_rx_groups == NULL) { 5586 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5587 mac_addr); 5588 if (err != 0) 5589 return (err); 5590 break; 5591 } 5592 5593 /* 5594 * If this MAC address is not currently in use, 5595 * simply break out and update the value. 5596 */ 5597 if (map->ma_nusers == 0) 5598 break; 5599 5600 /* 5601 * Need to replace the MAC address associated with a group. 5602 */ 5603 err = mac_group_remmac(map->ma_group, map->ma_addr); 5604 if (err != 0) 5605 return (err); 5606 5607 err = mac_group_addmac(map->ma_group, mac_addr); 5608 5609 /* 5610 * Failure hints hardware error. The MAC layer needs to 5611 * have error notification facility to handle this. 5612 * Now, simply try to restore the value. 5613 */ 5614 if (err != 0) 5615 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5616 5617 break; 5618 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5619 /* 5620 * Need to do nothing more if in promiscuous mode. 5621 */ 5622 break; 5623 default: 5624 ASSERT(B_FALSE); 5625 } 5626 5627 /* 5628 * Successfully replaced the MAC address. 5629 */ 5630 if (err == 0) 5631 bcopy(mac_addr, map->ma_addr, map->ma_len); 5632 5633 return (err); 5634 } 5635 5636 /* 5637 * Freshen the MAC address with new value. Its caller must have updated the 5638 * hardware MAC address before calling this function. 5639 * This funcitons is supposed to be used to handle the MAC address change 5640 * notification from underlying drivers. 5641 */ 5642 void 5643 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5644 { 5645 mac_impl_t *mip = map->ma_mip; 5646 5647 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5648 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5649 5650 /* 5651 * Freshen the MAC address with new value. 5652 */ 5653 bcopy(mac_addr, map->ma_addr, map->ma_len); 5654 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5655 5656 /* 5657 * Update all MAC clients that share this MAC address. 5658 */ 5659 mac_unicast_update_clients(mip, map); 5660 } 5661 5662 /* 5663 * Set up the primary MAC address. 5664 */ 5665 void 5666 mac_init_macaddr(mac_impl_t *mip) 5667 { 5668 mac_address_t *map; 5669 5670 /* 5671 * The reference count is initialized to zero, until it's really 5672 * activated. 5673 */ 5674 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5675 map->ma_len = mip->mi_type->mt_addr_length; 5676 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5677 5678 /* 5679 * If driver advertises RINGS capability, it shouldn't have initialized 5680 * its primary MAC address. For other drivers, including VNIC, the 5681 * primary address must work after registration. 5682 */ 5683 if (mip->mi_rx_groups == NULL) 5684 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5685 5686 map->ma_mip = mip; 5687 5688 mip->mi_addresses = map; 5689 } 5690 5691 /* 5692 * Clean up the primary MAC address. Note, only one primary MAC address 5693 * is allowed. All other MAC addresses must have been freed appropriately. 5694 */ 5695 void 5696 mac_fini_macaddr(mac_impl_t *mip) 5697 { 5698 mac_address_t *map = mip->mi_addresses; 5699 5700 if (map == NULL) 5701 return; 5702 5703 /* 5704 * If mi_addresses is initialized, there should be exactly one 5705 * entry left on the list with no users. 5706 */ 5707 VERIFY3S(map->ma_nusers, ==, 0); 5708 VERIFY3P(map->ma_next, ==, NULL); 5709 VERIFY3P(map->ma_vlans, ==, NULL); 5710 5711 kmem_free(map, sizeof (mac_address_t)); 5712 mip->mi_addresses = NULL; 5713 } 5714 5715 /* 5716 * Logging related functions. 5717 * 5718 * Note that Kernel statistics have been extended to maintain fine 5719 * granularity of statistics viz. hardware lane, software lane, fanout 5720 * stats etc. However, extended accounting continues to support only 5721 * aggregate statistics like before. 5722 */ 5723 5724 /* Write the flow description to a netinfo_t record */ 5725 static netinfo_t * 5726 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5727 { 5728 netinfo_t *ninfo; 5729 net_desc_t *ndesc; 5730 flow_desc_t *fdesc; 5731 mac_resource_props_t *mrp; 5732 5733 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5734 if (ninfo == NULL) 5735 return (NULL); 5736 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5737 if (ndesc == NULL) { 5738 kmem_free(ninfo, sizeof (netinfo_t)); 5739 return (NULL); 5740 } 5741 5742 /* 5743 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5744 * Updates to the fe_flow_desc are done under the fe_lock 5745 */ 5746 mutex_enter(&flent->fe_lock); 5747 fdesc = &flent->fe_flow_desc; 5748 mrp = &flent->fe_resource_props; 5749 5750 ndesc->nd_name = flent->fe_flow_name; 5751 ndesc->nd_devname = mcip->mci_name; 5752 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5753 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5754 ndesc->nd_sap = htonl(fdesc->fd_sap); 5755 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5756 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5757 if (ndesc->nd_isv4) { 5758 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5759 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5760 } else { 5761 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5762 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5763 } 5764 ndesc->nd_sport = htons(fdesc->fd_local_port); 5765 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5766 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5767 mutex_exit(&flent->fe_lock); 5768 5769 ninfo->ni_record = ndesc; 5770 ninfo->ni_size = sizeof (net_desc_t); 5771 ninfo->ni_type = EX_NET_FLDESC_REC; 5772 5773 return (ninfo); 5774 } 5775 5776 /* Write the flow statistics to a netinfo_t record */ 5777 static netinfo_t * 5778 mac_write_flow_stats(flow_entry_t *flent) 5779 { 5780 netinfo_t *ninfo; 5781 net_stat_t *nstat; 5782 mac_soft_ring_set_t *mac_srs; 5783 mac_rx_stats_t *mac_rx_stat; 5784 mac_tx_stats_t *mac_tx_stat; 5785 int i; 5786 5787 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5788 if (ninfo == NULL) 5789 return (NULL); 5790 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5791 if (nstat == NULL) { 5792 kmem_free(ninfo, sizeof (netinfo_t)); 5793 return (NULL); 5794 } 5795 5796 nstat->ns_name = flent->fe_flow_name; 5797 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5798 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5799 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5800 5801 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5802 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5803 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5804 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5805 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5806 } 5807 5808 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5809 if (mac_srs != NULL) { 5810 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5811 5812 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5813 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5814 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5815 } 5816 5817 ninfo->ni_record = nstat; 5818 ninfo->ni_size = sizeof (net_stat_t); 5819 ninfo->ni_type = EX_NET_FLSTAT_REC; 5820 5821 return (ninfo); 5822 } 5823 5824 /* Write the link description to a netinfo_t record */ 5825 static netinfo_t * 5826 mac_write_link_desc(mac_client_impl_t *mcip) 5827 { 5828 netinfo_t *ninfo; 5829 net_desc_t *ndesc; 5830 flow_entry_t *flent = mcip->mci_flent; 5831 5832 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5833 if (ninfo == NULL) 5834 return (NULL); 5835 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5836 if (ndesc == NULL) { 5837 kmem_free(ninfo, sizeof (netinfo_t)); 5838 return (NULL); 5839 } 5840 5841 ndesc->nd_name = mcip->mci_name; 5842 ndesc->nd_devname = mcip->mci_name; 5843 ndesc->nd_isv4 = B_TRUE; 5844 /* 5845 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5846 * Updates to the fe_flow_desc are done under the fe_lock 5847 * after removing the flent from the flow table. 5848 */ 5849 mutex_enter(&flent->fe_lock); 5850 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5851 mutex_exit(&flent->fe_lock); 5852 5853 ninfo->ni_record = ndesc; 5854 ninfo->ni_size = sizeof (net_desc_t); 5855 ninfo->ni_type = EX_NET_LNDESC_REC; 5856 5857 return (ninfo); 5858 } 5859 5860 /* Write the link statistics to a netinfo_t record */ 5861 static netinfo_t * 5862 mac_write_link_stats(mac_client_impl_t *mcip) 5863 { 5864 netinfo_t *ninfo; 5865 net_stat_t *nstat; 5866 flow_entry_t *flent; 5867 mac_soft_ring_set_t *mac_srs; 5868 mac_rx_stats_t *mac_rx_stat; 5869 mac_tx_stats_t *mac_tx_stat; 5870 int i; 5871 5872 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5873 if (ninfo == NULL) 5874 return (NULL); 5875 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5876 if (nstat == NULL) { 5877 kmem_free(ninfo, sizeof (netinfo_t)); 5878 return (NULL); 5879 } 5880 5881 nstat->ns_name = mcip->mci_name; 5882 flent = mcip->mci_flent; 5883 if (flent != NULL) { 5884 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5885 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5886 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5887 5888 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5889 mac_rx_stat->mrs_pollbytes + 5890 mac_rx_stat->mrs_lclbytes; 5891 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5892 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5893 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5894 } 5895 } 5896 5897 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5898 if (mac_srs != NULL) { 5899 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5900 5901 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5902 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5903 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5904 } 5905 5906 ninfo->ni_record = nstat; 5907 ninfo->ni_size = sizeof (net_stat_t); 5908 ninfo->ni_type = EX_NET_LNSTAT_REC; 5909 5910 return (ninfo); 5911 } 5912 5913 typedef struct i_mac_log_state_s { 5914 boolean_t mi_last; 5915 int mi_fenable; 5916 int mi_lenable; 5917 list_t *mi_list; 5918 } i_mac_log_state_t; 5919 5920 /* 5921 * For a given flow, if the description has not been logged before, do it now. 5922 * If it is a VNIC, then we have collected information about it from the MAC 5923 * table, so skip it. 5924 * 5925 * Called through mac_flow_walk_nolock() 5926 * 5927 * Return 0 if successful. 5928 */ 5929 static int 5930 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5931 { 5932 mac_client_impl_t *mcip = flent->fe_mcip; 5933 i_mac_log_state_t *lstate = arg; 5934 netinfo_t *ninfo; 5935 5936 if (mcip == NULL) 5937 return (0); 5938 5939 /* 5940 * If the name starts with "vnic", and fe_user_generated is true (to 5941 * exclude the mcast and active flow entries created implicitly for 5942 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5943 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5944 */ 5945 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5946 (flent->fe_type & FLOW_USER) != 0) { 5947 return (0); 5948 } 5949 5950 if (!flent->fe_desc_logged) { 5951 /* 5952 * We don't return error because we want to continue the 5953 * walk in case this is the last walk which means we 5954 * need to reset fe_desc_logged in all the flows. 5955 */ 5956 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5957 return (0); 5958 list_insert_tail(lstate->mi_list, ninfo); 5959 flent->fe_desc_logged = B_TRUE; 5960 } 5961 5962 /* 5963 * Regardless of the error, we want to proceed in case we have to 5964 * reset fe_desc_logged. 5965 */ 5966 ninfo = mac_write_flow_stats(flent); 5967 if (ninfo == NULL) 5968 return (-1); 5969 5970 list_insert_tail(lstate->mi_list, ninfo); 5971 5972 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5973 flent->fe_desc_logged = B_FALSE; 5974 5975 return (0); 5976 } 5977 5978 /* 5979 * Log the description for each mac client of this mac_impl_t, if it 5980 * hasn't already been done. Additionally, log statistics for the link as 5981 * well. Walk the flow table and log information for each flow as well. 5982 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5983 * also fe_desc_logged, if flow logging is on) since we want to log the 5984 * description if and when logging is restarted. 5985 * 5986 * Return 0 upon success or -1 upon failure 5987 */ 5988 static int 5989 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5990 { 5991 mac_client_impl_t *mcip; 5992 netinfo_t *ninfo; 5993 5994 i_mac_perim_enter(mip); 5995 /* 5996 * Only walk the client list for NIC and etherstub 5997 */ 5998 if ((mip->mi_state_flags & MIS_DISABLED) || 5999 ((mip->mi_state_flags & MIS_IS_VNIC) && 6000 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 6001 i_mac_perim_exit(mip); 6002 return (0); 6003 } 6004 6005 for (mcip = mip->mi_clients_list; mcip != NULL; 6006 mcip = mcip->mci_client_next) { 6007 if (!MCIP_DATAPATH_SETUP(mcip)) 6008 continue; 6009 if (lstate->mi_lenable) { 6010 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 6011 ninfo = mac_write_link_desc(mcip); 6012 if (ninfo == NULL) { 6013 /* 6014 * We can't terminate it if this is the last 6015 * walk, else there might be some links with 6016 * mi_desc_logged set to true, which means 6017 * their description won't be logged the next 6018 * time logging is started (similarly for the 6019 * flows within such links). We can continue 6020 * without walking the flow table (i.e. to 6021 * set fe_desc_logged to false) because we 6022 * won't have written any flow stuff for this 6023 * link as we haven't logged the link itself. 6024 */ 6025 i_mac_perim_exit(mip); 6026 if (lstate->mi_last) 6027 return (0); 6028 else 6029 return (-1); 6030 } 6031 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 6032 list_insert_tail(lstate->mi_list, ninfo); 6033 } 6034 } 6035 6036 ninfo = mac_write_link_stats(mcip); 6037 if (ninfo == NULL && !lstate->mi_last) { 6038 i_mac_perim_exit(mip); 6039 return (-1); 6040 } 6041 list_insert_tail(lstate->mi_list, ninfo); 6042 6043 if (lstate->mi_last) 6044 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 6045 6046 if (lstate->mi_fenable) { 6047 if (mcip->mci_subflow_tab != NULL) { 6048 (void) mac_flow_walk_nolock( 6049 mcip->mci_subflow_tab, mac_log_flowinfo, 6050 lstate); 6051 } 6052 } 6053 } 6054 i_mac_perim_exit(mip); 6055 return (0); 6056 } 6057 6058 /* 6059 * modhash walker function to add a mac_impl_t to a list 6060 */ 6061 /*ARGSUSED*/ 6062 static uint_t 6063 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 6064 { 6065 list_t *list = (list_t *)arg; 6066 mac_impl_t *mip = (mac_impl_t *)val; 6067 6068 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 6069 list_insert_tail(list, mip); 6070 mip->mi_ref++; 6071 } 6072 6073 return (MH_WALK_CONTINUE); 6074 } 6075 6076 void 6077 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 6078 { 6079 list_t mac_impl_list; 6080 mac_impl_t *mip; 6081 netinfo_t *ninfo; 6082 6083 /* Create list of mac_impls */ 6084 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 6085 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 6086 mi_node)); 6087 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 6088 rw_exit(&i_mac_impl_lock); 6089 6090 /* Create log entries for each mac_impl */ 6091 for (mip = list_head(&mac_impl_list); mip != NULL; 6092 mip = list_next(&mac_impl_list, mip)) { 6093 if (i_mac_impl_log(mip, lstate) != 0) 6094 continue; 6095 } 6096 6097 /* Remove elements and destroy list of mac_impls */ 6098 rw_enter(&i_mac_impl_lock, RW_WRITER); 6099 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 6100 mip->mi_ref--; 6101 } 6102 rw_exit(&i_mac_impl_lock); 6103 list_destroy(&mac_impl_list); 6104 6105 /* 6106 * Write log entries to files outside of locks, free associated 6107 * structures, and remove entries from the list. 6108 */ 6109 while ((ninfo = list_head(net_log_list)) != NULL) { 6110 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 6111 list_remove(net_log_list, ninfo); 6112 kmem_free(ninfo->ni_record, ninfo->ni_size); 6113 kmem_free(ninfo, sizeof (*ninfo)); 6114 } 6115 list_destroy(net_log_list); 6116 } 6117 6118 /* 6119 * The timer thread that runs every mac_logging_interval seconds and logs 6120 * link and/or flow information. 6121 */ 6122 /* ARGSUSED */ 6123 void 6124 mac_log_linkinfo(void *arg) 6125 { 6126 i_mac_log_state_t lstate; 6127 list_t net_log_list; 6128 6129 list_create(&net_log_list, sizeof (netinfo_t), 6130 offsetof(netinfo_t, ni_link)); 6131 6132 rw_enter(&i_mac_impl_lock, RW_READER); 6133 if (!mac_flow_log_enable && !mac_link_log_enable) { 6134 rw_exit(&i_mac_impl_lock); 6135 return; 6136 } 6137 lstate.mi_fenable = mac_flow_log_enable; 6138 lstate.mi_lenable = mac_link_log_enable; 6139 lstate.mi_last = B_FALSE; 6140 lstate.mi_list = &net_log_list; 6141 6142 /* Write log entries for each mac_impl in the list */ 6143 i_mac_log_info(&net_log_list, &lstate); 6144 6145 if (mac_flow_log_enable || mac_link_log_enable) { 6146 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 6147 SEC_TO_TICK(mac_logging_interval)); 6148 } 6149 } 6150 6151 typedef struct i_mac_fastpath_state_s { 6152 boolean_t mf_disable; 6153 int mf_err; 6154 } i_mac_fastpath_state_t; 6155 6156 /* modhash walker function to enable or disable fastpath */ 6157 /*ARGSUSED*/ 6158 static uint_t 6159 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 6160 void *arg) 6161 { 6162 i_mac_fastpath_state_t *state = arg; 6163 mac_handle_t mh = (mac_handle_t)val; 6164 6165 if (state->mf_disable) 6166 state->mf_err = mac_fastpath_disable(mh); 6167 else 6168 mac_fastpath_enable(mh); 6169 6170 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 6171 } 6172 6173 /* 6174 * Start the logging timer. 6175 */ 6176 int 6177 mac_start_logusage(mac_logtype_t type, uint_t interval) 6178 { 6179 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 6180 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6181 int err; 6182 6183 rw_enter(&i_mac_impl_lock, RW_WRITER); 6184 switch (type) { 6185 case MAC_LOGTYPE_FLOW: 6186 if (mac_flow_log_enable) { 6187 rw_exit(&i_mac_impl_lock); 6188 return (0); 6189 } 6190 /* FALLTHRU */ 6191 case MAC_LOGTYPE_LINK: 6192 if (mac_link_log_enable) { 6193 rw_exit(&i_mac_impl_lock); 6194 return (0); 6195 } 6196 break; 6197 default: 6198 ASSERT(0); 6199 } 6200 6201 /* Disable fastpath */ 6202 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 6203 if ((err = dstate.mf_err) != 0) { 6204 /* Reenable fastpath */ 6205 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6206 rw_exit(&i_mac_impl_lock); 6207 return (err); 6208 } 6209 6210 switch (type) { 6211 case MAC_LOGTYPE_FLOW: 6212 mac_flow_log_enable = B_TRUE; 6213 /* FALLTHRU */ 6214 case MAC_LOGTYPE_LINK: 6215 mac_link_log_enable = B_TRUE; 6216 break; 6217 } 6218 6219 mac_logging_interval = interval; 6220 rw_exit(&i_mac_impl_lock); 6221 mac_log_linkinfo(NULL); 6222 return (0); 6223 } 6224 6225 /* 6226 * Stop the logging timer if both link and flow logging are turned off. 6227 */ 6228 void 6229 mac_stop_logusage(mac_logtype_t type) 6230 { 6231 i_mac_log_state_t lstate; 6232 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6233 list_t net_log_list; 6234 6235 list_create(&net_log_list, sizeof (netinfo_t), 6236 offsetof(netinfo_t, ni_link)); 6237 6238 rw_enter(&i_mac_impl_lock, RW_WRITER); 6239 6240 lstate.mi_fenable = mac_flow_log_enable; 6241 lstate.mi_lenable = mac_link_log_enable; 6242 lstate.mi_list = &net_log_list; 6243 6244 /* Last walk */ 6245 lstate.mi_last = B_TRUE; 6246 6247 switch (type) { 6248 case MAC_LOGTYPE_FLOW: 6249 if (lstate.mi_fenable) { 6250 ASSERT(mac_link_log_enable); 6251 mac_flow_log_enable = B_FALSE; 6252 mac_link_log_enable = B_FALSE; 6253 break; 6254 } 6255 /* FALLTHRU */ 6256 case MAC_LOGTYPE_LINK: 6257 if (!lstate.mi_lenable || mac_flow_log_enable) { 6258 rw_exit(&i_mac_impl_lock); 6259 return; 6260 } 6261 mac_link_log_enable = B_FALSE; 6262 break; 6263 default: 6264 ASSERT(0); 6265 } 6266 6267 /* Reenable fastpath */ 6268 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6269 6270 (void) untimeout(mac_logging_timer); 6271 mac_logging_timer = NULL; 6272 6273 /* Write log entries for each mac_impl in the list */ 6274 i_mac_log_info(&net_log_list, &lstate); 6275 } 6276 6277 /* 6278 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 6279 */ 6280 void 6281 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 6282 { 6283 pri_t pri; 6284 int count; 6285 mac_soft_ring_set_t *mac_srs; 6286 6287 if (flent->fe_rx_srs_cnt <= 0) 6288 return; 6289 6290 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 6291 SRST_FLOW) { 6292 pri = FLOW_PRIORITY(mcip->mci_min_pri, 6293 mcip->mci_max_pri, 6294 flent->fe_resource_props.mrp_priority); 6295 } else { 6296 pri = mcip->mci_max_pri; 6297 } 6298 6299 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 6300 mac_srs = flent->fe_rx_srs[count]; 6301 mac_update_srs_priority(mac_srs, pri); 6302 } 6303 /* 6304 * If we have a Tx SRS, we need to modify all the threads associated 6305 * with it. 6306 */ 6307 if (flent->fe_tx_srs != NULL) 6308 mac_update_srs_priority(flent->fe_tx_srs, pri); 6309 } 6310 6311 /* 6312 * RX and TX rings are reserved according to different semantics depending 6313 * on the requests from the MAC clients and type of rings: 6314 * 6315 * On the Tx side, by default we reserve individual rings, independently from 6316 * the groups. 6317 * 6318 * On the Rx side, the reservation is at the granularity of the group 6319 * of rings, and used for v12n level 1 only. It has a special case for the 6320 * primary client. 6321 * 6322 * If a share is allocated to a MAC client, we allocate a TX group and an 6323 * RX group to the client, and assign TX rings and RX rings to these 6324 * groups according to information gathered from the driver through 6325 * the share capability. 6326 * 6327 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 6328 * to allocate individual rings out of a group and program the hw classifier 6329 * based on IP address or higher level criteria. 6330 */ 6331 6332 /* 6333 * mac_reserve_tx_ring() 6334 * Reserve a unused ring by marking it with MR_INUSE state. 6335 * As reserved, the ring is ready to function. 6336 * 6337 * Notes for Hybrid I/O: 6338 * 6339 * If a specific ring is needed, it is specified through the desired_ring 6340 * argument. Otherwise that argument is set to NULL. 6341 * If the desired ring was previous allocated to another client, this 6342 * function swaps it with a new ring from the group of unassigned rings. 6343 */ 6344 mac_ring_t * 6345 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 6346 { 6347 mac_group_t *group; 6348 mac_grp_client_t *mgcp; 6349 mac_client_impl_t *mcip; 6350 mac_soft_ring_set_t *srs; 6351 6352 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6353 6354 /* 6355 * Find an available ring and start it before changing its status. 6356 * The unassigned rings are at the end of the mi_tx_groups 6357 * array. 6358 */ 6359 group = MAC_DEFAULT_TX_GROUP(mip); 6360 6361 /* Can't take the default ring out of the default group */ 6362 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 6363 6364 if (desired_ring->mr_state == MR_FREE) { 6365 ASSERT(MAC_GROUP_NO_CLIENT(group)); 6366 if (mac_start_ring(desired_ring) != 0) 6367 return (NULL); 6368 return (desired_ring); 6369 } 6370 /* 6371 * There are clients using this ring, so let's move the clients 6372 * away from using this ring. 6373 */ 6374 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6375 mcip = mgcp->mgc_client; 6376 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6377 srs = MCIP_TX_SRS(mcip); 6378 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 6379 mac_tx_invoke_callbacks(mcip, 6380 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 6381 desired_ring)); 6382 mac_tx_srs_del_ring(srs, desired_ring); 6383 mac_tx_client_restart((mac_client_handle_t)mcip); 6384 } 6385 return (desired_ring); 6386 } 6387 6388 /* 6389 * For a non-default group with multiple clients, return the primary client. 6390 */ 6391 static mac_client_impl_t * 6392 mac_get_grp_primary(mac_group_t *grp) 6393 { 6394 mac_grp_client_t *mgcp = grp->mrg_clients; 6395 mac_client_impl_t *mcip; 6396 6397 while (mgcp != NULL) { 6398 mcip = mgcp->mgc_client; 6399 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 6400 return (mcip); 6401 mgcp = mgcp->mgc_next; 6402 } 6403 return (NULL); 6404 } 6405 6406 /* 6407 * Hybrid I/O specifies the ring that should be given to a share. 6408 * If the ring is already used by clients, then we need to release 6409 * the ring back to the default group so that we can give it to 6410 * the share. This means the clients using this ring now get a 6411 * replacement ring. If there aren't any replacement rings, this 6412 * function returns a failure. 6413 */ 6414 static int 6415 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 6416 mac_ring_t *ring, mac_ring_t **rings, int nrings) 6417 { 6418 mac_group_t *group = (mac_group_t *)ring->mr_gh; 6419 mac_resource_props_t *mrp; 6420 mac_client_impl_t *mcip; 6421 mac_group_t *defgrp; 6422 mac_ring_t *tring; 6423 mac_group_t *tgrp; 6424 int i; 6425 int j; 6426 6427 mcip = MAC_GROUP_ONLY_CLIENT(group); 6428 if (mcip == NULL) 6429 mcip = mac_get_grp_primary(group); 6430 ASSERT(mcip != NULL); 6431 ASSERT(mcip->mci_share == 0); 6432 6433 mrp = MCIP_RESOURCE_PROPS(mcip); 6434 if (ring_type == MAC_RING_TYPE_RX) { 6435 defgrp = mip->mi_rx_donor_grp; 6436 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 6437 /* Need to put this mac client in the default group */ 6438 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 6439 return (ENOSPC); 6440 } else { 6441 /* 6442 * Switch this ring with some other ring from 6443 * the default group. 6444 */ 6445 for (tring = defgrp->mrg_rings; tring != NULL; 6446 tring = tring->mr_next) { 6447 if (tring->mr_index == 0) 6448 continue; 6449 for (j = 0; j < nrings; j++) { 6450 if (rings[j] == tring) 6451 break; 6452 } 6453 if (j >= nrings) 6454 break; 6455 } 6456 if (tring == NULL) 6457 return (ENOSPC); 6458 if (mac_group_mov_ring(mip, group, tring) != 0) 6459 return (ENOSPC); 6460 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6461 (void) mac_group_mov_ring(mip, defgrp, tring); 6462 return (ENOSPC); 6463 } 6464 } 6465 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6466 return (0); 6467 } 6468 6469 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6470 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6471 /* 6472 * See if we can get a spare ring to replace the default 6473 * ring. 6474 */ 6475 if (defgrp->mrg_cur_count == 1) { 6476 /* 6477 * Need to get a ring from another client, see if 6478 * there are any clients that can be moved to 6479 * the default group, thereby freeing some rings. 6480 */ 6481 for (i = 0; i < mip->mi_tx_group_count; i++) { 6482 tgrp = &mip->mi_tx_groups[i]; 6483 if (tgrp->mrg_state == 6484 MAC_GROUP_STATE_REGISTERED) { 6485 continue; 6486 } 6487 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6488 if (mcip == NULL) 6489 mcip = mac_get_grp_primary(tgrp); 6490 ASSERT(mcip != NULL); 6491 mrp = MCIP_RESOURCE_PROPS(mcip); 6492 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6493 ASSERT(tgrp->mrg_cur_count == 1); 6494 /* 6495 * If this ring is part of the 6496 * rings asked by the share we cannot 6497 * use it as the default ring. 6498 */ 6499 for (j = 0; j < nrings; j++) { 6500 if (rings[j] == tgrp->mrg_rings) 6501 break; 6502 } 6503 if (j < nrings) 6504 continue; 6505 mac_tx_client_quiesce( 6506 (mac_client_handle_t)mcip); 6507 mac_tx_switch_group(mcip, tgrp, 6508 defgrp); 6509 mac_tx_client_restart( 6510 (mac_client_handle_t)mcip); 6511 break; 6512 } 6513 } 6514 /* 6515 * All the rings are reserved, can't give up the 6516 * default ring. 6517 */ 6518 if (defgrp->mrg_cur_count <= 1) 6519 return (ENOSPC); 6520 } 6521 /* 6522 * Swap the default ring with another. 6523 */ 6524 for (tring = defgrp->mrg_rings; tring != NULL; 6525 tring = tring->mr_next) { 6526 /* 6527 * If this ring is part of the rings asked by the 6528 * share we cannot use it as the default ring. 6529 */ 6530 for (j = 0; j < nrings; j++) { 6531 if (rings[j] == tring) 6532 break; 6533 } 6534 if (j >= nrings) 6535 break; 6536 } 6537 ASSERT(tring != NULL); 6538 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6539 return (0); 6540 } 6541 /* 6542 * The Tx ring is with a group reserved by a MAC client. See if 6543 * we can swap it. 6544 */ 6545 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6546 mcip = MAC_GROUP_ONLY_CLIENT(group); 6547 if (mcip == NULL) 6548 mcip = mac_get_grp_primary(group); 6549 ASSERT(mcip != NULL); 6550 mrp = MCIP_RESOURCE_PROPS(mcip); 6551 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6552 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6553 ASSERT(group->mrg_cur_count == 1); 6554 /* Put this mac client in the default group */ 6555 mac_tx_switch_group(mcip, group, defgrp); 6556 } else { 6557 /* 6558 * Switch this ring with some other ring from 6559 * the default group. 6560 */ 6561 for (tring = defgrp->mrg_rings; tring != NULL; 6562 tring = tring->mr_next) { 6563 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6564 continue; 6565 /* 6566 * If this ring is part of the rings asked by the 6567 * share we cannot use it for swapping. 6568 */ 6569 for (j = 0; j < nrings; j++) { 6570 if (rings[j] == tring) 6571 break; 6572 } 6573 if (j >= nrings) 6574 break; 6575 } 6576 if (tring == NULL) { 6577 mac_tx_client_restart((mac_client_handle_t)mcip); 6578 return (ENOSPC); 6579 } 6580 if (mac_group_mov_ring(mip, group, tring) != 0) { 6581 mac_tx_client_restart((mac_client_handle_t)mcip); 6582 return (ENOSPC); 6583 } 6584 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6585 (void) mac_group_mov_ring(mip, defgrp, tring); 6586 mac_tx_client_restart((mac_client_handle_t)mcip); 6587 return (ENOSPC); 6588 } 6589 } 6590 mac_tx_client_restart((mac_client_handle_t)mcip); 6591 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6592 return (0); 6593 } 6594 6595 /* 6596 * Populate a zero-ring group with rings. If the share is non-NULL, 6597 * the rings are chosen according to that share. 6598 * Invoked after allocating a new RX or TX group through 6599 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6600 * Returns zero on success, an errno otherwise. 6601 */ 6602 int 6603 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6604 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6605 uint32_t ringcnt) 6606 { 6607 mac_ring_t **rings, *ring; 6608 uint_t nrings; 6609 int rv = 0, i = 0, j; 6610 6611 ASSERT((ring_type == MAC_RING_TYPE_RX && 6612 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6613 (ring_type == MAC_RING_TYPE_TX && 6614 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6615 6616 /* 6617 * First find the rings to allocate to the group. 6618 */ 6619 if (share != 0) { 6620 /* get rings through ms_squery() */ 6621 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6622 ASSERT(nrings != 0); 6623 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6624 KM_SLEEP); 6625 mip->mi_share_capab.ms_squery(share, ring_type, 6626 (mac_ring_handle_t *)rings, &nrings); 6627 for (i = 0; i < nrings; i++) { 6628 /* 6629 * If we have given this ring to a non-default 6630 * group, we need to check if we can get this 6631 * ring. 6632 */ 6633 ring = rings[i]; 6634 if (ring->mr_gh != (mac_group_handle_t)src_group || 6635 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6636 if (mac_reclaim_ring_from_grp(mip, ring_type, 6637 ring, rings, nrings) != 0) { 6638 rv = ENOSPC; 6639 goto bail; 6640 } 6641 } 6642 } 6643 } else { 6644 /* 6645 * Pick one ring from default group. 6646 * 6647 * for now pick the second ring which requires the first ring 6648 * at index 0 to stay in the default group, since it is the 6649 * ring which carries the multicast traffic. 6650 * We need a better way for a driver to indicate this, 6651 * for example a per-ring flag. 6652 */ 6653 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6654 KM_SLEEP); 6655 for (ring = src_group->mrg_rings; ring != NULL; 6656 ring = ring->mr_next) { 6657 if (ring_type == MAC_RING_TYPE_RX && 6658 ring->mr_index == 0) { 6659 continue; 6660 } 6661 if (ring_type == MAC_RING_TYPE_TX && 6662 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6663 continue; 6664 } 6665 rings[i++] = ring; 6666 if (i == ringcnt) 6667 break; 6668 } 6669 ASSERT(ring != NULL); 6670 nrings = i; 6671 /* Not enough rings as required */ 6672 if (nrings != ringcnt) { 6673 rv = ENOSPC; 6674 goto bail; 6675 } 6676 } 6677 6678 switch (ring_type) { 6679 case MAC_RING_TYPE_RX: 6680 if (src_group->mrg_cur_count - nrings < 1) { 6681 /* we ran out of rings */ 6682 rv = ENOSPC; 6683 goto bail; 6684 } 6685 6686 /* move receive rings to new group */ 6687 for (i = 0; i < nrings; i++) { 6688 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6689 if (rv != 0) { 6690 /* move rings back on failure */ 6691 for (j = 0; j < i; j++) { 6692 (void) mac_group_mov_ring(mip, 6693 src_group, rings[j]); 6694 } 6695 goto bail; 6696 } 6697 } 6698 break; 6699 6700 case MAC_RING_TYPE_TX: { 6701 mac_ring_t *tmp_ring; 6702 6703 /* move the TX rings to the new group */ 6704 for (i = 0; i < nrings; i++) { 6705 /* get the desired ring */ 6706 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6707 if (tmp_ring == NULL) { 6708 rv = ENOSPC; 6709 goto bail; 6710 } 6711 ASSERT(tmp_ring == rings[i]); 6712 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6713 if (rv != 0) { 6714 /* cleanup on failure */ 6715 for (j = 0; j < i; j++) { 6716 (void) mac_group_mov_ring(mip, 6717 MAC_DEFAULT_TX_GROUP(mip), 6718 rings[j]); 6719 } 6720 goto bail; 6721 } 6722 } 6723 break; 6724 } 6725 } 6726 6727 /* add group to share */ 6728 if (share != 0) 6729 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6730 6731 bail: 6732 /* free temporary array of rings */ 6733 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6734 6735 return (rv); 6736 } 6737 6738 void 6739 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6740 { 6741 mac_grp_client_t *mgcp; 6742 6743 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6744 if (mgcp->mgc_client == mcip) 6745 break; 6746 } 6747 6748 ASSERT(mgcp == NULL); 6749 6750 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6751 mgcp->mgc_client = mcip; 6752 mgcp->mgc_next = grp->mrg_clients; 6753 grp->mrg_clients = mgcp; 6754 } 6755 6756 void 6757 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6758 { 6759 mac_grp_client_t *mgcp, **pprev; 6760 6761 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6762 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6763 if (mgcp->mgc_client == mcip) 6764 break; 6765 } 6766 6767 ASSERT(mgcp != NULL); 6768 6769 *pprev = mgcp->mgc_next; 6770 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6771 } 6772 6773 /* 6774 * Return true if any client on this group explicitly asked for HW 6775 * rings (of type mask) or have a bound share. 6776 */ 6777 static boolean_t 6778 i_mac_clients_hw(mac_group_t *grp, uint32_t mask) 6779 { 6780 mac_grp_client_t *mgcip; 6781 mac_client_impl_t *mcip; 6782 mac_resource_props_t *mrp; 6783 6784 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) { 6785 mcip = mgcip->mgc_client; 6786 mrp = MCIP_RESOURCE_PROPS(mcip); 6787 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0) 6788 return (B_TRUE); 6789 } 6790 6791 return (B_FALSE); 6792 } 6793 6794 /* 6795 * Finds an available group and exclusively reserves it for a client. 6796 * The group is chosen to suit the flow's resource controls (bandwidth and 6797 * fanout requirements) and the address type. 6798 * If the requestor is the pimary MAC then return the group with the 6799 * largest number of rings, otherwise the default ring when available. 6800 */ 6801 mac_group_t * 6802 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6803 { 6804 mac_share_handle_t share = mcip->mci_share; 6805 mac_impl_t *mip = mcip->mci_mip; 6806 mac_group_t *grp = NULL; 6807 int i; 6808 int err = 0; 6809 mac_address_t *map; 6810 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6811 int nrings; 6812 int donor_grp_rcnt; 6813 boolean_t need_exclgrp = B_FALSE; 6814 int need_rings = 0; 6815 mac_group_t *candidate_grp = NULL; 6816 mac_client_impl_t *gclient; 6817 mac_group_t *donorgrp = NULL; 6818 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6819 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6820 boolean_t isprimary; 6821 6822 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6823 6824 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6825 6826 /* 6827 * Check if a group already has this MAC address (case of VLANs) 6828 * unless we are moving this MAC client from one group to another. 6829 */ 6830 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6831 if (map->ma_group != NULL) 6832 return (map->ma_group); 6833 } 6834 6835 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6836 return (NULL); 6837 6838 /* 6839 * If this client is requesting exclusive MAC access then 6840 * return NULL to ensure the client uses the default group. 6841 */ 6842 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6843 return (NULL); 6844 6845 /* For dynamic groups default unspecified to 1 */ 6846 if (rxhw && unspec && 6847 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6848 mrp->mrp_nrxrings = 1; 6849 } 6850 6851 /* 6852 * For static grouping we allow only specifying rings=0 and 6853 * unspecified 6854 */ 6855 if (rxhw && mrp->mrp_nrxrings > 0 && 6856 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6857 return (NULL); 6858 } 6859 6860 if (rxhw) { 6861 /* 6862 * We have explicitly asked for a group (with nrxrings, 6863 * if unspec). 6864 */ 6865 if (unspec || mrp->mrp_nrxrings > 0) { 6866 need_exclgrp = B_TRUE; 6867 need_rings = mrp->mrp_nrxrings; 6868 } else if (mrp->mrp_nrxrings == 0) { 6869 /* 6870 * We have asked for a software group. 6871 */ 6872 return (NULL); 6873 } 6874 } else if (isprimary && mip->mi_nactiveclients == 1 && 6875 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6876 /* 6877 * If the primary is the only active client on this 6878 * mip and we have not asked for any rings, we give 6879 * it the default group so that the primary gets to 6880 * use all the rings. 6881 */ 6882 return (NULL); 6883 } 6884 6885 /* The group that can donate rings */ 6886 donorgrp = mip->mi_rx_donor_grp; 6887 6888 /* 6889 * The number of rings that the default group can donate. 6890 * We need to leave at least one ring. 6891 */ 6892 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6893 6894 /* 6895 * Try to exclusively reserve a RX group. 6896 * 6897 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6898 * client), try to reserve the a non-default RX group and give 6899 * it all the rings from the donor group, except the default ring 6900 * 6901 * For flows requiring HW_RING (unicast flow of other clients), try 6902 * to reserve non-default RX group with the specified number of 6903 * rings, if available. 6904 * 6905 * For flows that have not asked for software or hardware ring, 6906 * try to reserve a non-default group with 1 ring, if available. 6907 */ 6908 for (i = 1; i < mip->mi_rx_group_count; i++) { 6909 grp = &mip->mi_rx_groups[i]; 6910 6911 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6912 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6913 6914 /* 6915 * Check if this group could be a candidate group for 6916 * eviction if we need a group for this MAC client, 6917 * but there aren't any. A candidate group is one 6918 * that didn't ask for an exclusive group, but got 6919 * one and it has enough rings (combined with what 6920 * the donor group can donate) for the new MAC 6921 * client. 6922 */ 6923 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6924 /* 6925 * If the donor group is not the default 6926 * group, don't bother looking for a candidate 6927 * group. If we don't have enough rings we 6928 * will check if the primary group can be 6929 * vacated. 6930 */ 6931 if (candidate_grp == NULL && 6932 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6933 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) && 6934 (unspec || 6935 (grp->mrg_cur_count + donor_grp_rcnt >= 6936 need_rings))) { 6937 candidate_grp = grp; 6938 } 6939 } 6940 continue; 6941 } 6942 /* 6943 * This group could already be SHARED by other multicast 6944 * flows on this client. In that case, the group would 6945 * be shared and has already been started. 6946 */ 6947 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6948 6949 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6950 (mac_start_group(grp) != 0)) { 6951 continue; 6952 } 6953 6954 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6955 break; 6956 ASSERT(grp->mrg_cur_count == 0); 6957 6958 /* 6959 * Populate the group. Rings should be taken 6960 * from the donor group. 6961 */ 6962 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6963 6964 /* 6965 * If the donor group can't donate, let's just walk and 6966 * see if someone can vacate a group, so that we have 6967 * enough rings for this, unless we already have 6968 * identified a candiate group.. 6969 */ 6970 if (nrings <= donor_grp_rcnt) { 6971 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6972 donorgrp, grp, share, nrings); 6973 if (err == 0) { 6974 /* 6975 * For a share i_mac_group_allocate_rings gets 6976 * the rings from the driver, let's populate 6977 * the property for the client now. 6978 */ 6979 if (share != 0) { 6980 mac_client_set_rings( 6981 (mac_client_handle_t)mcip, 6982 grp->mrg_cur_count, -1); 6983 } 6984 if (mac_is_primary_client(mcip) && !rxhw) 6985 mip->mi_rx_donor_grp = grp; 6986 break; 6987 } 6988 } 6989 6990 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6991 mip->mi_name, int, grp->mrg_index, int, err); 6992 6993 /* 6994 * It's a dynamic group but the grouping operation 6995 * failed. 6996 */ 6997 mac_stop_group(grp); 6998 } 6999 7000 /* We didn't find an exclusive group for this MAC client */ 7001 if (i >= mip->mi_rx_group_count) { 7002 7003 if (!need_exclgrp) 7004 return (NULL); 7005 7006 /* 7007 * If we found a candidate group then move the 7008 * existing MAC client from the candidate_group to the 7009 * default group and give the candidate_group to the 7010 * new MAC client. If we didn't find a candidate 7011 * group, then check if the primary is in its own 7012 * group and if it can make way for this MAC client. 7013 */ 7014 if (candidate_grp == NULL && 7015 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 7016 donorgrp->mrg_cur_count >= need_rings) { 7017 candidate_grp = donorgrp; 7018 } 7019 if (candidate_grp != NULL) { 7020 boolean_t prim_grp = B_FALSE; 7021 7022 /* 7023 * Switch the existing MAC client from the 7024 * candidate group to the default group. If 7025 * the candidate group is the donor group, 7026 * then after the switch we need to update the 7027 * donor group too. 7028 */ 7029 grp = candidate_grp; 7030 gclient = grp->mrg_clients->mgc_client; 7031 VERIFY3P(gclient, !=, NULL); 7032 if (grp == mip->mi_rx_donor_grp) 7033 prim_grp = B_TRUE; 7034 if (mac_rx_switch_group(gclient, grp, 7035 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 7036 return (NULL); 7037 } 7038 if (prim_grp) { 7039 mip->mi_rx_donor_grp = 7040 MAC_DEFAULT_RX_GROUP(mip); 7041 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 7042 } 7043 7044 /* 7045 * Now give this group with the required rings 7046 * to this MAC client. 7047 */ 7048 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7049 if (mac_start_group(grp) != 0) 7050 return (NULL); 7051 7052 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7053 return (grp); 7054 7055 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7056 ASSERT(grp->mrg_cur_count == 0); 7057 ASSERT(donor_grp_rcnt >= need_rings); 7058 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7059 donorgrp, grp, share, need_rings); 7060 if (err == 0) { 7061 /* 7062 * For a share i_mac_group_allocate_rings gets 7063 * the rings from the driver, let's populate 7064 * the property for the client now. 7065 */ 7066 if (share != 0) { 7067 mac_client_set_rings( 7068 (mac_client_handle_t)mcip, 7069 grp->mrg_cur_count, -1); 7070 } 7071 DTRACE_PROBE2(rx__group__reserved, 7072 char *, mip->mi_name, int, grp->mrg_index); 7073 return (grp); 7074 } 7075 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7076 mip->mi_name, int, grp->mrg_index, int, err); 7077 mac_stop_group(grp); 7078 } 7079 return (NULL); 7080 } 7081 ASSERT(grp != NULL); 7082 7083 DTRACE_PROBE2(rx__group__reserved, 7084 char *, mip->mi_name, int, grp->mrg_index); 7085 return (grp); 7086 } 7087 7088 /* 7089 * mac_rx_release_group() 7090 * 7091 * Release the group when it has no remaining clients. The group is 7092 * stopped and its shares are removed and all rings are assigned back 7093 * to default group. This should never be called against the default 7094 * group. 7095 */ 7096 void 7097 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 7098 { 7099 mac_impl_t *mip = mcip->mci_mip; 7100 mac_ring_t *ring; 7101 7102 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 7103 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE); 7104 7105 if (mip->mi_rx_donor_grp == group) 7106 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 7107 7108 /* 7109 * This is the case where there are no clients left. Any 7110 * SRS etc on this group have also be quiesced. 7111 */ 7112 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 7113 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 7114 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 7115 /* 7116 * Remove the SRS associated with the HW ring. 7117 * As a result, polling will be disabled. 7118 */ 7119 ring->mr_srs = NULL; 7120 } 7121 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 7122 ring->mr_state == MR_INUSE); 7123 if (ring->mr_state == MR_INUSE) { 7124 mac_stop_ring(ring); 7125 ring->mr_flag = 0; 7126 } 7127 } 7128 7129 /* remove group from share */ 7130 if (mcip->mci_share != 0) { 7131 mip->mi_share_capab.ms_sremove(mcip->mci_share, 7132 group->mrg_driver); 7133 } 7134 7135 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7136 mac_ring_t *ring; 7137 7138 /* 7139 * Rings were dynamically allocated to group. 7140 * Move rings back to default group. 7141 */ 7142 while ((ring = group->mrg_rings) != NULL) { 7143 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 7144 ring); 7145 } 7146 } 7147 mac_stop_group(group); 7148 /* 7149 * Possible improvement: See if we can assign the group just released 7150 * to a another client of the mip 7151 */ 7152 } 7153 7154 /* 7155 * Move the MAC address from fgrp to tgrp. 7156 */ 7157 static int 7158 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 7159 mac_group_t *tgrp) 7160 { 7161 mac_impl_t *mip = mcip->mci_mip; 7162 uint8_t maddr[MAXMACADDRLEN]; 7163 int err = 0; 7164 uint16_t vid; 7165 mac_unicast_impl_t *muip; 7166 boolean_t use_hw; 7167 7168 mac_rx_client_quiesce((mac_client_handle_t)mcip); 7169 VERIFY3P(mcip->mci_unicast, !=, NULL); 7170 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 7171 7172 /* 7173 * Does the client require MAC address hardware classifiction? 7174 */ 7175 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 7176 vid = i_mac_flow_vid(mcip->mci_flent); 7177 7178 /* 7179 * You can never move an address that is shared by multiple 7180 * clients. mac_datapath_setup() ensures that clients sharing 7181 * an address are placed on the default group. This guarantees 7182 * that a non-default group will only ever have one client and 7183 * thus make full use of HW filters. 7184 */ 7185 if (mac_check_macaddr_shared(mcip->mci_unicast)) 7186 return (EINVAL); 7187 7188 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid); 7189 7190 if (err != 0) { 7191 mac_rx_client_restart((mac_client_handle_t)mcip); 7192 return (err); 7193 } 7194 7195 /* 7196 * If this isn't the primary MAC address then the 7197 * mac_address_t has been freed by the last call to 7198 * mac_remove_macaddr_vlan(). In any case, NULL the reference 7199 * to avoid a dangling pointer. 7200 */ 7201 mcip->mci_unicast = NULL; 7202 7203 /* 7204 * We also have to NULL all the mui_map references -- sun4v 7205 * strikes again! 7206 */ 7207 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7208 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7209 muip->mui_map = NULL; 7210 rw_exit(&mcip->mci_rw_lock); 7211 7212 /* 7213 * Program the H/W Classifier first, if this fails we need not 7214 * proceed with the other stuff. 7215 */ 7216 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) { 7217 int err2; 7218 7219 /* Revert back the H/W Classifier */ 7220 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw); 7221 7222 if (err2 != 0) { 7223 cmn_err(CE_WARN, "Failed to revert HW classification" 7224 " on MAC %s, for client %s: %d.", mip->mi_name, 7225 mcip->mci_name, err2); 7226 } 7227 7228 mac_rx_client_restart((mac_client_handle_t)mcip); 7229 return (err); 7230 } 7231 7232 /* 7233 * Get a reference to the new mac_address_t and update the 7234 * client's reference. Then restart the client and add the 7235 * other clients of this MAC addr (if they exsit). 7236 */ 7237 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 7238 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7239 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7240 muip->mui_map = mcip->mci_unicast; 7241 rw_exit(&mcip->mci_rw_lock); 7242 mac_rx_client_restart((mac_client_handle_t)mcip); 7243 return (0); 7244 } 7245 7246 /* 7247 * Switch the MAC client from one group to another. This means we need 7248 * to remove the MAC address from the group, remove the MAC client, 7249 * teardown the SRSs and revert the group state. Then, we add the client 7250 * to the destination group, set the SRSs, and add the MAC address to the 7251 * group. 7252 */ 7253 int 7254 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7255 mac_group_t *tgrp) 7256 { 7257 int err; 7258 mac_group_state_t next_state; 7259 mac_client_impl_t *group_only_mcip; 7260 mac_client_impl_t *gmcip; 7261 mac_impl_t *mip = mcip->mci_mip; 7262 mac_grp_client_t *mgcp; 7263 7264 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group); 7265 7266 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 7267 return (err); 7268 7269 /* 7270 * If the group is marked as reserved and in use by a single 7271 * client, then there is an SRS to teardown. 7272 */ 7273 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 7274 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7275 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 7276 } 7277 7278 /* 7279 * If we are moving the client from a non-default group, then 7280 * we know that any additional clients on this group share the 7281 * same MAC address. Since we moved the MAC address filter, we 7282 * need to move these clients too. 7283 * 7284 * If we are moving the client from the default group and its 7285 * MAC address has VLAN clients, then we must move those 7286 * clients as well. 7287 * 7288 * In both cases the idea is the same: we moved the MAC 7289 * address filter to the tgrp, so we must move all clients 7290 * using that MAC address to tgrp as well. 7291 */ 7292 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 7293 mgcp = fgrp->mrg_clients; 7294 while (mgcp != NULL) { 7295 gmcip = mgcp->mgc_client; 7296 mgcp = mgcp->mgc_next; 7297 mac_group_remove_client(fgrp, gmcip); 7298 mac_group_add_client(tgrp, gmcip); 7299 gmcip->mci_flent->fe_rx_ring_group = tgrp; 7300 } 7301 mac_release_rx_group(mcip, fgrp); 7302 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE); 7303 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 7304 } else { 7305 mac_group_remove_client(fgrp, mcip); 7306 mac_group_add_client(tgrp, mcip); 7307 mcip->mci_flent->fe_rx_ring_group = tgrp; 7308 7309 /* 7310 * If there are other clients (VLANs) sharing this address 7311 * then move them too. 7312 */ 7313 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7314 /* 7315 * We need to move all the clients that are using 7316 * this MAC address. 7317 */ 7318 mgcp = fgrp->mrg_clients; 7319 while (mgcp != NULL) { 7320 gmcip = mgcp->mgc_client; 7321 mgcp = mgcp->mgc_next; 7322 if (mcip->mci_unicast == gmcip->mci_unicast) { 7323 mac_group_remove_client(fgrp, gmcip); 7324 mac_group_add_client(tgrp, gmcip); 7325 gmcip->mci_flent->fe_rx_ring_group = 7326 tgrp; 7327 } 7328 } 7329 } 7330 7331 /* 7332 * The default group still handles multicast and 7333 * broadcast traffic; it won't transition to 7334 * MAC_GROUP_STATE_REGISTERED. 7335 */ 7336 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 7337 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 7338 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 7339 } 7340 7341 next_state = mac_group_next_state(tgrp, &group_only_mcip, 7342 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 7343 mac_set_group_state(tgrp, next_state); 7344 7345 /* 7346 * If the destination group is reserved, then setup the SRSes. 7347 * Otherwise make sure to use SW classification. 7348 */ 7349 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7350 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 7351 mac_fanout_setup(mcip, mcip->mci_flent, 7352 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 7353 NULL); 7354 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 7355 } else { 7356 mac_rx_switch_grp_to_sw(tgrp); 7357 } 7358 7359 return (0); 7360 } 7361 7362 /* 7363 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 7364 * when a share was allocated to the client. 7365 */ 7366 mac_group_t * 7367 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 7368 { 7369 mac_impl_t *mip = mcip->mci_mip; 7370 mac_group_t *grp = NULL; 7371 int rv; 7372 int i; 7373 int err; 7374 mac_group_t *defgrp; 7375 mac_share_handle_t share = mcip->mci_share; 7376 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7377 int nrings; 7378 int defnrings; 7379 boolean_t need_exclgrp = B_FALSE; 7380 int need_rings = 0; 7381 mac_group_t *candidate_grp = NULL; 7382 mac_client_impl_t *gclient; 7383 mac_resource_props_t *gmrp; 7384 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 7385 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 7386 boolean_t isprimary; 7387 7388 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7389 7390 /* 7391 * When we come here for a VLAN on the primary (dladm create-vlan), 7392 * we need to pair it along with the primary (to keep it consistent 7393 * with the RX side). So, we check if the primary is already assigned 7394 * to a group and return the group if so. The other way is also 7395 * true, i.e. the VLAN is already created and now we are plumbing 7396 * the primary. 7397 */ 7398 if (!move && isprimary) { 7399 for (gclient = mip->mi_clients_list; gclient != NULL; 7400 gclient = gclient->mci_client_next) { 7401 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 7402 gclient->mci_flent->fe_tx_ring_group != NULL) { 7403 return (gclient->mci_flent->fe_tx_ring_group); 7404 } 7405 } 7406 } 7407 7408 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 7409 return (NULL); 7410 7411 /* For dynamic groups, default unspec to 1 */ 7412 if (txhw && unspec && 7413 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7414 mrp->mrp_ntxrings = 1; 7415 } 7416 /* 7417 * For static grouping we allow only specifying rings=0 and 7418 * unspecified 7419 */ 7420 if (txhw && mrp->mrp_ntxrings > 0 && 7421 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 7422 return (NULL); 7423 } 7424 7425 if (txhw) { 7426 /* 7427 * We have explicitly asked for a group (with ntxrings, 7428 * if unspec). 7429 */ 7430 if (unspec || mrp->mrp_ntxrings > 0) { 7431 need_exclgrp = B_TRUE; 7432 need_rings = mrp->mrp_ntxrings; 7433 } else if (mrp->mrp_ntxrings == 0) { 7434 /* 7435 * We have asked for a software group. 7436 */ 7437 return (NULL); 7438 } 7439 } 7440 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7441 /* 7442 * The number of rings that the default group can donate. 7443 * We need to leave at least one ring - the default ring - in 7444 * this group. 7445 */ 7446 defnrings = defgrp->mrg_cur_count - 1; 7447 7448 /* 7449 * Primary gets default group unless explicitly told not 7450 * to (i.e. rings > 0). 7451 */ 7452 if (isprimary && !need_exclgrp) 7453 return (NULL); 7454 7455 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 7456 for (i = 0; i < mip->mi_tx_group_count; i++) { 7457 grp = &mip->mi_tx_groups[i]; 7458 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 7459 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 7460 /* 7461 * Select a candidate for replacement if we don't 7462 * get an exclusive group. A candidate group is one 7463 * that didn't ask for an exclusive group, but got 7464 * one and it has enough rings (combined with what 7465 * the default group can donate) for the new MAC 7466 * client. 7467 */ 7468 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7469 candidate_grp == NULL) { 7470 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7471 VERIFY3P(gclient, !=, NULL); 7472 gmrp = MCIP_RESOURCE_PROPS(gclient); 7473 if (gclient->mci_share == 0 && 7474 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7475 (unspec || 7476 (grp->mrg_cur_count + defnrings) >= 7477 need_rings)) { 7478 candidate_grp = grp; 7479 } 7480 } 7481 continue; 7482 } 7483 /* 7484 * If the default can't donate let's just walk and 7485 * see if someone can vacate a group, so that we have 7486 * enough rings for this. 7487 */ 7488 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7489 nrings <= defnrings) { 7490 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7491 rv = mac_start_group(grp); 7492 ASSERT(rv == 0); 7493 } 7494 break; 7495 } 7496 } 7497 7498 /* The default group */ 7499 if (i >= mip->mi_tx_group_count) { 7500 /* 7501 * If we need an exclusive group and have identified a 7502 * candidate group we switch the MAC client from the 7503 * candidate group to the default group and give the 7504 * candidate group to this client. 7505 */ 7506 if (need_exclgrp && candidate_grp != NULL) { 7507 /* 7508 * Switch the MAC client from the candidate 7509 * group to the default group. We know the 7510 * candidate_grp came from a reserved group 7511 * and thus only has one client. 7512 */ 7513 grp = candidate_grp; 7514 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7515 VERIFY3P(gclient, !=, NULL); 7516 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7517 mac_tx_switch_group(gclient, grp, defgrp); 7518 mac_tx_client_restart((mac_client_handle_t)gclient); 7519 7520 /* 7521 * Give the candidate group with the specified number 7522 * of rings to this MAC client. 7523 */ 7524 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7525 rv = mac_start_group(grp); 7526 ASSERT(rv == 0); 7527 7528 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7529 return (grp); 7530 7531 ASSERT(grp->mrg_cur_count == 0); 7532 ASSERT(defgrp->mrg_cur_count > need_rings); 7533 7534 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7535 defgrp, grp, share, need_rings); 7536 if (err == 0) { 7537 /* 7538 * For a share i_mac_group_allocate_rings gets 7539 * the rings from the driver, let's populate 7540 * the property for the client now. 7541 */ 7542 if (share != 0) { 7543 mac_client_set_rings( 7544 (mac_client_handle_t)mcip, -1, 7545 grp->mrg_cur_count); 7546 } 7547 mip->mi_tx_group_free--; 7548 return (grp); 7549 } 7550 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7551 mip->mi_name, int, grp->mrg_index, int, err); 7552 mac_stop_group(grp); 7553 } 7554 return (NULL); 7555 } 7556 /* 7557 * We got an exclusive group, but it is not dynamic. 7558 */ 7559 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7560 mip->mi_tx_group_free--; 7561 return (grp); 7562 } 7563 7564 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7565 share, nrings); 7566 if (rv != 0) { 7567 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7568 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7569 mac_stop_group(grp); 7570 return (NULL); 7571 } 7572 /* 7573 * For a share i_mac_group_allocate_rings gets the rings from the 7574 * driver, let's populate the property for the client now. 7575 */ 7576 if (share != 0) { 7577 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7578 grp->mrg_cur_count); 7579 } 7580 mip->mi_tx_group_free--; 7581 return (grp); 7582 } 7583 7584 void 7585 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7586 { 7587 mac_impl_t *mip = mcip->mci_mip; 7588 mac_share_handle_t share = mcip->mci_share; 7589 mac_ring_t *ring; 7590 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7591 mac_group_t *defgrp; 7592 7593 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7594 if (srs != NULL) { 7595 if (srs->srs_soft_ring_count > 0) { 7596 for (ring = grp->mrg_rings; ring != NULL; 7597 ring = ring->mr_next) { 7598 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7599 mac_tx_invoke_callbacks(mcip, 7600 (mac_tx_cookie_t) 7601 mac_tx_srs_get_soft_ring(srs, ring)); 7602 mac_tx_srs_del_ring(srs, ring); 7603 } 7604 } else { 7605 ASSERT(srs->srs_tx.st_arg2 != NULL); 7606 srs->srs_tx.st_arg2 = NULL; 7607 mac_srs_stat_delete(srs); 7608 } 7609 } 7610 if (share != 0) 7611 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7612 7613 /* move the ring back to the pool */ 7614 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7615 while ((ring = grp->mrg_rings) != NULL) 7616 (void) mac_group_mov_ring(mip, defgrp, ring); 7617 } 7618 mac_stop_group(grp); 7619 mip->mi_tx_group_free++; 7620 } 7621 7622 /* 7623 * Disassociate a MAC client from a group, i.e go through the rings in the 7624 * group and delete all the soft rings tied to them. 7625 */ 7626 static void 7627 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7628 { 7629 mac_client_impl_t *mcip = flent->fe_mcip; 7630 mac_soft_ring_set_t *tx_srs; 7631 mac_srs_tx_t *tx; 7632 mac_ring_t *ring; 7633 7634 tx_srs = flent->fe_tx_srs; 7635 tx = &tx_srs->srs_tx; 7636 7637 /* Single ring case we haven't created any soft rings */ 7638 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7639 tx->st_mode == SRS_TX_DEFAULT) { 7640 tx->st_arg2 = NULL; 7641 mac_srs_stat_delete(tx_srs); 7642 /* Fanout case, where we have to dismantle the soft rings */ 7643 } else { 7644 for (ring = fgrp->mrg_rings; ring != NULL; 7645 ring = ring->mr_next) { 7646 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7647 mac_tx_invoke_callbacks(mcip, 7648 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7649 ring)); 7650 mac_tx_srs_del_ring(tx_srs, ring); 7651 } 7652 ASSERT(tx->st_arg2 == NULL); 7653 } 7654 } 7655 7656 /* 7657 * Switch the MAC client from one group to another. This means we need 7658 * to remove the MAC client, teardown the SRSs and revert the group state. 7659 * Then, we add the client to the destination roup, set the SRSs etc. 7660 */ 7661 void 7662 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7663 mac_group_t *tgrp) 7664 { 7665 mac_client_impl_t *group_only_mcip; 7666 mac_impl_t *mip = mcip->mci_mip; 7667 flow_entry_t *flent = mcip->mci_flent; 7668 mac_group_t *defgrp; 7669 mac_grp_client_t *mgcp; 7670 mac_client_impl_t *gmcip; 7671 flow_entry_t *gflent; 7672 7673 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7674 ASSERT(fgrp == flent->fe_tx_ring_group); 7675 7676 if (fgrp == defgrp) { 7677 /* 7678 * If this is the primary we need to find any VLANs on 7679 * the primary and move them too. 7680 */ 7681 mac_group_remove_client(fgrp, mcip); 7682 mac_tx_dismantle_soft_rings(fgrp, flent); 7683 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7684 mgcp = fgrp->mrg_clients; 7685 while (mgcp != NULL) { 7686 gmcip = mgcp->mgc_client; 7687 mgcp = mgcp->mgc_next; 7688 if (mcip->mci_unicast != gmcip->mci_unicast) 7689 continue; 7690 mac_tx_client_quiesce( 7691 (mac_client_handle_t)gmcip); 7692 7693 gflent = gmcip->mci_flent; 7694 mac_group_remove_client(fgrp, gmcip); 7695 mac_tx_dismantle_soft_rings(fgrp, gflent); 7696 7697 mac_group_add_client(tgrp, gmcip); 7698 gflent->fe_tx_ring_group = tgrp; 7699 /* We could directly set this to SHARED */ 7700 tgrp->mrg_state = mac_group_next_state(tgrp, 7701 &group_only_mcip, defgrp, B_FALSE); 7702 7703 mac_tx_srs_group_setup(gmcip, gflent, 7704 SRST_LINK); 7705 mac_fanout_setup(gmcip, gflent, 7706 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7707 gmcip, NULL, NULL); 7708 7709 mac_tx_client_restart( 7710 (mac_client_handle_t)gmcip); 7711 } 7712 } 7713 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7714 mac_ring_t *ring; 7715 int cnt; 7716 int ringcnt; 7717 7718 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7719 /* 7720 * Additionally, we also need to stop all 7721 * the rings in the default group, except 7722 * the default ring. The reason being 7723 * this group won't be released since it is 7724 * the default group, so the rings won't 7725 * be stopped otherwise. 7726 */ 7727 ringcnt = fgrp->mrg_cur_count; 7728 ring = fgrp->mrg_rings; 7729 for (cnt = 0; cnt < ringcnt; cnt++) { 7730 if (ring->mr_state == MR_INUSE && 7731 ring != 7732 (mac_ring_t *)mip->mi_default_tx_ring) { 7733 mac_stop_ring(ring); 7734 ring->mr_flag = 0; 7735 } 7736 ring = ring->mr_next; 7737 } 7738 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7739 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7740 } else { 7741 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7742 } 7743 } else { 7744 /* 7745 * We could have VLANs sharing the non-default group with 7746 * the primary. 7747 */ 7748 mgcp = fgrp->mrg_clients; 7749 while (mgcp != NULL) { 7750 gmcip = mgcp->mgc_client; 7751 mgcp = mgcp->mgc_next; 7752 if (gmcip == mcip) 7753 continue; 7754 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7755 gflent = gmcip->mci_flent; 7756 7757 mac_group_remove_client(fgrp, gmcip); 7758 mac_tx_dismantle_soft_rings(fgrp, gflent); 7759 7760 mac_group_add_client(tgrp, gmcip); 7761 gflent->fe_tx_ring_group = tgrp; 7762 /* We could directly set this to SHARED */ 7763 tgrp->mrg_state = mac_group_next_state(tgrp, 7764 &group_only_mcip, defgrp, B_FALSE); 7765 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7766 mac_fanout_setup(gmcip, gflent, 7767 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7768 gmcip, NULL, NULL); 7769 7770 mac_tx_client_restart((mac_client_handle_t)gmcip); 7771 } 7772 mac_group_remove_client(fgrp, mcip); 7773 mac_release_tx_group(mcip, fgrp); 7774 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7775 } 7776 7777 /* Add it to the tgroup */ 7778 mac_group_add_client(tgrp, mcip); 7779 flent->fe_tx_ring_group = tgrp; 7780 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7781 defgrp, B_FALSE); 7782 7783 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7784 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7785 mac_rx_deliver, mcip, NULL, NULL); 7786 } 7787 7788 /* 7789 * This is a 1-time control path activity initiated by the client (IP). 7790 * The mac perimeter protects against other simultaneous control activities, 7791 * for example an ioctl that attempts to change the degree of fanout and 7792 * increase or decrease the number of softrings associated with this Tx SRS. 7793 */ 7794 static mac_tx_notify_cb_t * 7795 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7796 mac_tx_notify_t notify, void *arg) 7797 { 7798 mac_cb_info_t *mcbi; 7799 mac_tx_notify_cb_t *mtnfp; 7800 7801 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7802 7803 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7804 mtnfp->mtnf_fn = notify; 7805 mtnfp->mtnf_arg = arg; 7806 mtnfp->mtnf_link.mcb_objp = mtnfp; 7807 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7808 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7809 7810 mcbi = &mcip->mci_tx_notify_cb_info; 7811 mutex_enter(mcbi->mcbi_lockp); 7812 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7813 mutex_exit(mcbi->mcbi_lockp); 7814 return (mtnfp); 7815 } 7816 7817 static void 7818 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7819 { 7820 mac_cb_info_t *mcbi; 7821 mac_cb_t **cblist; 7822 7823 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7824 7825 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7826 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7827 cmn_err(CE_WARN, 7828 "mac_client_tx_notify_remove: callback not " 7829 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7830 return; 7831 } 7832 7833 mcbi = &mcip->mci_tx_notify_cb_info; 7834 cblist = &mcip->mci_tx_notify_cb_list; 7835 mutex_enter(mcbi->mcbi_lockp); 7836 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7837 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7838 else 7839 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7840 mutex_exit(mcbi->mcbi_lockp); 7841 } 7842 7843 /* 7844 * mac_client_tx_notify(): 7845 * call to add and remove flow control callback routine. 7846 */ 7847 mac_tx_notify_handle_t 7848 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7849 void *ptr) 7850 { 7851 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7852 mac_tx_notify_cb_t *mtnfp = NULL; 7853 7854 i_mac_perim_enter(mcip->mci_mip); 7855 7856 if (callb_func != NULL) { 7857 /* Add a notify callback */ 7858 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7859 } else { 7860 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7861 } 7862 i_mac_perim_exit(mcip->mci_mip); 7863 7864 return ((mac_tx_notify_handle_t)mtnfp); 7865 } 7866 7867 void 7868 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7869 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7870 { 7871 mac_bridge_tx_cb = txf; 7872 mac_bridge_rx_cb = rxf; 7873 mac_bridge_ref_cb = reff; 7874 mac_bridge_ls_cb = lsf; 7875 } 7876 7877 int 7878 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7879 { 7880 mac_impl_t *mip = (mac_impl_t *)mh; 7881 int retv; 7882 7883 mutex_enter(&mip->mi_bridge_lock); 7884 if (mip->mi_bridge_link == NULL) { 7885 mip->mi_bridge_link = link; 7886 retv = 0; 7887 } else { 7888 retv = EBUSY; 7889 } 7890 mutex_exit(&mip->mi_bridge_lock); 7891 if (retv == 0) { 7892 mac_poll_state_change(mh, B_FALSE); 7893 mac_capab_update(mh); 7894 } 7895 return (retv); 7896 } 7897 7898 /* 7899 * Disable bridging on the indicated link. 7900 */ 7901 void 7902 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7903 { 7904 mac_impl_t *mip = (mac_impl_t *)mh; 7905 7906 mutex_enter(&mip->mi_bridge_lock); 7907 ASSERT(mip->mi_bridge_link == link); 7908 mip->mi_bridge_link = NULL; 7909 mutex_exit(&mip->mi_bridge_lock); 7910 mac_poll_state_change(mh, B_TRUE); 7911 mac_capab_update(mh); 7912 } 7913 7914 void 7915 mac_no_active(mac_handle_t mh) 7916 { 7917 mac_impl_t *mip = (mac_impl_t *)mh; 7918 7919 i_mac_perim_enter(mip); 7920 mip->mi_state_flags |= MIS_NO_ACTIVE; 7921 i_mac_perim_exit(mip); 7922 } 7923 7924 /* 7925 * Walk the primary VLAN clients whenever the primary's rings property 7926 * changes and update the mac_resource_props_t for the VLAN's client. 7927 * We need to do this since we don't support setting these properties 7928 * on the primary's VLAN clients, but the VLAN clients have to 7929 * follow the primary w.r.t the rings property. 7930 */ 7931 void 7932 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7933 { 7934 mac_client_impl_t *vmcip; 7935 mac_resource_props_t *vmrp; 7936 7937 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7938 vmcip = vmcip->mci_client_next) { 7939 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7940 mac_client_vid((mac_client_handle_t)vmcip) == 7941 VLAN_ID_NONE) { 7942 continue; 7943 } 7944 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7945 7946 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7947 if (mrp->mrp_mask & MRP_RX_RINGS) 7948 vmrp->mrp_mask |= MRP_RX_RINGS; 7949 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7950 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7951 7952 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7953 if (mrp->mrp_mask & MRP_TX_RINGS) 7954 vmrp->mrp_mask |= MRP_TX_RINGS; 7955 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7956 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7957 7958 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7959 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7960 else 7961 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7962 7963 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7964 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7965 else 7966 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7967 } 7968 } 7969 7970 /* 7971 * We are adding or removing ring(s) from a group. The source for taking 7972 * rings is the default group. The destination for giving rings back is 7973 * the default group. 7974 */ 7975 int 7976 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7977 mac_group_t *defgrp) 7978 { 7979 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7980 uint_t modify; 7981 int count; 7982 mac_ring_t *ring; 7983 mac_ring_t *next; 7984 mac_impl_t *mip = mcip->mci_mip; 7985 mac_ring_t **rings; 7986 uint_t ringcnt; 7987 int i = 0; 7988 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7989 int start; 7990 int end; 7991 mac_group_t *tgrp; 7992 int j; 7993 int rv = 0; 7994 7995 /* 7996 * If we are asked for just a group, we give 1 ring, else 7997 * the specified number of rings. 7998 */ 7999 if (rx_group) { 8000 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 8001 mrp->mrp_nrxrings; 8002 } else { 8003 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 8004 mrp->mrp_ntxrings; 8005 } 8006 8007 /* don't allow modifying rings for a share for now. */ 8008 ASSERT(mcip->mci_share == 0); 8009 8010 if (ringcnt == group->mrg_cur_count) 8011 return (0); 8012 8013 if (group->mrg_cur_count > ringcnt) { 8014 modify = group->mrg_cur_count - ringcnt; 8015 if (rx_group) { 8016 if (mip->mi_rx_donor_grp == group) { 8017 ASSERT(mac_is_primary_client(mcip)); 8018 mip->mi_rx_donor_grp = defgrp; 8019 } else { 8020 defgrp = mip->mi_rx_donor_grp; 8021 } 8022 } 8023 ring = group->mrg_rings; 8024 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 8025 KM_SLEEP); 8026 j = 0; 8027 for (count = 0; count < modify; count++) { 8028 next = ring->mr_next; 8029 rv = mac_group_mov_ring(mip, defgrp, ring); 8030 if (rv != 0) { 8031 /* cleanup on failure */ 8032 for (j = 0; j < count; j++) { 8033 (void) mac_group_mov_ring(mip, group, 8034 rings[j]); 8035 } 8036 break; 8037 } 8038 rings[j++] = ring; 8039 ring = next; 8040 } 8041 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 8042 return (rv); 8043 } 8044 if (ringcnt >= MAX_RINGS_PER_GROUP) 8045 return (EINVAL); 8046 8047 modify = ringcnt - group->mrg_cur_count; 8048 8049 if (rx_group) { 8050 if (group != mip->mi_rx_donor_grp) 8051 defgrp = mip->mi_rx_donor_grp; 8052 else 8053 /* 8054 * This is the donor group with all the remaining 8055 * rings. Default group now gets to be the donor 8056 */ 8057 mip->mi_rx_donor_grp = defgrp; 8058 start = 1; 8059 end = mip->mi_rx_group_count; 8060 } else { 8061 start = 0; 8062 end = mip->mi_tx_group_count - 1; 8063 } 8064 /* 8065 * If the default doesn't have any rings, lets see if we can 8066 * take rings given to an h/w client that doesn't need it. 8067 * For now, we just see if there is any one client that can donate 8068 * all the required rings. 8069 */ 8070 if (defgrp->mrg_cur_count < (modify + 1)) { 8071 for (i = start; i < end; i++) { 8072 if (rx_group) { 8073 tgrp = &mip->mi_rx_groups[i]; 8074 if (tgrp == group || tgrp->mrg_state < 8075 MAC_GROUP_STATE_RESERVED) { 8076 continue; 8077 } 8078 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS)) 8079 continue; 8080 mcip = tgrp->mrg_clients->mgc_client; 8081 VERIFY3P(mcip, !=, NULL); 8082 if ((tgrp->mrg_cur_count + 8083 defgrp->mrg_cur_count) < (modify + 1)) { 8084 continue; 8085 } 8086 if (mac_rx_switch_group(mcip, tgrp, 8087 defgrp) != 0) { 8088 return (ENOSPC); 8089 } 8090 } else { 8091 tgrp = &mip->mi_tx_groups[i]; 8092 if (tgrp == group || tgrp->mrg_state < 8093 MAC_GROUP_STATE_RESERVED) { 8094 continue; 8095 } 8096 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS)) 8097 continue; 8098 mcip = tgrp->mrg_clients->mgc_client; 8099 VERIFY3P(mcip, !=, NULL); 8100 if ((tgrp->mrg_cur_count + 8101 defgrp->mrg_cur_count) < (modify + 1)) { 8102 continue; 8103 } 8104 /* OK, we can switch this to s/w */ 8105 mac_tx_client_quiesce( 8106 (mac_client_handle_t)mcip); 8107 mac_tx_switch_group(mcip, tgrp, defgrp); 8108 mac_tx_client_restart( 8109 (mac_client_handle_t)mcip); 8110 } 8111 } 8112 if (defgrp->mrg_cur_count < (modify + 1)) 8113 return (ENOSPC); 8114 } 8115 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 8116 group, mcip->mci_share, modify)) != 0) { 8117 return (rv); 8118 } 8119 return (0); 8120 } 8121 8122 /* 8123 * Given the poolname in mac_resource_props, find the cpupart 8124 * that is associated with this pool. The cpupart will be used 8125 * later for finding the cpus to be bound to the networking threads. 8126 * 8127 * use_default is set B_TRUE if pools are enabled and pool_default 8128 * is returned. This avoids a 2nd lookup to set the poolname 8129 * for pool-effective. 8130 * 8131 * returns: 8132 * 8133 * NULL - pools are disabled or if the 'cpus' property is set. 8134 * cpupart of pool_default - pools are enabled and the pool 8135 * is not available or poolname is blank 8136 * cpupart of named pool - pools are enabled and the pool 8137 * is available. 8138 */ 8139 cpupart_t * 8140 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 8141 { 8142 pool_t *pool; 8143 cpupart_t *cpupart; 8144 8145 *use_default = B_FALSE; 8146 8147 /* CPUs property is set */ 8148 if (mrp->mrp_mask & MRP_CPUS) 8149 return (NULL); 8150 8151 ASSERT(pool_lock_held()); 8152 8153 /* Pools are disabled, no pset */ 8154 if (pool_state == POOL_DISABLED) 8155 return (NULL); 8156 8157 /* Pools property is set */ 8158 if (mrp->mrp_mask & MRP_POOL) { 8159 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 8160 /* Pool not found */ 8161 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 8162 mrp->mrp_pool); 8163 *use_default = B_TRUE; 8164 pool = pool_default; 8165 } 8166 /* Pools property is not set */ 8167 } else { 8168 *use_default = B_TRUE; 8169 pool = pool_default; 8170 } 8171 8172 /* Find the CPU pset that corresponds to the pool */ 8173 mutex_enter(&cpu_lock); 8174 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 8175 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 8176 pool->pool_pset->pset_id); 8177 } 8178 mutex_exit(&cpu_lock); 8179 8180 return (cpupart); 8181 } 8182 8183 void 8184 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 8185 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 8186 { 8187 ASSERT(pool_lock_held()); 8188 8189 if (cpupart != NULL) { 8190 emrp->mrp_mask |= MRP_POOL; 8191 if (use_default) { 8192 (void) strcpy(emrp->mrp_pool, 8193 "pool_default"); 8194 } else { 8195 ASSERT(strlen(mrp->mrp_pool) != 0); 8196 (void) strcpy(emrp->mrp_pool, 8197 mrp->mrp_pool); 8198 } 8199 } else { 8200 emrp->mrp_mask &= ~MRP_POOL; 8201 bzero(emrp->mrp_pool, MAXPATHLEN); 8202 } 8203 } 8204 8205 struct mac_pool_arg { 8206 char mpa_poolname[MAXPATHLEN]; 8207 pool_event_t mpa_what; 8208 }; 8209 8210 /*ARGSUSED*/ 8211 static uint_t 8212 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 8213 { 8214 struct mac_pool_arg *mpa = arg; 8215 mac_impl_t *mip = (mac_impl_t *)val; 8216 mac_client_impl_t *mcip; 8217 mac_resource_props_t *mrp, *emrp; 8218 boolean_t pool_update = B_FALSE; 8219 boolean_t pool_clear = B_FALSE; 8220 boolean_t use_default = B_FALSE; 8221 cpupart_t *cpupart = NULL; 8222 8223 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 8224 i_mac_perim_enter(mip); 8225 for (mcip = mip->mi_clients_list; mcip != NULL; 8226 mcip = mcip->mci_client_next) { 8227 pool_update = B_FALSE; 8228 pool_clear = B_FALSE; 8229 use_default = B_FALSE; 8230 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 8231 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8232 8233 /* 8234 * When pools are enabled 8235 */ 8236 if ((mpa->mpa_what == POOL_E_ENABLE) && 8237 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8238 mrp->mrp_mask |= MRP_POOL; 8239 pool_update = B_TRUE; 8240 } 8241 8242 /* 8243 * When pools are disabled 8244 */ 8245 if ((mpa->mpa_what == POOL_E_DISABLE) && 8246 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8247 mrp->mrp_mask |= MRP_POOL; 8248 pool_clear = B_TRUE; 8249 } 8250 8251 /* 8252 * Look for links with the pool property set and the poolname 8253 * matching the one which is changing. 8254 */ 8255 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 8256 /* 8257 * The pool associated with the link has changed. 8258 */ 8259 if (mpa->mpa_what == POOL_E_CHANGE) { 8260 mrp->mrp_mask |= MRP_POOL; 8261 pool_update = B_TRUE; 8262 } 8263 } 8264 8265 /* 8266 * This link is associated with pool_default and 8267 * pool_default has changed. 8268 */ 8269 if ((mpa->mpa_what == POOL_E_CHANGE) && 8270 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 8271 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 8272 mrp->mrp_mask |= MRP_POOL; 8273 pool_update = B_TRUE; 8274 } 8275 8276 /* 8277 * Get new list of cpus for the pool, bind network 8278 * threads to new list of cpus and update resources. 8279 */ 8280 if (pool_update) { 8281 if (MCIP_DATAPATH_SETUP(mcip)) { 8282 pool_lock(); 8283 cpupart = mac_pset_find(mrp, &use_default); 8284 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8285 mac_rx_deliver, mcip, NULL, cpupart); 8286 mac_set_pool_effective(use_default, cpupart, 8287 mrp, emrp); 8288 pool_unlock(); 8289 } 8290 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8291 B_FALSE); 8292 } 8293 8294 /* 8295 * Clear the effective pool and bind network threads 8296 * to any available CPU. 8297 */ 8298 if (pool_clear) { 8299 if (MCIP_DATAPATH_SETUP(mcip)) { 8300 emrp->mrp_mask &= ~MRP_POOL; 8301 bzero(emrp->mrp_pool, MAXPATHLEN); 8302 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8303 mac_rx_deliver, mcip, NULL, NULL); 8304 } 8305 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8306 B_FALSE); 8307 } 8308 } 8309 i_mac_perim_exit(mip); 8310 kmem_free(mrp, sizeof (*mrp)); 8311 return (MH_WALK_CONTINUE); 8312 } 8313 8314 static void 8315 mac_pool_update(void *arg) 8316 { 8317 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 8318 kmem_free(arg, sizeof (struct mac_pool_arg)); 8319 } 8320 8321 /* 8322 * Callback function to be executed when a noteworthy pool event 8323 * takes place. 8324 */ 8325 /* ARGSUSED */ 8326 static void 8327 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 8328 { 8329 pool_t *pool; 8330 char *poolname = NULL; 8331 struct mac_pool_arg *mpa; 8332 8333 pool_lock(); 8334 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 8335 8336 switch (what) { 8337 case POOL_E_ENABLE: 8338 case POOL_E_DISABLE: 8339 break; 8340 8341 case POOL_E_CHANGE: 8342 pool = pool_lookup_pool_by_id(id); 8343 if (pool == NULL) { 8344 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8345 pool_unlock(); 8346 return; 8347 } 8348 pool_get_name(pool, &poolname); 8349 (void) strlcpy(mpa->mpa_poolname, poolname, 8350 sizeof (mpa->mpa_poolname)); 8351 break; 8352 8353 default: 8354 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8355 pool_unlock(); 8356 return; 8357 } 8358 pool_unlock(); 8359 8360 mpa->mpa_what = what; 8361 8362 mac_pool_update(mpa); 8363 } 8364 8365 /* 8366 * Set effective rings property. This could be called from datapath_setup/ 8367 * datapath_teardown or set-linkprop. 8368 * If the group is reserved we just go ahead and set the effective rings. 8369 * Additionally, for TX this could mean the default group has lost/gained 8370 * some rings, so if the default group is reserved, we need to adjust the 8371 * effective rings for the default group clients. For RX, if we are working 8372 * with the non-default group, we just need to reset the effective props 8373 * for the default group clients. 8374 */ 8375 void 8376 mac_set_rings_effective(mac_client_impl_t *mcip) 8377 { 8378 mac_impl_t *mip = mcip->mci_mip; 8379 mac_group_t *grp; 8380 mac_group_t *defgrp; 8381 flow_entry_t *flent = mcip->mci_flent; 8382 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 8383 mac_grp_client_t *mgcp; 8384 mac_client_impl_t *gmcip; 8385 8386 grp = flent->fe_rx_ring_group; 8387 if (grp != NULL) { 8388 defgrp = MAC_DEFAULT_RX_GROUP(mip); 8389 /* 8390 * If we have reserved a group, set the effective rings 8391 * to the ring count in the group. 8392 */ 8393 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8394 emrp->mrp_mask |= MRP_RX_RINGS; 8395 emrp->mrp_nrxrings = grp->mrg_cur_count; 8396 } 8397 8398 /* 8399 * We go through the clients in the shared group and 8400 * reset the effective properties. It is possible this 8401 * might have already been done for some client (i.e. 8402 * if some client is being moved to a group that is 8403 * already shared). The case where the default group is 8404 * RESERVED is taken care of above (note in the RX side if 8405 * there is a non-default group, the default group is always 8406 * SHARED). 8407 */ 8408 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8409 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 8410 mgcp = grp->mrg_clients; 8411 else 8412 mgcp = defgrp->mrg_clients; 8413 while (mgcp != NULL) { 8414 gmcip = mgcp->mgc_client; 8415 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8416 if (emrp->mrp_mask & MRP_RX_RINGS) { 8417 emrp->mrp_mask &= ~MRP_RX_RINGS; 8418 emrp->mrp_nrxrings = 0; 8419 } 8420 mgcp = mgcp->mgc_next; 8421 } 8422 } 8423 } 8424 8425 /* Now the TX side */ 8426 grp = flent->fe_tx_ring_group; 8427 if (grp != NULL) { 8428 defgrp = MAC_DEFAULT_TX_GROUP(mip); 8429 8430 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8431 emrp->mrp_mask |= MRP_TX_RINGS; 8432 emrp->mrp_ntxrings = grp->mrg_cur_count; 8433 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8434 mgcp = grp->mrg_clients; 8435 while (mgcp != NULL) { 8436 gmcip = mgcp->mgc_client; 8437 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8438 if (emrp->mrp_mask & MRP_TX_RINGS) { 8439 emrp->mrp_mask &= ~MRP_TX_RINGS; 8440 emrp->mrp_ntxrings = 0; 8441 } 8442 mgcp = mgcp->mgc_next; 8443 } 8444 } 8445 8446 /* 8447 * If the group is not the default group and the default 8448 * group is reserved, the ring count in the default group 8449 * might have changed, update it. 8450 */ 8451 if (grp != defgrp && 8452 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8453 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 8454 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8455 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 8456 } 8457 } 8458 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8459 } 8460 8461 /* 8462 * Check if the primary is in the default group. If so, see if we 8463 * can give it a an exclusive group now that another client is 8464 * being configured. We take the primary out of the default group 8465 * because the multicast/broadcast packets for the all the clients 8466 * will land in the default ring in the default group which means 8467 * any client in the default group, even if it is the only on in 8468 * the group, will lose exclusive access to the rings, hence 8469 * polling. 8470 */ 8471 mac_client_impl_t * 8472 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8473 { 8474 mac_impl_t *mip = mcip->mci_mip; 8475 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8476 flow_entry_t *flent = mcip->mci_flent; 8477 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8478 uint8_t *mac_addr; 8479 mac_group_t *ngrp; 8480 8481 /* 8482 * Check if the primary is in the default group, if not 8483 * or if it is explicitly configured to be in the default 8484 * group OR set the RX rings property, return. 8485 */ 8486 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8487 return (NULL); 8488 8489 /* 8490 * If the new client needs an exclusive group and we 8491 * don't have another for the primary, return. 8492 */ 8493 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8494 return (NULL); 8495 8496 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8497 /* 8498 * We call this when we are setting up the datapath for 8499 * the first non-primary. 8500 */ 8501 ASSERT(mip->mi_nactiveclients == 2); 8502 8503 /* 8504 * OK, now we have the primary that needs to be relocated. 8505 */ 8506 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8507 if (ngrp == NULL) 8508 return (NULL); 8509 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8510 mac_stop_group(ngrp); 8511 return (NULL); 8512 } 8513 return (mcip); 8514 } 8515 8516 void 8517 mac_transceiver_init(mac_impl_t *mip) 8518 { 8519 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8520 &mip->mi_transceiver)) { 8521 /* 8522 * The driver set a flag that we don't know about. In this case, 8523 * we need to warn about that case and ignore this capability. 8524 */ 8525 if (mip->mi_transceiver.mct_flags != 0) { 8526 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8527 "flags to invalid value: 0x%x, ignoring " 8528 "capability", mip->mi_transceiver.mct_flags); 8529 bzero(&mip->mi_transceiver, 8530 sizeof (mac_capab_transceiver_t)); 8531 } 8532 } else { 8533 bzero(&mip->mi_transceiver, 8534 sizeof (mac_capab_transceiver_t)); 8535 } 8536 } 8537 8538 int 8539 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8540 { 8541 mac_impl_t *mip = (mac_impl_t *)mh; 8542 8543 ASSERT(MAC_PERIM_HELD(mh)); 8544 8545 if (mip->mi_transceiver.mct_ntransceivers == 0) 8546 return (ENOTSUP); 8547 8548 *countp = mip->mi_transceiver.mct_ntransceivers; 8549 return (0); 8550 } 8551 8552 int 8553 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8554 boolean_t *usable) 8555 { 8556 int ret; 8557 mac_transceiver_info_t info; 8558 8559 mac_impl_t *mip = (mac_impl_t *)mh; 8560 8561 ASSERT(MAC_PERIM_HELD(mh)); 8562 8563 if (mip->mi_transceiver.mct_info == NULL || 8564 mip->mi_transceiver.mct_ntransceivers == 0) 8565 return (ENOTSUP); 8566 8567 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8568 return (EINVAL); 8569 8570 bzero(&info, sizeof (mac_transceiver_info_t)); 8571 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8572 &info)) != 0) { 8573 return (ret); 8574 } 8575 8576 *present = info.mti_present; 8577 *usable = info.mti_usable; 8578 return (0); 8579 } 8580 8581 int 8582 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8583 size_t nbytes, off_t offset, size_t *nread) 8584 { 8585 int ret; 8586 size_t nr; 8587 mac_impl_t *mip = (mac_impl_t *)mh; 8588 8589 ASSERT(MAC_PERIM_HELD(mh)); 8590 8591 if (mip->mi_transceiver.mct_read == NULL) 8592 return (ENOTSUP); 8593 8594 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8595 return (EINVAL); 8596 8597 /* 8598 * All supported pages today are 256 bytes wide. Make sure offset + 8599 * nbytes never exceeds that. 8600 */ 8601 if (offset < 0 || offset >= 256 || nbytes > 256 || 8602 offset + nbytes > 256) 8603 return (EINVAL); 8604 8605 if (nread == NULL) 8606 nread = &nr; 8607 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8608 nbytes, offset, nread); 8609 if (ret == 0 && *nread > nbytes) { 8610 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8611 "%lu byte sized buffer, possible memory corruption", 8612 *nread, nbytes); 8613 } 8614 8615 return (ret); 8616 } 8617 8618 void 8619 mac_led_init(mac_impl_t *mip) 8620 { 8621 mip->mi_led_modes = MAC_LED_DEFAULT; 8622 8623 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8624 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8625 return; 8626 } 8627 8628 if (mip->mi_led.mcl_flags != 0) { 8629 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8630 "flags to invalid value: 0x%x, ignoring " 8631 "capability", mip->mi_transceiver.mct_flags); 8632 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8633 return; 8634 } 8635 8636 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8637 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8638 "supported modes to invalid value: 0x%x, ignoring " 8639 "capability", mip->mi_transceiver.mct_flags); 8640 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8641 return; 8642 } 8643 } 8644 8645 int 8646 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8647 { 8648 mac_impl_t *mip = (mac_impl_t *)mh; 8649 8650 ASSERT(MAC_PERIM_HELD(mh)); 8651 8652 if (mip->mi_led.mcl_set == NULL) 8653 return (ENOTSUP); 8654 8655 *supported = mip->mi_led.mcl_modes; 8656 *active = mip->mi_led_modes; 8657 8658 return (0); 8659 } 8660 8661 /* 8662 * Update and multiplex the various LED requests. We only ever send one LED to 8663 * the underlying driver at a time. As such, we end up multiplexing all 8664 * requested states and picking one to send down to the driver. 8665 */ 8666 int 8667 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8668 { 8669 int ret; 8670 mac_led_mode_t driver; 8671 8672 mac_impl_t *mip = (mac_impl_t *)mh; 8673 8674 ASSERT(MAC_PERIM_HELD(mh)); 8675 8676 /* 8677 * If we've been passed a desired value of zero, that indicates that 8678 * we're basically resetting to the value of zero, which is our default 8679 * value. 8680 */ 8681 if (desired == 0) 8682 desired = MAC_LED_DEFAULT; 8683 8684 if (mip->mi_led.mcl_set == NULL) 8685 return (ENOTSUP); 8686 8687 /* 8688 * Catch both values that we don't know about and those that the driver 8689 * doesn't support. 8690 */ 8691 if ((desired & ~MAC_LED_ALL) != 0) 8692 return (EINVAL); 8693 8694 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8695 return (ENOTSUP); 8696 8697 /* 8698 * If we have the same value, then there is nothing to do. 8699 */ 8700 if (desired == mip->mi_led_modes) 8701 return (0); 8702 8703 /* 8704 * Based on the desired value, determine what to send to the driver. We 8705 * only will send a single bit to the driver at any given time. IDENT 8706 * takes priority over OFF or ON. We also let OFF take priority over the 8707 * rest. 8708 */ 8709 if (desired & MAC_LED_IDENT) { 8710 driver = MAC_LED_IDENT; 8711 } else if (desired & MAC_LED_OFF) { 8712 driver = MAC_LED_OFF; 8713 } else if (desired & MAC_LED_ON) { 8714 driver = MAC_LED_ON; 8715 } else { 8716 driver = MAC_LED_DEFAULT; 8717 } 8718 8719 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8720 mip->mi_led_modes = desired; 8721 } 8722 8723 return (ret); 8724 } 8725