1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2016 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 347 int mac_dbg = 0; 348 349 #define MACTYPE_KMODDIR "mac" 350 #define MACTYPE_HASHSZ 67 351 static mod_hash_t *i_mactype_hash; 352 /* 353 * i_mactype_lock synchronizes threads that obtain references to mactype_t 354 * structures through i_mactype_getplugin(). 355 */ 356 static kmutex_t i_mactype_lock; 357 358 /* 359 * mac_tx_percpu_cnt 360 * 361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 365 */ 366 int mac_tx_percpu_cnt; 367 int mac_tx_percpu_cnt_max = 128; 368 369 /* 370 * Call back functions for the bridge module. These are guaranteed to be valid 371 * when holding a reference on a link or when holding mip->mi_bridge_lock and 372 * mi_bridge_link is non-NULL. 373 */ 374 mac_bridge_tx_t mac_bridge_tx_cb; 375 mac_bridge_rx_t mac_bridge_rx_cb; 376 mac_bridge_ref_t mac_bridge_ref_cb; 377 mac_bridge_ls_t mac_bridge_ls_cb; 378 379 static int i_mac_constructor(void *, void *, int); 380 static void i_mac_destructor(void *, void *); 381 static int i_mac_ring_ctor(void *, void *, int); 382 static void i_mac_ring_dtor(void *, void *); 383 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 384 void mac_tx_client_flush(mac_client_impl_t *); 385 void mac_tx_client_block(mac_client_impl_t *); 386 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 387 static int mac_start_group_and_rings(mac_group_t *); 388 static void mac_stop_group_and_rings(mac_group_t *); 389 static void mac_pool_event_cb(pool_event_t, int, void *); 390 391 typedef struct netinfo_s { 392 list_node_t ni_link; 393 void *ni_record; 394 int ni_size; 395 int ni_type; 396 } netinfo_t; 397 398 /* 399 * Module initialization functions. 400 */ 401 402 void 403 mac_init(void) 404 { 405 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 406 boot_max_ncpus); 407 408 /* Upper bound is mac_tx_percpu_cnt_max */ 409 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 410 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 411 412 if (mac_tx_percpu_cnt < 1) { 413 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 414 mac_tx_percpu_cnt = 1; 415 } 416 417 ASSERT(mac_tx_percpu_cnt >= 1); 418 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 419 /* 420 * Make it of the form 2**N - 1 in the range 421 * [0 .. mac_tx_percpu_cnt_max - 1] 422 */ 423 mac_tx_percpu_cnt--; 424 425 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 426 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 427 NULL, NULL, NULL, 0); 428 ASSERT(i_mac_impl_cachep != NULL); 429 430 mac_ring_cache = kmem_cache_create("mac_ring_cache", 431 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 432 NULL, NULL, 0); 433 ASSERT(mac_ring_cache != NULL); 434 435 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 436 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 437 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 438 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 439 440 mac_flow_init(); 441 mac_soft_ring_init(); 442 mac_bcast_init(); 443 mac_client_init(); 444 445 i_mac_impl_count = 0; 446 447 i_mactype_hash = mod_hash_create_extended("mactype_hash", 448 MACTYPE_HASHSZ, 449 mod_hash_null_keydtor, mod_hash_null_valdtor, 450 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 451 452 /* 453 * Allocate an id space to manage minor numbers. The range of the 454 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 455 * leaves half of the 32-bit minors available for driver private use. 456 */ 457 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 458 MAC_PRIVATE_MINOR-1); 459 ASSERT(minor_ids != NULL); 460 minor_count = 0; 461 462 /* Let's default to 20 seconds */ 463 mac_logging_interval = 20; 464 mac_flow_log_enable = B_FALSE; 465 mac_link_log_enable = B_FALSE; 466 mac_logging_timer = 0; 467 468 /* Register to be notified of noteworthy pools events */ 469 mac_pool_event_reg.pec_func = mac_pool_event_cb; 470 mac_pool_event_reg.pec_arg = NULL; 471 pool_event_cb_register(&mac_pool_event_reg); 472 } 473 474 int 475 mac_fini(void) 476 { 477 478 if (i_mac_impl_count > 0 || minor_count > 0) 479 return (EBUSY); 480 481 pool_event_cb_unregister(&mac_pool_event_reg); 482 483 id_space_destroy(minor_ids); 484 mac_flow_fini(); 485 486 mod_hash_destroy_hash(i_mac_impl_hash); 487 rw_destroy(&i_mac_impl_lock); 488 489 mac_client_fini(); 490 kmem_cache_destroy(mac_ring_cache); 491 492 mod_hash_destroy_hash(i_mactype_hash); 493 mac_soft_ring_finish(); 494 495 496 return (0); 497 } 498 499 /* 500 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 501 * (e.g. softmac) may pass in a NULL ops argument. 502 */ 503 void 504 mac_init_ops(struct dev_ops *ops, const char *name) 505 { 506 major_t major = ddi_name_to_major((char *)name); 507 508 /* 509 * By returning on error below, we are not letting the driver continue 510 * in an undefined context. The mac_register() function will faill if 511 * DN_GLDV3_DRIVER isn't set. 512 */ 513 if (major == DDI_MAJOR_T_NONE) 514 return; 515 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 516 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 517 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 518 if (ops != NULL) 519 dld_init_ops(ops, name); 520 } 521 522 void 523 mac_fini_ops(struct dev_ops *ops) 524 { 525 dld_fini_ops(ops); 526 } 527 528 /*ARGSUSED*/ 529 static int 530 i_mac_constructor(void *buf, void *arg, int kmflag) 531 { 532 mac_impl_t *mip = buf; 533 534 bzero(buf, sizeof (mac_impl_t)); 535 536 mip->mi_linkstate = LINK_STATE_UNKNOWN; 537 538 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 539 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 540 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 541 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 542 543 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 544 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 545 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 546 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 547 548 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 549 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static void 555 i_mac_destructor(void *buf, void *arg) 556 { 557 mac_impl_t *mip = buf; 558 mac_cb_info_t *mcbi; 559 560 ASSERT(mip->mi_ref == 0); 561 ASSERT(mip->mi_active == 0); 562 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 563 ASSERT(mip->mi_devpromisc == 0); 564 ASSERT(mip->mi_ksp == NULL); 565 ASSERT(mip->mi_kstat_count == 0); 566 ASSERT(mip->mi_nclients == 0); 567 ASSERT(mip->mi_nactiveclients == 0); 568 ASSERT(mip->mi_single_active_client == NULL); 569 ASSERT(mip->mi_state_flags == 0); 570 ASSERT(mip->mi_factory_addr == NULL); 571 ASSERT(mip->mi_factory_addr_num == 0); 572 ASSERT(mip->mi_default_tx_ring == NULL); 573 574 mcbi = &mip->mi_notify_cb_info; 575 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 576 ASSERT(mip->mi_notify_bits == 0); 577 ASSERT(mip->mi_notify_thread == NULL); 578 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 579 mcbi->mcbi_lockp = NULL; 580 581 mcbi = &mip->mi_promisc_cb_info; 582 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 583 ASSERT(mip->mi_promisc_list == NULL); 584 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 585 mcbi->mcbi_lockp = NULL; 586 587 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 588 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 589 590 rw_destroy(&mip->mi_rw_lock); 591 592 mutex_destroy(&mip->mi_promisc_lock); 593 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 594 mutex_destroy(&mip->mi_notify_lock); 595 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 596 mutex_destroy(&mip->mi_ring_lock); 597 598 ASSERT(mip->mi_bridge_link == NULL); 599 } 600 601 /* ARGSUSED */ 602 static int 603 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 604 { 605 mac_ring_t *ring = (mac_ring_t *)buf; 606 607 bzero(ring, sizeof (mac_ring_t)); 608 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 609 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 610 ring->mr_state = MR_FREE; 611 return (0); 612 } 613 614 /* ARGSUSED */ 615 static void 616 i_mac_ring_dtor(void *buf, void *arg) 617 { 618 mac_ring_t *ring = (mac_ring_t *)buf; 619 620 cv_destroy(&ring->mr_cv); 621 mutex_destroy(&ring->mr_lock); 622 } 623 624 /* 625 * Common functions to do mac callback addition and deletion. Currently this is 626 * used by promisc callbacks and notify callbacks. List addition and deletion 627 * need to take care of list walkers. List walkers in general, can't hold list 628 * locks and make upcall callbacks due to potential lock order and recursive 629 * reentry issues. Instead list walkers increment the list walker count to mark 630 * the presence of a walker thread. Addition can be carefully done to ensure 631 * that the list walker always sees either the old list or the new list. 632 * However the deletion can't be done while the walker is active, instead the 633 * deleting thread simply marks the entry as logically deleted. The last walker 634 * physically deletes and frees up the logically deleted entries when the walk 635 * is complete. 636 */ 637 void 638 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 639 mac_cb_t *mcb_elem) 640 { 641 mac_cb_t *p; 642 mac_cb_t **pp; 643 644 /* Verify it is not already in the list */ 645 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 646 if (p == mcb_elem) 647 break; 648 } 649 VERIFY(p == NULL); 650 651 /* 652 * Add it to the head of the callback list. The membar ensures that 653 * the following list pointer manipulations reach global visibility 654 * in exactly the program order below. 655 */ 656 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 657 658 mcb_elem->mcb_nextp = *mcb_head; 659 membar_producer(); 660 *mcb_head = mcb_elem; 661 } 662 663 /* 664 * Mark the entry as logically deleted. If there aren't any walkers unlink 665 * from the list. In either case return the corresponding status. 666 */ 667 boolean_t 668 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 669 mac_cb_t *mcb_elem) 670 { 671 mac_cb_t *p; 672 mac_cb_t **pp; 673 674 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 675 /* 676 * Search the callback list for the entry to be removed 677 */ 678 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 679 if (p == mcb_elem) 680 break; 681 } 682 VERIFY(p != NULL); 683 684 /* 685 * If there are walkers just mark it as deleted and the last walker 686 * will remove from the list and free it. 687 */ 688 if (mcbi->mcbi_walker_cnt != 0) { 689 p->mcb_flags |= MCB_CONDEMNED; 690 mcbi->mcbi_del_cnt++; 691 return (B_FALSE); 692 } 693 694 ASSERT(mcbi->mcbi_del_cnt == 0); 695 *pp = p->mcb_nextp; 696 p->mcb_nextp = NULL; 697 return (B_TRUE); 698 } 699 700 /* 701 * Wait for all pending callback removals to be completed 702 */ 703 void 704 mac_callback_remove_wait(mac_cb_info_t *mcbi) 705 { 706 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 707 while (mcbi->mcbi_del_cnt != 0) { 708 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 709 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 710 } 711 } 712 713 /* 714 * The last mac callback walker does the cleanup. Walk the list and unlik 715 * all the logically deleted entries and construct a temporary list of 716 * removed entries. Return the list of removed entries to the caller. 717 */ 718 mac_cb_t * 719 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 720 { 721 mac_cb_t *p; 722 mac_cb_t **pp; 723 mac_cb_t *rmlist = NULL; /* List of removed elements */ 724 int cnt = 0; 725 726 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 727 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 728 729 pp = mcb_head; 730 while (*pp != NULL) { 731 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 732 p = *pp; 733 *pp = p->mcb_nextp; 734 p->mcb_nextp = rmlist; 735 rmlist = p; 736 cnt++; 737 continue; 738 } 739 pp = &(*pp)->mcb_nextp; 740 } 741 742 ASSERT(mcbi->mcbi_del_cnt == cnt); 743 mcbi->mcbi_del_cnt = 0; 744 return (rmlist); 745 } 746 747 boolean_t 748 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 749 { 750 mac_cb_t *mcb; 751 752 /* Verify it is not already in the list */ 753 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 754 if (mcb == mcb_elem) 755 return (B_TRUE); 756 } 757 758 return (B_FALSE); 759 } 760 761 boolean_t 762 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 763 { 764 boolean_t found; 765 766 mutex_enter(mcbi->mcbi_lockp); 767 found = mac_callback_lookup(mcb_headp, mcb_elem); 768 mutex_exit(mcbi->mcbi_lockp); 769 770 return (found); 771 } 772 773 /* Free the list of removed callbacks */ 774 void 775 mac_callback_free(mac_cb_t *rmlist) 776 { 777 mac_cb_t *mcb; 778 mac_cb_t *mcb_next; 779 780 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 781 mcb_next = mcb->mcb_nextp; 782 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 783 } 784 } 785 786 /* 787 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 788 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 789 * is only a single shared total walker count, and an entry can't be physically 790 * unlinked if a walker is active on either list. The last walker does this 791 * cleanup of logically deleted entries. 792 */ 793 void 794 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 795 { 796 mac_cb_t *rmlist; 797 mac_cb_t *mcb; 798 mac_cb_t *mcb_next; 799 mac_promisc_impl_t *mpip; 800 801 /* 802 * Construct a temporary list of deleted callbacks by walking the 803 * the mi_promisc_list. Then for each entry in the temporary list, 804 * remove it from the mci_promisc_list and free the entry. 805 */ 806 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 807 &mip->mi_promisc_list); 808 809 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 810 mcb_next = mcb->mcb_nextp; 811 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 812 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 813 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 814 mcb->mcb_flags = 0; 815 mcb->mcb_nextp = NULL; 816 kmem_cache_free(mac_promisc_impl_cache, mpip); 817 } 818 } 819 820 void 821 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 822 { 823 mac_cb_info_t *mcbi; 824 825 /* 826 * Signal the notify thread even after mi_ref has become zero and 827 * mi_disabled is set. The synchronization with the notify thread 828 * happens in mac_unregister and that implies the driver must make 829 * sure it is single-threaded (with respect to mac calls) and that 830 * all pending mac calls have returned before it calls mac_unregister 831 */ 832 rw_enter(&i_mac_impl_lock, RW_READER); 833 if (mip->mi_state_flags & MIS_DISABLED) 834 goto exit; 835 836 /* 837 * Guard against incorrect notifications. (Running a newer 838 * mac client against an older implementation?) 839 */ 840 if (type >= MAC_NNOTE) 841 goto exit; 842 843 mcbi = &mip->mi_notify_cb_info; 844 mutex_enter(mcbi->mcbi_lockp); 845 mip->mi_notify_bits |= (1 << type); 846 cv_broadcast(&mcbi->mcbi_cv); 847 mutex_exit(mcbi->mcbi_lockp); 848 849 exit: 850 rw_exit(&i_mac_impl_lock); 851 } 852 853 /* 854 * Mac serialization primitives. Please see the block comment at the 855 * top of the file. 856 */ 857 void 858 i_mac_perim_enter(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 mutex_enter(&mip->mi_perim_lock); 872 if (mip->mi_perim_owner == curthread) { 873 mip->mi_perim_ocnt++; 874 mutex_exit(&mip->mi_perim_lock); 875 return; 876 } 877 878 while (mip->mi_perim_owner != NULL) 879 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 880 881 mip->mi_perim_owner = curthread; 882 ASSERT(mip->mi_perim_ocnt == 0); 883 mip->mi_perim_ocnt++; 884 #ifdef DEBUG 885 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 886 MAC_PERIM_STACK_DEPTH); 887 #endif 888 mutex_exit(&mip->mi_perim_lock); 889 } 890 891 int 892 i_mac_perim_enter_nowait(mac_impl_t *mip) 893 { 894 /* 895 * The vnic is a special case, since the serialization is done based 896 * on the lower mac. If the lower mac is busy, it does not imply the 897 * vnic can't be unregistered. But in the case of other drivers, 898 * a busy perimeter or open mac handles implies that the mac is busy 899 * and can't be unregistered. 900 */ 901 if (mip->mi_state_flags & MIS_IS_VNIC) { 902 i_mac_perim_enter(mip); 903 return (0); 904 } 905 906 mutex_enter(&mip->mi_perim_lock); 907 if (mip->mi_perim_owner != NULL) { 908 mutex_exit(&mip->mi_perim_lock); 909 return (EBUSY); 910 } 911 ASSERT(mip->mi_perim_ocnt == 0); 912 mip->mi_perim_owner = curthread; 913 mip->mi_perim_ocnt++; 914 mutex_exit(&mip->mi_perim_lock); 915 916 return (0); 917 } 918 919 void 920 i_mac_perim_exit(mac_impl_t *mip) 921 { 922 mac_client_impl_t *mcip; 923 924 if (mip->mi_state_flags & MIS_IS_VNIC) { 925 /* 926 * This is a VNIC. Return the lower mac since that is what 927 * we want to serialize on. 928 */ 929 mcip = mac_vnic_lower(mip); 930 mip = mcip->mci_mip; 931 } 932 933 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 934 935 mutex_enter(&mip->mi_perim_lock); 936 if (--mip->mi_perim_ocnt == 0) { 937 mip->mi_perim_owner = NULL; 938 cv_signal(&mip->mi_perim_cv); 939 } 940 mutex_exit(&mip->mi_perim_lock); 941 } 942 943 /* 944 * Returns whether the current thread holds the mac perimeter. Used in making 945 * assertions. 946 */ 947 boolean_t 948 mac_perim_held(mac_handle_t mh) 949 { 950 mac_impl_t *mip = (mac_impl_t *)mh; 951 mac_client_impl_t *mcip; 952 953 if (mip->mi_state_flags & MIS_IS_VNIC) { 954 /* 955 * This is a VNIC. Return the lower mac since that is what 956 * we want to serialize on. 957 */ 958 mcip = mac_vnic_lower(mip); 959 mip = mcip->mci_mip; 960 } 961 return (mip->mi_perim_owner == curthread); 962 } 963 964 /* 965 * mac client interfaces to enter the mac perimeter of a mac end point, given 966 * its mac handle, or macname or linkid. 967 */ 968 void 969 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 970 { 971 mac_impl_t *mip = (mac_impl_t *)mh; 972 973 i_mac_perim_enter(mip); 974 /* 975 * The mac_perim_handle_t returned encodes the 'mip' and whether a 976 * mac_open has been done internally while entering the perimeter. 977 * This information is used in mac_perim_exit 978 */ 979 MAC_ENCODE_MPH(*mphp, mip, 0); 980 } 981 982 int 983 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 984 { 985 int err; 986 mac_handle_t mh; 987 988 if ((err = mac_open(name, &mh)) != 0) 989 return (err); 990 991 mac_perim_enter_by_mh(mh, mphp); 992 MAC_ENCODE_MPH(*mphp, mh, 1); 993 return (0); 994 } 995 996 int 997 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 998 { 999 int err; 1000 mac_handle_t mh; 1001 1002 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1003 return (err); 1004 1005 mac_perim_enter_by_mh(mh, mphp); 1006 MAC_ENCODE_MPH(*mphp, mh, 1); 1007 return (0); 1008 } 1009 1010 void 1011 mac_perim_exit(mac_perim_handle_t mph) 1012 { 1013 mac_impl_t *mip; 1014 boolean_t need_close; 1015 1016 MAC_DECODE_MPH(mph, mip, need_close); 1017 i_mac_perim_exit(mip); 1018 if (need_close) 1019 mac_close((mac_handle_t)mip); 1020 } 1021 1022 int 1023 mac_hold(const char *macname, mac_impl_t **pmip) 1024 { 1025 mac_impl_t *mip; 1026 int err; 1027 1028 /* 1029 * Check the device name length to make sure it won't overflow our 1030 * buffer. 1031 */ 1032 if (strlen(macname) >= MAXNAMELEN) 1033 return (EINVAL); 1034 1035 /* 1036 * Look up its entry in the global hash table. 1037 */ 1038 rw_enter(&i_mac_impl_lock, RW_WRITER); 1039 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1040 (mod_hash_val_t *)&mip); 1041 1042 if (err != 0) { 1043 rw_exit(&i_mac_impl_lock); 1044 return (ENOENT); 1045 } 1046 1047 if (mip->mi_state_flags & MIS_DISABLED) { 1048 rw_exit(&i_mac_impl_lock); 1049 return (ENOENT); 1050 } 1051 1052 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1053 rw_exit(&i_mac_impl_lock); 1054 return (EBUSY); 1055 } 1056 1057 mip->mi_ref++; 1058 rw_exit(&i_mac_impl_lock); 1059 1060 *pmip = mip; 1061 return (0); 1062 } 1063 1064 void 1065 mac_rele(mac_impl_t *mip) 1066 { 1067 rw_enter(&i_mac_impl_lock, RW_WRITER); 1068 ASSERT(mip->mi_ref != 0); 1069 if (--mip->mi_ref == 0) { 1070 ASSERT(mip->mi_nactiveclients == 0 && 1071 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1072 } 1073 rw_exit(&i_mac_impl_lock); 1074 } 1075 1076 /* 1077 * Private GLDv3 function to start a MAC instance. 1078 */ 1079 int 1080 mac_start(mac_handle_t mh) 1081 { 1082 mac_impl_t *mip = (mac_impl_t *)mh; 1083 int err = 0; 1084 mac_group_t *defgrp; 1085 1086 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1087 ASSERT(mip->mi_start != NULL); 1088 1089 /* 1090 * Check whether the device is already started. 1091 */ 1092 if (mip->mi_active++ == 0) { 1093 mac_ring_t *ring = NULL; 1094 1095 /* 1096 * Start the device. 1097 */ 1098 err = mip->mi_start(mip->mi_driver); 1099 if (err != 0) { 1100 mip->mi_active--; 1101 return (err); 1102 } 1103 1104 /* 1105 * Start the default tx ring. 1106 */ 1107 if (mip->mi_default_tx_ring != NULL) { 1108 1109 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1110 if (ring->mr_state != MR_INUSE) { 1111 err = mac_start_ring(ring); 1112 if (err != 0) { 1113 mip->mi_active--; 1114 return (err); 1115 } 1116 } 1117 } 1118 1119 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1120 /* 1121 * Start the default ring, since it will be needed 1122 * to receive broadcast and multicast traffic for 1123 * both primary and non-primary MAC clients. 1124 */ 1125 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1126 err = mac_start_group_and_rings(defgrp); 1127 if (err != 0) { 1128 mip->mi_active--; 1129 if ((ring != NULL) && 1130 (ring->mr_state == MR_INUSE)) 1131 mac_stop_ring(ring); 1132 return (err); 1133 } 1134 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1135 } 1136 } 1137 1138 return (err); 1139 } 1140 1141 /* 1142 * Private GLDv3 function to stop a MAC instance. 1143 */ 1144 void 1145 mac_stop(mac_handle_t mh) 1146 { 1147 mac_impl_t *mip = (mac_impl_t *)mh; 1148 mac_group_t *grp; 1149 1150 ASSERT(mip->mi_stop != NULL); 1151 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1152 1153 /* 1154 * Check whether the device is still needed. 1155 */ 1156 ASSERT(mip->mi_active != 0); 1157 if (--mip->mi_active == 0) { 1158 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1159 /* 1160 * There should be no more active clients since the 1161 * MAC is being stopped. Stop the default RX group 1162 * and transition it back to registered state. 1163 * 1164 * When clients are torn down, the groups 1165 * are release via mac_release_rx_group which 1166 * knows the the default group is always in 1167 * started mode since broadcast uses it. So 1168 * we can assert that their are no clients 1169 * (since mac_bcast_add doesn't register itself 1170 * as a client) and group is in SHARED state. 1171 */ 1172 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1173 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1174 mip->mi_nactiveclients == 0); 1175 mac_stop_group_and_rings(grp); 1176 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1177 } 1178 1179 if (mip->mi_default_tx_ring != NULL) { 1180 mac_ring_t *ring; 1181 1182 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1183 if (ring->mr_state == MR_INUSE) { 1184 mac_stop_ring(ring); 1185 ring->mr_flag = 0; 1186 } 1187 } 1188 1189 /* 1190 * Stop the device. 1191 */ 1192 mip->mi_stop(mip->mi_driver); 1193 } 1194 } 1195 1196 int 1197 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1198 { 1199 int err = 0; 1200 1201 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1202 ASSERT(mip->mi_setpromisc != NULL); 1203 1204 if (on) { 1205 /* 1206 * Enable promiscuous mode on the device if not yet enabled. 1207 */ 1208 if (mip->mi_devpromisc++ == 0) { 1209 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1210 if (err != 0) { 1211 mip->mi_devpromisc--; 1212 return (err); 1213 } 1214 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1215 } 1216 } else { 1217 if (mip->mi_devpromisc == 0) 1218 return (EPROTO); 1219 1220 /* 1221 * Disable promiscuous mode on the device if this is the last 1222 * enabling. 1223 */ 1224 if (--mip->mi_devpromisc == 0) { 1225 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1226 if (err != 0) { 1227 mip->mi_devpromisc++; 1228 return (err); 1229 } 1230 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1231 } 1232 } 1233 1234 return (0); 1235 } 1236 1237 /* 1238 * The promiscuity state can change any time. If the caller needs to take 1239 * actions that are atomic with the promiscuity state, then the caller needs 1240 * to bracket the entire sequence with mac_perim_enter/exit 1241 */ 1242 boolean_t 1243 mac_promisc_get(mac_handle_t mh) 1244 { 1245 mac_impl_t *mip = (mac_impl_t *)mh; 1246 1247 /* 1248 * Return the current promiscuity. 1249 */ 1250 return (mip->mi_devpromisc != 0); 1251 } 1252 1253 /* 1254 * Invoked at MAC instance attach time to initialize the list 1255 * of factory MAC addresses supported by a MAC instance. This function 1256 * builds a local cache in the mac_impl_t for the MAC addresses 1257 * supported by the underlying hardware. The MAC clients themselves 1258 * use the mac_addr_factory*() functions to query and reserve 1259 * factory MAC addresses. 1260 */ 1261 void 1262 mac_addr_factory_init(mac_impl_t *mip) 1263 { 1264 mac_capab_multifactaddr_t capab; 1265 uint8_t *addr; 1266 int i; 1267 1268 /* 1269 * First round to see how many factory MAC addresses are available. 1270 */ 1271 bzero(&capab, sizeof (capab)); 1272 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1273 &capab) || (capab.mcm_naddr == 0)) { 1274 /* 1275 * The MAC instance doesn't support multiple factory 1276 * MAC addresses, we're done here. 1277 */ 1278 return; 1279 } 1280 1281 /* 1282 * Allocate the space and get all the factory addresses. 1283 */ 1284 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1285 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1286 1287 mip->mi_factory_addr_num = capab.mcm_naddr; 1288 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1289 sizeof (mac_factory_addr_t), KM_SLEEP); 1290 1291 for (i = 0; i < capab.mcm_naddr; i++) { 1292 bcopy(addr + i * MAXMACADDRLEN, 1293 mip->mi_factory_addr[i].mfa_addr, 1294 mip->mi_type->mt_addr_length); 1295 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1296 } 1297 1298 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1299 } 1300 1301 void 1302 mac_addr_factory_fini(mac_impl_t *mip) 1303 { 1304 if (mip->mi_factory_addr == NULL) { 1305 ASSERT(mip->mi_factory_addr_num == 0); 1306 return; 1307 } 1308 1309 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1310 sizeof (mac_factory_addr_t)); 1311 1312 mip->mi_factory_addr = NULL; 1313 mip->mi_factory_addr_num = 0; 1314 } 1315 1316 /* 1317 * Reserve a factory MAC address. If *slot is set to -1, the function 1318 * attempts to reserve any of the available factory MAC addresses and 1319 * returns the reserved slot id. If no slots are available, the function 1320 * returns ENOSPC. If *slot is not set to -1, the function reserves 1321 * the specified slot if it is available, or returns EBUSY is the slot 1322 * is already used. Returns ENOTSUP if the underlying MAC does not 1323 * support multiple factory addresses. If the slot number is not -1 but 1324 * is invalid, returns EINVAL. 1325 */ 1326 int 1327 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1328 { 1329 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1330 mac_impl_t *mip = mcip->mci_mip; 1331 int i, ret = 0; 1332 1333 i_mac_perim_enter(mip); 1334 /* 1335 * Protect against concurrent readers that may need a self-consistent 1336 * view of the factory addresses 1337 */ 1338 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1339 1340 if (mip->mi_factory_addr_num == 0) { 1341 ret = ENOTSUP; 1342 goto bail; 1343 } 1344 1345 if (*slot != -1) { 1346 /* check the specified slot */ 1347 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1348 ret = EINVAL; 1349 goto bail; 1350 } 1351 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1352 ret = EBUSY; 1353 goto bail; 1354 } 1355 } else { 1356 /* pick the next available slot */ 1357 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1358 if (!mip->mi_factory_addr[i].mfa_in_use) 1359 break; 1360 } 1361 1362 if (i == mip->mi_factory_addr_num) { 1363 ret = ENOSPC; 1364 goto bail; 1365 } 1366 *slot = i+1; 1367 } 1368 1369 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1370 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1371 1372 bail: 1373 rw_exit(&mip->mi_rw_lock); 1374 i_mac_perim_exit(mip); 1375 return (ret); 1376 } 1377 1378 /* 1379 * Release the specified factory MAC address slot. 1380 */ 1381 void 1382 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1383 { 1384 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1385 mac_impl_t *mip = mcip->mci_mip; 1386 1387 i_mac_perim_enter(mip); 1388 /* 1389 * Protect against concurrent readers that may need a self-consistent 1390 * view of the factory addresses 1391 */ 1392 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1393 1394 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1395 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1396 1397 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1398 1399 rw_exit(&mip->mi_rw_lock); 1400 i_mac_perim_exit(mip); 1401 } 1402 1403 /* 1404 * Stores in mac_addr the value of the specified MAC address. Returns 1405 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1406 * The caller must provide a string of at least MAXNAMELEN bytes. 1407 */ 1408 void 1409 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1410 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1411 { 1412 mac_impl_t *mip = (mac_impl_t *)mh; 1413 boolean_t in_use; 1414 1415 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1416 1417 /* 1418 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1419 * and mi_rw_lock 1420 */ 1421 rw_enter(&mip->mi_rw_lock, RW_READER); 1422 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1423 *addr_len = mip->mi_type->mt_addr_length; 1424 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1425 if (in_use && client_name != NULL) { 1426 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1427 client_name, MAXNAMELEN); 1428 } 1429 if (in_use_arg != NULL) 1430 *in_use_arg = in_use; 1431 rw_exit(&mip->mi_rw_lock); 1432 } 1433 1434 /* 1435 * Returns the number of factory MAC addresses (in addition to the 1436 * primary MAC address), 0 if the underlying MAC doesn't support 1437 * that feature. 1438 */ 1439 uint_t 1440 mac_addr_factory_num(mac_handle_t mh) 1441 { 1442 mac_impl_t *mip = (mac_impl_t *)mh; 1443 1444 return (mip->mi_factory_addr_num); 1445 } 1446 1447 1448 void 1449 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1450 { 1451 mac_ring_t *ring; 1452 1453 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1454 ring->mr_flag &= ~flag; 1455 } 1456 1457 /* 1458 * The following mac_hwrings_xxx() functions are private mac client functions 1459 * used by the aggr driver to access and control the underlying HW Rx group 1460 * and rings. In this case, the aggr driver has exclusive control of the 1461 * underlying HW Rx group/rings, it calls the following functions to 1462 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1463 * addresses, or set up the Rx callback. 1464 */ 1465 /* ARGSUSED */ 1466 static void 1467 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1468 mblk_t *mp_chain, boolean_t loopback) 1469 { 1470 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1471 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1472 mac_direct_rx_t proc; 1473 void *arg1; 1474 mac_resource_handle_t arg2; 1475 1476 proc = srs_rx->sr_func; 1477 arg1 = srs_rx->sr_arg1; 1478 arg2 = mac_srs->srs_mrh; 1479 1480 proc(arg1, arg2, mp_chain, NULL); 1481 } 1482 1483 /* 1484 * This function is called to get the list of HW rings that are reserved by 1485 * an exclusive mac client. 1486 * 1487 * Return value: the number of HW rings. 1488 */ 1489 int 1490 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1491 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1492 { 1493 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1494 flow_entry_t *flent = mcip->mci_flent; 1495 mac_group_t *grp; 1496 mac_ring_t *ring; 1497 int cnt = 0; 1498 1499 if (rtype == MAC_RING_TYPE_RX) { 1500 grp = flent->fe_rx_ring_group; 1501 } else if (rtype == MAC_RING_TYPE_TX) { 1502 grp = flent->fe_tx_ring_group; 1503 } else { 1504 ASSERT(B_FALSE); 1505 return (-1); 1506 } 1507 /* 1508 * The mac client did not reserve any RX group, return directly. 1509 * This is probably because the underlying MAC does not support 1510 * any groups. 1511 */ 1512 if (hwgh != NULL) 1513 *hwgh = NULL; 1514 if (grp == NULL) 1515 return (0); 1516 /* 1517 * This group must be reserved by this mac client. 1518 */ 1519 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1520 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1521 1522 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1523 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1524 hwrh[cnt] = (mac_ring_handle_t)ring; 1525 } 1526 if (hwgh != NULL) 1527 *hwgh = (mac_group_handle_t)grp; 1528 1529 return (cnt); 1530 } 1531 1532 /* 1533 * This function is called to get info about Tx/Rx rings. 1534 * 1535 * Return value: returns uint_t which will have various bits set 1536 * that indicates different properties of the ring. 1537 */ 1538 uint_t 1539 mac_hwring_getinfo(mac_ring_handle_t rh) 1540 { 1541 mac_ring_t *ring = (mac_ring_t *)rh; 1542 mac_ring_info_t *info = &ring->mr_info; 1543 1544 return (info->mri_flags); 1545 } 1546 1547 /* 1548 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1549 * setup the RX callback of the mac client which exclusively controls 1550 * HW ring. 1551 */ 1552 void 1553 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1554 mac_ring_handle_t pseudo_rh) 1555 { 1556 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1557 mac_ring_t *pseudo_ring; 1558 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1559 1560 if (pseudo_rh != NULL) { 1561 pseudo_ring = (mac_ring_t *)pseudo_rh; 1562 /* Export the ddi handles to pseudo ring */ 1563 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1564 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1565 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1566 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1567 /* 1568 * Save a pointer to pseudo ring in the hw ring. If 1569 * interrupt handle changes, the hw ring will be 1570 * notified of the change (see mac_ring_intr_set()) 1571 * and the appropriate change has to be made to 1572 * the pseudo ring that has exported the ddi handle. 1573 */ 1574 hw_ring->mr_prh = pseudo_rh; 1575 } 1576 1577 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1578 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1579 mac_srs->srs_mrh = prh; 1580 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1581 } 1582 } 1583 1584 void 1585 mac_hwring_teardown(mac_ring_handle_t hwrh) 1586 { 1587 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1588 mac_soft_ring_set_t *mac_srs; 1589 1590 if (hw_ring == NULL) 1591 return; 1592 hw_ring->mr_prh = NULL; 1593 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1594 mac_srs = hw_ring->mr_srs; 1595 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1596 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1597 mac_srs->srs_mrh = NULL; 1598 } 1599 } 1600 1601 int 1602 mac_hwring_disable_intr(mac_ring_handle_t rh) 1603 { 1604 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1605 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1606 1607 return (intr->mi_disable(intr->mi_handle)); 1608 } 1609 1610 int 1611 mac_hwring_enable_intr(mac_ring_handle_t rh) 1612 { 1613 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1614 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1615 1616 return (intr->mi_enable(intr->mi_handle)); 1617 } 1618 1619 int 1620 mac_hwring_start(mac_ring_handle_t rh) 1621 { 1622 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1623 1624 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1625 return (0); 1626 } 1627 1628 void 1629 mac_hwring_stop(mac_ring_handle_t rh) 1630 { 1631 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1632 1633 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1634 } 1635 1636 mblk_t * 1637 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1638 { 1639 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1640 mac_ring_info_t *info = &rr_ring->mr_info; 1641 1642 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1643 } 1644 1645 /* 1646 * Send packets through a selected tx ring. 1647 */ 1648 mblk_t * 1649 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1650 { 1651 mac_ring_t *ring = (mac_ring_t *)rh; 1652 mac_ring_info_t *info = &ring->mr_info; 1653 1654 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1655 ring->mr_state >= MR_INUSE); 1656 return (info->mri_tx(info->mri_driver, mp)); 1657 } 1658 1659 /* 1660 * Query stats for a particular rx/tx ring 1661 */ 1662 int 1663 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1664 { 1665 mac_ring_t *ring = (mac_ring_t *)rh; 1666 mac_ring_info_t *info = &ring->mr_info; 1667 1668 return (info->mri_stat(info->mri_driver, stat, val)); 1669 } 1670 1671 /* 1672 * Private function that is only used by aggr to send packets through 1673 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1674 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1675 * access to mac_impl_t to send packets through m_tx() entry point. 1676 * It accomplishes this by calling mac_hwring_send_priv() function. 1677 */ 1678 mblk_t * 1679 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1680 { 1681 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1682 mac_impl_t *mip = mcip->mci_mip; 1683 1684 MAC_TX(mip, rh, mp, mcip); 1685 return (mp); 1686 } 1687 1688 /* 1689 * Private function that is only used by aggr to update the default transmission 1690 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1691 * temporarily be down, it may need to update the default ring that is used by 1692 * MAC such that it refers to a link that can actively be used to send traffic. 1693 * Note that this is different from the case where the port has been removed 1694 * from the group. In those cases, all of the rings will be torn down because 1695 * the ring will no longer exist. It's important to give aggr a case where the 1696 * rings can still exist such that it may be able to continue to send LACP PDUs 1697 * to potentially restore the link. 1698 * 1699 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1700 * This is to help out aggr which doesn't really know the internal state that 1701 * MAC does about the rings and can't know that it's not quite ready for use 1702 * yet. 1703 */ 1704 void 1705 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1706 { 1707 mac_impl_t *mip = (mac_impl_t *)mh; 1708 mac_ring_t *ring = (mac_ring_t *)rh; 1709 1710 ASSERT(MAC_PERIM_HELD(mh)); 1711 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1712 1713 if (ring->mr_state != MR_INUSE) 1714 return; 1715 1716 mip->mi_default_tx_ring = rh; 1717 } 1718 1719 int 1720 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1721 { 1722 mac_group_t *group = (mac_group_t *)gh; 1723 1724 return (mac_group_addmac(group, addr)); 1725 } 1726 1727 int 1728 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1729 { 1730 mac_group_t *group = (mac_group_t *)gh; 1731 1732 return (mac_group_remmac(group, addr)); 1733 } 1734 1735 /* 1736 * Set the RX group to be shared/reserved. Note that the group must be 1737 * started/stopped outside of this function. 1738 */ 1739 void 1740 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1741 { 1742 /* 1743 * If there is no change in the group state, just return. 1744 */ 1745 if (grp->mrg_state == state) 1746 return; 1747 1748 switch (state) { 1749 case MAC_GROUP_STATE_RESERVED: 1750 /* 1751 * Successfully reserved the group. 1752 * 1753 * Given that there is an exclusive client controlling this 1754 * group, we enable the group level polling when available, 1755 * so that SRSs get to turn on/off individual rings they's 1756 * assigned to. 1757 */ 1758 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1759 1760 if (grp->mrg_type == MAC_RING_TYPE_RX && 1761 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1762 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1763 } 1764 break; 1765 1766 case MAC_GROUP_STATE_SHARED: 1767 /* 1768 * Set all rings of this group to software classified. 1769 * If the group has an overriding interrupt, then re-enable it. 1770 */ 1771 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1772 1773 if (grp->mrg_type == MAC_RING_TYPE_RX && 1774 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1775 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1776 } 1777 /* The ring is not available for reservations any more */ 1778 break; 1779 1780 case MAC_GROUP_STATE_REGISTERED: 1781 /* Also callable from mac_register, perim is not held */ 1782 break; 1783 1784 default: 1785 ASSERT(B_FALSE); 1786 break; 1787 } 1788 1789 grp->mrg_state = state; 1790 } 1791 1792 /* 1793 * Quiesce future hardware classified packets for the specified Rx ring 1794 */ 1795 static void 1796 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1797 { 1798 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1799 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1800 1801 mutex_enter(&rx_ring->mr_lock); 1802 rx_ring->mr_flag |= ring_flag; 1803 while (rx_ring->mr_refcnt != 0) 1804 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1805 mutex_exit(&rx_ring->mr_lock); 1806 } 1807 1808 /* 1809 * Please see mac_tx for details about the per cpu locking scheme 1810 */ 1811 static void 1812 mac_tx_lock_all(mac_client_impl_t *mcip) 1813 { 1814 int i; 1815 1816 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1817 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1818 } 1819 1820 static void 1821 mac_tx_unlock_all(mac_client_impl_t *mcip) 1822 { 1823 int i; 1824 1825 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1826 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1827 } 1828 1829 static void 1830 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1831 { 1832 int i; 1833 1834 for (i = mac_tx_percpu_cnt; i > 0; i--) 1835 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1836 } 1837 1838 static int 1839 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1840 { 1841 int i; 1842 int refcnt = 0; 1843 1844 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1845 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1846 1847 return (refcnt); 1848 } 1849 1850 /* 1851 * Stop future Tx packets coming down from the client in preparation for 1852 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1853 * of rings between clients 1854 */ 1855 void 1856 mac_tx_client_block(mac_client_impl_t *mcip) 1857 { 1858 mac_tx_lock_all(mcip); 1859 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1860 while (mac_tx_sum_refcnt(mcip) != 0) { 1861 mac_tx_unlock_allbutzero(mcip); 1862 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1863 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1864 mac_tx_lock_all(mcip); 1865 } 1866 mac_tx_unlock_all(mcip); 1867 } 1868 1869 void 1870 mac_tx_client_unblock(mac_client_impl_t *mcip) 1871 { 1872 mac_tx_lock_all(mcip); 1873 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1874 mac_tx_unlock_all(mcip); 1875 /* 1876 * We may fail to disable flow control for the last MAC_NOTE_TX 1877 * notification because the MAC client is quiesced. Send the 1878 * notification again. 1879 */ 1880 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1881 } 1882 1883 /* 1884 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1885 * quiesce is done. 1886 */ 1887 static void 1888 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1889 { 1890 mutex_enter(&srs->srs_lock); 1891 while (!(srs->srs_state & srs_flag)) 1892 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1893 mutex_exit(&srs->srs_lock); 1894 } 1895 1896 /* 1897 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1898 * works bottom up by cutting off packet flow from the bottommost point in the 1899 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1900 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1901 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1902 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1903 * for the SRS and MR flags. In the former case the threads pause waiting for 1904 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1905 * is also mostly similar to the above. 1906 * 1907 * 1. Stop future hardware classified packets at the lowest level in the mac. 1908 * Remove any hardware classification rule (CONDEMNED case) and mark the 1909 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1910 * from increasing. Upcalls from the driver that come through hardware 1911 * classification will be dropped in mac_rx from now on. Then we wait for 1912 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1913 * sure there aren't any upcall threads from the driver through hardware 1914 * classification. In the case of SRS teardown we also remove the 1915 * classification rule in the driver. 1916 * 1917 * 2. Stop future software classified packets by marking the flow entry with 1918 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1919 * increasing. We also remove the flow entry from the table in the latter 1920 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1921 * that indicates there aren't any active threads using that flow entry. 1922 * 1923 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1924 * SRS worker thread, and the soft ring threads are quiesced in sequence 1925 * with the SRS worker thread serving as a master controller. This 1926 * mechansim is explained in mac_srs_worker_quiesce(). 1927 * 1928 * The restart mechanism to reactivate the SRS and softrings is explained 1929 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1930 * restart sequence. 1931 */ 1932 void 1933 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1934 { 1935 flow_entry_t *flent = srs->srs_flent; 1936 uint_t mr_flag, srs_done_flag; 1937 1938 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1939 ASSERT(!(srs->srs_type & SRST_TX)); 1940 1941 if (srs_quiesce_flag == SRS_CONDEMNED) { 1942 mr_flag = MR_CONDEMNED; 1943 srs_done_flag = SRS_CONDEMNED_DONE; 1944 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1945 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1946 } else { 1947 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1948 mr_flag = MR_QUIESCE; 1949 srs_done_flag = SRS_QUIESCE_DONE; 1950 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1951 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1952 } 1953 1954 if (srs->srs_ring != NULL) { 1955 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1956 } else { 1957 /* 1958 * SRS is driven by software classification. In case 1959 * of CONDEMNED, the top level teardown functions will 1960 * deal with flow removal. 1961 */ 1962 if (srs_quiesce_flag != SRS_CONDEMNED) { 1963 FLOW_MARK(flent, FE_QUIESCE); 1964 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1965 } 1966 } 1967 1968 /* 1969 * Signal the SRS to quiesce itself, and then cv_wait for the 1970 * SRS quiesce to complete. The SRS worker thread will wake us 1971 * up when the quiesce is complete 1972 */ 1973 mac_srs_signal(srs, srs_quiesce_flag); 1974 mac_srs_quiesce_wait(srs, srs_done_flag); 1975 } 1976 1977 /* 1978 * Remove an SRS. 1979 */ 1980 void 1981 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1982 { 1983 flow_entry_t *flent = srs->srs_flent; 1984 int i; 1985 1986 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1987 /* 1988 * Locate and remove our entry in the fe_rx_srs[] array, and 1989 * adjust the fe_rx_srs array entries and array count by 1990 * moving the last entry into the vacated spot. 1991 */ 1992 mutex_enter(&flent->fe_lock); 1993 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1994 if (flent->fe_rx_srs[i] == srs) 1995 break; 1996 } 1997 1998 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1999 if (i != flent->fe_rx_srs_cnt - 1) { 2000 flent->fe_rx_srs[i] = 2001 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2002 i = flent->fe_rx_srs_cnt - 1; 2003 } 2004 2005 flent->fe_rx_srs[i] = NULL; 2006 flent->fe_rx_srs_cnt--; 2007 mutex_exit(&flent->fe_lock); 2008 2009 mac_srs_free(srs); 2010 } 2011 2012 static void 2013 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2014 { 2015 mutex_enter(&srs->srs_lock); 2016 srs->srs_state &= ~flag; 2017 mutex_exit(&srs->srs_lock); 2018 } 2019 2020 void 2021 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2022 { 2023 flow_entry_t *flent = srs->srs_flent; 2024 mac_ring_t *mr; 2025 2026 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2027 ASSERT((srs->srs_type & SRST_TX) == 0); 2028 2029 /* 2030 * This handles a change in the number of SRSs between the quiesce and 2031 * and restart operation of a flow. 2032 */ 2033 if (!SRS_QUIESCED(srs)) 2034 return; 2035 2036 /* 2037 * Signal the SRS to restart itself. Wait for the restart to complete 2038 * Note that we only restart the SRS if it is not marked as 2039 * permanently quiesced. 2040 */ 2041 if (!SRS_QUIESCED_PERMANENT(srs)) { 2042 mac_srs_signal(srs, SRS_RESTART); 2043 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2044 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2045 2046 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2047 } 2048 2049 /* Finally clear the flags to let the packets in */ 2050 mr = srs->srs_ring; 2051 if (mr != NULL) { 2052 MAC_RING_UNMARK(mr, MR_QUIESCE); 2053 /* In case the ring was stopped, safely restart it */ 2054 if (mr->mr_state != MR_INUSE) 2055 (void) mac_start_ring(mr); 2056 } else { 2057 FLOW_UNMARK(flent, FE_QUIESCE); 2058 } 2059 } 2060 2061 /* 2062 * Temporary quiesce of a flow and associated Rx SRS. 2063 * Please see block comment above mac_rx_classify_flow_rem. 2064 */ 2065 /* ARGSUSED */ 2066 int 2067 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2068 { 2069 int i; 2070 2071 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2072 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2073 SRS_QUIESCE); 2074 } 2075 return (0); 2076 } 2077 2078 /* 2079 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2080 * Please see block comment above mac_rx_classify_flow_rem 2081 */ 2082 /* ARGSUSED */ 2083 int 2084 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2085 { 2086 int i; 2087 2088 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2089 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2090 2091 return (0); 2092 } 2093 2094 void 2095 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2096 { 2097 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2098 flow_entry_t *flent = mcip->mci_flent; 2099 mac_impl_t *mip = mcip->mci_mip; 2100 mac_soft_ring_set_t *mac_srs; 2101 int i; 2102 2103 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2104 2105 if (flent == NULL) 2106 return; 2107 2108 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2109 mac_srs = flent->fe_rx_srs[i]; 2110 mutex_enter(&mac_srs->srs_lock); 2111 if (on) 2112 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2113 else 2114 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2115 mutex_exit(&mac_srs->srs_lock); 2116 } 2117 } 2118 2119 void 2120 mac_rx_client_quiesce(mac_client_handle_t mch) 2121 { 2122 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2123 mac_impl_t *mip = mcip->mci_mip; 2124 2125 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2126 2127 if (MCIP_DATAPATH_SETUP(mcip)) { 2128 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2129 NULL); 2130 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2131 mac_rx_classify_flow_quiesce, NULL); 2132 } 2133 } 2134 2135 void 2136 mac_rx_client_restart(mac_client_handle_t mch) 2137 { 2138 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2139 mac_impl_t *mip = mcip->mci_mip; 2140 2141 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2142 2143 if (MCIP_DATAPATH_SETUP(mcip)) { 2144 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2145 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2146 mac_rx_classify_flow_restart, NULL); 2147 } 2148 } 2149 2150 /* 2151 * This function only quiesces the Tx SRS and softring worker threads. Callers 2152 * need to make sure that there aren't any mac client threads doing current or 2153 * future transmits in the mac before calling this function. 2154 */ 2155 void 2156 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2157 { 2158 mac_client_impl_t *mcip = srs->srs_mcip; 2159 2160 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2161 2162 ASSERT(srs->srs_type & SRST_TX); 2163 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2164 srs_quiesce_flag == SRS_QUIESCE); 2165 2166 /* 2167 * Signal the SRS to quiesce itself, and then cv_wait for the 2168 * SRS quiesce to complete. The SRS worker thread will wake us 2169 * up when the quiesce is complete 2170 */ 2171 mac_srs_signal(srs, srs_quiesce_flag); 2172 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2173 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2174 } 2175 2176 void 2177 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2178 { 2179 /* 2180 * Resizing the fanout could result in creation of new SRSs. 2181 * They may not necessarily be in the quiesced state in which 2182 * case it need be restarted 2183 */ 2184 if (!SRS_QUIESCED(srs)) 2185 return; 2186 2187 mac_srs_signal(srs, SRS_RESTART); 2188 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2189 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2190 } 2191 2192 /* 2193 * Temporary quiesce of a flow and associated Rx SRS. 2194 * Please see block comment above mac_rx_srs_quiesce 2195 */ 2196 /* ARGSUSED */ 2197 int 2198 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2199 { 2200 /* 2201 * The fe_tx_srs is null for a subflow on an interface that is 2202 * not plumbed 2203 */ 2204 if (flent->fe_tx_srs != NULL) 2205 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2206 return (0); 2207 } 2208 2209 /* ARGSUSED */ 2210 int 2211 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2212 { 2213 /* 2214 * The fe_tx_srs is null for a subflow on an interface that is 2215 * not plumbed 2216 */ 2217 if (flent->fe_tx_srs != NULL) 2218 mac_tx_srs_restart(flent->fe_tx_srs); 2219 return (0); 2220 } 2221 2222 static void 2223 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2224 { 2225 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2226 2227 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2228 2229 mac_tx_client_block(mcip); 2230 if (MCIP_TX_SRS(mcip) != NULL) { 2231 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2232 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2233 mac_tx_flow_quiesce, NULL); 2234 } 2235 } 2236 2237 void 2238 mac_tx_client_quiesce(mac_client_handle_t mch) 2239 { 2240 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2241 } 2242 2243 void 2244 mac_tx_client_condemn(mac_client_handle_t mch) 2245 { 2246 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2247 } 2248 2249 void 2250 mac_tx_client_restart(mac_client_handle_t mch) 2251 { 2252 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2253 2254 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2255 2256 mac_tx_client_unblock(mcip); 2257 if (MCIP_TX_SRS(mcip) != NULL) { 2258 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2259 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2260 mac_tx_flow_restart, NULL); 2261 } 2262 } 2263 2264 void 2265 mac_tx_client_flush(mac_client_impl_t *mcip) 2266 { 2267 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2268 2269 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2270 mac_tx_client_restart((mac_client_handle_t)mcip); 2271 } 2272 2273 void 2274 mac_client_quiesce(mac_client_impl_t *mcip) 2275 { 2276 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2277 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2278 } 2279 2280 void 2281 mac_client_restart(mac_client_impl_t *mcip) 2282 { 2283 mac_rx_client_restart((mac_client_handle_t)mcip); 2284 mac_tx_client_restart((mac_client_handle_t)mcip); 2285 } 2286 2287 /* 2288 * Allocate a minor number. 2289 */ 2290 minor_t 2291 mac_minor_hold(boolean_t sleep) 2292 { 2293 minor_t minor; 2294 2295 /* 2296 * Grab a value from the arena. 2297 */ 2298 atomic_inc_32(&minor_count); 2299 2300 if (sleep) 2301 minor = (uint_t)id_alloc(minor_ids); 2302 else 2303 minor = (uint_t)id_alloc_nosleep(minor_ids); 2304 2305 if (minor == 0) { 2306 atomic_dec_32(&minor_count); 2307 return (0); 2308 } 2309 2310 return (minor); 2311 } 2312 2313 /* 2314 * Release a previously allocated minor number. 2315 */ 2316 void 2317 mac_minor_rele(minor_t minor) 2318 { 2319 /* 2320 * Return the value to the arena. 2321 */ 2322 id_free(minor_ids, minor); 2323 atomic_dec_32(&minor_count); 2324 } 2325 2326 uint32_t 2327 mac_no_notification(mac_handle_t mh) 2328 { 2329 mac_impl_t *mip = (mac_impl_t *)mh; 2330 2331 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2332 mip->mi_capab_legacy.ml_unsup_note : 0); 2333 } 2334 2335 /* 2336 * Prevent any new opens of this mac in preparation for unregister 2337 */ 2338 int 2339 i_mac_disable(mac_impl_t *mip) 2340 { 2341 mac_client_impl_t *mcip; 2342 2343 rw_enter(&i_mac_impl_lock, RW_WRITER); 2344 if (mip->mi_state_flags & MIS_DISABLED) { 2345 /* Already disabled, return success */ 2346 rw_exit(&i_mac_impl_lock); 2347 return (0); 2348 } 2349 /* 2350 * See if there are any other references to this mac_t (e.g., VLAN's). 2351 * If so return failure. If all the other checks below pass, then 2352 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2353 * any new VLAN's from being created or new mac client opens of this 2354 * mac end point. 2355 */ 2356 if (mip->mi_ref > 0) { 2357 rw_exit(&i_mac_impl_lock); 2358 return (EBUSY); 2359 } 2360 2361 /* 2362 * mac clients must delete all multicast groups they join before 2363 * closing. bcast groups are reference counted, the last client 2364 * to delete the group will wait till the group is physically 2365 * deleted. Since all clients have closed this mac end point 2366 * mi_bcast_ngrps must be zero at this point 2367 */ 2368 ASSERT(mip->mi_bcast_ngrps == 0); 2369 2370 /* 2371 * Don't let go of this if it has some flows. 2372 * All other code guarantees no flows are added to a disabled 2373 * mac, therefore it is sufficient to check for the flow table 2374 * only here. 2375 */ 2376 mcip = mac_primary_client_handle(mip); 2377 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2378 rw_exit(&i_mac_impl_lock); 2379 return (ENOTEMPTY); 2380 } 2381 2382 mip->mi_state_flags |= MIS_DISABLED; 2383 rw_exit(&i_mac_impl_lock); 2384 return (0); 2385 } 2386 2387 int 2388 mac_disable_nowait(mac_handle_t mh) 2389 { 2390 mac_impl_t *mip = (mac_impl_t *)mh; 2391 int err; 2392 2393 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2394 return (err); 2395 err = i_mac_disable(mip); 2396 i_mac_perim_exit(mip); 2397 return (err); 2398 } 2399 2400 int 2401 mac_disable(mac_handle_t mh) 2402 { 2403 mac_impl_t *mip = (mac_impl_t *)mh; 2404 int err; 2405 2406 i_mac_perim_enter(mip); 2407 err = i_mac_disable(mip); 2408 i_mac_perim_exit(mip); 2409 2410 /* 2411 * Clean up notification thread and wait for it to exit. 2412 */ 2413 if (err == 0) 2414 i_mac_notify_exit(mip); 2415 2416 return (err); 2417 } 2418 2419 /* 2420 * Called when the MAC instance has a non empty flow table, to de-multiplex 2421 * incoming packets to the right flow. 2422 * The MAC's rw lock is assumed held as a READER. 2423 */ 2424 /* ARGSUSED */ 2425 static mblk_t * 2426 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2427 { 2428 flow_entry_t *flent = NULL; 2429 uint_t flags = FLOW_INBOUND; 2430 int err; 2431 2432 /* 2433 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2434 * to mac_flow_lookup() so that the VLAN packets can be successfully 2435 * passed to the non-VLAN aggregation flows. 2436 * 2437 * Note that there is possibly a race between this and 2438 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2439 * classified to non-VLAN flows of non-aggregation mac clients. These 2440 * VLAN packets will be then filtered out by the mac module. 2441 */ 2442 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2443 flags |= FLOW_IGNORE_VLAN; 2444 2445 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2446 if (err != 0) { 2447 /* no registered receive function */ 2448 return (mp); 2449 } else { 2450 mac_client_impl_t *mcip; 2451 2452 /* 2453 * This flent might just be an additional one on the MAC client, 2454 * i.e. for classification purposes (different fdesc), however 2455 * the resources, SRS et. al., are in the mci_flent, so if 2456 * this isn't the mci_flent, we need to get it. 2457 */ 2458 if ((mcip = flent->fe_mcip) != NULL && 2459 mcip->mci_flent != flent) { 2460 FLOW_REFRELE(flent); 2461 flent = mcip->mci_flent; 2462 FLOW_TRY_REFHOLD(flent, err); 2463 if (err != 0) 2464 return (mp); 2465 } 2466 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2467 B_FALSE); 2468 FLOW_REFRELE(flent); 2469 } 2470 return (NULL); 2471 } 2472 2473 mblk_t * 2474 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2475 { 2476 mac_impl_t *mip = (mac_impl_t *)mh; 2477 mblk_t *bp, *bp1, **bpp, *list = NULL; 2478 2479 /* 2480 * We walk the chain and attempt to classify each packet. 2481 * The packets that couldn't be classified will be returned 2482 * back to the caller. 2483 */ 2484 bp = mp_chain; 2485 bpp = &list; 2486 while (bp != NULL) { 2487 bp1 = bp; 2488 bp = bp->b_next; 2489 bp1->b_next = NULL; 2490 2491 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2492 *bpp = bp1; 2493 bpp = &bp1->b_next; 2494 } 2495 } 2496 return (list); 2497 } 2498 2499 static int 2500 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2501 { 2502 mac_ring_handle_t ring = arg; 2503 2504 if (flent->fe_tx_srs) 2505 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2506 return (0); 2507 } 2508 2509 void 2510 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2511 { 2512 mac_client_impl_t *cclient; 2513 mac_soft_ring_set_t *mac_srs; 2514 2515 /* 2516 * After grabbing the mi_rw_lock, the list of clients can't change. 2517 * If there are any clients mi_disabled must be B_FALSE and can't 2518 * get set since there are clients. If there aren't any clients we 2519 * don't do anything. In any case the mip has to be valid. The driver 2520 * must make sure that it goes single threaded (with respect to mac 2521 * calls) and wait for all pending mac calls to finish before calling 2522 * mac_unregister. 2523 */ 2524 rw_enter(&i_mac_impl_lock, RW_READER); 2525 if (mip->mi_state_flags & MIS_DISABLED) { 2526 rw_exit(&i_mac_impl_lock); 2527 return; 2528 } 2529 2530 /* 2531 * Get MAC tx srs from walking mac_client_handle list. 2532 */ 2533 rw_enter(&mip->mi_rw_lock, RW_READER); 2534 for (cclient = mip->mi_clients_list; cclient != NULL; 2535 cclient = cclient->mci_client_next) { 2536 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2537 mac_tx_srs_wakeup(mac_srs, ring); 2538 } else { 2539 /* 2540 * Aggr opens underlying ports in exclusive mode 2541 * and registers flow control callbacks using 2542 * mac_tx_client_notify(). When opened in 2543 * exclusive mode, Tx SRS won't be created 2544 * during mac_unicast_add(). 2545 */ 2546 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2547 mac_tx_invoke_callbacks(cclient, 2548 (mac_tx_cookie_t)ring); 2549 } 2550 } 2551 (void) mac_flow_walk(cclient->mci_subflow_tab, 2552 mac_tx_flow_srs_wakeup, ring); 2553 } 2554 rw_exit(&mip->mi_rw_lock); 2555 rw_exit(&i_mac_impl_lock); 2556 } 2557 2558 /* ARGSUSED */ 2559 void 2560 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2561 boolean_t add) 2562 { 2563 mac_impl_t *mip = (mac_impl_t *)mh; 2564 2565 i_mac_perim_enter((mac_impl_t *)mh); 2566 /* 2567 * If no specific refresh function was given then default to the 2568 * driver's m_multicst entry point. 2569 */ 2570 if (refresh == NULL) { 2571 refresh = mip->mi_multicst; 2572 arg = mip->mi_driver; 2573 } 2574 2575 mac_bcast_refresh(mip, refresh, arg, add); 2576 i_mac_perim_exit((mac_impl_t *)mh); 2577 } 2578 2579 void 2580 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2581 { 2582 mac_impl_t *mip = (mac_impl_t *)mh; 2583 2584 /* 2585 * If no specific refresh function was given then default to the 2586 * driver's m_promisc entry point. 2587 */ 2588 if (refresh == NULL) { 2589 refresh = mip->mi_setpromisc; 2590 arg = mip->mi_driver; 2591 } 2592 ASSERT(refresh != NULL); 2593 2594 /* 2595 * Call the refresh function with the current promiscuity. 2596 */ 2597 refresh(arg, (mip->mi_devpromisc != 0)); 2598 } 2599 2600 /* 2601 * The mac client requests that the mac not to change its margin size to 2602 * be less than the specified value. If "current" is B_TRUE, then the client 2603 * requests the mac not to change its margin size to be smaller than the 2604 * current size. Further, return the current margin size value in this case. 2605 * 2606 * We keep every requested size in an ordered list from largest to smallest. 2607 */ 2608 int 2609 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2610 { 2611 mac_impl_t *mip = (mac_impl_t *)mh; 2612 mac_margin_req_t **pp, *p; 2613 int err = 0; 2614 2615 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2616 if (current) 2617 *marginp = mip->mi_margin; 2618 2619 /* 2620 * If the current margin value cannot satisfy the margin requested, 2621 * return ENOTSUP directly. 2622 */ 2623 if (*marginp > mip->mi_margin) { 2624 err = ENOTSUP; 2625 goto done; 2626 } 2627 2628 /* 2629 * Check whether the given margin is already in the list. If so, 2630 * bump the reference count. 2631 */ 2632 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2633 if (p->mmr_margin == *marginp) { 2634 /* 2635 * The margin requested is already in the list, 2636 * so just bump the reference count. 2637 */ 2638 p->mmr_ref++; 2639 goto done; 2640 } 2641 if (p->mmr_margin < *marginp) 2642 break; 2643 } 2644 2645 2646 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2647 p->mmr_margin = *marginp; 2648 p->mmr_ref++; 2649 p->mmr_nextp = *pp; 2650 *pp = p; 2651 2652 done: 2653 rw_exit(&(mip->mi_rw_lock)); 2654 return (err); 2655 } 2656 2657 /* 2658 * The mac client requests to cancel its previous mac_margin_add() request. 2659 * We remove the requested margin size from the list. 2660 */ 2661 int 2662 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2663 { 2664 mac_impl_t *mip = (mac_impl_t *)mh; 2665 mac_margin_req_t **pp, *p; 2666 int err = 0; 2667 2668 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2669 /* 2670 * Find the entry in the list for the given margin. 2671 */ 2672 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2673 if (p->mmr_margin == margin) { 2674 if (--p->mmr_ref == 0) 2675 break; 2676 2677 /* 2678 * There is still a reference to this address so 2679 * there's nothing more to do. 2680 */ 2681 goto done; 2682 } 2683 } 2684 2685 /* 2686 * We did not find an entry for the given margin. 2687 */ 2688 if (p == NULL) { 2689 err = ENOENT; 2690 goto done; 2691 } 2692 2693 ASSERT(p->mmr_ref == 0); 2694 2695 /* 2696 * Remove it from the list. 2697 */ 2698 *pp = p->mmr_nextp; 2699 kmem_free(p, sizeof (mac_margin_req_t)); 2700 done: 2701 rw_exit(&(mip->mi_rw_lock)); 2702 return (err); 2703 } 2704 2705 boolean_t 2706 mac_margin_update(mac_handle_t mh, uint32_t margin) 2707 { 2708 mac_impl_t *mip = (mac_impl_t *)mh; 2709 uint32_t margin_needed = 0; 2710 2711 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2712 2713 if (mip->mi_mmrp != NULL) 2714 margin_needed = mip->mi_mmrp->mmr_margin; 2715 2716 if (margin_needed <= margin) 2717 mip->mi_margin = margin; 2718 2719 rw_exit(&(mip->mi_rw_lock)); 2720 2721 if (margin_needed <= margin) 2722 i_mac_notify(mip, MAC_NOTE_MARGIN); 2723 2724 return (margin_needed <= margin); 2725 } 2726 2727 /* 2728 * MAC clients use this interface to request that a MAC device not change its 2729 * MTU below the specified amount. At this time, that amount must be within the 2730 * range of the device's current minimum and the device's current maximum. eg. a 2731 * client cannot request a 3000 byte MTU when the device's MTU is currently 2732 * 2000. 2733 * 2734 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2735 * current underlying mac's maximum for this mac client and return it in mtup. 2736 */ 2737 int 2738 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2739 { 2740 mac_impl_t *mip = (mac_impl_t *)mh; 2741 mac_mtu_req_t *prev, *cur; 2742 mac_propval_range_t mpr; 2743 int err; 2744 2745 i_mac_perim_enter(mip); 2746 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2747 2748 if (current == B_TRUE) 2749 *mtup = mip->mi_sdu_max; 2750 mpr.mpr_count = 1; 2751 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2752 if (err != 0) { 2753 rw_exit(&mip->mi_rw_lock); 2754 i_mac_perim_exit(mip); 2755 return (err); 2756 } 2757 2758 if (*mtup > mip->mi_sdu_max || 2759 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2760 rw_exit(&mip->mi_rw_lock); 2761 i_mac_perim_exit(mip); 2762 return (ENOTSUP); 2763 } 2764 2765 prev = NULL; 2766 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2767 if (*mtup == cur->mtr_mtu) { 2768 cur->mtr_ref++; 2769 rw_exit(&mip->mi_rw_lock); 2770 i_mac_perim_exit(mip); 2771 return (0); 2772 } 2773 2774 if (*mtup > cur->mtr_mtu) 2775 break; 2776 2777 prev = cur; 2778 } 2779 2780 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2781 cur->mtr_mtu = *mtup; 2782 cur->mtr_ref = 1; 2783 if (prev != NULL) { 2784 cur->mtr_nextp = prev->mtr_nextp; 2785 prev->mtr_nextp = cur; 2786 } else { 2787 cur->mtr_nextp = mip->mi_mtrp; 2788 mip->mi_mtrp = cur; 2789 } 2790 2791 rw_exit(&mip->mi_rw_lock); 2792 i_mac_perim_exit(mip); 2793 return (0); 2794 } 2795 2796 int 2797 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 2798 { 2799 mac_impl_t *mip = (mac_impl_t *)mh; 2800 mac_mtu_req_t *cur, *prev; 2801 2802 i_mac_perim_enter(mip); 2803 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2804 2805 prev = NULL; 2806 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2807 if (cur->mtr_mtu == mtu) { 2808 ASSERT(cur->mtr_ref > 0); 2809 cur->mtr_ref--; 2810 if (cur->mtr_ref == 0) { 2811 if (prev == NULL) { 2812 mip->mi_mtrp = cur->mtr_nextp; 2813 } else { 2814 prev->mtr_nextp = cur->mtr_nextp; 2815 } 2816 kmem_free(cur, sizeof (mac_mtu_req_t)); 2817 } 2818 rw_exit(&mip->mi_rw_lock); 2819 i_mac_perim_exit(mip); 2820 return (0); 2821 } 2822 2823 prev = cur; 2824 } 2825 2826 rw_exit(&mip->mi_rw_lock); 2827 i_mac_perim_exit(mip); 2828 return (ENOENT); 2829 } 2830 2831 /* 2832 * MAC Type Plugin functions. 2833 */ 2834 2835 mactype_t * 2836 mactype_getplugin(const char *pname) 2837 { 2838 mactype_t *mtype = NULL; 2839 boolean_t tried_modload = B_FALSE; 2840 2841 mutex_enter(&i_mactype_lock); 2842 2843 find_registered_mactype: 2844 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2845 (mod_hash_val_t *)&mtype) != 0) { 2846 if (!tried_modload) { 2847 /* 2848 * If the plugin has not yet been loaded, then 2849 * attempt to load it now. If modload() succeeds, 2850 * the plugin should have registered using 2851 * mactype_register(), in which case we can go back 2852 * and attempt to find it again. 2853 */ 2854 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2855 tried_modload = B_TRUE; 2856 goto find_registered_mactype; 2857 } 2858 } 2859 } else { 2860 /* 2861 * Note that there's no danger that the plugin we've loaded 2862 * could be unloaded between the modload() step and the 2863 * reference count bump here, as we're holding 2864 * i_mactype_lock, which mactype_unregister() also holds. 2865 */ 2866 atomic_inc_32(&mtype->mt_ref); 2867 } 2868 2869 mutex_exit(&i_mactype_lock); 2870 return (mtype); 2871 } 2872 2873 mactype_register_t * 2874 mactype_alloc(uint_t mactype_version) 2875 { 2876 mactype_register_t *mtrp; 2877 2878 /* 2879 * Make sure there isn't a version mismatch between the plugin and 2880 * the framework. In the future, if multiple versions are 2881 * supported, this check could become more sophisticated. 2882 */ 2883 if (mactype_version != MACTYPE_VERSION) 2884 return (NULL); 2885 2886 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2887 mtrp->mtr_version = mactype_version; 2888 return (mtrp); 2889 } 2890 2891 void 2892 mactype_free(mactype_register_t *mtrp) 2893 { 2894 kmem_free(mtrp, sizeof (mactype_register_t)); 2895 } 2896 2897 int 2898 mactype_register(mactype_register_t *mtrp) 2899 { 2900 mactype_t *mtp; 2901 mactype_ops_t *ops = mtrp->mtr_ops; 2902 2903 /* Do some sanity checking before we register this MAC type. */ 2904 if (mtrp->mtr_ident == NULL || ops == NULL) 2905 return (EINVAL); 2906 2907 /* 2908 * Verify that all mandatory callbacks are set in the ops 2909 * vector. 2910 */ 2911 if (ops->mtops_unicst_verify == NULL || 2912 ops->mtops_multicst_verify == NULL || 2913 ops->mtops_sap_verify == NULL || 2914 ops->mtops_header == NULL || 2915 ops->mtops_header_info == NULL) { 2916 return (EINVAL); 2917 } 2918 2919 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2920 mtp->mt_ident = mtrp->mtr_ident; 2921 mtp->mt_ops = *ops; 2922 mtp->mt_type = mtrp->mtr_mactype; 2923 mtp->mt_nativetype = mtrp->mtr_nativetype; 2924 mtp->mt_addr_length = mtrp->mtr_addrlen; 2925 if (mtrp->mtr_brdcst_addr != NULL) { 2926 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2927 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2928 mtrp->mtr_addrlen); 2929 } 2930 2931 mtp->mt_stats = mtrp->mtr_stats; 2932 mtp->mt_statcount = mtrp->mtr_statcount; 2933 2934 mtp->mt_mapping = mtrp->mtr_mapping; 2935 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2936 2937 if (mod_hash_insert(i_mactype_hash, 2938 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2939 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2940 kmem_free(mtp, sizeof (*mtp)); 2941 return (EEXIST); 2942 } 2943 return (0); 2944 } 2945 2946 int 2947 mactype_unregister(const char *ident) 2948 { 2949 mactype_t *mtp; 2950 mod_hash_val_t val; 2951 int err; 2952 2953 /* 2954 * Let's not allow MAC drivers to use this plugin while we're 2955 * trying to unregister it. Holding i_mactype_lock also prevents a 2956 * plugin from unregistering while a MAC driver is attempting to 2957 * hold a reference to it in i_mactype_getplugin(). 2958 */ 2959 mutex_enter(&i_mactype_lock); 2960 2961 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2962 (mod_hash_val_t *)&mtp)) != 0) { 2963 /* A plugin is trying to unregister, but it never registered. */ 2964 err = ENXIO; 2965 goto done; 2966 } 2967 2968 if (mtp->mt_ref != 0) { 2969 err = EBUSY; 2970 goto done; 2971 } 2972 2973 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2974 ASSERT(err == 0); 2975 if (err != 0) { 2976 /* This should never happen, thus the ASSERT() above. */ 2977 err = EINVAL; 2978 goto done; 2979 } 2980 ASSERT(mtp == (mactype_t *)val); 2981 2982 if (mtp->mt_brdcst_addr != NULL) 2983 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2984 kmem_free(mtp, sizeof (mactype_t)); 2985 done: 2986 mutex_exit(&i_mactype_lock); 2987 return (err); 2988 } 2989 2990 /* 2991 * Checks the size of the value size specified for a property as 2992 * part of a property operation. Returns B_TRUE if the size is 2993 * correct, B_FALSE otherwise. 2994 */ 2995 boolean_t 2996 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2997 { 2998 uint_t minsize = 0; 2999 3000 if (is_range) 3001 return (valsize >= sizeof (mac_propval_range_t)); 3002 3003 switch (id) { 3004 case MAC_PROP_ZONE: 3005 minsize = sizeof (dld_ioc_zid_t); 3006 break; 3007 case MAC_PROP_AUTOPUSH: 3008 if (valsize != 0) 3009 minsize = sizeof (struct dlautopush); 3010 break; 3011 case MAC_PROP_TAGMODE: 3012 minsize = sizeof (link_tagmode_t); 3013 break; 3014 case MAC_PROP_RESOURCE: 3015 case MAC_PROP_RESOURCE_EFF: 3016 minsize = sizeof (mac_resource_props_t); 3017 break; 3018 case MAC_PROP_DUPLEX: 3019 minsize = sizeof (link_duplex_t); 3020 break; 3021 case MAC_PROP_SPEED: 3022 minsize = sizeof (uint64_t); 3023 break; 3024 case MAC_PROP_STATUS: 3025 minsize = sizeof (link_state_t); 3026 break; 3027 case MAC_PROP_AUTONEG: 3028 case MAC_PROP_EN_AUTONEG: 3029 minsize = sizeof (uint8_t); 3030 break; 3031 case MAC_PROP_MTU: 3032 case MAC_PROP_LLIMIT: 3033 case MAC_PROP_LDECAY: 3034 minsize = sizeof (uint32_t); 3035 break; 3036 case MAC_PROP_FLOWCTRL: 3037 minsize = sizeof (link_flowctrl_t); 3038 break; 3039 case MAC_PROP_ADV_5000FDX_CAP: 3040 case MAC_PROP_EN_5000FDX_CAP: 3041 case MAC_PROP_ADV_2500FDX_CAP: 3042 case MAC_PROP_EN_2500FDX_CAP: 3043 case MAC_PROP_ADV_100GFDX_CAP: 3044 case MAC_PROP_EN_100GFDX_CAP: 3045 case MAC_PROP_ADV_50GFDX_CAP: 3046 case MAC_PROP_EN_50GFDX_CAP: 3047 case MAC_PROP_ADV_40GFDX_CAP: 3048 case MAC_PROP_EN_40GFDX_CAP: 3049 case MAC_PROP_ADV_25GFDX_CAP: 3050 case MAC_PROP_EN_25GFDX_CAP: 3051 case MAC_PROP_ADV_10GFDX_CAP: 3052 case MAC_PROP_EN_10GFDX_CAP: 3053 case MAC_PROP_ADV_1000HDX_CAP: 3054 case MAC_PROP_EN_1000HDX_CAP: 3055 case MAC_PROP_ADV_100FDX_CAP: 3056 case MAC_PROP_EN_100FDX_CAP: 3057 case MAC_PROP_ADV_100HDX_CAP: 3058 case MAC_PROP_EN_100HDX_CAP: 3059 case MAC_PROP_ADV_10FDX_CAP: 3060 case MAC_PROP_EN_10FDX_CAP: 3061 case MAC_PROP_ADV_10HDX_CAP: 3062 case MAC_PROP_EN_10HDX_CAP: 3063 case MAC_PROP_ADV_100T4_CAP: 3064 case MAC_PROP_EN_100T4_CAP: 3065 minsize = sizeof (uint8_t); 3066 break; 3067 case MAC_PROP_PVID: 3068 minsize = sizeof (uint16_t); 3069 break; 3070 case MAC_PROP_IPTUN_HOPLIMIT: 3071 minsize = sizeof (uint32_t); 3072 break; 3073 case MAC_PROP_IPTUN_ENCAPLIMIT: 3074 minsize = sizeof (uint32_t); 3075 break; 3076 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3077 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3078 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3079 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3080 minsize = sizeof (uint_t); 3081 break; 3082 case MAC_PROP_WL_ESSID: 3083 minsize = sizeof (wl_linkstatus_t); 3084 break; 3085 case MAC_PROP_WL_BSSID: 3086 minsize = sizeof (wl_bssid_t); 3087 break; 3088 case MAC_PROP_WL_BSSTYPE: 3089 minsize = sizeof (wl_bss_type_t); 3090 break; 3091 case MAC_PROP_WL_LINKSTATUS: 3092 minsize = sizeof (wl_linkstatus_t); 3093 break; 3094 case MAC_PROP_WL_DESIRED_RATES: 3095 minsize = sizeof (wl_rates_t); 3096 break; 3097 case MAC_PROP_WL_SUPPORTED_RATES: 3098 minsize = sizeof (wl_rates_t); 3099 break; 3100 case MAC_PROP_WL_AUTH_MODE: 3101 minsize = sizeof (wl_authmode_t); 3102 break; 3103 case MAC_PROP_WL_ENCRYPTION: 3104 minsize = sizeof (wl_encryption_t); 3105 break; 3106 case MAC_PROP_WL_RSSI: 3107 minsize = sizeof (wl_rssi_t); 3108 break; 3109 case MAC_PROP_WL_PHY_CONFIG: 3110 minsize = sizeof (wl_phy_conf_t); 3111 break; 3112 case MAC_PROP_WL_CAPABILITY: 3113 minsize = sizeof (wl_capability_t); 3114 break; 3115 case MAC_PROP_WL_WPA: 3116 minsize = sizeof (wl_wpa_t); 3117 break; 3118 case MAC_PROP_WL_SCANRESULTS: 3119 minsize = sizeof (wl_wpa_ess_t); 3120 break; 3121 case MAC_PROP_WL_POWER_MODE: 3122 minsize = sizeof (wl_ps_mode_t); 3123 break; 3124 case MAC_PROP_WL_RADIO: 3125 minsize = sizeof (wl_radio_t); 3126 break; 3127 case MAC_PROP_WL_ESS_LIST: 3128 minsize = sizeof (wl_ess_list_t); 3129 break; 3130 case MAC_PROP_WL_KEY_TAB: 3131 minsize = sizeof (wl_wep_key_tab_t); 3132 break; 3133 case MAC_PROP_WL_CREATE_IBSS: 3134 minsize = sizeof (wl_create_ibss_t); 3135 break; 3136 case MAC_PROP_WL_SETOPTIE: 3137 minsize = sizeof (wl_wpa_ie_t); 3138 break; 3139 case MAC_PROP_WL_DELKEY: 3140 minsize = sizeof (wl_del_key_t); 3141 break; 3142 case MAC_PROP_WL_KEY: 3143 minsize = sizeof (wl_key_t); 3144 break; 3145 case MAC_PROP_WL_MLME: 3146 minsize = sizeof (wl_mlme_t); 3147 break; 3148 case MAC_PROP_VN_PROMISC_FILTERED: 3149 minsize = sizeof (boolean_t); 3150 break; 3151 } 3152 3153 return (valsize >= minsize); 3154 } 3155 3156 /* 3157 * mac_set_prop() sets MAC or hardware driver properties: 3158 * 3159 * - MAC-managed properties such as resource properties include maxbw, 3160 * priority, and cpu binding list, as well as the default port VID 3161 * used by bridging. These properties are consumed by the MAC layer 3162 * itself and not passed down to the driver. For resource control 3163 * properties, this function invokes mac_set_resources() which will 3164 * cache the property value in mac_impl_t and may call 3165 * mac_client_set_resource() to update property value of the primary 3166 * mac client, if it exists. 3167 * 3168 * - Properties which act on the hardware and must be passed to the 3169 * driver, such as MTU, through the driver's mc_setprop() entry point. 3170 */ 3171 int 3172 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3173 uint_t valsize) 3174 { 3175 int err = ENOTSUP; 3176 mac_impl_t *mip = (mac_impl_t *)mh; 3177 3178 ASSERT(MAC_PERIM_HELD(mh)); 3179 3180 switch (id) { 3181 case MAC_PROP_RESOURCE: { 3182 mac_resource_props_t *mrp; 3183 3184 /* call mac_set_resources() for MAC properties */ 3185 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3186 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3187 bcopy(val, mrp, sizeof (*mrp)); 3188 err = mac_set_resources(mh, mrp); 3189 kmem_free(mrp, sizeof (*mrp)); 3190 break; 3191 } 3192 3193 case MAC_PROP_PVID: 3194 ASSERT(valsize >= sizeof (uint16_t)); 3195 if (mip->mi_state_flags & MIS_IS_VNIC) 3196 return (EINVAL); 3197 err = mac_set_pvid(mh, *(uint16_t *)val); 3198 break; 3199 3200 case MAC_PROP_MTU: { 3201 uint32_t mtu; 3202 3203 ASSERT(valsize >= sizeof (uint32_t)); 3204 bcopy(val, &mtu, sizeof (mtu)); 3205 err = mac_set_mtu(mh, mtu, NULL); 3206 break; 3207 } 3208 3209 case MAC_PROP_LLIMIT: 3210 case MAC_PROP_LDECAY: { 3211 uint32_t learnval; 3212 3213 if (valsize < sizeof (learnval) || 3214 (mip->mi_state_flags & MIS_IS_VNIC)) 3215 return (EINVAL); 3216 bcopy(val, &learnval, sizeof (learnval)); 3217 if (learnval == 0 && id == MAC_PROP_LDECAY) 3218 return (EINVAL); 3219 if (id == MAC_PROP_LLIMIT) 3220 mip->mi_llimit = learnval; 3221 else 3222 mip->mi_ldecay = learnval; 3223 err = 0; 3224 break; 3225 } 3226 3227 default: 3228 /* For other driver properties, call driver's callback */ 3229 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3230 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3231 name, id, valsize, val); 3232 } 3233 } 3234 return (err); 3235 } 3236 3237 /* 3238 * mac_get_prop() gets MAC or device driver properties. 3239 * 3240 * If the property is a driver property, mac_get_prop() calls driver's callback 3241 * entry point to get it. 3242 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3243 * which returns the cached value in mac_impl_t. 3244 */ 3245 int 3246 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3247 uint_t valsize) 3248 { 3249 int err = ENOTSUP; 3250 mac_impl_t *mip = (mac_impl_t *)mh; 3251 uint_t rings; 3252 uint_t vlinks; 3253 3254 bzero(val, valsize); 3255 3256 switch (id) { 3257 case MAC_PROP_RESOURCE: { 3258 mac_resource_props_t *mrp; 3259 3260 /* If mac property, read from cache */ 3261 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3262 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3263 mac_get_resources(mh, mrp); 3264 bcopy(mrp, val, sizeof (*mrp)); 3265 kmem_free(mrp, sizeof (*mrp)); 3266 return (0); 3267 } 3268 case MAC_PROP_RESOURCE_EFF: { 3269 mac_resource_props_t *mrp; 3270 3271 /* If mac effective property, read from client */ 3272 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3273 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3274 mac_get_effective_resources(mh, mrp); 3275 bcopy(mrp, val, sizeof (*mrp)); 3276 kmem_free(mrp, sizeof (*mrp)); 3277 return (0); 3278 } 3279 3280 case MAC_PROP_PVID: 3281 ASSERT(valsize >= sizeof (uint16_t)); 3282 if (mip->mi_state_flags & MIS_IS_VNIC) 3283 return (EINVAL); 3284 *(uint16_t *)val = mac_get_pvid(mh); 3285 return (0); 3286 3287 case MAC_PROP_LLIMIT: 3288 case MAC_PROP_LDECAY: 3289 ASSERT(valsize >= sizeof (uint32_t)); 3290 if (mip->mi_state_flags & MIS_IS_VNIC) 3291 return (EINVAL); 3292 if (id == MAC_PROP_LLIMIT) 3293 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3294 else 3295 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3296 return (0); 3297 3298 case MAC_PROP_MTU: { 3299 uint32_t sdu; 3300 3301 ASSERT(valsize >= sizeof (uint32_t)); 3302 mac_sdu_get2(mh, NULL, &sdu, NULL); 3303 bcopy(&sdu, val, sizeof (sdu)); 3304 3305 return (0); 3306 } 3307 case MAC_PROP_STATUS: { 3308 link_state_t link_state; 3309 3310 if (valsize < sizeof (link_state)) 3311 return (EINVAL); 3312 link_state = mac_link_get(mh); 3313 bcopy(&link_state, val, sizeof (link_state)); 3314 3315 return (0); 3316 } 3317 3318 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3319 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3320 ASSERT(valsize >= sizeof (uint_t)); 3321 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3322 mac_rxavail_get(mh) : mac_txavail_get(mh); 3323 bcopy(&rings, val, sizeof (uint_t)); 3324 return (0); 3325 3326 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3327 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3328 ASSERT(valsize >= sizeof (uint_t)); 3329 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3330 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3331 bcopy(&vlinks, val, sizeof (uint_t)); 3332 return (0); 3333 3334 case MAC_PROP_RXRINGSRANGE: 3335 case MAC_PROP_TXRINGSRANGE: 3336 /* 3337 * The value for these properties are returned through 3338 * the MAC_PROP_RESOURCE property. 3339 */ 3340 return (0); 3341 3342 default: 3343 break; 3344 3345 } 3346 3347 /* If driver property, request from driver */ 3348 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3349 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3350 valsize, val); 3351 } 3352 3353 return (err); 3354 } 3355 3356 /* 3357 * Helper function to initialize the range structure for use in 3358 * mac_get_prop. If the type can be other than uint32, we can 3359 * pass that as an arg. 3360 */ 3361 static void 3362 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3363 { 3364 range->mpr_count = 1; 3365 range->mpr_type = MAC_PROPVAL_UINT32; 3366 range->mpr_range_uint32[0].mpur_min = min; 3367 range->mpr_range_uint32[0].mpur_max = max; 3368 } 3369 3370 /* 3371 * Returns information about the specified property, such as default 3372 * values or permissions. 3373 */ 3374 int 3375 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3376 void *default_val, uint_t default_size, mac_propval_range_t *range, 3377 uint_t *perm) 3378 { 3379 mac_prop_info_state_t state; 3380 mac_impl_t *mip = (mac_impl_t *)mh; 3381 uint_t max; 3382 3383 /* 3384 * A property is read/write by default unless the driver says 3385 * otherwise. 3386 */ 3387 if (perm != NULL) 3388 *perm = MAC_PROP_PERM_RW; 3389 3390 if (default_val != NULL) 3391 bzero(default_val, default_size); 3392 3393 /* 3394 * First, handle framework properties for which we don't need to 3395 * involve the driver. 3396 */ 3397 switch (id) { 3398 case MAC_PROP_RESOURCE: 3399 case MAC_PROP_PVID: 3400 case MAC_PROP_LLIMIT: 3401 case MAC_PROP_LDECAY: 3402 return (0); 3403 3404 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3405 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3406 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3407 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3408 if (perm != NULL) 3409 *perm = MAC_PROP_PERM_READ; 3410 return (0); 3411 3412 case MAC_PROP_RXRINGSRANGE: 3413 case MAC_PROP_TXRINGSRANGE: 3414 /* 3415 * Currently, we support range for RX and TX rings properties. 3416 * When we extend this support to maxbw, cpus and priority, 3417 * we should move this to mac_get_resources. 3418 * There is no default value for RX or TX rings. 3419 */ 3420 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3421 mac_is_vnic_primary(mh)) { 3422 /* 3423 * We don't support setting rings for a VLAN 3424 * data link because it shares its ring with the 3425 * primary MAC client. 3426 */ 3427 if (perm != NULL) 3428 *perm = MAC_PROP_PERM_READ; 3429 if (range != NULL) 3430 range->mpr_count = 0; 3431 } else if (range != NULL) { 3432 if (mip->mi_state_flags & MIS_IS_VNIC) 3433 mh = mac_get_lower_mac_handle(mh); 3434 mip = (mac_impl_t *)mh; 3435 if ((id == MAC_PROP_RXRINGSRANGE && 3436 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3437 (id == MAC_PROP_TXRINGSRANGE && 3438 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3439 if (id == MAC_PROP_RXRINGSRANGE) { 3440 if ((mac_rxhwlnksavail_get(mh) + 3441 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3442 /* 3443 * doesn't support groups or 3444 * rings 3445 */ 3446 range->mpr_count = 0; 3447 } else { 3448 /* 3449 * supports specifying groups, 3450 * but not rings 3451 */ 3452 _mac_set_range(range, 0, 0); 3453 } 3454 } else { 3455 if ((mac_txhwlnksavail_get(mh) + 3456 mac_txhwlnksrsvd_get(mh)) <= 1) { 3457 /* 3458 * doesn't support groups or 3459 * rings 3460 */ 3461 range->mpr_count = 0; 3462 } else { 3463 /* 3464 * supports specifying groups, 3465 * but not rings 3466 */ 3467 _mac_set_range(range, 0, 0); 3468 } 3469 } 3470 } else { 3471 max = id == MAC_PROP_RXRINGSRANGE ? 3472 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3473 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3474 if (max <= 1) { 3475 /* 3476 * doesn't support groups or 3477 * rings 3478 */ 3479 range->mpr_count = 0; 3480 } else { 3481 /* 3482 * -1 because we have to leave out the 3483 * default ring. 3484 */ 3485 _mac_set_range(range, 1, max - 1); 3486 } 3487 } 3488 } 3489 return (0); 3490 3491 case MAC_PROP_STATUS: 3492 if (perm != NULL) 3493 *perm = MAC_PROP_PERM_READ; 3494 return (0); 3495 } 3496 3497 /* 3498 * Get the property info from the driver if it implements the 3499 * property info entry point. 3500 */ 3501 bzero(&state, sizeof (state)); 3502 3503 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3504 state.pr_default = default_val; 3505 state.pr_default_size = default_size; 3506 3507 /* 3508 * The caller specifies the maximum number of ranges 3509 * it can accomodate using mpr_count. We don't touch 3510 * this value until the driver returns from its 3511 * mc_propinfo() callback, and ensure we don't exceed 3512 * this number of range as the driver defines 3513 * supported range from its mc_propinfo(). 3514 * 3515 * pr_range_cur_count keeps track of how many ranges 3516 * were defined by the driver from its mc_propinfo() 3517 * entry point. 3518 * 3519 * On exit, the user-specified range mpr_count returns 3520 * the number of ranges specified by the driver on 3521 * success, or the number of ranges it wanted to 3522 * define if that number of ranges could not be 3523 * accomodated by the specified range structure. In 3524 * the latter case, the caller will be able to 3525 * allocate a larger range structure, and query the 3526 * property again. 3527 */ 3528 state.pr_range_cur_count = 0; 3529 state.pr_range = range; 3530 3531 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3532 (mac_prop_info_handle_t)&state); 3533 3534 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3535 range->mpr_count = state.pr_range_cur_count; 3536 3537 /* 3538 * The operation could fail if the buffer supplied by 3539 * the user was too small for the range or default 3540 * value of the property. 3541 */ 3542 if (state.pr_errno != 0) 3543 return (state.pr_errno); 3544 3545 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3546 *perm = state.pr_perm; 3547 } 3548 3549 /* 3550 * The MAC layer may want to provide default values or allowed 3551 * ranges for properties if the driver does not provide a 3552 * property info entry point, or that entry point exists, but 3553 * it did not provide a default value or allowed ranges for 3554 * that property. 3555 */ 3556 switch (id) { 3557 case MAC_PROP_MTU: { 3558 uint32_t sdu; 3559 3560 mac_sdu_get2(mh, NULL, &sdu, NULL); 3561 3562 if (range != NULL && !(state.pr_flags & 3563 MAC_PROP_INFO_RANGE)) { 3564 /* MTU range */ 3565 _mac_set_range(range, sdu, sdu); 3566 } 3567 3568 if (default_val != NULL && !(state.pr_flags & 3569 MAC_PROP_INFO_DEFAULT)) { 3570 if (mip->mi_info.mi_media == DL_ETHER) 3571 sdu = ETHERMTU; 3572 /* default MTU value */ 3573 bcopy(&sdu, default_val, sizeof (sdu)); 3574 } 3575 } 3576 } 3577 3578 return (0); 3579 } 3580 3581 int 3582 mac_fastpath_disable(mac_handle_t mh) 3583 { 3584 mac_impl_t *mip = (mac_impl_t *)mh; 3585 3586 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3587 return (0); 3588 3589 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3590 } 3591 3592 void 3593 mac_fastpath_enable(mac_handle_t mh) 3594 { 3595 mac_impl_t *mip = (mac_impl_t *)mh; 3596 3597 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3598 return; 3599 3600 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3601 } 3602 3603 void 3604 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3605 { 3606 uint_t nprops, i; 3607 3608 if (priv_props == NULL) 3609 return; 3610 3611 nprops = 0; 3612 while (priv_props[nprops] != NULL) 3613 nprops++; 3614 if (nprops == 0) 3615 return; 3616 3617 3618 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3619 3620 for (i = 0; i < nprops; i++) { 3621 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3622 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3623 MAXLINKPROPNAME); 3624 } 3625 3626 mip->mi_priv_prop_count = nprops; 3627 } 3628 3629 void 3630 mac_unregister_priv_prop(mac_impl_t *mip) 3631 { 3632 uint_t i; 3633 3634 if (mip->mi_priv_prop_count == 0) { 3635 ASSERT(mip->mi_priv_prop == NULL); 3636 return; 3637 } 3638 3639 for (i = 0; i < mip->mi_priv_prop_count; i++) 3640 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3641 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3642 sizeof (char *)); 3643 3644 mip->mi_priv_prop = NULL; 3645 mip->mi_priv_prop_count = 0; 3646 } 3647 3648 /* 3649 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3650 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3651 * cases if MAC free's the ring structure after mac_stop_ring(), any 3652 * illegal access to the ring structure coming from the driver will panic 3653 * the system. In order to protect the system from such inadverent access, 3654 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3655 * When packets are received on free'd up rings, MAC (through the generation 3656 * count mechanism) will drop such packets. 3657 */ 3658 static mac_ring_t * 3659 mac_ring_alloc(mac_impl_t *mip) 3660 { 3661 mac_ring_t *ring; 3662 3663 mutex_enter(&mip->mi_ring_lock); 3664 if (mip->mi_ring_freelist != NULL) { 3665 ring = mip->mi_ring_freelist; 3666 mip->mi_ring_freelist = ring->mr_next; 3667 bzero(ring, sizeof (mac_ring_t)); 3668 mutex_exit(&mip->mi_ring_lock); 3669 } else { 3670 mutex_exit(&mip->mi_ring_lock); 3671 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3672 } 3673 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3674 return (ring); 3675 } 3676 3677 static void 3678 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3679 { 3680 ASSERT(ring->mr_state == MR_FREE); 3681 3682 mutex_enter(&mip->mi_ring_lock); 3683 ring->mr_state = MR_FREE; 3684 ring->mr_flag = 0; 3685 ring->mr_next = mip->mi_ring_freelist; 3686 ring->mr_mip = NULL; 3687 mip->mi_ring_freelist = ring; 3688 mac_ring_stat_delete(ring); 3689 mutex_exit(&mip->mi_ring_lock); 3690 } 3691 3692 static void 3693 mac_ring_freeall(mac_impl_t *mip) 3694 { 3695 mac_ring_t *ring_next; 3696 mutex_enter(&mip->mi_ring_lock); 3697 mac_ring_t *ring = mip->mi_ring_freelist; 3698 while (ring != NULL) { 3699 ring_next = ring->mr_next; 3700 kmem_cache_free(mac_ring_cache, ring); 3701 ring = ring_next; 3702 } 3703 mip->mi_ring_freelist = NULL; 3704 mutex_exit(&mip->mi_ring_lock); 3705 } 3706 3707 int 3708 mac_start_ring(mac_ring_t *ring) 3709 { 3710 int rv = 0; 3711 3712 ASSERT(ring->mr_state == MR_FREE); 3713 3714 if (ring->mr_start != NULL) { 3715 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3716 if (rv != 0) 3717 return (rv); 3718 } 3719 3720 ring->mr_state = MR_INUSE; 3721 return (rv); 3722 } 3723 3724 void 3725 mac_stop_ring(mac_ring_t *ring) 3726 { 3727 ASSERT(ring->mr_state == MR_INUSE); 3728 3729 if (ring->mr_stop != NULL) 3730 ring->mr_stop(ring->mr_driver); 3731 3732 ring->mr_state = MR_FREE; 3733 3734 /* 3735 * Increment the ring generation number for this ring. 3736 */ 3737 ring->mr_gen_num++; 3738 } 3739 3740 int 3741 mac_start_group(mac_group_t *group) 3742 { 3743 int rv = 0; 3744 3745 if (group->mrg_start != NULL) 3746 rv = group->mrg_start(group->mrg_driver); 3747 3748 return (rv); 3749 } 3750 3751 void 3752 mac_stop_group(mac_group_t *group) 3753 { 3754 if (group->mrg_stop != NULL) 3755 group->mrg_stop(group->mrg_driver); 3756 } 3757 3758 /* 3759 * Called from mac_start() on the default Rx group. Broadcast and multicast 3760 * packets are received only on the default group. Hence the default group 3761 * needs to be up even if the primary client is not up, for the other groups 3762 * to be functional. We do this by calling this function at mac_start time 3763 * itself. However the broadcast packets that are received can't make their 3764 * way beyond mac_rx until a mac client creates a broadcast flow. 3765 */ 3766 static int 3767 mac_start_group_and_rings(mac_group_t *group) 3768 { 3769 mac_ring_t *ring; 3770 int rv = 0; 3771 3772 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3773 if ((rv = mac_start_group(group)) != 0) 3774 return (rv); 3775 3776 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3777 ASSERT(ring->mr_state == MR_FREE); 3778 if ((rv = mac_start_ring(ring)) != 0) 3779 goto error; 3780 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3781 } 3782 return (0); 3783 3784 error: 3785 mac_stop_group_and_rings(group); 3786 return (rv); 3787 } 3788 3789 /* Called from mac_stop on the default Rx group */ 3790 static void 3791 mac_stop_group_and_rings(mac_group_t *group) 3792 { 3793 mac_ring_t *ring; 3794 3795 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3796 if (ring->mr_state != MR_FREE) { 3797 mac_stop_ring(ring); 3798 ring->mr_flag = 0; 3799 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3800 } 3801 } 3802 mac_stop_group(group); 3803 } 3804 3805 3806 static mac_ring_t * 3807 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3808 mac_capab_rings_t *cap_rings) 3809 { 3810 mac_ring_t *ring, *rnext; 3811 mac_ring_info_t ring_info; 3812 ddi_intr_handle_t ddi_handle; 3813 3814 ring = mac_ring_alloc(mip); 3815 3816 /* Prepare basic information of ring */ 3817 3818 /* 3819 * Ring index is numbered to be unique across a particular device. 3820 * Ring index computation makes following assumptions: 3821 * - For drivers with static grouping (e.g. ixgbe, bge), 3822 * ring index exchanged with the driver (e.g. during mr_rget) 3823 * is unique only across the group the ring belongs to. 3824 * - Drivers with dynamic grouping (e.g. nxge), start 3825 * with single group (mrg_index = 0). 3826 */ 3827 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3828 ring->mr_type = group->mrg_type; 3829 ring->mr_gh = (mac_group_handle_t)group; 3830 3831 /* Insert the new ring to the list. */ 3832 ring->mr_next = group->mrg_rings; 3833 group->mrg_rings = ring; 3834 3835 /* Zero to reuse the info data structure */ 3836 bzero(&ring_info, sizeof (ring_info)); 3837 3838 /* Query ring information from driver */ 3839 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3840 index, &ring_info, (mac_ring_handle_t)ring); 3841 3842 ring->mr_info = ring_info; 3843 3844 /* 3845 * The interrupt handle could be shared among multiple rings. 3846 * Thus if there is a bunch of rings that are sharing an 3847 * interrupt, then only one ring among the bunch will be made 3848 * available for interrupt re-targeting; the rest will have 3849 * ddi_shared flag set to TRUE and would not be available for 3850 * be interrupt re-targeting. 3851 */ 3852 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3853 rnext = ring->mr_next; 3854 while (rnext != NULL) { 3855 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3856 ddi_handle) { 3857 /* 3858 * If default ring (mr_index == 0) is part 3859 * of a group of rings sharing an 3860 * interrupt, then set ddi_shared flag for 3861 * the default ring and give another ring 3862 * the chance to be re-targeted. 3863 */ 3864 if (rnext->mr_index == 0 && 3865 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3866 rnext->mr_info.mri_intr.mi_ddi_shared = 3867 B_TRUE; 3868 } else { 3869 ring->mr_info.mri_intr.mi_ddi_shared = 3870 B_TRUE; 3871 } 3872 break; 3873 } 3874 rnext = rnext->mr_next; 3875 } 3876 /* 3877 * If rnext is NULL, then no matching ddi_handle was found. 3878 * Rx rings get registered first. So if this is a Tx ring, 3879 * then go through all the Rx rings and see if there is a 3880 * matching ddi handle. 3881 */ 3882 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3883 mac_compare_ddi_handle(mip->mi_rx_groups, 3884 mip->mi_rx_group_count, ring); 3885 } 3886 } 3887 3888 /* Update ring's status */ 3889 ring->mr_state = MR_FREE; 3890 ring->mr_flag = 0; 3891 3892 /* Update the ring count of the group */ 3893 group->mrg_cur_count++; 3894 3895 /* Create per ring kstats */ 3896 if (ring->mr_stat != NULL) { 3897 ring->mr_mip = mip; 3898 mac_ring_stat_create(ring); 3899 } 3900 3901 return (ring); 3902 } 3903 3904 /* 3905 * Rings are chained together for easy regrouping. 3906 */ 3907 static void 3908 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3909 mac_capab_rings_t *cap_rings) 3910 { 3911 int index; 3912 3913 /* 3914 * Initialize all ring members of this group. Size of zero will not 3915 * enter the loop, so it's safe for initializing an empty group. 3916 */ 3917 for (index = size - 1; index >= 0; index--) 3918 (void) mac_init_ring(mip, group, index, cap_rings); 3919 } 3920 3921 int 3922 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3923 { 3924 mac_capab_rings_t *cap_rings; 3925 mac_group_t *group; 3926 mac_group_t *groups; 3927 mac_group_info_t group_info; 3928 uint_t group_free = 0; 3929 uint_t ring_left; 3930 mac_ring_t *ring; 3931 int g; 3932 int err = 0; 3933 uint_t grpcnt; 3934 boolean_t pseudo_txgrp = B_FALSE; 3935 3936 switch (rtype) { 3937 case MAC_RING_TYPE_RX: 3938 ASSERT(mip->mi_rx_groups == NULL); 3939 3940 cap_rings = &mip->mi_rx_rings_cap; 3941 cap_rings->mr_type = MAC_RING_TYPE_RX; 3942 break; 3943 case MAC_RING_TYPE_TX: 3944 ASSERT(mip->mi_tx_groups == NULL); 3945 3946 cap_rings = &mip->mi_tx_rings_cap; 3947 cap_rings->mr_type = MAC_RING_TYPE_TX; 3948 break; 3949 default: 3950 ASSERT(B_FALSE); 3951 } 3952 3953 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3954 return (0); 3955 grpcnt = cap_rings->mr_gnum; 3956 3957 /* 3958 * If we have multiple TX rings, but only one TX group, we can 3959 * create pseudo TX groups (one per TX ring) in the MAC layer, 3960 * except for an aggr. For an aggr currently we maintain only 3961 * one group with all the rings (for all its ports), going 3962 * forwards we might change this. 3963 */ 3964 if (rtype == MAC_RING_TYPE_TX && 3965 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3966 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3967 /* 3968 * The -1 here is because we create a default TX group 3969 * with all the rings in it. 3970 */ 3971 grpcnt = cap_rings->mr_rnum - 1; 3972 pseudo_txgrp = B_TRUE; 3973 } 3974 3975 /* 3976 * Allocate a contiguous buffer for all groups. 3977 */ 3978 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3979 3980 ring_left = cap_rings->mr_rnum; 3981 3982 /* 3983 * Get all ring groups if any, and get their ring members 3984 * if any. 3985 */ 3986 for (g = 0; g < grpcnt; g++) { 3987 group = groups + g; 3988 3989 /* Prepare basic information of the group */ 3990 group->mrg_index = g; 3991 group->mrg_type = rtype; 3992 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3993 group->mrg_mh = (mac_handle_t)mip; 3994 group->mrg_next = group + 1; 3995 3996 /* Zero to reuse the info data structure */ 3997 bzero(&group_info, sizeof (group_info)); 3998 3999 if (pseudo_txgrp) { 4000 /* 4001 * This is a pseudo group that we created, apart 4002 * from setting the state there is nothing to be 4003 * done. 4004 */ 4005 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4006 group_free++; 4007 continue; 4008 } 4009 /* Query group information from driver */ 4010 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4011 (mac_group_handle_t)group); 4012 4013 switch (cap_rings->mr_group_type) { 4014 case MAC_GROUP_TYPE_DYNAMIC: 4015 if (cap_rings->mr_gaddring == NULL || 4016 cap_rings->mr_gremring == NULL) { 4017 DTRACE_PROBE3( 4018 mac__init__rings_no_addremring, 4019 char *, mip->mi_name, 4020 mac_group_add_ring_t, 4021 cap_rings->mr_gaddring, 4022 mac_group_add_ring_t, 4023 cap_rings->mr_gremring); 4024 err = EINVAL; 4025 goto bail; 4026 } 4027 4028 switch (rtype) { 4029 case MAC_RING_TYPE_RX: 4030 /* 4031 * The first RX group must have non-zero 4032 * rings, and the following groups must 4033 * have zero rings. 4034 */ 4035 if (g == 0 && group_info.mgi_count == 0) { 4036 DTRACE_PROBE1( 4037 mac__init__rings__rx__def__zero, 4038 char *, mip->mi_name); 4039 err = EINVAL; 4040 goto bail; 4041 } 4042 if (g > 0 && group_info.mgi_count != 0) { 4043 DTRACE_PROBE3( 4044 mac__init__rings__rx__nonzero, 4045 char *, mip->mi_name, 4046 int, g, int, group_info.mgi_count); 4047 err = EINVAL; 4048 goto bail; 4049 } 4050 break; 4051 case MAC_RING_TYPE_TX: 4052 /* 4053 * All TX ring groups must have zero rings. 4054 */ 4055 if (group_info.mgi_count != 0) { 4056 DTRACE_PROBE3( 4057 mac__init__rings__tx__nonzero, 4058 char *, mip->mi_name, 4059 int, g, int, group_info.mgi_count); 4060 err = EINVAL; 4061 goto bail; 4062 } 4063 break; 4064 } 4065 break; 4066 case MAC_GROUP_TYPE_STATIC: 4067 /* 4068 * Note that an empty group is allowed, e.g., an aggr 4069 * would start with an empty group. 4070 */ 4071 break; 4072 default: 4073 /* unknown group type */ 4074 DTRACE_PROBE2(mac__init__rings__unknown__type, 4075 char *, mip->mi_name, 4076 int, cap_rings->mr_group_type); 4077 err = EINVAL; 4078 goto bail; 4079 } 4080 4081 4082 /* 4083 * Driver must register group->mgi_addmac/remmac() for rx groups 4084 * to support multiple MAC addresses. 4085 */ 4086 if (rtype == MAC_RING_TYPE_RX && 4087 ((group_info.mgi_addmac == NULL) || 4088 (group_info.mgi_remmac == NULL))) { 4089 err = EINVAL; 4090 goto bail; 4091 } 4092 4093 /* Cache driver-supplied information */ 4094 group->mrg_info = group_info; 4095 4096 /* Update the group's status and group count. */ 4097 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4098 group_free++; 4099 4100 group->mrg_rings = NULL; 4101 group->mrg_cur_count = 0; 4102 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4103 ring_left -= group_info.mgi_count; 4104 4105 /* The current group size should be equal to default value */ 4106 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4107 } 4108 4109 /* Build up a dummy group for free resources as a pool */ 4110 group = groups + grpcnt; 4111 4112 /* Prepare basic information of the group */ 4113 group->mrg_index = -1; 4114 group->mrg_type = rtype; 4115 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4116 group->mrg_mh = (mac_handle_t)mip; 4117 group->mrg_next = NULL; 4118 4119 /* 4120 * If there are ungrouped rings, allocate a continuous buffer for 4121 * remaining resources. 4122 */ 4123 if (ring_left != 0) { 4124 group->mrg_rings = NULL; 4125 group->mrg_cur_count = 0; 4126 mac_init_group(mip, group, ring_left, cap_rings); 4127 4128 /* The current group size should be equal to ring_left */ 4129 ASSERT(group->mrg_cur_count == ring_left); 4130 4131 ring_left = 0; 4132 4133 /* Update this group's status */ 4134 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4135 } else 4136 group->mrg_rings = NULL; 4137 4138 ASSERT(ring_left == 0); 4139 4140 bail: 4141 4142 /* Cache other important information to finalize the initialization */ 4143 switch (rtype) { 4144 case MAC_RING_TYPE_RX: 4145 mip->mi_rx_group_type = cap_rings->mr_group_type; 4146 mip->mi_rx_group_count = cap_rings->mr_gnum; 4147 mip->mi_rx_groups = groups; 4148 mip->mi_rx_donor_grp = groups; 4149 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4150 /* 4151 * The default ring is reserved since it is 4152 * used for sending the broadcast etc. packets. 4153 */ 4154 mip->mi_rxrings_avail = 4155 mip->mi_rx_groups->mrg_cur_count - 1; 4156 mip->mi_rxrings_rsvd = 1; 4157 } 4158 /* 4159 * The default group cannot be reserved. It is used by 4160 * all the clients that do not have an exclusive group. 4161 */ 4162 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4163 mip->mi_rxhwclnt_used = 1; 4164 break; 4165 case MAC_RING_TYPE_TX: 4166 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4167 cap_rings->mr_group_type; 4168 mip->mi_tx_group_count = grpcnt; 4169 mip->mi_tx_group_free = group_free; 4170 mip->mi_tx_groups = groups; 4171 4172 group = groups + grpcnt; 4173 ring = group->mrg_rings; 4174 /* 4175 * The ring can be NULL in the case of aggr. Aggr will 4176 * have an empty Tx group which will get populated 4177 * later when pseudo Tx rings are added after 4178 * mac_register() is done. 4179 */ 4180 if (ring == NULL) { 4181 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4182 /* 4183 * pass the group to aggr so it can add Tx 4184 * rings to the group later. 4185 */ 4186 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4187 (mac_group_handle_t)group); 4188 /* 4189 * Even though there are no rings at this time 4190 * (rings will come later), set the group 4191 * state to registered. 4192 */ 4193 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4194 } else { 4195 /* 4196 * Ring 0 is used as the default one and it could be 4197 * assigned to a client as well. 4198 */ 4199 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4200 ring = ring->mr_next; 4201 ASSERT(ring->mr_index == 0); 4202 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4203 } 4204 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 4205 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4206 /* 4207 * The default ring cannot be reserved. 4208 */ 4209 mip->mi_txrings_rsvd = 1; 4210 /* 4211 * The default group cannot be reserved. It will be shared 4212 * by clients that do not have an exclusive group. 4213 */ 4214 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4215 mip->mi_txhwclnt_used = 1; 4216 break; 4217 default: 4218 ASSERT(B_FALSE); 4219 } 4220 4221 if (err != 0) 4222 mac_free_rings(mip, rtype); 4223 4224 return (err); 4225 } 4226 4227 /* 4228 * The ddi interrupt handle could be shared amoung rings. If so, compare 4229 * the new ring's ddi handle with the existing ones and set ddi_shared 4230 * flag. 4231 */ 4232 void 4233 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4234 { 4235 mac_group_t *group; 4236 mac_ring_t *ring; 4237 ddi_intr_handle_t ddi_handle; 4238 int g; 4239 4240 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4241 for (g = 0; g < grpcnt; g++) { 4242 group = groups + g; 4243 for (ring = group->mrg_rings; ring != NULL; 4244 ring = ring->mr_next) { 4245 if (ring == cring) 4246 continue; 4247 if (ring->mr_info.mri_intr.mi_ddi_handle == 4248 ddi_handle) { 4249 if (cring->mr_type == MAC_RING_TYPE_RX && 4250 ring->mr_index == 0 && 4251 !ring->mr_info.mri_intr.mi_ddi_shared) { 4252 ring->mr_info.mri_intr.mi_ddi_shared = 4253 B_TRUE; 4254 } else { 4255 cring->mr_info.mri_intr.mi_ddi_shared = 4256 B_TRUE; 4257 } 4258 return; 4259 } 4260 } 4261 } 4262 } 4263 4264 /* 4265 * Called to free all groups of particular type (RX or TX). It's assumed that 4266 * no clients are using these groups. 4267 */ 4268 void 4269 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4270 { 4271 mac_group_t *group, *groups; 4272 uint_t group_count; 4273 4274 switch (rtype) { 4275 case MAC_RING_TYPE_RX: 4276 if (mip->mi_rx_groups == NULL) 4277 return; 4278 4279 groups = mip->mi_rx_groups; 4280 group_count = mip->mi_rx_group_count; 4281 4282 mip->mi_rx_groups = NULL; 4283 mip->mi_rx_donor_grp = NULL; 4284 mip->mi_rx_group_count = 0; 4285 break; 4286 case MAC_RING_TYPE_TX: 4287 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4288 4289 if (mip->mi_tx_groups == NULL) 4290 return; 4291 4292 groups = mip->mi_tx_groups; 4293 group_count = mip->mi_tx_group_count; 4294 4295 mip->mi_tx_groups = NULL; 4296 mip->mi_tx_group_count = 0; 4297 mip->mi_tx_group_free = 0; 4298 mip->mi_default_tx_ring = NULL; 4299 break; 4300 default: 4301 ASSERT(B_FALSE); 4302 } 4303 4304 for (group = groups; group != NULL; group = group->mrg_next) { 4305 mac_ring_t *ring; 4306 4307 if (group->mrg_cur_count == 0) 4308 continue; 4309 4310 ASSERT(group->mrg_rings != NULL); 4311 4312 while ((ring = group->mrg_rings) != NULL) { 4313 group->mrg_rings = ring->mr_next; 4314 mac_ring_free(mip, ring); 4315 } 4316 } 4317 4318 /* Free all the cached rings */ 4319 mac_ring_freeall(mip); 4320 /* Free the block of group data strutures */ 4321 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4322 } 4323 4324 /* 4325 * Associate a MAC address with a receive group. 4326 * 4327 * The return value of this function should always be checked properly, because 4328 * any type of failure could cause unexpected results. A group can be added 4329 * or removed with a MAC address only after it has been reserved. Ideally, 4330 * a successful reservation always leads to calling mac_group_addmac() to 4331 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4332 * always imply that the group is functioning abnormally. 4333 * 4334 * Currently this function is called everywhere, and it reflects assumptions 4335 * about MAC addresses in the implementation. CR 6735196. 4336 */ 4337 int 4338 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4339 { 4340 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4341 ASSERT(group->mrg_info.mgi_addmac != NULL); 4342 4343 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4344 } 4345 4346 /* 4347 * Remove the association between MAC address and receive group. 4348 */ 4349 int 4350 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4351 { 4352 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4353 ASSERT(group->mrg_info.mgi_remmac != NULL); 4354 4355 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4356 } 4357 4358 /* 4359 * This is the entry point for packets transmitted through the bridging code. 4360 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4361 * pointer may be NULL to select the default ring. 4362 */ 4363 mblk_t * 4364 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4365 { 4366 mac_handle_t mh; 4367 4368 /* 4369 * Once we take a reference on the bridge link, the bridge 4370 * module itself can't unload, so the callback pointers are 4371 * stable. 4372 */ 4373 mutex_enter(&mip->mi_bridge_lock); 4374 if ((mh = mip->mi_bridge_link) != NULL) 4375 mac_bridge_ref_cb(mh, B_TRUE); 4376 mutex_exit(&mip->mi_bridge_lock); 4377 if (mh == NULL) { 4378 MAC_RING_TX(mip, rh, mp, mp); 4379 } else { 4380 mp = mac_bridge_tx_cb(mh, rh, mp); 4381 mac_bridge_ref_cb(mh, B_FALSE); 4382 } 4383 4384 return (mp); 4385 } 4386 4387 /* 4388 * Find a ring from its index. 4389 */ 4390 mac_ring_handle_t 4391 mac_find_ring(mac_group_handle_t gh, int index) 4392 { 4393 mac_group_t *group = (mac_group_t *)gh; 4394 mac_ring_t *ring = group->mrg_rings; 4395 4396 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4397 if (ring->mr_index == index) 4398 break; 4399 4400 return ((mac_ring_handle_t)ring); 4401 } 4402 /* 4403 * Add a ring to an existing group. 4404 * 4405 * The ring must be either passed directly (for example if the ring 4406 * movement is initiated by the framework), or specified through a driver 4407 * index (for example when the ring is added by the driver. 4408 * 4409 * The caller needs to call mac_perim_enter() before calling this function. 4410 */ 4411 int 4412 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4413 { 4414 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4415 mac_capab_rings_t *cap_rings; 4416 boolean_t driver_call = (ring == NULL); 4417 mac_group_type_t group_type; 4418 int ret = 0; 4419 flow_entry_t *flent; 4420 4421 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4422 4423 switch (group->mrg_type) { 4424 case MAC_RING_TYPE_RX: 4425 cap_rings = &mip->mi_rx_rings_cap; 4426 group_type = mip->mi_rx_group_type; 4427 break; 4428 case MAC_RING_TYPE_TX: 4429 cap_rings = &mip->mi_tx_rings_cap; 4430 group_type = mip->mi_tx_group_type; 4431 break; 4432 default: 4433 ASSERT(B_FALSE); 4434 } 4435 4436 /* 4437 * There should be no ring with the same ring index in the target 4438 * group. 4439 */ 4440 ASSERT(mac_find_ring((mac_group_handle_t)group, 4441 driver_call ? index : ring->mr_index) == NULL); 4442 4443 if (driver_call) { 4444 /* 4445 * The function is called as a result of a request from 4446 * a driver to add a ring to an existing group, for example 4447 * from the aggregation driver. Allocate a new mac_ring_t 4448 * for that ring. 4449 */ 4450 ring = mac_init_ring(mip, group, index, cap_rings); 4451 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4452 } else { 4453 /* 4454 * The function is called as a result of a MAC layer request 4455 * to add a ring to an existing group. In this case the 4456 * ring is being moved between groups, which requires 4457 * the underlying driver to support dynamic grouping, 4458 * and the mac_ring_t already exists. 4459 */ 4460 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4461 ASSERT(group->mrg_driver == NULL || 4462 cap_rings->mr_gaddring != NULL); 4463 ASSERT(ring->mr_gh == NULL); 4464 } 4465 4466 /* 4467 * At this point the ring should not be in use, and it should be 4468 * of the right for the target group. 4469 */ 4470 ASSERT(ring->mr_state < MR_INUSE); 4471 ASSERT(ring->mr_srs == NULL); 4472 ASSERT(ring->mr_type == group->mrg_type); 4473 4474 if (!driver_call) { 4475 /* 4476 * Add the driver level hardware ring if the process was not 4477 * initiated by the driver, and the target group is not the 4478 * group. 4479 */ 4480 if (group->mrg_driver != NULL) { 4481 cap_rings->mr_gaddring(group->mrg_driver, 4482 ring->mr_driver, ring->mr_type); 4483 } 4484 4485 /* 4486 * Insert the ring ahead existing rings. 4487 */ 4488 ring->mr_next = group->mrg_rings; 4489 group->mrg_rings = ring; 4490 ring->mr_gh = (mac_group_handle_t)group; 4491 group->mrg_cur_count++; 4492 } 4493 4494 /* 4495 * If the group has not been actively used, we're done. 4496 */ 4497 if (group->mrg_index != -1 && 4498 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4499 return (0); 4500 4501 /* 4502 * Start the ring if needed. Failure causes to undo the grouping action. 4503 */ 4504 if (ring->mr_state != MR_INUSE) { 4505 if ((ret = mac_start_ring(ring)) != 0) { 4506 if (!driver_call) { 4507 cap_rings->mr_gremring(group->mrg_driver, 4508 ring->mr_driver, ring->mr_type); 4509 } 4510 group->mrg_cur_count--; 4511 group->mrg_rings = ring->mr_next; 4512 4513 ring->mr_gh = NULL; 4514 4515 if (driver_call) 4516 mac_ring_free(mip, ring); 4517 4518 return (ret); 4519 } 4520 } 4521 4522 /* 4523 * Set up SRS/SR according to the ring type. 4524 */ 4525 switch (ring->mr_type) { 4526 case MAC_RING_TYPE_RX: 4527 /* 4528 * Setup SRS on top of the new ring if the group is 4529 * reserved for someones exclusive use. 4530 */ 4531 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4532 mac_client_impl_t *mcip; 4533 4534 mcip = MAC_GROUP_ONLY_CLIENT(group); 4535 /* 4536 * Even though this group is reserved we migth still 4537 * have multiple clients, i.e a VLAN shares the 4538 * group with the primary mac client. 4539 */ 4540 if (mcip != NULL) { 4541 flent = mcip->mci_flent; 4542 ASSERT(flent->fe_rx_srs_cnt > 0); 4543 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4544 mac_fanout_setup(mcip, flent, 4545 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4546 mcip, NULL, NULL); 4547 } else { 4548 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4549 } 4550 } 4551 break; 4552 case MAC_RING_TYPE_TX: 4553 { 4554 mac_grp_client_t *mgcp = group->mrg_clients; 4555 mac_client_impl_t *mcip; 4556 mac_soft_ring_set_t *mac_srs; 4557 mac_srs_tx_t *tx; 4558 4559 if (MAC_GROUP_NO_CLIENT(group)) { 4560 if (ring->mr_state == MR_INUSE) 4561 mac_stop_ring(ring); 4562 ring->mr_flag = 0; 4563 break; 4564 } 4565 /* 4566 * If the rings are being moved to a group that has 4567 * clients using it, then add the new rings to the 4568 * clients SRS. 4569 */ 4570 while (mgcp != NULL) { 4571 boolean_t is_aggr; 4572 4573 mcip = mgcp->mgc_client; 4574 flent = mcip->mci_flent; 4575 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4576 mac_srs = MCIP_TX_SRS(mcip); 4577 tx = &mac_srs->srs_tx; 4578 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4579 /* 4580 * If we are growing from 1 to multiple rings. 4581 */ 4582 if (tx->st_mode == SRS_TX_BW || 4583 tx->st_mode == SRS_TX_SERIALIZE || 4584 tx->st_mode == SRS_TX_DEFAULT) { 4585 mac_ring_t *tx_ring = tx->st_arg2; 4586 4587 tx->st_arg2 = NULL; 4588 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4589 mac_tx_srs_add_ring(mac_srs, tx_ring); 4590 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4591 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4592 SRS_TX_BW_FANOUT; 4593 } else { 4594 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4595 SRS_TX_FANOUT; 4596 } 4597 tx->st_func = mac_tx_get_func(tx->st_mode); 4598 } 4599 mac_tx_srs_add_ring(mac_srs, ring); 4600 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4601 mac_rx_deliver, mcip, NULL, NULL); 4602 mac_tx_client_restart((mac_client_handle_t)mcip); 4603 mgcp = mgcp->mgc_next; 4604 } 4605 break; 4606 } 4607 default: 4608 ASSERT(B_FALSE); 4609 } 4610 /* 4611 * For aggr, the default ring will be NULL to begin with. If it 4612 * is NULL, then pick the first ring that gets added as the 4613 * default ring. Any ring in an aggregation can be removed at 4614 * any time (by the user action of removing a link) and if the 4615 * current default ring gets removed, then a new one gets 4616 * picked (see i_mac_group_rem_ring()). 4617 */ 4618 if (mip->mi_state_flags & MIS_IS_AGGR && 4619 mip->mi_default_tx_ring == NULL && 4620 ring->mr_type == MAC_RING_TYPE_TX) { 4621 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4622 } 4623 4624 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4625 return (0); 4626 } 4627 4628 /* 4629 * Remove a ring from it's current group. MAC internal function for dynamic 4630 * grouping. 4631 * 4632 * The caller needs to call mac_perim_enter() before calling this function. 4633 */ 4634 void 4635 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4636 boolean_t driver_call) 4637 { 4638 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4639 mac_capab_rings_t *cap_rings = NULL; 4640 mac_group_type_t group_type; 4641 4642 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4643 4644 ASSERT(mac_find_ring((mac_group_handle_t)group, 4645 ring->mr_index) == (mac_ring_handle_t)ring); 4646 ASSERT((mac_group_t *)ring->mr_gh == group); 4647 ASSERT(ring->mr_type == group->mrg_type); 4648 4649 if (ring->mr_state == MR_INUSE) 4650 mac_stop_ring(ring); 4651 switch (ring->mr_type) { 4652 case MAC_RING_TYPE_RX: 4653 group_type = mip->mi_rx_group_type; 4654 cap_rings = &mip->mi_rx_rings_cap; 4655 4656 /* 4657 * Only hardware classified packets hold a reference to the 4658 * ring all the way up the Rx path. mac_rx_srs_remove() 4659 * will take care of quiescing the Rx path and removing the 4660 * SRS. The software classified path neither holds a reference 4661 * nor any association with the ring in mac_rx. 4662 */ 4663 if (ring->mr_srs != NULL) { 4664 mac_rx_srs_remove(ring->mr_srs); 4665 ring->mr_srs = NULL; 4666 } 4667 4668 break; 4669 case MAC_RING_TYPE_TX: 4670 { 4671 mac_grp_client_t *mgcp; 4672 mac_client_impl_t *mcip; 4673 mac_soft_ring_set_t *mac_srs; 4674 mac_srs_tx_t *tx; 4675 mac_ring_t *rem_ring; 4676 mac_group_t *defgrp; 4677 uint_t ring_info = 0; 4678 4679 /* 4680 * For TX this function is invoked in three 4681 * cases: 4682 * 4683 * 1) In the case of a failure during the 4684 * initial creation of a group when a share is 4685 * associated with a MAC client. So the SRS is not 4686 * yet setup, and will be setup later after the 4687 * group has been reserved and populated. 4688 * 4689 * 2) From mac_release_tx_group() when freeing 4690 * a TX SRS. 4691 * 4692 * 3) In the case of aggr, when a port gets removed, 4693 * the pseudo Tx rings that it exposed gets removed. 4694 * 4695 * In the first two cases the SRS and its soft 4696 * rings are already quiesced. 4697 */ 4698 if (driver_call) { 4699 mac_client_impl_t *mcip; 4700 mac_soft_ring_set_t *mac_srs; 4701 mac_soft_ring_t *sringp; 4702 mac_srs_tx_t *srs_tx; 4703 4704 if (mip->mi_state_flags & MIS_IS_AGGR && 4705 mip->mi_default_tx_ring == 4706 (mac_ring_handle_t)ring) { 4707 /* pick a new default Tx ring */ 4708 mip->mi_default_tx_ring = 4709 (group->mrg_rings != ring) ? 4710 (mac_ring_handle_t)group->mrg_rings : 4711 (mac_ring_handle_t)(ring->mr_next); 4712 } 4713 /* Presently only aggr case comes here */ 4714 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4715 break; 4716 4717 mcip = MAC_GROUP_ONLY_CLIENT(group); 4718 ASSERT(mcip != NULL); 4719 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4720 mac_srs = MCIP_TX_SRS(mcip); 4721 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4722 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4723 srs_tx = &mac_srs->srs_tx; 4724 /* 4725 * Wakeup any callers blocked on this 4726 * Tx ring due to flow control. 4727 */ 4728 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4729 ASSERT(sringp != NULL); 4730 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4731 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4732 mac_tx_srs_del_ring(mac_srs, ring); 4733 mac_tx_client_restart((mac_client_handle_t)mcip); 4734 break; 4735 } 4736 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4737 group_type = mip->mi_tx_group_type; 4738 cap_rings = &mip->mi_tx_rings_cap; 4739 /* 4740 * See if we need to take it out of the MAC clients using 4741 * this group 4742 */ 4743 if (MAC_GROUP_NO_CLIENT(group)) 4744 break; 4745 mgcp = group->mrg_clients; 4746 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4747 while (mgcp != NULL) { 4748 mcip = mgcp->mgc_client; 4749 mac_srs = MCIP_TX_SRS(mcip); 4750 tx = &mac_srs->srs_tx; 4751 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4752 /* 4753 * If we are here when removing rings from the 4754 * defgroup, mac_reserve_tx_ring would have 4755 * already deleted the ring from the MAC 4756 * clients in the group. 4757 */ 4758 if (group != defgrp) { 4759 mac_tx_invoke_callbacks(mcip, 4760 (mac_tx_cookie_t) 4761 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4762 mac_tx_srs_del_ring(mac_srs, ring); 4763 } 4764 /* 4765 * Additionally, if we are left with only 4766 * one ring in the group after this, we need 4767 * to modify the mode etc. to. (We haven't 4768 * yet taken the ring out, so we check with 2). 4769 */ 4770 if (group->mrg_cur_count == 2) { 4771 if (ring->mr_next == NULL) 4772 rem_ring = group->mrg_rings; 4773 else 4774 rem_ring = ring->mr_next; 4775 mac_tx_invoke_callbacks(mcip, 4776 (mac_tx_cookie_t) 4777 mac_tx_srs_get_soft_ring(mac_srs, 4778 rem_ring)); 4779 mac_tx_srs_del_ring(mac_srs, rem_ring); 4780 if (rem_ring->mr_state != MR_INUSE) { 4781 (void) mac_start_ring(rem_ring); 4782 } 4783 tx->st_arg2 = (void *)rem_ring; 4784 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4785 ring_info = mac_hwring_getinfo( 4786 (mac_ring_handle_t)rem_ring); 4787 /* 4788 * We are shrinking from multiple 4789 * to 1 ring. 4790 */ 4791 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4792 tx->st_mode = SRS_TX_BW; 4793 } else if (mac_tx_serialize || 4794 (ring_info & MAC_RING_TX_SERIALIZE)) { 4795 tx->st_mode = SRS_TX_SERIALIZE; 4796 } else { 4797 tx->st_mode = SRS_TX_DEFAULT; 4798 } 4799 tx->st_func = mac_tx_get_func(tx->st_mode); 4800 } 4801 mac_tx_client_restart((mac_client_handle_t)mcip); 4802 mgcp = mgcp->mgc_next; 4803 } 4804 break; 4805 } 4806 default: 4807 ASSERT(B_FALSE); 4808 } 4809 4810 /* 4811 * Remove the ring from the group. 4812 */ 4813 if (ring == group->mrg_rings) 4814 group->mrg_rings = ring->mr_next; 4815 else { 4816 mac_ring_t *pre; 4817 4818 pre = group->mrg_rings; 4819 while (pre->mr_next != ring) 4820 pre = pre->mr_next; 4821 pre->mr_next = ring->mr_next; 4822 } 4823 group->mrg_cur_count--; 4824 4825 if (!driver_call) { 4826 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4827 ASSERT(group->mrg_driver == NULL || 4828 cap_rings->mr_gremring != NULL); 4829 4830 /* 4831 * Remove the driver level hardware ring. 4832 */ 4833 if (group->mrg_driver != NULL) { 4834 cap_rings->mr_gremring(group->mrg_driver, 4835 ring->mr_driver, ring->mr_type); 4836 } 4837 } 4838 4839 ring->mr_gh = NULL; 4840 if (driver_call) 4841 mac_ring_free(mip, ring); 4842 else 4843 ring->mr_flag = 0; 4844 } 4845 4846 /* 4847 * Move a ring to the target group. If needed, remove the ring from the group 4848 * that it currently belongs to. 4849 * 4850 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4851 */ 4852 static int 4853 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4854 { 4855 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4856 int rv; 4857 4858 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4859 ASSERT(d_group != NULL); 4860 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4861 4862 if (s_group == d_group) 4863 return (0); 4864 4865 /* 4866 * Remove it from current group first. 4867 */ 4868 if (s_group != NULL) 4869 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4870 4871 /* 4872 * Add it to the new group. 4873 */ 4874 rv = i_mac_group_add_ring(d_group, ring, 0); 4875 if (rv != 0) { 4876 /* 4877 * Failed to add ring back to source group. If 4878 * that fails, the ring is stuck in limbo, log message. 4879 */ 4880 if (i_mac_group_add_ring(s_group, ring, 0)) { 4881 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4882 mip->mi_name, (void *)ring); 4883 } 4884 } 4885 4886 return (rv); 4887 } 4888 4889 /* 4890 * Find a MAC address according to its value. 4891 */ 4892 mac_address_t * 4893 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4894 { 4895 mac_address_t *map; 4896 4897 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4898 4899 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4900 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4901 break; 4902 } 4903 4904 return (map); 4905 } 4906 4907 /* 4908 * Check whether the MAC address is shared by multiple clients. 4909 */ 4910 boolean_t 4911 mac_check_macaddr_shared(mac_address_t *map) 4912 { 4913 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4914 4915 return (map->ma_nusers > 1); 4916 } 4917 4918 /* 4919 * Remove the specified MAC address from the MAC address list and free it. 4920 */ 4921 static void 4922 mac_free_macaddr(mac_address_t *map) 4923 { 4924 mac_impl_t *mip = map->ma_mip; 4925 4926 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4927 ASSERT(mip->mi_addresses != NULL); 4928 4929 map = mac_find_macaddr(mip, map->ma_addr); 4930 4931 ASSERT(map != NULL); 4932 ASSERT(map->ma_nusers == 0); 4933 4934 if (map == mip->mi_addresses) { 4935 mip->mi_addresses = map->ma_next; 4936 } else { 4937 mac_address_t *pre; 4938 4939 pre = mip->mi_addresses; 4940 while (pre->ma_next != map) 4941 pre = pre->ma_next; 4942 pre->ma_next = map->ma_next; 4943 } 4944 4945 kmem_free(map, sizeof (mac_address_t)); 4946 } 4947 4948 /* 4949 * Add a MAC address reference for a client. If the desired MAC address 4950 * exists, add a reference to it. Otherwise, add the new address by adding 4951 * it to a reserved group or setting promiscuous mode. Won't try different 4952 * group is the group is non-NULL, so the caller must explictly share 4953 * default group when needed. 4954 * 4955 * Note, the primary MAC address is initialized at registration time, so 4956 * to add it to default group only need to activate it if its reference 4957 * count is still zero. Also, some drivers may not have advertised RINGS 4958 * capability. 4959 */ 4960 int 4961 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4962 boolean_t use_hw) 4963 { 4964 mac_address_t *map; 4965 int err = 0; 4966 boolean_t allocated_map = B_FALSE; 4967 4968 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4969 4970 map = mac_find_macaddr(mip, mac_addr); 4971 4972 /* 4973 * If the new MAC address has not been added. Allocate a new one 4974 * and set it up. 4975 */ 4976 if (map == NULL) { 4977 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4978 map->ma_len = mip->mi_type->mt_addr_length; 4979 bcopy(mac_addr, map->ma_addr, map->ma_len); 4980 map->ma_nusers = 0; 4981 map->ma_group = group; 4982 map->ma_mip = mip; 4983 4984 /* add the new MAC address to the head of the address list */ 4985 map->ma_next = mip->mi_addresses; 4986 mip->mi_addresses = map; 4987 4988 allocated_map = B_TRUE; 4989 } 4990 4991 ASSERT(map->ma_group == NULL || map->ma_group == group); 4992 if (map->ma_group == NULL) 4993 map->ma_group = group; 4994 4995 /* 4996 * If the MAC address is already in use, simply account for the 4997 * new client. 4998 */ 4999 if (map->ma_nusers++ > 0) 5000 return (0); 5001 5002 /* 5003 * Activate this MAC address by adding it to the reserved group. 5004 */ 5005 if (group != NULL) { 5006 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 5007 if (err == 0) { 5008 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5009 return (0); 5010 } 5011 } 5012 5013 /* 5014 * The MAC address addition failed. If the client requires a 5015 * hardware classified MAC address, fail the operation. 5016 */ 5017 if (use_hw) { 5018 err = ENOSPC; 5019 goto bail; 5020 } 5021 5022 /* 5023 * Try promiscuous mode. 5024 * 5025 * For drivers that don't advertise RINGS capability, do 5026 * nothing for the primary address. 5027 */ 5028 if ((group == NULL) && 5029 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5030 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5031 return (0); 5032 } 5033 5034 /* 5035 * Enable promiscuous mode in order to receive traffic 5036 * to the new MAC address. 5037 */ 5038 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5039 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5040 return (0); 5041 } 5042 5043 /* 5044 * Free the MAC address that could not be added. Don't free 5045 * a pre-existing address, it could have been the entry 5046 * for the primary MAC address which was pre-allocated by 5047 * mac_init_macaddr(), and which must remain on the list. 5048 */ 5049 bail: 5050 map->ma_nusers--; 5051 if (allocated_map) 5052 mac_free_macaddr(map); 5053 return (err); 5054 } 5055 5056 /* 5057 * Remove a reference to a MAC address. This may cause to remove the MAC 5058 * address from an associated group or to turn off promiscuous mode. 5059 * The caller needs to handle the failure properly. 5060 */ 5061 int 5062 mac_remove_macaddr(mac_address_t *map) 5063 { 5064 mac_impl_t *mip = map->ma_mip; 5065 int err = 0; 5066 5067 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5068 5069 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 5070 5071 /* 5072 * If it's not the last client using this MAC address, only update 5073 * the MAC clients count. 5074 */ 5075 if (--map->ma_nusers > 0) 5076 return (0); 5077 5078 /* 5079 * The MAC address is no longer used by any MAC client, so remove 5080 * it from its associated group, or turn off promiscuous mode 5081 * if it was enabled for the MAC address. 5082 */ 5083 switch (map->ma_type) { 5084 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5085 /* 5086 * Don't free the preset primary address for drivers that 5087 * don't advertise RINGS capability. 5088 */ 5089 if (map->ma_group == NULL) 5090 return (0); 5091 5092 err = mac_group_remmac(map->ma_group, map->ma_addr); 5093 if (err == 0) 5094 map->ma_group = NULL; 5095 break; 5096 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5097 err = i_mac_promisc_set(mip, B_FALSE); 5098 break; 5099 default: 5100 ASSERT(B_FALSE); 5101 } 5102 5103 if (err != 0) 5104 return (err); 5105 5106 /* 5107 * We created MAC address for the primary one at registration, so we 5108 * won't free it here. mac_fini_macaddr() will take care of it. 5109 */ 5110 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5111 mac_free_macaddr(map); 5112 5113 return (0); 5114 } 5115 5116 /* 5117 * Update an existing MAC address. The caller need to make sure that the new 5118 * value has not been used. 5119 */ 5120 int 5121 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5122 { 5123 mac_impl_t *mip = map->ma_mip; 5124 int err = 0; 5125 5126 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5127 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5128 5129 switch (map->ma_type) { 5130 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5131 /* 5132 * Update the primary address for drivers that are not 5133 * RINGS capable. 5134 */ 5135 if (mip->mi_rx_groups == NULL) { 5136 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5137 mac_addr); 5138 if (err != 0) 5139 return (err); 5140 break; 5141 } 5142 5143 /* 5144 * If this MAC address is not currently in use, 5145 * simply break out and update the value. 5146 */ 5147 if (map->ma_nusers == 0) 5148 break; 5149 5150 /* 5151 * Need to replace the MAC address associated with a group. 5152 */ 5153 err = mac_group_remmac(map->ma_group, map->ma_addr); 5154 if (err != 0) 5155 return (err); 5156 5157 err = mac_group_addmac(map->ma_group, mac_addr); 5158 5159 /* 5160 * Failure hints hardware error. The MAC layer needs to 5161 * have error notification facility to handle this. 5162 * Now, simply try to restore the value. 5163 */ 5164 if (err != 0) 5165 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5166 5167 break; 5168 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5169 /* 5170 * Need to do nothing more if in promiscuous mode. 5171 */ 5172 break; 5173 default: 5174 ASSERT(B_FALSE); 5175 } 5176 5177 /* 5178 * Successfully replaced the MAC address. 5179 */ 5180 if (err == 0) 5181 bcopy(mac_addr, map->ma_addr, map->ma_len); 5182 5183 return (err); 5184 } 5185 5186 /* 5187 * Freshen the MAC address with new value. Its caller must have updated the 5188 * hardware MAC address before calling this function. 5189 * This funcitons is supposed to be used to handle the MAC address change 5190 * notification from underlying drivers. 5191 */ 5192 void 5193 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5194 { 5195 mac_impl_t *mip = map->ma_mip; 5196 5197 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5198 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5199 5200 /* 5201 * Freshen the MAC address with new value. 5202 */ 5203 bcopy(mac_addr, map->ma_addr, map->ma_len); 5204 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5205 5206 /* 5207 * Update all MAC clients that share this MAC address. 5208 */ 5209 mac_unicast_update_clients(mip, map); 5210 } 5211 5212 /* 5213 * Set up the primary MAC address. 5214 */ 5215 void 5216 mac_init_macaddr(mac_impl_t *mip) 5217 { 5218 mac_address_t *map; 5219 5220 /* 5221 * The reference count is initialized to zero, until it's really 5222 * activated. 5223 */ 5224 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5225 map->ma_len = mip->mi_type->mt_addr_length; 5226 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5227 5228 /* 5229 * If driver advertises RINGS capability, it shouldn't have initialized 5230 * its primary MAC address. For other drivers, including VNIC, the 5231 * primary address must work after registration. 5232 */ 5233 if (mip->mi_rx_groups == NULL) 5234 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5235 5236 map->ma_mip = mip; 5237 5238 mip->mi_addresses = map; 5239 } 5240 5241 /* 5242 * Clean up the primary MAC address. Note, only one primary MAC address 5243 * is allowed. All other MAC addresses must have been freed appropriately. 5244 */ 5245 void 5246 mac_fini_macaddr(mac_impl_t *mip) 5247 { 5248 mac_address_t *map = mip->mi_addresses; 5249 5250 if (map == NULL) 5251 return; 5252 5253 /* 5254 * If mi_addresses is initialized, there should be exactly one 5255 * entry left on the list with no users. 5256 */ 5257 ASSERT(map->ma_nusers == 0); 5258 ASSERT(map->ma_next == NULL); 5259 5260 kmem_free(map, sizeof (mac_address_t)); 5261 mip->mi_addresses = NULL; 5262 } 5263 5264 /* 5265 * Logging related functions. 5266 * 5267 * Note that Kernel statistics have been extended to maintain fine 5268 * granularity of statistics viz. hardware lane, software lane, fanout 5269 * stats etc. However, extended accounting continues to support only 5270 * aggregate statistics like before. 5271 */ 5272 5273 /* Write the flow description to a netinfo_t record */ 5274 static netinfo_t * 5275 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5276 { 5277 netinfo_t *ninfo; 5278 net_desc_t *ndesc; 5279 flow_desc_t *fdesc; 5280 mac_resource_props_t *mrp; 5281 5282 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5283 if (ninfo == NULL) 5284 return (NULL); 5285 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5286 if (ndesc == NULL) { 5287 kmem_free(ninfo, sizeof (netinfo_t)); 5288 return (NULL); 5289 } 5290 5291 /* 5292 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5293 * Updates to the fe_flow_desc are done under the fe_lock 5294 */ 5295 mutex_enter(&flent->fe_lock); 5296 fdesc = &flent->fe_flow_desc; 5297 mrp = &flent->fe_resource_props; 5298 5299 ndesc->nd_name = flent->fe_flow_name; 5300 ndesc->nd_devname = mcip->mci_name; 5301 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5302 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5303 ndesc->nd_sap = htonl(fdesc->fd_sap); 5304 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5305 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5306 if (ndesc->nd_isv4) { 5307 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5308 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5309 } else { 5310 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5311 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5312 } 5313 ndesc->nd_sport = htons(fdesc->fd_local_port); 5314 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5315 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5316 mutex_exit(&flent->fe_lock); 5317 5318 ninfo->ni_record = ndesc; 5319 ninfo->ni_size = sizeof (net_desc_t); 5320 ninfo->ni_type = EX_NET_FLDESC_REC; 5321 5322 return (ninfo); 5323 } 5324 5325 /* Write the flow statistics to a netinfo_t record */ 5326 static netinfo_t * 5327 mac_write_flow_stats(flow_entry_t *flent) 5328 { 5329 netinfo_t *ninfo; 5330 net_stat_t *nstat; 5331 mac_soft_ring_set_t *mac_srs; 5332 mac_rx_stats_t *mac_rx_stat; 5333 mac_tx_stats_t *mac_tx_stat; 5334 int i; 5335 5336 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5337 if (ninfo == NULL) 5338 return (NULL); 5339 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5340 if (nstat == NULL) { 5341 kmem_free(ninfo, sizeof (netinfo_t)); 5342 return (NULL); 5343 } 5344 5345 nstat->ns_name = flent->fe_flow_name; 5346 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5347 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5348 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5349 5350 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5351 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5352 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5353 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5354 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5355 } 5356 5357 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5358 if (mac_srs != NULL) { 5359 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5360 5361 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5362 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5363 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5364 } 5365 5366 ninfo->ni_record = nstat; 5367 ninfo->ni_size = sizeof (net_stat_t); 5368 ninfo->ni_type = EX_NET_FLSTAT_REC; 5369 5370 return (ninfo); 5371 } 5372 5373 /* Write the link description to a netinfo_t record */ 5374 static netinfo_t * 5375 mac_write_link_desc(mac_client_impl_t *mcip) 5376 { 5377 netinfo_t *ninfo; 5378 net_desc_t *ndesc; 5379 flow_entry_t *flent = mcip->mci_flent; 5380 5381 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5382 if (ninfo == NULL) 5383 return (NULL); 5384 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5385 if (ndesc == NULL) { 5386 kmem_free(ninfo, sizeof (netinfo_t)); 5387 return (NULL); 5388 } 5389 5390 ndesc->nd_name = mcip->mci_name; 5391 ndesc->nd_devname = mcip->mci_name; 5392 ndesc->nd_isv4 = B_TRUE; 5393 /* 5394 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5395 * Updates to the fe_flow_desc are done under the fe_lock 5396 * after removing the flent from the flow table. 5397 */ 5398 mutex_enter(&flent->fe_lock); 5399 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5400 mutex_exit(&flent->fe_lock); 5401 5402 ninfo->ni_record = ndesc; 5403 ninfo->ni_size = sizeof (net_desc_t); 5404 ninfo->ni_type = EX_NET_LNDESC_REC; 5405 5406 return (ninfo); 5407 } 5408 5409 /* Write the link statistics to a netinfo_t record */ 5410 static netinfo_t * 5411 mac_write_link_stats(mac_client_impl_t *mcip) 5412 { 5413 netinfo_t *ninfo; 5414 net_stat_t *nstat; 5415 flow_entry_t *flent; 5416 mac_soft_ring_set_t *mac_srs; 5417 mac_rx_stats_t *mac_rx_stat; 5418 mac_tx_stats_t *mac_tx_stat; 5419 int i; 5420 5421 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5422 if (ninfo == NULL) 5423 return (NULL); 5424 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5425 if (nstat == NULL) { 5426 kmem_free(ninfo, sizeof (netinfo_t)); 5427 return (NULL); 5428 } 5429 5430 nstat->ns_name = mcip->mci_name; 5431 flent = mcip->mci_flent; 5432 if (flent != NULL) { 5433 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5434 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5435 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5436 5437 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5438 mac_rx_stat->mrs_pollbytes + 5439 mac_rx_stat->mrs_lclbytes; 5440 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5441 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5442 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5443 } 5444 } 5445 5446 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5447 if (mac_srs != NULL) { 5448 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5449 5450 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5451 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5452 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5453 } 5454 5455 ninfo->ni_record = nstat; 5456 ninfo->ni_size = sizeof (net_stat_t); 5457 ninfo->ni_type = EX_NET_LNSTAT_REC; 5458 5459 return (ninfo); 5460 } 5461 5462 typedef struct i_mac_log_state_s { 5463 boolean_t mi_last; 5464 int mi_fenable; 5465 int mi_lenable; 5466 list_t *mi_list; 5467 } i_mac_log_state_t; 5468 5469 /* 5470 * For a given flow, if the description has not been logged before, do it now. 5471 * If it is a VNIC, then we have collected information about it from the MAC 5472 * table, so skip it. 5473 * 5474 * Called through mac_flow_walk_nolock() 5475 * 5476 * Return 0 if successful. 5477 */ 5478 static int 5479 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5480 { 5481 mac_client_impl_t *mcip = flent->fe_mcip; 5482 i_mac_log_state_t *lstate = arg; 5483 netinfo_t *ninfo; 5484 5485 if (mcip == NULL) 5486 return (0); 5487 5488 /* 5489 * If the name starts with "vnic", and fe_user_generated is true (to 5490 * exclude the mcast and active flow entries created implicitly for 5491 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5492 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5493 */ 5494 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5495 (flent->fe_type & FLOW_USER) != 0) { 5496 return (0); 5497 } 5498 5499 if (!flent->fe_desc_logged) { 5500 /* 5501 * We don't return error because we want to continue the 5502 * walk in case this is the last walk which means we 5503 * need to reset fe_desc_logged in all the flows. 5504 */ 5505 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5506 return (0); 5507 list_insert_tail(lstate->mi_list, ninfo); 5508 flent->fe_desc_logged = B_TRUE; 5509 } 5510 5511 /* 5512 * Regardless of the error, we want to proceed in case we have to 5513 * reset fe_desc_logged. 5514 */ 5515 ninfo = mac_write_flow_stats(flent); 5516 if (ninfo == NULL) 5517 return (-1); 5518 5519 list_insert_tail(lstate->mi_list, ninfo); 5520 5521 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5522 flent->fe_desc_logged = B_FALSE; 5523 5524 return (0); 5525 } 5526 5527 /* 5528 * Log the description for each mac client of this mac_impl_t, if it 5529 * hasn't already been done. Additionally, log statistics for the link as 5530 * well. Walk the flow table and log information for each flow as well. 5531 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5532 * also fe_desc_logged, if flow logging is on) since we want to log the 5533 * description if and when logging is restarted. 5534 * 5535 * Return 0 upon success or -1 upon failure 5536 */ 5537 static int 5538 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5539 { 5540 mac_client_impl_t *mcip; 5541 netinfo_t *ninfo; 5542 5543 i_mac_perim_enter(mip); 5544 /* 5545 * Only walk the client list for NIC and etherstub 5546 */ 5547 if ((mip->mi_state_flags & MIS_DISABLED) || 5548 ((mip->mi_state_flags & MIS_IS_VNIC) && 5549 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5550 i_mac_perim_exit(mip); 5551 return (0); 5552 } 5553 5554 for (mcip = mip->mi_clients_list; mcip != NULL; 5555 mcip = mcip->mci_client_next) { 5556 if (!MCIP_DATAPATH_SETUP(mcip)) 5557 continue; 5558 if (lstate->mi_lenable) { 5559 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5560 ninfo = mac_write_link_desc(mcip); 5561 if (ninfo == NULL) { 5562 /* 5563 * We can't terminate it if this is the last 5564 * walk, else there might be some links with 5565 * mi_desc_logged set to true, which means 5566 * their description won't be logged the next 5567 * time logging is started (similarly for the 5568 * flows within such links). We can continue 5569 * without walking the flow table (i.e. to 5570 * set fe_desc_logged to false) because we 5571 * won't have written any flow stuff for this 5572 * link as we haven't logged the link itself. 5573 */ 5574 i_mac_perim_exit(mip); 5575 if (lstate->mi_last) 5576 return (0); 5577 else 5578 return (-1); 5579 } 5580 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5581 list_insert_tail(lstate->mi_list, ninfo); 5582 } 5583 } 5584 5585 ninfo = mac_write_link_stats(mcip); 5586 if (ninfo == NULL && !lstate->mi_last) { 5587 i_mac_perim_exit(mip); 5588 return (-1); 5589 } 5590 list_insert_tail(lstate->mi_list, ninfo); 5591 5592 if (lstate->mi_last) 5593 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5594 5595 if (lstate->mi_fenable) { 5596 if (mcip->mci_subflow_tab != NULL) { 5597 (void) mac_flow_walk_nolock( 5598 mcip->mci_subflow_tab, mac_log_flowinfo, 5599 lstate); 5600 } 5601 } 5602 } 5603 i_mac_perim_exit(mip); 5604 return (0); 5605 } 5606 5607 /* 5608 * modhash walker function to add a mac_impl_t to a list 5609 */ 5610 /*ARGSUSED*/ 5611 static uint_t 5612 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5613 { 5614 list_t *list = (list_t *)arg; 5615 mac_impl_t *mip = (mac_impl_t *)val; 5616 5617 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5618 list_insert_tail(list, mip); 5619 mip->mi_ref++; 5620 } 5621 5622 return (MH_WALK_CONTINUE); 5623 } 5624 5625 void 5626 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5627 { 5628 list_t mac_impl_list; 5629 mac_impl_t *mip; 5630 netinfo_t *ninfo; 5631 5632 /* Create list of mac_impls */ 5633 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5634 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5635 mi_node)); 5636 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5637 rw_exit(&i_mac_impl_lock); 5638 5639 /* Create log entries for each mac_impl */ 5640 for (mip = list_head(&mac_impl_list); mip != NULL; 5641 mip = list_next(&mac_impl_list, mip)) { 5642 if (i_mac_impl_log(mip, lstate) != 0) 5643 continue; 5644 } 5645 5646 /* Remove elements and destroy list of mac_impls */ 5647 rw_enter(&i_mac_impl_lock, RW_WRITER); 5648 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5649 mip->mi_ref--; 5650 } 5651 rw_exit(&i_mac_impl_lock); 5652 list_destroy(&mac_impl_list); 5653 5654 /* 5655 * Write log entries to files outside of locks, free associated 5656 * structures, and remove entries from the list. 5657 */ 5658 while ((ninfo = list_head(net_log_list)) != NULL) { 5659 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5660 list_remove(net_log_list, ninfo); 5661 kmem_free(ninfo->ni_record, ninfo->ni_size); 5662 kmem_free(ninfo, sizeof (*ninfo)); 5663 } 5664 list_destroy(net_log_list); 5665 } 5666 5667 /* 5668 * The timer thread that runs every mac_logging_interval seconds and logs 5669 * link and/or flow information. 5670 */ 5671 /* ARGSUSED */ 5672 void 5673 mac_log_linkinfo(void *arg) 5674 { 5675 i_mac_log_state_t lstate; 5676 list_t net_log_list; 5677 5678 list_create(&net_log_list, sizeof (netinfo_t), 5679 offsetof(netinfo_t, ni_link)); 5680 5681 rw_enter(&i_mac_impl_lock, RW_READER); 5682 if (!mac_flow_log_enable && !mac_link_log_enable) { 5683 rw_exit(&i_mac_impl_lock); 5684 return; 5685 } 5686 lstate.mi_fenable = mac_flow_log_enable; 5687 lstate.mi_lenable = mac_link_log_enable; 5688 lstate.mi_last = B_FALSE; 5689 lstate.mi_list = &net_log_list; 5690 5691 /* Write log entries for each mac_impl in the list */ 5692 i_mac_log_info(&net_log_list, &lstate); 5693 5694 if (mac_flow_log_enable || mac_link_log_enable) { 5695 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5696 SEC_TO_TICK(mac_logging_interval)); 5697 } 5698 } 5699 5700 typedef struct i_mac_fastpath_state_s { 5701 boolean_t mf_disable; 5702 int mf_err; 5703 } i_mac_fastpath_state_t; 5704 5705 /* modhash walker function to enable or disable fastpath */ 5706 /*ARGSUSED*/ 5707 static uint_t 5708 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5709 void *arg) 5710 { 5711 i_mac_fastpath_state_t *state = arg; 5712 mac_handle_t mh = (mac_handle_t)val; 5713 5714 if (state->mf_disable) 5715 state->mf_err = mac_fastpath_disable(mh); 5716 else 5717 mac_fastpath_enable(mh); 5718 5719 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5720 } 5721 5722 /* 5723 * Start the logging timer. 5724 */ 5725 int 5726 mac_start_logusage(mac_logtype_t type, uint_t interval) 5727 { 5728 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5729 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5730 int err; 5731 5732 rw_enter(&i_mac_impl_lock, RW_WRITER); 5733 switch (type) { 5734 case MAC_LOGTYPE_FLOW: 5735 if (mac_flow_log_enable) { 5736 rw_exit(&i_mac_impl_lock); 5737 return (0); 5738 } 5739 /* FALLTHRU */ 5740 case MAC_LOGTYPE_LINK: 5741 if (mac_link_log_enable) { 5742 rw_exit(&i_mac_impl_lock); 5743 return (0); 5744 } 5745 break; 5746 default: 5747 ASSERT(0); 5748 } 5749 5750 /* Disable fastpath */ 5751 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5752 if ((err = dstate.mf_err) != 0) { 5753 /* Reenable fastpath */ 5754 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5755 rw_exit(&i_mac_impl_lock); 5756 return (err); 5757 } 5758 5759 switch (type) { 5760 case MAC_LOGTYPE_FLOW: 5761 mac_flow_log_enable = B_TRUE; 5762 /* FALLTHRU */ 5763 case MAC_LOGTYPE_LINK: 5764 mac_link_log_enable = B_TRUE; 5765 break; 5766 } 5767 5768 mac_logging_interval = interval; 5769 rw_exit(&i_mac_impl_lock); 5770 mac_log_linkinfo(NULL); 5771 return (0); 5772 } 5773 5774 /* 5775 * Stop the logging timer if both link and flow logging are turned off. 5776 */ 5777 void 5778 mac_stop_logusage(mac_logtype_t type) 5779 { 5780 i_mac_log_state_t lstate; 5781 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5782 list_t net_log_list; 5783 5784 list_create(&net_log_list, sizeof (netinfo_t), 5785 offsetof(netinfo_t, ni_link)); 5786 5787 rw_enter(&i_mac_impl_lock, RW_WRITER); 5788 5789 lstate.mi_fenable = mac_flow_log_enable; 5790 lstate.mi_lenable = mac_link_log_enable; 5791 lstate.mi_list = &net_log_list; 5792 5793 /* Last walk */ 5794 lstate.mi_last = B_TRUE; 5795 5796 switch (type) { 5797 case MAC_LOGTYPE_FLOW: 5798 if (lstate.mi_fenable) { 5799 ASSERT(mac_link_log_enable); 5800 mac_flow_log_enable = B_FALSE; 5801 mac_link_log_enable = B_FALSE; 5802 break; 5803 } 5804 /* FALLTHRU */ 5805 case MAC_LOGTYPE_LINK: 5806 if (!lstate.mi_lenable || mac_flow_log_enable) { 5807 rw_exit(&i_mac_impl_lock); 5808 return; 5809 } 5810 mac_link_log_enable = B_FALSE; 5811 break; 5812 default: 5813 ASSERT(0); 5814 } 5815 5816 /* Reenable fastpath */ 5817 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5818 5819 (void) untimeout(mac_logging_timer); 5820 mac_logging_timer = 0; 5821 5822 /* Write log entries for each mac_impl in the list */ 5823 i_mac_log_info(&net_log_list, &lstate); 5824 } 5825 5826 /* 5827 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5828 */ 5829 void 5830 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5831 { 5832 pri_t pri; 5833 int count; 5834 mac_soft_ring_set_t *mac_srs; 5835 5836 if (flent->fe_rx_srs_cnt <= 0) 5837 return; 5838 5839 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5840 SRST_FLOW) { 5841 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5842 mcip->mci_max_pri, 5843 flent->fe_resource_props.mrp_priority); 5844 } else { 5845 pri = mcip->mci_max_pri; 5846 } 5847 5848 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5849 mac_srs = flent->fe_rx_srs[count]; 5850 mac_update_srs_priority(mac_srs, pri); 5851 } 5852 /* 5853 * If we have a Tx SRS, we need to modify all the threads associated 5854 * with it. 5855 */ 5856 if (flent->fe_tx_srs != NULL) 5857 mac_update_srs_priority(flent->fe_tx_srs, pri); 5858 } 5859 5860 /* 5861 * RX and TX rings are reserved according to different semantics depending 5862 * on the requests from the MAC clients and type of rings: 5863 * 5864 * On the Tx side, by default we reserve individual rings, independently from 5865 * the groups. 5866 * 5867 * On the Rx side, the reservation is at the granularity of the group 5868 * of rings, and used for v12n level 1 only. It has a special case for the 5869 * primary client. 5870 * 5871 * If a share is allocated to a MAC client, we allocate a TX group and an 5872 * RX group to the client, and assign TX rings and RX rings to these 5873 * groups according to information gathered from the driver through 5874 * the share capability. 5875 * 5876 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5877 * to allocate individual rings out of a group and program the hw classifier 5878 * based on IP address or higher level criteria. 5879 */ 5880 5881 /* 5882 * mac_reserve_tx_ring() 5883 * Reserve a unused ring by marking it with MR_INUSE state. 5884 * As reserved, the ring is ready to function. 5885 * 5886 * Notes for Hybrid I/O: 5887 * 5888 * If a specific ring is needed, it is specified through the desired_ring 5889 * argument. Otherwise that argument is set to NULL. 5890 * If the desired ring was previous allocated to another client, this 5891 * function swaps it with a new ring from the group of unassigned rings. 5892 */ 5893 mac_ring_t * 5894 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5895 { 5896 mac_group_t *group; 5897 mac_grp_client_t *mgcp; 5898 mac_client_impl_t *mcip; 5899 mac_soft_ring_set_t *srs; 5900 5901 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5902 5903 /* 5904 * Find an available ring and start it before changing its status. 5905 * The unassigned rings are at the end of the mi_tx_groups 5906 * array. 5907 */ 5908 group = MAC_DEFAULT_TX_GROUP(mip); 5909 5910 /* Can't take the default ring out of the default group */ 5911 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5912 5913 if (desired_ring->mr_state == MR_FREE) { 5914 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5915 if (mac_start_ring(desired_ring) != 0) 5916 return (NULL); 5917 return (desired_ring); 5918 } 5919 /* 5920 * There are clients using this ring, so let's move the clients 5921 * away from using this ring. 5922 */ 5923 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5924 mcip = mgcp->mgc_client; 5925 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5926 srs = MCIP_TX_SRS(mcip); 5927 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5928 mac_tx_invoke_callbacks(mcip, 5929 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5930 desired_ring)); 5931 mac_tx_srs_del_ring(srs, desired_ring); 5932 mac_tx_client_restart((mac_client_handle_t)mcip); 5933 } 5934 return (desired_ring); 5935 } 5936 5937 /* 5938 * For a reserved group with multiple clients, return the primary client. 5939 */ 5940 static mac_client_impl_t * 5941 mac_get_grp_primary(mac_group_t *grp) 5942 { 5943 mac_grp_client_t *mgcp = grp->mrg_clients; 5944 mac_client_impl_t *mcip; 5945 5946 while (mgcp != NULL) { 5947 mcip = mgcp->mgc_client; 5948 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5949 return (mcip); 5950 mgcp = mgcp->mgc_next; 5951 } 5952 return (NULL); 5953 } 5954 5955 /* 5956 * Hybrid I/O specifies the ring that should be given to a share. 5957 * If the ring is already used by clients, then we need to release 5958 * the ring back to the default group so that we can give it to 5959 * the share. This means the clients using this ring now get a 5960 * replacement ring. If there aren't any replacement rings, this 5961 * function returns a failure. 5962 */ 5963 static int 5964 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5965 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5966 { 5967 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5968 mac_resource_props_t *mrp; 5969 mac_client_impl_t *mcip; 5970 mac_group_t *defgrp; 5971 mac_ring_t *tring; 5972 mac_group_t *tgrp; 5973 int i; 5974 int j; 5975 5976 mcip = MAC_GROUP_ONLY_CLIENT(group); 5977 if (mcip == NULL) 5978 mcip = mac_get_grp_primary(group); 5979 ASSERT(mcip != NULL); 5980 ASSERT(mcip->mci_share == NULL); 5981 5982 mrp = MCIP_RESOURCE_PROPS(mcip); 5983 if (ring_type == MAC_RING_TYPE_RX) { 5984 defgrp = mip->mi_rx_donor_grp; 5985 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5986 /* Need to put this mac client in the default group */ 5987 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5988 return (ENOSPC); 5989 } else { 5990 /* 5991 * Switch this ring with some other ring from 5992 * the default group. 5993 */ 5994 for (tring = defgrp->mrg_rings; tring != NULL; 5995 tring = tring->mr_next) { 5996 if (tring->mr_index == 0) 5997 continue; 5998 for (j = 0; j < nrings; j++) { 5999 if (rings[j] == tring) 6000 break; 6001 } 6002 if (j >= nrings) 6003 break; 6004 } 6005 if (tring == NULL) 6006 return (ENOSPC); 6007 if (mac_group_mov_ring(mip, group, tring) != 0) 6008 return (ENOSPC); 6009 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6010 (void) mac_group_mov_ring(mip, defgrp, tring); 6011 return (ENOSPC); 6012 } 6013 } 6014 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6015 return (0); 6016 } 6017 6018 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6019 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6020 /* 6021 * See if we can get a spare ring to replace the default 6022 * ring. 6023 */ 6024 if (defgrp->mrg_cur_count == 1) { 6025 /* 6026 * Need to get a ring from another client, see if 6027 * there are any clients that can be moved to 6028 * the default group, thereby freeing some rings. 6029 */ 6030 for (i = 0; i < mip->mi_tx_group_count; i++) { 6031 tgrp = &mip->mi_tx_groups[i]; 6032 if (tgrp->mrg_state == 6033 MAC_GROUP_STATE_REGISTERED) { 6034 continue; 6035 } 6036 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6037 if (mcip == NULL) 6038 mcip = mac_get_grp_primary(tgrp); 6039 ASSERT(mcip != NULL); 6040 mrp = MCIP_RESOURCE_PROPS(mcip); 6041 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6042 ASSERT(tgrp->mrg_cur_count == 1); 6043 /* 6044 * If this ring is part of the 6045 * rings asked by the share we cannot 6046 * use it as the default ring. 6047 */ 6048 for (j = 0; j < nrings; j++) { 6049 if (rings[j] == tgrp->mrg_rings) 6050 break; 6051 } 6052 if (j < nrings) 6053 continue; 6054 mac_tx_client_quiesce( 6055 (mac_client_handle_t)mcip); 6056 mac_tx_switch_group(mcip, tgrp, 6057 defgrp); 6058 mac_tx_client_restart( 6059 (mac_client_handle_t)mcip); 6060 break; 6061 } 6062 } 6063 /* 6064 * All the rings are reserved, can't give up the 6065 * default ring. 6066 */ 6067 if (defgrp->mrg_cur_count <= 1) 6068 return (ENOSPC); 6069 } 6070 /* 6071 * Swap the default ring with another. 6072 */ 6073 for (tring = defgrp->mrg_rings; tring != NULL; 6074 tring = tring->mr_next) { 6075 /* 6076 * If this ring is part of the rings asked by the 6077 * share we cannot use it as the default ring. 6078 */ 6079 for (j = 0; j < nrings; j++) { 6080 if (rings[j] == tring) 6081 break; 6082 } 6083 if (j >= nrings) 6084 break; 6085 } 6086 ASSERT(tring != NULL); 6087 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6088 return (0); 6089 } 6090 /* 6091 * The Tx ring is with a group reserved by a MAC client. See if 6092 * we can swap it. 6093 */ 6094 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6095 mcip = MAC_GROUP_ONLY_CLIENT(group); 6096 if (mcip == NULL) 6097 mcip = mac_get_grp_primary(group); 6098 ASSERT(mcip != NULL); 6099 mrp = MCIP_RESOURCE_PROPS(mcip); 6100 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6101 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6102 ASSERT(group->mrg_cur_count == 1); 6103 /* Put this mac client in the default group */ 6104 mac_tx_switch_group(mcip, group, defgrp); 6105 } else { 6106 /* 6107 * Switch this ring with some other ring from 6108 * the default group. 6109 */ 6110 for (tring = defgrp->mrg_rings; tring != NULL; 6111 tring = tring->mr_next) { 6112 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6113 continue; 6114 /* 6115 * If this ring is part of the rings asked by the 6116 * share we cannot use it for swapping. 6117 */ 6118 for (j = 0; j < nrings; j++) { 6119 if (rings[j] == tring) 6120 break; 6121 } 6122 if (j >= nrings) 6123 break; 6124 } 6125 if (tring == NULL) { 6126 mac_tx_client_restart((mac_client_handle_t)mcip); 6127 return (ENOSPC); 6128 } 6129 if (mac_group_mov_ring(mip, group, tring) != 0) { 6130 mac_tx_client_restart((mac_client_handle_t)mcip); 6131 return (ENOSPC); 6132 } 6133 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6134 (void) mac_group_mov_ring(mip, defgrp, tring); 6135 mac_tx_client_restart((mac_client_handle_t)mcip); 6136 return (ENOSPC); 6137 } 6138 } 6139 mac_tx_client_restart((mac_client_handle_t)mcip); 6140 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6141 return (0); 6142 } 6143 6144 /* 6145 * Populate a zero-ring group with rings. If the share is non-NULL, 6146 * the rings are chosen according to that share. 6147 * Invoked after allocating a new RX or TX group through 6148 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6149 * Returns zero on success, an errno otherwise. 6150 */ 6151 int 6152 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6153 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6154 uint32_t ringcnt) 6155 { 6156 mac_ring_t **rings, *ring; 6157 uint_t nrings; 6158 int rv = 0, i = 0, j; 6159 6160 ASSERT((ring_type == MAC_RING_TYPE_RX && 6161 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6162 (ring_type == MAC_RING_TYPE_TX && 6163 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6164 6165 /* 6166 * First find the rings to allocate to the group. 6167 */ 6168 if (share != NULL) { 6169 /* get rings through ms_squery() */ 6170 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6171 ASSERT(nrings != 0); 6172 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6173 KM_SLEEP); 6174 mip->mi_share_capab.ms_squery(share, ring_type, 6175 (mac_ring_handle_t *)rings, &nrings); 6176 for (i = 0; i < nrings; i++) { 6177 /* 6178 * If we have given this ring to a non-default 6179 * group, we need to check if we can get this 6180 * ring. 6181 */ 6182 ring = rings[i]; 6183 if (ring->mr_gh != (mac_group_handle_t)src_group || 6184 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6185 if (mac_reclaim_ring_from_grp(mip, ring_type, 6186 ring, rings, nrings) != 0) { 6187 rv = ENOSPC; 6188 goto bail; 6189 } 6190 } 6191 } 6192 } else { 6193 /* 6194 * Pick one ring from default group. 6195 * 6196 * for now pick the second ring which requires the first ring 6197 * at index 0 to stay in the default group, since it is the 6198 * ring which carries the multicast traffic. 6199 * We need a better way for a driver to indicate this, 6200 * for example a per-ring flag. 6201 */ 6202 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6203 KM_SLEEP); 6204 for (ring = src_group->mrg_rings; ring != NULL; 6205 ring = ring->mr_next) { 6206 if (ring_type == MAC_RING_TYPE_RX && 6207 ring->mr_index == 0) { 6208 continue; 6209 } 6210 if (ring_type == MAC_RING_TYPE_TX && 6211 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6212 continue; 6213 } 6214 rings[i++] = ring; 6215 if (i == ringcnt) 6216 break; 6217 } 6218 ASSERT(ring != NULL); 6219 nrings = i; 6220 /* Not enough rings as required */ 6221 if (nrings != ringcnt) { 6222 rv = ENOSPC; 6223 goto bail; 6224 } 6225 } 6226 6227 switch (ring_type) { 6228 case MAC_RING_TYPE_RX: 6229 if (src_group->mrg_cur_count - nrings < 1) { 6230 /* we ran out of rings */ 6231 rv = ENOSPC; 6232 goto bail; 6233 } 6234 6235 /* move receive rings to new group */ 6236 for (i = 0; i < nrings; i++) { 6237 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6238 if (rv != 0) { 6239 /* move rings back on failure */ 6240 for (j = 0; j < i; j++) { 6241 (void) mac_group_mov_ring(mip, 6242 src_group, rings[j]); 6243 } 6244 goto bail; 6245 } 6246 } 6247 break; 6248 6249 case MAC_RING_TYPE_TX: { 6250 mac_ring_t *tmp_ring; 6251 6252 /* move the TX rings to the new group */ 6253 for (i = 0; i < nrings; i++) { 6254 /* get the desired ring */ 6255 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6256 if (tmp_ring == NULL) { 6257 rv = ENOSPC; 6258 goto bail; 6259 } 6260 ASSERT(tmp_ring == rings[i]); 6261 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6262 if (rv != 0) { 6263 /* cleanup on failure */ 6264 for (j = 0; j < i; j++) { 6265 (void) mac_group_mov_ring(mip, 6266 MAC_DEFAULT_TX_GROUP(mip), 6267 rings[j]); 6268 } 6269 goto bail; 6270 } 6271 } 6272 break; 6273 } 6274 } 6275 6276 /* add group to share */ 6277 if (share != NULL) 6278 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6279 6280 bail: 6281 /* free temporary array of rings */ 6282 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6283 6284 return (rv); 6285 } 6286 6287 void 6288 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6289 { 6290 mac_grp_client_t *mgcp; 6291 6292 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6293 if (mgcp->mgc_client == mcip) 6294 break; 6295 } 6296 6297 VERIFY(mgcp == NULL); 6298 6299 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6300 mgcp->mgc_client = mcip; 6301 mgcp->mgc_next = grp->mrg_clients; 6302 grp->mrg_clients = mgcp; 6303 6304 } 6305 6306 void 6307 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6308 { 6309 mac_grp_client_t *mgcp, **pprev; 6310 6311 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6312 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6313 if (mgcp->mgc_client == mcip) 6314 break; 6315 } 6316 6317 ASSERT(mgcp != NULL); 6318 6319 *pprev = mgcp->mgc_next; 6320 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6321 } 6322 6323 /* 6324 * mac_reserve_rx_group() 6325 * 6326 * Finds an available group and exclusively reserves it for a client. 6327 * The group is chosen to suit the flow's resource controls (bandwidth and 6328 * fanout requirements) and the address type. 6329 * If the requestor is the pimary MAC then return the group with the 6330 * largest number of rings, otherwise the default ring when available. 6331 */ 6332 mac_group_t * 6333 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6334 { 6335 mac_share_handle_t share = mcip->mci_share; 6336 mac_impl_t *mip = mcip->mci_mip; 6337 mac_group_t *grp = NULL; 6338 int i; 6339 int err = 0; 6340 mac_address_t *map; 6341 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6342 int nrings; 6343 int donor_grp_rcnt; 6344 boolean_t need_exclgrp = B_FALSE; 6345 int need_rings = 0; 6346 mac_group_t *candidate_grp = NULL; 6347 mac_client_impl_t *gclient; 6348 mac_resource_props_t *gmrp; 6349 mac_group_t *donorgrp = NULL; 6350 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6351 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6352 boolean_t isprimary; 6353 6354 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6355 6356 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6357 6358 /* 6359 * Check if a group already has this mac address (case of VLANs) 6360 * unless we are moving this MAC client from one group to another. 6361 */ 6362 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6363 if (map->ma_group != NULL) 6364 return (map->ma_group); 6365 } 6366 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6367 return (NULL); 6368 /* 6369 * If exclusive open, return NULL which will enable the 6370 * caller to use the default group. 6371 */ 6372 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6373 return (NULL); 6374 6375 /* For dynamic groups default unspecified to 1 */ 6376 if (rxhw && unspec && 6377 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6378 mrp->mrp_nrxrings = 1; 6379 } 6380 /* 6381 * For static grouping we allow only specifying rings=0 and 6382 * unspecified 6383 */ 6384 if (rxhw && mrp->mrp_nrxrings > 0 && 6385 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6386 return (NULL); 6387 } 6388 if (rxhw) { 6389 /* 6390 * We have explicitly asked for a group (with nrxrings, 6391 * if unspec). 6392 */ 6393 if (unspec || mrp->mrp_nrxrings > 0) { 6394 need_exclgrp = B_TRUE; 6395 need_rings = mrp->mrp_nrxrings; 6396 } else if (mrp->mrp_nrxrings == 0) { 6397 /* 6398 * We have asked for a software group. 6399 */ 6400 return (NULL); 6401 } 6402 } else if (isprimary && mip->mi_nactiveclients == 1 && 6403 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6404 /* 6405 * If the primary is the only active client on this 6406 * mip and we have not asked for any rings, we give 6407 * it the default group so that the primary gets to 6408 * use all the rings. 6409 */ 6410 return (NULL); 6411 } 6412 6413 /* The group that can donate rings */ 6414 donorgrp = mip->mi_rx_donor_grp; 6415 6416 /* 6417 * The number of rings that the default group can donate. 6418 * We need to leave at least one ring. 6419 */ 6420 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6421 6422 /* 6423 * Try to exclusively reserve a RX group. 6424 * 6425 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6426 * client), try to reserve the a non-default RX group and give 6427 * it all the rings from the donor group, except the default ring 6428 * 6429 * For flows requiring HW_RING (unicast flow of other clients), try 6430 * to reserve non-default RX group with the specified number of 6431 * rings, if available. 6432 * 6433 * For flows that have not asked for software or hardware ring, 6434 * try to reserve a non-default group with 1 ring, if available. 6435 */ 6436 for (i = 1; i < mip->mi_rx_group_count; i++) { 6437 grp = &mip->mi_rx_groups[i]; 6438 6439 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6440 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6441 6442 /* 6443 * Check if this group could be a candidate group for 6444 * eviction if we need a group for this MAC client, 6445 * but there aren't any. A candidate group is one 6446 * that didn't ask for an exclusive group, but got 6447 * one and it has enough rings (combined with what 6448 * the donor group can donate) for the new MAC 6449 * client 6450 */ 6451 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6452 /* 6453 * If the primary/donor group is not the default 6454 * group, don't bother looking for a candidate group. 6455 * If we don't have enough rings we will check 6456 * if the primary group can be vacated. 6457 */ 6458 if (candidate_grp == NULL && 6459 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6460 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6461 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6462 if (gclient == NULL) 6463 gclient = mac_get_grp_primary(grp); 6464 ASSERT(gclient != NULL); 6465 gmrp = MCIP_RESOURCE_PROPS(gclient); 6466 if (gclient->mci_share == NULL && 6467 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6468 (unspec || 6469 (grp->mrg_cur_count + donor_grp_rcnt >= 6470 need_rings))) { 6471 candidate_grp = grp; 6472 } 6473 } 6474 continue; 6475 } 6476 /* 6477 * This group could already be SHARED by other multicast 6478 * flows on this client. In that case, the group would 6479 * be shared and has already been started. 6480 */ 6481 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6482 6483 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6484 (mac_start_group(grp) != 0)) { 6485 continue; 6486 } 6487 6488 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6489 break; 6490 ASSERT(grp->mrg_cur_count == 0); 6491 6492 /* 6493 * Populate the group. Rings should be taken 6494 * from the donor group. 6495 */ 6496 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6497 6498 /* 6499 * If the donor group can't donate, let's just walk and 6500 * see if someone can vacate a group, so that we have 6501 * enough rings for this, unless we already have 6502 * identified a candiate group.. 6503 */ 6504 if (nrings <= donor_grp_rcnt) { 6505 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6506 donorgrp, grp, share, nrings); 6507 if (err == 0) { 6508 /* 6509 * For a share i_mac_group_allocate_rings gets 6510 * the rings from the driver, let's populate 6511 * the property for the client now. 6512 */ 6513 if (share != NULL) { 6514 mac_client_set_rings( 6515 (mac_client_handle_t)mcip, 6516 grp->mrg_cur_count, -1); 6517 } 6518 if (mac_is_primary_client(mcip) && !rxhw) 6519 mip->mi_rx_donor_grp = grp; 6520 break; 6521 } 6522 } 6523 6524 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6525 mip->mi_name, int, grp->mrg_index, int, err); 6526 6527 /* 6528 * It's a dynamic group but the grouping operation 6529 * failed. 6530 */ 6531 mac_stop_group(grp); 6532 } 6533 /* We didn't find an exclusive group for this MAC client */ 6534 if (i >= mip->mi_rx_group_count) { 6535 6536 if (!need_exclgrp) 6537 return (NULL); 6538 6539 /* 6540 * If we found a candidate group then we switch the 6541 * MAC client from the candidate_group to the default 6542 * group and give the group to this MAC client. If 6543 * we didn't find a candidate_group, check if the 6544 * primary is in its own group and if it can make way 6545 * for this MAC client. 6546 */ 6547 if (candidate_grp == NULL && 6548 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6549 donorgrp->mrg_cur_count >= need_rings) { 6550 candidate_grp = donorgrp; 6551 } 6552 if (candidate_grp != NULL) { 6553 boolean_t prim_grp = B_FALSE; 6554 6555 /* 6556 * Switch the MAC client from the candidate group 6557 * to the default group.. If this group was the 6558 * donor group, then after the switch we need 6559 * to update the donor group too. 6560 */ 6561 grp = candidate_grp; 6562 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6563 if (gclient == NULL) 6564 gclient = mac_get_grp_primary(grp); 6565 if (grp == mip->mi_rx_donor_grp) 6566 prim_grp = B_TRUE; 6567 if (mac_rx_switch_group(gclient, grp, 6568 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6569 return (NULL); 6570 } 6571 if (prim_grp) { 6572 mip->mi_rx_donor_grp = 6573 MAC_DEFAULT_RX_GROUP(mip); 6574 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6575 } 6576 6577 6578 /* 6579 * Now give this group with the required rings 6580 * to this MAC client. 6581 */ 6582 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6583 if (mac_start_group(grp) != 0) 6584 return (NULL); 6585 6586 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6587 return (grp); 6588 6589 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6590 ASSERT(grp->mrg_cur_count == 0); 6591 ASSERT(donor_grp_rcnt >= need_rings); 6592 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6593 donorgrp, grp, share, need_rings); 6594 if (err == 0) { 6595 /* 6596 * For a share i_mac_group_allocate_rings gets 6597 * the rings from the driver, let's populate 6598 * the property for the client now. 6599 */ 6600 if (share != NULL) { 6601 mac_client_set_rings( 6602 (mac_client_handle_t)mcip, 6603 grp->mrg_cur_count, -1); 6604 } 6605 DTRACE_PROBE2(rx__group__reserved, 6606 char *, mip->mi_name, int, grp->mrg_index); 6607 return (grp); 6608 } 6609 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6610 mip->mi_name, int, grp->mrg_index, int, err); 6611 mac_stop_group(grp); 6612 } 6613 return (NULL); 6614 } 6615 ASSERT(grp != NULL); 6616 6617 DTRACE_PROBE2(rx__group__reserved, 6618 char *, mip->mi_name, int, grp->mrg_index); 6619 return (grp); 6620 } 6621 6622 /* 6623 * mac_rx_release_group() 6624 * 6625 * This is called when there are no clients left for the group. 6626 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6627 * and if it is a non default group, the shares are removed and 6628 * all rings are assigned back to default group. 6629 */ 6630 void 6631 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6632 { 6633 mac_impl_t *mip = mcip->mci_mip; 6634 mac_ring_t *ring; 6635 6636 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6637 6638 if (mip->mi_rx_donor_grp == group) 6639 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6640 6641 /* 6642 * This is the case where there are no clients left. Any 6643 * SRS etc on this group have also be quiesced. 6644 */ 6645 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6646 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6647 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6648 /* 6649 * Remove the SRS associated with the HW ring. 6650 * As a result, polling will be disabled. 6651 */ 6652 ring->mr_srs = NULL; 6653 } 6654 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6655 ring->mr_state == MR_INUSE); 6656 if (ring->mr_state == MR_INUSE) { 6657 mac_stop_ring(ring); 6658 ring->mr_flag = 0; 6659 } 6660 } 6661 6662 /* remove group from share */ 6663 if (mcip->mci_share != NULL) { 6664 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6665 group->mrg_driver); 6666 } 6667 6668 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6669 mac_ring_t *ring; 6670 6671 /* 6672 * Rings were dynamically allocated to group. 6673 * Move rings back to default group. 6674 */ 6675 while ((ring = group->mrg_rings) != NULL) { 6676 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6677 ring); 6678 } 6679 } 6680 mac_stop_group(group); 6681 /* 6682 * Possible improvement: See if we can assign the group just released 6683 * to a another client of the mip 6684 */ 6685 } 6686 6687 /* 6688 * When we move the primary's mac address between groups, we need to also 6689 * take all the clients sharing the same mac address along with it (VLANs) 6690 * We remove the mac address for such clients from the group after quiescing 6691 * them. When we add the mac address we restart the client. Note that 6692 * the primary's mac address is removed from the group after all the 6693 * other clients sharing the address are removed. Similarly, the primary's 6694 * mac address is added before all the other client's mac address are 6695 * added. While grp is the group where the clients reside, tgrp is 6696 * the group where the addresses have to be added. 6697 */ 6698 static void 6699 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6700 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6701 { 6702 mac_impl_t *mip = mcip->mci_mip; 6703 mac_grp_client_t *mgcp = grp->mrg_clients; 6704 mac_client_impl_t *gmcip; 6705 boolean_t prim; 6706 6707 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6708 6709 /* 6710 * If the clients are in a non-default group, we just have to 6711 * walk the group's client list. If it is in the default group 6712 * (which will be shared by other clients as well, we need to 6713 * check if the unicast address matches mcip's unicast. 6714 */ 6715 while (mgcp != NULL) { 6716 gmcip = mgcp->mgc_client; 6717 if (gmcip != mcip && 6718 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6719 mcip->mci_unicast == gmcip->mci_unicast)) { 6720 if (!add) { 6721 mac_rx_client_quiesce( 6722 (mac_client_handle_t)gmcip); 6723 (void) mac_remove_macaddr(mcip->mci_unicast); 6724 } else { 6725 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6726 mac_rx_client_restart( 6727 (mac_client_handle_t)gmcip); 6728 } 6729 } 6730 mgcp = mgcp->mgc_next; 6731 } 6732 } 6733 6734 6735 /* 6736 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6737 * we need to take any VLANs etc. together too. 6738 */ 6739 static int 6740 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6741 mac_group_t *tgrp) 6742 { 6743 mac_impl_t *mip = mcip->mci_mip; 6744 uint8_t maddr[MAXMACADDRLEN]; 6745 int err = 0; 6746 boolean_t prim; 6747 boolean_t multiclnt = B_FALSE; 6748 6749 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6750 ASSERT(mcip->mci_unicast != NULL); 6751 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6752 6753 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6754 if (mcip->mci_unicast->ma_nusers > 1) { 6755 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6756 multiclnt = B_TRUE; 6757 } 6758 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6759 err = mac_remove_macaddr(mcip->mci_unicast); 6760 if (err != 0) { 6761 mac_rx_client_restart((mac_client_handle_t)mcip); 6762 if (multiclnt) { 6763 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6764 B_TRUE); 6765 } 6766 return (err); 6767 } 6768 /* 6769 * Program the H/W Classifier first, if this fails we need 6770 * not proceed with the other stuff. 6771 */ 6772 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6773 /* Revert back the H/W Classifier */ 6774 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6775 /* 6776 * This should not fail now since it worked earlier, 6777 * should we panic? 6778 */ 6779 cmn_err(CE_WARN, 6780 "mac_rx_switch_group: switching %p back" 6781 " to group %p failed!!", (void *)mcip, 6782 (void *)fgrp); 6783 } 6784 mac_rx_client_restart((mac_client_handle_t)mcip); 6785 if (multiclnt) { 6786 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6787 B_TRUE); 6788 } 6789 return (err); 6790 } 6791 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6792 mac_rx_client_restart((mac_client_handle_t)mcip); 6793 if (multiclnt) 6794 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6795 return (err); 6796 } 6797 6798 /* 6799 * Switch the MAC client from one group to another. This means we need 6800 * to remove the MAC address from the group, remove the MAC client, 6801 * teardown the SRSs and revert the group state. Then, we add the client 6802 * to the destination group, set the SRSs, and add the MAC address to the 6803 * group. 6804 */ 6805 int 6806 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6807 mac_group_t *tgrp) 6808 { 6809 int err; 6810 mac_group_state_t next_state; 6811 mac_client_impl_t *group_only_mcip; 6812 mac_client_impl_t *gmcip; 6813 mac_impl_t *mip = mcip->mci_mip; 6814 mac_grp_client_t *mgcp; 6815 6816 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6817 6818 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6819 return (err); 6820 6821 /* 6822 * The group might be reserved, but SRSs may not be set up, e.g. 6823 * primary and its vlans using a reserved group. 6824 */ 6825 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6826 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6827 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6828 } 6829 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6830 mgcp = fgrp->mrg_clients; 6831 while (mgcp != NULL) { 6832 gmcip = mgcp->mgc_client; 6833 mgcp = mgcp->mgc_next; 6834 mac_group_remove_client(fgrp, gmcip); 6835 mac_group_add_client(tgrp, gmcip); 6836 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6837 } 6838 mac_release_rx_group(mcip, fgrp); 6839 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6840 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6841 } else { 6842 mac_group_remove_client(fgrp, mcip); 6843 mac_group_add_client(tgrp, mcip); 6844 mcip->mci_flent->fe_rx_ring_group = tgrp; 6845 /* 6846 * If there are other clients (VLANs) sharing this address 6847 * we should be here only for the primary. 6848 */ 6849 if (mcip->mci_unicast->ma_nusers > 1) { 6850 /* 6851 * We need to move all the clients that are using 6852 * this h/w address. 6853 */ 6854 mgcp = fgrp->mrg_clients; 6855 while (mgcp != NULL) { 6856 gmcip = mgcp->mgc_client; 6857 mgcp = mgcp->mgc_next; 6858 if (mcip->mci_unicast == gmcip->mci_unicast) { 6859 mac_group_remove_client(fgrp, gmcip); 6860 mac_group_add_client(tgrp, gmcip); 6861 gmcip->mci_flent->fe_rx_ring_group = 6862 tgrp; 6863 } 6864 } 6865 } 6866 /* 6867 * The default group will still take the multicast, 6868 * broadcast traffic etc., so it won't go to 6869 * MAC_GROUP_STATE_REGISTERED. 6870 */ 6871 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6872 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6873 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6874 } 6875 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6876 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6877 mac_set_group_state(tgrp, next_state); 6878 /* 6879 * If the destination group is reserved, setup the SRSs etc. 6880 */ 6881 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6882 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6883 mac_fanout_setup(mcip, mcip->mci_flent, 6884 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6885 NULL); 6886 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6887 } else { 6888 mac_rx_switch_grp_to_sw(tgrp); 6889 } 6890 return (0); 6891 } 6892 6893 /* 6894 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6895 * when a share was allocated to the client. 6896 */ 6897 mac_group_t * 6898 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6899 { 6900 mac_impl_t *mip = mcip->mci_mip; 6901 mac_group_t *grp = NULL; 6902 int rv; 6903 int i; 6904 int err; 6905 mac_group_t *defgrp; 6906 mac_share_handle_t share = mcip->mci_share; 6907 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6908 int nrings; 6909 int defnrings; 6910 boolean_t need_exclgrp = B_FALSE; 6911 int need_rings = 0; 6912 mac_group_t *candidate_grp = NULL; 6913 mac_client_impl_t *gclient; 6914 mac_resource_props_t *gmrp; 6915 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6916 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6917 boolean_t isprimary; 6918 6919 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6920 /* 6921 * When we come here for a VLAN on the primary (dladm create-vlan), 6922 * we need to pair it along with the primary (to keep it consistent 6923 * with the RX side). So, we check if the primary is already assigned 6924 * to a group and return the group if so. The other way is also 6925 * true, i.e. the VLAN is already created and now we are plumbing 6926 * the primary. 6927 */ 6928 if (!move && isprimary) { 6929 for (gclient = mip->mi_clients_list; gclient != NULL; 6930 gclient = gclient->mci_client_next) { 6931 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6932 gclient->mci_flent->fe_tx_ring_group != NULL) { 6933 return (gclient->mci_flent->fe_tx_ring_group); 6934 } 6935 } 6936 } 6937 6938 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6939 return (NULL); 6940 6941 /* For dynamic groups, default unspec to 1 */ 6942 if (txhw && unspec && 6943 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6944 mrp->mrp_ntxrings = 1; 6945 } 6946 /* 6947 * For static grouping we allow only specifying rings=0 and 6948 * unspecified 6949 */ 6950 if (txhw && mrp->mrp_ntxrings > 0 && 6951 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6952 return (NULL); 6953 } 6954 6955 if (txhw) { 6956 /* 6957 * We have explicitly asked for a group (with ntxrings, 6958 * if unspec). 6959 */ 6960 if (unspec || mrp->mrp_ntxrings > 0) { 6961 need_exclgrp = B_TRUE; 6962 need_rings = mrp->mrp_ntxrings; 6963 } else if (mrp->mrp_ntxrings == 0) { 6964 /* 6965 * We have asked for a software group. 6966 */ 6967 return (NULL); 6968 } 6969 } 6970 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6971 /* 6972 * The number of rings that the default group can donate. 6973 * We need to leave at least one ring - the default ring - in 6974 * this group. 6975 */ 6976 defnrings = defgrp->mrg_cur_count - 1; 6977 6978 /* 6979 * Primary gets default group unless explicitly told not 6980 * to (i.e. rings > 0). 6981 */ 6982 if (isprimary && !need_exclgrp) 6983 return (NULL); 6984 6985 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6986 for (i = 0; i < mip->mi_tx_group_count; i++) { 6987 grp = &mip->mi_tx_groups[i]; 6988 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6989 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6990 /* 6991 * Select a candidate for replacement if we don't 6992 * get an exclusive group. A candidate group is one 6993 * that didn't ask for an exclusive group, but got 6994 * one and it has enough rings (combined with what 6995 * the default group can donate) for the new MAC 6996 * client. 6997 */ 6998 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 6999 candidate_grp == NULL) { 7000 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7001 if (gclient == NULL) 7002 gclient = mac_get_grp_primary(grp); 7003 gmrp = MCIP_RESOURCE_PROPS(gclient); 7004 if (gclient->mci_share == NULL && 7005 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7006 (unspec || 7007 (grp->mrg_cur_count + defnrings) >= 7008 need_rings)) { 7009 candidate_grp = grp; 7010 } 7011 } 7012 continue; 7013 } 7014 /* 7015 * If the default can't donate let's just walk and 7016 * see if someone can vacate a group, so that we have 7017 * enough rings for this. 7018 */ 7019 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7020 nrings <= defnrings) { 7021 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7022 rv = mac_start_group(grp); 7023 ASSERT(rv == 0); 7024 } 7025 break; 7026 } 7027 } 7028 7029 /* The default group */ 7030 if (i >= mip->mi_tx_group_count) { 7031 /* 7032 * If we need an exclusive group and have identified a 7033 * candidate group we switch the MAC client from the 7034 * candidate group to the default group and give the 7035 * candidate group to this client. 7036 */ 7037 if (need_exclgrp && candidate_grp != NULL) { 7038 /* 7039 * Switch the MAC client from the candidate group 7040 * to the default group. 7041 */ 7042 grp = candidate_grp; 7043 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7044 if (gclient == NULL) 7045 gclient = mac_get_grp_primary(grp); 7046 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7047 mac_tx_switch_group(gclient, grp, defgrp); 7048 mac_tx_client_restart((mac_client_handle_t)gclient); 7049 7050 /* 7051 * Give the candidate group with the specified number 7052 * of rings to this MAC client. 7053 */ 7054 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7055 rv = mac_start_group(grp); 7056 ASSERT(rv == 0); 7057 7058 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7059 return (grp); 7060 7061 ASSERT(grp->mrg_cur_count == 0); 7062 ASSERT(defgrp->mrg_cur_count > need_rings); 7063 7064 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7065 defgrp, grp, share, need_rings); 7066 if (err == 0) { 7067 /* 7068 * For a share i_mac_group_allocate_rings gets 7069 * the rings from the driver, let's populate 7070 * the property for the client now. 7071 */ 7072 if (share != NULL) { 7073 mac_client_set_rings( 7074 (mac_client_handle_t)mcip, -1, 7075 grp->mrg_cur_count); 7076 } 7077 mip->mi_tx_group_free--; 7078 return (grp); 7079 } 7080 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7081 mip->mi_name, int, grp->mrg_index, int, err); 7082 mac_stop_group(grp); 7083 } 7084 return (NULL); 7085 } 7086 /* 7087 * We got an exclusive group, but it is not dynamic. 7088 */ 7089 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7090 mip->mi_tx_group_free--; 7091 return (grp); 7092 } 7093 7094 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7095 share, nrings); 7096 if (rv != 0) { 7097 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7098 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7099 mac_stop_group(grp); 7100 return (NULL); 7101 } 7102 /* 7103 * For a share i_mac_group_allocate_rings gets the rings from the 7104 * driver, let's populate the property for the client now. 7105 */ 7106 if (share != NULL) { 7107 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7108 grp->mrg_cur_count); 7109 } 7110 mip->mi_tx_group_free--; 7111 return (grp); 7112 } 7113 7114 void 7115 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7116 { 7117 mac_impl_t *mip = mcip->mci_mip; 7118 mac_share_handle_t share = mcip->mci_share; 7119 mac_ring_t *ring; 7120 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7121 mac_group_t *defgrp; 7122 7123 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7124 if (srs != NULL) { 7125 if (srs->srs_soft_ring_count > 0) { 7126 for (ring = grp->mrg_rings; ring != NULL; 7127 ring = ring->mr_next) { 7128 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7129 mac_tx_invoke_callbacks(mcip, 7130 (mac_tx_cookie_t) 7131 mac_tx_srs_get_soft_ring(srs, ring)); 7132 mac_tx_srs_del_ring(srs, ring); 7133 } 7134 } else { 7135 ASSERT(srs->srs_tx.st_arg2 != NULL); 7136 srs->srs_tx.st_arg2 = NULL; 7137 mac_srs_stat_delete(srs); 7138 } 7139 } 7140 if (share != NULL) 7141 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7142 7143 /* move the ring back to the pool */ 7144 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7145 while ((ring = grp->mrg_rings) != NULL) 7146 (void) mac_group_mov_ring(mip, defgrp, ring); 7147 } 7148 mac_stop_group(grp); 7149 mip->mi_tx_group_free++; 7150 } 7151 7152 /* 7153 * Disassociate a MAC client from a group, i.e go through the rings in the 7154 * group and delete all the soft rings tied to them. 7155 */ 7156 static void 7157 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7158 { 7159 mac_client_impl_t *mcip = flent->fe_mcip; 7160 mac_soft_ring_set_t *tx_srs; 7161 mac_srs_tx_t *tx; 7162 mac_ring_t *ring; 7163 7164 tx_srs = flent->fe_tx_srs; 7165 tx = &tx_srs->srs_tx; 7166 7167 /* Single ring case we haven't created any soft rings */ 7168 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7169 tx->st_mode == SRS_TX_DEFAULT) { 7170 tx->st_arg2 = NULL; 7171 mac_srs_stat_delete(tx_srs); 7172 /* Fanout case, where we have to dismantle the soft rings */ 7173 } else { 7174 for (ring = fgrp->mrg_rings; ring != NULL; 7175 ring = ring->mr_next) { 7176 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7177 mac_tx_invoke_callbacks(mcip, 7178 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7179 ring)); 7180 mac_tx_srs_del_ring(tx_srs, ring); 7181 } 7182 ASSERT(tx->st_arg2 == NULL); 7183 } 7184 } 7185 7186 /* 7187 * Switch the MAC client from one group to another. This means we need 7188 * to remove the MAC client, teardown the SRSs and revert the group state. 7189 * Then, we add the client to the destination roup, set the SRSs etc. 7190 */ 7191 void 7192 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7193 mac_group_t *tgrp) 7194 { 7195 mac_client_impl_t *group_only_mcip; 7196 mac_impl_t *mip = mcip->mci_mip; 7197 flow_entry_t *flent = mcip->mci_flent; 7198 mac_group_t *defgrp; 7199 mac_grp_client_t *mgcp; 7200 mac_client_impl_t *gmcip; 7201 flow_entry_t *gflent; 7202 7203 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7204 ASSERT(fgrp == flent->fe_tx_ring_group); 7205 7206 if (fgrp == defgrp) { 7207 /* 7208 * If this is the primary we need to find any VLANs on 7209 * the primary and move them too. 7210 */ 7211 mac_group_remove_client(fgrp, mcip); 7212 mac_tx_dismantle_soft_rings(fgrp, flent); 7213 if (mcip->mci_unicast->ma_nusers > 1) { 7214 mgcp = fgrp->mrg_clients; 7215 while (mgcp != NULL) { 7216 gmcip = mgcp->mgc_client; 7217 mgcp = mgcp->mgc_next; 7218 if (mcip->mci_unicast != gmcip->mci_unicast) 7219 continue; 7220 mac_tx_client_quiesce( 7221 (mac_client_handle_t)gmcip); 7222 7223 gflent = gmcip->mci_flent; 7224 mac_group_remove_client(fgrp, gmcip); 7225 mac_tx_dismantle_soft_rings(fgrp, gflent); 7226 7227 mac_group_add_client(tgrp, gmcip); 7228 gflent->fe_tx_ring_group = tgrp; 7229 /* We could directly set this to SHARED */ 7230 tgrp->mrg_state = mac_group_next_state(tgrp, 7231 &group_only_mcip, defgrp, B_FALSE); 7232 7233 mac_tx_srs_group_setup(gmcip, gflent, 7234 SRST_LINK); 7235 mac_fanout_setup(gmcip, gflent, 7236 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7237 gmcip, NULL, NULL); 7238 7239 mac_tx_client_restart( 7240 (mac_client_handle_t)gmcip); 7241 } 7242 } 7243 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7244 mac_ring_t *ring; 7245 int cnt; 7246 int ringcnt; 7247 7248 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7249 /* 7250 * Additionally, we also need to stop all 7251 * the rings in the default group, except 7252 * the default ring. The reason being 7253 * this group won't be released since it is 7254 * the default group, so the rings won't 7255 * be stopped otherwise. 7256 */ 7257 ringcnt = fgrp->mrg_cur_count; 7258 ring = fgrp->mrg_rings; 7259 for (cnt = 0; cnt < ringcnt; cnt++) { 7260 if (ring->mr_state == MR_INUSE && 7261 ring != 7262 (mac_ring_t *)mip->mi_default_tx_ring) { 7263 mac_stop_ring(ring); 7264 ring->mr_flag = 0; 7265 } 7266 ring = ring->mr_next; 7267 } 7268 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7269 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7270 } else { 7271 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7272 } 7273 } else { 7274 /* 7275 * We could have VLANs sharing the non-default group with 7276 * the primary. 7277 */ 7278 mgcp = fgrp->mrg_clients; 7279 while (mgcp != NULL) { 7280 gmcip = mgcp->mgc_client; 7281 mgcp = mgcp->mgc_next; 7282 if (gmcip == mcip) 7283 continue; 7284 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7285 gflent = gmcip->mci_flent; 7286 7287 mac_group_remove_client(fgrp, gmcip); 7288 mac_tx_dismantle_soft_rings(fgrp, gflent); 7289 7290 mac_group_add_client(tgrp, gmcip); 7291 gflent->fe_tx_ring_group = tgrp; 7292 /* We could directly set this to SHARED */ 7293 tgrp->mrg_state = mac_group_next_state(tgrp, 7294 &group_only_mcip, defgrp, B_FALSE); 7295 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7296 mac_fanout_setup(gmcip, gflent, 7297 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7298 gmcip, NULL, NULL); 7299 7300 mac_tx_client_restart((mac_client_handle_t)gmcip); 7301 } 7302 mac_group_remove_client(fgrp, mcip); 7303 mac_release_tx_group(mcip, fgrp); 7304 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7305 } 7306 7307 /* Add it to the tgroup */ 7308 mac_group_add_client(tgrp, mcip); 7309 flent->fe_tx_ring_group = tgrp; 7310 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7311 defgrp, B_FALSE); 7312 7313 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7314 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7315 mac_rx_deliver, mcip, NULL, NULL); 7316 } 7317 7318 /* 7319 * This is a 1-time control path activity initiated by the client (IP). 7320 * The mac perimeter protects against other simultaneous control activities, 7321 * for example an ioctl that attempts to change the degree of fanout and 7322 * increase or decrease the number of softrings associated with this Tx SRS. 7323 */ 7324 static mac_tx_notify_cb_t * 7325 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7326 mac_tx_notify_t notify, void *arg) 7327 { 7328 mac_cb_info_t *mcbi; 7329 mac_tx_notify_cb_t *mtnfp; 7330 7331 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7332 7333 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7334 mtnfp->mtnf_fn = notify; 7335 mtnfp->mtnf_arg = arg; 7336 mtnfp->mtnf_link.mcb_objp = mtnfp; 7337 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7338 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7339 7340 mcbi = &mcip->mci_tx_notify_cb_info; 7341 mutex_enter(mcbi->mcbi_lockp); 7342 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7343 mutex_exit(mcbi->mcbi_lockp); 7344 return (mtnfp); 7345 } 7346 7347 static void 7348 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7349 { 7350 mac_cb_info_t *mcbi; 7351 mac_cb_t **cblist; 7352 7353 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7354 7355 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7356 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7357 cmn_err(CE_WARN, 7358 "mac_client_tx_notify_remove: callback not " 7359 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7360 return; 7361 } 7362 7363 mcbi = &mcip->mci_tx_notify_cb_info; 7364 cblist = &mcip->mci_tx_notify_cb_list; 7365 mutex_enter(mcbi->mcbi_lockp); 7366 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7367 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7368 else 7369 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7370 mutex_exit(mcbi->mcbi_lockp); 7371 } 7372 7373 /* 7374 * mac_client_tx_notify(): 7375 * call to add and remove flow control callback routine. 7376 */ 7377 mac_tx_notify_handle_t 7378 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7379 void *ptr) 7380 { 7381 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7382 mac_tx_notify_cb_t *mtnfp = NULL; 7383 7384 i_mac_perim_enter(mcip->mci_mip); 7385 7386 if (callb_func != NULL) { 7387 /* Add a notify callback */ 7388 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7389 } else { 7390 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7391 } 7392 i_mac_perim_exit(mcip->mci_mip); 7393 7394 return ((mac_tx_notify_handle_t)mtnfp); 7395 } 7396 7397 void 7398 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7399 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7400 { 7401 mac_bridge_tx_cb = txf; 7402 mac_bridge_rx_cb = rxf; 7403 mac_bridge_ref_cb = reff; 7404 mac_bridge_ls_cb = lsf; 7405 } 7406 7407 int 7408 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7409 { 7410 mac_impl_t *mip = (mac_impl_t *)mh; 7411 int retv; 7412 7413 mutex_enter(&mip->mi_bridge_lock); 7414 if (mip->mi_bridge_link == NULL) { 7415 mip->mi_bridge_link = link; 7416 retv = 0; 7417 } else { 7418 retv = EBUSY; 7419 } 7420 mutex_exit(&mip->mi_bridge_lock); 7421 if (retv == 0) { 7422 mac_poll_state_change(mh, B_FALSE); 7423 mac_capab_update(mh); 7424 } 7425 return (retv); 7426 } 7427 7428 /* 7429 * Disable bridging on the indicated link. 7430 */ 7431 void 7432 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7433 { 7434 mac_impl_t *mip = (mac_impl_t *)mh; 7435 7436 mutex_enter(&mip->mi_bridge_lock); 7437 ASSERT(mip->mi_bridge_link == link); 7438 mip->mi_bridge_link = NULL; 7439 mutex_exit(&mip->mi_bridge_lock); 7440 mac_poll_state_change(mh, B_TRUE); 7441 mac_capab_update(mh); 7442 } 7443 7444 void 7445 mac_no_active(mac_handle_t mh) 7446 { 7447 mac_impl_t *mip = (mac_impl_t *)mh; 7448 7449 i_mac_perim_enter(mip); 7450 mip->mi_state_flags |= MIS_NO_ACTIVE; 7451 i_mac_perim_exit(mip); 7452 } 7453 7454 /* 7455 * Walk the primary VLAN clients whenever the primary's rings property 7456 * changes and update the mac_resource_props_t for the VLAN's client. 7457 * We need to do this since we don't support setting these properties 7458 * on the primary's VLAN clients, but the VLAN clients have to 7459 * follow the primary w.r.t the rings property; 7460 */ 7461 void 7462 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7463 { 7464 mac_client_impl_t *vmcip; 7465 mac_resource_props_t *vmrp; 7466 7467 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7468 vmcip = vmcip->mci_client_next) { 7469 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7470 mac_client_vid((mac_client_handle_t)vmcip) == 7471 VLAN_ID_NONE) { 7472 continue; 7473 } 7474 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7475 7476 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7477 if (mrp->mrp_mask & MRP_RX_RINGS) 7478 vmrp->mrp_mask |= MRP_RX_RINGS; 7479 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7480 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7481 7482 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7483 if (mrp->mrp_mask & MRP_TX_RINGS) 7484 vmrp->mrp_mask |= MRP_TX_RINGS; 7485 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7486 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7487 7488 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7489 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7490 else 7491 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7492 7493 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7494 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7495 else 7496 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7497 } 7498 } 7499 7500 /* 7501 * We are adding or removing ring(s) from a group. The source for taking 7502 * rings is the default group. The destination for giving rings back is 7503 * the default group. 7504 */ 7505 int 7506 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7507 mac_group_t *defgrp) 7508 { 7509 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7510 uint_t modify; 7511 int count; 7512 mac_ring_t *ring; 7513 mac_ring_t *next; 7514 mac_impl_t *mip = mcip->mci_mip; 7515 mac_ring_t **rings; 7516 uint_t ringcnt; 7517 int i = 0; 7518 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7519 int start; 7520 int end; 7521 mac_group_t *tgrp; 7522 int j; 7523 int rv = 0; 7524 7525 /* 7526 * If we are asked for just a group, we give 1 ring, else 7527 * the specified number of rings. 7528 */ 7529 if (rx_group) { 7530 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7531 mrp->mrp_nrxrings; 7532 } else { 7533 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7534 mrp->mrp_ntxrings; 7535 } 7536 7537 /* don't allow modifying rings for a share for now. */ 7538 ASSERT(mcip->mci_share == NULL); 7539 7540 if (ringcnt == group->mrg_cur_count) 7541 return (0); 7542 7543 if (group->mrg_cur_count > ringcnt) { 7544 modify = group->mrg_cur_count - ringcnt; 7545 if (rx_group) { 7546 if (mip->mi_rx_donor_grp == group) { 7547 ASSERT(mac_is_primary_client(mcip)); 7548 mip->mi_rx_donor_grp = defgrp; 7549 } else { 7550 defgrp = mip->mi_rx_donor_grp; 7551 } 7552 } 7553 ring = group->mrg_rings; 7554 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7555 KM_SLEEP); 7556 j = 0; 7557 for (count = 0; count < modify; count++) { 7558 next = ring->mr_next; 7559 rv = mac_group_mov_ring(mip, defgrp, ring); 7560 if (rv != 0) { 7561 /* cleanup on failure */ 7562 for (j = 0; j < count; j++) { 7563 (void) mac_group_mov_ring(mip, group, 7564 rings[j]); 7565 } 7566 break; 7567 } 7568 rings[j++] = ring; 7569 ring = next; 7570 } 7571 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7572 return (rv); 7573 } 7574 if (ringcnt >= MAX_RINGS_PER_GROUP) 7575 return (EINVAL); 7576 7577 modify = ringcnt - group->mrg_cur_count; 7578 7579 if (rx_group) { 7580 if (group != mip->mi_rx_donor_grp) 7581 defgrp = mip->mi_rx_donor_grp; 7582 else 7583 /* 7584 * This is the donor group with all the remaining 7585 * rings. Default group now gets to be the donor 7586 */ 7587 mip->mi_rx_donor_grp = defgrp; 7588 start = 1; 7589 end = mip->mi_rx_group_count; 7590 } else { 7591 start = 0; 7592 end = mip->mi_tx_group_count - 1; 7593 } 7594 /* 7595 * If the default doesn't have any rings, lets see if we can 7596 * take rings given to an h/w client that doesn't need it. 7597 * For now, we just see if there is any one client that can donate 7598 * all the required rings. 7599 */ 7600 if (defgrp->mrg_cur_count < (modify + 1)) { 7601 for (i = start; i < end; i++) { 7602 if (rx_group) { 7603 tgrp = &mip->mi_rx_groups[i]; 7604 if (tgrp == group || tgrp->mrg_state < 7605 MAC_GROUP_STATE_RESERVED) { 7606 continue; 7607 } 7608 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7609 if (mcip == NULL) 7610 mcip = mac_get_grp_primary(tgrp); 7611 ASSERT(mcip != NULL); 7612 mrp = MCIP_RESOURCE_PROPS(mcip); 7613 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7614 continue; 7615 if ((tgrp->mrg_cur_count + 7616 defgrp->mrg_cur_count) < (modify + 1)) { 7617 continue; 7618 } 7619 if (mac_rx_switch_group(mcip, tgrp, 7620 defgrp) != 0) { 7621 return (ENOSPC); 7622 } 7623 } else { 7624 tgrp = &mip->mi_tx_groups[i]; 7625 if (tgrp == group || tgrp->mrg_state < 7626 MAC_GROUP_STATE_RESERVED) { 7627 continue; 7628 } 7629 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7630 if (mcip == NULL) 7631 mcip = mac_get_grp_primary(tgrp); 7632 mrp = MCIP_RESOURCE_PROPS(mcip); 7633 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7634 continue; 7635 if ((tgrp->mrg_cur_count + 7636 defgrp->mrg_cur_count) < (modify + 1)) { 7637 continue; 7638 } 7639 /* OK, we can switch this to s/w */ 7640 mac_tx_client_quiesce( 7641 (mac_client_handle_t)mcip); 7642 mac_tx_switch_group(mcip, tgrp, defgrp); 7643 mac_tx_client_restart( 7644 (mac_client_handle_t)mcip); 7645 } 7646 } 7647 if (defgrp->mrg_cur_count < (modify + 1)) 7648 return (ENOSPC); 7649 } 7650 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7651 group, mcip->mci_share, modify)) != 0) { 7652 return (rv); 7653 } 7654 return (0); 7655 } 7656 7657 /* 7658 * Given the poolname in mac_resource_props, find the cpupart 7659 * that is associated with this pool. The cpupart will be used 7660 * later for finding the cpus to be bound to the networking threads. 7661 * 7662 * use_default is set B_TRUE if pools are enabled and pool_default 7663 * is returned. This avoids a 2nd lookup to set the poolname 7664 * for pool-effective. 7665 * 7666 * returns: 7667 * 7668 * NULL - pools are disabled or if the 'cpus' property is set. 7669 * cpupart of pool_default - pools are enabled and the pool 7670 * is not available or poolname is blank 7671 * cpupart of named pool - pools are enabled and the pool 7672 * is available. 7673 */ 7674 cpupart_t * 7675 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7676 { 7677 pool_t *pool; 7678 cpupart_t *cpupart; 7679 7680 *use_default = B_FALSE; 7681 7682 /* CPUs property is set */ 7683 if (mrp->mrp_mask & MRP_CPUS) 7684 return (NULL); 7685 7686 ASSERT(pool_lock_held()); 7687 7688 /* Pools are disabled, no pset */ 7689 if (pool_state == POOL_DISABLED) 7690 return (NULL); 7691 7692 /* Pools property is set */ 7693 if (mrp->mrp_mask & MRP_POOL) { 7694 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7695 /* Pool not found */ 7696 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7697 mrp->mrp_pool); 7698 *use_default = B_TRUE; 7699 pool = pool_default; 7700 } 7701 /* Pools property is not set */ 7702 } else { 7703 *use_default = B_TRUE; 7704 pool = pool_default; 7705 } 7706 7707 /* Find the CPU pset that corresponds to the pool */ 7708 mutex_enter(&cpu_lock); 7709 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7710 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7711 pool->pool_pset->pset_id); 7712 } 7713 mutex_exit(&cpu_lock); 7714 7715 return (cpupart); 7716 } 7717 7718 void 7719 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7720 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7721 { 7722 ASSERT(pool_lock_held()); 7723 7724 if (cpupart != NULL) { 7725 emrp->mrp_mask |= MRP_POOL; 7726 if (use_default) { 7727 (void) strcpy(emrp->mrp_pool, 7728 "pool_default"); 7729 } else { 7730 ASSERT(strlen(mrp->mrp_pool) != 0); 7731 (void) strcpy(emrp->mrp_pool, 7732 mrp->mrp_pool); 7733 } 7734 } else { 7735 emrp->mrp_mask &= ~MRP_POOL; 7736 bzero(emrp->mrp_pool, MAXPATHLEN); 7737 } 7738 } 7739 7740 struct mac_pool_arg { 7741 char mpa_poolname[MAXPATHLEN]; 7742 pool_event_t mpa_what; 7743 }; 7744 7745 /*ARGSUSED*/ 7746 static uint_t 7747 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7748 { 7749 struct mac_pool_arg *mpa = arg; 7750 mac_impl_t *mip = (mac_impl_t *)val; 7751 mac_client_impl_t *mcip; 7752 mac_resource_props_t *mrp, *emrp; 7753 boolean_t pool_update = B_FALSE; 7754 boolean_t pool_clear = B_FALSE; 7755 boolean_t use_default = B_FALSE; 7756 cpupart_t *cpupart = NULL; 7757 7758 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7759 i_mac_perim_enter(mip); 7760 for (mcip = mip->mi_clients_list; mcip != NULL; 7761 mcip = mcip->mci_client_next) { 7762 pool_update = B_FALSE; 7763 pool_clear = B_FALSE; 7764 use_default = B_FALSE; 7765 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7766 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7767 7768 /* 7769 * When pools are enabled 7770 */ 7771 if ((mpa->mpa_what == POOL_E_ENABLE) && 7772 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7773 mrp->mrp_mask |= MRP_POOL; 7774 pool_update = B_TRUE; 7775 } 7776 7777 /* 7778 * When pools are disabled 7779 */ 7780 if ((mpa->mpa_what == POOL_E_DISABLE) && 7781 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7782 mrp->mrp_mask |= MRP_POOL; 7783 pool_clear = B_TRUE; 7784 } 7785 7786 /* 7787 * Look for links with the pool property set and the poolname 7788 * matching the one which is changing. 7789 */ 7790 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7791 /* 7792 * The pool associated with the link has changed. 7793 */ 7794 if (mpa->mpa_what == POOL_E_CHANGE) { 7795 mrp->mrp_mask |= MRP_POOL; 7796 pool_update = B_TRUE; 7797 } 7798 } 7799 7800 /* 7801 * This link is associated with pool_default and 7802 * pool_default has changed. 7803 */ 7804 if ((mpa->mpa_what == POOL_E_CHANGE) && 7805 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7806 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7807 mrp->mrp_mask |= MRP_POOL; 7808 pool_update = B_TRUE; 7809 } 7810 7811 /* 7812 * Get new list of cpus for the pool, bind network 7813 * threads to new list of cpus and update resources. 7814 */ 7815 if (pool_update) { 7816 if (MCIP_DATAPATH_SETUP(mcip)) { 7817 pool_lock(); 7818 cpupart = mac_pset_find(mrp, &use_default); 7819 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7820 mac_rx_deliver, mcip, NULL, cpupart); 7821 mac_set_pool_effective(use_default, cpupart, 7822 mrp, emrp); 7823 pool_unlock(); 7824 } 7825 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7826 B_FALSE); 7827 } 7828 7829 /* 7830 * Clear the effective pool and bind network threads 7831 * to any available CPU. 7832 */ 7833 if (pool_clear) { 7834 if (MCIP_DATAPATH_SETUP(mcip)) { 7835 emrp->mrp_mask &= ~MRP_POOL; 7836 bzero(emrp->mrp_pool, MAXPATHLEN); 7837 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7838 mac_rx_deliver, mcip, NULL, NULL); 7839 } 7840 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7841 B_FALSE); 7842 } 7843 } 7844 i_mac_perim_exit(mip); 7845 kmem_free(mrp, sizeof (*mrp)); 7846 return (MH_WALK_CONTINUE); 7847 } 7848 7849 static void 7850 mac_pool_update(void *arg) 7851 { 7852 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7853 kmem_free(arg, sizeof (struct mac_pool_arg)); 7854 } 7855 7856 /* 7857 * Callback function to be executed when a noteworthy pool event 7858 * takes place. 7859 */ 7860 /* ARGSUSED */ 7861 static void 7862 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7863 { 7864 pool_t *pool; 7865 char *poolname = NULL; 7866 struct mac_pool_arg *mpa; 7867 7868 pool_lock(); 7869 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7870 7871 switch (what) { 7872 case POOL_E_ENABLE: 7873 case POOL_E_DISABLE: 7874 break; 7875 7876 case POOL_E_CHANGE: 7877 pool = pool_lookup_pool_by_id(id); 7878 if (pool == NULL) { 7879 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7880 pool_unlock(); 7881 return; 7882 } 7883 pool_get_name(pool, &poolname); 7884 (void) strlcpy(mpa->mpa_poolname, poolname, 7885 sizeof (mpa->mpa_poolname)); 7886 break; 7887 7888 default: 7889 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7890 pool_unlock(); 7891 return; 7892 } 7893 pool_unlock(); 7894 7895 mpa->mpa_what = what; 7896 7897 mac_pool_update(mpa); 7898 } 7899 7900 /* 7901 * Set effective rings property. This could be called from datapath_setup/ 7902 * datapath_teardown or set-linkprop. 7903 * If the group is reserved we just go ahead and set the effective rings. 7904 * Additionally, for TX this could mean the default group has lost/gained 7905 * some rings, so if the default group is reserved, we need to adjust the 7906 * effective rings for the default group clients. For RX, if we are working 7907 * with the non-default group, we just need * to reset the effective props 7908 * for the default group clients. 7909 */ 7910 void 7911 mac_set_rings_effective(mac_client_impl_t *mcip) 7912 { 7913 mac_impl_t *mip = mcip->mci_mip; 7914 mac_group_t *grp; 7915 mac_group_t *defgrp; 7916 flow_entry_t *flent = mcip->mci_flent; 7917 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7918 mac_grp_client_t *mgcp; 7919 mac_client_impl_t *gmcip; 7920 7921 grp = flent->fe_rx_ring_group; 7922 if (grp != NULL) { 7923 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7924 /* 7925 * If we have reserved a group, set the effective rings 7926 * to the ring count in the group. 7927 */ 7928 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7929 emrp->mrp_mask |= MRP_RX_RINGS; 7930 emrp->mrp_nrxrings = grp->mrg_cur_count; 7931 } 7932 7933 /* 7934 * We go through the clients in the shared group and 7935 * reset the effective properties. It is possible this 7936 * might have already been done for some client (i.e. 7937 * if some client is being moved to a group that is 7938 * already shared). The case where the default group is 7939 * RESERVED is taken care of above (note in the RX side if 7940 * there is a non-default group, the default group is always 7941 * SHARED). 7942 */ 7943 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7944 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7945 mgcp = grp->mrg_clients; 7946 else 7947 mgcp = defgrp->mrg_clients; 7948 while (mgcp != NULL) { 7949 gmcip = mgcp->mgc_client; 7950 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7951 if (emrp->mrp_mask & MRP_RX_RINGS) { 7952 emrp->mrp_mask &= ~MRP_RX_RINGS; 7953 emrp->mrp_nrxrings = 0; 7954 } 7955 mgcp = mgcp->mgc_next; 7956 } 7957 } 7958 } 7959 7960 /* Now the TX side */ 7961 grp = flent->fe_tx_ring_group; 7962 if (grp != NULL) { 7963 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7964 7965 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7966 emrp->mrp_mask |= MRP_TX_RINGS; 7967 emrp->mrp_ntxrings = grp->mrg_cur_count; 7968 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7969 mgcp = grp->mrg_clients; 7970 while (mgcp != NULL) { 7971 gmcip = mgcp->mgc_client; 7972 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7973 if (emrp->mrp_mask & MRP_TX_RINGS) { 7974 emrp->mrp_mask &= ~MRP_TX_RINGS; 7975 emrp->mrp_ntxrings = 0; 7976 } 7977 mgcp = mgcp->mgc_next; 7978 } 7979 } 7980 7981 /* 7982 * If the group is not the default group and the default 7983 * group is reserved, the ring count in the default group 7984 * might have changed, update it. 7985 */ 7986 if (grp != defgrp && 7987 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7988 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7989 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7990 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7991 } 7992 } 7993 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7994 } 7995 7996 /* 7997 * Check if the primary is in the default group. If so, see if we 7998 * can give it a an exclusive group now that another client is 7999 * being configured. We take the primary out of the default group 8000 * because the multicast/broadcast packets for the all the clients 8001 * will land in the default ring in the default group which means 8002 * any client in the default group, even if it is the only on in 8003 * the group, will lose exclusive access to the rings, hence 8004 * polling. 8005 */ 8006 mac_client_impl_t * 8007 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8008 { 8009 mac_impl_t *mip = mcip->mci_mip; 8010 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8011 flow_entry_t *flent = mcip->mci_flent; 8012 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8013 uint8_t *mac_addr; 8014 mac_group_t *ngrp; 8015 8016 /* 8017 * Check if the primary is in the default group, if not 8018 * or if it is explicitly configured to be in the default 8019 * group OR set the RX rings property, return. 8020 */ 8021 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8022 return (NULL); 8023 8024 /* 8025 * If the new client needs an exclusive group and we 8026 * don't have another for the primary, return. 8027 */ 8028 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8029 return (NULL); 8030 8031 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8032 /* 8033 * We call this when we are setting up the datapath for 8034 * the first non-primary. 8035 */ 8036 ASSERT(mip->mi_nactiveclients == 2); 8037 /* 8038 * OK, now we have the primary that needs to be relocated. 8039 */ 8040 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8041 if (ngrp == NULL) 8042 return (NULL); 8043 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8044 mac_stop_group(ngrp); 8045 return (NULL); 8046 } 8047 return (mcip); 8048 } 8049