1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2017, Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 #define MACTYPE_KMODDIR "mac" 347 #define MACTYPE_HASHSZ 67 348 static mod_hash_t *i_mactype_hash; 349 /* 350 * i_mactype_lock synchronizes threads that obtain references to mactype_t 351 * structures through i_mactype_getplugin(). 352 */ 353 static kmutex_t i_mactype_lock; 354 355 /* 356 * mac_tx_percpu_cnt 357 * 358 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 359 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 360 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 361 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 362 */ 363 int mac_tx_percpu_cnt; 364 int mac_tx_percpu_cnt_max = 128; 365 366 /* 367 * Call back functions for the bridge module. These are guaranteed to be valid 368 * when holding a reference on a link or when holding mip->mi_bridge_lock and 369 * mi_bridge_link is non-NULL. 370 */ 371 mac_bridge_tx_t mac_bridge_tx_cb; 372 mac_bridge_rx_t mac_bridge_rx_cb; 373 mac_bridge_ref_t mac_bridge_ref_cb; 374 mac_bridge_ls_t mac_bridge_ls_cb; 375 376 static int i_mac_constructor(void *, void *, int); 377 static void i_mac_destructor(void *, void *); 378 static int i_mac_ring_ctor(void *, void *, int); 379 static void i_mac_ring_dtor(void *, void *); 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 381 void mac_tx_client_flush(mac_client_impl_t *); 382 void mac_tx_client_block(mac_client_impl_t *); 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 384 static int mac_start_group_and_rings(mac_group_t *); 385 static void mac_stop_group_and_rings(mac_group_t *); 386 static void mac_pool_event_cb(pool_event_t, int, void *); 387 388 typedef struct netinfo_s { 389 list_node_t ni_link; 390 void *ni_record; 391 int ni_size; 392 int ni_type; 393 } netinfo_t; 394 395 /* 396 * Module initialization functions. 397 */ 398 399 void 400 mac_init(void) 401 { 402 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 403 boot_max_ncpus); 404 405 /* Upper bound is mac_tx_percpu_cnt_max */ 406 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 407 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 408 409 if (mac_tx_percpu_cnt < 1) { 410 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 411 mac_tx_percpu_cnt = 1; 412 } 413 414 ASSERT(mac_tx_percpu_cnt >= 1); 415 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 416 /* 417 * Make it of the form 2**N - 1 in the range 418 * [0 .. mac_tx_percpu_cnt_max - 1] 419 */ 420 mac_tx_percpu_cnt--; 421 422 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 423 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 424 NULL, NULL, NULL, 0); 425 ASSERT(i_mac_impl_cachep != NULL); 426 427 mac_ring_cache = kmem_cache_create("mac_ring_cache", 428 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 429 NULL, NULL, 0); 430 ASSERT(mac_ring_cache != NULL); 431 432 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 433 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 435 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 436 437 mac_flow_init(); 438 mac_soft_ring_init(); 439 mac_bcast_init(); 440 mac_client_init(); 441 442 i_mac_impl_count = 0; 443 444 i_mactype_hash = mod_hash_create_extended("mactype_hash", 445 MACTYPE_HASHSZ, 446 mod_hash_null_keydtor, mod_hash_null_valdtor, 447 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 448 449 /* 450 * Allocate an id space to manage minor numbers. The range of the 451 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 452 * leaves half of the 32-bit minors available for driver private use. 453 */ 454 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 455 MAC_PRIVATE_MINOR-1); 456 ASSERT(minor_ids != NULL); 457 minor_count = 0; 458 459 /* Let's default to 20 seconds */ 460 mac_logging_interval = 20; 461 mac_flow_log_enable = B_FALSE; 462 mac_link_log_enable = B_FALSE; 463 mac_logging_timer = 0; 464 465 /* Register to be notified of noteworthy pools events */ 466 mac_pool_event_reg.pec_func = mac_pool_event_cb; 467 mac_pool_event_reg.pec_arg = NULL; 468 pool_event_cb_register(&mac_pool_event_reg); 469 } 470 471 int 472 mac_fini(void) 473 { 474 475 if (i_mac_impl_count > 0 || minor_count > 0) 476 return (EBUSY); 477 478 pool_event_cb_unregister(&mac_pool_event_reg); 479 480 id_space_destroy(minor_ids); 481 mac_flow_fini(); 482 483 mod_hash_destroy_hash(i_mac_impl_hash); 484 rw_destroy(&i_mac_impl_lock); 485 486 mac_client_fini(); 487 kmem_cache_destroy(mac_ring_cache); 488 489 mod_hash_destroy_hash(i_mactype_hash); 490 mac_soft_ring_finish(); 491 492 493 return (0); 494 } 495 496 /* 497 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 498 * (e.g. softmac) may pass in a NULL ops argument. 499 */ 500 void 501 mac_init_ops(struct dev_ops *ops, const char *name) 502 { 503 major_t major = ddi_name_to_major((char *)name); 504 505 /* 506 * By returning on error below, we are not letting the driver continue 507 * in an undefined context. The mac_register() function will faill if 508 * DN_GLDV3_DRIVER isn't set. 509 */ 510 if (major == DDI_MAJOR_T_NONE) 511 return; 512 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 513 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 514 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 515 if (ops != NULL) 516 dld_init_ops(ops, name); 517 } 518 519 void 520 mac_fini_ops(struct dev_ops *ops) 521 { 522 dld_fini_ops(ops); 523 } 524 525 /*ARGSUSED*/ 526 static int 527 i_mac_constructor(void *buf, void *arg, int kmflag) 528 { 529 mac_impl_t *mip = buf; 530 531 bzero(buf, sizeof (mac_impl_t)); 532 533 mip->mi_linkstate = LINK_STATE_UNKNOWN; 534 535 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 536 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 537 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 538 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 539 540 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 541 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 542 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 543 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 544 545 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 546 547 return (0); 548 } 549 550 /*ARGSUSED*/ 551 static void 552 i_mac_destructor(void *buf, void *arg) 553 { 554 mac_impl_t *mip = buf; 555 mac_cb_info_t *mcbi; 556 557 ASSERT(mip->mi_ref == 0); 558 ASSERT(mip->mi_active == 0); 559 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 560 ASSERT(mip->mi_devpromisc == 0); 561 ASSERT(mip->mi_ksp == NULL); 562 ASSERT(mip->mi_kstat_count == 0); 563 ASSERT(mip->mi_nclients == 0); 564 ASSERT(mip->mi_nactiveclients == 0); 565 ASSERT(mip->mi_single_active_client == NULL); 566 ASSERT(mip->mi_state_flags == 0); 567 ASSERT(mip->mi_factory_addr == NULL); 568 ASSERT(mip->mi_factory_addr_num == 0); 569 ASSERT(mip->mi_default_tx_ring == NULL); 570 571 mcbi = &mip->mi_notify_cb_info; 572 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 573 ASSERT(mip->mi_notify_bits == 0); 574 ASSERT(mip->mi_notify_thread == NULL); 575 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 576 mcbi->mcbi_lockp = NULL; 577 578 mcbi = &mip->mi_promisc_cb_info; 579 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 580 ASSERT(mip->mi_promisc_list == NULL); 581 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 582 mcbi->mcbi_lockp = NULL; 583 584 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 585 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 586 587 rw_destroy(&mip->mi_rw_lock); 588 589 mutex_destroy(&mip->mi_promisc_lock); 590 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 591 mutex_destroy(&mip->mi_notify_lock); 592 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 593 mutex_destroy(&mip->mi_ring_lock); 594 595 ASSERT(mip->mi_bridge_link == NULL); 596 } 597 598 /* ARGSUSED */ 599 static int 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 601 { 602 mac_ring_t *ring = (mac_ring_t *)buf; 603 604 bzero(ring, sizeof (mac_ring_t)); 605 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 606 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 607 ring->mr_state = MR_FREE; 608 return (0); 609 } 610 611 /* ARGSUSED */ 612 static void 613 i_mac_ring_dtor(void *buf, void *arg) 614 { 615 mac_ring_t *ring = (mac_ring_t *)buf; 616 617 cv_destroy(&ring->mr_cv); 618 mutex_destroy(&ring->mr_lock); 619 } 620 621 /* 622 * Common functions to do mac callback addition and deletion. Currently this is 623 * used by promisc callbacks and notify callbacks. List addition and deletion 624 * need to take care of list walkers. List walkers in general, can't hold list 625 * locks and make upcall callbacks due to potential lock order and recursive 626 * reentry issues. Instead list walkers increment the list walker count to mark 627 * the presence of a walker thread. Addition can be carefully done to ensure 628 * that the list walker always sees either the old list or the new list. 629 * However the deletion can't be done while the walker is active, instead the 630 * deleting thread simply marks the entry as logically deleted. The last walker 631 * physically deletes and frees up the logically deleted entries when the walk 632 * is complete. 633 */ 634 void 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 636 mac_cb_t *mcb_elem) 637 { 638 mac_cb_t *p; 639 mac_cb_t **pp; 640 641 /* Verify it is not already in the list */ 642 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 643 if (p == mcb_elem) 644 break; 645 } 646 VERIFY(p == NULL); 647 648 /* 649 * Add it to the head of the callback list. The membar ensures that 650 * the following list pointer manipulations reach global visibility 651 * in exactly the program order below. 652 */ 653 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 654 655 mcb_elem->mcb_nextp = *mcb_head; 656 membar_producer(); 657 *mcb_head = mcb_elem; 658 } 659 660 /* 661 * Mark the entry as logically deleted. If there aren't any walkers unlink 662 * from the list. In either case return the corresponding status. 663 */ 664 boolean_t 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 666 mac_cb_t *mcb_elem) 667 { 668 mac_cb_t *p; 669 mac_cb_t **pp; 670 671 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 672 /* 673 * Search the callback list for the entry to be removed 674 */ 675 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 676 if (p == mcb_elem) 677 break; 678 } 679 VERIFY(p != NULL); 680 681 /* 682 * If there are walkers just mark it as deleted and the last walker 683 * will remove from the list and free it. 684 */ 685 if (mcbi->mcbi_walker_cnt != 0) { 686 p->mcb_flags |= MCB_CONDEMNED; 687 mcbi->mcbi_del_cnt++; 688 return (B_FALSE); 689 } 690 691 ASSERT(mcbi->mcbi_del_cnt == 0); 692 *pp = p->mcb_nextp; 693 p->mcb_nextp = NULL; 694 return (B_TRUE); 695 } 696 697 /* 698 * Wait for all pending callback removals to be completed 699 */ 700 void 701 mac_callback_remove_wait(mac_cb_info_t *mcbi) 702 { 703 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 704 while (mcbi->mcbi_del_cnt != 0) { 705 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 706 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 707 } 708 } 709 710 /* 711 * The last mac callback walker does the cleanup. Walk the list and unlik 712 * all the logically deleted entries and construct a temporary list of 713 * removed entries. Return the list of removed entries to the caller. 714 */ 715 mac_cb_t * 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 717 { 718 mac_cb_t *p; 719 mac_cb_t **pp; 720 mac_cb_t *rmlist = NULL; /* List of removed elements */ 721 int cnt = 0; 722 723 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 724 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 725 726 pp = mcb_head; 727 while (*pp != NULL) { 728 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 729 p = *pp; 730 *pp = p->mcb_nextp; 731 p->mcb_nextp = rmlist; 732 rmlist = p; 733 cnt++; 734 continue; 735 } 736 pp = &(*pp)->mcb_nextp; 737 } 738 739 ASSERT(mcbi->mcbi_del_cnt == cnt); 740 mcbi->mcbi_del_cnt = 0; 741 return (rmlist); 742 } 743 744 boolean_t 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 746 { 747 mac_cb_t *mcb; 748 749 /* Verify it is not already in the list */ 750 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 751 if (mcb == mcb_elem) 752 return (B_TRUE); 753 } 754 755 return (B_FALSE); 756 } 757 758 boolean_t 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 760 { 761 boolean_t found; 762 763 mutex_enter(mcbi->mcbi_lockp); 764 found = mac_callback_lookup(mcb_headp, mcb_elem); 765 mutex_exit(mcbi->mcbi_lockp); 766 767 return (found); 768 } 769 770 /* Free the list of removed callbacks */ 771 void 772 mac_callback_free(mac_cb_t *rmlist) 773 { 774 mac_cb_t *mcb; 775 mac_cb_t *mcb_next; 776 777 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 778 mcb_next = mcb->mcb_nextp; 779 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 780 } 781 } 782 783 /* 784 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 785 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 786 * is only a single shared total walker count, and an entry can't be physically 787 * unlinked if a walker is active on either list. The last walker does this 788 * cleanup of logically deleted entries. 789 */ 790 void 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 792 { 793 mac_cb_t *rmlist; 794 mac_cb_t *mcb; 795 mac_cb_t *mcb_next; 796 mac_promisc_impl_t *mpip; 797 798 /* 799 * Construct a temporary list of deleted callbacks by walking the 800 * the mi_promisc_list. Then for each entry in the temporary list, 801 * remove it from the mci_promisc_list and free the entry. 802 */ 803 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 804 &mip->mi_promisc_list); 805 806 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 807 mcb_next = mcb->mcb_nextp; 808 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 809 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 810 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 811 mcb->mcb_flags = 0; 812 mcb->mcb_nextp = NULL; 813 kmem_cache_free(mac_promisc_impl_cache, mpip); 814 } 815 } 816 817 void 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 819 { 820 mac_cb_info_t *mcbi; 821 822 /* 823 * Signal the notify thread even after mi_ref has become zero and 824 * mi_disabled is set. The synchronization with the notify thread 825 * happens in mac_unregister and that implies the driver must make 826 * sure it is single-threaded (with respect to mac calls) and that 827 * all pending mac calls have returned before it calls mac_unregister 828 */ 829 rw_enter(&i_mac_impl_lock, RW_READER); 830 if (mip->mi_state_flags & MIS_DISABLED) 831 goto exit; 832 833 /* 834 * Guard against incorrect notifications. (Running a newer 835 * mac client against an older implementation?) 836 */ 837 if (type >= MAC_NNOTE) 838 goto exit; 839 840 mcbi = &mip->mi_notify_cb_info; 841 mutex_enter(mcbi->mcbi_lockp); 842 mip->mi_notify_bits |= (1 << type); 843 cv_broadcast(&mcbi->mcbi_cv); 844 mutex_exit(mcbi->mcbi_lockp); 845 846 exit: 847 rw_exit(&i_mac_impl_lock); 848 } 849 850 /* 851 * Mac serialization primitives. Please see the block comment at the 852 * top of the file. 853 */ 854 void 855 i_mac_perim_enter(mac_impl_t *mip) 856 { 857 mac_client_impl_t *mcip; 858 859 if (mip->mi_state_flags & MIS_IS_VNIC) { 860 /* 861 * This is a VNIC. Return the lower mac since that is what 862 * we want to serialize on. 863 */ 864 mcip = mac_vnic_lower(mip); 865 mip = mcip->mci_mip; 866 } 867 868 mutex_enter(&mip->mi_perim_lock); 869 if (mip->mi_perim_owner == curthread) { 870 mip->mi_perim_ocnt++; 871 mutex_exit(&mip->mi_perim_lock); 872 return; 873 } 874 875 while (mip->mi_perim_owner != NULL) 876 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 877 878 mip->mi_perim_owner = curthread; 879 ASSERT(mip->mi_perim_ocnt == 0); 880 mip->mi_perim_ocnt++; 881 #ifdef DEBUG 882 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 883 MAC_PERIM_STACK_DEPTH); 884 #endif 885 mutex_exit(&mip->mi_perim_lock); 886 } 887 888 int 889 i_mac_perim_enter_nowait(mac_impl_t *mip) 890 { 891 /* 892 * The vnic is a special case, since the serialization is done based 893 * on the lower mac. If the lower mac is busy, it does not imply the 894 * vnic can't be unregistered. But in the case of other drivers, 895 * a busy perimeter or open mac handles implies that the mac is busy 896 * and can't be unregistered. 897 */ 898 if (mip->mi_state_flags & MIS_IS_VNIC) { 899 i_mac_perim_enter(mip); 900 return (0); 901 } 902 903 mutex_enter(&mip->mi_perim_lock); 904 if (mip->mi_perim_owner != NULL) { 905 mutex_exit(&mip->mi_perim_lock); 906 return (EBUSY); 907 } 908 ASSERT(mip->mi_perim_ocnt == 0); 909 mip->mi_perim_owner = curthread; 910 mip->mi_perim_ocnt++; 911 mutex_exit(&mip->mi_perim_lock); 912 913 return (0); 914 } 915 916 void 917 i_mac_perim_exit(mac_impl_t *mip) 918 { 919 mac_client_impl_t *mcip; 920 921 if (mip->mi_state_flags & MIS_IS_VNIC) { 922 /* 923 * This is a VNIC. Return the lower mac since that is what 924 * we want to serialize on. 925 */ 926 mcip = mac_vnic_lower(mip); 927 mip = mcip->mci_mip; 928 } 929 930 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 931 932 mutex_enter(&mip->mi_perim_lock); 933 if (--mip->mi_perim_ocnt == 0) { 934 mip->mi_perim_owner = NULL; 935 cv_signal(&mip->mi_perim_cv); 936 } 937 mutex_exit(&mip->mi_perim_lock); 938 } 939 940 /* 941 * Returns whether the current thread holds the mac perimeter. Used in making 942 * assertions. 943 */ 944 boolean_t 945 mac_perim_held(mac_handle_t mh) 946 { 947 mac_impl_t *mip = (mac_impl_t *)mh; 948 mac_client_impl_t *mcip; 949 950 if (mip->mi_state_flags & MIS_IS_VNIC) { 951 /* 952 * This is a VNIC. Return the lower mac since that is what 953 * we want to serialize on. 954 */ 955 mcip = mac_vnic_lower(mip); 956 mip = mcip->mci_mip; 957 } 958 return (mip->mi_perim_owner == curthread); 959 } 960 961 /* 962 * mac client interfaces to enter the mac perimeter of a mac end point, given 963 * its mac handle, or macname or linkid. 964 */ 965 void 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 967 { 968 mac_impl_t *mip = (mac_impl_t *)mh; 969 970 i_mac_perim_enter(mip); 971 /* 972 * The mac_perim_handle_t returned encodes the 'mip' and whether a 973 * mac_open has been done internally while entering the perimeter. 974 * This information is used in mac_perim_exit 975 */ 976 MAC_ENCODE_MPH(*mphp, mip, 0); 977 } 978 979 int 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 981 { 982 int err; 983 mac_handle_t mh; 984 985 if ((err = mac_open(name, &mh)) != 0) 986 return (err); 987 988 mac_perim_enter_by_mh(mh, mphp); 989 MAC_ENCODE_MPH(*mphp, mh, 1); 990 return (0); 991 } 992 993 int 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 995 { 996 int err; 997 mac_handle_t mh; 998 999 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1000 return (err); 1001 1002 mac_perim_enter_by_mh(mh, mphp); 1003 MAC_ENCODE_MPH(*mphp, mh, 1); 1004 return (0); 1005 } 1006 1007 void 1008 mac_perim_exit(mac_perim_handle_t mph) 1009 { 1010 mac_impl_t *mip; 1011 boolean_t need_close; 1012 1013 MAC_DECODE_MPH(mph, mip, need_close); 1014 i_mac_perim_exit(mip); 1015 if (need_close) 1016 mac_close((mac_handle_t)mip); 1017 } 1018 1019 int 1020 mac_hold(const char *macname, mac_impl_t **pmip) 1021 { 1022 mac_impl_t *mip; 1023 int err; 1024 1025 /* 1026 * Check the device name length to make sure it won't overflow our 1027 * buffer. 1028 */ 1029 if (strlen(macname) >= MAXNAMELEN) 1030 return (EINVAL); 1031 1032 /* 1033 * Look up its entry in the global hash table. 1034 */ 1035 rw_enter(&i_mac_impl_lock, RW_WRITER); 1036 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1037 (mod_hash_val_t *)&mip); 1038 1039 if (err != 0) { 1040 rw_exit(&i_mac_impl_lock); 1041 return (ENOENT); 1042 } 1043 1044 if (mip->mi_state_flags & MIS_DISABLED) { 1045 rw_exit(&i_mac_impl_lock); 1046 return (ENOENT); 1047 } 1048 1049 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1050 rw_exit(&i_mac_impl_lock); 1051 return (EBUSY); 1052 } 1053 1054 mip->mi_ref++; 1055 rw_exit(&i_mac_impl_lock); 1056 1057 *pmip = mip; 1058 return (0); 1059 } 1060 1061 void 1062 mac_rele(mac_impl_t *mip) 1063 { 1064 rw_enter(&i_mac_impl_lock, RW_WRITER); 1065 ASSERT(mip->mi_ref != 0); 1066 if (--mip->mi_ref == 0) { 1067 ASSERT(mip->mi_nactiveclients == 0 && 1068 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1069 } 1070 rw_exit(&i_mac_impl_lock); 1071 } 1072 1073 /* 1074 * Private GLDv3 function to start a MAC instance. 1075 */ 1076 int 1077 mac_start(mac_handle_t mh) 1078 { 1079 mac_impl_t *mip = (mac_impl_t *)mh; 1080 int err = 0; 1081 mac_group_t *defgrp; 1082 1083 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1084 ASSERT(mip->mi_start != NULL); 1085 1086 /* 1087 * Check whether the device is already started. 1088 */ 1089 if (mip->mi_active++ == 0) { 1090 mac_ring_t *ring = NULL; 1091 1092 /* 1093 * Start the device. 1094 */ 1095 err = mip->mi_start(mip->mi_driver); 1096 if (err != 0) { 1097 mip->mi_active--; 1098 return (err); 1099 } 1100 1101 /* 1102 * Start the default tx ring. 1103 */ 1104 if (mip->mi_default_tx_ring != NULL) { 1105 1106 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1107 if (ring->mr_state != MR_INUSE) { 1108 err = mac_start_ring(ring); 1109 if (err != 0) { 1110 mip->mi_active--; 1111 return (err); 1112 } 1113 } 1114 } 1115 1116 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1117 /* 1118 * Start the default ring, since it will be needed 1119 * to receive broadcast and multicast traffic for 1120 * both primary and non-primary MAC clients. 1121 */ 1122 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1123 err = mac_start_group_and_rings(defgrp); 1124 if (err != 0) { 1125 mip->mi_active--; 1126 if ((ring != NULL) && 1127 (ring->mr_state == MR_INUSE)) 1128 mac_stop_ring(ring); 1129 return (err); 1130 } 1131 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1132 } 1133 } 1134 1135 return (err); 1136 } 1137 1138 /* 1139 * Private GLDv3 function to stop a MAC instance. 1140 */ 1141 void 1142 mac_stop(mac_handle_t mh) 1143 { 1144 mac_impl_t *mip = (mac_impl_t *)mh; 1145 mac_group_t *grp; 1146 1147 ASSERT(mip->mi_stop != NULL); 1148 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1149 1150 /* 1151 * Check whether the device is still needed. 1152 */ 1153 ASSERT(mip->mi_active != 0); 1154 if (--mip->mi_active == 0) { 1155 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1156 /* 1157 * There should be no more active clients since the 1158 * MAC is being stopped. Stop the default RX group 1159 * and transition it back to registered state. 1160 * 1161 * When clients are torn down, the groups 1162 * are release via mac_release_rx_group which 1163 * knows the the default group is always in 1164 * started mode since broadcast uses it. So 1165 * we can assert that their are no clients 1166 * (since mac_bcast_add doesn't register itself 1167 * as a client) and group is in SHARED state. 1168 */ 1169 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1170 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1171 mip->mi_nactiveclients == 0); 1172 mac_stop_group_and_rings(grp); 1173 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1174 } 1175 1176 if (mip->mi_default_tx_ring != NULL) { 1177 mac_ring_t *ring; 1178 1179 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1180 if (ring->mr_state == MR_INUSE) { 1181 mac_stop_ring(ring); 1182 ring->mr_flag = 0; 1183 } 1184 } 1185 1186 /* 1187 * Stop the device. 1188 */ 1189 mip->mi_stop(mip->mi_driver); 1190 } 1191 } 1192 1193 int 1194 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1195 { 1196 int err = 0; 1197 1198 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1199 ASSERT(mip->mi_setpromisc != NULL); 1200 1201 if (on) { 1202 /* 1203 * Enable promiscuous mode on the device if not yet enabled. 1204 */ 1205 if (mip->mi_devpromisc++ == 0) { 1206 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1207 if (err != 0) { 1208 mip->mi_devpromisc--; 1209 return (err); 1210 } 1211 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1212 } 1213 } else { 1214 if (mip->mi_devpromisc == 0) 1215 return (EPROTO); 1216 1217 /* 1218 * Disable promiscuous mode on the device if this is the last 1219 * enabling. 1220 */ 1221 if (--mip->mi_devpromisc == 0) { 1222 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1223 if (err != 0) { 1224 mip->mi_devpromisc++; 1225 return (err); 1226 } 1227 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1228 } 1229 } 1230 1231 return (0); 1232 } 1233 1234 /* 1235 * The promiscuity state can change any time. If the caller needs to take 1236 * actions that are atomic with the promiscuity state, then the caller needs 1237 * to bracket the entire sequence with mac_perim_enter/exit 1238 */ 1239 boolean_t 1240 mac_promisc_get(mac_handle_t mh) 1241 { 1242 mac_impl_t *mip = (mac_impl_t *)mh; 1243 1244 /* 1245 * Return the current promiscuity. 1246 */ 1247 return (mip->mi_devpromisc != 0); 1248 } 1249 1250 /* 1251 * Invoked at MAC instance attach time to initialize the list 1252 * of factory MAC addresses supported by a MAC instance. This function 1253 * builds a local cache in the mac_impl_t for the MAC addresses 1254 * supported by the underlying hardware. The MAC clients themselves 1255 * use the mac_addr_factory*() functions to query and reserve 1256 * factory MAC addresses. 1257 */ 1258 void 1259 mac_addr_factory_init(mac_impl_t *mip) 1260 { 1261 mac_capab_multifactaddr_t capab; 1262 uint8_t *addr; 1263 int i; 1264 1265 /* 1266 * First round to see how many factory MAC addresses are available. 1267 */ 1268 bzero(&capab, sizeof (capab)); 1269 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1270 &capab) || (capab.mcm_naddr == 0)) { 1271 /* 1272 * The MAC instance doesn't support multiple factory 1273 * MAC addresses, we're done here. 1274 */ 1275 return; 1276 } 1277 1278 /* 1279 * Allocate the space and get all the factory addresses. 1280 */ 1281 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1282 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1283 1284 mip->mi_factory_addr_num = capab.mcm_naddr; 1285 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1286 sizeof (mac_factory_addr_t), KM_SLEEP); 1287 1288 for (i = 0; i < capab.mcm_naddr; i++) { 1289 bcopy(addr + i * MAXMACADDRLEN, 1290 mip->mi_factory_addr[i].mfa_addr, 1291 mip->mi_type->mt_addr_length); 1292 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1293 } 1294 1295 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1296 } 1297 1298 void 1299 mac_addr_factory_fini(mac_impl_t *mip) 1300 { 1301 if (mip->mi_factory_addr == NULL) { 1302 ASSERT(mip->mi_factory_addr_num == 0); 1303 return; 1304 } 1305 1306 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1307 sizeof (mac_factory_addr_t)); 1308 1309 mip->mi_factory_addr = NULL; 1310 mip->mi_factory_addr_num = 0; 1311 } 1312 1313 /* 1314 * Reserve a factory MAC address. If *slot is set to -1, the function 1315 * attempts to reserve any of the available factory MAC addresses and 1316 * returns the reserved slot id. If no slots are available, the function 1317 * returns ENOSPC. If *slot is not set to -1, the function reserves 1318 * the specified slot if it is available, or returns EBUSY is the slot 1319 * is already used. Returns ENOTSUP if the underlying MAC does not 1320 * support multiple factory addresses. If the slot number is not -1 but 1321 * is invalid, returns EINVAL. 1322 */ 1323 int 1324 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1325 { 1326 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1327 mac_impl_t *mip = mcip->mci_mip; 1328 int i, ret = 0; 1329 1330 i_mac_perim_enter(mip); 1331 /* 1332 * Protect against concurrent readers that may need a self-consistent 1333 * view of the factory addresses 1334 */ 1335 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1336 1337 if (mip->mi_factory_addr_num == 0) { 1338 ret = ENOTSUP; 1339 goto bail; 1340 } 1341 1342 if (*slot != -1) { 1343 /* check the specified slot */ 1344 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1345 ret = EINVAL; 1346 goto bail; 1347 } 1348 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1349 ret = EBUSY; 1350 goto bail; 1351 } 1352 } else { 1353 /* pick the next available slot */ 1354 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1355 if (!mip->mi_factory_addr[i].mfa_in_use) 1356 break; 1357 } 1358 1359 if (i == mip->mi_factory_addr_num) { 1360 ret = ENOSPC; 1361 goto bail; 1362 } 1363 *slot = i+1; 1364 } 1365 1366 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1367 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1368 1369 bail: 1370 rw_exit(&mip->mi_rw_lock); 1371 i_mac_perim_exit(mip); 1372 return (ret); 1373 } 1374 1375 /* 1376 * Release the specified factory MAC address slot. 1377 */ 1378 void 1379 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1380 { 1381 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1382 mac_impl_t *mip = mcip->mci_mip; 1383 1384 i_mac_perim_enter(mip); 1385 /* 1386 * Protect against concurrent readers that may need a self-consistent 1387 * view of the factory addresses 1388 */ 1389 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1390 1391 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1392 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1393 1394 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1395 1396 rw_exit(&mip->mi_rw_lock); 1397 i_mac_perim_exit(mip); 1398 } 1399 1400 /* 1401 * Stores in mac_addr the value of the specified MAC address. Returns 1402 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1403 * The caller must provide a string of at least MAXNAMELEN bytes. 1404 */ 1405 void 1406 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1407 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1408 { 1409 mac_impl_t *mip = (mac_impl_t *)mh; 1410 boolean_t in_use; 1411 1412 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1413 1414 /* 1415 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1416 * and mi_rw_lock 1417 */ 1418 rw_enter(&mip->mi_rw_lock, RW_READER); 1419 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1420 *addr_len = mip->mi_type->mt_addr_length; 1421 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1422 if (in_use && client_name != NULL) { 1423 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1424 client_name, MAXNAMELEN); 1425 } 1426 if (in_use_arg != NULL) 1427 *in_use_arg = in_use; 1428 rw_exit(&mip->mi_rw_lock); 1429 } 1430 1431 /* 1432 * Returns the number of factory MAC addresses (in addition to the 1433 * primary MAC address), 0 if the underlying MAC doesn't support 1434 * that feature. 1435 */ 1436 uint_t 1437 mac_addr_factory_num(mac_handle_t mh) 1438 { 1439 mac_impl_t *mip = (mac_impl_t *)mh; 1440 1441 return (mip->mi_factory_addr_num); 1442 } 1443 1444 1445 void 1446 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1447 { 1448 mac_ring_t *ring; 1449 1450 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1451 ring->mr_flag &= ~flag; 1452 } 1453 1454 /* 1455 * The following mac_hwrings_xxx() functions are private mac client functions 1456 * used by the aggr driver to access and control the underlying HW Rx group 1457 * and rings. In this case, the aggr driver has exclusive control of the 1458 * underlying HW Rx group/rings, it calls the following functions to 1459 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1460 * addresses, or set up the Rx callback. 1461 */ 1462 /* ARGSUSED */ 1463 static void 1464 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1465 mblk_t *mp_chain, boolean_t loopback) 1466 { 1467 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1468 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1469 mac_direct_rx_t proc; 1470 void *arg1; 1471 mac_resource_handle_t arg2; 1472 1473 proc = srs_rx->sr_func; 1474 arg1 = srs_rx->sr_arg1; 1475 arg2 = mac_srs->srs_mrh; 1476 1477 proc(arg1, arg2, mp_chain, NULL); 1478 } 1479 1480 /* 1481 * This function is called to get the list of HW rings that are reserved by 1482 * an exclusive mac client. 1483 * 1484 * Return value: the number of HW rings. 1485 */ 1486 int 1487 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1488 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1489 { 1490 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1491 flow_entry_t *flent = mcip->mci_flent; 1492 mac_group_t *grp; 1493 mac_ring_t *ring; 1494 int cnt = 0; 1495 1496 if (rtype == MAC_RING_TYPE_RX) { 1497 grp = flent->fe_rx_ring_group; 1498 } else if (rtype == MAC_RING_TYPE_TX) { 1499 grp = flent->fe_tx_ring_group; 1500 } else { 1501 ASSERT(B_FALSE); 1502 return (-1); 1503 } 1504 /* 1505 * The mac client did not reserve any RX group, return directly. 1506 * This is probably because the underlying MAC does not support 1507 * any groups. 1508 */ 1509 if (hwgh != NULL) 1510 *hwgh = NULL; 1511 if (grp == NULL) 1512 return (0); 1513 /* 1514 * This group must be reserved by this mac client. 1515 */ 1516 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1517 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1518 1519 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1520 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1521 hwrh[cnt] = (mac_ring_handle_t)ring; 1522 } 1523 if (hwgh != NULL) 1524 *hwgh = (mac_group_handle_t)grp; 1525 1526 return (cnt); 1527 } 1528 1529 /* 1530 * This function is called to get info about Tx/Rx rings. 1531 * 1532 * Return value: returns uint_t which will have various bits set 1533 * that indicates different properties of the ring. 1534 */ 1535 uint_t 1536 mac_hwring_getinfo(mac_ring_handle_t rh) 1537 { 1538 mac_ring_t *ring = (mac_ring_t *)rh; 1539 mac_ring_info_t *info = &ring->mr_info; 1540 1541 return (info->mri_flags); 1542 } 1543 1544 /* 1545 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1546 * setup the RX callback of the mac client which exclusively controls 1547 * HW ring. 1548 */ 1549 void 1550 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1551 mac_ring_handle_t pseudo_rh) 1552 { 1553 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1554 mac_ring_t *pseudo_ring; 1555 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1556 1557 if (pseudo_rh != NULL) { 1558 pseudo_ring = (mac_ring_t *)pseudo_rh; 1559 /* Export the ddi handles to pseudo ring */ 1560 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1561 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1562 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1563 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1564 /* 1565 * Save a pointer to pseudo ring in the hw ring. If 1566 * interrupt handle changes, the hw ring will be 1567 * notified of the change (see mac_ring_intr_set()) 1568 * and the appropriate change has to be made to 1569 * the pseudo ring that has exported the ddi handle. 1570 */ 1571 hw_ring->mr_prh = pseudo_rh; 1572 } 1573 1574 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1575 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1576 mac_srs->srs_mrh = prh; 1577 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1578 } 1579 } 1580 1581 void 1582 mac_hwring_teardown(mac_ring_handle_t hwrh) 1583 { 1584 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1585 mac_soft_ring_set_t *mac_srs; 1586 1587 if (hw_ring == NULL) 1588 return; 1589 hw_ring->mr_prh = NULL; 1590 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1591 mac_srs = hw_ring->mr_srs; 1592 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1593 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1594 mac_srs->srs_mrh = NULL; 1595 } 1596 } 1597 1598 int 1599 mac_hwring_disable_intr(mac_ring_handle_t rh) 1600 { 1601 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1602 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1603 1604 return (intr->mi_disable(intr->mi_handle)); 1605 } 1606 1607 int 1608 mac_hwring_enable_intr(mac_ring_handle_t rh) 1609 { 1610 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1611 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1612 1613 return (intr->mi_enable(intr->mi_handle)); 1614 } 1615 1616 int 1617 mac_hwring_start(mac_ring_handle_t rh) 1618 { 1619 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1620 1621 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1622 return (0); 1623 } 1624 1625 void 1626 mac_hwring_stop(mac_ring_handle_t rh) 1627 { 1628 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1629 1630 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1631 } 1632 1633 mblk_t * 1634 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1635 { 1636 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1637 mac_ring_info_t *info = &rr_ring->mr_info; 1638 1639 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1640 } 1641 1642 /* 1643 * Send packets through a selected tx ring. 1644 */ 1645 mblk_t * 1646 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1647 { 1648 mac_ring_t *ring = (mac_ring_t *)rh; 1649 mac_ring_info_t *info = &ring->mr_info; 1650 1651 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1652 ring->mr_state >= MR_INUSE); 1653 return (info->mri_tx(info->mri_driver, mp)); 1654 } 1655 1656 /* 1657 * Query stats for a particular rx/tx ring 1658 */ 1659 int 1660 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1661 { 1662 mac_ring_t *ring = (mac_ring_t *)rh; 1663 mac_ring_info_t *info = &ring->mr_info; 1664 1665 return (info->mri_stat(info->mri_driver, stat, val)); 1666 } 1667 1668 /* 1669 * Private function that is only used by aggr to send packets through 1670 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1671 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1672 * access to mac_impl_t to send packets through m_tx() entry point. 1673 * It accomplishes this by calling mac_hwring_send_priv() function. 1674 */ 1675 mblk_t * 1676 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1677 { 1678 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1679 mac_impl_t *mip = mcip->mci_mip; 1680 1681 MAC_TX(mip, rh, mp, mcip); 1682 return (mp); 1683 } 1684 1685 /* 1686 * Private function that is only used by aggr to update the default transmission 1687 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1688 * temporarily be down, it may need to update the default ring that is used by 1689 * MAC such that it refers to a link that can actively be used to send traffic. 1690 * Note that this is different from the case where the port has been removed 1691 * from the group. In those cases, all of the rings will be torn down because 1692 * the ring will no longer exist. It's important to give aggr a case where the 1693 * rings can still exist such that it may be able to continue to send LACP PDUs 1694 * to potentially restore the link. 1695 * 1696 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1697 * This is to help out aggr which doesn't really know the internal state that 1698 * MAC does about the rings and can't know that it's not quite ready for use 1699 * yet. 1700 */ 1701 void 1702 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1703 { 1704 mac_impl_t *mip = (mac_impl_t *)mh; 1705 mac_ring_t *ring = (mac_ring_t *)rh; 1706 1707 ASSERT(MAC_PERIM_HELD(mh)); 1708 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1709 1710 if (ring->mr_state != MR_INUSE) 1711 return; 1712 1713 mip->mi_default_tx_ring = rh; 1714 } 1715 1716 int 1717 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1718 { 1719 mac_group_t *group = (mac_group_t *)gh; 1720 1721 return (mac_group_addmac(group, addr)); 1722 } 1723 1724 int 1725 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1726 { 1727 mac_group_t *group = (mac_group_t *)gh; 1728 1729 return (mac_group_remmac(group, addr)); 1730 } 1731 1732 /* 1733 * Set the RX group to be shared/reserved. Note that the group must be 1734 * started/stopped outside of this function. 1735 */ 1736 void 1737 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1738 { 1739 /* 1740 * If there is no change in the group state, just return. 1741 */ 1742 if (grp->mrg_state == state) 1743 return; 1744 1745 switch (state) { 1746 case MAC_GROUP_STATE_RESERVED: 1747 /* 1748 * Successfully reserved the group. 1749 * 1750 * Given that there is an exclusive client controlling this 1751 * group, we enable the group level polling when available, 1752 * so that SRSs get to turn on/off individual rings they's 1753 * assigned to. 1754 */ 1755 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1756 1757 if (grp->mrg_type == MAC_RING_TYPE_RX && 1758 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1759 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1760 } 1761 break; 1762 1763 case MAC_GROUP_STATE_SHARED: 1764 /* 1765 * Set all rings of this group to software classified. 1766 * If the group has an overriding interrupt, then re-enable it. 1767 */ 1768 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1769 1770 if (grp->mrg_type == MAC_RING_TYPE_RX && 1771 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1772 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1773 } 1774 /* The ring is not available for reservations any more */ 1775 break; 1776 1777 case MAC_GROUP_STATE_REGISTERED: 1778 /* Also callable from mac_register, perim is not held */ 1779 break; 1780 1781 default: 1782 ASSERT(B_FALSE); 1783 break; 1784 } 1785 1786 grp->mrg_state = state; 1787 } 1788 1789 /* 1790 * Quiesce future hardware classified packets for the specified Rx ring 1791 */ 1792 static void 1793 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1794 { 1795 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1796 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1797 1798 mutex_enter(&rx_ring->mr_lock); 1799 rx_ring->mr_flag |= ring_flag; 1800 while (rx_ring->mr_refcnt != 0) 1801 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1802 mutex_exit(&rx_ring->mr_lock); 1803 } 1804 1805 /* 1806 * Please see mac_tx for details about the per cpu locking scheme 1807 */ 1808 static void 1809 mac_tx_lock_all(mac_client_impl_t *mcip) 1810 { 1811 int i; 1812 1813 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1814 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1815 } 1816 1817 static void 1818 mac_tx_unlock_all(mac_client_impl_t *mcip) 1819 { 1820 int i; 1821 1822 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1823 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1824 } 1825 1826 static void 1827 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1828 { 1829 int i; 1830 1831 for (i = mac_tx_percpu_cnt; i > 0; i--) 1832 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1833 } 1834 1835 static int 1836 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1837 { 1838 int i; 1839 int refcnt = 0; 1840 1841 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1842 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1843 1844 return (refcnt); 1845 } 1846 1847 /* 1848 * Stop future Tx packets coming down from the client in preparation for 1849 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1850 * of rings between clients 1851 */ 1852 void 1853 mac_tx_client_block(mac_client_impl_t *mcip) 1854 { 1855 mac_tx_lock_all(mcip); 1856 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1857 while (mac_tx_sum_refcnt(mcip) != 0) { 1858 mac_tx_unlock_allbutzero(mcip); 1859 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1860 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1861 mac_tx_lock_all(mcip); 1862 } 1863 mac_tx_unlock_all(mcip); 1864 } 1865 1866 void 1867 mac_tx_client_unblock(mac_client_impl_t *mcip) 1868 { 1869 mac_tx_lock_all(mcip); 1870 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1871 mac_tx_unlock_all(mcip); 1872 /* 1873 * We may fail to disable flow control for the last MAC_NOTE_TX 1874 * notification because the MAC client is quiesced. Send the 1875 * notification again. 1876 */ 1877 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1878 } 1879 1880 /* 1881 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1882 * quiesce is done. 1883 */ 1884 static void 1885 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1886 { 1887 mutex_enter(&srs->srs_lock); 1888 while (!(srs->srs_state & srs_flag)) 1889 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1890 mutex_exit(&srs->srs_lock); 1891 } 1892 1893 /* 1894 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1895 * works bottom up by cutting off packet flow from the bottommost point in the 1896 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1897 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1898 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1899 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1900 * for the SRS and MR flags. In the former case the threads pause waiting for 1901 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1902 * is also mostly similar to the above. 1903 * 1904 * 1. Stop future hardware classified packets at the lowest level in the mac. 1905 * Remove any hardware classification rule (CONDEMNED case) and mark the 1906 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1907 * from increasing. Upcalls from the driver that come through hardware 1908 * classification will be dropped in mac_rx from now on. Then we wait for 1909 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1910 * sure there aren't any upcall threads from the driver through hardware 1911 * classification. In the case of SRS teardown we also remove the 1912 * classification rule in the driver. 1913 * 1914 * 2. Stop future software classified packets by marking the flow entry with 1915 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1916 * increasing. We also remove the flow entry from the table in the latter 1917 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1918 * that indicates there aren't any active threads using that flow entry. 1919 * 1920 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1921 * SRS worker thread, and the soft ring threads are quiesced in sequence 1922 * with the SRS worker thread serving as a master controller. This 1923 * mechansim is explained in mac_srs_worker_quiesce(). 1924 * 1925 * The restart mechanism to reactivate the SRS and softrings is explained 1926 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1927 * restart sequence. 1928 */ 1929 void 1930 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1931 { 1932 flow_entry_t *flent = srs->srs_flent; 1933 uint_t mr_flag, srs_done_flag; 1934 1935 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1936 ASSERT(!(srs->srs_type & SRST_TX)); 1937 1938 if (srs_quiesce_flag == SRS_CONDEMNED) { 1939 mr_flag = MR_CONDEMNED; 1940 srs_done_flag = SRS_CONDEMNED_DONE; 1941 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1942 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1943 } else { 1944 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1945 mr_flag = MR_QUIESCE; 1946 srs_done_flag = SRS_QUIESCE_DONE; 1947 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1948 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1949 } 1950 1951 if (srs->srs_ring != NULL) { 1952 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1953 } else { 1954 /* 1955 * SRS is driven by software classification. In case 1956 * of CONDEMNED, the top level teardown functions will 1957 * deal with flow removal. 1958 */ 1959 if (srs_quiesce_flag != SRS_CONDEMNED) { 1960 FLOW_MARK(flent, FE_QUIESCE); 1961 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1962 } 1963 } 1964 1965 /* 1966 * Signal the SRS to quiesce itself, and then cv_wait for the 1967 * SRS quiesce to complete. The SRS worker thread will wake us 1968 * up when the quiesce is complete 1969 */ 1970 mac_srs_signal(srs, srs_quiesce_flag); 1971 mac_srs_quiesce_wait(srs, srs_done_flag); 1972 } 1973 1974 /* 1975 * Remove an SRS. 1976 */ 1977 void 1978 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1979 { 1980 flow_entry_t *flent = srs->srs_flent; 1981 int i; 1982 1983 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1984 /* 1985 * Locate and remove our entry in the fe_rx_srs[] array, and 1986 * adjust the fe_rx_srs array entries and array count by 1987 * moving the last entry into the vacated spot. 1988 */ 1989 mutex_enter(&flent->fe_lock); 1990 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1991 if (flent->fe_rx_srs[i] == srs) 1992 break; 1993 } 1994 1995 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1996 if (i != flent->fe_rx_srs_cnt - 1) { 1997 flent->fe_rx_srs[i] = 1998 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1999 i = flent->fe_rx_srs_cnt - 1; 2000 } 2001 2002 flent->fe_rx_srs[i] = NULL; 2003 flent->fe_rx_srs_cnt--; 2004 mutex_exit(&flent->fe_lock); 2005 2006 mac_srs_free(srs); 2007 } 2008 2009 static void 2010 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2011 { 2012 mutex_enter(&srs->srs_lock); 2013 srs->srs_state &= ~flag; 2014 mutex_exit(&srs->srs_lock); 2015 } 2016 2017 void 2018 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2019 { 2020 flow_entry_t *flent = srs->srs_flent; 2021 mac_ring_t *mr; 2022 2023 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2024 ASSERT((srs->srs_type & SRST_TX) == 0); 2025 2026 /* 2027 * This handles a change in the number of SRSs between the quiesce and 2028 * and restart operation of a flow. 2029 */ 2030 if (!SRS_QUIESCED(srs)) 2031 return; 2032 2033 /* 2034 * Signal the SRS to restart itself. Wait for the restart to complete 2035 * Note that we only restart the SRS if it is not marked as 2036 * permanently quiesced. 2037 */ 2038 if (!SRS_QUIESCED_PERMANENT(srs)) { 2039 mac_srs_signal(srs, SRS_RESTART); 2040 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2041 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2042 2043 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2044 } 2045 2046 /* Finally clear the flags to let the packets in */ 2047 mr = srs->srs_ring; 2048 if (mr != NULL) { 2049 MAC_RING_UNMARK(mr, MR_QUIESCE); 2050 /* In case the ring was stopped, safely restart it */ 2051 if (mr->mr_state != MR_INUSE) 2052 (void) mac_start_ring(mr); 2053 } else { 2054 FLOW_UNMARK(flent, FE_QUIESCE); 2055 } 2056 } 2057 2058 /* 2059 * Temporary quiesce of a flow and associated Rx SRS. 2060 * Please see block comment above mac_rx_classify_flow_rem. 2061 */ 2062 /* ARGSUSED */ 2063 int 2064 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2065 { 2066 int i; 2067 2068 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2069 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2070 SRS_QUIESCE); 2071 } 2072 return (0); 2073 } 2074 2075 /* 2076 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2077 * Please see block comment above mac_rx_classify_flow_rem 2078 */ 2079 /* ARGSUSED */ 2080 int 2081 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2082 { 2083 int i; 2084 2085 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2086 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2087 2088 return (0); 2089 } 2090 2091 void 2092 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2093 { 2094 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2095 flow_entry_t *flent = mcip->mci_flent; 2096 mac_impl_t *mip = mcip->mci_mip; 2097 mac_soft_ring_set_t *mac_srs; 2098 int i; 2099 2100 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2101 2102 if (flent == NULL) 2103 return; 2104 2105 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2106 mac_srs = flent->fe_rx_srs[i]; 2107 mutex_enter(&mac_srs->srs_lock); 2108 if (on) 2109 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2110 else 2111 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2112 mutex_exit(&mac_srs->srs_lock); 2113 } 2114 } 2115 2116 void 2117 mac_rx_client_quiesce(mac_client_handle_t mch) 2118 { 2119 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2120 mac_impl_t *mip = mcip->mci_mip; 2121 2122 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2123 2124 if (MCIP_DATAPATH_SETUP(mcip)) { 2125 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2126 NULL); 2127 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2128 mac_rx_classify_flow_quiesce, NULL); 2129 } 2130 } 2131 2132 void 2133 mac_rx_client_restart(mac_client_handle_t mch) 2134 { 2135 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2136 mac_impl_t *mip = mcip->mci_mip; 2137 2138 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2139 2140 if (MCIP_DATAPATH_SETUP(mcip)) { 2141 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2142 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2143 mac_rx_classify_flow_restart, NULL); 2144 } 2145 } 2146 2147 /* 2148 * This function only quiesces the Tx SRS and softring worker threads. Callers 2149 * need to make sure that there aren't any mac client threads doing current or 2150 * future transmits in the mac before calling this function. 2151 */ 2152 void 2153 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2154 { 2155 mac_client_impl_t *mcip = srs->srs_mcip; 2156 2157 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2158 2159 ASSERT(srs->srs_type & SRST_TX); 2160 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2161 srs_quiesce_flag == SRS_QUIESCE); 2162 2163 /* 2164 * Signal the SRS to quiesce itself, and then cv_wait for the 2165 * SRS quiesce to complete. The SRS worker thread will wake us 2166 * up when the quiesce is complete 2167 */ 2168 mac_srs_signal(srs, srs_quiesce_flag); 2169 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2170 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2171 } 2172 2173 void 2174 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2175 { 2176 /* 2177 * Resizing the fanout could result in creation of new SRSs. 2178 * They may not necessarily be in the quiesced state in which 2179 * case it need be restarted 2180 */ 2181 if (!SRS_QUIESCED(srs)) 2182 return; 2183 2184 mac_srs_signal(srs, SRS_RESTART); 2185 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2186 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2187 } 2188 2189 /* 2190 * Temporary quiesce of a flow and associated Rx SRS. 2191 * Please see block comment above mac_rx_srs_quiesce 2192 */ 2193 /* ARGSUSED */ 2194 int 2195 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2196 { 2197 /* 2198 * The fe_tx_srs is null for a subflow on an interface that is 2199 * not plumbed 2200 */ 2201 if (flent->fe_tx_srs != NULL) 2202 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2203 return (0); 2204 } 2205 2206 /* ARGSUSED */ 2207 int 2208 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2209 { 2210 /* 2211 * The fe_tx_srs is null for a subflow on an interface that is 2212 * not plumbed 2213 */ 2214 if (flent->fe_tx_srs != NULL) 2215 mac_tx_srs_restart(flent->fe_tx_srs); 2216 return (0); 2217 } 2218 2219 static void 2220 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2221 { 2222 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2223 2224 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2225 2226 mac_tx_client_block(mcip); 2227 if (MCIP_TX_SRS(mcip) != NULL) { 2228 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2229 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2230 mac_tx_flow_quiesce, NULL); 2231 } 2232 } 2233 2234 void 2235 mac_tx_client_quiesce(mac_client_handle_t mch) 2236 { 2237 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2238 } 2239 2240 void 2241 mac_tx_client_condemn(mac_client_handle_t mch) 2242 { 2243 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2244 } 2245 2246 void 2247 mac_tx_client_restart(mac_client_handle_t mch) 2248 { 2249 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2250 2251 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2252 2253 mac_tx_client_unblock(mcip); 2254 if (MCIP_TX_SRS(mcip) != NULL) { 2255 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2256 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2257 mac_tx_flow_restart, NULL); 2258 } 2259 } 2260 2261 void 2262 mac_tx_client_flush(mac_client_impl_t *mcip) 2263 { 2264 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2265 2266 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2267 mac_tx_client_restart((mac_client_handle_t)mcip); 2268 } 2269 2270 void 2271 mac_client_quiesce(mac_client_impl_t *mcip) 2272 { 2273 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2274 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2275 } 2276 2277 void 2278 mac_client_restart(mac_client_impl_t *mcip) 2279 { 2280 mac_rx_client_restart((mac_client_handle_t)mcip); 2281 mac_tx_client_restart((mac_client_handle_t)mcip); 2282 } 2283 2284 /* 2285 * Allocate a minor number. 2286 */ 2287 minor_t 2288 mac_minor_hold(boolean_t sleep) 2289 { 2290 minor_t minor; 2291 2292 /* 2293 * Grab a value from the arena. 2294 */ 2295 atomic_inc_32(&minor_count); 2296 2297 if (sleep) 2298 minor = (uint_t)id_alloc(minor_ids); 2299 else 2300 minor = (uint_t)id_alloc_nosleep(minor_ids); 2301 2302 if (minor == 0) { 2303 atomic_dec_32(&minor_count); 2304 return (0); 2305 } 2306 2307 return (minor); 2308 } 2309 2310 /* 2311 * Release a previously allocated minor number. 2312 */ 2313 void 2314 mac_minor_rele(minor_t minor) 2315 { 2316 /* 2317 * Return the value to the arena. 2318 */ 2319 id_free(minor_ids, minor); 2320 atomic_dec_32(&minor_count); 2321 } 2322 2323 uint32_t 2324 mac_no_notification(mac_handle_t mh) 2325 { 2326 mac_impl_t *mip = (mac_impl_t *)mh; 2327 2328 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2329 mip->mi_capab_legacy.ml_unsup_note : 0); 2330 } 2331 2332 /* 2333 * Prevent any new opens of this mac in preparation for unregister 2334 */ 2335 int 2336 i_mac_disable(mac_impl_t *mip) 2337 { 2338 mac_client_impl_t *mcip; 2339 2340 rw_enter(&i_mac_impl_lock, RW_WRITER); 2341 if (mip->mi_state_flags & MIS_DISABLED) { 2342 /* Already disabled, return success */ 2343 rw_exit(&i_mac_impl_lock); 2344 return (0); 2345 } 2346 /* 2347 * See if there are any other references to this mac_t (e.g., VLAN's). 2348 * If so return failure. If all the other checks below pass, then 2349 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2350 * any new VLAN's from being created or new mac client opens of this 2351 * mac end point. 2352 */ 2353 if (mip->mi_ref > 0) { 2354 rw_exit(&i_mac_impl_lock); 2355 return (EBUSY); 2356 } 2357 2358 /* 2359 * mac clients must delete all multicast groups they join before 2360 * closing. bcast groups are reference counted, the last client 2361 * to delete the group will wait till the group is physically 2362 * deleted. Since all clients have closed this mac end point 2363 * mi_bcast_ngrps must be zero at this point 2364 */ 2365 ASSERT(mip->mi_bcast_ngrps == 0); 2366 2367 /* 2368 * Don't let go of this if it has some flows. 2369 * All other code guarantees no flows are added to a disabled 2370 * mac, therefore it is sufficient to check for the flow table 2371 * only here. 2372 */ 2373 mcip = mac_primary_client_handle(mip); 2374 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2375 rw_exit(&i_mac_impl_lock); 2376 return (ENOTEMPTY); 2377 } 2378 2379 mip->mi_state_flags |= MIS_DISABLED; 2380 rw_exit(&i_mac_impl_lock); 2381 return (0); 2382 } 2383 2384 int 2385 mac_disable_nowait(mac_handle_t mh) 2386 { 2387 mac_impl_t *mip = (mac_impl_t *)mh; 2388 int err; 2389 2390 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2391 return (err); 2392 err = i_mac_disable(mip); 2393 i_mac_perim_exit(mip); 2394 return (err); 2395 } 2396 2397 int 2398 mac_disable(mac_handle_t mh) 2399 { 2400 mac_impl_t *mip = (mac_impl_t *)mh; 2401 int err; 2402 2403 i_mac_perim_enter(mip); 2404 err = i_mac_disable(mip); 2405 i_mac_perim_exit(mip); 2406 2407 /* 2408 * Clean up notification thread and wait for it to exit. 2409 */ 2410 if (err == 0) 2411 i_mac_notify_exit(mip); 2412 2413 return (err); 2414 } 2415 2416 /* 2417 * Called when the MAC instance has a non empty flow table, to de-multiplex 2418 * incoming packets to the right flow. 2419 * The MAC's rw lock is assumed held as a READER. 2420 */ 2421 /* ARGSUSED */ 2422 static mblk_t * 2423 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2424 { 2425 flow_entry_t *flent = NULL; 2426 uint_t flags = FLOW_INBOUND; 2427 int err; 2428 2429 /* 2430 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2431 * to mac_flow_lookup() so that the VLAN packets can be successfully 2432 * passed to the non-VLAN aggregation flows. 2433 * 2434 * Note that there is possibly a race between this and 2435 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2436 * classified to non-VLAN flows of non-aggregation mac clients. These 2437 * VLAN packets will be then filtered out by the mac module. 2438 */ 2439 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2440 flags |= FLOW_IGNORE_VLAN; 2441 2442 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2443 if (err != 0) { 2444 /* no registered receive function */ 2445 return (mp); 2446 } else { 2447 mac_client_impl_t *mcip; 2448 2449 /* 2450 * This flent might just be an additional one on the MAC client, 2451 * i.e. for classification purposes (different fdesc), however 2452 * the resources, SRS et. al., are in the mci_flent, so if 2453 * this isn't the mci_flent, we need to get it. 2454 */ 2455 if ((mcip = flent->fe_mcip) != NULL && 2456 mcip->mci_flent != flent) { 2457 FLOW_REFRELE(flent); 2458 flent = mcip->mci_flent; 2459 FLOW_TRY_REFHOLD(flent, err); 2460 if (err != 0) 2461 return (mp); 2462 } 2463 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2464 B_FALSE); 2465 FLOW_REFRELE(flent); 2466 } 2467 return (NULL); 2468 } 2469 2470 mblk_t * 2471 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2472 { 2473 mac_impl_t *mip = (mac_impl_t *)mh; 2474 mblk_t *bp, *bp1, **bpp, *list = NULL; 2475 2476 /* 2477 * We walk the chain and attempt to classify each packet. 2478 * The packets that couldn't be classified will be returned 2479 * back to the caller. 2480 */ 2481 bp = mp_chain; 2482 bpp = &list; 2483 while (bp != NULL) { 2484 bp1 = bp; 2485 bp = bp->b_next; 2486 bp1->b_next = NULL; 2487 2488 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2489 *bpp = bp1; 2490 bpp = &bp1->b_next; 2491 } 2492 } 2493 return (list); 2494 } 2495 2496 static int 2497 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2498 { 2499 mac_ring_handle_t ring = arg; 2500 2501 if (flent->fe_tx_srs) 2502 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2503 return (0); 2504 } 2505 2506 void 2507 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2508 { 2509 mac_client_impl_t *cclient; 2510 mac_soft_ring_set_t *mac_srs; 2511 2512 /* 2513 * After grabbing the mi_rw_lock, the list of clients can't change. 2514 * If there are any clients mi_disabled must be B_FALSE and can't 2515 * get set since there are clients. If there aren't any clients we 2516 * don't do anything. In any case the mip has to be valid. The driver 2517 * must make sure that it goes single threaded (with respect to mac 2518 * calls) and wait for all pending mac calls to finish before calling 2519 * mac_unregister. 2520 */ 2521 rw_enter(&i_mac_impl_lock, RW_READER); 2522 if (mip->mi_state_flags & MIS_DISABLED) { 2523 rw_exit(&i_mac_impl_lock); 2524 return; 2525 } 2526 2527 /* 2528 * Get MAC tx srs from walking mac_client_handle list. 2529 */ 2530 rw_enter(&mip->mi_rw_lock, RW_READER); 2531 for (cclient = mip->mi_clients_list; cclient != NULL; 2532 cclient = cclient->mci_client_next) { 2533 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2534 mac_tx_srs_wakeup(mac_srs, ring); 2535 } else { 2536 /* 2537 * Aggr opens underlying ports in exclusive mode 2538 * and registers flow control callbacks using 2539 * mac_tx_client_notify(). When opened in 2540 * exclusive mode, Tx SRS won't be created 2541 * during mac_unicast_add(). 2542 */ 2543 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2544 mac_tx_invoke_callbacks(cclient, 2545 (mac_tx_cookie_t)ring); 2546 } 2547 } 2548 (void) mac_flow_walk(cclient->mci_subflow_tab, 2549 mac_tx_flow_srs_wakeup, ring); 2550 } 2551 rw_exit(&mip->mi_rw_lock); 2552 rw_exit(&i_mac_impl_lock); 2553 } 2554 2555 /* ARGSUSED */ 2556 void 2557 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2558 boolean_t add) 2559 { 2560 mac_impl_t *mip = (mac_impl_t *)mh; 2561 2562 i_mac_perim_enter((mac_impl_t *)mh); 2563 /* 2564 * If no specific refresh function was given then default to the 2565 * driver's m_multicst entry point. 2566 */ 2567 if (refresh == NULL) { 2568 refresh = mip->mi_multicst; 2569 arg = mip->mi_driver; 2570 } 2571 2572 mac_bcast_refresh(mip, refresh, arg, add); 2573 i_mac_perim_exit((mac_impl_t *)mh); 2574 } 2575 2576 void 2577 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2578 { 2579 mac_impl_t *mip = (mac_impl_t *)mh; 2580 2581 /* 2582 * If no specific refresh function was given then default to the 2583 * driver's m_promisc entry point. 2584 */ 2585 if (refresh == NULL) { 2586 refresh = mip->mi_setpromisc; 2587 arg = mip->mi_driver; 2588 } 2589 ASSERT(refresh != NULL); 2590 2591 /* 2592 * Call the refresh function with the current promiscuity. 2593 */ 2594 refresh(arg, (mip->mi_devpromisc != 0)); 2595 } 2596 2597 /* 2598 * The mac client requests that the mac not to change its margin size to 2599 * be less than the specified value. If "current" is B_TRUE, then the client 2600 * requests the mac not to change its margin size to be smaller than the 2601 * current size. Further, return the current margin size value in this case. 2602 * 2603 * We keep every requested size in an ordered list from largest to smallest. 2604 */ 2605 int 2606 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2607 { 2608 mac_impl_t *mip = (mac_impl_t *)mh; 2609 mac_margin_req_t **pp, *p; 2610 int err = 0; 2611 2612 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2613 if (current) 2614 *marginp = mip->mi_margin; 2615 2616 /* 2617 * If the current margin value cannot satisfy the margin requested, 2618 * return ENOTSUP directly. 2619 */ 2620 if (*marginp > mip->mi_margin) { 2621 err = ENOTSUP; 2622 goto done; 2623 } 2624 2625 /* 2626 * Check whether the given margin is already in the list. If so, 2627 * bump the reference count. 2628 */ 2629 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2630 if (p->mmr_margin == *marginp) { 2631 /* 2632 * The margin requested is already in the list, 2633 * so just bump the reference count. 2634 */ 2635 p->mmr_ref++; 2636 goto done; 2637 } 2638 if (p->mmr_margin < *marginp) 2639 break; 2640 } 2641 2642 2643 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2644 p->mmr_margin = *marginp; 2645 p->mmr_ref++; 2646 p->mmr_nextp = *pp; 2647 *pp = p; 2648 2649 done: 2650 rw_exit(&(mip->mi_rw_lock)); 2651 return (err); 2652 } 2653 2654 /* 2655 * The mac client requests to cancel its previous mac_margin_add() request. 2656 * We remove the requested margin size from the list. 2657 */ 2658 int 2659 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2660 { 2661 mac_impl_t *mip = (mac_impl_t *)mh; 2662 mac_margin_req_t **pp, *p; 2663 int err = 0; 2664 2665 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2666 /* 2667 * Find the entry in the list for the given margin. 2668 */ 2669 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2670 if (p->mmr_margin == margin) { 2671 if (--p->mmr_ref == 0) 2672 break; 2673 2674 /* 2675 * There is still a reference to this address so 2676 * there's nothing more to do. 2677 */ 2678 goto done; 2679 } 2680 } 2681 2682 /* 2683 * We did not find an entry for the given margin. 2684 */ 2685 if (p == NULL) { 2686 err = ENOENT; 2687 goto done; 2688 } 2689 2690 ASSERT(p->mmr_ref == 0); 2691 2692 /* 2693 * Remove it from the list. 2694 */ 2695 *pp = p->mmr_nextp; 2696 kmem_free(p, sizeof (mac_margin_req_t)); 2697 done: 2698 rw_exit(&(mip->mi_rw_lock)); 2699 return (err); 2700 } 2701 2702 boolean_t 2703 mac_margin_update(mac_handle_t mh, uint32_t margin) 2704 { 2705 mac_impl_t *mip = (mac_impl_t *)mh; 2706 uint32_t margin_needed = 0; 2707 2708 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2709 2710 if (mip->mi_mmrp != NULL) 2711 margin_needed = mip->mi_mmrp->mmr_margin; 2712 2713 if (margin_needed <= margin) 2714 mip->mi_margin = margin; 2715 2716 rw_exit(&(mip->mi_rw_lock)); 2717 2718 if (margin_needed <= margin) 2719 i_mac_notify(mip, MAC_NOTE_MARGIN); 2720 2721 return (margin_needed <= margin); 2722 } 2723 2724 /* 2725 * MAC clients use this interface to request that a MAC device not change its 2726 * MTU below the specified amount. At this time, that amount must be within the 2727 * range of the device's current minimum and the device's current maximum. eg. a 2728 * client cannot request a 3000 byte MTU when the device's MTU is currently 2729 * 2000. 2730 * 2731 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2732 * current underlying mac's maximum for this mac client and return it in mtup. 2733 */ 2734 int 2735 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2736 { 2737 mac_impl_t *mip = (mac_impl_t *)mh; 2738 mac_mtu_req_t *prev, *cur; 2739 mac_propval_range_t mpr; 2740 int err; 2741 2742 i_mac_perim_enter(mip); 2743 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2744 2745 if (current == B_TRUE) 2746 *mtup = mip->mi_sdu_max; 2747 mpr.mpr_count = 1; 2748 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2749 if (err != 0) { 2750 rw_exit(&mip->mi_rw_lock); 2751 i_mac_perim_exit(mip); 2752 return (err); 2753 } 2754 2755 if (*mtup > mip->mi_sdu_max || 2756 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2757 rw_exit(&mip->mi_rw_lock); 2758 i_mac_perim_exit(mip); 2759 return (ENOTSUP); 2760 } 2761 2762 prev = NULL; 2763 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2764 if (*mtup == cur->mtr_mtu) { 2765 cur->mtr_ref++; 2766 rw_exit(&mip->mi_rw_lock); 2767 i_mac_perim_exit(mip); 2768 return (0); 2769 } 2770 2771 if (*mtup > cur->mtr_mtu) 2772 break; 2773 2774 prev = cur; 2775 } 2776 2777 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2778 cur->mtr_mtu = *mtup; 2779 cur->mtr_ref = 1; 2780 if (prev != NULL) { 2781 cur->mtr_nextp = prev->mtr_nextp; 2782 prev->mtr_nextp = cur; 2783 } else { 2784 cur->mtr_nextp = mip->mi_mtrp; 2785 mip->mi_mtrp = cur; 2786 } 2787 2788 rw_exit(&mip->mi_rw_lock); 2789 i_mac_perim_exit(mip); 2790 return (0); 2791 } 2792 2793 int 2794 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 2795 { 2796 mac_impl_t *mip = (mac_impl_t *)mh; 2797 mac_mtu_req_t *cur, *prev; 2798 2799 i_mac_perim_enter(mip); 2800 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2801 2802 prev = NULL; 2803 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2804 if (cur->mtr_mtu == mtu) { 2805 ASSERT(cur->mtr_ref > 0); 2806 cur->mtr_ref--; 2807 if (cur->mtr_ref == 0) { 2808 if (prev == NULL) { 2809 mip->mi_mtrp = cur->mtr_nextp; 2810 } else { 2811 prev->mtr_nextp = cur->mtr_nextp; 2812 } 2813 kmem_free(cur, sizeof (mac_mtu_req_t)); 2814 } 2815 rw_exit(&mip->mi_rw_lock); 2816 i_mac_perim_exit(mip); 2817 return (0); 2818 } 2819 2820 prev = cur; 2821 } 2822 2823 rw_exit(&mip->mi_rw_lock); 2824 i_mac_perim_exit(mip); 2825 return (ENOENT); 2826 } 2827 2828 /* 2829 * MAC Type Plugin functions. 2830 */ 2831 2832 mactype_t * 2833 mactype_getplugin(const char *pname) 2834 { 2835 mactype_t *mtype = NULL; 2836 boolean_t tried_modload = B_FALSE; 2837 2838 mutex_enter(&i_mactype_lock); 2839 2840 find_registered_mactype: 2841 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2842 (mod_hash_val_t *)&mtype) != 0) { 2843 if (!tried_modload) { 2844 /* 2845 * If the plugin has not yet been loaded, then 2846 * attempt to load it now. If modload() succeeds, 2847 * the plugin should have registered using 2848 * mactype_register(), in which case we can go back 2849 * and attempt to find it again. 2850 */ 2851 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2852 tried_modload = B_TRUE; 2853 goto find_registered_mactype; 2854 } 2855 } 2856 } else { 2857 /* 2858 * Note that there's no danger that the plugin we've loaded 2859 * could be unloaded between the modload() step and the 2860 * reference count bump here, as we're holding 2861 * i_mactype_lock, which mactype_unregister() also holds. 2862 */ 2863 atomic_inc_32(&mtype->mt_ref); 2864 } 2865 2866 mutex_exit(&i_mactype_lock); 2867 return (mtype); 2868 } 2869 2870 mactype_register_t * 2871 mactype_alloc(uint_t mactype_version) 2872 { 2873 mactype_register_t *mtrp; 2874 2875 /* 2876 * Make sure there isn't a version mismatch between the plugin and 2877 * the framework. In the future, if multiple versions are 2878 * supported, this check could become more sophisticated. 2879 */ 2880 if (mactype_version != MACTYPE_VERSION) 2881 return (NULL); 2882 2883 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2884 mtrp->mtr_version = mactype_version; 2885 return (mtrp); 2886 } 2887 2888 void 2889 mactype_free(mactype_register_t *mtrp) 2890 { 2891 kmem_free(mtrp, sizeof (mactype_register_t)); 2892 } 2893 2894 int 2895 mactype_register(mactype_register_t *mtrp) 2896 { 2897 mactype_t *mtp; 2898 mactype_ops_t *ops = mtrp->mtr_ops; 2899 2900 /* Do some sanity checking before we register this MAC type. */ 2901 if (mtrp->mtr_ident == NULL || ops == NULL) 2902 return (EINVAL); 2903 2904 /* 2905 * Verify that all mandatory callbacks are set in the ops 2906 * vector. 2907 */ 2908 if (ops->mtops_unicst_verify == NULL || 2909 ops->mtops_multicst_verify == NULL || 2910 ops->mtops_sap_verify == NULL || 2911 ops->mtops_header == NULL || 2912 ops->mtops_header_info == NULL) { 2913 return (EINVAL); 2914 } 2915 2916 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2917 mtp->mt_ident = mtrp->mtr_ident; 2918 mtp->mt_ops = *ops; 2919 mtp->mt_type = mtrp->mtr_mactype; 2920 mtp->mt_nativetype = mtrp->mtr_nativetype; 2921 mtp->mt_addr_length = mtrp->mtr_addrlen; 2922 if (mtrp->mtr_brdcst_addr != NULL) { 2923 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2924 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2925 mtrp->mtr_addrlen); 2926 } 2927 2928 mtp->mt_stats = mtrp->mtr_stats; 2929 mtp->mt_statcount = mtrp->mtr_statcount; 2930 2931 mtp->mt_mapping = mtrp->mtr_mapping; 2932 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2933 2934 if (mod_hash_insert(i_mactype_hash, 2935 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2936 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2937 kmem_free(mtp, sizeof (*mtp)); 2938 return (EEXIST); 2939 } 2940 return (0); 2941 } 2942 2943 int 2944 mactype_unregister(const char *ident) 2945 { 2946 mactype_t *mtp; 2947 mod_hash_val_t val; 2948 int err; 2949 2950 /* 2951 * Let's not allow MAC drivers to use this plugin while we're 2952 * trying to unregister it. Holding i_mactype_lock also prevents a 2953 * plugin from unregistering while a MAC driver is attempting to 2954 * hold a reference to it in i_mactype_getplugin(). 2955 */ 2956 mutex_enter(&i_mactype_lock); 2957 2958 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2959 (mod_hash_val_t *)&mtp)) != 0) { 2960 /* A plugin is trying to unregister, but it never registered. */ 2961 err = ENXIO; 2962 goto done; 2963 } 2964 2965 if (mtp->mt_ref != 0) { 2966 err = EBUSY; 2967 goto done; 2968 } 2969 2970 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2971 ASSERT(err == 0); 2972 if (err != 0) { 2973 /* This should never happen, thus the ASSERT() above. */ 2974 err = EINVAL; 2975 goto done; 2976 } 2977 ASSERT(mtp == (mactype_t *)val); 2978 2979 if (mtp->mt_brdcst_addr != NULL) 2980 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2981 kmem_free(mtp, sizeof (mactype_t)); 2982 done: 2983 mutex_exit(&i_mactype_lock); 2984 return (err); 2985 } 2986 2987 /* 2988 * Checks the size of the value size specified for a property as 2989 * part of a property operation. Returns B_TRUE if the size is 2990 * correct, B_FALSE otherwise. 2991 */ 2992 boolean_t 2993 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2994 { 2995 uint_t minsize = 0; 2996 2997 if (is_range) 2998 return (valsize >= sizeof (mac_propval_range_t)); 2999 3000 switch (id) { 3001 case MAC_PROP_ZONE: 3002 minsize = sizeof (dld_ioc_zid_t); 3003 break; 3004 case MAC_PROP_AUTOPUSH: 3005 if (valsize != 0) 3006 minsize = sizeof (struct dlautopush); 3007 break; 3008 case MAC_PROP_TAGMODE: 3009 minsize = sizeof (link_tagmode_t); 3010 break; 3011 case MAC_PROP_RESOURCE: 3012 case MAC_PROP_RESOURCE_EFF: 3013 minsize = sizeof (mac_resource_props_t); 3014 break; 3015 case MAC_PROP_DUPLEX: 3016 minsize = sizeof (link_duplex_t); 3017 break; 3018 case MAC_PROP_SPEED: 3019 minsize = sizeof (uint64_t); 3020 break; 3021 case MAC_PROP_STATUS: 3022 minsize = sizeof (link_state_t); 3023 break; 3024 case MAC_PROP_AUTONEG: 3025 case MAC_PROP_EN_AUTONEG: 3026 minsize = sizeof (uint8_t); 3027 break; 3028 case MAC_PROP_MTU: 3029 case MAC_PROP_LLIMIT: 3030 case MAC_PROP_LDECAY: 3031 minsize = sizeof (uint32_t); 3032 break; 3033 case MAC_PROP_FLOWCTRL: 3034 minsize = sizeof (link_flowctrl_t); 3035 break; 3036 case MAC_PROP_ADV_5000FDX_CAP: 3037 case MAC_PROP_EN_5000FDX_CAP: 3038 case MAC_PROP_ADV_2500FDX_CAP: 3039 case MAC_PROP_EN_2500FDX_CAP: 3040 case MAC_PROP_ADV_100GFDX_CAP: 3041 case MAC_PROP_EN_100GFDX_CAP: 3042 case MAC_PROP_ADV_50GFDX_CAP: 3043 case MAC_PROP_EN_50GFDX_CAP: 3044 case MAC_PROP_ADV_40GFDX_CAP: 3045 case MAC_PROP_EN_40GFDX_CAP: 3046 case MAC_PROP_ADV_25GFDX_CAP: 3047 case MAC_PROP_EN_25GFDX_CAP: 3048 case MAC_PROP_ADV_10GFDX_CAP: 3049 case MAC_PROP_EN_10GFDX_CAP: 3050 case MAC_PROP_ADV_1000HDX_CAP: 3051 case MAC_PROP_EN_1000HDX_CAP: 3052 case MAC_PROP_ADV_100FDX_CAP: 3053 case MAC_PROP_EN_100FDX_CAP: 3054 case MAC_PROP_ADV_100HDX_CAP: 3055 case MAC_PROP_EN_100HDX_CAP: 3056 case MAC_PROP_ADV_10FDX_CAP: 3057 case MAC_PROP_EN_10FDX_CAP: 3058 case MAC_PROP_ADV_10HDX_CAP: 3059 case MAC_PROP_EN_10HDX_CAP: 3060 case MAC_PROP_ADV_100T4_CAP: 3061 case MAC_PROP_EN_100T4_CAP: 3062 minsize = sizeof (uint8_t); 3063 break; 3064 case MAC_PROP_PVID: 3065 minsize = sizeof (uint16_t); 3066 break; 3067 case MAC_PROP_IPTUN_HOPLIMIT: 3068 minsize = sizeof (uint32_t); 3069 break; 3070 case MAC_PROP_IPTUN_ENCAPLIMIT: 3071 minsize = sizeof (uint32_t); 3072 break; 3073 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3074 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3075 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3076 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3077 minsize = sizeof (uint_t); 3078 break; 3079 case MAC_PROP_WL_ESSID: 3080 minsize = sizeof (wl_linkstatus_t); 3081 break; 3082 case MAC_PROP_WL_BSSID: 3083 minsize = sizeof (wl_bssid_t); 3084 break; 3085 case MAC_PROP_WL_BSSTYPE: 3086 minsize = sizeof (wl_bss_type_t); 3087 break; 3088 case MAC_PROP_WL_LINKSTATUS: 3089 minsize = sizeof (wl_linkstatus_t); 3090 break; 3091 case MAC_PROP_WL_DESIRED_RATES: 3092 minsize = sizeof (wl_rates_t); 3093 break; 3094 case MAC_PROP_WL_SUPPORTED_RATES: 3095 minsize = sizeof (wl_rates_t); 3096 break; 3097 case MAC_PROP_WL_AUTH_MODE: 3098 minsize = sizeof (wl_authmode_t); 3099 break; 3100 case MAC_PROP_WL_ENCRYPTION: 3101 minsize = sizeof (wl_encryption_t); 3102 break; 3103 case MAC_PROP_WL_RSSI: 3104 minsize = sizeof (wl_rssi_t); 3105 break; 3106 case MAC_PROP_WL_PHY_CONFIG: 3107 minsize = sizeof (wl_phy_conf_t); 3108 break; 3109 case MAC_PROP_WL_CAPABILITY: 3110 minsize = sizeof (wl_capability_t); 3111 break; 3112 case MAC_PROP_WL_WPA: 3113 minsize = sizeof (wl_wpa_t); 3114 break; 3115 case MAC_PROP_WL_SCANRESULTS: 3116 minsize = sizeof (wl_wpa_ess_t); 3117 break; 3118 case MAC_PROP_WL_POWER_MODE: 3119 minsize = sizeof (wl_ps_mode_t); 3120 break; 3121 case MAC_PROP_WL_RADIO: 3122 minsize = sizeof (wl_radio_t); 3123 break; 3124 case MAC_PROP_WL_ESS_LIST: 3125 minsize = sizeof (wl_ess_list_t); 3126 break; 3127 case MAC_PROP_WL_KEY_TAB: 3128 minsize = sizeof (wl_wep_key_tab_t); 3129 break; 3130 case MAC_PROP_WL_CREATE_IBSS: 3131 minsize = sizeof (wl_create_ibss_t); 3132 break; 3133 case MAC_PROP_WL_SETOPTIE: 3134 minsize = sizeof (wl_wpa_ie_t); 3135 break; 3136 case MAC_PROP_WL_DELKEY: 3137 minsize = sizeof (wl_del_key_t); 3138 break; 3139 case MAC_PROP_WL_KEY: 3140 minsize = sizeof (wl_key_t); 3141 break; 3142 case MAC_PROP_WL_MLME: 3143 minsize = sizeof (wl_mlme_t); 3144 break; 3145 case MAC_PROP_VN_PROMISC_FILTERED: 3146 minsize = sizeof (boolean_t); 3147 break; 3148 } 3149 3150 return (valsize >= minsize); 3151 } 3152 3153 /* 3154 * mac_set_prop() sets MAC or hardware driver properties: 3155 * 3156 * - MAC-managed properties such as resource properties include maxbw, 3157 * priority, and cpu binding list, as well as the default port VID 3158 * used by bridging. These properties are consumed by the MAC layer 3159 * itself and not passed down to the driver. For resource control 3160 * properties, this function invokes mac_set_resources() which will 3161 * cache the property value in mac_impl_t and may call 3162 * mac_client_set_resource() to update property value of the primary 3163 * mac client, if it exists. 3164 * 3165 * - Properties which act on the hardware and must be passed to the 3166 * driver, such as MTU, through the driver's mc_setprop() entry point. 3167 */ 3168 int 3169 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3170 uint_t valsize) 3171 { 3172 int err = ENOTSUP; 3173 mac_impl_t *mip = (mac_impl_t *)mh; 3174 3175 ASSERT(MAC_PERIM_HELD(mh)); 3176 3177 switch (id) { 3178 case MAC_PROP_RESOURCE: { 3179 mac_resource_props_t *mrp; 3180 3181 /* call mac_set_resources() for MAC properties */ 3182 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3183 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3184 bcopy(val, mrp, sizeof (*mrp)); 3185 err = mac_set_resources(mh, mrp); 3186 kmem_free(mrp, sizeof (*mrp)); 3187 break; 3188 } 3189 3190 case MAC_PROP_PVID: 3191 ASSERT(valsize >= sizeof (uint16_t)); 3192 if (mip->mi_state_flags & MIS_IS_VNIC) 3193 return (EINVAL); 3194 err = mac_set_pvid(mh, *(uint16_t *)val); 3195 break; 3196 3197 case MAC_PROP_MTU: { 3198 uint32_t mtu; 3199 3200 ASSERT(valsize >= sizeof (uint32_t)); 3201 bcopy(val, &mtu, sizeof (mtu)); 3202 err = mac_set_mtu(mh, mtu, NULL); 3203 break; 3204 } 3205 3206 case MAC_PROP_LLIMIT: 3207 case MAC_PROP_LDECAY: { 3208 uint32_t learnval; 3209 3210 if (valsize < sizeof (learnval) || 3211 (mip->mi_state_flags & MIS_IS_VNIC)) 3212 return (EINVAL); 3213 bcopy(val, &learnval, sizeof (learnval)); 3214 if (learnval == 0 && id == MAC_PROP_LDECAY) 3215 return (EINVAL); 3216 if (id == MAC_PROP_LLIMIT) 3217 mip->mi_llimit = learnval; 3218 else 3219 mip->mi_ldecay = learnval; 3220 err = 0; 3221 break; 3222 } 3223 3224 default: 3225 /* For other driver properties, call driver's callback */ 3226 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3227 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3228 name, id, valsize, val); 3229 } 3230 } 3231 return (err); 3232 } 3233 3234 /* 3235 * mac_get_prop() gets MAC or device driver properties. 3236 * 3237 * If the property is a driver property, mac_get_prop() calls driver's callback 3238 * entry point to get it. 3239 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3240 * which returns the cached value in mac_impl_t. 3241 */ 3242 int 3243 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3244 uint_t valsize) 3245 { 3246 int err = ENOTSUP; 3247 mac_impl_t *mip = (mac_impl_t *)mh; 3248 uint_t rings; 3249 uint_t vlinks; 3250 3251 bzero(val, valsize); 3252 3253 switch (id) { 3254 case MAC_PROP_RESOURCE: { 3255 mac_resource_props_t *mrp; 3256 3257 /* If mac property, read from cache */ 3258 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3259 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3260 mac_get_resources(mh, mrp); 3261 bcopy(mrp, val, sizeof (*mrp)); 3262 kmem_free(mrp, sizeof (*mrp)); 3263 return (0); 3264 } 3265 case MAC_PROP_RESOURCE_EFF: { 3266 mac_resource_props_t *mrp; 3267 3268 /* If mac effective property, read from client */ 3269 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3270 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3271 mac_get_effective_resources(mh, mrp); 3272 bcopy(mrp, val, sizeof (*mrp)); 3273 kmem_free(mrp, sizeof (*mrp)); 3274 return (0); 3275 } 3276 3277 case MAC_PROP_PVID: 3278 ASSERT(valsize >= sizeof (uint16_t)); 3279 if (mip->mi_state_flags & MIS_IS_VNIC) 3280 return (EINVAL); 3281 *(uint16_t *)val = mac_get_pvid(mh); 3282 return (0); 3283 3284 case MAC_PROP_LLIMIT: 3285 case MAC_PROP_LDECAY: 3286 ASSERT(valsize >= sizeof (uint32_t)); 3287 if (mip->mi_state_flags & MIS_IS_VNIC) 3288 return (EINVAL); 3289 if (id == MAC_PROP_LLIMIT) 3290 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3291 else 3292 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3293 return (0); 3294 3295 case MAC_PROP_MTU: { 3296 uint32_t sdu; 3297 3298 ASSERT(valsize >= sizeof (uint32_t)); 3299 mac_sdu_get2(mh, NULL, &sdu, NULL); 3300 bcopy(&sdu, val, sizeof (sdu)); 3301 3302 return (0); 3303 } 3304 case MAC_PROP_STATUS: { 3305 link_state_t link_state; 3306 3307 if (valsize < sizeof (link_state)) 3308 return (EINVAL); 3309 link_state = mac_link_get(mh); 3310 bcopy(&link_state, val, sizeof (link_state)); 3311 3312 return (0); 3313 } 3314 3315 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3316 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3317 ASSERT(valsize >= sizeof (uint_t)); 3318 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3319 mac_rxavail_get(mh) : mac_txavail_get(mh); 3320 bcopy(&rings, val, sizeof (uint_t)); 3321 return (0); 3322 3323 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3324 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3325 ASSERT(valsize >= sizeof (uint_t)); 3326 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3327 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3328 bcopy(&vlinks, val, sizeof (uint_t)); 3329 return (0); 3330 3331 case MAC_PROP_RXRINGSRANGE: 3332 case MAC_PROP_TXRINGSRANGE: 3333 /* 3334 * The value for these properties are returned through 3335 * the MAC_PROP_RESOURCE property. 3336 */ 3337 return (0); 3338 3339 default: 3340 break; 3341 3342 } 3343 3344 /* If driver property, request from driver */ 3345 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3346 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3347 valsize, val); 3348 } 3349 3350 return (err); 3351 } 3352 3353 /* 3354 * Helper function to initialize the range structure for use in 3355 * mac_get_prop. If the type can be other than uint32, we can 3356 * pass that as an arg. 3357 */ 3358 static void 3359 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3360 { 3361 range->mpr_count = 1; 3362 range->mpr_type = MAC_PROPVAL_UINT32; 3363 range->mpr_range_uint32[0].mpur_min = min; 3364 range->mpr_range_uint32[0].mpur_max = max; 3365 } 3366 3367 /* 3368 * Returns information about the specified property, such as default 3369 * values or permissions. 3370 */ 3371 int 3372 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3373 void *default_val, uint_t default_size, mac_propval_range_t *range, 3374 uint_t *perm) 3375 { 3376 mac_prop_info_state_t state; 3377 mac_impl_t *mip = (mac_impl_t *)mh; 3378 uint_t max; 3379 3380 /* 3381 * A property is read/write by default unless the driver says 3382 * otherwise. 3383 */ 3384 if (perm != NULL) 3385 *perm = MAC_PROP_PERM_RW; 3386 3387 if (default_val != NULL) 3388 bzero(default_val, default_size); 3389 3390 /* 3391 * First, handle framework properties for which we don't need to 3392 * involve the driver. 3393 */ 3394 switch (id) { 3395 case MAC_PROP_RESOURCE: 3396 case MAC_PROP_PVID: 3397 case MAC_PROP_LLIMIT: 3398 case MAC_PROP_LDECAY: 3399 return (0); 3400 3401 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3402 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3403 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3404 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3405 if (perm != NULL) 3406 *perm = MAC_PROP_PERM_READ; 3407 return (0); 3408 3409 case MAC_PROP_RXRINGSRANGE: 3410 case MAC_PROP_TXRINGSRANGE: 3411 /* 3412 * Currently, we support range for RX and TX rings properties. 3413 * When we extend this support to maxbw, cpus and priority, 3414 * we should move this to mac_get_resources. 3415 * There is no default value for RX or TX rings. 3416 */ 3417 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3418 mac_is_vnic_primary(mh)) { 3419 /* 3420 * We don't support setting rings for a VLAN 3421 * data link because it shares its ring with the 3422 * primary MAC client. 3423 */ 3424 if (perm != NULL) 3425 *perm = MAC_PROP_PERM_READ; 3426 if (range != NULL) 3427 range->mpr_count = 0; 3428 } else if (range != NULL) { 3429 if (mip->mi_state_flags & MIS_IS_VNIC) 3430 mh = mac_get_lower_mac_handle(mh); 3431 mip = (mac_impl_t *)mh; 3432 if ((id == MAC_PROP_RXRINGSRANGE && 3433 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3434 (id == MAC_PROP_TXRINGSRANGE && 3435 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3436 if (id == MAC_PROP_RXRINGSRANGE) { 3437 if ((mac_rxhwlnksavail_get(mh) + 3438 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3439 /* 3440 * doesn't support groups or 3441 * rings 3442 */ 3443 range->mpr_count = 0; 3444 } else { 3445 /* 3446 * supports specifying groups, 3447 * but not rings 3448 */ 3449 _mac_set_range(range, 0, 0); 3450 } 3451 } else { 3452 if ((mac_txhwlnksavail_get(mh) + 3453 mac_txhwlnksrsvd_get(mh)) <= 1) { 3454 /* 3455 * doesn't support groups or 3456 * rings 3457 */ 3458 range->mpr_count = 0; 3459 } else { 3460 /* 3461 * supports specifying groups, 3462 * but not rings 3463 */ 3464 _mac_set_range(range, 0, 0); 3465 } 3466 } 3467 } else { 3468 max = id == MAC_PROP_RXRINGSRANGE ? 3469 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3470 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3471 if (max <= 1) { 3472 /* 3473 * doesn't support groups or 3474 * rings 3475 */ 3476 range->mpr_count = 0; 3477 } else { 3478 /* 3479 * -1 because we have to leave out the 3480 * default ring. 3481 */ 3482 _mac_set_range(range, 1, max - 1); 3483 } 3484 } 3485 } 3486 return (0); 3487 3488 case MAC_PROP_STATUS: 3489 if (perm != NULL) 3490 *perm = MAC_PROP_PERM_READ; 3491 return (0); 3492 } 3493 3494 /* 3495 * Get the property info from the driver if it implements the 3496 * property info entry point. 3497 */ 3498 bzero(&state, sizeof (state)); 3499 3500 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3501 state.pr_default = default_val; 3502 state.pr_default_size = default_size; 3503 3504 /* 3505 * The caller specifies the maximum number of ranges 3506 * it can accomodate using mpr_count. We don't touch 3507 * this value until the driver returns from its 3508 * mc_propinfo() callback, and ensure we don't exceed 3509 * this number of range as the driver defines 3510 * supported range from its mc_propinfo(). 3511 * 3512 * pr_range_cur_count keeps track of how many ranges 3513 * were defined by the driver from its mc_propinfo() 3514 * entry point. 3515 * 3516 * On exit, the user-specified range mpr_count returns 3517 * the number of ranges specified by the driver on 3518 * success, or the number of ranges it wanted to 3519 * define if that number of ranges could not be 3520 * accomodated by the specified range structure. In 3521 * the latter case, the caller will be able to 3522 * allocate a larger range structure, and query the 3523 * property again. 3524 */ 3525 state.pr_range_cur_count = 0; 3526 state.pr_range = range; 3527 3528 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3529 (mac_prop_info_handle_t)&state); 3530 3531 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3532 range->mpr_count = state.pr_range_cur_count; 3533 3534 /* 3535 * The operation could fail if the buffer supplied by 3536 * the user was too small for the range or default 3537 * value of the property. 3538 */ 3539 if (state.pr_errno != 0) 3540 return (state.pr_errno); 3541 3542 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3543 *perm = state.pr_perm; 3544 } 3545 3546 /* 3547 * The MAC layer may want to provide default values or allowed 3548 * ranges for properties if the driver does not provide a 3549 * property info entry point, or that entry point exists, but 3550 * it did not provide a default value or allowed ranges for 3551 * that property. 3552 */ 3553 switch (id) { 3554 case MAC_PROP_MTU: { 3555 uint32_t sdu; 3556 3557 mac_sdu_get2(mh, NULL, &sdu, NULL); 3558 3559 if (range != NULL && !(state.pr_flags & 3560 MAC_PROP_INFO_RANGE)) { 3561 /* MTU range */ 3562 _mac_set_range(range, sdu, sdu); 3563 } 3564 3565 if (default_val != NULL && !(state.pr_flags & 3566 MAC_PROP_INFO_DEFAULT)) { 3567 if (mip->mi_info.mi_media == DL_ETHER) 3568 sdu = ETHERMTU; 3569 /* default MTU value */ 3570 bcopy(&sdu, default_val, sizeof (sdu)); 3571 } 3572 } 3573 } 3574 3575 return (0); 3576 } 3577 3578 int 3579 mac_fastpath_disable(mac_handle_t mh) 3580 { 3581 mac_impl_t *mip = (mac_impl_t *)mh; 3582 3583 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3584 return (0); 3585 3586 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3587 } 3588 3589 void 3590 mac_fastpath_enable(mac_handle_t mh) 3591 { 3592 mac_impl_t *mip = (mac_impl_t *)mh; 3593 3594 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3595 return; 3596 3597 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3598 } 3599 3600 void 3601 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3602 { 3603 uint_t nprops, i; 3604 3605 if (priv_props == NULL) 3606 return; 3607 3608 nprops = 0; 3609 while (priv_props[nprops] != NULL) 3610 nprops++; 3611 if (nprops == 0) 3612 return; 3613 3614 3615 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3616 3617 for (i = 0; i < nprops; i++) { 3618 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3619 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3620 MAXLINKPROPNAME); 3621 } 3622 3623 mip->mi_priv_prop_count = nprops; 3624 } 3625 3626 void 3627 mac_unregister_priv_prop(mac_impl_t *mip) 3628 { 3629 uint_t i; 3630 3631 if (mip->mi_priv_prop_count == 0) { 3632 ASSERT(mip->mi_priv_prop == NULL); 3633 return; 3634 } 3635 3636 for (i = 0; i < mip->mi_priv_prop_count; i++) 3637 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3638 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3639 sizeof (char *)); 3640 3641 mip->mi_priv_prop = NULL; 3642 mip->mi_priv_prop_count = 0; 3643 } 3644 3645 /* 3646 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3647 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3648 * cases if MAC free's the ring structure after mac_stop_ring(), any 3649 * illegal access to the ring structure coming from the driver will panic 3650 * the system. In order to protect the system from such inadverent access, 3651 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3652 * When packets are received on free'd up rings, MAC (through the generation 3653 * count mechanism) will drop such packets. 3654 */ 3655 static mac_ring_t * 3656 mac_ring_alloc(mac_impl_t *mip) 3657 { 3658 mac_ring_t *ring; 3659 3660 mutex_enter(&mip->mi_ring_lock); 3661 if (mip->mi_ring_freelist != NULL) { 3662 ring = mip->mi_ring_freelist; 3663 mip->mi_ring_freelist = ring->mr_next; 3664 bzero(ring, sizeof (mac_ring_t)); 3665 mutex_exit(&mip->mi_ring_lock); 3666 } else { 3667 mutex_exit(&mip->mi_ring_lock); 3668 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3669 } 3670 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3671 return (ring); 3672 } 3673 3674 static void 3675 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3676 { 3677 ASSERT(ring->mr_state == MR_FREE); 3678 3679 mutex_enter(&mip->mi_ring_lock); 3680 ring->mr_state = MR_FREE; 3681 ring->mr_flag = 0; 3682 ring->mr_next = mip->mi_ring_freelist; 3683 ring->mr_mip = NULL; 3684 mip->mi_ring_freelist = ring; 3685 mac_ring_stat_delete(ring); 3686 mutex_exit(&mip->mi_ring_lock); 3687 } 3688 3689 static void 3690 mac_ring_freeall(mac_impl_t *mip) 3691 { 3692 mac_ring_t *ring_next; 3693 mutex_enter(&mip->mi_ring_lock); 3694 mac_ring_t *ring = mip->mi_ring_freelist; 3695 while (ring != NULL) { 3696 ring_next = ring->mr_next; 3697 kmem_cache_free(mac_ring_cache, ring); 3698 ring = ring_next; 3699 } 3700 mip->mi_ring_freelist = NULL; 3701 mutex_exit(&mip->mi_ring_lock); 3702 } 3703 3704 int 3705 mac_start_ring(mac_ring_t *ring) 3706 { 3707 int rv = 0; 3708 3709 ASSERT(ring->mr_state == MR_FREE); 3710 3711 if (ring->mr_start != NULL) { 3712 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3713 if (rv != 0) 3714 return (rv); 3715 } 3716 3717 ring->mr_state = MR_INUSE; 3718 return (rv); 3719 } 3720 3721 void 3722 mac_stop_ring(mac_ring_t *ring) 3723 { 3724 ASSERT(ring->mr_state == MR_INUSE); 3725 3726 if (ring->mr_stop != NULL) 3727 ring->mr_stop(ring->mr_driver); 3728 3729 ring->mr_state = MR_FREE; 3730 3731 /* 3732 * Increment the ring generation number for this ring. 3733 */ 3734 ring->mr_gen_num++; 3735 } 3736 3737 int 3738 mac_start_group(mac_group_t *group) 3739 { 3740 int rv = 0; 3741 3742 if (group->mrg_start != NULL) 3743 rv = group->mrg_start(group->mrg_driver); 3744 3745 return (rv); 3746 } 3747 3748 void 3749 mac_stop_group(mac_group_t *group) 3750 { 3751 if (group->mrg_stop != NULL) 3752 group->mrg_stop(group->mrg_driver); 3753 } 3754 3755 /* 3756 * Called from mac_start() on the default Rx group. Broadcast and multicast 3757 * packets are received only on the default group. Hence the default group 3758 * needs to be up even if the primary client is not up, for the other groups 3759 * to be functional. We do this by calling this function at mac_start time 3760 * itself. However the broadcast packets that are received can't make their 3761 * way beyond mac_rx until a mac client creates a broadcast flow. 3762 */ 3763 static int 3764 mac_start_group_and_rings(mac_group_t *group) 3765 { 3766 mac_ring_t *ring; 3767 int rv = 0; 3768 3769 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3770 if ((rv = mac_start_group(group)) != 0) 3771 return (rv); 3772 3773 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3774 ASSERT(ring->mr_state == MR_FREE); 3775 if ((rv = mac_start_ring(ring)) != 0) 3776 goto error; 3777 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3778 } 3779 return (0); 3780 3781 error: 3782 mac_stop_group_and_rings(group); 3783 return (rv); 3784 } 3785 3786 /* Called from mac_stop on the default Rx group */ 3787 static void 3788 mac_stop_group_and_rings(mac_group_t *group) 3789 { 3790 mac_ring_t *ring; 3791 3792 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3793 if (ring->mr_state != MR_FREE) { 3794 mac_stop_ring(ring); 3795 ring->mr_flag = 0; 3796 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3797 } 3798 } 3799 mac_stop_group(group); 3800 } 3801 3802 3803 static mac_ring_t * 3804 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3805 mac_capab_rings_t *cap_rings) 3806 { 3807 mac_ring_t *ring, *rnext; 3808 mac_ring_info_t ring_info; 3809 ddi_intr_handle_t ddi_handle; 3810 3811 ring = mac_ring_alloc(mip); 3812 3813 /* Prepare basic information of ring */ 3814 3815 /* 3816 * Ring index is numbered to be unique across a particular device. 3817 * Ring index computation makes following assumptions: 3818 * - For drivers with static grouping (e.g. ixgbe, bge), 3819 * ring index exchanged with the driver (e.g. during mr_rget) 3820 * is unique only across the group the ring belongs to. 3821 * - Drivers with dynamic grouping (e.g. nxge), start 3822 * with single group (mrg_index = 0). 3823 */ 3824 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3825 ring->mr_type = group->mrg_type; 3826 ring->mr_gh = (mac_group_handle_t)group; 3827 3828 /* Insert the new ring to the list. */ 3829 ring->mr_next = group->mrg_rings; 3830 group->mrg_rings = ring; 3831 3832 /* Zero to reuse the info data structure */ 3833 bzero(&ring_info, sizeof (ring_info)); 3834 3835 /* Query ring information from driver */ 3836 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3837 index, &ring_info, (mac_ring_handle_t)ring); 3838 3839 ring->mr_info = ring_info; 3840 3841 /* 3842 * The interrupt handle could be shared among multiple rings. 3843 * Thus if there is a bunch of rings that are sharing an 3844 * interrupt, then only one ring among the bunch will be made 3845 * available for interrupt re-targeting; the rest will have 3846 * ddi_shared flag set to TRUE and would not be available for 3847 * be interrupt re-targeting. 3848 */ 3849 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3850 rnext = ring->mr_next; 3851 while (rnext != NULL) { 3852 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3853 ddi_handle) { 3854 /* 3855 * If default ring (mr_index == 0) is part 3856 * of a group of rings sharing an 3857 * interrupt, then set ddi_shared flag for 3858 * the default ring and give another ring 3859 * the chance to be re-targeted. 3860 */ 3861 if (rnext->mr_index == 0 && 3862 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3863 rnext->mr_info.mri_intr.mi_ddi_shared = 3864 B_TRUE; 3865 } else { 3866 ring->mr_info.mri_intr.mi_ddi_shared = 3867 B_TRUE; 3868 } 3869 break; 3870 } 3871 rnext = rnext->mr_next; 3872 } 3873 /* 3874 * If rnext is NULL, then no matching ddi_handle was found. 3875 * Rx rings get registered first. So if this is a Tx ring, 3876 * then go through all the Rx rings and see if there is a 3877 * matching ddi handle. 3878 */ 3879 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3880 mac_compare_ddi_handle(mip->mi_rx_groups, 3881 mip->mi_rx_group_count, ring); 3882 } 3883 } 3884 3885 /* Update ring's status */ 3886 ring->mr_state = MR_FREE; 3887 ring->mr_flag = 0; 3888 3889 /* Update the ring count of the group */ 3890 group->mrg_cur_count++; 3891 3892 /* Create per ring kstats */ 3893 if (ring->mr_stat != NULL) { 3894 ring->mr_mip = mip; 3895 mac_ring_stat_create(ring); 3896 } 3897 3898 return (ring); 3899 } 3900 3901 /* 3902 * Rings are chained together for easy regrouping. 3903 */ 3904 static void 3905 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3906 mac_capab_rings_t *cap_rings) 3907 { 3908 int index; 3909 3910 /* 3911 * Initialize all ring members of this group. Size of zero will not 3912 * enter the loop, so it's safe for initializing an empty group. 3913 */ 3914 for (index = size - 1; index >= 0; index--) 3915 (void) mac_init_ring(mip, group, index, cap_rings); 3916 } 3917 3918 int 3919 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3920 { 3921 mac_capab_rings_t *cap_rings; 3922 mac_group_t *group; 3923 mac_group_t *groups; 3924 mac_group_info_t group_info; 3925 uint_t group_free = 0; 3926 uint_t ring_left; 3927 mac_ring_t *ring; 3928 int g; 3929 int err = 0; 3930 uint_t grpcnt; 3931 boolean_t pseudo_txgrp = B_FALSE; 3932 3933 switch (rtype) { 3934 case MAC_RING_TYPE_RX: 3935 ASSERT(mip->mi_rx_groups == NULL); 3936 3937 cap_rings = &mip->mi_rx_rings_cap; 3938 cap_rings->mr_type = MAC_RING_TYPE_RX; 3939 break; 3940 case MAC_RING_TYPE_TX: 3941 ASSERT(mip->mi_tx_groups == NULL); 3942 3943 cap_rings = &mip->mi_tx_rings_cap; 3944 cap_rings->mr_type = MAC_RING_TYPE_TX; 3945 break; 3946 default: 3947 ASSERT(B_FALSE); 3948 } 3949 3950 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3951 return (0); 3952 grpcnt = cap_rings->mr_gnum; 3953 3954 /* 3955 * If we have multiple TX rings, but only one TX group, we can 3956 * create pseudo TX groups (one per TX ring) in the MAC layer, 3957 * except for an aggr. For an aggr currently we maintain only 3958 * one group with all the rings (for all its ports), going 3959 * forwards we might change this. 3960 */ 3961 if (rtype == MAC_RING_TYPE_TX && 3962 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3963 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3964 /* 3965 * The -1 here is because we create a default TX group 3966 * with all the rings in it. 3967 */ 3968 grpcnt = cap_rings->mr_rnum - 1; 3969 pseudo_txgrp = B_TRUE; 3970 } 3971 3972 /* 3973 * Allocate a contiguous buffer for all groups. 3974 */ 3975 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3976 3977 ring_left = cap_rings->mr_rnum; 3978 3979 /* 3980 * Get all ring groups if any, and get their ring members 3981 * if any. 3982 */ 3983 for (g = 0; g < grpcnt; g++) { 3984 group = groups + g; 3985 3986 /* Prepare basic information of the group */ 3987 group->mrg_index = g; 3988 group->mrg_type = rtype; 3989 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3990 group->mrg_mh = (mac_handle_t)mip; 3991 group->mrg_next = group + 1; 3992 3993 /* Zero to reuse the info data structure */ 3994 bzero(&group_info, sizeof (group_info)); 3995 3996 if (pseudo_txgrp) { 3997 /* 3998 * This is a pseudo group that we created, apart 3999 * from setting the state there is nothing to be 4000 * done. 4001 */ 4002 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4003 group_free++; 4004 continue; 4005 } 4006 /* Query group information from driver */ 4007 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4008 (mac_group_handle_t)group); 4009 4010 switch (cap_rings->mr_group_type) { 4011 case MAC_GROUP_TYPE_DYNAMIC: 4012 if (cap_rings->mr_gaddring == NULL || 4013 cap_rings->mr_gremring == NULL) { 4014 DTRACE_PROBE3( 4015 mac__init__rings_no_addremring, 4016 char *, mip->mi_name, 4017 mac_group_add_ring_t, 4018 cap_rings->mr_gaddring, 4019 mac_group_add_ring_t, 4020 cap_rings->mr_gremring); 4021 err = EINVAL; 4022 goto bail; 4023 } 4024 4025 switch (rtype) { 4026 case MAC_RING_TYPE_RX: 4027 /* 4028 * The first RX group must have non-zero 4029 * rings, and the following groups must 4030 * have zero rings. 4031 */ 4032 if (g == 0 && group_info.mgi_count == 0) { 4033 DTRACE_PROBE1( 4034 mac__init__rings__rx__def__zero, 4035 char *, mip->mi_name); 4036 err = EINVAL; 4037 goto bail; 4038 } 4039 if (g > 0 && group_info.mgi_count != 0) { 4040 DTRACE_PROBE3( 4041 mac__init__rings__rx__nonzero, 4042 char *, mip->mi_name, 4043 int, g, int, group_info.mgi_count); 4044 err = EINVAL; 4045 goto bail; 4046 } 4047 break; 4048 case MAC_RING_TYPE_TX: 4049 /* 4050 * All TX ring groups must have zero rings. 4051 */ 4052 if (group_info.mgi_count != 0) { 4053 DTRACE_PROBE3( 4054 mac__init__rings__tx__nonzero, 4055 char *, mip->mi_name, 4056 int, g, int, group_info.mgi_count); 4057 err = EINVAL; 4058 goto bail; 4059 } 4060 break; 4061 } 4062 break; 4063 case MAC_GROUP_TYPE_STATIC: 4064 /* 4065 * Note that an empty group is allowed, e.g., an aggr 4066 * would start with an empty group. 4067 */ 4068 break; 4069 default: 4070 /* unknown group type */ 4071 DTRACE_PROBE2(mac__init__rings__unknown__type, 4072 char *, mip->mi_name, 4073 int, cap_rings->mr_group_type); 4074 err = EINVAL; 4075 goto bail; 4076 } 4077 4078 4079 /* 4080 * Driver must register group->mgi_addmac/remmac() for rx groups 4081 * to support multiple MAC addresses. 4082 */ 4083 if (rtype == MAC_RING_TYPE_RX && 4084 ((group_info.mgi_addmac == NULL) || 4085 (group_info.mgi_remmac == NULL))) { 4086 err = EINVAL; 4087 goto bail; 4088 } 4089 4090 /* Cache driver-supplied information */ 4091 group->mrg_info = group_info; 4092 4093 /* Update the group's status and group count. */ 4094 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4095 group_free++; 4096 4097 group->mrg_rings = NULL; 4098 group->mrg_cur_count = 0; 4099 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4100 ring_left -= group_info.mgi_count; 4101 4102 /* The current group size should be equal to default value */ 4103 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4104 } 4105 4106 /* Build up a dummy group for free resources as a pool */ 4107 group = groups + grpcnt; 4108 4109 /* Prepare basic information of the group */ 4110 group->mrg_index = -1; 4111 group->mrg_type = rtype; 4112 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4113 group->mrg_mh = (mac_handle_t)mip; 4114 group->mrg_next = NULL; 4115 4116 /* 4117 * If there are ungrouped rings, allocate a continuous buffer for 4118 * remaining resources. 4119 */ 4120 if (ring_left != 0) { 4121 group->mrg_rings = NULL; 4122 group->mrg_cur_count = 0; 4123 mac_init_group(mip, group, ring_left, cap_rings); 4124 4125 /* The current group size should be equal to ring_left */ 4126 ASSERT(group->mrg_cur_count == ring_left); 4127 4128 ring_left = 0; 4129 4130 /* Update this group's status */ 4131 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4132 } else 4133 group->mrg_rings = NULL; 4134 4135 ASSERT(ring_left == 0); 4136 4137 bail: 4138 4139 /* Cache other important information to finalize the initialization */ 4140 switch (rtype) { 4141 case MAC_RING_TYPE_RX: 4142 mip->mi_rx_group_type = cap_rings->mr_group_type; 4143 mip->mi_rx_group_count = cap_rings->mr_gnum; 4144 mip->mi_rx_groups = groups; 4145 mip->mi_rx_donor_grp = groups; 4146 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4147 /* 4148 * The default ring is reserved since it is 4149 * used for sending the broadcast etc. packets. 4150 */ 4151 mip->mi_rxrings_avail = 4152 mip->mi_rx_groups->mrg_cur_count - 1; 4153 mip->mi_rxrings_rsvd = 1; 4154 } 4155 /* 4156 * The default group cannot be reserved. It is used by 4157 * all the clients that do not have an exclusive group. 4158 */ 4159 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4160 mip->mi_rxhwclnt_used = 1; 4161 break; 4162 case MAC_RING_TYPE_TX: 4163 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4164 cap_rings->mr_group_type; 4165 mip->mi_tx_group_count = grpcnt; 4166 mip->mi_tx_group_free = group_free; 4167 mip->mi_tx_groups = groups; 4168 4169 group = groups + grpcnt; 4170 ring = group->mrg_rings; 4171 /* 4172 * The ring can be NULL in the case of aggr. Aggr will 4173 * have an empty Tx group which will get populated 4174 * later when pseudo Tx rings are added after 4175 * mac_register() is done. 4176 */ 4177 if (ring == NULL) { 4178 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4179 /* 4180 * pass the group to aggr so it can add Tx 4181 * rings to the group later. 4182 */ 4183 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4184 (mac_group_handle_t)group); 4185 /* 4186 * Even though there are no rings at this time 4187 * (rings will come later), set the group 4188 * state to registered. 4189 */ 4190 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4191 } else { 4192 /* 4193 * Ring 0 is used as the default one and it could be 4194 * assigned to a client as well. 4195 */ 4196 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4197 ring = ring->mr_next; 4198 ASSERT(ring->mr_index == 0); 4199 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4200 } 4201 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4202 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4203 /* 4204 * The default ring cannot be reserved. 4205 */ 4206 mip->mi_txrings_rsvd = 1; 4207 } 4208 /* 4209 * The default group cannot be reserved. It will be shared 4210 * by clients that do not have an exclusive group. 4211 */ 4212 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4213 mip->mi_txhwclnt_used = 1; 4214 break; 4215 default: 4216 ASSERT(B_FALSE); 4217 } 4218 4219 if (err != 0) 4220 mac_free_rings(mip, rtype); 4221 4222 return (err); 4223 } 4224 4225 /* 4226 * The ddi interrupt handle could be shared amoung rings. If so, compare 4227 * the new ring's ddi handle with the existing ones and set ddi_shared 4228 * flag. 4229 */ 4230 void 4231 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4232 { 4233 mac_group_t *group; 4234 mac_ring_t *ring; 4235 ddi_intr_handle_t ddi_handle; 4236 int g; 4237 4238 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4239 for (g = 0; g < grpcnt; g++) { 4240 group = groups + g; 4241 for (ring = group->mrg_rings; ring != NULL; 4242 ring = ring->mr_next) { 4243 if (ring == cring) 4244 continue; 4245 if (ring->mr_info.mri_intr.mi_ddi_handle == 4246 ddi_handle) { 4247 if (cring->mr_type == MAC_RING_TYPE_RX && 4248 ring->mr_index == 0 && 4249 !ring->mr_info.mri_intr.mi_ddi_shared) { 4250 ring->mr_info.mri_intr.mi_ddi_shared = 4251 B_TRUE; 4252 } else { 4253 cring->mr_info.mri_intr.mi_ddi_shared = 4254 B_TRUE; 4255 } 4256 return; 4257 } 4258 } 4259 } 4260 } 4261 4262 /* 4263 * Called to free all groups of particular type (RX or TX). It's assumed that 4264 * no clients are using these groups. 4265 */ 4266 void 4267 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4268 { 4269 mac_group_t *group, *groups; 4270 uint_t group_count; 4271 4272 switch (rtype) { 4273 case MAC_RING_TYPE_RX: 4274 if (mip->mi_rx_groups == NULL) 4275 return; 4276 4277 groups = mip->mi_rx_groups; 4278 group_count = mip->mi_rx_group_count; 4279 4280 mip->mi_rx_groups = NULL; 4281 mip->mi_rx_donor_grp = NULL; 4282 mip->mi_rx_group_count = 0; 4283 break; 4284 case MAC_RING_TYPE_TX: 4285 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4286 4287 if (mip->mi_tx_groups == NULL) 4288 return; 4289 4290 groups = mip->mi_tx_groups; 4291 group_count = mip->mi_tx_group_count; 4292 4293 mip->mi_tx_groups = NULL; 4294 mip->mi_tx_group_count = 0; 4295 mip->mi_tx_group_free = 0; 4296 mip->mi_default_tx_ring = NULL; 4297 break; 4298 default: 4299 ASSERT(B_FALSE); 4300 } 4301 4302 for (group = groups; group != NULL; group = group->mrg_next) { 4303 mac_ring_t *ring; 4304 4305 if (group->mrg_cur_count == 0) 4306 continue; 4307 4308 ASSERT(group->mrg_rings != NULL); 4309 4310 while ((ring = group->mrg_rings) != NULL) { 4311 group->mrg_rings = ring->mr_next; 4312 mac_ring_free(mip, ring); 4313 } 4314 } 4315 4316 /* Free all the cached rings */ 4317 mac_ring_freeall(mip); 4318 /* Free the block of group data strutures */ 4319 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4320 } 4321 4322 /* 4323 * Associate a MAC address with a receive group. 4324 * 4325 * The return value of this function should always be checked properly, because 4326 * any type of failure could cause unexpected results. A group can be added 4327 * or removed with a MAC address only after it has been reserved. Ideally, 4328 * a successful reservation always leads to calling mac_group_addmac() to 4329 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4330 * always imply that the group is functioning abnormally. 4331 * 4332 * Currently this function is called everywhere, and it reflects assumptions 4333 * about MAC addresses in the implementation. CR 6735196. 4334 */ 4335 int 4336 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4337 { 4338 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4339 ASSERT(group->mrg_info.mgi_addmac != NULL); 4340 4341 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4342 } 4343 4344 /* 4345 * Remove the association between MAC address and receive group. 4346 */ 4347 int 4348 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4349 { 4350 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4351 ASSERT(group->mrg_info.mgi_remmac != NULL); 4352 4353 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4354 } 4355 4356 /* 4357 * This is the entry point for packets transmitted through the bridging code. 4358 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4359 * pointer may be NULL to select the default ring. 4360 */ 4361 mblk_t * 4362 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4363 { 4364 mac_handle_t mh; 4365 4366 /* 4367 * Once we take a reference on the bridge link, the bridge 4368 * module itself can't unload, so the callback pointers are 4369 * stable. 4370 */ 4371 mutex_enter(&mip->mi_bridge_lock); 4372 if ((mh = mip->mi_bridge_link) != NULL) 4373 mac_bridge_ref_cb(mh, B_TRUE); 4374 mutex_exit(&mip->mi_bridge_lock); 4375 if (mh == NULL) { 4376 MAC_RING_TX(mip, rh, mp, mp); 4377 } else { 4378 mp = mac_bridge_tx_cb(mh, rh, mp); 4379 mac_bridge_ref_cb(mh, B_FALSE); 4380 } 4381 4382 return (mp); 4383 } 4384 4385 /* 4386 * Find a ring from its index. 4387 */ 4388 mac_ring_handle_t 4389 mac_find_ring(mac_group_handle_t gh, int index) 4390 { 4391 mac_group_t *group = (mac_group_t *)gh; 4392 mac_ring_t *ring = group->mrg_rings; 4393 4394 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4395 if (ring->mr_index == index) 4396 break; 4397 4398 return ((mac_ring_handle_t)ring); 4399 } 4400 /* 4401 * Add a ring to an existing group. 4402 * 4403 * The ring must be either passed directly (for example if the ring 4404 * movement is initiated by the framework), or specified through a driver 4405 * index (for example when the ring is added by the driver. 4406 * 4407 * The caller needs to call mac_perim_enter() before calling this function. 4408 */ 4409 int 4410 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4411 { 4412 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4413 mac_capab_rings_t *cap_rings; 4414 boolean_t driver_call = (ring == NULL); 4415 mac_group_type_t group_type; 4416 int ret = 0; 4417 flow_entry_t *flent; 4418 4419 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4420 4421 switch (group->mrg_type) { 4422 case MAC_RING_TYPE_RX: 4423 cap_rings = &mip->mi_rx_rings_cap; 4424 group_type = mip->mi_rx_group_type; 4425 break; 4426 case MAC_RING_TYPE_TX: 4427 cap_rings = &mip->mi_tx_rings_cap; 4428 group_type = mip->mi_tx_group_type; 4429 break; 4430 default: 4431 ASSERT(B_FALSE); 4432 } 4433 4434 /* 4435 * There should be no ring with the same ring index in the target 4436 * group. 4437 */ 4438 ASSERT(mac_find_ring((mac_group_handle_t)group, 4439 driver_call ? index : ring->mr_index) == NULL); 4440 4441 if (driver_call) { 4442 /* 4443 * The function is called as a result of a request from 4444 * a driver to add a ring to an existing group, for example 4445 * from the aggregation driver. Allocate a new mac_ring_t 4446 * for that ring. 4447 */ 4448 ring = mac_init_ring(mip, group, index, cap_rings); 4449 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4450 } else { 4451 /* 4452 * The function is called as a result of a MAC layer request 4453 * to add a ring to an existing group. In this case the 4454 * ring is being moved between groups, which requires 4455 * the underlying driver to support dynamic grouping, 4456 * and the mac_ring_t already exists. 4457 */ 4458 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4459 ASSERT(group->mrg_driver == NULL || 4460 cap_rings->mr_gaddring != NULL); 4461 ASSERT(ring->mr_gh == NULL); 4462 } 4463 4464 /* 4465 * At this point the ring should not be in use, and it should be 4466 * of the right for the target group. 4467 */ 4468 ASSERT(ring->mr_state < MR_INUSE); 4469 ASSERT(ring->mr_srs == NULL); 4470 ASSERT(ring->mr_type == group->mrg_type); 4471 4472 if (!driver_call) { 4473 /* 4474 * Add the driver level hardware ring if the process was not 4475 * initiated by the driver, and the target group is not the 4476 * group. 4477 */ 4478 if (group->mrg_driver != NULL) { 4479 cap_rings->mr_gaddring(group->mrg_driver, 4480 ring->mr_driver, ring->mr_type); 4481 } 4482 4483 /* 4484 * Insert the ring ahead existing rings. 4485 */ 4486 ring->mr_next = group->mrg_rings; 4487 group->mrg_rings = ring; 4488 ring->mr_gh = (mac_group_handle_t)group; 4489 group->mrg_cur_count++; 4490 } 4491 4492 /* 4493 * If the group has not been actively used, we're done. 4494 */ 4495 if (group->mrg_index != -1 && 4496 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4497 return (0); 4498 4499 /* 4500 * Start the ring if needed. Failure causes to undo the grouping action. 4501 */ 4502 if (ring->mr_state != MR_INUSE) { 4503 if ((ret = mac_start_ring(ring)) != 0) { 4504 if (!driver_call) { 4505 cap_rings->mr_gremring(group->mrg_driver, 4506 ring->mr_driver, ring->mr_type); 4507 } 4508 group->mrg_cur_count--; 4509 group->mrg_rings = ring->mr_next; 4510 4511 ring->mr_gh = NULL; 4512 4513 if (driver_call) 4514 mac_ring_free(mip, ring); 4515 4516 return (ret); 4517 } 4518 } 4519 4520 /* 4521 * Set up SRS/SR according to the ring type. 4522 */ 4523 switch (ring->mr_type) { 4524 case MAC_RING_TYPE_RX: 4525 /* 4526 * Setup SRS on top of the new ring if the group is 4527 * reserved for someones exclusive use. 4528 */ 4529 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4530 mac_client_impl_t *mcip; 4531 4532 mcip = MAC_GROUP_ONLY_CLIENT(group); 4533 /* 4534 * Even though this group is reserved we migth still 4535 * have multiple clients, i.e a VLAN shares the 4536 * group with the primary mac client. 4537 */ 4538 if (mcip != NULL) { 4539 flent = mcip->mci_flent; 4540 ASSERT(flent->fe_rx_srs_cnt > 0); 4541 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4542 mac_fanout_setup(mcip, flent, 4543 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4544 mcip, NULL, NULL); 4545 } else { 4546 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4547 } 4548 } 4549 break; 4550 case MAC_RING_TYPE_TX: 4551 { 4552 mac_grp_client_t *mgcp = group->mrg_clients; 4553 mac_client_impl_t *mcip; 4554 mac_soft_ring_set_t *mac_srs; 4555 mac_srs_tx_t *tx; 4556 4557 if (MAC_GROUP_NO_CLIENT(group)) { 4558 if (ring->mr_state == MR_INUSE) 4559 mac_stop_ring(ring); 4560 ring->mr_flag = 0; 4561 break; 4562 } 4563 /* 4564 * If the rings are being moved to a group that has 4565 * clients using it, then add the new rings to the 4566 * clients SRS. 4567 */ 4568 while (mgcp != NULL) { 4569 boolean_t is_aggr; 4570 4571 mcip = mgcp->mgc_client; 4572 flent = mcip->mci_flent; 4573 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4574 mac_srs = MCIP_TX_SRS(mcip); 4575 tx = &mac_srs->srs_tx; 4576 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4577 /* 4578 * If we are growing from 1 to multiple rings. 4579 */ 4580 if (tx->st_mode == SRS_TX_BW || 4581 tx->st_mode == SRS_TX_SERIALIZE || 4582 tx->st_mode == SRS_TX_DEFAULT) { 4583 mac_ring_t *tx_ring = tx->st_arg2; 4584 4585 tx->st_arg2 = NULL; 4586 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4587 mac_tx_srs_add_ring(mac_srs, tx_ring); 4588 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4589 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4590 SRS_TX_BW_FANOUT; 4591 } else { 4592 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4593 SRS_TX_FANOUT; 4594 } 4595 tx->st_func = mac_tx_get_func(tx->st_mode); 4596 } 4597 mac_tx_srs_add_ring(mac_srs, ring); 4598 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4599 mac_rx_deliver, mcip, NULL, NULL); 4600 mac_tx_client_restart((mac_client_handle_t)mcip); 4601 mgcp = mgcp->mgc_next; 4602 } 4603 break; 4604 } 4605 default: 4606 ASSERT(B_FALSE); 4607 } 4608 /* 4609 * For aggr, the default ring will be NULL to begin with. If it 4610 * is NULL, then pick the first ring that gets added as the 4611 * default ring. Any ring in an aggregation can be removed at 4612 * any time (by the user action of removing a link) and if the 4613 * current default ring gets removed, then a new one gets 4614 * picked (see i_mac_group_rem_ring()). 4615 */ 4616 if (mip->mi_state_flags & MIS_IS_AGGR && 4617 mip->mi_default_tx_ring == NULL && 4618 ring->mr_type == MAC_RING_TYPE_TX) { 4619 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4620 } 4621 4622 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4623 return (0); 4624 } 4625 4626 /* 4627 * Remove a ring from it's current group. MAC internal function for dynamic 4628 * grouping. 4629 * 4630 * The caller needs to call mac_perim_enter() before calling this function. 4631 */ 4632 void 4633 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4634 boolean_t driver_call) 4635 { 4636 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4637 mac_capab_rings_t *cap_rings = NULL; 4638 mac_group_type_t group_type; 4639 4640 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4641 4642 ASSERT(mac_find_ring((mac_group_handle_t)group, 4643 ring->mr_index) == (mac_ring_handle_t)ring); 4644 ASSERT((mac_group_t *)ring->mr_gh == group); 4645 ASSERT(ring->mr_type == group->mrg_type); 4646 4647 if (ring->mr_state == MR_INUSE) 4648 mac_stop_ring(ring); 4649 switch (ring->mr_type) { 4650 case MAC_RING_TYPE_RX: 4651 group_type = mip->mi_rx_group_type; 4652 cap_rings = &mip->mi_rx_rings_cap; 4653 4654 /* 4655 * Only hardware classified packets hold a reference to the 4656 * ring all the way up the Rx path. mac_rx_srs_remove() 4657 * will take care of quiescing the Rx path and removing the 4658 * SRS. The software classified path neither holds a reference 4659 * nor any association with the ring in mac_rx. 4660 */ 4661 if (ring->mr_srs != NULL) { 4662 mac_rx_srs_remove(ring->mr_srs); 4663 ring->mr_srs = NULL; 4664 } 4665 4666 break; 4667 case MAC_RING_TYPE_TX: 4668 { 4669 mac_grp_client_t *mgcp; 4670 mac_client_impl_t *mcip; 4671 mac_soft_ring_set_t *mac_srs; 4672 mac_srs_tx_t *tx; 4673 mac_ring_t *rem_ring; 4674 mac_group_t *defgrp; 4675 uint_t ring_info = 0; 4676 4677 /* 4678 * For TX this function is invoked in three 4679 * cases: 4680 * 4681 * 1) In the case of a failure during the 4682 * initial creation of a group when a share is 4683 * associated with a MAC client. So the SRS is not 4684 * yet setup, and will be setup later after the 4685 * group has been reserved and populated. 4686 * 4687 * 2) From mac_release_tx_group() when freeing 4688 * a TX SRS. 4689 * 4690 * 3) In the case of aggr, when a port gets removed, 4691 * the pseudo Tx rings that it exposed gets removed. 4692 * 4693 * In the first two cases the SRS and its soft 4694 * rings are already quiesced. 4695 */ 4696 if (driver_call) { 4697 mac_client_impl_t *mcip; 4698 mac_soft_ring_set_t *mac_srs; 4699 mac_soft_ring_t *sringp; 4700 mac_srs_tx_t *srs_tx; 4701 4702 if (mip->mi_state_flags & MIS_IS_AGGR && 4703 mip->mi_default_tx_ring == 4704 (mac_ring_handle_t)ring) { 4705 /* pick a new default Tx ring */ 4706 mip->mi_default_tx_ring = 4707 (group->mrg_rings != ring) ? 4708 (mac_ring_handle_t)group->mrg_rings : 4709 (mac_ring_handle_t)(ring->mr_next); 4710 } 4711 /* Presently only aggr case comes here */ 4712 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4713 break; 4714 4715 mcip = MAC_GROUP_ONLY_CLIENT(group); 4716 ASSERT(mcip != NULL); 4717 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4718 mac_srs = MCIP_TX_SRS(mcip); 4719 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4720 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4721 srs_tx = &mac_srs->srs_tx; 4722 /* 4723 * Wakeup any callers blocked on this 4724 * Tx ring due to flow control. 4725 */ 4726 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4727 ASSERT(sringp != NULL); 4728 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4729 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4730 mac_tx_srs_del_ring(mac_srs, ring); 4731 mac_tx_client_restart((mac_client_handle_t)mcip); 4732 break; 4733 } 4734 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4735 group_type = mip->mi_tx_group_type; 4736 cap_rings = &mip->mi_tx_rings_cap; 4737 /* 4738 * See if we need to take it out of the MAC clients using 4739 * this group 4740 */ 4741 if (MAC_GROUP_NO_CLIENT(group)) 4742 break; 4743 mgcp = group->mrg_clients; 4744 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4745 while (mgcp != NULL) { 4746 mcip = mgcp->mgc_client; 4747 mac_srs = MCIP_TX_SRS(mcip); 4748 tx = &mac_srs->srs_tx; 4749 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4750 /* 4751 * If we are here when removing rings from the 4752 * defgroup, mac_reserve_tx_ring would have 4753 * already deleted the ring from the MAC 4754 * clients in the group. 4755 */ 4756 if (group != defgrp) { 4757 mac_tx_invoke_callbacks(mcip, 4758 (mac_tx_cookie_t) 4759 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4760 mac_tx_srs_del_ring(mac_srs, ring); 4761 } 4762 /* 4763 * Additionally, if we are left with only 4764 * one ring in the group after this, we need 4765 * to modify the mode etc. to. (We haven't 4766 * yet taken the ring out, so we check with 2). 4767 */ 4768 if (group->mrg_cur_count == 2) { 4769 if (ring->mr_next == NULL) 4770 rem_ring = group->mrg_rings; 4771 else 4772 rem_ring = ring->mr_next; 4773 mac_tx_invoke_callbacks(mcip, 4774 (mac_tx_cookie_t) 4775 mac_tx_srs_get_soft_ring(mac_srs, 4776 rem_ring)); 4777 mac_tx_srs_del_ring(mac_srs, rem_ring); 4778 if (rem_ring->mr_state != MR_INUSE) { 4779 (void) mac_start_ring(rem_ring); 4780 } 4781 tx->st_arg2 = (void *)rem_ring; 4782 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4783 ring_info = mac_hwring_getinfo( 4784 (mac_ring_handle_t)rem_ring); 4785 /* 4786 * We are shrinking from multiple 4787 * to 1 ring. 4788 */ 4789 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4790 tx->st_mode = SRS_TX_BW; 4791 } else if (mac_tx_serialize || 4792 (ring_info & MAC_RING_TX_SERIALIZE)) { 4793 tx->st_mode = SRS_TX_SERIALIZE; 4794 } else { 4795 tx->st_mode = SRS_TX_DEFAULT; 4796 } 4797 tx->st_func = mac_tx_get_func(tx->st_mode); 4798 } 4799 mac_tx_client_restart((mac_client_handle_t)mcip); 4800 mgcp = mgcp->mgc_next; 4801 } 4802 break; 4803 } 4804 default: 4805 ASSERT(B_FALSE); 4806 } 4807 4808 /* 4809 * Remove the ring from the group. 4810 */ 4811 if (ring == group->mrg_rings) 4812 group->mrg_rings = ring->mr_next; 4813 else { 4814 mac_ring_t *pre; 4815 4816 pre = group->mrg_rings; 4817 while (pre->mr_next != ring) 4818 pre = pre->mr_next; 4819 pre->mr_next = ring->mr_next; 4820 } 4821 group->mrg_cur_count--; 4822 4823 if (!driver_call) { 4824 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4825 ASSERT(group->mrg_driver == NULL || 4826 cap_rings->mr_gremring != NULL); 4827 4828 /* 4829 * Remove the driver level hardware ring. 4830 */ 4831 if (group->mrg_driver != NULL) { 4832 cap_rings->mr_gremring(group->mrg_driver, 4833 ring->mr_driver, ring->mr_type); 4834 } 4835 } 4836 4837 ring->mr_gh = NULL; 4838 if (driver_call) 4839 mac_ring_free(mip, ring); 4840 else 4841 ring->mr_flag = 0; 4842 } 4843 4844 /* 4845 * Move a ring to the target group. If needed, remove the ring from the group 4846 * that it currently belongs to. 4847 * 4848 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4849 */ 4850 static int 4851 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4852 { 4853 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4854 int rv; 4855 4856 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4857 ASSERT(d_group != NULL); 4858 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4859 4860 if (s_group == d_group) 4861 return (0); 4862 4863 /* 4864 * Remove it from current group first. 4865 */ 4866 if (s_group != NULL) 4867 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4868 4869 /* 4870 * Add it to the new group. 4871 */ 4872 rv = i_mac_group_add_ring(d_group, ring, 0); 4873 if (rv != 0) { 4874 /* 4875 * Failed to add ring back to source group. If 4876 * that fails, the ring is stuck in limbo, log message. 4877 */ 4878 if (i_mac_group_add_ring(s_group, ring, 0)) { 4879 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4880 mip->mi_name, (void *)ring); 4881 } 4882 } 4883 4884 return (rv); 4885 } 4886 4887 /* 4888 * Find a MAC address according to its value. 4889 */ 4890 mac_address_t * 4891 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4892 { 4893 mac_address_t *map; 4894 4895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4896 4897 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4898 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4899 break; 4900 } 4901 4902 return (map); 4903 } 4904 4905 /* 4906 * Check whether the MAC address is shared by multiple clients. 4907 */ 4908 boolean_t 4909 mac_check_macaddr_shared(mac_address_t *map) 4910 { 4911 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4912 4913 return (map->ma_nusers > 1); 4914 } 4915 4916 /* 4917 * Remove the specified MAC address from the MAC address list and free it. 4918 */ 4919 static void 4920 mac_free_macaddr(mac_address_t *map) 4921 { 4922 mac_impl_t *mip = map->ma_mip; 4923 4924 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4925 ASSERT(mip->mi_addresses != NULL); 4926 4927 map = mac_find_macaddr(mip, map->ma_addr); 4928 4929 ASSERT(map != NULL); 4930 ASSERT(map->ma_nusers == 0); 4931 4932 if (map == mip->mi_addresses) { 4933 mip->mi_addresses = map->ma_next; 4934 } else { 4935 mac_address_t *pre; 4936 4937 pre = mip->mi_addresses; 4938 while (pre->ma_next != map) 4939 pre = pre->ma_next; 4940 pre->ma_next = map->ma_next; 4941 } 4942 4943 kmem_free(map, sizeof (mac_address_t)); 4944 } 4945 4946 /* 4947 * Add a MAC address reference for a client. If the desired MAC address 4948 * exists, add a reference to it. Otherwise, add the new address by adding 4949 * it to a reserved group or setting promiscuous mode. Won't try different 4950 * group is the group is non-NULL, so the caller must explictly share 4951 * default group when needed. 4952 * 4953 * Note, the primary MAC address is initialized at registration time, so 4954 * to add it to default group only need to activate it if its reference 4955 * count is still zero. Also, some drivers may not have advertised RINGS 4956 * capability. 4957 */ 4958 int 4959 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4960 boolean_t use_hw) 4961 { 4962 mac_address_t *map; 4963 int err = 0; 4964 boolean_t allocated_map = B_FALSE; 4965 4966 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4967 4968 map = mac_find_macaddr(mip, mac_addr); 4969 4970 /* 4971 * If the new MAC address has not been added. Allocate a new one 4972 * and set it up. 4973 */ 4974 if (map == NULL) { 4975 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4976 map->ma_len = mip->mi_type->mt_addr_length; 4977 bcopy(mac_addr, map->ma_addr, map->ma_len); 4978 map->ma_nusers = 0; 4979 map->ma_group = group; 4980 map->ma_mip = mip; 4981 4982 /* add the new MAC address to the head of the address list */ 4983 map->ma_next = mip->mi_addresses; 4984 mip->mi_addresses = map; 4985 4986 allocated_map = B_TRUE; 4987 } 4988 4989 ASSERT(map->ma_group == NULL || map->ma_group == group); 4990 if (map->ma_group == NULL) 4991 map->ma_group = group; 4992 4993 /* 4994 * If the MAC address is already in use, simply account for the 4995 * new client. 4996 */ 4997 if (map->ma_nusers++ > 0) 4998 return (0); 4999 5000 /* 5001 * Activate this MAC address by adding it to the reserved group. 5002 */ 5003 if (group != NULL) { 5004 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 5005 if (err == 0) { 5006 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5007 return (0); 5008 } 5009 } 5010 5011 /* 5012 * The MAC address addition failed. If the client requires a 5013 * hardware classified MAC address, fail the operation. 5014 */ 5015 if (use_hw) { 5016 err = ENOSPC; 5017 goto bail; 5018 } 5019 5020 /* 5021 * Try promiscuous mode. 5022 * 5023 * For drivers that don't advertise RINGS capability, do 5024 * nothing for the primary address. 5025 */ 5026 if ((group == NULL) && 5027 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5028 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5029 return (0); 5030 } 5031 5032 /* 5033 * Enable promiscuous mode in order to receive traffic 5034 * to the new MAC address. 5035 */ 5036 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5037 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5038 return (0); 5039 } 5040 5041 /* 5042 * Free the MAC address that could not be added. Don't free 5043 * a pre-existing address, it could have been the entry 5044 * for the primary MAC address which was pre-allocated by 5045 * mac_init_macaddr(), and which must remain on the list. 5046 */ 5047 bail: 5048 map->ma_nusers--; 5049 if (allocated_map) 5050 mac_free_macaddr(map); 5051 return (err); 5052 } 5053 5054 /* 5055 * Remove a reference to a MAC address. This may cause to remove the MAC 5056 * address from an associated group or to turn off promiscuous mode. 5057 * The caller needs to handle the failure properly. 5058 */ 5059 int 5060 mac_remove_macaddr(mac_address_t *map) 5061 { 5062 mac_impl_t *mip = map->ma_mip; 5063 int err = 0; 5064 5065 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5066 5067 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 5068 5069 /* 5070 * If it's not the last client using this MAC address, only update 5071 * the MAC clients count. 5072 */ 5073 if (--map->ma_nusers > 0) 5074 return (0); 5075 5076 /* 5077 * The MAC address is no longer used by any MAC client, so remove 5078 * it from its associated group, or turn off promiscuous mode 5079 * if it was enabled for the MAC address. 5080 */ 5081 switch (map->ma_type) { 5082 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5083 /* 5084 * Don't free the preset primary address for drivers that 5085 * don't advertise RINGS capability. 5086 */ 5087 if (map->ma_group == NULL) 5088 return (0); 5089 5090 err = mac_group_remmac(map->ma_group, map->ma_addr); 5091 if (err == 0) 5092 map->ma_group = NULL; 5093 break; 5094 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5095 err = i_mac_promisc_set(mip, B_FALSE); 5096 break; 5097 default: 5098 ASSERT(B_FALSE); 5099 } 5100 5101 if (err != 0) 5102 return (err); 5103 5104 /* 5105 * We created MAC address for the primary one at registration, so we 5106 * won't free it here. mac_fini_macaddr() will take care of it. 5107 */ 5108 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5109 mac_free_macaddr(map); 5110 5111 return (0); 5112 } 5113 5114 /* 5115 * Update an existing MAC address. The caller need to make sure that the new 5116 * value has not been used. 5117 */ 5118 int 5119 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5120 { 5121 mac_impl_t *mip = map->ma_mip; 5122 int err = 0; 5123 5124 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5125 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5126 5127 switch (map->ma_type) { 5128 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5129 /* 5130 * Update the primary address for drivers that are not 5131 * RINGS capable. 5132 */ 5133 if (mip->mi_rx_groups == NULL) { 5134 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5135 mac_addr); 5136 if (err != 0) 5137 return (err); 5138 break; 5139 } 5140 5141 /* 5142 * If this MAC address is not currently in use, 5143 * simply break out and update the value. 5144 */ 5145 if (map->ma_nusers == 0) 5146 break; 5147 5148 /* 5149 * Need to replace the MAC address associated with a group. 5150 */ 5151 err = mac_group_remmac(map->ma_group, map->ma_addr); 5152 if (err != 0) 5153 return (err); 5154 5155 err = mac_group_addmac(map->ma_group, mac_addr); 5156 5157 /* 5158 * Failure hints hardware error. The MAC layer needs to 5159 * have error notification facility to handle this. 5160 * Now, simply try to restore the value. 5161 */ 5162 if (err != 0) 5163 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5164 5165 break; 5166 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5167 /* 5168 * Need to do nothing more if in promiscuous mode. 5169 */ 5170 break; 5171 default: 5172 ASSERT(B_FALSE); 5173 } 5174 5175 /* 5176 * Successfully replaced the MAC address. 5177 */ 5178 if (err == 0) 5179 bcopy(mac_addr, map->ma_addr, map->ma_len); 5180 5181 return (err); 5182 } 5183 5184 /* 5185 * Freshen the MAC address with new value. Its caller must have updated the 5186 * hardware MAC address before calling this function. 5187 * This funcitons is supposed to be used to handle the MAC address change 5188 * notification from underlying drivers. 5189 */ 5190 void 5191 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5192 { 5193 mac_impl_t *mip = map->ma_mip; 5194 5195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5196 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5197 5198 /* 5199 * Freshen the MAC address with new value. 5200 */ 5201 bcopy(mac_addr, map->ma_addr, map->ma_len); 5202 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5203 5204 /* 5205 * Update all MAC clients that share this MAC address. 5206 */ 5207 mac_unicast_update_clients(mip, map); 5208 } 5209 5210 /* 5211 * Set up the primary MAC address. 5212 */ 5213 void 5214 mac_init_macaddr(mac_impl_t *mip) 5215 { 5216 mac_address_t *map; 5217 5218 /* 5219 * The reference count is initialized to zero, until it's really 5220 * activated. 5221 */ 5222 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5223 map->ma_len = mip->mi_type->mt_addr_length; 5224 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5225 5226 /* 5227 * If driver advertises RINGS capability, it shouldn't have initialized 5228 * its primary MAC address. For other drivers, including VNIC, the 5229 * primary address must work after registration. 5230 */ 5231 if (mip->mi_rx_groups == NULL) 5232 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5233 5234 map->ma_mip = mip; 5235 5236 mip->mi_addresses = map; 5237 } 5238 5239 /* 5240 * Clean up the primary MAC address. Note, only one primary MAC address 5241 * is allowed. All other MAC addresses must have been freed appropriately. 5242 */ 5243 void 5244 mac_fini_macaddr(mac_impl_t *mip) 5245 { 5246 mac_address_t *map = mip->mi_addresses; 5247 5248 if (map == NULL) 5249 return; 5250 5251 /* 5252 * If mi_addresses is initialized, there should be exactly one 5253 * entry left on the list with no users. 5254 */ 5255 ASSERT(map->ma_nusers == 0); 5256 ASSERT(map->ma_next == NULL); 5257 5258 kmem_free(map, sizeof (mac_address_t)); 5259 mip->mi_addresses = NULL; 5260 } 5261 5262 /* 5263 * Logging related functions. 5264 * 5265 * Note that Kernel statistics have been extended to maintain fine 5266 * granularity of statistics viz. hardware lane, software lane, fanout 5267 * stats etc. However, extended accounting continues to support only 5268 * aggregate statistics like before. 5269 */ 5270 5271 /* Write the flow description to a netinfo_t record */ 5272 static netinfo_t * 5273 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5274 { 5275 netinfo_t *ninfo; 5276 net_desc_t *ndesc; 5277 flow_desc_t *fdesc; 5278 mac_resource_props_t *mrp; 5279 5280 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5281 if (ninfo == NULL) 5282 return (NULL); 5283 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5284 if (ndesc == NULL) { 5285 kmem_free(ninfo, sizeof (netinfo_t)); 5286 return (NULL); 5287 } 5288 5289 /* 5290 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5291 * Updates to the fe_flow_desc are done under the fe_lock 5292 */ 5293 mutex_enter(&flent->fe_lock); 5294 fdesc = &flent->fe_flow_desc; 5295 mrp = &flent->fe_resource_props; 5296 5297 ndesc->nd_name = flent->fe_flow_name; 5298 ndesc->nd_devname = mcip->mci_name; 5299 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5300 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5301 ndesc->nd_sap = htonl(fdesc->fd_sap); 5302 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5303 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5304 if (ndesc->nd_isv4) { 5305 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5306 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5307 } else { 5308 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5309 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5310 } 5311 ndesc->nd_sport = htons(fdesc->fd_local_port); 5312 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5313 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5314 mutex_exit(&flent->fe_lock); 5315 5316 ninfo->ni_record = ndesc; 5317 ninfo->ni_size = sizeof (net_desc_t); 5318 ninfo->ni_type = EX_NET_FLDESC_REC; 5319 5320 return (ninfo); 5321 } 5322 5323 /* Write the flow statistics to a netinfo_t record */ 5324 static netinfo_t * 5325 mac_write_flow_stats(flow_entry_t *flent) 5326 { 5327 netinfo_t *ninfo; 5328 net_stat_t *nstat; 5329 mac_soft_ring_set_t *mac_srs; 5330 mac_rx_stats_t *mac_rx_stat; 5331 mac_tx_stats_t *mac_tx_stat; 5332 int i; 5333 5334 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5335 if (ninfo == NULL) 5336 return (NULL); 5337 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5338 if (nstat == NULL) { 5339 kmem_free(ninfo, sizeof (netinfo_t)); 5340 return (NULL); 5341 } 5342 5343 nstat->ns_name = flent->fe_flow_name; 5344 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5345 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5346 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5347 5348 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5349 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5350 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5351 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5352 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5353 } 5354 5355 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5356 if (mac_srs != NULL) { 5357 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5358 5359 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5360 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5361 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5362 } 5363 5364 ninfo->ni_record = nstat; 5365 ninfo->ni_size = sizeof (net_stat_t); 5366 ninfo->ni_type = EX_NET_FLSTAT_REC; 5367 5368 return (ninfo); 5369 } 5370 5371 /* Write the link description to a netinfo_t record */ 5372 static netinfo_t * 5373 mac_write_link_desc(mac_client_impl_t *mcip) 5374 { 5375 netinfo_t *ninfo; 5376 net_desc_t *ndesc; 5377 flow_entry_t *flent = mcip->mci_flent; 5378 5379 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5380 if (ninfo == NULL) 5381 return (NULL); 5382 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5383 if (ndesc == NULL) { 5384 kmem_free(ninfo, sizeof (netinfo_t)); 5385 return (NULL); 5386 } 5387 5388 ndesc->nd_name = mcip->mci_name; 5389 ndesc->nd_devname = mcip->mci_name; 5390 ndesc->nd_isv4 = B_TRUE; 5391 /* 5392 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5393 * Updates to the fe_flow_desc are done under the fe_lock 5394 * after removing the flent from the flow table. 5395 */ 5396 mutex_enter(&flent->fe_lock); 5397 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5398 mutex_exit(&flent->fe_lock); 5399 5400 ninfo->ni_record = ndesc; 5401 ninfo->ni_size = sizeof (net_desc_t); 5402 ninfo->ni_type = EX_NET_LNDESC_REC; 5403 5404 return (ninfo); 5405 } 5406 5407 /* Write the link statistics to a netinfo_t record */ 5408 static netinfo_t * 5409 mac_write_link_stats(mac_client_impl_t *mcip) 5410 { 5411 netinfo_t *ninfo; 5412 net_stat_t *nstat; 5413 flow_entry_t *flent; 5414 mac_soft_ring_set_t *mac_srs; 5415 mac_rx_stats_t *mac_rx_stat; 5416 mac_tx_stats_t *mac_tx_stat; 5417 int i; 5418 5419 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5420 if (ninfo == NULL) 5421 return (NULL); 5422 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5423 if (nstat == NULL) { 5424 kmem_free(ninfo, sizeof (netinfo_t)); 5425 return (NULL); 5426 } 5427 5428 nstat->ns_name = mcip->mci_name; 5429 flent = mcip->mci_flent; 5430 if (flent != NULL) { 5431 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5432 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5433 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5434 5435 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5436 mac_rx_stat->mrs_pollbytes + 5437 mac_rx_stat->mrs_lclbytes; 5438 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5439 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5440 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5441 } 5442 } 5443 5444 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5445 if (mac_srs != NULL) { 5446 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5447 5448 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5449 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5450 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5451 } 5452 5453 ninfo->ni_record = nstat; 5454 ninfo->ni_size = sizeof (net_stat_t); 5455 ninfo->ni_type = EX_NET_LNSTAT_REC; 5456 5457 return (ninfo); 5458 } 5459 5460 typedef struct i_mac_log_state_s { 5461 boolean_t mi_last; 5462 int mi_fenable; 5463 int mi_lenable; 5464 list_t *mi_list; 5465 } i_mac_log_state_t; 5466 5467 /* 5468 * For a given flow, if the description has not been logged before, do it now. 5469 * If it is a VNIC, then we have collected information about it from the MAC 5470 * table, so skip it. 5471 * 5472 * Called through mac_flow_walk_nolock() 5473 * 5474 * Return 0 if successful. 5475 */ 5476 static int 5477 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5478 { 5479 mac_client_impl_t *mcip = flent->fe_mcip; 5480 i_mac_log_state_t *lstate = arg; 5481 netinfo_t *ninfo; 5482 5483 if (mcip == NULL) 5484 return (0); 5485 5486 /* 5487 * If the name starts with "vnic", and fe_user_generated is true (to 5488 * exclude the mcast and active flow entries created implicitly for 5489 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5490 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5491 */ 5492 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5493 (flent->fe_type & FLOW_USER) != 0) { 5494 return (0); 5495 } 5496 5497 if (!flent->fe_desc_logged) { 5498 /* 5499 * We don't return error because we want to continue the 5500 * walk in case this is the last walk which means we 5501 * need to reset fe_desc_logged in all the flows. 5502 */ 5503 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5504 return (0); 5505 list_insert_tail(lstate->mi_list, ninfo); 5506 flent->fe_desc_logged = B_TRUE; 5507 } 5508 5509 /* 5510 * Regardless of the error, we want to proceed in case we have to 5511 * reset fe_desc_logged. 5512 */ 5513 ninfo = mac_write_flow_stats(flent); 5514 if (ninfo == NULL) 5515 return (-1); 5516 5517 list_insert_tail(lstate->mi_list, ninfo); 5518 5519 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5520 flent->fe_desc_logged = B_FALSE; 5521 5522 return (0); 5523 } 5524 5525 /* 5526 * Log the description for each mac client of this mac_impl_t, if it 5527 * hasn't already been done. Additionally, log statistics for the link as 5528 * well. Walk the flow table and log information for each flow as well. 5529 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5530 * also fe_desc_logged, if flow logging is on) since we want to log the 5531 * description if and when logging is restarted. 5532 * 5533 * Return 0 upon success or -1 upon failure 5534 */ 5535 static int 5536 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5537 { 5538 mac_client_impl_t *mcip; 5539 netinfo_t *ninfo; 5540 5541 i_mac_perim_enter(mip); 5542 /* 5543 * Only walk the client list for NIC and etherstub 5544 */ 5545 if ((mip->mi_state_flags & MIS_DISABLED) || 5546 ((mip->mi_state_flags & MIS_IS_VNIC) && 5547 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5548 i_mac_perim_exit(mip); 5549 return (0); 5550 } 5551 5552 for (mcip = mip->mi_clients_list; mcip != NULL; 5553 mcip = mcip->mci_client_next) { 5554 if (!MCIP_DATAPATH_SETUP(mcip)) 5555 continue; 5556 if (lstate->mi_lenable) { 5557 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5558 ninfo = mac_write_link_desc(mcip); 5559 if (ninfo == NULL) { 5560 /* 5561 * We can't terminate it if this is the last 5562 * walk, else there might be some links with 5563 * mi_desc_logged set to true, which means 5564 * their description won't be logged the next 5565 * time logging is started (similarly for the 5566 * flows within such links). We can continue 5567 * without walking the flow table (i.e. to 5568 * set fe_desc_logged to false) because we 5569 * won't have written any flow stuff for this 5570 * link as we haven't logged the link itself. 5571 */ 5572 i_mac_perim_exit(mip); 5573 if (lstate->mi_last) 5574 return (0); 5575 else 5576 return (-1); 5577 } 5578 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5579 list_insert_tail(lstate->mi_list, ninfo); 5580 } 5581 } 5582 5583 ninfo = mac_write_link_stats(mcip); 5584 if (ninfo == NULL && !lstate->mi_last) { 5585 i_mac_perim_exit(mip); 5586 return (-1); 5587 } 5588 list_insert_tail(lstate->mi_list, ninfo); 5589 5590 if (lstate->mi_last) 5591 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5592 5593 if (lstate->mi_fenable) { 5594 if (mcip->mci_subflow_tab != NULL) { 5595 (void) mac_flow_walk_nolock( 5596 mcip->mci_subflow_tab, mac_log_flowinfo, 5597 lstate); 5598 } 5599 } 5600 } 5601 i_mac_perim_exit(mip); 5602 return (0); 5603 } 5604 5605 /* 5606 * modhash walker function to add a mac_impl_t to a list 5607 */ 5608 /*ARGSUSED*/ 5609 static uint_t 5610 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5611 { 5612 list_t *list = (list_t *)arg; 5613 mac_impl_t *mip = (mac_impl_t *)val; 5614 5615 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5616 list_insert_tail(list, mip); 5617 mip->mi_ref++; 5618 } 5619 5620 return (MH_WALK_CONTINUE); 5621 } 5622 5623 void 5624 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5625 { 5626 list_t mac_impl_list; 5627 mac_impl_t *mip; 5628 netinfo_t *ninfo; 5629 5630 /* Create list of mac_impls */ 5631 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5632 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5633 mi_node)); 5634 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5635 rw_exit(&i_mac_impl_lock); 5636 5637 /* Create log entries for each mac_impl */ 5638 for (mip = list_head(&mac_impl_list); mip != NULL; 5639 mip = list_next(&mac_impl_list, mip)) { 5640 if (i_mac_impl_log(mip, lstate) != 0) 5641 continue; 5642 } 5643 5644 /* Remove elements and destroy list of mac_impls */ 5645 rw_enter(&i_mac_impl_lock, RW_WRITER); 5646 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5647 mip->mi_ref--; 5648 } 5649 rw_exit(&i_mac_impl_lock); 5650 list_destroy(&mac_impl_list); 5651 5652 /* 5653 * Write log entries to files outside of locks, free associated 5654 * structures, and remove entries from the list. 5655 */ 5656 while ((ninfo = list_head(net_log_list)) != NULL) { 5657 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5658 list_remove(net_log_list, ninfo); 5659 kmem_free(ninfo->ni_record, ninfo->ni_size); 5660 kmem_free(ninfo, sizeof (*ninfo)); 5661 } 5662 list_destroy(net_log_list); 5663 } 5664 5665 /* 5666 * The timer thread that runs every mac_logging_interval seconds and logs 5667 * link and/or flow information. 5668 */ 5669 /* ARGSUSED */ 5670 void 5671 mac_log_linkinfo(void *arg) 5672 { 5673 i_mac_log_state_t lstate; 5674 list_t net_log_list; 5675 5676 list_create(&net_log_list, sizeof (netinfo_t), 5677 offsetof(netinfo_t, ni_link)); 5678 5679 rw_enter(&i_mac_impl_lock, RW_READER); 5680 if (!mac_flow_log_enable && !mac_link_log_enable) { 5681 rw_exit(&i_mac_impl_lock); 5682 return; 5683 } 5684 lstate.mi_fenable = mac_flow_log_enable; 5685 lstate.mi_lenable = mac_link_log_enable; 5686 lstate.mi_last = B_FALSE; 5687 lstate.mi_list = &net_log_list; 5688 5689 /* Write log entries for each mac_impl in the list */ 5690 i_mac_log_info(&net_log_list, &lstate); 5691 5692 if (mac_flow_log_enable || mac_link_log_enable) { 5693 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5694 SEC_TO_TICK(mac_logging_interval)); 5695 } 5696 } 5697 5698 typedef struct i_mac_fastpath_state_s { 5699 boolean_t mf_disable; 5700 int mf_err; 5701 } i_mac_fastpath_state_t; 5702 5703 /* modhash walker function to enable or disable fastpath */ 5704 /*ARGSUSED*/ 5705 static uint_t 5706 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5707 void *arg) 5708 { 5709 i_mac_fastpath_state_t *state = arg; 5710 mac_handle_t mh = (mac_handle_t)val; 5711 5712 if (state->mf_disable) 5713 state->mf_err = mac_fastpath_disable(mh); 5714 else 5715 mac_fastpath_enable(mh); 5716 5717 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5718 } 5719 5720 /* 5721 * Start the logging timer. 5722 */ 5723 int 5724 mac_start_logusage(mac_logtype_t type, uint_t interval) 5725 { 5726 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5727 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5728 int err; 5729 5730 rw_enter(&i_mac_impl_lock, RW_WRITER); 5731 switch (type) { 5732 case MAC_LOGTYPE_FLOW: 5733 if (mac_flow_log_enable) { 5734 rw_exit(&i_mac_impl_lock); 5735 return (0); 5736 } 5737 /* FALLTHRU */ 5738 case MAC_LOGTYPE_LINK: 5739 if (mac_link_log_enable) { 5740 rw_exit(&i_mac_impl_lock); 5741 return (0); 5742 } 5743 break; 5744 default: 5745 ASSERT(0); 5746 } 5747 5748 /* Disable fastpath */ 5749 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5750 if ((err = dstate.mf_err) != 0) { 5751 /* Reenable fastpath */ 5752 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5753 rw_exit(&i_mac_impl_lock); 5754 return (err); 5755 } 5756 5757 switch (type) { 5758 case MAC_LOGTYPE_FLOW: 5759 mac_flow_log_enable = B_TRUE; 5760 /* FALLTHRU */ 5761 case MAC_LOGTYPE_LINK: 5762 mac_link_log_enable = B_TRUE; 5763 break; 5764 } 5765 5766 mac_logging_interval = interval; 5767 rw_exit(&i_mac_impl_lock); 5768 mac_log_linkinfo(NULL); 5769 return (0); 5770 } 5771 5772 /* 5773 * Stop the logging timer if both link and flow logging are turned off. 5774 */ 5775 void 5776 mac_stop_logusage(mac_logtype_t type) 5777 { 5778 i_mac_log_state_t lstate; 5779 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5780 list_t net_log_list; 5781 5782 list_create(&net_log_list, sizeof (netinfo_t), 5783 offsetof(netinfo_t, ni_link)); 5784 5785 rw_enter(&i_mac_impl_lock, RW_WRITER); 5786 5787 lstate.mi_fenable = mac_flow_log_enable; 5788 lstate.mi_lenable = mac_link_log_enable; 5789 lstate.mi_list = &net_log_list; 5790 5791 /* Last walk */ 5792 lstate.mi_last = B_TRUE; 5793 5794 switch (type) { 5795 case MAC_LOGTYPE_FLOW: 5796 if (lstate.mi_fenable) { 5797 ASSERT(mac_link_log_enable); 5798 mac_flow_log_enable = B_FALSE; 5799 mac_link_log_enable = B_FALSE; 5800 break; 5801 } 5802 /* FALLTHRU */ 5803 case MAC_LOGTYPE_LINK: 5804 if (!lstate.mi_lenable || mac_flow_log_enable) { 5805 rw_exit(&i_mac_impl_lock); 5806 return; 5807 } 5808 mac_link_log_enable = B_FALSE; 5809 break; 5810 default: 5811 ASSERT(0); 5812 } 5813 5814 /* Reenable fastpath */ 5815 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5816 5817 (void) untimeout(mac_logging_timer); 5818 mac_logging_timer = 0; 5819 5820 /* Write log entries for each mac_impl in the list */ 5821 i_mac_log_info(&net_log_list, &lstate); 5822 } 5823 5824 /* 5825 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5826 */ 5827 void 5828 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5829 { 5830 pri_t pri; 5831 int count; 5832 mac_soft_ring_set_t *mac_srs; 5833 5834 if (flent->fe_rx_srs_cnt <= 0) 5835 return; 5836 5837 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5838 SRST_FLOW) { 5839 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5840 mcip->mci_max_pri, 5841 flent->fe_resource_props.mrp_priority); 5842 } else { 5843 pri = mcip->mci_max_pri; 5844 } 5845 5846 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5847 mac_srs = flent->fe_rx_srs[count]; 5848 mac_update_srs_priority(mac_srs, pri); 5849 } 5850 /* 5851 * If we have a Tx SRS, we need to modify all the threads associated 5852 * with it. 5853 */ 5854 if (flent->fe_tx_srs != NULL) 5855 mac_update_srs_priority(flent->fe_tx_srs, pri); 5856 } 5857 5858 /* 5859 * RX and TX rings are reserved according to different semantics depending 5860 * on the requests from the MAC clients and type of rings: 5861 * 5862 * On the Tx side, by default we reserve individual rings, independently from 5863 * the groups. 5864 * 5865 * On the Rx side, the reservation is at the granularity of the group 5866 * of rings, and used for v12n level 1 only. It has a special case for the 5867 * primary client. 5868 * 5869 * If a share is allocated to a MAC client, we allocate a TX group and an 5870 * RX group to the client, and assign TX rings and RX rings to these 5871 * groups according to information gathered from the driver through 5872 * the share capability. 5873 * 5874 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5875 * to allocate individual rings out of a group and program the hw classifier 5876 * based on IP address or higher level criteria. 5877 */ 5878 5879 /* 5880 * mac_reserve_tx_ring() 5881 * Reserve a unused ring by marking it with MR_INUSE state. 5882 * As reserved, the ring is ready to function. 5883 * 5884 * Notes for Hybrid I/O: 5885 * 5886 * If a specific ring is needed, it is specified through the desired_ring 5887 * argument. Otherwise that argument is set to NULL. 5888 * If the desired ring was previous allocated to another client, this 5889 * function swaps it with a new ring from the group of unassigned rings. 5890 */ 5891 mac_ring_t * 5892 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5893 { 5894 mac_group_t *group; 5895 mac_grp_client_t *mgcp; 5896 mac_client_impl_t *mcip; 5897 mac_soft_ring_set_t *srs; 5898 5899 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5900 5901 /* 5902 * Find an available ring and start it before changing its status. 5903 * The unassigned rings are at the end of the mi_tx_groups 5904 * array. 5905 */ 5906 group = MAC_DEFAULT_TX_GROUP(mip); 5907 5908 /* Can't take the default ring out of the default group */ 5909 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5910 5911 if (desired_ring->mr_state == MR_FREE) { 5912 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5913 if (mac_start_ring(desired_ring) != 0) 5914 return (NULL); 5915 return (desired_ring); 5916 } 5917 /* 5918 * There are clients using this ring, so let's move the clients 5919 * away from using this ring. 5920 */ 5921 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5922 mcip = mgcp->mgc_client; 5923 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5924 srs = MCIP_TX_SRS(mcip); 5925 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5926 mac_tx_invoke_callbacks(mcip, 5927 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5928 desired_ring)); 5929 mac_tx_srs_del_ring(srs, desired_ring); 5930 mac_tx_client_restart((mac_client_handle_t)mcip); 5931 } 5932 return (desired_ring); 5933 } 5934 5935 /* 5936 * For a reserved group with multiple clients, return the primary client. 5937 */ 5938 static mac_client_impl_t * 5939 mac_get_grp_primary(mac_group_t *grp) 5940 { 5941 mac_grp_client_t *mgcp = grp->mrg_clients; 5942 mac_client_impl_t *mcip; 5943 5944 while (mgcp != NULL) { 5945 mcip = mgcp->mgc_client; 5946 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5947 return (mcip); 5948 mgcp = mgcp->mgc_next; 5949 } 5950 return (NULL); 5951 } 5952 5953 /* 5954 * Hybrid I/O specifies the ring that should be given to a share. 5955 * If the ring is already used by clients, then we need to release 5956 * the ring back to the default group so that we can give it to 5957 * the share. This means the clients using this ring now get a 5958 * replacement ring. If there aren't any replacement rings, this 5959 * function returns a failure. 5960 */ 5961 static int 5962 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5963 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5964 { 5965 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5966 mac_resource_props_t *mrp; 5967 mac_client_impl_t *mcip; 5968 mac_group_t *defgrp; 5969 mac_ring_t *tring; 5970 mac_group_t *tgrp; 5971 int i; 5972 int j; 5973 5974 mcip = MAC_GROUP_ONLY_CLIENT(group); 5975 if (mcip == NULL) 5976 mcip = mac_get_grp_primary(group); 5977 ASSERT(mcip != NULL); 5978 ASSERT(mcip->mci_share == 0); 5979 5980 mrp = MCIP_RESOURCE_PROPS(mcip); 5981 if (ring_type == MAC_RING_TYPE_RX) { 5982 defgrp = mip->mi_rx_donor_grp; 5983 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5984 /* Need to put this mac client in the default group */ 5985 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5986 return (ENOSPC); 5987 } else { 5988 /* 5989 * Switch this ring with some other ring from 5990 * the default group. 5991 */ 5992 for (tring = defgrp->mrg_rings; tring != NULL; 5993 tring = tring->mr_next) { 5994 if (tring->mr_index == 0) 5995 continue; 5996 for (j = 0; j < nrings; j++) { 5997 if (rings[j] == tring) 5998 break; 5999 } 6000 if (j >= nrings) 6001 break; 6002 } 6003 if (tring == NULL) 6004 return (ENOSPC); 6005 if (mac_group_mov_ring(mip, group, tring) != 0) 6006 return (ENOSPC); 6007 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6008 (void) mac_group_mov_ring(mip, defgrp, tring); 6009 return (ENOSPC); 6010 } 6011 } 6012 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6013 return (0); 6014 } 6015 6016 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6017 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6018 /* 6019 * See if we can get a spare ring to replace the default 6020 * ring. 6021 */ 6022 if (defgrp->mrg_cur_count == 1) { 6023 /* 6024 * Need to get a ring from another client, see if 6025 * there are any clients that can be moved to 6026 * the default group, thereby freeing some rings. 6027 */ 6028 for (i = 0; i < mip->mi_tx_group_count; i++) { 6029 tgrp = &mip->mi_tx_groups[i]; 6030 if (tgrp->mrg_state == 6031 MAC_GROUP_STATE_REGISTERED) { 6032 continue; 6033 } 6034 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6035 if (mcip == NULL) 6036 mcip = mac_get_grp_primary(tgrp); 6037 ASSERT(mcip != NULL); 6038 mrp = MCIP_RESOURCE_PROPS(mcip); 6039 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6040 ASSERT(tgrp->mrg_cur_count == 1); 6041 /* 6042 * If this ring is part of the 6043 * rings asked by the share we cannot 6044 * use it as the default ring. 6045 */ 6046 for (j = 0; j < nrings; j++) { 6047 if (rings[j] == tgrp->mrg_rings) 6048 break; 6049 } 6050 if (j < nrings) 6051 continue; 6052 mac_tx_client_quiesce( 6053 (mac_client_handle_t)mcip); 6054 mac_tx_switch_group(mcip, tgrp, 6055 defgrp); 6056 mac_tx_client_restart( 6057 (mac_client_handle_t)mcip); 6058 break; 6059 } 6060 } 6061 /* 6062 * All the rings are reserved, can't give up the 6063 * default ring. 6064 */ 6065 if (defgrp->mrg_cur_count <= 1) 6066 return (ENOSPC); 6067 } 6068 /* 6069 * Swap the default ring with another. 6070 */ 6071 for (tring = defgrp->mrg_rings; tring != NULL; 6072 tring = tring->mr_next) { 6073 /* 6074 * If this ring is part of the rings asked by the 6075 * share we cannot use it as the default ring. 6076 */ 6077 for (j = 0; j < nrings; j++) { 6078 if (rings[j] == tring) 6079 break; 6080 } 6081 if (j >= nrings) 6082 break; 6083 } 6084 ASSERT(tring != NULL); 6085 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6086 return (0); 6087 } 6088 /* 6089 * The Tx ring is with a group reserved by a MAC client. See if 6090 * we can swap it. 6091 */ 6092 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6093 mcip = MAC_GROUP_ONLY_CLIENT(group); 6094 if (mcip == NULL) 6095 mcip = mac_get_grp_primary(group); 6096 ASSERT(mcip != NULL); 6097 mrp = MCIP_RESOURCE_PROPS(mcip); 6098 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6099 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6100 ASSERT(group->mrg_cur_count == 1); 6101 /* Put this mac client in the default group */ 6102 mac_tx_switch_group(mcip, group, defgrp); 6103 } else { 6104 /* 6105 * Switch this ring with some other ring from 6106 * the default group. 6107 */ 6108 for (tring = defgrp->mrg_rings; tring != NULL; 6109 tring = tring->mr_next) { 6110 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6111 continue; 6112 /* 6113 * If this ring is part of the rings asked by the 6114 * share we cannot use it for swapping. 6115 */ 6116 for (j = 0; j < nrings; j++) { 6117 if (rings[j] == tring) 6118 break; 6119 } 6120 if (j >= nrings) 6121 break; 6122 } 6123 if (tring == NULL) { 6124 mac_tx_client_restart((mac_client_handle_t)mcip); 6125 return (ENOSPC); 6126 } 6127 if (mac_group_mov_ring(mip, group, tring) != 0) { 6128 mac_tx_client_restart((mac_client_handle_t)mcip); 6129 return (ENOSPC); 6130 } 6131 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6132 (void) mac_group_mov_ring(mip, defgrp, tring); 6133 mac_tx_client_restart((mac_client_handle_t)mcip); 6134 return (ENOSPC); 6135 } 6136 } 6137 mac_tx_client_restart((mac_client_handle_t)mcip); 6138 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6139 return (0); 6140 } 6141 6142 /* 6143 * Populate a zero-ring group with rings. If the share is non-NULL, 6144 * the rings are chosen according to that share. 6145 * Invoked after allocating a new RX or TX group through 6146 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6147 * Returns zero on success, an errno otherwise. 6148 */ 6149 int 6150 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6151 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6152 uint32_t ringcnt) 6153 { 6154 mac_ring_t **rings, *ring; 6155 uint_t nrings; 6156 int rv = 0, i = 0, j; 6157 6158 ASSERT((ring_type == MAC_RING_TYPE_RX && 6159 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6160 (ring_type == MAC_RING_TYPE_TX && 6161 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6162 6163 /* 6164 * First find the rings to allocate to the group. 6165 */ 6166 if (share != 0) { 6167 /* get rings through ms_squery() */ 6168 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6169 ASSERT(nrings != 0); 6170 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6171 KM_SLEEP); 6172 mip->mi_share_capab.ms_squery(share, ring_type, 6173 (mac_ring_handle_t *)rings, &nrings); 6174 for (i = 0; i < nrings; i++) { 6175 /* 6176 * If we have given this ring to a non-default 6177 * group, we need to check if we can get this 6178 * ring. 6179 */ 6180 ring = rings[i]; 6181 if (ring->mr_gh != (mac_group_handle_t)src_group || 6182 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6183 if (mac_reclaim_ring_from_grp(mip, ring_type, 6184 ring, rings, nrings) != 0) { 6185 rv = ENOSPC; 6186 goto bail; 6187 } 6188 } 6189 } 6190 } else { 6191 /* 6192 * Pick one ring from default group. 6193 * 6194 * for now pick the second ring which requires the first ring 6195 * at index 0 to stay in the default group, since it is the 6196 * ring which carries the multicast traffic. 6197 * We need a better way for a driver to indicate this, 6198 * for example a per-ring flag. 6199 */ 6200 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6201 KM_SLEEP); 6202 for (ring = src_group->mrg_rings; ring != NULL; 6203 ring = ring->mr_next) { 6204 if (ring_type == MAC_RING_TYPE_RX && 6205 ring->mr_index == 0) { 6206 continue; 6207 } 6208 if (ring_type == MAC_RING_TYPE_TX && 6209 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6210 continue; 6211 } 6212 rings[i++] = ring; 6213 if (i == ringcnt) 6214 break; 6215 } 6216 ASSERT(ring != NULL); 6217 nrings = i; 6218 /* Not enough rings as required */ 6219 if (nrings != ringcnt) { 6220 rv = ENOSPC; 6221 goto bail; 6222 } 6223 } 6224 6225 switch (ring_type) { 6226 case MAC_RING_TYPE_RX: 6227 if (src_group->mrg_cur_count - nrings < 1) { 6228 /* we ran out of rings */ 6229 rv = ENOSPC; 6230 goto bail; 6231 } 6232 6233 /* move receive rings to new group */ 6234 for (i = 0; i < nrings; i++) { 6235 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6236 if (rv != 0) { 6237 /* move rings back on failure */ 6238 for (j = 0; j < i; j++) { 6239 (void) mac_group_mov_ring(mip, 6240 src_group, rings[j]); 6241 } 6242 goto bail; 6243 } 6244 } 6245 break; 6246 6247 case MAC_RING_TYPE_TX: { 6248 mac_ring_t *tmp_ring; 6249 6250 /* move the TX rings to the new group */ 6251 for (i = 0; i < nrings; i++) { 6252 /* get the desired ring */ 6253 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6254 if (tmp_ring == NULL) { 6255 rv = ENOSPC; 6256 goto bail; 6257 } 6258 ASSERT(tmp_ring == rings[i]); 6259 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6260 if (rv != 0) { 6261 /* cleanup on failure */ 6262 for (j = 0; j < i; j++) { 6263 (void) mac_group_mov_ring(mip, 6264 MAC_DEFAULT_TX_GROUP(mip), 6265 rings[j]); 6266 } 6267 goto bail; 6268 } 6269 } 6270 break; 6271 } 6272 } 6273 6274 /* add group to share */ 6275 if (share != 0) 6276 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6277 6278 bail: 6279 /* free temporary array of rings */ 6280 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6281 6282 return (rv); 6283 } 6284 6285 void 6286 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6287 { 6288 mac_grp_client_t *mgcp; 6289 6290 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6291 if (mgcp->mgc_client == mcip) 6292 break; 6293 } 6294 6295 VERIFY(mgcp == NULL); 6296 6297 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6298 mgcp->mgc_client = mcip; 6299 mgcp->mgc_next = grp->mrg_clients; 6300 grp->mrg_clients = mgcp; 6301 6302 } 6303 6304 void 6305 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6306 { 6307 mac_grp_client_t *mgcp, **pprev; 6308 6309 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6310 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6311 if (mgcp->mgc_client == mcip) 6312 break; 6313 } 6314 6315 ASSERT(mgcp != NULL); 6316 6317 *pprev = mgcp->mgc_next; 6318 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6319 } 6320 6321 /* 6322 * mac_reserve_rx_group() 6323 * 6324 * Finds an available group and exclusively reserves it for a client. 6325 * The group is chosen to suit the flow's resource controls (bandwidth and 6326 * fanout requirements) and the address type. 6327 * If the requestor is the pimary MAC then return the group with the 6328 * largest number of rings, otherwise the default ring when available. 6329 */ 6330 mac_group_t * 6331 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6332 { 6333 mac_share_handle_t share = mcip->mci_share; 6334 mac_impl_t *mip = mcip->mci_mip; 6335 mac_group_t *grp = NULL; 6336 int i; 6337 int err = 0; 6338 mac_address_t *map; 6339 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6340 int nrings; 6341 int donor_grp_rcnt; 6342 boolean_t need_exclgrp = B_FALSE; 6343 int need_rings = 0; 6344 mac_group_t *candidate_grp = NULL; 6345 mac_client_impl_t *gclient; 6346 mac_resource_props_t *gmrp; 6347 mac_group_t *donorgrp = NULL; 6348 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6349 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6350 boolean_t isprimary; 6351 6352 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6353 6354 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6355 6356 /* 6357 * Check if a group already has this mac address (case of VLANs) 6358 * unless we are moving this MAC client from one group to another. 6359 */ 6360 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6361 if (map->ma_group != NULL) 6362 return (map->ma_group); 6363 } 6364 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6365 return (NULL); 6366 /* 6367 * If exclusive open, return NULL which will enable the 6368 * caller to use the default group. 6369 */ 6370 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6371 return (NULL); 6372 6373 /* For dynamic groups default unspecified to 1 */ 6374 if (rxhw && unspec && 6375 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6376 mrp->mrp_nrxrings = 1; 6377 } 6378 /* 6379 * For static grouping we allow only specifying rings=0 and 6380 * unspecified 6381 */ 6382 if (rxhw && mrp->mrp_nrxrings > 0 && 6383 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6384 return (NULL); 6385 } 6386 if (rxhw) { 6387 /* 6388 * We have explicitly asked for a group (with nrxrings, 6389 * if unspec). 6390 */ 6391 if (unspec || mrp->mrp_nrxrings > 0) { 6392 need_exclgrp = B_TRUE; 6393 need_rings = mrp->mrp_nrxrings; 6394 } else if (mrp->mrp_nrxrings == 0) { 6395 /* 6396 * We have asked for a software group. 6397 */ 6398 return (NULL); 6399 } 6400 } else if (isprimary && mip->mi_nactiveclients == 1 && 6401 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6402 /* 6403 * If the primary is the only active client on this 6404 * mip and we have not asked for any rings, we give 6405 * it the default group so that the primary gets to 6406 * use all the rings. 6407 */ 6408 return (NULL); 6409 } 6410 6411 /* The group that can donate rings */ 6412 donorgrp = mip->mi_rx_donor_grp; 6413 6414 /* 6415 * The number of rings that the default group can donate. 6416 * We need to leave at least one ring. 6417 */ 6418 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6419 6420 /* 6421 * Try to exclusively reserve a RX group. 6422 * 6423 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6424 * client), try to reserve the a non-default RX group and give 6425 * it all the rings from the donor group, except the default ring 6426 * 6427 * For flows requiring HW_RING (unicast flow of other clients), try 6428 * to reserve non-default RX group with the specified number of 6429 * rings, if available. 6430 * 6431 * For flows that have not asked for software or hardware ring, 6432 * try to reserve a non-default group with 1 ring, if available. 6433 */ 6434 for (i = 1; i < mip->mi_rx_group_count; i++) { 6435 grp = &mip->mi_rx_groups[i]; 6436 6437 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6438 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6439 6440 /* 6441 * Check if this group could be a candidate group for 6442 * eviction if we need a group for this MAC client, 6443 * but there aren't any. A candidate group is one 6444 * that didn't ask for an exclusive group, but got 6445 * one and it has enough rings (combined with what 6446 * the donor group can donate) for the new MAC 6447 * client 6448 */ 6449 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6450 /* 6451 * If the primary/donor group is not the default 6452 * group, don't bother looking for a candidate group. 6453 * If we don't have enough rings we will check 6454 * if the primary group can be vacated. 6455 */ 6456 if (candidate_grp == NULL && 6457 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6458 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6459 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6460 if (gclient == NULL) 6461 gclient = mac_get_grp_primary(grp); 6462 ASSERT(gclient != NULL); 6463 gmrp = MCIP_RESOURCE_PROPS(gclient); 6464 if (gclient->mci_share == 0 && 6465 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6466 (unspec || 6467 (grp->mrg_cur_count + donor_grp_rcnt >= 6468 need_rings))) { 6469 candidate_grp = grp; 6470 } 6471 } 6472 continue; 6473 } 6474 /* 6475 * This group could already be SHARED by other multicast 6476 * flows on this client. In that case, the group would 6477 * be shared and has already been started. 6478 */ 6479 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6480 6481 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6482 (mac_start_group(grp) != 0)) { 6483 continue; 6484 } 6485 6486 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6487 break; 6488 ASSERT(grp->mrg_cur_count == 0); 6489 6490 /* 6491 * Populate the group. Rings should be taken 6492 * from the donor group. 6493 */ 6494 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6495 6496 /* 6497 * If the donor group can't donate, let's just walk and 6498 * see if someone can vacate a group, so that we have 6499 * enough rings for this, unless we already have 6500 * identified a candiate group.. 6501 */ 6502 if (nrings <= donor_grp_rcnt) { 6503 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6504 donorgrp, grp, share, nrings); 6505 if (err == 0) { 6506 /* 6507 * For a share i_mac_group_allocate_rings gets 6508 * the rings from the driver, let's populate 6509 * the property for the client now. 6510 */ 6511 if (share != 0) { 6512 mac_client_set_rings( 6513 (mac_client_handle_t)mcip, 6514 grp->mrg_cur_count, -1); 6515 } 6516 if (mac_is_primary_client(mcip) && !rxhw) 6517 mip->mi_rx_donor_grp = grp; 6518 break; 6519 } 6520 } 6521 6522 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6523 mip->mi_name, int, grp->mrg_index, int, err); 6524 6525 /* 6526 * It's a dynamic group but the grouping operation 6527 * failed. 6528 */ 6529 mac_stop_group(grp); 6530 } 6531 /* We didn't find an exclusive group for this MAC client */ 6532 if (i >= mip->mi_rx_group_count) { 6533 6534 if (!need_exclgrp) 6535 return (NULL); 6536 6537 /* 6538 * If we found a candidate group then we switch the 6539 * MAC client from the candidate_group to the default 6540 * group and give the group to this MAC client. If 6541 * we didn't find a candidate_group, check if the 6542 * primary is in its own group and if it can make way 6543 * for this MAC client. 6544 */ 6545 if (candidate_grp == NULL && 6546 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6547 donorgrp->mrg_cur_count >= need_rings) { 6548 candidate_grp = donorgrp; 6549 } 6550 if (candidate_grp != NULL) { 6551 boolean_t prim_grp = B_FALSE; 6552 6553 /* 6554 * Switch the MAC client from the candidate group 6555 * to the default group.. If this group was the 6556 * donor group, then after the switch we need 6557 * to update the donor group too. 6558 */ 6559 grp = candidate_grp; 6560 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6561 if (gclient == NULL) 6562 gclient = mac_get_grp_primary(grp); 6563 if (grp == mip->mi_rx_donor_grp) 6564 prim_grp = B_TRUE; 6565 if (mac_rx_switch_group(gclient, grp, 6566 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6567 return (NULL); 6568 } 6569 if (prim_grp) { 6570 mip->mi_rx_donor_grp = 6571 MAC_DEFAULT_RX_GROUP(mip); 6572 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6573 } 6574 6575 6576 /* 6577 * Now give this group with the required rings 6578 * to this MAC client. 6579 */ 6580 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6581 if (mac_start_group(grp) != 0) 6582 return (NULL); 6583 6584 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6585 return (grp); 6586 6587 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6588 ASSERT(grp->mrg_cur_count == 0); 6589 ASSERT(donor_grp_rcnt >= need_rings); 6590 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6591 donorgrp, grp, share, need_rings); 6592 if (err == 0) { 6593 /* 6594 * For a share i_mac_group_allocate_rings gets 6595 * the rings from the driver, let's populate 6596 * the property for the client now. 6597 */ 6598 if (share != 0) { 6599 mac_client_set_rings( 6600 (mac_client_handle_t)mcip, 6601 grp->mrg_cur_count, -1); 6602 } 6603 DTRACE_PROBE2(rx__group__reserved, 6604 char *, mip->mi_name, int, grp->mrg_index); 6605 return (grp); 6606 } 6607 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6608 mip->mi_name, int, grp->mrg_index, int, err); 6609 mac_stop_group(grp); 6610 } 6611 return (NULL); 6612 } 6613 ASSERT(grp != NULL); 6614 6615 DTRACE_PROBE2(rx__group__reserved, 6616 char *, mip->mi_name, int, grp->mrg_index); 6617 return (grp); 6618 } 6619 6620 /* 6621 * mac_rx_release_group() 6622 * 6623 * This is called when there are no clients left for the group. 6624 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6625 * and if it is a non default group, the shares are removed and 6626 * all rings are assigned back to default group. 6627 */ 6628 void 6629 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6630 { 6631 mac_impl_t *mip = mcip->mci_mip; 6632 mac_ring_t *ring; 6633 6634 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6635 6636 if (mip->mi_rx_donor_grp == group) 6637 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6638 6639 /* 6640 * This is the case where there are no clients left. Any 6641 * SRS etc on this group have also be quiesced. 6642 */ 6643 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6644 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6645 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6646 /* 6647 * Remove the SRS associated with the HW ring. 6648 * As a result, polling will be disabled. 6649 */ 6650 ring->mr_srs = NULL; 6651 } 6652 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6653 ring->mr_state == MR_INUSE); 6654 if (ring->mr_state == MR_INUSE) { 6655 mac_stop_ring(ring); 6656 ring->mr_flag = 0; 6657 } 6658 } 6659 6660 /* remove group from share */ 6661 if (mcip->mci_share != 0) { 6662 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6663 group->mrg_driver); 6664 } 6665 6666 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6667 mac_ring_t *ring; 6668 6669 /* 6670 * Rings were dynamically allocated to group. 6671 * Move rings back to default group. 6672 */ 6673 while ((ring = group->mrg_rings) != NULL) { 6674 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6675 ring); 6676 } 6677 } 6678 mac_stop_group(group); 6679 /* 6680 * Possible improvement: See if we can assign the group just released 6681 * to a another client of the mip 6682 */ 6683 } 6684 6685 /* 6686 * When we move the primary's mac address between groups, we need to also 6687 * take all the clients sharing the same mac address along with it (VLANs) 6688 * We remove the mac address for such clients from the group after quiescing 6689 * them. When we add the mac address we restart the client. Note that 6690 * the primary's mac address is removed from the group after all the 6691 * other clients sharing the address are removed. Similarly, the primary's 6692 * mac address is added before all the other client's mac address are 6693 * added. While grp is the group where the clients reside, tgrp is 6694 * the group where the addresses have to be added. 6695 */ 6696 static void 6697 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6698 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6699 { 6700 mac_impl_t *mip = mcip->mci_mip; 6701 mac_grp_client_t *mgcp = grp->mrg_clients; 6702 mac_client_impl_t *gmcip; 6703 boolean_t prim; 6704 6705 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6706 6707 /* 6708 * If the clients are in a non-default group, we just have to 6709 * walk the group's client list. If it is in the default group 6710 * (which will be shared by other clients as well, we need to 6711 * check if the unicast address matches mcip's unicast. 6712 */ 6713 while (mgcp != NULL) { 6714 gmcip = mgcp->mgc_client; 6715 if (gmcip != mcip && 6716 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6717 mcip->mci_unicast == gmcip->mci_unicast)) { 6718 if (!add) { 6719 mac_rx_client_quiesce( 6720 (mac_client_handle_t)gmcip); 6721 (void) mac_remove_macaddr(mcip->mci_unicast); 6722 } else { 6723 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6724 mac_rx_client_restart( 6725 (mac_client_handle_t)gmcip); 6726 } 6727 } 6728 mgcp = mgcp->mgc_next; 6729 } 6730 } 6731 6732 6733 /* 6734 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6735 * we need to take any VLANs etc. together too. 6736 */ 6737 static int 6738 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6739 mac_group_t *tgrp) 6740 { 6741 mac_impl_t *mip = mcip->mci_mip; 6742 uint8_t maddr[MAXMACADDRLEN]; 6743 int err = 0; 6744 boolean_t prim; 6745 boolean_t multiclnt = B_FALSE; 6746 6747 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6748 ASSERT(mcip->mci_unicast != NULL); 6749 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6750 6751 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6752 if (mcip->mci_unicast->ma_nusers > 1) { 6753 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6754 multiclnt = B_TRUE; 6755 } 6756 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6757 err = mac_remove_macaddr(mcip->mci_unicast); 6758 if (err != 0) { 6759 mac_rx_client_restart((mac_client_handle_t)mcip); 6760 if (multiclnt) { 6761 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6762 B_TRUE); 6763 } 6764 return (err); 6765 } 6766 /* 6767 * Program the H/W Classifier first, if this fails we need 6768 * not proceed with the other stuff. 6769 */ 6770 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6771 /* Revert back the H/W Classifier */ 6772 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6773 /* 6774 * This should not fail now since it worked earlier, 6775 * should we panic? 6776 */ 6777 cmn_err(CE_WARN, 6778 "mac_rx_switch_group: switching %p back" 6779 " to group %p failed!!", (void *)mcip, 6780 (void *)fgrp); 6781 } 6782 mac_rx_client_restart((mac_client_handle_t)mcip); 6783 if (multiclnt) { 6784 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6785 B_TRUE); 6786 } 6787 return (err); 6788 } 6789 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6790 mac_rx_client_restart((mac_client_handle_t)mcip); 6791 if (multiclnt) 6792 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6793 return (err); 6794 } 6795 6796 /* 6797 * Switch the MAC client from one group to another. This means we need 6798 * to remove the MAC address from the group, remove the MAC client, 6799 * teardown the SRSs and revert the group state. Then, we add the client 6800 * to the destination group, set the SRSs, and add the MAC address to the 6801 * group. 6802 */ 6803 int 6804 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6805 mac_group_t *tgrp) 6806 { 6807 int err; 6808 mac_group_state_t next_state; 6809 mac_client_impl_t *group_only_mcip; 6810 mac_client_impl_t *gmcip; 6811 mac_impl_t *mip = mcip->mci_mip; 6812 mac_grp_client_t *mgcp; 6813 6814 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6815 6816 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6817 return (err); 6818 6819 /* 6820 * The group might be reserved, but SRSs may not be set up, e.g. 6821 * primary and its vlans using a reserved group. 6822 */ 6823 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6824 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6825 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6826 } 6827 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6828 mgcp = fgrp->mrg_clients; 6829 while (mgcp != NULL) { 6830 gmcip = mgcp->mgc_client; 6831 mgcp = mgcp->mgc_next; 6832 mac_group_remove_client(fgrp, gmcip); 6833 mac_group_add_client(tgrp, gmcip); 6834 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6835 } 6836 mac_release_rx_group(mcip, fgrp); 6837 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6838 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6839 } else { 6840 mac_group_remove_client(fgrp, mcip); 6841 mac_group_add_client(tgrp, mcip); 6842 mcip->mci_flent->fe_rx_ring_group = tgrp; 6843 /* 6844 * If there are other clients (VLANs) sharing this address 6845 * we should be here only for the primary. 6846 */ 6847 if (mcip->mci_unicast->ma_nusers > 1) { 6848 /* 6849 * We need to move all the clients that are using 6850 * this h/w address. 6851 */ 6852 mgcp = fgrp->mrg_clients; 6853 while (mgcp != NULL) { 6854 gmcip = mgcp->mgc_client; 6855 mgcp = mgcp->mgc_next; 6856 if (mcip->mci_unicast == gmcip->mci_unicast) { 6857 mac_group_remove_client(fgrp, gmcip); 6858 mac_group_add_client(tgrp, gmcip); 6859 gmcip->mci_flent->fe_rx_ring_group = 6860 tgrp; 6861 } 6862 } 6863 } 6864 /* 6865 * The default group will still take the multicast, 6866 * broadcast traffic etc., so it won't go to 6867 * MAC_GROUP_STATE_REGISTERED. 6868 */ 6869 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6870 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6871 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6872 } 6873 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6874 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6875 mac_set_group_state(tgrp, next_state); 6876 /* 6877 * If the destination group is reserved, setup the SRSs etc. 6878 */ 6879 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6880 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6881 mac_fanout_setup(mcip, mcip->mci_flent, 6882 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6883 NULL); 6884 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6885 } else { 6886 mac_rx_switch_grp_to_sw(tgrp); 6887 } 6888 return (0); 6889 } 6890 6891 /* 6892 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6893 * when a share was allocated to the client. 6894 */ 6895 mac_group_t * 6896 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6897 { 6898 mac_impl_t *mip = mcip->mci_mip; 6899 mac_group_t *grp = NULL; 6900 int rv; 6901 int i; 6902 int err; 6903 mac_group_t *defgrp; 6904 mac_share_handle_t share = mcip->mci_share; 6905 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6906 int nrings; 6907 int defnrings; 6908 boolean_t need_exclgrp = B_FALSE; 6909 int need_rings = 0; 6910 mac_group_t *candidate_grp = NULL; 6911 mac_client_impl_t *gclient; 6912 mac_resource_props_t *gmrp; 6913 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6914 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6915 boolean_t isprimary; 6916 6917 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6918 /* 6919 * When we come here for a VLAN on the primary (dladm create-vlan), 6920 * we need to pair it along with the primary (to keep it consistent 6921 * with the RX side). So, we check if the primary is already assigned 6922 * to a group and return the group if so. The other way is also 6923 * true, i.e. the VLAN is already created and now we are plumbing 6924 * the primary. 6925 */ 6926 if (!move && isprimary) { 6927 for (gclient = mip->mi_clients_list; gclient != NULL; 6928 gclient = gclient->mci_client_next) { 6929 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6930 gclient->mci_flent->fe_tx_ring_group != NULL) { 6931 return (gclient->mci_flent->fe_tx_ring_group); 6932 } 6933 } 6934 } 6935 6936 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6937 return (NULL); 6938 6939 /* For dynamic groups, default unspec to 1 */ 6940 if (txhw && unspec && 6941 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6942 mrp->mrp_ntxrings = 1; 6943 } 6944 /* 6945 * For static grouping we allow only specifying rings=0 and 6946 * unspecified 6947 */ 6948 if (txhw && mrp->mrp_ntxrings > 0 && 6949 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6950 return (NULL); 6951 } 6952 6953 if (txhw) { 6954 /* 6955 * We have explicitly asked for a group (with ntxrings, 6956 * if unspec). 6957 */ 6958 if (unspec || mrp->mrp_ntxrings > 0) { 6959 need_exclgrp = B_TRUE; 6960 need_rings = mrp->mrp_ntxrings; 6961 } else if (mrp->mrp_ntxrings == 0) { 6962 /* 6963 * We have asked for a software group. 6964 */ 6965 return (NULL); 6966 } 6967 } 6968 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6969 /* 6970 * The number of rings that the default group can donate. 6971 * We need to leave at least one ring - the default ring - in 6972 * this group. 6973 */ 6974 defnrings = defgrp->mrg_cur_count - 1; 6975 6976 /* 6977 * Primary gets default group unless explicitly told not 6978 * to (i.e. rings > 0). 6979 */ 6980 if (isprimary && !need_exclgrp) 6981 return (NULL); 6982 6983 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6984 for (i = 0; i < mip->mi_tx_group_count; i++) { 6985 grp = &mip->mi_tx_groups[i]; 6986 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6987 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6988 /* 6989 * Select a candidate for replacement if we don't 6990 * get an exclusive group. A candidate group is one 6991 * that didn't ask for an exclusive group, but got 6992 * one and it has enough rings (combined with what 6993 * the default group can donate) for the new MAC 6994 * client. 6995 */ 6996 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 6997 candidate_grp == NULL) { 6998 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6999 if (gclient == NULL) 7000 gclient = mac_get_grp_primary(grp); 7001 gmrp = MCIP_RESOURCE_PROPS(gclient); 7002 if (gclient->mci_share == 0 && 7003 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7004 (unspec || 7005 (grp->mrg_cur_count + defnrings) >= 7006 need_rings)) { 7007 candidate_grp = grp; 7008 } 7009 } 7010 continue; 7011 } 7012 /* 7013 * If the default can't donate let's just walk and 7014 * see if someone can vacate a group, so that we have 7015 * enough rings for this. 7016 */ 7017 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7018 nrings <= defnrings) { 7019 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7020 rv = mac_start_group(grp); 7021 ASSERT(rv == 0); 7022 } 7023 break; 7024 } 7025 } 7026 7027 /* The default group */ 7028 if (i >= mip->mi_tx_group_count) { 7029 /* 7030 * If we need an exclusive group and have identified a 7031 * candidate group we switch the MAC client from the 7032 * candidate group to the default group and give the 7033 * candidate group to this client. 7034 */ 7035 if (need_exclgrp && candidate_grp != NULL) { 7036 /* 7037 * Switch the MAC client from the candidate group 7038 * to the default group. 7039 */ 7040 grp = candidate_grp; 7041 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7042 if (gclient == NULL) 7043 gclient = mac_get_grp_primary(grp); 7044 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7045 mac_tx_switch_group(gclient, grp, defgrp); 7046 mac_tx_client_restart((mac_client_handle_t)gclient); 7047 7048 /* 7049 * Give the candidate group with the specified number 7050 * of rings to this MAC client. 7051 */ 7052 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7053 rv = mac_start_group(grp); 7054 ASSERT(rv == 0); 7055 7056 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7057 return (grp); 7058 7059 ASSERT(grp->mrg_cur_count == 0); 7060 ASSERT(defgrp->mrg_cur_count > need_rings); 7061 7062 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7063 defgrp, grp, share, need_rings); 7064 if (err == 0) { 7065 /* 7066 * For a share i_mac_group_allocate_rings gets 7067 * the rings from the driver, let's populate 7068 * the property for the client now. 7069 */ 7070 if (share != 0) { 7071 mac_client_set_rings( 7072 (mac_client_handle_t)mcip, -1, 7073 grp->mrg_cur_count); 7074 } 7075 mip->mi_tx_group_free--; 7076 return (grp); 7077 } 7078 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7079 mip->mi_name, int, grp->mrg_index, int, err); 7080 mac_stop_group(grp); 7081 } 7082 return (NULL); 7083 } 7084 /* 7085 * We got an exclusive group, but it is not dynamic. 7086 */ 7087 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7088 mip->mi_tx_group_free--; 7089 return (grp); 7090 } 7091 7092 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7093 share, nrings); 7094 if (rv != 0) { 7095 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7096 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7097 mac_stop_group(grp); 7098 return (NULL); 7099 } 7100 /* 7101 * For a share i_mac_group_allocate_rings gets the rings from the 7102 * driver, let's populate the property for the client now. 7103 */ 7104 if (share != 0) { 7105 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7106 grp->mrg_cur_count); 7107 } 7108 mip->mi_tx_group_free--; 7109 return (grp); 7110 } 7111 7112 void 7113 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7114 { 7115 mac_impl_t *mip = mcip->mci_mip; 7116 mac_share_handle_t share = mcip->mci_share; 7117 mac_ring_t *ring; 7118 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7119 mac_group_t *defgrp; 7120 7121 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7122 if (srs != NULL) { 7123 if (srs->srs_soft_ring_count > 0) { 7124 for (ring = grp->mrg_rings; ring != NULL; 7125 ring = ring->mr_next) { 7126 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7127 mac_tx_invoke_callbacks(mcip, 7128 (mac_tx_cookie_t) 7129 mac_tx_srs_get_soft_ring(srs, ring)); 7130 mac_tx_srs_del_ring(srs, ring); 7131 } 7132 } else { 7133 ASSERT(srs->srs_tx.st_arg2 != NULL); 7134 srs->srs_tx.st_arg2 = NULL; 7135 mac_srs_stat_delete(srs); 7136 } 7137 } 7138 if (share != 0) 7139 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7140 7141 /* move the ring back to the pool */ 7142 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7143 while ((ring = grp->mrg_rings) != NULL) 7144 (void) mac_group_mov_ring(mip, defgrp, ring); 7145 } 7146 mac_stop_group(grp); 7147 mip->mi_tx_group_free++; 7148 } 7149 7150 /* 7151 * Disassociate a MAC client from a group, i.e go through the rings in the 7152 * group and delete all the soft rings tied to them. 7153 */ 7154 static void 7155 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7156 { 7157 mac_client_impl_t *mcip = flent->fe_mcip; 7158 mac_soft_ring_set_t *tx_srs; 7159 mac_srs_tx_t *tx; 7160 mac_ring_t *ring; 7161 7162 tx_srs = flent->fe_tx_srs; 7163 tx = &tx_srs->srs_tx; 7164 7165 /* Single ring case we haven't created any soft rings */ 7166 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7167 tx->st_mode == SRS_TX_DEFAULT) { 7168 tx->st_arg2 = NULL; 7169 mac_srs_stat_delete(tx_srs); 7170 /* Fanout case, where we have to dismantle the soft rings */ 7171 } else { 7172 for (ring = fgrp->mrg_rings; ring != NULL; 7173 ring = ring->mr_next) { 7174 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7175 mac_tx_invoke_callbacks(mcip, 7176 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7177 ring)); 7178 mac_tx_srs_del_ring(tx_srs, ring); 7179 } 7180 ASSERT(tx->st_arg2 == NULL); 7181 } 7182 } 7183 7184 /* 7185 * Switch the MAC client from one group to another. This means we need 7186 * to remove the MAC client, teardown the SRSs and revert the group state. 7187 * Then, we add the client to the destination roup, set the SRSs etc. 7188 */ 7189 void 7190 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7191 mac_group_t *tgrp) 7192 { 7193 mac_client_impl_t *group_only_mcip; 7194 mac_impl_t *mip = mcip->mci_mip; 7195 flow_entry_t *flent = mcip->mci_flent; 7196 mac_group_t *defgrp; 7197 mac_grp_client_t *mgcp; 7198 mac_client_impl_t *gmcip; 7199 flow_entry_t *gflent; 7200 7201 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7202 ASSERT(fgrp == flent->fe_tx_ring_group); 7203 7204 if (fgrp == defgrp) { 7205 /* 7206 * If this is the primary we need to find any VLANs on 7207 * the primary and move them too. 7208 */ 7209 mac_group_remove_client(fgrp, mcip); 7210 mac_tx_dismantle_soft_rings(fgrp, flent); 7211 if (mcip->mci_unicast->ma_nusers > 1) { 7212 mgcp = fgrp->mrg_clients; 7213 while (mgcp != NULL) { 7214 gmcip = mgcp->mgc_client; 7215 mgcp = mgcp->mgc_next; 7216 if (mcip->mci_unicast != gmcip->mci_unicast) 7217 continue; 7218 mac_tx_client_quiesce( 7219 (mac_client_handle_t)gmcip); 7220 7221 gflent = gmcip->mci_flent; 7222 mac_group_remove_client(fgrp, gmcip); 7223 mac_tx_dismantle_soft_rings(fgrp, gflent); 7224 7225 mac_group_add_client(tgrp, gmcip); 7226 gflent->fe_tx_ring_group = tgrp; 7227 /* We could directly set this to SHARED */ 7228 tgrp->mrg_state = mac_group_next_state(tgrp, 7229 &group_only_mcip, defgrp, B_FALSE); 7230 7231 mac_tx_srs_group_setup(gmcip, gflent, 7232 SRST_LINK); 7233 mac_fanout_setup(gmcip, gflent, 7234 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7235 gmcip, NULL, NULL); 7236 7237 mac_tx_client_restart( 7238 (mac_client_handle_t)gmcip); 7239 } 7240 } 7241 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7242 mac_ring_t *ring; 7243 int cnt; 7244 int ringcnt; 7245 7246 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7247 /* 7248 * Additionally, we also need to stop all 7249 * the rings in the default group, except 7250 * the default ring. The reason being 7251 * this group won't be released since it is 7252 * the default group, so the rings won't 7253 * be stopped otherwise. 7254 */ 7255 ringcnt = fgrp->mrg_cur_count; 7256 ring = fgrp->mrg_rings; 7257 for (cnt = 0; cnt < ringcnt; cnt++) { 7258 if (ring->mr_state == MR_INUSE && 7259 ring != 7260 (mac_ring_t *)mip->mi_default_tx_ring) { 7261 mac_stop_ring(ring); 7262 ring->mr_flag = 0; 7263 } 7264 ring = ring->mr_next; 7265 } 7266 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7267 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7268 } else { 7269 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7270 } 7271 } else { 7272 /* 7273 * We could have VLANs sharing the non-default group with 7274 * the primary. 7275 */ 7276 mgcp = fgrp->mrg_clients; 7277 while (mgcp != NULL) { 7278 gmcip = mgcp->mgc_client; 7279 mgcp = mgcp->mgc_next; 7280 if (gmcip == mcip) 7281 continue; 7282 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7283 gflent = gmcip->mci_flent; 7284 7285 mac_group_remove_client(fgrp, gmcip); 7286 mac_tx_dismantle_soft_rings(fgrp, gflent); 7287 7288 mac_group_add_client(tgrp, gmcip); 7289 gflent->fe_tx_ring_group = tgrp; 7290 /* We could directly set this to SHARED */ 7291 tgrp->mrg_state = mac_group_next_state(tgrp, 7292 &group_only_mcip, defgrp, B_FALSE); 7293 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7294 mac_fanout_setup(gmcip, gflent, 7295 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7296 gmcip, NULL, NULL); 7297 7298 mac_tx_client_restart((mac_client_handle_t)gmcip); 7299 } 7300 mac_group_remove_client(fgrp, mcip); 7301 mac_release_tx_group(mcip, fgrp); 7302 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7303 } 7304 7305 /* Add it to the tgroup */ 7306 mac_group_add_client(tgrp, mcip); 7307 flent->fe_tx_ring_group = tgrp; 7308 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7309 defgrp, B_FALSE); 7310 7311 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7312 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7313 mac_rx_deliver, mcip, NULL, NULL); 7314 } 7315 7316 /* 7317 * This is a 1-time control path activity initiated by the client (IP). 7318 * The mac perimeter protects against other simultaneous control activities, 7319 * for example an ioctl that attempts to change the degree of fanout and 7320 * increase or decrease the number of softrings associated with this Tx SRS. 7321 */ 7322 static mac_tx_notify_cb_t * 7323 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7324 mac_tx_notify_t notify, void *arg) 7325 { 7326 mac_cb_info_t *mcbi; 7327 mac_tx_notify_cb_t *mtnfp; 7328 7329 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7330 7331 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7332 mtnfp->mtnf_fn = notify; 7333 mtnfp->mtnf_arg = arg; 7334 mtnfp->mtnf_link.mcb_objp = mtnfp; 7335 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7336 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7337 7338 mcbi = &mcip->mci_tx_notify_cb_info; 7339 mutex_enter(mcbi->mcbi_lockp); 7340 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7341 mutex_exit(mcbi->mcbi_lockp); 7342 return (mtnfp); 7343 } 7344 7345 static void 7346 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7347 { 7348 mac_cb_info_t *mcbi; 7349 mac_cb_t **cblist; 7350 7351 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7352 7353 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7354 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7355 cmn_err(CE_WARN, 7356 "mac_client_tx_notify_remove: callback not " 7357 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7358 return; 7359 } 7360 7361 mcbi = &mcip->mci_tx_notify_cb_info; 7362 cblist = &mcip->mci_tx_notify_cb_list; 7363 mutex_enter(mcbi->mcbi_lockp); 7364 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7365 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7366 else 7367 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7368 mutex_exit(mcbi->mcbi_lockp); 7369 } 7370 7371 /* 7372 * mac_client_tx_notify(): 7373 * call to add and remove flow control callback routine. 7374 */ 7375 mac_tx_notify_handle_t 7376 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7377 void *ptr) 7378 { 7379 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7380 mac_tx_notify_cb_t *mtnfp = NULL; 7381 7382 i_mac_perim_enter(mcip->mci_mip); 7383 7384 if (callb_func != NULL) { 7385 /* Add a notify callback */ 7386 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7387 } else { 7388 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7389 } 7390 i_mac_perim_exit(mcip->mci_mip); 7391 7392 return ((mac_tx_notify_handle_t)mtnfp); 7393 } 7394 7395 void 7396 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7397 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7398 { 7399 mac_bridge_tx_cb = txf; 7400 mac_bridge_rx_cb = rxf; 7401 mac_bridge_ref_cb = reff; 7402 mac_bridge_ls_cb = lsf; 7403 } 7404 7405 int 7406 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7407 { 7408 mac_impl_t *mip = (mac_impl_t *)mh; 7409 int retv; 7410 7411 mutex_enter(&mip->mi_bridge_lock); 7412 if (mip->mi_bridge_link == NULL) { 7413 mip->mi_bridge_link = link; 7414 retv = 0; 7415 } else { 7416 retv = EBUSY; 7417 } 7418 mutex_exit(&mip->mi_bridge_lock); 7419 if (retv == 0) { 7420 mac_poll_state_change(mh, B_FALSE); 7421 mac_capab_update(mh); 7422 } 7423 return (retv); 7424 } 7425 7426 /* 7427 * Disable bridging on the indicated link. 7428 */ 7429 void 7430 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7431 { 7432 mac_impl_t *mip = (mac_impl_t *)mh; 7433 7434 mutex_enter(&mip->mi_bridge_lock); 7435 ASSERT(mip->mi_bridge_link == link); 7436 mip->mi_bridge_link = NULL; 7437 mutex_exit(&mip->mi_bridge_lock); 7438 mac_poll_state_change(mh, B_TRUE); 7439 mac_capab_update(mh); 7440 } 7441 7442 void 7443 mac_no_active(mac_handle_t mh) 7444 { 7445 mac_impl_t *mip = (mac_impl_t *)mh; 7446 7447 i_mac_perim_enter(mip); 7448 mip->mi_state_flags |= MIS_NO_ACTIVE; 7449 i_mac_perim_exit(mip); 7450 } 7451 7452 /* 7453 * Walk the primary VLAN clients whenever the primary's rings property 7454 * changes and update the mac_resource_props_t for the VLAN's client. 7455 * We need to do this since we don't support setting these properties 7456 * on the primary's VLAN clients, but the VLAN clients have to 7457 * follow the primary w.r.t the rings property; 7458 */ 7459 void 7460 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7461 { 7462 mac_client_impl_t *vmcip; 7463 mac_resource_props_t *vmrp; 7464 7465 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7466 vmcip = vmcip->mci_client_next) { 7467 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7468 mac_client_vid((mac_client_handle_t)vmcip) == 7469 VLAN_ID_NONE) { 7470 continue; 7471 } 7472 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7473 7474 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7475 if (mrp->mrp_mask & MRP_RX_RINGS) 7476 vmrp->mrp_mask |= MRP_RX_RINGS; 7477 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7478 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7479 7480 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7481 if (mrp->mrp_mask & MRP_TX_RINGS) 7482 vmrp->mrp_mask |= MRP_TX_RINGS; 7483 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7484 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7485 7486 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7487 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7488 else 7489 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7490 7491 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7492 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7493 else 7494 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7495 } 7496 } 7497 7498 /* 7499 * We are adding or removing ring(s) from a group. The source for taking 7500 * rings is the default group. The destination for giving rings back is 7501 * the default group. 7502 */ 7503 int 7504 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7505 mac_group_t *defgrp) 7506 { 7507 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7508 uint_t modify; 7509 int count; 7510 mac_ring_t *ring; 7511 mac_ring_t *next; 7512 mac_impl_t *mip = mcip->mci_mip; 7513 mac_ring_t **rings; 7514 uint_t ringcnt; 7515 int i = 0; 7516 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7517 int start; 7518 int end; 7519 mac_group_t *tgrp; 7520 int j; 7521 int rv = 0; 7522 7523 /* 7524 * If we are asked for just a group, we give 1 ring, else 7525 * the specified number of rings. 7526 */ 7527 if (rx_group) { 7528 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7529 mrp->mrp_nrxrings; 7530 } else { 7531 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7532 mrp->mrp_ntxrings; 7533 } 7534 7535 /* don't allow modifying rings for a share for now. */ 7536 ASSERT(mcip->mci_share == 0); 7537 7538 if (ringcnt == group->mrg_cur_count) 7539 return (0); 7540 7541 if (group->mrg_cur_count > ringcnt) { 7542 modify = group->mrg_cur_count - ringcnt; 7543 if (rx_group) { 7544 if (mip->mi_rx_donor_grp == group) { 7545 ASSERT(mac_is_primary_client(mcip)); 7546 mip->mi_rx_donor_grp = defgrp; 7547 } else { 7548 defgrp = mip->mi_rx_donor_grp; 7549 } 7550 } 7551 ring = group->mrg_rings; 7552 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7553 KM_SLEEP); 7554 j = 0; 7555 for (count = 0; count < modify; count++) { 7556 next = ring->mr_next; 7557 rv = mac_group_mov_ring(mip, defgrp, ring); 7558 if (rv != 0) { 7559 /* cleanup on failure */ 7560 for (j = 0; j < count; j++) { 7561 (void) mac_group_mov_ring(mip, group, 7562 rings[j]); 7563 } 7564 break; 7565 } 7566 rings[j++] = ring; 7567 ring = next; 7568 } 7569 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7570 return (rv); 7571 } 7572 if (ringcnt >= MAX_RINGS_PER_GROUP) 7573 return (EINVAL); 7574 7575 modify = ringcnt - group->mrg_cur_count; 7576 7577 if (rx_group) { 7578 if (group != mip->mi_rx_donor_grp) 7579 defgrp = mip->mi_rx_donor_grp; 7580 else 7581 /* 7582 * This is the donor group with all the remaining 7583 * rings. Default group now gets to be the donor 7584 */ 7585 mip->mi_rx_donor_grp = defgrp; 7586 start = 1; 7587 end = mip->mi_rx_group_count; 7588 } else { 7589 start = 0; 7590 end = mip->mi_tx_group_count - 1; 7591 } 7592 /* 7593 * If the default doesn't have any rings, lets see if we can 7594 * take rings given to an h/w client that doesn't need it. 7595 * For now, we just see if there is any one client that can donate 7596 * all the required rings. 7597 */ 7598 if (defgrp->mrg_cur_count < (modify + 1)) { 7599 for (i = start; i < end; i++) { 7600 if (rx_group) { 7601 tgrp = &mip->mi_rx_groups[i]; 7602 if (tgrp == group || tgrp->mrg_state < 7603 MAC_GROUP_STATE_RESERVED) { 7604 continue; 7605 } 7606 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7607 if (mcip == NULL) 7608 mcip = mac_get_grp_primary(tgrp); 7609 ASSERT(mcip != NULL); 7610 mrp = MCIP_RESOURCE_PROPS(mcip); 7611 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7612 continue; 7613 if ((tgrp->mrg_cur_count + 7614 defgrp->mrg_cur_count) < (modify + 1)) { 7615 continue; 7616 } 7617 if (mac_rx_switch_group(mcip, tgrp, 7618 defgrp) != 0) { 7619 return (ENOSPC); 7620 } 7621 } else { 7622 tgrp = &mip->mi_tx_groups[i]; 7623 if (tgrp == group || tgrp->mrg_state < 7624 MAC_GROUP_STATE_RESERVED) { 7625 continue; 7626 } 7627 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7628 if (mcip == NULL) 7629 mcip = mac_get_grp_primary(tgrp); 7630 mrp = MCIP_RESOURCE_PROPS(mcip); 7631 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7632 continue; 7633 if ((tgrp->mrg_cur_count + 7634 defgrp->mrg_cur_count) < (modify + 1)) { 7635 continue; 7636 } 7637 /* OK, we can switch this to s/w */ 7638 mac_tx_client_quiesce( 7639 (mac_client_handle_t)mcip); 7640 mac_tx_switch_group(mcip, tgrp, defgrp); 7641 mac_tx_client_restart( 7642 (mac_client_handle_t)mcip); 7643 } 7644 } 7645 if (defgrp->mrg_cur_count < (modify + 1)) 7646 return (ENOSPC); 7647 } 7648 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7649 group, mcip->mci_share, modify)) != 0) { 7650 return (rv); 7651 } 7652 return (0); 7653 } 7654 7655 /* 7656 * Given the poolname in mac_resource_props, find the cpupart 7657 * that is associated with this pool. The cpupart will be used 7658 * later for finding the cpus to be bound to the networking threads. 7659 * 7660 * use_default is set B_TRUE if pools are enabled and pool_default 7661 * is returned. This avoids a 2nd lookup to set the poolname 7662 * for pool-effective. 7663 * 7664 * returns: 7665 * 7666 * NULL - pools are disabled or if the 'cpus' property is set. 7667 * cpupart of pool_default - pools are enabled and the pool 7668 * is not available or poolname is blank 7669 * cpupart of named pool - pools are enabled and the pool 7670 * is available. 7671 */ 7672 cpupart_t * 7673 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7674 { 7675 pool_t *pool; 7676 cpupart_t *cpupart; 7677 7678 *use_default = B_FALSE; 7679 7680 /* CPUs property is set */ 7681 if (mrp->mrp_mask & MRP_CPUS) 7682 return (NULL); 7683 7684 ASSERT(pool_lock_held()); 7685 7686 /* Pools are disabled, no pset */ 7687 if (pool_state == POOL_DISABLED) 7688 return (NULL); 7689 7690 /* Pools property is set */ 7691 if (mrp->mrp_mask & MRP_POOL) { 7692 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7693 /* Pool not found */ 7694 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7695 mrp->mrp_pool); 7696 *use_default = B_TRUE; 7697 pool = pool_default; 7698 } 7699 /* Pools property is not set */ 7700 } else { 7701 *use_default = B_TRUE; 7702 pool = pool_default; 7703 } 7704 7705 /* Find the CPU pset that corresponds to the pool */ 7706 mutex_enter(&cpu_lock); 7707 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7708 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7709 pool->pool_pset->pset_id); 7710 } 7711 mutex_exit(&cpu_lock); 7712 7713 return (cpupart); 7714 } 7715 7716 void 7717 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7718 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7719 { 7720 ASSERT(pool_lock_held()); 7721 7722 if (cpupart != NULL) { 7723 emrp->mrp_mask |= MRP_POOL; 7724 if (use_default) { 7725 (void) strcpy(emrp->mrp_pool, 7726 "pool_default"); 7727 } else { 7728 ASSERT(strlen(mrp->mrp_pool) != 0); 7729 (void) strcpy(emrp->mrp_pool, 7730 mrp->mrp_pool); 7731 } 7732 } else { 7733 emrp->mrp_mask &= ~MRP_POOL; 7734 bzero(emrp->mrp_pool, MAXPATHLEN); 7735 } 7736 } 7737 7738 struct mac_pool_arg { 7739 char mpa_poolname[MAXPATHLEN]; 7740 pool_event_t mpa_what; 7741 }; 7742 7743 /*ARGSUSED*/ 7744 static uint_t 7745 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7746 { 7747 struct mac_pool_arg *mpa = arg; 7748 mac_impl_t *mip = (mac_impl_t *)val; 7749 mac_client_impl_t *mcip; 7750 mac_resource_props_t *mrp, *emrp; 7751 boolean_t pool_update = B_FALSE; 7752 boolean_t pool_clear = B_FALSE; 7753 boolean_t use_default = B_FALSE; 7754 cpupart_t *cpupart = NULL; 7755 7756 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7757 i_mac_perim_enter(mip); 7758 for (mcip = mip->mi_clients_list; mcip != NULL; 7759 mcip = mcip->mci_client_next) { 7760 pool_update = B_FALSE; 7761 pool_clear = B_FALSE; 7762 use_default = B_FALSE; 7763 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7764 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7765 7766 /* 7767 * When pools are enabled 7768 */ 7769 if ((mpa->mpa_what == POOL_E_ENABLE) && 7770 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7771 mrp->mrp_mask |= MRP_POOL; 7772 pool_update = B_TRUE; 7773 } 7774 7775 /* 7776 * When pools are disabled 7777 */ 7778 if ((mpa->mpa_what == POOL_E_DISABLE) && 7779 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7780 mrp->mrp_mask |= MRP_POOL; 7781 pool_clear = B_TRUE; 7782 } 7783 7784 /* 7785 * Look for links with the pool property set and the poolname 7786 * matching the one which is changing. 7787 */ 7788 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7789 /* 7790 * The pool associated with the link has changed. 7791 */ 7792 if (mpa->mpa_what == POOL_E_CHANGE) { 7793 mrp->mrp_mask |= MRP_POOL; 7794 pool_update = B_TRUE; 7795 } 7796 } 7797 7798 /* 7799 * This link is associated with pool_default and 7800 * pool_default has changed. 7801 */ 7802 if ((mpa->mpa_what == POOL_E_CHANGE) && 7803 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7804 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7805 mrp->mrp_mask |= MRP_POOL; 7806 pool_update = B_TRUE; 7807 } 7808 7809 /* 7810 * Get new list of cpus for the pool, bind network 7811 * threads to new list of cpus and update resources. 7812 */ 7813 if (pool_update) { 7814 if (MCIP_DATAPATH_SETUP(mcip)) { 7815 pool_lock(); 7816 cpupart = mac_pset_find(mrp, &use_default); 7817 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7818 mac_rx_deliver, mcip, NULL, cpupart); 7819 mac_set_pool_effective(use_default, cpupart, 7820 mrp, emrp); 7821 pool_unlock(); 7822 } 7823 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7824 B_FALSE); 7825 } 7826 7827 /* 7828 * Clear the effective pool and bind network threads 7829 * to any available CPU. 7830 */ 7831 if (pool_clear) { 7832 if (MCIP_DATAPATH_SETUP(mcip)) { 7833 emrp->mrp_mask &= ~MRP_POOL; 7834 bzero(emrp->mrp_pool, MAXPATHLEN); 7835 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7836 mac_rx_deliver, mcip, NULL, NULL); 7837 } 7838 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7839 B_FALSE); 7840 } 7841 } 7842 i_mac_perim_exit(mip); 7843 kmem_free(mrp, sizeof (*mrp)); 7844 return (MH_WALK_CONTINUE); 7845 } 7846 7847 static void 7848 mac_pool_update(void *arg) 7849 { 7850 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7851 kmem_free(arg, sizeof (struct mac_pool_arg)); 7852 } 7853 7854 /* 7855 * Callback function to be executed when a noteworthy pool event 7856 * takes place. 7857 */ 7858 /* ARGSUSED */ 7859 static void 7860 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7861 { 7862 pool_t *pool; 7863 char *poolname = NULL; 7864 struct mac_pool_arg *mpa; 7865 7866 pool_lock(); 7867 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7868 7869 switch (what) { 7870 case POOL_E_ENABLE: 7871 case POOL_E_DISABLE: 7872 break; 7873 7874 case POOL_E_CHANGE: 7875 pool = pool_lookup_pool_by_id(id); 7876 if (pool == NULL) { 7877 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7878 pool_unlock(); 7879 return; 7880 } 7881 pool_get_name(pool, &poolname); 7882 (void) strlcpy(mpa->mpa_poolname, poolname, 7883 sizeof (mpa->mpa_poolname)); 7884 break; 7885 7886 default: 7887 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7888 pool_unlock(); 7889 return; 7890 } 7891 pool_unlock(); 7892 7893 mpa->mpa_what = what; 7894 7895 mac_pool_update(mpa); 7896 } 7897 7898 /* 7899 * Set effective rings property. This could be called from datapath_setup/ 7900 * datapath_teardown or set-linkprop. 7901 * If the group is reserved we just go ahead and set the effective rings. 7902 * Additionally, for TX this could mean the default group has lost/gained 7903 * some rings, so if the default group is reserved, we need to adjust the 7904 * effective rings for the default group clients. For RX, if we are working 7905 * with the non-default group, we just need * to reset the effective props 7906 * for the default group clients. 7907 */ 7908 void 7909 mac_set_rings_effective(mac_client_impl_t *mcip) 7910 { 7911 mac_impl_t *mip = mcip->mci_mip; 7912 mac_group_t *grp; 7913 mac_group_t *defgrp; 7914 flow_entry_t *flent = mcip->mci_flent; 7915 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7916 mac_grp_client_t *mgcp; 7917 mac_client_impl_t *gmcip; 7918 7919 grp = flent->fe_rx_ring_group; 7920 if (grp != NULL) { 7921 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7922 /* 7923 * If we have reserved a group, set the effective rings 7924 * to the ring count in the group. 7925 */ 7926 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7927 emrp->mrp_mask |= MRP_RX_RINGS; 7928 emrp->mrp_nrxrings = grp->mrg_cur_count; 7929 } 7930 7931 /* 7932 * We go through the clients in the shared group and 7933 * reset the effective properties. It is possible this 7934 * might have already been done for some client (i.e. 7935 * if some client is being moved to a group that is 7936 * already shared). The case where the default group is 7937 * RESERVED is taken care of above (note in the RX side if 7938 * there is a non-default group, the default group is always 7939 * SHARED). 7940 */ 7941 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7942 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7943 mgcp = grp->mrg_clients; 7944 else 7945 mgcp = defgrp->mrg_clients; 7946 while (mgcp != NULL) { 7947 gmcip = mgcp->mgc_client; 7948 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7949 if (emrp->mrp_mask & MRP_RX_RINGS) { 7950 emrp->mrp_mask &= ~MRP_RX_RINGS; 7951 emrp->mrp_nrxrings = 0; 7952 } 7953 mgcp = mgcp->mgc_next; 7954 } 7955 } 7956 } 7957 7958 /* Now the TX side */ 7959 grp = flent->fe_tx_ring_group; 7960 if (grp != NULL) { 7961 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7962 7963 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7964 emrp->mrp_mask |= MRP_TX_RINGS; 7965 emrp->mrp_ntxrings = grp->mrg_cur_count; 7966 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7967 mgcp = grp->mrg_clients; 7968 while (mgcp != NULL) { 7969 gmcip = mgcp->mgc_client; 7970 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7971 if (emrp->mrp_mask & MRP_TX_RINGS) { 7972 emrp->mrp_mask &= ~MRP_TX_RINGS; 7973 emrp->mrp_ntxrings = 0; 7974 } 7975 mgcp = mgcp->mgc_next; 7976 } 7977 } 7978 7979 /* 7980 * If the group is not the default group and the default 7981 * group is reserved, the ring count in the default group 7982 * might have changed, update it. 7983 */ 7984 if (grp != defgrp && 7985 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7986 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7987 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7988 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7989 } 7990 } 7991 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7992 } 7993 7994 /* 7995 * Check if the primary is in the default group. If so, see if we 7996 * can give it a an exclusive group now that another client is 7997 * being configured. We take the primary out of the default group 7998 * because the multicast/broadcast packets for the all the clients 7999 * will land in the default ring in the default group which means 8000 * any client in the default group, even if it is the only on in 8001 * the group, will lose exclusive access to the rings, hence 8002 * polling. 8003 */ 8004 mac_client_impl_t * 8005 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8006 { 8007 mac_impl_t *mip = mcip->mci_mip; 8008 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8009 flow_entry_t *flent = mcip->mci_flent; 8010 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8011 uint8_t *mac_addr; 8012 mac_group_t *ngrp; 8013 8014 /* 8015 * Check if the primary is in the default group, if not 8016 * or if it is explicitly configured to be in the default 8017 * group OR set the RX rings property, return. 8018 */ 8019 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8020 return (NULL); 8021 8022 /* 8023 * If the new client needs an exclusive group and we 8024 * don't have another for the primary, return. 8025 */ 8026 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8027 return (NULL); 8028 8029 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8030 /* 8031 * We call this when we are setting up the datapath for 8032 * the first non-primary. 8033 */ 8034 ASSERT(mip->mi_nactiveclients == 2); 8035 /* 8036 * OK, now we have the primary that needs to be relocated. 8037 */ 8038 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8039 if (ngrp == NULL) 8040 return (NULL); 8041 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8042 mac_stop_group(ngrp); 8043 return (NULL); 8044 } 8045 return (mcip); 8046 } 8047 8048 void 8049 mac_transceiver_init(mac_impl_t *mip) 8050 { 8051 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8052 &mip->mi_transceiver)) { 8053 /* 8054 * The driver set a flag that we don't know about. In this case, 8055 * we need to warn about that case and ignore this capability. 8056 */ 8057 if (mip->mi_transceiver.mct_flags != 0) { 8058 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8059 "flags to invalid value: 0x%x, ignoring " 8060 "capability", mip->mi_transceiver.mct_flags); 8061 bzero(&mip->mi_transceiver, 8062 sizeof (mac_capab_transceiver_t)); 8063 } 8064 } else { 8065 bzero(&mip->mi_transceiver, 8066 sizeof (mac_capab_transceiver_t)); 8067 } 8068 } 8069 8070 int 8071 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8072 { 8073 mac_impl_t *mip = (mac_impl_t *)mh; 8074 8075 ASSERT(MAC_PERIM_HELD(mh)); 8076 8077 if (mip->mi_transceiver.mct_ntransceivers == 0) 8078 return (ENOTSUP); 8079 8080 *countp = mip->mi_transceiver.mct_ntransceivers; 8081 return (0); 8082 } 8083 8084 int 8085 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8086 boolean_t *usable) 8087 { 8088 int ret; 8089 mac_transceiver_info_t info; 8090 8091 mac_impl_t *mip = (mac_impl_t *)mh; 8092 8093 ASSERT(MAC_PERIM_HELD(mh)); 8094 8095 if (mip->mi_transceiver.mct_info == NULL || 8096 mip->mi_transceiver.mct_ntransceivers == 0) 8097 return (ENOTSUP); 8098 8099 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8100 return (EINVAL); 8101 8102 bzero(&info, sizeof (mac_transceiver_info_t)); 8103 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8104 &info)) != 0) { 8105 return (ret); 8106 } 8107 8108 *present = info.mti_present; 8109 *usable = info.mti_usable; 8110 return (0); 8111 } 8112 8113 int 8114 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8115 size_t nbytes, off_t offset, size_t *nread) 8116 { 8117 int ret; 8118 size_t nr; 8119 mac_impl_t *mip = (mac_impl_t *)mh; 8120 8121 ASSERT(MAC_PERIM_HELD(mh)); 8122 8123 if (mip->mi_transceiver.mct_read == NULL) 8124 return (ENOTSUP); 8125 8126 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8127 return (EINVAL); 8128 8129 /* 8130 * All supported pages today are 256 bytes wide. Make sure offset + 8131 * nbytes never exceeds that. 8132 */ 8133 if (offset < 0 || offset >= 256 || nbytes > 256 || 8134 offset + nbytes > 256) 8135 return (EINVAL); 8136 8137 if (nread == NULL) 8138 nread = &nr; 8139 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8140 nbytes, offset, nread); 8141 if (ret == 0 && *nread > nbytes) { 8142 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8143 "%lu byte sized buffer, possible memory corruption", 8144 *nread, nbytes); 8145 } 8146 8147 return (ret); 8148 } 8149 8150 void 8151 mac_led_init(mac_impl_t *mip) 8152 { 8153 mip->mi_led_modes = MAC_LED_DEFAULT; 8154 8155 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8156 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8157 return; 8158 } 8159 8160 if (mip->mi_led.mcl_flags != 0) { 8161 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8162 "flags to invalid value: 0x%x, ignoring " 8163 "capability", mip->mi_transceiver.mct_flags); 8164 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8165 return; 8166 } 8167 8168 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8169 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8170 "supported modes to invalid value: 0x%x, ignoring " 8171 "capability", mip->mi_transceiver.mct_flags); 8172 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8173 return; 8174 } 8175 } 8176 8177 int 8178 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8179 { 8180 mac_impl_t *mip = (mac_impl_t *)mh; 8181 8182 ASSERT(MAC_PERIM_HELD(mh)); 8183 8184 if (mip->mi_led.mcl_set == NULL) 8185 return (ENOTSUP); 8186 8187 *supported = mip->mi_led.mcl_modes; 8188 *active = mip->mi_led_modes; 8189 8190 return (0); 8191 } 8192 8193 /* 8194 * Update and multiplex the various LED requests. We only ever send one LED to 8195 * the underlying driver at a time. As such, we end up multiplexing all 8196 * requested states and picking one to send down to the driver. 8197 */ 8198 int 8199 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8200 { 8201 int ret; 8202 mac_led_mode_t driver; 8203 8204 mac_impl_t *mip = (mac_impl_t *)mh; 8205 8206 ASSERT(MAC_PERIM_HELD(mh)); 8207 8208 /* 8209 * If we've been passed a desired value of zero, that indicates that 8210 * we're basically resetting to the value of zero, which is our default 8211 * value. 8212 */ 8213 if (desired == 0) 8214 desired = MAC_LED_DEFAULT; 8215 8216 if (mip->mi_led.mcl_set == NULL) 8217 return (ENOTSUP); 8218 8219 /* 8220 * Catch both values that we don't know about and those that the driver 8221 * doesn't support. 8222 */ 8223 if ((desired & ~MAC_LED_ALL) != 0) 8224 return (EINVAL); 8225 8226 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8227 return (ENOTSUP); 8228 8229 /* 8230 * If we have the same value, then there is nothing to do. 8231 */ 8232 if (desired == mip->mi_led_modes) 8233 return (0); 8234 8235 /* 8236 * Based on the desired value, determine what to send to the driver. We 8237 * only will send a single bit to the driver at any given time. IDENT 8238 * takes priority over OFF or ON. We also let OFF take priority over the 8239 * rest. 8240 */ 8241 if (desired & MAC_LED_IDENT) { 8242 driver = MAC_LED_IDENT; 8243 } else if (desired & MAC_LED_OFF) { 8244 driver = MAC_LED_OFF; 8245 } else if (desired & MAC_LED_ON) { 8246 driver = MAC_LED_ON; 8247 } else { 8248 driver = MAC_LED_DEFAULT; 8249 } 8250 8251 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8252 mip->mi_led_modes = desired; 8253 } 8254 8255 return (ret); 8256 } 8257