1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 static int i_mac_constructor(void *, void *, int); 354 static void i_mac_destructor(void *, void *); 355 static int i_mac_ring_ctor(void *, void *, int); 356 static void i_mac_ring_dtor(void *, void *); 357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 358 void mac_tx_client_flush(mac_client_impl_t *); 359 void mac_tx_client_block(mac_client_impl_t *); 360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 361 static int mac_start_group_and_rings(mac_group_t *); 362 static void mac_stop_group_and_rings(mac_group_t *); 363 364 /* 365 * Module initialization functions. 366 */ 367 368 void 369 mac_init(void) 370 { 371 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 372 boot_max_ncpus); 373 374 /* Upper bound is mac_tx_percpu_cnt_max */ 375 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 376 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 377 378 if (mac_tx_percpu_cnt < 1) { 379 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 380 mac_tx_percpu_cnt = 1; 381 } 382 383 ASSERT(mac_tx_percpu_cnt >= 1); 384 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 385 /* 386 * Make it of the form 2**N - 1 in the range 387 * [0 .. mac_tx_percpu_cnt_max - 1] 388 */ 389 mac_tx_percpu_cnt--; 390 391 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 392 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 393 NULL, NULL, NULL, 0); 394 ASSERT(i_mac_impl_cachep != NULL); 395 396 mac_ring_cache = kmem_cache_create("mac_ring_cache", 397 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 398 NULL, NULL, 0); 399 ASSERT(mac_ring_cache != NULL); 400 401 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 402 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 403 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 404 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 405 406 mac_flow_init(); 407 mac_soft_ring_init(); 408 mac_bcast_init(); 409 mac_client_init(); 410 411 i_mac_impl_count = 0; 412 413 i_mactype_hash = mod_hash_create_extended("mactype_hash", 414 MACTYPE_HASHSZ, 415 mod_hash_null_keydtor, mod_hash_null_valdtor, 416 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 417 418 /* 419 * Allocate an id space to manage minor numbers. The range of the 420 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal 421 * minor number is MAXMIN, but id_t is type of integer and does not 422 * allow MAXMIN). 423 */ 424 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32); 425 ASSERT(minor_ids != NULL); 426 minor_count = 0; 427 428 /* Let's default to 20 seconds */ 429 mac_logging_interval = 20; 430 mac_flow_log_enable = B_FALSE; 431 mac_link_log_enable = B_FALSE; 432 mac_logging_timer = 0; 433 } 434 435 int 436 mac_fini(void) 437 { 438 if (i_mac_impl_count > 0 || minor_count > 0) 439 return (EBUSY); 440 441 id_space_destroy(minor_ids); 442 mac_flow_fini(); 443 444 mod_hash_destroy_hash(i_mac_impl_hash); 445 rw_destroy(&i_mac_impl_lock); 446 447 mac_client_fini(); 448 kmem_cache_destroy(mac_ring_cache); 449 450 mod_hash_destroy_hash(i_mactype_hash); 451 mac_soft_ring_finish(); 452 return (0); 453 } 454 455 void 456 mac_init_ops(struct dev_ops *ops, const char *name) 457 { 458 dld_init_ops(ops, name); 459 } 460 461 void 462 mac_fini_ops(struct dev_ops *ops) 463 { 464 dld_fini_ops(ops); 465 } 466 467 /*ARGSUSED*/ 468 static int 469 i_mac_constructor(void *buf, void *arg, int kmflag) 470 { 471 mac_impl_t *mip = buf; 472 473 bzero(buf, sizeof (mac_impl_t)); 474 475 mip->mi_linkstate = LINK_STATE_UNKNOWN; 476 mip->mi_nclients = 0; 477 478 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 479 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 480 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 481 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 482 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 483 484 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 485 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 486 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 487 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 488 return (0); 489 } 490 491 /*ARGSUSED*/ 492 static void 493 i_mac_destructor(void *buf, void *arg) 494 { 495 mac_impl_t *mip = buf; 496 mac_cb_info_t *mcbi; 497 498 ASSERT(mip->mi_ref == 0); 499 ASSERT(mip->mi_active == 0); 500 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 501 ASSERT(mip->mi_devpromisc == 0); 502 ASSERT(mip->mi_promisc == 0); 503 ASSERT(mip->mi_ksp == NULL); 504 ASSERT(mip->mi_kstat_count == 0); 505 ASSERT(mip->mi_nclients == 0); 506 ASSERT(mip->mi_nactiveclients == 0); 507 ASSERT(mip->mi_single_active_client == NULL); 508 ASSERT(mip->mi_state_flags == 0); 509 ASSERT(mip->mi_factory_addr == NULL); 510 ASSERT(mip->mi_factory_addr_num == 0); 511 ASSERT(mip->mi_default_tx_ring == NULL); 512 513 mcbi = &mip->mi_notify_cb_info; 514 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 515 ASSERT(mip->mi_notify_bits == 0); 516 ASSERT(mip->mi_notify_thread == NULL); 517 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 518 mcbi->mcbi_lockp = NULL; 519 520 mcbi = &mip->mi_promisc_cb_info; 521 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 522 ASSERT(mip->mi_promisc_list == NULL); 523 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 524 mcbi->mcbi_lockp = NULL; 525 526 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 527 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 528 529 mutex_destroy(&mip->mi_lock); 530 rw_destroy(&mip->mi_rw_lock); 531 532 mutex_destroy(&mip->mi_promisc_lock); 533 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 534 mutex_destroy(&mip->mi_notify_lock); 535 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 536 mutex_destroy(&mip->mi_ring_lock); 537 } 538 539 /* ARGSUSED */ 540 static int 541 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 542 { 543 mac_ring_t *ring = (mac_ring_t *)buf; 544 545 bzero(ring, sizeof (mac_ring_t)); 546 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 547 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 548 ring->mr_state = MR_FREE; 549 return (0); 550 } 551 552 /* ARGSUSED */ 553 static void 554 i_mac_ring_dtor(void *buf, void *arg) 555 { 556 mac_ring_t *ring = (mac_ring_t *)buf; 557 558 cv_destroy(&ring->mr_cv); 559 mutex_destroy(&ring->mr_lock); 560 } 561 562 /* 563 * Common functions to do mac callback addition and deletion. Currently this is 564 * used by promisc callbacks and notify callbacks. List addition and deletion 565 * need to take care of list walkers. List walkers in general, can't hold list 566 * locks and make upcall callbacks due to potential lock order and recursive 567 * reentry issues. Instead list walkers increment the list walker count to mark 568 * the presence of a walker thread. Addition can be carefully done to ensure 569 * that the list walker always sees either the old list or the new list. 570 * However the deletion can't be done while the walker is active, instead the 571 * deleting thread simply marks the entry as logically deleted. The last walker 572 * physically deletes and frees up the logically deleted entries when the walk 573 * is complete. 574 */ 575 void 576 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 577 mac_cb_t *mcb_elem) 578 { 579 mac_cb_t *p; 580 mac_cb_t **pp; 581 582 /* Verify it is not already in the list */ 583 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 584 if (p == mcb_elem) 585 break; 586 } 587 VERIFY(p == NULL); 588 589 /* 590 * Add it to the head of the callback list. The membar ensures that 591 * the following list pointer manipulations reach global visibility 592 * in exactly the program order below. 593 */ 594 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 595 596 mcb_elem->mcb_nextp = *mcb_head; 597 membar_producer(); 598 *mcb_head = mcb_elem; 599 } 600 601 /* 602 * Mark the entry as logically deleted. If there aren't any walkers unlink 603 * from the list. In either case return the corresponding status. 604 */ 605 boolean_t 606 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 607 mac_cb_t *mcb_elem) 608 { 609 mac_cb_t *p; 610 mac_cb_t **pp; 611 612 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 613 /* 614 * Search the callback list for the entry to be removed 615 */ 616 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 617 if (p == mcb_elem) 618 break; 619 } 620 VERIFY(p != NULL); 621 622 /* 623 * If there are walkers just mark it as deleted and the last walker 624 * will remove from the list and free it. 625 */ 626 if (mcbi->mcbi_walker_cnt != 0) { 627 p->mcb_flags |= MCB_CONDEMNED; 628 mcbi->mcbi_del_cnt++; 629 return (B_FALSE); 630 } 631 632 ASSERT(mcbi->mcbi_del_cnt == 0); 633 *pp = p->mcb_nextp; 634 p->mcb_nextp = NULL; 635 return (B_TRUE); 636 } 637 638 /* 639 * Wait for all pending callback removals to be completed 640 */ 641 void 642 mac_callback_remove_wait(mac_cb_info_t *mcbi) 643 { 644 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 645 while (mcbi->mcbi_del_cnt != 0) { 646 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 647 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 648 } 649 } 650 651 /* 652 * The last mac callback walker does the cleanup. Walk the list and unlik 653 * all the logically deleted entries and construct a temporary list of 654 * removed entries. Return the list of removed entries to the caller. 655 */ 656 mac_cb_t * 657 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 658 { 659 mac_cb_t *p; 660 mac_cb_t **pp; 661 mac_cb_t *rmlist = NULL; /* List of removed elements */ 662 int cnt = 0; 663 664 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 665 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 666 667 pp = mcb_head; 668 while (*pp != NULL) { 669 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 670 p = *pp; 671 *pp = p->mcb_nextp; 672 p->mcb_nextp = rmlist; 673 rmlist = p; 674 cnt++; 675 continue; 676 } 677 pp = &(*pp)->mcb_nextp; 678 } 679 680 ASSERT(mcbi->mcbi_del_cnt == cnt); 681 mcbi->mcbi_del_cnt = 0; 682 return (rmlist); 683 } 684 685 boolean_t 686 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 687 { 688 mac_cb_t *mcb; 689 690 /* Verify it is not already in the list */ 691 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 692 if (mcb == mcb_elem) 693 return (B_TRUE); 694 } 695 696 return (B_FALSE); 697 } 698 699 boolean_t 700 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 701 { 702 boolean_t found; 703 704 mutex_enter(mcbi->mcbi_lockp); 705 found = mac_callback_lookup(mcb_headp, mcb_elem); 706 mutex_exit(mcbi->mcbi_lockp); 707 708 return (found); 709 } 710 711 /* Free the list of removed callbacks */ 712 void 713 mac_callback_free(mac_cb_t *rmlist) 714 { 715 mac_cb_t *mcb; 716 mac_cb_t *mcb_next; 717 718 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 719 mcb_next = mcb->mcb_nextp; 720 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 721 } 722 } 723 724 /* 725 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 726 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 727 * is only a single shared total walker count, and an entry can't be physically 728 * unlinked if a walker is active on either list. The last walker does this 729 * cleanup of logically deleted entries. 730 */ 731 void 732 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 733 { 734 mac_cb_t *rmlist; 735 mac_cb_t *mcb; 736 mac_cb_t *mcb_next; 737 mac_promisc_impl_t *mpip; 738 739 /* 740 * Construct a temporary list of deleted callbacks by walking the 741 * the mi_promisc_list. Then for each entry in the temporary list, 742 * remove it from the mci_promisc_list and free the entry. 743 */ 744 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 745 &mip->mi_promisc_list); 746 747 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 748 mcb_next = mcb->mcb_nextp; 749 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 750 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 751 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 752 mcb->mcb_flags = 0; 753 mcb->mcb_nextp = NULL; 754 kmem_cache_free(mac_promisc_impl_cache, mpip); 755 } 756 } 757 758 void 759 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 760 { 761 mac_cb_info_t *mcbi; 762 763 /* 764 * Signal the notify thread even after mi_ref has become zero and 765 * mi_disabled is set. The synchronization with the notify thread 766 * happens in mac_unregister and that implies the driver must make 767 * sure it is single-threaded (with respect to mac calls) and that 768 * all pending mac calls have returned before it calls mac_unregister 769 */ 770 rw_enter(&i_mac_impl_lock, RW_READER); 771 if (mip->mi_state_flags & MIS_DISABLED) 772 goto exit; 773 774 /* 775 * Guard against incorrect notifications. (Running a newer 776 * mac client against an older implementation?) 777 */ 778 if (type >= MAC_NNOTE) 779 goto exit; 780 781 mcbi = &mip->mi_notify_cb_info; 782 mutex_enter(mcbi->mcbi_lockp); 783 mip->mi_notify_bits |= (1 << type); 784 cv_broadcast(&mcbi->mcbi_cv); 785 mutex_exit(mcbi->mcbi_lockp); 786 787 exit: 788 rw_exit(&i_mac_impl_lock); 789 } 790 791 /* 792 * Mac serialization primitives. Please see the block comment at the 793 * top of the file. 794 */ 795 void 796 i_mac_perim_enter(mac_impl_t *mip) 797 { 798 mac_client_impl_t *mcip; 799 800 if (mip->mi_state_flags & MIS_IS_VNIC) { 801 /* 802 * This is a VNIC. Return the lower mac since that is what 803 * we want to serialize on. 804 */ 805 mcip = mac_vnic_lower(mip); 806 mip = mcip->mci_mip; 807 } 808 809 mutex_enter(&mip->mi_perim_lock); 810 if (mip->mi_perim_owner == curthread) { 811 mip->mi_perim_ocnt++; 812 mutex_exit(&mip->mi_perim_lock); 813 return; 814 } 815 816 while (mip->mi_perim_owner != NULL) 817 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 818 819 mip->mi_perim_owner = curthread; 820 ASSERT(mip->mi_perim_ocnt == 0); 821 mip->mi_perim_ocnt++; 822 #ifdef DEBUG 823 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 824 MAC_PERIM_STACK_DEPTH); 825 #endif 826 mutex_exit(&mip->mi_perim_lock); 827 } 828 829 int 830 i_mac_perim_enter_nowait(mac_impl_t *mip) 831 { 832 /* 833 * The vnic is a special case, since the serialization is done based 834 * on the lower mac. If the lower mac is busy, it does not imply the 835 * vnic can't be unregistered. But in the case of other drivers, 836 * a busy perimeter or open mac handles implies that the mac is busy 837 * and can't be unregistered. 838 */ 839 if (mip->mi_state_flags & MIS_IS_VNIC) { 840 i_mac_perim_enter(mip); 841 return (0); 842 } 843 844 mutex_enter(&mip->mi_perim_lock); 845 if (mip->mi_perim_owner != NULL) { 846 mutex_exit(&mip->mi_perim_lock); 847 return (EBUSY); 848 } 849 ASSERT(mip->mi_perim_ocnt == 0); 850 mip->mi_perim_owner = curthread; 851 mip->mi_perim_ocnt++; 852 mutex_exit(&mip->mi_perim_lock); 853 854 return (0); 855 } 856 857 void 858 i_mac_perim_exit(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 872 873 mutex_enter(&mip->mi_perim_lock); 874 if (--mip->mi_perim_ocnt == 0) { 875 mip->mi_perim_owner = NULL; 876 cv_signal(&mip->mi_perim_cv); 877 } 878 mutex_exit(&mip->mi_perim_lock); 879 } 880 881 /* 882 * Returns whether the current thread holds the mac perimeter. Used in making 883 * assertions. 884 */ 885 boolean_t 886 mac_perim_held(mac_handle_t mh) 887 { 888 mac_impl_t *mip = (mac_impl_t *)mh; 889 mac_client_impl_t *mcip; 890 891 if (mip->mi_state_flags & MIS_IS_VNIC) { 892 /* 893 * This is a VNIC. Return the lower mac since that is what 894 * we want to serialize on. 895 */ 896 mcip = mac_vnic_lower(mip); 897 mip = mcip->mci_mip; 898 } 899 return (mip->mi_perim_owner == curthread); 900 } 901 902 /* 903 * mac client interfaces to enter the mac perimeter of a mac end point, given 904 * its mac handle, or macname or linkid. 905 */ 906 void 907 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 908 { 909 mac_impl_t *mip = (mac_impl_t *)mh; 910 911 i_mac_perim_enter(mip); 912 /* 913 * The mac_perim_handle_t returned encodes the 'mip' and whether a 914 * mac_open has been done internally while entering the perimeter. 915 * This information is used in mac_perim_exit 916 */ 917 MAC_ENCODE_MPH(*mphp, mip, 0); 918 } 919 920 int 921 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 922 { 923 int err; 924 mac_handle_t mh; 925 926 if ((err = mac_open(name, &mh)) != 0) 927 return (err); 928 929 mac_perim_enter_by_mh(mh, mphp); 930 MAC_ENCODE_MPH(*mphp, mh, 1); 931 return (0); 932 } 933 934 int 935 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 936 { 937 int err; 938 mac_handle_t mh; 939 940 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 941 return (err); 942 943 mac_perim_enter_by_mh(mh, mphp); 944 MAC_ENCODE_MPH(*mphp, mh, 1); 945 return (0); 946 } 947 948 void 949 mac_perim_exit(mac_perim_handle_t mph) 950 { 951 mac_impl_t *mip; 952 boolean_t need_close; 953 954 MAC_DECODE_MPH(mph, mip, need_close); 955 i_mac_perim_exit(mip); 956 if (need_close) 957 mac_close((mac_handle_t)mip); 958 } 959 960 int 961 mac_hold(const char *macname, mac_impl_t **pmip) 962 { 963 mac_impl_t *mip; 964 int err; 965 966 /* 967 * Check the device name length to make sure it won't overflow our 968 * buffer. 969 */ 970 if (strlen(macname) >= MAXNAMELEN) 971 return (EINVAL); 972 973 /* 974 * Look up its entry in the global hash table. 975 */ 976 rw_enter(&i_mac_impl_lock, RW_WRITER); 977 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 978 (mod_hash_val_t *)&mip); 979 980 if (err != 0) { 981 rw_exit(&i_mac_impl_lock); 982 return (ENOENT); 983 } 984 985 if (mip->mi_state_flags & MIS_DISABLED) { 986 rw_exit(&i_mac_impl_lock); 987 return (ENOENT); 988 } 989 990 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 991 rw_exit(&i_mac_impl_lock); 992 return (EBUSY); 993 } 994 995 mip->mi_ref++; 996 rw_exit(&i_mac_impl_lock); 997 998 *pmip = mip; 999 return (0); 1000 } 1001 1002 void 1003 mac_rele(mac_impl_t *mip) 1004 { 1005 rw_enter(&i_mac_impl_lock, RW_WRITER); 1006 ASSERT(mip->mi_ref != 0); 1007 if (--mip->mi_ref == 0) { 1008 ASSERT(mip->mi_nactiveclients == 0 && 1009 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1010 } 1011 rw_exit(&i_mac_impl_lock); 1012 } 1013 1014 /* 1015 * Private GLDv3 function to start a MAC instance. 1016 */ 1017 int 1018 mac_start(mac_handle_t mh) 1019 { 1020 mac_impl_t *mip = (mac_impl_t *)mh; 1021 int err = 0; 1022 1023 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1024 ASSERT(mip->mi_start != NULL); 1025 1026 /* 1027 * Check whether the device is already started. 1028 */ 1029 if (mip->mi_active++ == 0) { 1030 mac_ring_t *ring = NULL; 1031 1032 /* 1033 * Start the device. 1034 */ 1035 err = mip->mi_start(mip->mi_driver); 1036 if (err != 0) { 1037 mip->mi_active--; 1038 return (err); 1039 } 1040 1041 /* 1042 * Start the default tx ring. 1043 */ 1044 if (mip->mi_default_tx_ring != NULL) { 1045 1046 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1047 err = mac_start_ring(ring); 1048 if (err != 0) { 1049 mip->mi_active--; 1050 return (err); 1051 } 1052 ring->mr_state = MR_INUSE; 1053 } 1054 1055 if (mip->mi_rx_groups != NULL) { 1056 /* 1057 * Start the default ring, since it will be needed 1058 * to receive broadcast and multicast traffic for 1059 * both primary and non-primary MAC clients. 1060 */ 1061 mac_group_t *grp = &mip->mi_rx_groups[0]; 1062 1063 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1064 err = mac_start_group_and_rings(grp); 1065 if (err != 0) { 1066 mip->mi_active--; 1067 if (ring != NULL) { 1068 mac_stop_ring(ring); 1069 ring->mr_state = MR_FREE; 1070 } 1071 return (err); 1072 } 1073 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1074 } 1075 } 1076 1077 return (err); 1078 } 1079 1080 /* 1081 * Private GLDv3 function to stop a MAC instance. 1082 */ 1083 void 1084 mac_stop(mac_handle_t mh) 1085 { 1086 mac_impl_t *mip = (mac_impl_t *)mh; 1087 1088 ASSERT(mip->mi_stop != NULL); 1089 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1090 1091 /* 1092 * Check whether the device is still needed. 1093 */ 1094 ASSERT(mip->mi_active != 0); 1095 if (--mip->mi_active == 0) { 1096 if (mip->mi_rx_groups != NULL) { 1097 /* 1098 * There should be no more active clients since the 1099 * MAC is being stopped. Stop the default RX group 1100 * and transition it back to registered state. 1101 */ 1102 mac_group_t *grp = &mip->mi_rx_groups[0]; 1103 1104 /* 1105 * When clients are torn down, the groups 1106 * are release via mac_release_rx_group which 1107 * knows the the default group is always in 1108 * started mode since broadcast uses it. So 1109 * we can assert that their are no clients 1110 * (since mac_bcast_add doesn't register itself 1111 * as a client) and group is in SHARED state. 1112 */ 1113 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1114 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1115 mip->mi_nactiveclients == 0); 1116 mac_stop_group_and_rings(grp); 1117 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1118 } 1119 1120 if (mip->mi_default_tx_ring != NULL) { 1121 mac_ring_t *ring; 1122 1123 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1124 mac_stop_ring(ring); 1125 ring->mr_state = MR_FREE; 1126 } 1127 1128 /* 1129 * Stop the device. 1130 */ 1131 mip->mi_stop(mip->mi_driver); 1132 } 1133 } 1134 1135 int 1136 i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype) 1137 { 1138 int err = 0; 1139 1140 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1141 ASSERT(mip->mi_setpromisc != NULL); 1142 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1143 1144 /* 1145 * Determine whether we should enable or disable promiscuous mode. 1146 * For details on the distinction between "device promiscuous mode" 1147 * and "MAC promiscuous mode", see PSARC/2005/289. 1148 */ 1149 if (on) { 1150 /* 1151 * Enable promiscuous mode on the device if not yet enabled. 1152 */ 1153 if (mip->mi_devpromisc++ == 0) { 1154 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1155 if (err != 0) { 1156 mip->mi_devpromisc--; 1157 return (err); 1158 } 1159 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1160 } 1161 1162 /* 1163 * Enable promiscuous mode on the MAC if not yet enabled. 1164 */ 1165 if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0) 1166 i_mac_notify(mip, MAC_NOTE_PROMISC); 1167 } else { 1168 if (mip->mi_devpromisc == 0) 1169 return (EPROTO); 1170 1171 /* 1172 * Disable promiscuous mode on the device if this is the last 1173 * enabling. 1174 */ 1175 if (--mip->mi_devpromisc == 0) { 1176 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1177 if (err != 0) { 1178 mip->mi_devpromisc++; 1179 return (err); 1180 } 1181 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1182 } 1183 1184 /* 1185 * Disable promiscuous mode on the MAC if this is the last 1186 * enabling. 1187 */ 1188 if (ptype == MAC_PROMISC && --mip->mi_promisc == 0) 1189 i_mac_notify(mip, MAC_NOTE_PROMISC); 1190 } 1191 1192 return (0); 1193 } 1194 1195 int 1196 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype) 1197 { 1198 mac_impl_t *mip = (mac_impl_t *)mh; 1199 int rv; 1200 1201 i_mac_perim_enter(mip); 1202 rv = i_mac_promisc_set(mip, on, ptype); 1203 i_mac_perim_exit(mip); 1204 1205 return (rv); 1206 } 1207 1208 /* 1209 * The promiscuity state can change any time. If the caller needs to take 1210 * actions that are atomic with the promiscuity state, then the caller needs 1211 * to bracket the entire sequence with mac_perim_enter/exit 1212 */ 1213 boolean_t 1214 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype) 1215 { 1216 mac_impl_t *mip = (mac_impl_t *)mh; 1217 1218 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1219 1220 /* 1221 * Return the current promiscuity. 1222 */ 1223 if (ptype == MAC_DEVPROMISC) 1224 return (mip->mi_devpromisc != 0); 1225 else 1226 return (mip->mi_promisc != 0); 1227 } 1228 1229 /* 1230 * Invoked at MAC instance attach time to initialize the list 1231 * of factory MAC addresses supported by a MAC instance. This function 1232 * builds a local cache in the mac_impl_t for the MAC addresses 1233 * supported by the underlying hardware. The MAC clients themselves 1234 * use the mac_addr_factory*() functions to query and reserve 1235 * factory MAC addresses. 1236 */ 1237 void 1238 mac_addr_factory_init(mac_impl_t *mip) 1239 { 1240 mac_capab_multifactaddr_t capab; 1241 uint8_t *addr; 1242 int i; 1243 1244 /* 1245 * First round to see how many factory MAC addresses are available. 1246 */ 1247 bzero(&capab, sizeof (capab)); 1248 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1249 &capab) || (capab.mcm_naddr == 0)) { 1250 /* 1251 * The MAC instance doesn't support multiple factory 1252 * MAC addresses, we're done here. 1253 */ 1254 return; 1255 } 1256 1257 /* 1258 * Allocate the space and get all the factory addresses. 1259 */ 1260 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1261 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1262 1263 mip->mi_factory_addr_num = capab.mcm_naddr; 1264 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1265 sizeof (mac_factory_addr_t), KM_SLEEP); 1266 1267 for (i = 0; i < capab.mcm_naddr; i++) { 1268 bcopy(addr + i * MAXMACADDRLEN, 1269 mip->mi_factory_addr[i].mfa_addr, 1270 mip->mi_type->mt_addr_length); 1271 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1272 } 1273 1274 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1275 } 1276 1277 void 1278 mac_addr_factory_fini(mac_impl_t *mip) 1279 { 1280 if (mip->mi_factory_addr == NULL) { 1281 ASSERT(mip->mi_factory_addr_num == 0); 1282 return; 1283 } 1284 1285 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1286 sizeof (mac_factory_addr_t)); 1287 1288 mip->mi_factory_addr = NULL; 1289 mip->mi_factory_addr_num = 0; 1290 } 1291 1292 /* 1293 * Reserve a factory MAC address. If *slot is set to -1, the function 1294 * attempts to reserve any of the available factory MAC addresses and 1295 * returns the reserved slot id. If no slots are available, the function 1296 * returns ENOSPC. If *slot is not set to -1, the function reserves 1297 * the specified slot if it is available, or returns EBUSY is the slot 1298 * is already used. Returns ENOTSUP if the underlying MAC does not 1299 * support multiple factory addresses. If the slot number is not -1 but 1300 * is invalid, returns EINVAL. 1301 */ 1302 int 1303 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1304 { 1305 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1306 mac_impl_t *mip = mcip->mci_mip; 1307 int i, ret = 0; 1308 1309 i_mac_perim_enter(mip); 1310 /* 1311 * Protect against concurrent readers that may need a self-consistent 1312 * view of the factory addresses 1313 */ 1314 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1315 1316 if (mip->mi_factory_addr_num == 0) { 1317 ret = ENOTSUP; 1318 goto bail; 1319 } 1320 1321 if (*slot != -1) { 1322 /* check the specified slot */ 1323 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1324 ret = EINVAL; 1325 goto bail; 1326 } 1327 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1328 ret = EBUSY; 1329 goto bail; 1330 } 1331 } else { 1332 /* pick the next available slot */ 1333 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1334 if (!mip->mi_factory_addr[i].mfa_in_use) 1335 break; 1336 } 1337 1338 if (i == mip->mi_factory_addr_num) { 1339 ret = ENOSPC; 1340 goto bail; 1341 } 1342 *slot = i+1; 1343 } 1344 1345 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1346 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1347 1348 bail: 1349 rw_exit(&mip->mi_rw_lock); 1350 i_mac_perim_exit(mip); 1351 return (ret); 1352 } 1353 1354 /* 1355 * Release the specified factory MAC address slot. 1356 */ 1357 void 1358 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1359 { 1360 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1361 mac_impl_t *mip = mcip->mci_mip; 1362 1363 i_mac_perim_enter(mip); 1364 /* 1365 * Protect against concurrent readers that may need a self-consistent 1366 * view of the factory addresses 1367 */ 1368 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1369 1370 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1371 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1372 1373 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1374 1375 rw_exit(&mip->mi_rw_lock); 1376 i_mac_perim_exit(mip); 1377 } 1378 1379 /* 1380 * Stores in mac_addr the value of the specified MAC address. Returns 1381 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1382 * The caller must provide a string of at least MAXNAMELEN bytes. 1383 */ 1384 void 1385 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1386 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1387 { 1388 mac_impl_t *mip = (mac_impl_t *)mh; 1389 boolean_t in_use; 1390 1391 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1392 1393 /* 1394 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1395 * and mi_rw_lock 1396 */ 1397 rw_enter(&mip->mi_rw_lock, RW_READER); 1398 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1399 *addr_len = mip->mi_type->mt_addr_length; 1400 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1401 if (in_use && client_name != NULL) { 1402 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1403 client_name, MAXNAMELEN); 1404 } 1405 if (in_use_arg != NULL) 1406 *in_use_arg = in_use; 1407 rw_exit(&mip->mi_rw_lock); 1408 } 1409 1410 /* 1411 * Returns the number of factory MAC addresses (in addition to the 1412 * primary MAC address), 0 if the underlying MAC doesn't support 1413 * that feature. 1414 */ 1415 uint_t 1416 mac_addr_factory_num(mac_handle_t mh) 1417 { 1418 mac_impl_t *mip = (mac_impl_t *)mh; 1419 1420 return (mip->mi_factory_addr_num); 1421 } 1422 1423 1424 void 1425 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1426 { 1427 mac_ring_t *ring; 1428 1429 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1430 ring->mr_flag &= ~flag; 1431 } 1432 1433 /* 1434 * The following mac_hwrings_xxx() functions are private mac client functions 1435 * used by the aggr driver to access and control the underlying HW Rx group 1436 * and rings. In this case, the aggr driver has exclusive control of the 1437 * underlying HW Rx group/rings, it calls the following functions to 1438 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1439 * addresses, or set up the Rx callback. 1440 */ 1441 /* ARGSUSED */ 1442 static void 1443 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1444 mblk_t *mp_chain, boolean_t loopback) 1445 { 1446 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1447 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1448 mac_direct_rx_t proc; 1449 void *arg1; 1450 mac_resource_handle_t arg2; 1451 1452 proc = srs_rx->sr_func; 1453 arg1 = srs_rx->sr_arg1; 1454 arg2 = mac_srs->srs_mrh; 1455 1456 proc(arg1, arg2, mp_chain, NULL); 1457 } 1458 1459 /* 1460 * This function is called to get the list of HW rings that are reserved by 1461 * an exclusive mac client. 1462 * 1463 * Return value: the number of HW rings. 1464 */ 1465 int 1466 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1467 mac_ring_handle_t *hwrh) 1468 { 1469 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1470 flow_entry_t *flent = mcip->mci_flent; 1471 mac_group_t *grp = flent->fe_rx_ring_group; 1472 mac_ring_t *ring; 1473 int cnt = 0; 1474 1475 /* 1476 * The mac client did not reserve any RX group, return directly. 1477 * This is probably because the underlying MAC does not support 1478 * any RX groups. 1479 */ 1480 *hwgh = NULL; 1481 if (grp == NULL) 1482 return (0); 1483 1484 /* 1485 * This RX group must be reserved by this mac client. 1486 */ 1487 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1488 (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1489 1490 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) { 1491 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1492 hwrh[cnt++] = (mac_ring_handle_t)ring; 1493 } 1494 *hwgh = (mac_group_handle_t)grp; 1495 return (cnt); 1496 } 1497 1498 /* 1499 * Setup the RX callback of the mac client which exclusively controls HW ring. 1500 */ 1501 void 1502 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1503 { 1504 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1505 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1506 1507 mac_srs->srs_mrh = prh; 1508 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1509 } 1510 1511 void 1512 mac_hwring_teardown(mac_ring_handle_t hwrh) 1513 { 1514 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1515 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1516 1517 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1518 mac_srs->srs_mrh = NULL; 1519 } 1520 1521 int 1522 mac_hwring_disable_intr(mac_ring_handle_t rh) 1523 { 1524 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1525 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1526 1527 return (intr->mi_disable(intr->mi_handle)); 1528 } 1529 1530 int 1531 mac_hwring_enable_intr(mac_ring_handle_t rh) 1532 { 1533 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1534 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1535 1536 return (intr->mi_enable(intr->mi_handle)); 1537 } 1538 1539 int 1540 mac_hwring_start(mac_ring_handle_t rh) 1541 { 1542 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1543 1544 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1545 return (0); 1546 } 1547 1548 void 1549 mac_hwring_stop(mac_ring_handle_t rh) 1550 { 1551 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1552 1553 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1554 } 1555 1556 mblk_t * 1557 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1558 { 1559 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1560 mac_ring_info_t *info = &rr_ring->mr_info; 1561 1562 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1563 } 1564 1565 int 1566 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1567 { 1568 mac_group_t *group = (mac_group_t *)gh; 1569 1570 return (mac_group_addmac(group, addr)); 1571 } 1572 1573 int 1574 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1575 { 1576 mac_group_t *group = (mac_group_t *)gh; 1577 1578 return (mac_group_remmac(group, addr)); 1579 } 1580 1581 /* 1582 * Set the RX group to be shared/reserved. Note that the group must be 1583 * started/stopped outside of this function. 1584 */ 1585 void 1586 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1587 { 1588 /* 1589 * If there is no change in the group state, just return. 1590 */ 1591 if (grp->mrg_state == state) 1592 return; 1593 1594 switch (state) { 1595 case MAC_GROUP_STATE_RESERVED: 1596 /* 1597 * Successfully reserved the group. 1598 * 1599 * Given that there is an exclusive client controlling this 1600 * group, we enable the group level polling when available, 1601 * so that SRSs get to turn on/off individual rings they's 1602 * assigned to. 1603 */ 1604 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1605 1606 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1607 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1608 1609 break; 1610 1611 case MAC_GROUP_STATE_SHARED: 1612 /* 1613 * Set all rings of this group to software classified. 1614 * If the group has an overriding interrupt, then re-enable it. 1615 */ 1616 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1617 1618 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1619 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1620 1621 /* The ring is not available for reservations any more */ 1622 break; 1623 1624 case MAC_GROUP_STATE_REGISTERED: 1625 /* Also callable from mac_register, perim is not held */ 1626 break; 1627 1628 default: 1629 ASSERT(B_FALSE); 1630 break; 1631 } 1632 1633 grp->mrg_state = state; 1634 } 1635 1636 /* 1637 * Quiesce future hardware classified packets for the specified Rx ring 1638 */ 1639 static void 1640 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1641 { 1642 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1643 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1644 1645 mutex_enter(&rx_ring->mr_lock); 1646 rx_ring->mr_flag |= ring_flag; 1647 while (rx_ring->mr_refcnt != 0) 1648 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1649 mutex_exit(&rx_ring->mr_lock); 1650 } 1651 1652 /* 1653 * Please see mac_tx for details about the per cpu locking scheme 1654 */ 1655 static void 1656 mac_tx_lock_all(mac_client_impl_t *mcip) 1657 { 1658 int i; 1659 1660 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1661 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1662 } 1663 1664 static void 1665 mac_tx_unlock_all(mac_client_impl_t *mcip) 1666 { 1667 int i; 1668 1669 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1670 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1671 } 1672 1673 static void 1674 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1675 { 1676 int i; 1677 1678 for (i = mac_tx_percpu_cnt; i > 0; i--) 1679 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1680 } 1681 1682 static int 1683 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1684 { 1685 int i; 1686 int refcnt = 0; 1687 1688 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1689 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1690 1691 return (refcnt); 1692 } 1693 1694 /* 1695 * Stop future Tx packets coming down from the client in preparation for 1696 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1697 * of rings between clients 1698 */ 1699 void 1700 mac_tx_client_block(mac_client_impl_t *mcip) 1701 { 1702 mac_tx_lock_all(mcip); 1703 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1704 while (mac_tx_sum_refcnt(mcip) != 0) { 1705 mac_tx_unlock_allbutzero(mcip); 1706 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1707 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1708 mac_tx_lock_all(mcip); 1709 } 1710 mac_tx_unlock_all(mcip); 1711 } 1712 1713 void 1714 mac_tx_client_unblock(mac_client_impl_t *mcip) 1715 { 1716 mac_tx_lock_all(mcip); 1717 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1718 mac_tx_unlock_all(mcip); 1719 /* 1720 * We may fail to disable flow control for the last MAC_NOTE_TX 1721 * notification because the MAC client is quiesced. Send the 1722 * notification again. 1723 */ 1724 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1725 } 1726 1727 /* 1728 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1729 * quiesce is done. 1730 */ 1731 static void 1732 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1733 { 1734 mutex_enter(&srs->srs_lock); 1735 while (!(srs->srs_state & srs_flag)) 1736 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1737 mutex_exit(&srs->srs_lock); 1738 } 1739 1740 /* 1741 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1742 * works bottom up by cutting off packet flow from the bottommost point in the 1743 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1744 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1745 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1746 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1747 * for the SRS and MR flags. In the former case the threads pause waiting for 1748 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1749 * is also mostly similar to the above. 1750 * 1751 * 1. Stop future hardware classified packets at the lowest level in the mac. 1752 * Remove any hardware classification rule (CONDEMNED case) and mark the 1753 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1754 * from increasing. Upcalls from the driver that come through hardware 1755 * classification will be dropped in mac_rx from now on. Then we wait for 1756 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1757 * sure there aren't any upcall threads from the driver through hardware 1758 * classification. In the case of SRS teardown we also remove the 1759 * classification rule in the driver. 1760 * 1761 * 2. Stop future software classified packets by marking the flow entry with 1762 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1763 * increasing. We also remove the flow entry from the table in the latter 1764 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1765 * that indicates there aren't any active threads using that flow entry. 1766 * 1767 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1768 * SRS worker thread, and the soft ring threads are quiesced in sequence 1769 * with the SRS worker thread serving as a master controller. This 1770 * mechansim is explained in mac_srs_worker_quiesce(). 1771 * 1772 * The restart mechanism to reactivate the SRS and softrings is explained 1773 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1774 * restart sequence. 1775 */ 1776 void 1777 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1778 { 1779 flow_entry_t *flent = srs->srs_flent; 1780 uint_t mr_flag, srs_done_flag; 1781 1782 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1783 ASSERT(!(srs->srs_type & SRST_TX)); 1784 1785 if (srs_quiesce_flag == SRS_CONDEMNED) { 1786 mr_flag = MR_CONDEMNED; 1787 srs_done_flag = SRS_CONDEMNED_DONE; 1788 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1789 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1790 } else { 1791 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1792 mr_flag = MR_QUIESCE; 1793 srs_done_flag = SRS_QUIESCE_DONE; 1794 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1795 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1796 } 1797 1798 if (srs->srs_ring != NULL) { 1799 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1800 } else { 1801 /* 1802 * SRS is driven by software classification. In case 1803 * of CONDEMNED, the top level teardown functions will 1804 * deal with flow removal. 1805 */ 1806 if (srs_quiesce_flag != SRS_CONDEMNED) { 1807 FLOW_MARK(flent, FE_QUIESCE); 1808 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1809 } 1810 } 1811 1812 /* 1813 * Signal the SRS to quiesce itself, and then cv_wait for the 1814 * SRS quiesce to complete. The SRS worker thread will wake us 1815 * up when the quiesce is complete 1816 */ 1817 mac_srs_signal(srs, srs_quiesce_flag); 1818 mac_srs_quiesce_wait(srs, srs_done_flag); 1819 } 1820 1821 /* 1822 * Remove an SRS. 1823 */ 1824 void 1825 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1826 { 1827 flow_entry_t *flent = srs->srs_flent; 1828 int i; 1829 1830 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1831 /* 1832 * Locate and remove our entry in the fe_rx_srs[] array, and 1833 * adjust the fe_rx_srs array entries and array count by 1834 * moving the last entry into the vacated spot. 1835 */ 1836 mutex_enter(&flent->fe_lock); 1837 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1838 if (flent->fe_rx_srs[i] == srs) 1839 break; 1840 } 1841 1842 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1843 if (i != flent->fe_rx_srs_cnt - 1) { 1844 flent->fe_rx_srs[i] = 1845 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1846 i = flent->fe_rx_srs_cnt - 1; 1847 } 1848 1849 flent->fe_rx_srs[i] = NULL; 1850 flent->fe_rx_srs_cnt--; 1851 mutex_exit(&flent->fe_lock); 1852 1853 mac_srs_free(srs); 1854 } 1855 1856 static void 1857 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1858 { 1859 mutex_enter(&srs->srs_lock); 1860 srs->srs_state &= ~flag; 1861 mutex_exit(&srs->srs_lock); 1862 } 1863 1864 void 1865 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1866 { 1867 flow_entry_t *flent = srs->srs_flent; 1868 mac_ring_t *mr; 1869 1870 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1871 ASSERT((srs->srs_type & SRST_TX) == 0); 1872 1873 /* 1874 * This handles a change in the number of SRSs between the quiesce and 1875 * and restart operation of a flow. 1876 */ 1877 if (!SRS_QUIESCED(srs)) 1878 return; 1879 1880 /* 1881 * Signal the SRS to restart itself. Wait for the restart to complete 1882 * Note that we only restart the SRS if it is not marked as 1883 * permanently quiesced. 1884 */ 1885 if (!SRS_QUIESCED_PERMANENT(srs)) { 1886 mac_srs_signal(srs, SRS_RESTART); 1887 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1888 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1889 1890 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1891 } 1892 1893 /* Finally clear the flags to let the packets in */ 1894 mr = srs->srs_ring; 1895 if (mr != NULL) { 1896 MAC_RING_UNMARK(mr, MR_QUIESCE); 1897 /* In case the ring was stopped, safely restart it */ 1898 (void) mac_start_ring(mr); 1899 } else { 1900 FLOW_UNMARK(flent, FE_QUIESCE); 1901 } 1902 } 1903 1904 /* 1905 * Temporary quiesce of a flow and associated Rx SRS. 1906 * Please see block comment above mac_rx_classify_flow_rem. 1907 */ 1908 /* ARGSUSED */ 1909 int 1910 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1911 { 1912 int i; 1913 1914 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1915 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1916 SRS_QUIESCE); 1917 } 1918 return (0); 1919 } 1920 1921 /* 1922 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1923 * Please see block comment above mac_rx_classify_flow_rem 1924 */ 1925 /* ARGSUSED */ 1926 int 1927 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1928 { 1929 int i; 1930 1931 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1932 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1933 1934 return (0); 1935 } 1936 1937 void 1938 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1939 { 1940 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1941 flow_entry_t *flent = mcip->mci_flent; 1942 mac_impl_t *mip = mcip->mci_mip; 1943 mac_soft_ring_set_t *mac_srs; 1944 int i; 1945 1946 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1947 1948 if (flent == NULL) 1949 return; 1950 1951 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1952 mac_srs = flent->fe_rx_srs[i]; 1953 mutex_enter(&mac_srs->srs_lock); 1954 if (on) 1955 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1956 else 1957 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1958 mutex_exit(&mac_srs->srs_lock); 1959 } 1960 } 1961 1962 void 1963 mac_rx_client_quiesce(mac_client_handle_t mch) 1964 { 1965 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1966 mac_impl_t *mip = mcip->mci_mip; 1967 1968 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1969 1970 if (MCIP_DATAPATH_SETUP(mcip)) { 1971 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1972 NULL); 1973 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1974 mac_rx_classify_flow_quiesce, NULL); 1975 } 1976 } 1977 1978 void 1979 mac_rx_client_restart(mac_client_handle_t mch) 1980 { 1981 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1982 mac_impl_t *mip = mcip->mci_mip; 1983 1984 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1985 1986 if (MCIP_DATAPATH_SETUP(mcip)) { 1987 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1988 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1989 mac_rx_classify_flow_restart, NULL); 1990 } 1991 } 1992 1993 /* 1994 * This function only quiesces the Tx SRS and softring worker threads. Callers 1995 * need to make sure that there aren't any mac client threads doing current or 1996 * future transmits in the mac before calling this function. 1997 */ 1998 void 1999 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2000 { 2001 mac_client_impl_t *mcip = srs->srs_mcip; 2002 2003 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2004 2005 ASSERT(srs->srs_type & SRST_TX); 2006 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2007 srs_quiesce_flag == SRS_QUIESCE); 2008 2009 /* 2010 * Signal the SRS to quiesce itself, and then cv_wait for the 2011 * SRS quiesce to complete. The SRS worker thread will wake us 2012 * up when the quiesce is complete 2013 */ 2014 mac_srs_signal(srs, srs_quiesce_flag); 2015 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2016 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2017 } 2018 2019 void 2020 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2021 { 2022 /* 2023 * Resizing the fanout could result in creation of new SRSs. 2024 * They may not necessarily be in the quiesced state in which 2025 * case it need be restarted 2026 */ 2027 if (!SRS_QUIESCED(srs)) 2028 return; 2029 2030 mac_srs_signal(srs, SRS_RESTART); 2031 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2032 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2033 } 2034 2035 /* 2036 * Temporary quiesce of a flow and associated Rx SRS. 2037 * Please see block comment above mac_rx_srs_quiesce 2038 */ 2039 /* ARGSUSED */ 2040 int 2041 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2042 { 2043 /* 2044 * The fe_tx_srs is null for a subflow on an interface that is 2045 * not plumbed 2046 */ 2047 if (flent->fe_tx_srs != NULL) 2048 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2049 return (0); 2050 } 2051 2052 /* ARGSUSED */ 2053 int 2054 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2055 { 2056 /* 2057 * The fe_tx_srs is null for a subflow on an interface that is 2058 * not plumbed 2059 */ 2060 if (flent->fe_tx_srs != NULL) 2061 mac_tx_srs_restart(flent->fe_tx_srs); 2062 return (0); 2063 } 2064 2065 void 2066 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2067 { 2068 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2069 2070 mac_tx_client_block(mcip); 2071 if (MCIP_TX_SRS(mcip) != NULL) { 2072 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2073 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2074 mac_tx_flow_quiesce, NULL); 2075 } 2076 } 2077 2078 void 2079 mac_tx_client_restart(mac_client_impl_t *mcip) 2080 { 2081 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2082 2083 mac_tx_client_unblock(mcip); 2084 if (MCIP_TX_SRS(mcip) != NULL) { 2085 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2086 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2087 mac_tx_flow_restart, NULL); 2088 } 2089 } 2090 2091 void 2092 mac_tx_client_flush(mac_client_impl_t *mcip) 2093 { 2094 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2095 2096 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2097 mac_tx_client_restart(mcip); 2098 } 2099 2100 void 2101 mac_client_quiesce(mac_client_impl_t *mcip) 2102 { 2103 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2104 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2105 } 2106 2107 void 2108 mac_client_restart(mac_client_impl_t *mcip) 2109 { 2110 mac_rx_client_restart((mac_client_handle_t)mcip); 2111 mac_tx_client_restart(mcip); 2112 } 2113 2114 /* 2115 * Allocate a minor number. 2116 */ 2117 minor_t 2118 mac_minor_hold(boolean_t sleep) 2119 { 2120 minor_t minor; 2121 2122 /* 2123 * Grab a value from the arena. 2124 */ 2125 atomic_add_32(&minor_count, 1); 2126 2127 if (sleep) 2128 minor = (uint_t)id_alloc(minor_ids); 2129 else 2130 minor = (uint_t)id_alloc_nosleep(minor_ids); 2131 2132 if (minor == 0) { 2133 atomic_add_32(&minor_count, -1); 2134 return (0); 2135 } 2136 2137 return (minor); 2138 } 2139 2140 /* 2141 * Release a previously allocated minor number. 2142 */ 2143 void 2144 mac_minor_rele(minor_t minor) 2145 { 2146 /* 2147 * Return the value to the arena. 2148 */ 2149 id_free(minor_ids, minor); 2150 atomic_add_32(&minor_count, -1); 2151 } 2152 2153 uint32_t 2154 mac_no_notification(mac_handle_t mh) 2155 { 2156 mac_impl_t *mip = (mac_impl_t *)mh; 2157 return (mip->mi_unsup_note); 2158 } 2159 2160 /* 2161 * Prevent any new opens of this mac in preparation for unregister 2162 */ 2163 int 2164 i_mac_disable(mac_impl_t *mip) 2165 { 2166 mac_client_impl_t *mcip; 2167 2168 rw_enter(&i_mac_impl_lock, RW_WRITER); 2169 if (mip->mi_state_flags & MIS_DISABLED) { 2170 /* Already disabled, return success */ 2171 rw_exit(&i_mac_impl_lock); 2172 return (0); 2173 } 2174 /* 2175 * See if there are any other references to this mac_t (e.g., VLAN's). 2176 * If so return failure. If all the other checks below pass, then 2177 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2178 * any new VLAN's from being created or new mac client opens of this 2179 * mac end point. 2180 */ 2181 if (mip->mi_ref > 0) { 2182 rw_exit(&i_mac_impl_lock); 2183 return (EBUSY); 2184 } 2185 2186 /* 2187 * mac clients must delete all multicast groups they join before 2188 * closing. bcast groups are reference counted, the last client 2189 * to delete the group will wait till the group is physically 2190 * deleted. Since all clients have closed this mac end point 2191 * mi_bcast_ngrps must be zero at this point 2192 */ 2193 ASSERT(mip->mi_bcast_ngrps == 0); 2194 2195 /* 2196 * Don't let go of this if it has some flows. 2197 * All other code guarantees no flows are added to a disabled 2198 * mac, therefore it is sufficient to check for the flow table 2199 * only here. 2200 */ 2201 mcip = mac_primary_client_handle(mip); 2202 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2203 rw_exit(&i_mac_impl_lock); 2204 return (ENOTEMPTY); 2205 } 2206 2207 mip->mi_state_flags |= MIS_DISABLED; 2208 rw_exit(&i_mac_impl_lock); 2209 return (0); 2210 } 2211 2212 int 2213 mac_disable_nowait(mac_handle_t mh) 2214 { 2215 mac_impl_t *mip = (mac_impl_t *)mh; 2216 int err; 2217 2218 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2219 return (err); 2220 err = i_mac_disable(mip); 2221 i_mac_perim_exit(mip); 2222 return (err); 2223 } 2224 2225 int 2226 mac_disable(mac_handle_t mh) 2227 { 2228 mac_impl_t *mip = (mac_impl_t *)mh; 2229 int err; 2230 2231 i_mac_perim_enter(mip); 2232 err = i_mac_disable(mip); 2233 i_mac_perim_exit(mip); 2234 2235 /* 2236 * Clean up notification thread and wait for it to exit. 2237 */ 2238 if (err == 0) 2239 i_mac_notify_exit(mip); 2240 2241 return (err); 2242 } 2243 2244 /* 2245 * Called when the MAC instance has a non empty flow table, to de-multiplex 2246 * incoming packets to the right flow. 2247 * The MAC's rw lock is assumed held as a READER. 2248 */ 2249 /* ARGSUSED */ 2250 static mblk_t * 2251 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2252 { 2253 flow_entry_t *flent = NULL; 2254 uint_t flags = FLOW_INBOUND; 2255 int err; 2256 2257 /* 2258 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2259 * to mac_flow_lookup() so that the VLAN packets can be successfully 2260 * passed to the non-VLAN aggregation flows. 2261 * 2262 * Note that there is possibly a race between this and 2263 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2264 * classified to non-VLAN flows of non-aggregation mac clients. These 2265 * VLAN packets will be then filtered out by the mac module. 2266 */ 2267 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2268 flags |= FLOW_IGNORE_VLAN; 2269 2270 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2271 if (err != 0) { 2272 /* no registered receive function */ 2273 return (mp); 2274 } else { 2275 mac_client_impl_t *mcip; 2276 2277 /* 2278 * This flent might just be an additional one on the MAC client, 2279 * i.e. for classification purposes (different fdesc), however 2280 * the resources, SRS et. al., are in the mci_flent, so if 2281 * this isn't the mci_flent, we need to get it. 2282 */ 2283 if ((mcip = flent->fe_mcip) != NULL && 2284 mcip->mci_flent != flent) { 2285 FLOW_REFRELE(flent); 2286 flent = mcip->mci_flent; 2287 FLOW_TRY_REFHOLD(flent, err); 2288 if (err != 0) 2289 return (mp); 2290 } 2291 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2292 B_FALSE); 2293 FLOW_REFRELE(flent); 2294 } 2295 return (NULL); 2296 } 2297 2298 mblk_t * 2299 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2300 { 2301 mac_impl_t *mip = (mac_impl_t *)mh; 2302 mblk_t *bp, *bp1, **bpp, *list = NULL; 2303 2304 /* 2305 * We walk the chain and attempt to classify each packet. 2306 * The packets that couldn't be classified will be returned 2307 * back to the caller. 2308 */ 2309 bp = mp_chain; 2310 bpp = &list; 2311 while (bp != NULL) { 2312 bp1 = bp; 2313 bp = bp->b_next; 2314 bp1->b_next = NULL; 2315 2316 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2317 *bpp = bp1; 2318 bpp = &bp1->b_next; 2319 } 2320 } 2321 return (list); 2322 } 2323 2324 static int 2325 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2326 { 2327 mac_ring_handle_t ring = arg; 2328 2329 if (flent->fe_tx_srs) 2330 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2331 return (0); 2332 } 2333 2334 void 2335 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2336 { 2337 mac_client_impl_t *cclient; 2338 mac_soft_ring_set_t *mac_srs; 2339 2340 /* 2341 * After grabbing the mi_rw_lock, the list of clients can't change. 2342 * If there are any clients mi_disabled must be B_FALSE and can't 2343 * get set since there are clients. If there aren't any clients we 2344 * don't do anything. In any case the mip has to be valid. The driver 2345 * must make sure that it goes single threaded (with respect to mac 2346 * calls) and wait for all pending mac calls to finish before calling 2347 * mac_unregister. 2348 */ 2349 rw_enter(&i_mac_impl_lock, RW_READER); 2350 if (mip->mi_state_flags & MIS_DISABLED) { 2351 rw_exit(&i_mac_impl_lock); 2352 return; 2353 } 2354 2355 /* 2356 * Get MAC tx srs from walking mac_client_handle list. 2357 */ 2358 rw_enter(&mip->mi_rw_lock, RW_READER); 2359 for (cclient = mip->mi_clients_list; cclient != NULL; 2360 cclient = cclient->mci_client_next) { 2361 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2362 mac_tx_srs_wakeup(mac_srs, ring); 2363 (void) mac_flow_walk(cclient->mci_subflow_tab, 2364 mac_tx_flow_srs_wakeup, ring); 2365 } 2366 rw_exit(&mip->mi_rw_lock); 2367 rw_exit(&i_mac_impl_lock); 2368 } 2369 2370 /* ARGSUSED */ 2371 void 2372 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2373 boolean_t add) 2374 { 2375 mac_impl_t *mip = (mac_impl_t *)mh; 2376 2377 i_mac_perim_enter((mac_impl_t *)mh); 2378 /* 2379 * If no specific refresh function was given then default to the 2380 * driver's m_multicst entry point. 2381 */ 2382 if (refresh == NULL) { 2383 refresh = mip->mi_multicst; 2384 arg = mip->mi_driver; 2385 } 2386 2387 mac_bcast_refresh(mip, refresh, arg, add); 2388 i_mac_perim_exit((mac_impl_t *)mh); 2389 } 2390 2391 void 2392 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2393 { 2394 mac_impl_t *mip = (mac_impl_t *)mh; 2395 2396 /* 2397 * If no specific refresh function was given then default to the 2398 * driver's m_promisc entry point. 2399 */ 2400 if (refresh == NULL) { 2401 refresh = mip->mi_setpromisc; 2402 arg = mip->mi_driver; 2403 } 2404 ASSERT(refresh != NULL); 2405 2406 /* 2407 * Call the refresh function with the current promiscuity. 2408 */ 2409 refresh(arg, (mip->mi_devpromisc != 0)); 2410 } 2411 2412 /* 2413 * The mac client requests that the mac not to change its margin size to 2414 * be less than the specified value. If "current" is B_TRUE, then the client 2415 * requests the mac not to change its margin size to be smaller than the 2416 * current size. Further, return the current margin size value in this case. 2417 * 2418 * We keep every requested size in an ordered list from largest to smallest. 2419 */ 2420 int 2421 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2422 { 2423 mac_impl_t *mip = (mac_impl_t *)mh; 2424 mac_margin_req_t **pp, *p; 2425 int err = 0; 2426 2427 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2428 if (current) 2429 *marginp = mip->mi_margin; 2430 2431 /* 2432 * If the current margin value cannot satisfy the margin requested, 2433 * return ENOTSUP directly. 2434 */ 2435 if (*marginp > mip->mi_margin) { 2436 err = ENOTSUP; 2437 goto done; 2438 } 2439 2440 /* 2441 * Check whether the given margin is already in the list. If so, 2442 * bump the reference count. 2443 */ 2444 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2445 if (p->mmr_margin == *marginp) { 2446 /* 2447 * The margin requested is already in the list, 2448 * so just bump the reference count. 2449 */ 2450 p->mmr_ref++; 2451 goto done; 2452 } 2453 if (p->mmr_margin < *marginp) 2454 break; 2455 } 2456 2457 2458 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2459 p->mmr_margin = *marginp; 2460 p->mmr_ref++; 2461 p->mmr_nextp = *pp; 2462 *pp = p; 2463 2464 done: 2465 rw_exit(&(mip->mi_rw_lock)); 2466 return (err); 2467 } 2468 2469 /* 2470 * The mac client requests to cancel its previous mac_margin_add() request. 2471 * We remove the requested margin size from the list. 2472 */ 2473 int 2474 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2475 { 2476 mac_impl_t *mip = (mac_impl_t *)mh; 2477 mac_margin_req_t **pp, *p; 2478 int err = 0; 2479 2480 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2481 /* 2482 * Find the entry in the list for the given margin. 2483 */ 2484 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2485 if (p->mmr_margin == margin) { 2486 if (--p->mmr_ref == 0) 2487 break; 2488 2489 /* 2490 * There is still a reference to this address so 2491 * there's nothing more to do. 2492 */ 2493 goto done; 2494 } 2495 } 2496 2497 /* 2498 * We did not find an entry for the given margin. 2499 */ 2500 if (p == NULL) { 2501 err = ENOENT; 2502 goto done; 2503 } 2504 2505 ASSERT(p->mmr_ref == 0); 2506 2507 /* 2508 * Remove it from the list. 2509 */ 2510 *pp = p->mmr_nextp; 2511 kmem_free(p, sizeof (mac_margin_req_t)); 2512 done: 2513 rw_exit(&(mip->mi_rw_lock)); 2514 return (err); 2515 } 2516 2517 boolean_t 2518 mac_margin_update(mac_handle_t mh, uint32_t margin) 2519 { 2520 mac_impl_t *mip = (mac_impl_t *)mh; 2521 uint32_t margin_needed = 0; 2522 2523 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2524 2525 if (mip->mi_mmrp != NULL) 2526 margin_needed = mip->mi_mmrp->mmr_margin; 2527 2528 if (margin_needed <= margin) 2529 mip->mi_margin = margin; 2530 2531 rw_exit(&(mip->mi_rw_lock)); 2532 2533 if (margin_needed <= margin) 2534 i_mac_notify(mip, MAC_NOTE_MARGIN); 2535 2536 return (margin_needed <= margin); 2537 } 2538 2539 /* 2540 * MAC Type Plugin functions. 2541 */ 2542 2543 mactype_t * 2544 mactype_getplugin(const char *pname) 2545 { 2546 mactype_t *mtype = NULL; 2547 boolean_t tried_modload = B_FALSE; 2548 2549 mutex_enter(&i_mactype_lock); 2550 2551 find_registered_mactype: 2552 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2553 (mod_hash_val_t *)&mtype) != 0) { 2554 if (!tried_modload) { 2555 /* 2556 * If the plugin has not yet been loaded, then 2557 * attempt to load it now. If modload() succeeds, 2558 * the plugin should have registered using 2559 * mactype_register(), in which case we can go back 2560 * and attempt to find it again. 2561 */ 2562 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2563 tried_modload = B_TRUE; 2564 goto find_registered_mactype; 2565 } 2566 } 2567 } else { 2568 /* 2569 * Note that there's no danger that the plugin we've loaded 2570 * could be unloaded between the modload() step and the 2571 * reference count bump here, as we're holding 2572 * i_mactype_lock, which mactype_unregister() also holds. 2573 */ 2574 atomic_inc_32(&mtype->mt_ref); 2575 } 2576 2577 mutex_exit(&i_mactype_lock); 2578 return (mtype); 2579 } 2580 2581 mactype_register_t * 2582 mactype_alloc(uint_t mactype_version) 2583 { 2584 mactype_register_t *mtrp; 2585 2586 /* 2587 * Make sure there isn't a version mismatch between the plugin and 2588 * the framework. In the future, if multiple versions are 2589 * supported, this check could become more sophisticated. 2590 */ 2591 if (mactype_version != MACTYPE_VERSION) 2592 return (NULL); 2593 2594 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2595 mtrp->mtr_version = mactype_version; 2596 return (mtrp); 2597 } 2598 2599 void 2600 mactype_free(mactype_register_t *mtrp) 2601 { 2602 kmem_free(mtrp, sizeof (mactype_register_t)); 2603 } 2604 2605 int 2606 mactype_register(mactype_register_t *mtrp) 2607 { 2608 mactype_t *mtp; 2609 mactype_ops_t *ops = mtrp->mtr_ops; 2610 2611 /* Do some sanity checking before we register this MAC type. */ 2612 if (mtrp->mtr_ident == NULL || ops == NULL) 2613 return (EINVAL); 2614 2615 /* 2616 * Verify that all mandatory callbacks are set in the ops 2617 * vector. 2618 */ 2619 if (ops->mtops_unicst_verify == NULL || 2620 ops->mtops_multicst_verify == NULL || 2621 ops->mtops_sap_verify == NULL || 2622 ops->mtops_header == NULL || 2623 ops->mtops_header_info == NULL) { 2624 return (EINVAL); 2625 } 2626 2627 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2628 mtp->mt_ident = mtrp->mtr_ident; 2629 mtp->mt_ops = *ops; 2630 mtp->mt_type = mtrp->mtr_mactype; 2631 mtp->mt_nativetype = mtrp->mtr_nativetype; 2632 mtp->mt_addr_length = mtrp->mtr_addrlen; 2633 if (mtrp->mtr_brdcst_addr != NULL) { 2634 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2635 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2636 mtrp->mtr_addrlen); 2637 } 2638 2639 mtp->mt_stats = mtrp->mtr_stats; 2640 mtp->mt_statcount = mtrp->mtr_statcount; 2641 2642 mtp->mt_mapping = mtrp->mtr_mapping; 2643 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2644 2645 if (mod_hash_insert(i_mactype_hash, 2646 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2647 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2648 kmem_free(mtp, sizeof (*mtp)); 2649 return (EEXIST); 2650 } 2651 return (0); 2652 } 2653 2654 int 2655 mactype_unregister(const char *ident) 2656 { 2657 mactype_t *mtp; 2658 mod_hash_val_t val; 2659 int err; 2660 2661 /* 2662 * Let's not allow MAC drivers to use this plugin while we're 2663 * trying to unregister it. Holding i_mactype_lock also prevents a 2664 * plugin from unregistering while a MAC driver is attempting to 2665 * hold a reference to it in i_mactype_getplugin(). 2666 */ 2667 mutex_enter(&i_mactype_lock); 2668 2669 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2670 (mod_hash_val_t *)&mtp)) != 0) { 2671 /* A plugin is trying to unregister, but it never registered. */ 2672 err = ENXIO; 2673 goto done; 2674 } 2675 2676 if (mtp->mt_ref != 0) { 2677 err = EBUSY; 2678 goto done; 2679 } 2680 2681 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2682 ASSERT(err == 0); 2683 if (err != 0) { 2684 /* This should never happen, thus the ASSERT() above. */ 2685 err = EINVAL; 2686 goto done; 2687 } 2688 ASSERT(mtp == (mactype_t *)val); 2689 2690 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2691 kmem_free(mtp, sizeof (mactype_t)); 2692 done: 2693 mutex_exit(&i_mactype_lock); 2694 return (err); 2695 } 2696 2697 /* 2698 * Returns TRUE when the specified property is intended for the MAC framework, 2699 * as opposed to driver defined properties. 2700 */ 2701 static boolean_t 2702 mac_is_macprop(mac_prop_t *macprop) 2703 { 2704 switch (macprop->mp_id) { 2705 case MAC_PROP_MAXBW: 2706 case MAC_PROP_PRIO: 2707 case MAC_PROP_BIND_CPU: 2708 return (B_TRUE); 2709 default: 2710 return (B_FALSE); 2711 } 2712 } 2713 2714 /* 2715 * mac_set_prop() sets mac or hardware driver properties: 2716 * mac properties include maxbw, priority, and cpu binding list. Driver 2717 * properties are private properties to the hardware, such as mtu, speed 2718 * etc. 2719 * If the property is a driver property, mac_set_prop() calls driver's callback 2720 * function to set it. 2721 * If the property is a mac property, mac_set_prop() invokes mac_set_resources() 2722 * which will cache the property value in mac_impl_t and may call 2723 * mac_client_set_resource() to update property value of the primary mac client, 2724 * if it exists. 2725 */ 2726 int 2727 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2728 { 2729 int err = ENOTSUP; 2730 mac_impl_t *mip = (mac_impl_t *)mh; 2731 2732 ASSERT(MAC_PERIM_HELD(mh)); 2733 2734 /* If it is mac property, call mac_set_resources() */ 2735 if (mac_is_macprop(macprop)) { 2736 mac_resource_props_t mrp; 2737 2738 if (valsize < sizeof (mac_resource_props_t)) 2739 return (EINVAL); 2740 bzero(&mrp, sizeof (mac_resource_props_t)); 2741 bcopy(val, &mrp, sizeof (mrp)); 2742 return (mac_set_resources(mh, &mrp)); 2743 } 2744 switch (macprop->mp_id) { 2745 case MAC_PROP_MTU: { 2746 uint32_t mtu; 2747 2748 if (valsize < sizeof (mtu)) 2749 return (EINVAL); 2750 bcopy(val, &mtu, sizeof (mtu)); 2751 err = mac_set_mtu(mh, mtu, NULL); 2752 break; 2753 } 2754 default: 2755 /* For other driver properties, call driver's callback */ 2756 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2757 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2758 macprop->mp_name, macprop->mp_id, valsize, val); 2759 } 2760 } 2761 return (err); 2762 } 2763 2764 /* 2765 * mac_get_prop() gets mac or hardware driver properties. 2766 * 2767 * If the property is a driver property, mac_get_prop() calls driver's callback 2768 * function to get it. 2769 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2770 * which returns the cached value in mac_impl_t. 2771 */ 2772 int 2773 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2774 uint_t *perm) 2775 { 2776 int err = ENOTSUP; 2777 mac_impl_t *mip = (mac_impl_t *)mh; 2778 uint32_t sdu; 2779 link_state_t link_state; 2780 2781 /* If mac property, read from cache */ 2782 if (mac_is_macprop(macprop)) { 2783 mac_resource_props_t mrp; 2784 2785 if (valsize < sizeof (mac_resource_props_t)) 2786 return (EINVAL); 2787 bzero(&mrp, sizeof (mac_resource_props_t)); 2788 mac_get_resources(mh, &mrp); 2789 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2790 return (0); 2791 } 2792 2793 switch (macprop->mp_id) { 2794 case MAC_PROP_MTU: 2795 if (valsize < sizeof (sdu)) 2796 return (EINVAL); 2797 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2798 mac_sdu_get(mh, NULL, &sdu); 2799 bcopy(&sdu, val, sizeof (sdu)); 2800 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) && 2801 (mip->mi_callbacks->mc_setprop(mip->mi_driver, 2802 macprop->mp_name, macprop->mp_id, valsize, 2803 val) == 0)) { 2804 *perm = MAC_PROP_PERM_RW; 2805 } else { 2806 *perm = MAC_PROP_PERM_READ; 2807 } 2808 return (0); 2809 } else { 2810 if (mip->mi_info.mi_media == DL_ETHER) { 2811 sdu = ETHERMTU; 2812 bcopy(&sdu, val, sizeof (sdu)); 2813 2814 return (0); 2815 } 2816 /* 2817 * ask driver for its default. 2818 */ 2819 break; 2820 } 2821 case MAC_PROP_STATUS: 2822 if (valsize < sizeof (link_state)) 2823 return (EINVAL); 2824 *perm = MAC_PROP_PERM_READ; 2825 link_state = mac_link_get(mh); 2826 bcopy(&link_state, val, sizeof (link_state)); 2827 return (0); 2828 default: 2829 break; 2830 2831 } 2832 /* If driver property, request from driver */ 2833 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 2834 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2835 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2836 valsize, val, perm); 2837 } 2838 return (err); 2839 } 2840 2841 void 2842 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2843 { 2844 mac_priv_prop_t *mpriv; 2845 2846 if (mpp == NULL) 2847 return; 2848 2849 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2850 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2851 mip->mi_priv_prop = mpriv; 2852 mip->mi_priv_prop_count = nprop; 2853 } 2854 2855 void 2856 mac_unregister_priv_prop(mac_impl_t *mip) 2857 { 2858 mac_priv_prop_t *mpriv; 2859 2860 mpriv = mip->mi_priv_prop; 2861 if (mpriv != NULL) { 2862 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2863 mip->mi_priv_prop = NULL; 2864 } 2865 mip->mi_priv_prop_count = 0; 2866 } 2867 2868 /* 2869 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2870 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2871 * cases if MAC free's the ring structure after mac_stop_ring(), any 2872 * illegal access to the ring structure coming from the driver will panic 2873 * the system. In order to protect the system from such inadverent access, 2874 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2875 * When packets are received on free'd up rings, MAC (through the generation 2876 * count mechanism) will drop such packets. 2877 */ 2878 static mac_ring_t * 2879 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2880 { 2881 mac_ring_t *ring; 2882 2883 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2884 mutex_enter(&mip->mi_ring_lock); 2885 if (mip->mi_ring_freelist != NULL) { 2886 ring = mip->mi_ring_freelist; 2887 mip->mi_ring_freelist = ring->mr_next; 2888 bzero(ring, sizeof (mac_ring_t)); 2889 } else { 2890 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2891 } 2892 mutex_exit(&mip->mi_ring_lock); 2893 } else { 2894 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2895 } 2896 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2897 return (ring); 2898 } 2899 2900 static void 2901 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2902 { 2903 if (ring->mr_type == MAC_RING_TYPE_RX) { 2904 mutex_enter(&mip->mi_ring_lock); 2905 ring->mr_state = MR_FREE; 2906 ring->mr_flag = 0; 2907 ring->mr_next = mip->mi_ring_freelist; 2908 mip->mi_ring_freelist = ring; 2909 mutex_exit(&mip->mi_ring_lock); 2910 } else { 2911 kmem_free(ring, sizeof (mac_ring_t)); 2912 } 2913 } 2914 2915 static void 2916 mac_ring_freeall(mac_impl_t *mip) 2917 { 2918 mac_ring_t *ring_next; 2919 mutex_enter(&mip->mi_ring_lock); 2920 mac_ring_t *ring = mip->mi_ring_freelist; 2921 while (ring != NULL) { 2922 ring_next = ring->mr_next; 2923 kmem_cache_free(mac_ring_cache, ring); 2924 ring = ring_next; 2925 } 2926 mip->mi_ring_freelist = NULL; 2927 mutex_exit(&mip->mi_ring_lock); 2928 } 2929 2930 int 2931 mac_start_ring(mac_ring_t *ring) 2932 { 2933 int rv = 0; 2934 2935 if (ring->mr_start != NULL) 2936 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 2937 2938 return (rv); 2939 } 2940 2941 void 2942 mac_stop_ring(mac_ring_t *ring) 2943 { 2944 if (ring->mr_stop != NULL) 2945 ring->mr_stop(ring->mr_driver); 2946 2947 /* 2948 * Increment the ring generation number for this ring. 2949 */ 2950 ring->mr_gen_num++; 2951 } 2952 2953 int 2954 mac_start_group(mac_group_t *group) 2955 { 2956 int rv = 0; 2957 2958 if (group->mrg_start != NULL) 2959 rv = group->mrg_start(group->mrg_driver); 2960 2961 return (rv); 2962 } 2963 2964 void 2965 mac_stop_group(mac_group_t *group) 2966 { 2967 if (group->mrg_stop != NULL) 2968 group->mrg_stop(group->mrg_driver); 2969 } 2970 2971 /* 2972 * Called from mac_start() on the default Rx group. Broadcast and multicast 2973 * packets are received only on the default group. Hence the default group 2974 * needs to be up even if the primary client is not up, for the other groups 2975 * to be functional. We do this by calling this function at mac_start time 2976 * itself. However the broadcast packets that are received can't make their 2977 * way beyond mac_rx until a mac client creates a broadcast flow. 2978 */ 2979 static int 2980 mac_start_group_and_rings(mac_group_t *group) 2981 { 2982 mac_ring_t *ring; 2983 int rv = 0; 2984 2985 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 2986 if ((rv = mac_start_group(group)) != 0) 2987 return (rv); 2988 2989 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 2990 ASSERT(ring->mr_state == MR_FREE); 2991 if ((rv = mac_start_ring(ring)) != 0) 2992 goto error; 2993 ring->mr_state = MR_INUSE; 2994 ring->mr_classify_type = MAC_SW_CLASSIFIER; 2995 } 2996 return (0); 2997 2998 error: 2999 mac_stop_group_and_rings(group); 3000 return (rv); 3001 } 3002 3003 /* Called from mac_stop on the default Rx group */ 3004 static void 3005 mac_stop_group_and_rings(mac_group_t *group) 3006 { 3007 mac_ring_t *ring; 3008 3009 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3010 if (ring->mr_state != MR_FREE) { 3011 mac_stop_ring(ring); 3012 ring->mr_state = MR_FREE; 3013 ring->mr_flag = 0; 3014 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3015 } 3016 } 3017 mac_stop_group(group); 3018 } 3019 3020 3021 static mac_ring_t * 3022 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3023 mac_capab_rings_t *cap_rings) 3024 { 3025 mac_ring_t *ring; 3026 mac_ring_info_t ring_info; 3027 3028 ring = mac_ring_alloc(mip, cap_rings); 3029 3030 /* Prepare basic information of ring */ 3031 ring->mr_index = index; 3032 ring->mr_type = group->mrg_type; 3033 ring->mr_gh = (mac_group_handle_t)group; 3034 3035 /* Insert the new ring to the list. */ 3036 ring->mr_next = group->mrg_rings; 3037 group->mrg_rings = ring; 3038 3039 /* Zero to reuse the info data structure */ 3040 bzero(&ring_info, sizeof (ring_info)); 3041 3042 /* Query ring information from driver */ 3043 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3044 index, &ring_info, (mac_ring_handle_t)ring); 3045 3046 ring->mr_info = ring_info; 3047 3048 /* Update ring's status */ 3049 ring->mr_state = MR_FREE; 3050 ring->mr_flag = 0; 3051 3052 /* Update the ring count of the group */ 3053 group->mrg_cur_count++; 3054 return (ring); 3055 } 3056 3057 /* 3058 * Rings are chained together for easy regrouping. 3059 */ 3060 static void 3061 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3062 mac_capab_rings_t *cap_rings) 3063 { 3064 int index; 3065 3066 /* 3067 * Initialize all ring members of this group. Size of zero will not 3068 * enter the loop, so it's safe for initializing an empty group. 3069 */ 3070 for (index = size - 1; index >= 0; index--) 3071 (void) mac_init_ring(mip, group, index, cap_rings); 3072 } 3073 3074 int 3075 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3076 { 3077 mac_capab_rings_t *cap_rings; 3078 mac_group_t *group, *groups; 3079 mac_group_info_t group_info; 3080 uint_t group_free = 0; 3081 uint_t ring_left; 3082 mac_ring_t *ring; 3083 int g, err = 0; 3084 3085 switch (rtype) { 3086 case MAC_RING_TYPE_RX: 3087 ASSERT(mip->mi_rx_groups == NULL); 3088 3089 cap_rings = &mip->mi_rx_rings_cap; 3090 cap_rings->mr_type = MAC_RING_TYPE_RX; 3091 break; 3092 case MAC_RING_TYPE_TX: 3093 ASSERT(mip->mi_tx_groups == NULL); 3094 3095 cap_rings = &mip->mi_tx_rings_cap; 3096 cap_rings->mr_type = MAC_RING_TYPE_TX; 3097 break; 3098 default: 3099 ASSERT(B_FALSE); 3100 } 3101 3102 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3103 cap_rings)) 3104 return (0); 3105 3106 /* 3107 * Allocate a contiguous buffer for all groups. 3108 */ 3109 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3110 KM_SLEEP); 3111 3112 ring_left = cap_rings->mr_rnum; 3113 3114 /* 3115 * Get all ring groups if any, and get their ring members 3116 * if any. 3117 */ 3118 for (g = 0; g < cap_rings->mr_gnum; g++) { 3119 group = groups + g; 3120 3121 /* Prepare basic information of the group */ 3122 group->mrg_index = g; 3123 group->mrg_type = rtype; 3124 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3125 group->mrg_mh = (mac_handle_t)mip; 3126 group->mrg_next = group + 1; 3127 3128 /* Zero to reuse the info data structure */ 3129 bzero(&group_info, sizeof (group_info)); 3130 3131 /* Query group information from driver */ 3132 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3133 (mac_group_handle_t)group); 3134 3135 switch (cap_rings->mr_group_type) { 3136 case MAC_GROUP_TYPE_DYNAMIC: 3137 if (cap_rings->mr_gaddring == NULL || 3138 cap_rings->mr_gremring == NULL) { 3139 DTRACE_PROBE3( 3140 mac__init__rings_no_addremring, 3141 char *, mip->mi_name, 3142 mac_group_add_ring_t, 3143 cap_rings->mr_gaddring, 3144 mac_group_add_ring_t, 3145 cap_rings->mr_gremring); 3146 err = EINVAL; 3147 goto bail; 3148 } 3149 3150 switch (rtype) { 3151 case MAC_RING_TYPE_RX: 3152 /* 3153 * The first RX group must have non-zero 3154 * rings, and the following groups must 3155 * have zero rings. 3156 */ 3157 if (g == 0 && group_info.mgi_count == 0) { 3158 DTRACE_PROBE1( 3159 mac__init__rings__rx__def__zero, 3160 char *, mip->mi_name); 3161 err = EINVAL; 3162 goto bail; 3163 } 3164 if (g > 0 && group_info.mgi_count != 0) { 3165 DTRACE_PROBE3( 3166 mac__init__rings__rx__nonzero, 3167 char *, mip->mi_name, 3168 int, g, int, group_info.mgi_count); 3169 err = EINVAL; 3170 goto bail; 3171 } 3172 break; 3173 case MAC_RING_TYPE_TX: 3174 /* 3175 * All TX ring groups must have zero rings. 3176 */ 3177 if (group_info.mgi_count != 0) { 3178 DTRACE_PROBE3( 3179 mac__init__rings__tx__nonzero, 3180 char *, mip->mi_name, 3181 int, g, int, group_info.mgi_count); 3182 err = EINVAL; 3183 goto bail; 3184 } 3185 break; 3186 } 3187 break; 3188 case MAC_GROUP_TYPE_STATIC: 3189 /* 3190 * Note that an empty group is allowed, e.g., an aggr 3191 * would start with an empty group. 3192 */ 3193 break; 3194 default: 3195 /* unknown group type */ 3196 DTRACE_PROBE2(mac__init__rings__unknown__type, 3197 char *, mip->mi_name, 3198 int, cap_rings->mr_group_type); 3199 err = EINVAL; 3200 goto bail; 3201 } 3202 3203 3204 /* 3205 * Driver must register group->mgi_addmac/remmac() for rx groups 3206 * to support multiple MAC addresses. 3207 */ 3208 if (rtype == MAC_RING_TYPE_RX) { 3209 if ((group_info.mgi_addmac == NULL) || 3210 (group_info.mgi_addmac == NULL)) 3211 goto bail; 3212 } 3213 3214 /* Cache driver-supplied information */ 3215 group->mrg_info = group_info; 3216 3217 /* Update the group's status and group count. */ 3218 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3219 group_free++; 3220 3221 group->mrg_rings = NULL; 3222 group->mrg_cur_count = 0; 3223 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3224 ring_left -= group_info.mgi_count; 3225 3226 /* The current group size should be equal to default value */ 3227 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3228 } 3229 3230 /* Build up a dummy group for free resources as a pool */ 3231 group = groups + cap_rings->mr_gnum; 3232 3233 /* Prepare basic information of the group */ 3234 group->mrg_index = -1; 3235 group->mrg_type = rtype; 3236 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3237 group->mrg_mh = (mac_handle_t)mip; 3238 group->mrg_next = NULL; 3239 3240 /* 3241 * If there are ungrouped rings, allocate a continuous buffer for 3242 * remaining resources. 3243 */ 3244 if (ring_left != 0) { 3245 group->mrg_rings = NULL; 3246 group->mrg_cur_count = 0; 3247 mac_init_group(mip, group, ring_left, cap_rings); 3248 3249 /* The current group size should be equal to ring_left */ 3250 ASSERT(group->mrg_cur_count == ring_left); 3251 3252 ring_left = 0; 3253 3254 /* Update this group's status */ 3255 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3256 } else 3257 group->mrg_rings = NULL; 3258 3259 ASSERT(ring_left == 0); 3260 3261 bail: 3262 /* Cache other important information to finalize the initialization */ 3263 switch (rtype) { 3264 case MAC_RING_TYPE_RX: 3265 mip->mi_rx_group_type = cap_rings->mr_group_type; 3266 mip->mi_rx_group_count = cap_rings->mr_gnum; 3267 mip->mi_rx_groups = groups; 3268 break; 3269 case MAC_RING_TYPE_TX: 3270 mip->mi_tx_group_type = cap_rings->mr_group_type; 3271 mip->mi_tx_group_count = cap_rings->mr_gnum; 3272 mip->mi_tx_group_free = group_free; 3273 mip->mi_tx_groups = groups; 3274 3275 /* 3276 * Ring 0 is used as the default one and it could be assigned 3277 * to a client as well. 3278 */ 3279 group = groups + cap_rings->mr_gnum; 3280 ring = group->mrg_rings; 3281 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3282 ring = ring->mr_next; 3283 ASSERT(ring->mr_index == 0); 3284 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3285 break; 3286 default: 3287 ASSERT(B_FALSE); 3288 } 3289 3290 if (err != 0) 3291 mac_free_rings(mip, rtype); 3292 3293 return (err); 3294 } 3295 3296 /* 3297 * Called to free all ring groups with particular type. It's supposed all groups 3298 * have been released by clinet. 3299 */ 3300 void 3301 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3302 { 3303 mac_group_t *group, *groups; 3304 uint_t group_count; 3305 3306 switch (rtype) { 3307 case MAC_RING_TYPE_RX: 3308 if (mip->mi_rx_groups == NULL) 3309 return; 3310 3311 groups = mip->mi_rx_groups; 3312 group_count = mip->mi_rx_group_count; 3313 3314 mip->mi_rx_groups = NULL; 3315 mip->mi_rx_group_count = 0; 3316 break; 3317 case MAC_RING_TYPE_TX: 3318 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3319 3320 if (mip->mi_tx_groups == NULL) 3321 return; 3322 3323 groups = mip->mi_tx_groups; 3324 group_count = mip->mi_tx_group_count; 3325 3326 mip->mi_tx_groups = NULL; 3327 mip->mi_tx_group_count = 0; 3328 mip->mi_tx_group_free = 0; 3329 mip->mi_default_tx_ring = NULL; 3330 break; 3331 default: 3332 ASSERT(B_FALSE); 3333 } 3334 3335 for (group = groups; group != NULL; group = group->mrg_next) { 3336 mac_ring_t *ring; 3337 3338 if (group->mrg_cur_count == 0) 3339 continue; 3340 3341 ASSERT(group->mrg_rings != NULL); 3342 3343 while ((ring = group->mrg_rings) != NULL) { 3344 group->mrg_rings = ring->mr_next; 3345 mac_ring_free(mip, ring); 3346 } 3347 } 3348 3349 /* Free all the cached rings */ 3350 mac_ring_freeall(mip); 3351 /* Free the block of group data strutures */ 3352 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3353 } 3354 3355 /* 3356 * Associate a MAC address with a receive group. 3357 * 3358 * The return value of this function should always be checked properly, because 3359 * any type of failure could cause unexpected results. A group can be added 3360 * or removed with a MAC address only after it has been reserved. Ideally, 3361 * a successful reservation always leads to calling mac_group_addmac() to 3362 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3363 * always imply that the group is functioning abnormally. 3364 * 3365 * Currently this function is called everywhere, and it reflects assumptions 3366 * about MAC addresses in the implementation. CR 6735196. 3367 */ 3368 int 3369 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3370 { 3371 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3372 ASSERT(group->mrg_info.mgi_addmac != NULL); 3373 3374 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3375 } 3376 3377 /* 3378 * Remove the association between MAC address and receive group. 3379 */ 3380 int 3381 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3382 { 3383 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3384 ASSERT(group->mrg_info.mgi_remmac != NULL); 3385 3386 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3387 } 3388 3389 /* 3390 * Release a ring in use by marking it MR_FREE. 3391 * Any other client may reserve it for its use. 3392 */ 3393 void 3394 mac_release_tx_ring(mac_ring_handle_t rh) 3395 { 3396 mac_ring_t *ring = (mac_ring_t *)rh; 3397 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3398 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3399 3400 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3401 ASSERT(ring->mr_state != MR_FREE); 3402 3403 /* 3404 * Default tx ring will be released by mac_stop(). 3405 */ 3406 if (rh == mip->mi_default_tx_ring) 3407 return; 3408 3409 mac_stop_ring(ring); 3410 3411 ring->mr_state = MR_FREE; 3412 ring->mr_flag = 0; 3413 } 3414 3415 /* 3416 * Send packets through a selected tx ring. 3417 */ 3418 mblk_t * 3419 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp) 3420 { 3421 mac_ring_t *ring = (mac_ring_t *)rh; 3422 mac_ring_info_t *info = &ring->mr_info; 3423 3424 ASSERT(ring->mr_type == MAC_RING_TYPE_TX); 3425 ASSERT(ring->mr_state >= MR_INUSE); 3426 ASSERT(info->mri_tx != NULL); 3427 3428 return (info->mri_tx(info->mri_driver, mp)); 3429 } 3430 3431 /* 3432 * Find a ring from its index. 3433 */ 3434 mac_ring_t * 3435 mac_find_ring(mac_group_t *group, int index) 3436 { 3437 mac_ring_t *ring = group->mrg_rings; 3438 3439 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3440 if (ring->mr_index == index) 3441 break; 3442 3443 return (ring); 3444 } 3445 /* 3446 * Add a ring to an existing group. 3447 * 3448 * The ring must be either passed directly (for example if the ring 3449 * movement is initiated by the framework), or specified through a driver 3450 * index (for example when the ring is added by the driver. 3451 * 3452 * The caller needs to call mac_perim_enter() before calling this function. 3453 */ 3454 int 3455 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3456 { 3457 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3458 mac_capab_rings_t *cap_rings; 3459 boolean_t driver_call = (ring == NULL); 3460 mac_group_type_t group_type; 3461 int ret = 0; 3462 3463 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3464 3465 switch (group->mrg_type) { 3466 case MAC_RING_TYPE_RX: 3467 cap_rings = &mip->mi_rx_rings_cap; 3468 group_type = mip->mi_rx_group_type; 3469 break; 3470 case MAC_RING_TYPE_TX: 3471 cap_rings = &mip->mi_tx_rings_cap; 3472 group_type = mip->mi_tx_group_type; 3473 break; 3474 default: 3475 ASSERT(B_FALSE); 3476 } 3477 3478 /* 3479 * There should be no ring with the same ring index in the target 3480 * group. 3481 */ 3482 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3483 NULL); 3484 3485 if (driver_call) { 3486 /* 3487 * The function is called as a result of a request from 3488 * a driver to add a ring to an existing group, for example 3489 * from the aggregation driver. Allocate a new mac_ring_t 3490 * for that ring. 3491 */ 3492 ring = mac_init_ring(mip, group, index, cap_rings); 3493 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3494 } else { 3495 /* 3496 * The function is called as a result of a MAC layer request 3497 * to add a ring to an existing group. In this case the 3498 * ring is being moved between groups, which requires 3499 * the underlying driver to support dynamic grouping, 3500 * and the mac_ring_t already exists. 3501 */ 3502 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3503 ASSERT(cap_rings->mr_gaddring != NULL); 3504 ASSERT(ring->mr_gh == NULL); 3505 } 3506 3507 /* 3508 * At this point the ring should not be in use, and it should be 3509 * of the right for the target group. 3510 */ 3511 ASSERT(ring->mr_state < MR_INUSE); 3512 ASSERT(ring->mr_srs == NULL); 3513 ASSERT(ring->mr_type == group->mrg_type); 3514 3515 if (!driver_call) { 3516 /* 3517 * Add the driver level hardware ring if the process was not 3518 * initiated by the driver, and the target group is not the 3519 * group. 3520 */ 3521 if (group->mrg_driver != NULL) { 3522 cap_rings->mr_gaddring(group->mrg_driver, 3523 ring->mr_driver, ring->mr_type); 3524 } 3525 3526 /* 3527 * Insert the ring ahead existing rings. 3528 */ 3529 ring->mr_next = group->mrg_rings; 3530 group->mrg_rings = ring; 3531 ring->mr_gh = (mac_group_handle_t)group; 3532 group->mrg_cur_count++; 3533 } 3534 3535 /* 3536 * If the group has not been actively used, we're done. 3537 */ 3538 if (group->mrg_index != -1 && 3539 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3540 return (0); 3541 3542 /* 3543 * Set up SRS/SR according to the ring type. 3544 */ 3545 switch (ring->mr_type) { 3546 case MAC_RING_TYPE_RX: 3547 /* 3548 * Setup SRS on top of the new ring if the group is 3549 * reserved for someones exclusive use. 3550 */ 3551 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3552 flow_entry_t *flent; 3553 mac_client_impl_t *mcip; 3554 3555 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3556 ASSERT(mcip != NULL); 3557 flent = mcip->mci_flent; 3558 ASSERT(flent->fe_rx_srs_cnt > 0); 3559 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3560 } 3561 break; 3562 case MAC_RING_TYPE_TX: 3563 /* 3564 * For TX this function is only invoked during the 3565 * initial creation of a group when a share is 3566 * associated with a MAC client. So the datapath is not 3567 * yet setup, and will be setup later after the 3568 * group has been reserved and populated. 3569 */ 3570 break; 3571 default: 3572 ASSERT(B_FALSE); 3573 } 3574 3575 /* 3576 * Start the ring if needed. Failure causes to undo the grouping action. 3577 */ 3578 if ((ret = mac_start_ring(ring)) != 0) { 3579 if (ring->mr_type == MAC_RING_TYPE_RX) { 3580 if (ring->mr_srs != NULL) { 3581 mac_rx_srs_remove(ring->mr_srs); 3582 ring->mr_srs = NULL; 3583 } 3584 } 3585 if (!driver_call) { 3586 cap_rings->mr_gremring(group->mrg_driver, 3587 ring->mr_driver, ring->mr_type); 3588 } 3589 group->mrg_cur_count--; 3590 group->mrg_rings = ring->mr_next; 3591 3592 ring->mr_gh = NULL; 3593 3594 if (driver_call) 3595 mac_ring_free(mip, ring); 3596 3597 return (ret); 3598 } 3599 3600 /* 3601 * Update the ring's state. 3602 */ 3603 ring->mr_state = MR_INUSE; 3604 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3605 return (0); 3606 } 3607 3608 /* 3609 * Remove a ring from it's current group. MAC internal function for dynamic 3610 * grouping. 3611 * 3612 * The caller needs to call mac_perim_enter() before calling this function. 3613 */ 3614 void 3615 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3616 boolean_t driver_call) 3617 { 3618 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3619 mac_capab_rings_t *cap_rings = NULL; 3620 mac_group_type_t group_type; 3621 3622 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3623 3624 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3625 ASSERT((mac_group_t *)ring->mr_gh == group); 3626 ASSERT(ring->mr_type == group->mrg_type); 3627 3628 switch (ring->mr_type) { 3629 case MAC_RING_TYPE_RX: 3630 group_type = mip->mi_rx_group_type; 3631 cap_rings = &mip->mi_rx_rings_cap; 3632 3633 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3634 mac_stop_ring(ring); 3635 3636 /* 3637 * Only hardware classified packets hold a reference to the 3638 * ring all the way up the Rx path. mac_rx_srs_remove() 3639 * will take care of quiescing the Rx path and removing the 3640 * SRS. The software classified path neither holds a reference 3641 * nor any association with the ring in mac_rx. 3642 */ 3643 if (ring->mr_srs != NULL) { 3644 mac_rx_srs_remove(ring->mr_srs); 3645 ring->mr_srs = NULL; 3646 } 3647 ring->mr_state = MR_FREE; 3648 ring->mr_flag = 0; 3649 3650 break; 3651 case MAC_RING_TYPE_TX: 3652 /* 3653 * For TX this function is only invoked in two 3654 * cases: 3655 * 3656 * 1) In the case of a failure during the 3657 * initial creation of a group when a share is 3658 * associated with a MAC client. So the SRS is not 3659 * yet setup, and will be setup later after the 3660 * group has been reserved and populated. 3661 * 3662 * 2) From mac_release_tx_group() when freeing 3663 * a TX SRS. 3664 * 3665 * In both cases the SRS and its soft rings are 3666 * already quiesced. 3667 */ 3668 ASSERT(!driver_call); 3669 group_type = mip->mi_tx_group_type; 3670 cap_rings = &mip->mi_tx_rings_cap; 3671 break; 3672 default: 3673 ASSERT(B_FALSE); 3674 } 3675 3676 /* 3677 * Remove the ring from the group. 3678 */ 3679 if (ring == group->mrg_rings) 3680 group->mrg_rings = ring->mr_next; 3681 else { 3682 mac_ring_t *pre; 3683 3684 pre = group->mrg_rings; 3685 while (pre->mr_next != ring) 3686 pre = pre->mr_next; 3687 pre->mr_next = ring->mr_next; 3688 } 3689 group->mrg_cur_count--; 3690 3691 if (!driver_call) { 3692 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3693 ASSERT(cap_rings->mr_gremring != NULL); 3694 3695 /* 3696 * Remove the driver level hardware ring. 3697 */ 3698 if (group->mrg_driver != NULL) { 3699 cap_rings->mr_gremring(group->mrg_driver, 3700 ring->mr_driver, ring->mr_type); 3701 } 3702 } 3703 3704 ring->mr_gh = NULL; 3705 if (driver_call) { 3706 mac_ring_free(mip, ring); 3707 } else { 3708 ring->mr_state = MR_FREE; 3709 ring->mr_flag = 0; 3710 } 3711 } 3712 3713 /* 3714 * Move a ring to the target group. If needed, remove the ring from the group 3715 * that it currently belongs to. 3716 * 3717 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3718 */ 3719 static int 3720 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3721 { 3722 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3723 int rv; 3724 3725 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3726 ASSERT(d_group != NULL); 3727 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3728 3729 if (s_group == d_group) 3730 return (0); 3731 3732 /* 3733 * Remove it from current group first. 3734 */ 3735 if (s_group != NULL) 3736 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3737 3738 /* 3739 * Add it to the new group. 3740 */ 3741 rv = i_mac_group_add_ring(d_group, ring, 0); 3742 if (rv != 0) { 3743 /* 3744 * Failed to add ring back to source group. If 3745 * that fails, the ring is stuck in limbo, log message. 3746 */ 3747 if (i_mac_group_add_ring(s_group, ring, 0)) { 3748 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3749 mip->mi_name, (void *)ring); 3750 } 3751 } 3752 3753 return (rv); 3754 } 3755 3756 /* 3757 * Find a MAC address according to its value. 3758 */ 3759 mac_address_t * 3760 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3761 { 3762 mac_address_t *map; 3763 3764 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3765 3766 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3767 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3768 break; 3769 } 3770 3771 return (map); 3772 } 3773 3774 /* 3775 * Check whether the MAC address is shared by multiple clients. 3776 */ 3777 boolean_t 3778 mac_check_macaddr_shared(mac_address_t *map) 3779 { 3780 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3781 3782 return (map->ma_nusers > 1); 3783 } 3784 3785 /* 3786 * Remove the specified MAC address from the MAC address list and free it. 3787 */ 3788 static void 3789 mac_free_macaddr(mac_address_t *map) 3790 { 3791 mac_impl_t *mip = map->ma_mip; 3792 3793 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3794 ASSERT(mip->mi_addresses != NULL); 3795 3796 map = mac_find_macaddr(mip, map->ma_addr); 3797 3798 ASSERT(map != NULL); 3799 ASSERT(map->ma_nusers == 0); 3800 3801 if (map == mip->mi_addresses) { 3802 mip->mi_addresses = map->ma_next; 3803 } else { 3804 mac_address_t *pre; 3805 3806 pre = mip->mi_addresses; 3807 while (pre->ma_next != map) 3808 pre = pre->ma_next; 3809 pre->ma_next = map->ma_next; 3810 } 3811 3812 kmem_free(map, sizeof (mac_address_t)); 3813 } 3814 3815 /* 3816 * Add a MAC address reference for a client. If the desired MAC address 3817 * exists, add a reference to it. Otherwise, add the new address by adding 3818 * it to a reserved group or setting promiscuous mode. Won't try different 3819 * group is the group is non-NULL, so the caller must explictly share 3820 * default group when needed. 3821 * 3822 * Note, the primary MAC address is initialized at registration time, so 3823 * to add it to default group only need to activate it if its reference 3824 * count is still zero. Also, some drivers may not have advertised RINGS 3825 * capability. 3826 */ 3827 int 3828 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 3829 boolean_t use_hw) 3830 { 3831 mac_address_t *map; 3832 int err = 0; 3833 boolean_t allocated_map = B_FALSE; 3834 3835 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3836 3837 map = mac_find_macaddr(mip, mac_addr); 3838 3839 /* 3840 * If the new MAC address has not been added. Allocate a new one 3841 * and set it up. 3842 */ 3843 if (map == NULL) { 3844 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3845 map->ma_len = mip->mi_type->mt_addr_length; 3846 bcopy(mac_addr, map->ma_addr, map->ma_len); 3847 map->ma_nusers = 0; 3848 map->ma_group = group; 3849 map->ma_mip = mip; 3850 3851 /* add the new MAC address to the head of the address list */ 3852 map->ma_next = mip->mi_addresses; 3853 mip->mi_addresses = map; 3854 3855 allocated_map = B_TRUE; 3856 } 3857 3858 ASSERT(map->ma_group == group); 3859 3860 /* 3861 * If the MAC address is already in use, simply account for the 3862 * new client. 3863 */ 3864 if (map->ma_nusers++ > 0) 3865 return (0); 3866 3867 /* 3868 * Activate this MAC address by adding it to the reserved group. 3869 */ 3870 if (group != NULL) { 3871 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3872 if (err == 0) { 3873 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3874 return (0); 3875 } 3876 } 3877 3878 /* 3879 * The MAC address addition failed. If the client requires a 3880 * hardware classified MAC address, fail the operation. 3881 */ 3882 if (use_hw) { 3883 err = ENOSPC; 3884 goto bail; 3885 } 3886 3887 /* 3888 * Try promiscuous mode. 3889 * 3890 * For drivers that don't advertise RINGS capability, do 3891 * nothing for the primary address. 3892 */ 3893 if ((group == NULL) && 3894 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 3895 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3896 return (0); 3897 } 3898 3899 /* 3900 * Enable promiscuous mode in order to receive traffic 3901 * to the new MAC address. 3902 */ 3903 if ((err = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) == 0) { 3904 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 3905 return (0); 3906 } 3907 3908 /* 3909 * Free the MAC address that could not be added. Don't free 3910 * a pre-existing address, it could have been the entry 3911 * for the primary MAC address which was pre-allocated by 3912 * mac_init_macaddr(), and which must remain on the list. 3913 */ 3914 bail: 3915 map->ma_nusers--; 3916 if (allocated_map) 3917 mac_free_macaddr(map); 3918 return (err); 3919 } 3920 3921 /* 3922 * Remove a reference to a MAC address. This may cause to remove the MAC 3923 * address from an associated group or to turn off promiscuous mode. 3924 * The caller needs to handle the failure properly. 3925 */ 3926 int 3927 mac_remove_macaddr(mac_address_t *map) 3928 { 3929 mac_impl_t *mip = map->ma_mip; 3930 int err = 0; 3931 3932 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3933 3934 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 3935 3936 /* 3937 * If it's not the last client using this MAC address, only update 3938 * the MAC clients count. 3939 */ 3940 if (--map->ma_nusers > 0) 3941 return (0); 3942 3943 /* 3944 * The MAC address is no longer used by any MAC client, so remove 3945 * it from its associated group, or turn off promiscuous mode 3946 * if it was enabled for the MAC address. 3947 */ 3948 switch (map->ma_type) { 3949 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3950 /* 3951 * Don't free the preset primary address for drivers that 3952 * don't advertise RINGS capability. 3953 */ 3954 if (map->ma_group == NULL) 3955 return (0); 3956 3957 err = mac_group_remmac(map->ma_group, map->ma_addr); 3958 break; 3959 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 3960 err = i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC); 3961 break; 3962 default: 3963 ASSERT(B_FALSE); 3964 } 3965 3966 if (err != 0) 3967 return (err); 3968 3969 /* 3970 * We created MAC address for the primary one at registration, so we 3971 * won't free it here. mac_fini_macaddr() will take care of it. 3972 */ 3973 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 3974 mac_free_macaddr(map); 3975 3976 return (0); 3977 } 3978 3979 /* 3980 * Update an existing MAC address. The caller need to make sure that the new 3981 * value has not been used. 3982 */ 3983 int 3984 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 3985 { 3986 mac_impl_t *mip = map->ma_mip; 3987 int err = 0; 3988 3989 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3990 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 3991 3992 switch (map->ma_type) { 3993 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3994 /* 3995 * Update the primary address for drivers that are not 3996 * RINGS capable. 3997 */ 3998 if (map->ma_group == NULL) { 3999 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4000 mac_addr); 4001 if (err != 0) 4002 return (err); 4003 break; 4004 } 4005 4006 /* 4007 * If this MAC address is not currently in use, 4008 * simply break out and update the value. 4009 */ 4010 if (map->ma_nusers == 0) 4011 break; 4012 4013 /* 4014 * Need to replace the MAC address associated with a group. 4015 */ 4016 err = mac_group_remmac(map->ma_group, map->ma_addr); 4017 if (err != 0) 4018 return (err); 4019 4020 err = mac_group_addmac(map->ma_group, mac_addr); 4021 4022 /* 4023 * Failure hints hardware error. The MAC layer needs to 4024 * have error notification facility to handle this. 4025 * Now, simply try to restore the value. 4026 */ 4027 if (err != 0) 4028 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4029 4030 break; 4031 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4032 /* 4033 * Need to do nothing more if in promiscuous mode. 4034 */ 4035 break; 4036 default: 4037 ASSERT(B_FALSE); 4038 } 4039 4040 /* 4041 * Successfully replaced the MAC address. 4042 */ 4043 if (err == 0) 4044 bcopy(mac_addr, map->ma_addr, map->ma_len); 4045 4046 return (err); 4047 } 4048 4049 /* 4050 * Freshen the MAC address with new value. Its caller must have updated the 4051 * hardware MAC address before calling this function. 4052 * This funcitons is supposed to be used to handle the MAC address change 4053 * notification from underlying drivers. 4054 */ 4055 void 4056 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4057 { 4058 mac_impl_t *mip = map->ma_mip; 4059 4060 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4061 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4062 4063 /* 4064 * Freshen the MAC address with new value. 4065 */ 4066 bcopy(mac_addr, map->ma_addr, map->ma_len); 4067 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4068 4069 /* 4070 * Update all MAC clients that share this MAC address. 4071 */ 4072 mac_unicast_update_clients(mip, map); 4073 } 4074 4075 /* 4076 * Set up the primary MAC address. 4077 */ 4078 void 4079 mac_init_macaddr(mac_impl_t *mip) 4080 { 4081 mac_address_t *map; 4082 4083 /* 4084 * The reference count is initialized to zero, until it's really 4085 * activated. 4086 */ 4087 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4088 map->ma_len = mip->mi_type->mt_addr_length; 4089 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4090 4091 /* 4092 * If driver advertises RINGS capability, it shouldn't have initialized 4093 * its primary MAC address. For other drivers, including VNIC, the 4094 * primary address must work after registration. 4095 */ 4096 if (mip->mi_rx_groups == NULL) 4097 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4098 4099 /* 4100 * The primary MAC address is reserved for default group according 4101 * to current design. 4102 */ 4103 map->ma_group = mip->mi_rx_groups; 4104 map->ma_mip = mip; 4105 4106 mip->mi_addresses = map; 4107 } 4108 4109 /* 4110 * Clean up the primary MAC address. Note, only one primary MAC address 4111 * is allowed. All other MAC addresses must have been freed appropriately. 4112 */ 4113 void 4114 mac_fini_macaddr(mac_impl_t *mip) 4115 { 4116 mac_address_t *map = mip->mi_addresses; 4117 4118 if (map == NULL) 4119 return; 4120 4121 /* 4122 * If mi_addresses is initialized, there should be exactly one 4123 * entry left on the list with no users. 4124 */ 4125 ASSERT(map->ma_nusers == 0); 4126 ASSERT(map->ma_next == NULL); 4127 4128 kmem_free(map, sizeof (mac_address_t)); 4129 mip->mi_addresses = NULL; 4130 } 4131 4132 /* 4133 * Logging related functions. 4134 */ 4135 4136 /* Write the Flow description to the log file */ 4137 int 4138 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4139 { 4140 flow_desc_t *fdesc; 4141 mac_resource_props_t *mrp; 4142 net_desc_t ndesc; 4143 4144 bzero(&ndesc, sizeof (net_desc_t)); 4145 4146 /* 4147 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4148 * Updates to the fe_flow_desc are done under the fe_lock 4149 */ 4150 mutex_enter(&flent->fe_lock); 4151 fdesc = &flent->fe_flow_desc; 4152 mrp = &flent->fe_resource_props; 4153 4154 ndesc.nd_name = flent->fe_flow_name; 4155 ndesc.nd_devname = mcip->mci_name; 4156 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4157 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4158 ndesc.nd_sap = htonl(fdesc->fd_sap); 4159 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4160 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4161 if (ndesc.nd_isv4) { 4162 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4163 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4164 } else { 4165 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4166 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4167 } 4168 ndesc.nd_sport = htons(fdesc->fd_local_port); 4169 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4170 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4171 mutex_exit(&flent->fe_lock); 4172 4173 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4174 } 4175 4176 /* Write the Flow statistics to the log file */ 4177 int 4178 mac_write_flow_stats(flow_entry_t *flent) 4179 { 4180 flow_stats_t *fl_stats; 4181 net_stat_t nstat; 4182 4183 fl_stats = &flent->fe_flowstats; 4184 nstat.ns_name = flent->fe_flow_name; 4185 nstat.ns_ibytes = fl_stats->fs_rbytes; 4186 nstat.ns_obytes = fl_stats->fs_obytes; 4187 nstat.ns_ipackets = fl_stats->fs_ipackets; 4188 nstat.ns_opackets = fl_stats->fs_opackets; 4189 nstat.ns_ierrors = fl_stats->fs_ierrors; 4190 nstat.ns_oerrors = fl_stats->fs_oerrors; 4191 4192 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4193 } 4194 4195 /* Write the Link Description to the log file */ 4196 int 4197 mac_write_link_desc(mac_client_impl_t *mcip) 4198 { 4199 net_desc_t ndesc; 4200 flow_entry_t *flent = mcip->mci_flent; 4201 4202 bzero(&ndesc, sizeof (net_desc_t)); 4203 4204 ndesc.nd_name = mcip->mci_name; 4205 ndesc.nd_devname = mcip->mci_name; 4206 ndesc.nd_isv4 = B_TRUE; 4207 /* 4208 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4209 * Updates to the fe_flow_desc are done under the fe_lock 4210 * after removing the flent from the flow table. 4211 */ 4212 mutex_enter(&flent->fe_lock); 4213 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4214 mutex_exit(&flent->fe_lock); 4215 4216 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4217 } 4218 4219 /* Write the Link statistics to the log file */ 4220 int 4221 mac_write_link_stats(mac_client_impl_t *mcip) 4222 { 4223 net_stat_t nstat; 4224 4225 nstat.ns_name = mcip->mci_name; 4226 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4227 nstat.ns_obytes = mcip->mci_stat_obytes; 4228 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4229 nstat.ns_opackets = mcip->mci_stat_opackets; 4230 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4231 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4232 4233 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4234 } 4235 4236 /* 4237 * For a given flow, if the descrition has not been logged before, do it now. 4238 * If it is a VNIC, then we have collected information about it from the MAC 4239 * table, so skip it. 4240 */ 4241 /*ARGSUSED*/ 4242 static int 4243 mac_log_flowinfo(flow_entry_t *flent, void *args) 4244 { 4245 mac_client_impl_t *mcip = flent->fe_mcip; 4246 4247 if (mcip == NULL) 4248 return (0); 4249 4250 /* 4251 * If the name starts with "vnic", and fe_user_generated is true (to 4252 * exclude the mcast and active flow entries created implicitly for 4253 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4254 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4255 */ 4256 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4257 (flent->fe_type & FLOW_USER) != 0) { 4258 return (0); 4259 } 4260 4261 if (!flent->fe_desc_logged) { 4262 /* 4263 * We don't return error because we want to continu the 4264 * walk in case this is the last walk which means we 4265 * need to reset fe_desc_logged in all the flows. 4266 */ 4267 if (mac_write_flow_desc(flent, mcip) != 0) 4268 return (0); 4269 flent->fe_desc_logged = B_TRUE; 4270 } 4271 4272 /* 4273 * Regardless of the error, we want to proceed in case we have to 4274 * reset fe_desc_logged. 4275 */ 4276 (void) mac_write_flow_stats(flent); 4277 4278 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4279 flent->fe_desc_logged = B_FALSE; 4280 4281 return (0); 4282 } 4283 4284 typedef struct i_mac_log_state_s { 4285 boolean_t mi_last; 4286 int mi_fenable; 4287 int mi_lenable; 4288 } i_mac_log_state_t; 4289 4290 /* 4291 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4292 * if it hasn't already been done. Additionally, log statistics for the link as 4293 * well. Walk the flow table and log information for each flow as well. 4294 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4295 * also fe_desc_logged, if flow logging is on) since we want to log the 4296 * description if and when logging is restarted. 4297 */ 4298 /*ARGSUSED*/ 4299 static uint_t 4300 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4301 { 4302 mac_impl_t *mip = (mac_impl_t *)val; 4303 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4304 int ret; 4305 mac_client_impl_t *mcip; 4306 4307 /* 4308 * Only walk the client list for NIC and etherstub 4309 */ 4310 if ((mip->mi_state_flags & MIS_DISABLED) || 4311 ((mip->mi_state_flags & MIS_IS_VNIC) && 4312 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4313 return (MH_WALK_CONTINUE); 4314 4315 for (mcip = mip->mi_clients_list; mcip != NULL; 4316 mcip = mcip->mci_client_next) { 4317 if (!MCIP_DATAPATH_SETUP(mcip)) 4318 continue; 4319 if (lstate->mi_lenable) { 4320 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4321 ret = mac_write_link_desc(mcip); 4322 if (ret != 0) { 4323 /* 4324 * We can't terminate it if this is the last 4325 * walk, else there might be some links with 4326 * mi_desc_logged set to true, which means 4327 * their description won't be logged the next 4328 * time logging is started (similarly for the 4329 * flows within such links). We can continue 4330 * without walking the flow table (i.e. to 4331 * set fe_desc_logged to false) because we 4332 * won't have written any flow stuff for this 4333 * link as we haven't logged the link itself. 4334 */ 4335 if (lstate->mi_last) 4336 return (MH_WALK_CONTINUE); 4337 else 4338 return (MH_WALK_TERMINATE); 4339 } 4340 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4341 } 4342 } 4343 4344 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4345 return (MH_WALK_TERMINATE); 4346 4347 if (lstate->mi_last) 4348 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4349 4350 if (lstate->mi_fenable) { 4351 if (mcip->mci_subflow_tab != NULL) { 4352 (void) mac_flow_walk(mcip->mci_subflow_tab, 4353 mac_log_flowinfo, mip); 4354 } 4355 } 4356 } 4357 return (MH_WALK_CONTINUE); 4358 } 4359 4360 /* 4361 * The timer thread that runs every mac_logging_interval seconds and logs 4362 * link and/or flow information. 4363 */ 4364 /* ARGSUSED */ 4365 void 4366 mac_log_linkinfo(void *arg) 4367 { 4368 i_mac_log_state_t lstate; 4369 4370 rw_enter(&i_mac_impl_lock, RW_READER); 4371 if (!mac_flow_log_enable && !mac_link_log_enable) { 4372 rw_exit(&i_mac_impl_lock); 4373 return; 4374 } 4375 lstate.mi_fenable = mac_flow_log_enable; 4376 lstate.mi_lenable = mac_link_log_enable; 4377 lstate.mi_last = B_FALSE; 4378 rw_exit(&i_mac_impl_lock); 4379 4380 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4381 4382 rw_enter(&i_mac_impl_lock, RW_WRITER); 4383 if (mac_flow_log_enable || mac_link_log_enable) { 4384 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4385 SEC_TO_TICK(mac_logging_interval)); 4386 } 4387 rw_exit(&i_mac_impl_lock); 4388 } 4389 4390 /* 4391 * Start the logging timer. 4392 */ 4393 void 4394 mac_start_logusage(mac_logtype_t type, uint_t interval) 4395 { 4396 rw_enter(&i_mac_impl_lock, RW_WRITER); 4397 switch (type) { 4398 case MAC_LOGTYPE_FLOW: 4399 if (mac_flow_log_enable) { 4400 rw_exit(&i_mac_impl_lock); 4401 return; 4402 } 4403 mac_flow_log_enable = B_TRUE; 4404 /* FALLTHRU */ 4405 case MAC_LOGTYPE_LINK: 4406 if (mac_link_log_enable) { 4407 rw_exit(&i_mac_impl_lock); 4408 return; 4409 } 4410 mac_link_log_enable = B_TRUE; 4411 break; 4412 default: 4413 ASSERT(0); 4414 } 4415 mac_logging_interval = interval; 4416 rw_exit(&i_mac_impl_lock); 4417 mac_log_linkinfo(NULL); 4418 } 4419 4420 /* 4421 * Stop the logging timer if both Link and Flow logging are turned off. 4422 */ 4423 void 4424 mac_stop_logusage(mac_logtype_t type) 4425 { 4426 i_mac_log_state_t lstate; 4427 4428 rw_enter(&i_mac_impl_lock, RW_WRITER); 4429 lstate.mi_fenable = mac_flow_log_enable; 4430 lstate.mi_lenable = mac_link_log_enable; 4431 4432 /* Last walk */ 4433 lstate.mi_last = B_TRUE; 4434 4435 switch (type) { 4436 case MAC_LOGTYPE_FLOW: 4437 if (lstate.mi_fenable) { 4438 ASSERT(mac_link_log_enable); 4439 mac_flow_log_enable = B_FALSE; 4440 mac_link_log_enable = B_FALSE; 4441 break; 4442 } 4443 /* FALLTHRU */ 4444 case MAC_LOGTYPE_LINK: 4445 if (!lstate.mi_lenable || mac_flow_log_enable) { 4446 rw_exit(&i_mac_impl_lock); 4447 return; 4448 } 4449 mac_link_log_enable = B_FALSE; 4450 break; 4451 default: 4452 ASSERT(0); 4453 } 4454 rw_exit(&i_mac_impl_lock); 4455 (void) untimeout(mac_logging_timer); 4456 mac_logging_timer = 0; 4457 4458 /* Last walk */ 4459 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4460 } 4461 4462 /* 4463 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4464 */ 4465 void 4466 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4467 { 4468 pri_t pri; 4469 int count; 4470 mac_soft_ring_set_t *mac_srs; 4471 4472 if (flent->fe_rx_srs_cnt <= 0) 4473 return; 4474 4475 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4476 SRST_FLOW) { 4477 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4478 mcip->mci_max_pri, 4479 flent->fe_resource_props.mrp_priority); 4480 } else { 4481 pri = mcip->mci_max_pri; 4482 } 4483 4484 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4485 mac_srs = flent->fe_rx_srs[count]; 4486 mac_update_srs_priority(mac_srs, pri); 4487 } 4488 /* 4489 * If we have a Tx SRS, we need to modify all the threads associated 4490 * with it. 4491 */ 4492 if (flent->fe_tx_srs != NULL) 4493 mac_update_srs_priority(flent->fe_tx_srs, pri); 4494 } 4495 4496 /* 4497 * RX and TX rings are reserved according to different semantics depending 4498 * on the requests from the MAC clients and type of rings: 4499 * 4500 * On the Tx side, by default we reserve individual rings, independently from 4501 * the groups. 4502 * 4503 * On the Rx side, the reservation is at the granularity of the group 4504 * of rings, and used for v12n level 1 only. It has a special case for the 4505 * primary client. 4506 * 4507 * If a share is allocated to a MAC client, we allocate a TX group and an 4508 * RX group to the client, and assign TX rings and RX rings to these 4509 * groups according to information gathered from the driver through 4510 * the share capability. 4511 * 4512 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4513 * to allocate individual rings out of a group and program the hw classifier 4514 * based on IP address or higher level criteria. 4515 */ 4516 4517 /* 4518 * mac_reserve_tx_ring() 4519 * Reserve a unused ring by marking it with MR_INUSE state. 4520 * As reserved, the ring is ready to function. 4521 * 4522 * Notes for Hybrid I/O: 4523 * 4524 * If a specific ring is needed, it is specified through the desired_ring 4525 * argument. Otherwise that argument is set to NULL. 4526 * If the desired ring was previous allocated to another client, this 4527 * function swaps it with a new ring from the group of unassigned rings. 4528 */ 4529 mac_ring_t * 4530 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4531 { 4532 mac_group_t *group; 4533 mac_ring_t *ring; 4534 4535 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4536 4537 if (mip->mi_tx_groups == NULL) 4538 return (NULL); 4539 4540 /* 4541 * Find an available ring and start it before changing its status. 4542 * The unassigned rings are at the end of the mi_tx_groups 4543 * array. 4544 */ 4545 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4546 4547 for (ring = group->mrg_rings; ring != NULL; 4548 ring = ring->mr_next) { 4549 if (desired_ring == NULL) { 4550 if (ring->mr_state == MR_FREE) 4551 /* wanted any free ring and found one */ 4552 break; 4553 } else { 4554 mac_ring_t *sring; 4555 mac_client_impl_t *client; 4556 mac_soft_ring_set_t *srs; 4557 4558 if (ring != desired_ring) 4559 /* wants a desired ring but this one ain't it */ 4560 continue; 4561 4562 if (ring->mr_state == MR_FREE) 4563 break; 4564 4565 /* 4566 * Found the desired ring but it's already in use. 4567 * Swap it with a new ring. 4568 */ 4569 4570 /* find the client which owns that ring */ 4571 for (client = mip->mi_clients_list; client != NULL; 4572 client = client->mci_client_next) { 4573 srs = MCIP_TX_SRS(client); 4574 if (srs != NULL && mac_tx_srs_ring_present(srs, 4575 desired_ring)) { 4576 /* found our ring */ 4577 break; 4578 } 4579 } 4580 if (client == NULL) { 4581 /* 4582 * The TX ring is in use, but it's not 4583 * associated with any clients, so it 4584 * has to be the default ring. In that 4585 * case we can simply assign a new ring 4586 * as the default ring, and we're done. 4587 */ 4588 ASSERT(mip->mi_default_tx_ring == 4589 (mac_ring_handle_t)desired_ring); 4590 4591 /* 4592 * Quiesce all clients on top of 4593 * the NIC to make sure there are no 4594 * pending threads still relying on 4595 * that default ring, for example 4596 * the multicast path. 4597 */ 4598 for (client = mip->mi_clients_list; 4599 client != NULL; 4600 client = client->mci_client_next) { 4601 mac_tx_client_quiesce(client, 4602 SRS_QUIESCE); 4603 } 4604 4605 mip->mi_default_tx_ring = (mac_ring_handle_t) 4606 mac_reserve_tx_ring(mip, NULL); 4607 4608 /* resume the clients */ 4609 for (client = mip->mi_clients_list; 4610 client != NULL; 4611 client = client->mci_client_next) 4612 mac_tx_client_restart(client); 4613 4614 break; 4615 } 4616 4617 /* 4618 * Note that we cannot simply invoke the group 4619 * add/rem routines since the client doesn't have a 4620 * TX group. So we need to instead add/remove 4621 * the rings from the SRS. 4622 */ 4623 ASSERT(client->mci_share == NULL); 4624 4625 /* first quiece the client */ 4626 mac_tx_client_quiesce(client, SRS_QUIESCE); 4627 4628 /* give a new ring to the client... */ 4629 sring = mac_reserve_tx_ring(mip, NULL); 4630 if (sring != NULL) { 4631 /* 4632 * There are no other available ring 4633 * on that MAC instance. The client 4634 * will fallback to the shared TX 4635 * ring. 4636 */ 4637 mac_tx_srs_add_ring(srs, sring); 4638 } 4639 4640 /* ... in exchange for our desired ring */ 4641 mac_tx_srs_del_ring(srs, desired_ring); 4642 4643 /* restart the client */ 4644 mac_tx_client_restart(client); 4645 4646 if (mip->mi_default_tx_ring == 4647 (mac_ring_handle_t)desired_ring) { 4648 /* 4649 * The desired ring is the default ring, 4650 * and there are one or more clients 4651 * using that default ring directly. 4652 */ 4653 mip->mi_default_tx_ring = 4654 (mac_ring_handle_t)sring; 4655 /* 4656 * Find clients using default ring and 4657 * swap it with the new default ring. 4658 */ 4659 for (client = mip->mi_clients_list; 4660 client != NULL; 4661 client = client->mci_client_next) { 4662 srs = MCIP_TX_SRS(client); 4663 if (srs != NULL && 4664 mac_tx_srs_ring_present(srs, 4665 desired_ring)) { 4666 /* first quiece the client */ 4667 mac_tx_client_quiesce(client, 4668 SRS_QUIESCE); 4669 4670 /* 4671 * Give it the new default 4672 * ring, and remove the old 4673 * one. 4674 */ 4675 if (sring != NULL) { 4676 mac_tx_srs_add_ring(srs, 4677 sring); 4678 } 4679 mac_tx_srs_del_ring(srs, 4680 desired_ring); 4681 4682 /* restart the client */ 4683 mac_tx_client_restart(client); 4684 } 4685 } 4686 } 4687 break; 4688 } 4689 } 4690 4691 if (ring != NULL) { 4692 if (mac_start_ring(ring) != 0) 4693 return (NULL); 4694 ring->mr_state = MR_INUSE; 4695 } 4696 4697 return (ring); 4698 } 4699 4700 /* 4701 * Minimum number of rings to leave in the default TX group when allocating 4702 * rings to new clients. 4703 */ 4704 static uint_t mac_min_rx_default_rings = 1; 4705 4706 /* 4707 * Populate a zero-ring group with rings. If the share is non-NULL, 4708 * the rings are chosen according to that share. 4709 * Invoked after allocating a new RX or TX group through 4710 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4711 * Returns zero on success, an errno otherwise. 4712 */ 4713 int 4714 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4715 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4716 { 4717 mac_ring_t **rings, *tmp_ring[1], *ring; 4718 uint_t nrings; 4719 int rv, i, j; 4720 4721 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4722 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4723 ASSERT(new_group->mrg_cur_count == 0); 4724 4725 /* 4726 * First find the rings to allocate to the group. 4727 */ 4728 if (share != NULL) { 4729 /* get rings through ms_squery() */ 4730 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4731 ASSERT(nrings != 0); 4732 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4733 KM_SLEEP); 4734 mip->mi_share_capab.ms_squery(share, ring_type, 4735 (mac_ring_handle_t *)rings, &nrings); 4736 } else { 4737 /* this function is called for TX only with a share */ 4738 ASSERT(ring_type == MAC_RING_TYPE_RX); 4739 /* 4740 * Pick one ring from default group. 4741 * 4742 * for now pick the second ring which requires the first ring 4743 * at index 0 to stay in the default group, since it is the 4744 * ring which carries the multicast traffic. 4745 * We need a better way for a driver to indicate this, 4746 * for example a per-ring flag. 4747 */ 4748 for (ring = src_group->mrg_rings; ring != NULL; 4749 ring = ring->mr_next) { 4750 if (ring->mr_index != 0) 4751 break; 4752 } 4753 ASSERT(ring != NULL); 4754 nrings = 1; 4755 tmp_ring[0] = ring; 4756 rings = tmp_ring; 4757 } 4758 4759 switch (ring_type) { 4760 case MAC_RING_TYPE_RX: 4761 if (src_group->mrg_cur_count - nrings < 4762 mac_min_rx_default_rings) { 4763 /* we ran out of rings */ 4764 return (ENOSPC); 4765 } 4766 4767 /* move receive rings to new group */ 4768 for (i = 0; i < nrings; i++) { 4769 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4770 if (rv != 0) { 4771 /* move rings back on failure */ 4772 for (j = 0; j < i; j++) { 4773 (void) mac_group_mov_ring(mip, 4774 src_group, rings[j]); 4775 } 4776 return (rv); 4777 } 4778 } 4779 break; 4780 4781 case MAC_RING_TYPE_TX: { 4782 mac_ring_t *tmp_ring; 4783 4784 /* move the TX rings to the new group */ 4785 ASSERT(src_group == NULL); 4786 for (i = 0; i < nrings; i++) { 4787 /* get the desired ring */ 4788 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4789 ASSERT(tmp_ring == rings[i]); 4790 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4791 if (rv != 0) { 4792 /* cleanup on failure */ 4793 for (j = 0; j < i; j++) { 4794 (void) mac_group_mov_ring(mip, 4795 mip->mi_tx_groups + 4796 mip->mi_tx_group_count, rings[j]); 4797 } 4798 } 4799 } 4800 break; 4801 } 4802 } 4803 4804 if (share != NULL) { 4805 /* add group to share */ 4806 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4807 /* free temporary array of rings */ 4808 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4809 } 4810 4811 return (0); 4812 } 4813 4814 void 4815 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4816 { 4817 mac_grp_client_t *mgcp; 4818 4819 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4820 if (mgcp->mgc_client == mcip) 4821 break; 4822 } 4823 4824 VERIFY(mgcp == NULL); 4825 4826 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4827 mgcp->mgc_client = mcip; 4828 mgcp->mgc_next = grp->mrg_clients; 4829 grp->mrg_clients = mgcp; 4830 4831 } 4832 4833 void 4834 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4835 { 4836 mac_grp_client_t *mgcp, **pprev; 4837 4838 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4839 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4840 if (mgcp->mgc_client == mcip) 4841 break; 4842 } 4843 4844 ASSERT(mgcp != NULL); 4845 4846 *pprev = mgcp->mgc_next; 4847 kmem_free(mgcp, sizeof (mac_grp_client_t)); 4848 } 4849 4850 /* 4851 * mac_reserve_rx_group() 4852 * 4853 * Finds an available group and exclusively reserves it for a client. 4854 * The group is chosen to suit the flow's resource controls (bandwidth and 4855 * fanout requirements) and the address type. 4856 * If the requestor is the pimary MAC then return the group with the 4857 * largest number of rings, otherwise the default ring when available. 4858 */ 4859 mac_group_t * 4860 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 4861 mac_rx_group_reserve_type_t rtype) 4862 { 4863 mac_share_handle_t share = mcip->mci_share; 4864 mac_impl_t *mip = mcip->mci_mip; 4865 mac_group_t *grp = NULL; 4866 int i, start, loopcount; 4867 int err; 4868 mac_address_t *map; 4869 4870 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4871 4872 /* Check if a group already has this mac address (case of VLANs) */ 4873 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 4874 return (map->ma_group); 4875 4876 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 4877 rtype == MAC_RX_NO_RESERVE) 4878 return (NULL); 4879 4880 /* 4881 * Try to exclusively reserve a RX group. 4882 * 4883 * For flows requires SW_RING it always goes to the default group 4884 * (Until we can explicitely call out default groups (CR 6695600), 4885 * we assume that the default group is always at position zero); 4886 * 4887 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 4888 * client), try to reserve the default RX group only. 4889 * 4890 * For flows requires HW_RING (unicast flow of other clients), try 4891 * to reserve non-default RX group then the default group. 4892 */ 4893 switch (rtype) { 4894 case MAC_RX_RESERVE_DEFAULT: 4895 start = 0; 4896 loopcount = 1; 4897 break; 4898 case MAC_RX_RESERVE_NONDEFAULT: 4899 start = 1; 4900 loopcount = mip->mi_rx_group_count; 4901 } 4902 4903 for (i = start; i < start + loopcount; i++) { 4904 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 4905 4906 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 4907 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 4908 4909 /* 4910 * Check to see whether this mac client is the only client 4911 * on this RX group. If not, we cannot exclusively reserve 4912 * this RX group. 4913 */ 4914 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 4915 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 4916 continue; 4917 } 4918 4919 /* 4920 * This group could already be SHARED by other multicast 4921 * flows on this client. In that case, the group would 4922 * be shared and has already been started. 4923 */ 4924 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 4925 4926 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 4927 (mac_start_group(grp) != 0)) { 4928 continue; 4929 } 4930 4931 if ((i % mip->mi_rx_group_count) == 0 || 4932 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 4933 break; 4934 } 4935 4936 ASSERT(grp->mrg_cur_count == 0); 4937 4938 /* 4939 * Populate the group. Rings should be taken 4940 * from the default group at position 0 for now. 4941 */ 4942 4943 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 4944 &mip->mi_rx_groups[0], grp, share); 4945 if (err == 0) 4946 break; 4947 4948 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 4949 mip->mi_name, int, grp->mrg_index, int, err); 4950 4951 /* 4952 * It's a dynamic group but the grouping operation failed. 4953 */ 4954 mac_stop_group(grp); 4955 } 4956 4957 if (i == start + loopcount) 4958 return (NULL); 4959 4960 ASSERT(grp != NULL); 4961 4962 DTRACE_PROBE2(rx__group__reserved, 4963 char *, mip->mi_name, int, grp->mrg_index); 4964 return (grp); 4965 } 4966 4967 /* 4968 * mac_rx_release_group() 4969 * 4970 * This is called when there are no clients left for the group. 4971 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 4972 * and if it is a non default group, the shares are removed and 4973 * all rings are assigned back to default group. 4974 */ 4975 void 4976 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 4977 { 4978 mac_impl_t *mip = mcip->mci_mip; 4979 mac_ring_t *ring; 4980 4981 ASSERT(group != &mip->mi_rx_groups[0]); 4982 4983 /* 4984 * This is the case where there are no clients left. Any 4985 * SRS etc on this group have also be quiesced. 4986 */ 4987 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4988 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 4989 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 4990 /* 4991 * Remove the SRS associated with the HW ring. 4992 * As a result, polling will be disabled. 4993 */ 4994 ring->mr_srs = NULL; 4995 } 4996 ASSERT(ring->mr_state == MR_INUSE); 4997 mac_stop_ring(ring); 4998 ring->mr_state = MR_FREE; 4999 ring->mr_flag = 0; 5000 } 5001 5002 /* remove group from share */ 5003 if (mcip->mci_share != NULL) { 5004 mip->mi_share_capab.ms_sremove(mcip->mci_share, 5005 group->mrg_driver); 5006 } 5007 5008 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 5009 mac_ring_t *ring; 5010 5011 /* 5012 * Rings were dynamically allocated to group. 5013 * Move rings back to default group. 5014 */ 5015 while ((ring = group->mrg_rings) != NULL) { 5016 (void) mac_group_mov_ring(mip, 5017 &mip->mi_rx_groups[0], ring); 5018 } 5019 } 5020 mac_stop_group(group); 5021 /* 5022 * Possible improvement: See if we can assign the group just released 5023 * to a another client of the mip 5024 */ 5025 } 5026 5027 /* 5028 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 5029 * when a share was allocated to the client. 5030 */ 5031 mac_group_t * 5032 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 5033 { 5034 mac_group_t *grp; 5035 int rv, i; 5036 5037 /* 5038 * TX groups are currently allocated only to MAC clients 5039 * which are associated with a share. Since we have a fixed 5040 * number of share and groups, and we already successfully 5041 * allocated a share, find an available TX group. 5042 */ 5043 ASSERT(share != NULL); 5044 ASSERT(mip->mi_tx_group_free > 0); 5045 5046 for (i = 0; i < mip->mi_tx_group_count; i++) { 5047 grp = &mip->mi_tx_groups[i]; 5048 5049 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 5050 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 5051 continue; 5052 5053 rv = mac_start_group(grp); 5054 ASSERT(rv == 0); 5055 5056 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 5057 break; 5058 } 5059 5060 ASSERT(grp != NULL); 5061 5062 /* 5063 * Populate the group. Rings should be taken from the group 5064 * of unassigned rings, which is past the array of TX 5065 * groups adversized by the driver. 5066 */ 5067 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5068 grp, share); 5069 if (rv != 0) { 5070 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5071 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5072 5073 mac_stop_group(grp); 5074 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5075 5076 return (NULL); 5077 } 5078 5079 mip->mi_tx_group_free--; 5080 5081 return (grp); 5082 } 5083 5084 void 5085 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5086 { 5087 mac_client_impl_t *mcip = grp->mrg_tx_client; 5088 mac_share_handle_t share = mcip->mci_share; 5089 mac_ring_t *ring; 5090 5091 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5092 ASSERT(share != NULL); 5093 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5094 5095 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5096 while ((ring = grp->mrg_rings) != NULL) { 5097 /* move the ring back to the pool */ 5098 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5099 mip->mi_tx_group_count, ring); 5100 } 5101 mac_stop_group(grp); 5102 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5103 grp->mrg_tx_client = NULL; 5104 mip->mi_tx_group_free++; 5105 } 5106 5107 /* 5108 * This is a 1-time control path activity initiated by the client (IP). 5109 * The mac perimeter protects against other simultaneous control activities, 5110 * for example an ioctl that attempts to change the degree of fanout and 5111 * increase or decrease the number of softrings associated with this Tx SRS. 5112 */ 5113 static mac_tx_notify_cb_t * 5114 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5115 mac_tx_notify_t notify, void *arg) 5116 { 5117 mac_cb_info_t *mcbi; 5118 mac_tx_notify_cb_t *mtnfp; 5119 5120 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5121 5122 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5123 mtnfp->mtnf_fn = notify; 5124 mtnfp->mtnf_arg = arg; 5125 mtnfp->mtnf_link.mcb_objp = mtnfp; 5126 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5127 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5128 5129 mcbi = &mcip->mci_tx_notify_cb_info; 5130 mutex_enter(mcbi->mcbi_lockp); 5131 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5132 mutex_exit(mcbi->mcbi_lockp); 5133 return (mtnfp); 5134 } 5135 5136 static void 5137 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5138 { 5139 mac_cb_info_t *mcbi; 5140 mac_cb_t **cblist; 5141 5142 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5143 5144 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5145 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5146 cmn_err(CE_WARN, 5147 "mac_client_tx_notify_remove: callback not " 5148 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5149 return; 5150 } 5151 5152 mcbi = &mcip->mci_tx_notify_cb_info; 5153 cblist = &mcip->mci_tx_notify_cb_list; 5154 mutex_enter(mcbi->mcbi_lockp); 5155 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5156 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5157 else 5158 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5159 mutex_exit(mcbi->mcbi_lockp); 5160 } 5161 5162 /* 5163 * mac_client_tx_notify(): 5164 * call to add and remove flow control callback routine. 5165 */ 5166 mac_tx_notify_handle_t 5167 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5168 void *ptr) 5169 { 5170 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5171 mac_tx_notify_cb_t *mtnfp = NULL; 5172 5173 i_mac_perim_enter(mcip->mci_mip); 5174 5175 if (callb_func != NULL) { 5176 /* Add a notify callback */ 5177 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5178 } else { 5179 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5180 } 5181 i_mac_perim_exit(mcip->mci_mip); 5182 5183 return ((mac_tx_notify_handle_t)mtnfp); 5184 } 5185