1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2020 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 #define MACTYPE_KMODDIR "mac" 347 #define MACTYPE_HASHSZ 67 348 static mod_hash_t *i_mactype_hash; 349 /* 350 * i_mactype_lock synchronizes threads that obtain references to mactype_t 351 * structures through i_mactype_getplugin(). 352 */ 353 static kmutex_t i_mactype_lock; 354 355 /* 356 * mac_tx_percpu_cnt 357 * 358 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 359 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 360 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 361 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 362 */ 363 int mac_tx_percpu_cnt; 364 int mac_tx_percpu_cnt_max = 128; 365 366 /* 367 * Call back functions for the bridge module. These are guaranteed to be valid 368 * when holding a reference on a link or when holding mip->mi_bridge_lock and 369 * mi_bridge_link is non-NULL. 370 */ 371 mac_bridge_tx_t mac_bridge_tx_cb; 372 mac_bridge_rx_t mac_bridge_rx_cb; 373 mac_bridge_ref_t mac_bridge_ref_cb; 374 mac_bridge_ls_t mac_bridge_ls_cb; 375 376 static int i_mac_constructor(void *, void *, int); 377 static void i_mac_destructor(void *, void *); 378 static int i_mac_ring_ctor(void *, void *, int); 379 static void i_mac_ring_dtor(void *, void *); 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 381 void mac_tx_client_flush(mac_client_impl_t *); 382 void mac_tx_client_block(mac_client_impl_t *); 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 384 static int mac_start_group_and_rings(mac_group_t *); 385 static void mac_stop_group_and_rings(mac_group_t *); 386 static void mac_pool_event_cb(pool_event_t, int, void *); 387 388 typedef struct netinfo_s { 389 list_node_t ni_link; 390 void *ni_record; 391 int ni_size; 392 int ni_type; 393 } netinfo_t; 394 395 /* 396 * Module initialization functions. 397 */ 398 399 void 400 mac_init(void) 401 { 402 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 403 boot_max_ncpus); 404 405 /* Upper bound is mac_tx_percpu_cnt_max */ 406 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 407 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 408 409 if (mac_tx_percpu_cnt < 1) { 410 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 411 mac_tx_percpu_cnt = 1; 412 } 413 414 ASSERT(mac_tx_percpu_cnt >= 1); 415 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 416 /* 417 * Make it of the form 2**N - 1 in the range 418 * [0 .. mac_tx_percpu_cnt_max - 1] 419 */ 420 mac_tx_percpu_cnt--; 421 422 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 423 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 424 NULL, NULL, NULL, 0); 425 ASSERT(i_mac_impl_cachep != NULL); 426 427 mac_ring_cache = kmem_cache_create("mac_ring_cache", 428 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 429 NULL, NULL, 0); 430 ASSERT(mac_ring_cache != NULL); 431 432 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 433 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 435 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 436 437 mac_flow_init(); 438 mac_soft_ring_init(); 439 mac_bcast_init(); 440 mac_client_init(); 441 442 i_mac_impl_count = 0; 443 444 i_mactype_hash = mod_hash_create_extended("mactype_hash", 445 MACTYPE_HASHSZ, 446 mod_hash_null_keydtor, mod_hash_null_valdtor, 447 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 448 449 /* 450 * Allocate an id space to manage minor numbers. The range of the 451 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 452 * leaves half of the 32-bit minors available for driver private use. 453 */ 454 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 455 MAC_PRIVATE_MINOR-1); 456 ASSERT(minor_ids != NULL); 457 minor_count = 0; 458 459 /* Let's default to 20 seconds */ 460 mac_logging_interval = 20; 461 mac_flow_log_enable = B_FALSE; 462 mac_link_log_enable = B_FALSE; 463 mac_logging_timer = NULL; 464 465 /* Register to be notified of noteworthy pools events */ 466 mac_pool_event_reg.pec_func = mac_pool_event_cb; 467 mac_pool_event_reg.pec_arg = NULL; 468 pool_event_cb_register(&mac_pool_event_reg); 469 } 470 471 int 472 mac_fini(void) 473 { 474 475 if (i_mac_impl_count > 0 || minor_count > 0) 476 return (EBUSY); 477 478 pool_event_cb_unregister(&mac_pool_event_reg); 479 480 id_space_destroy(minor_ids); 481 mac_flow_fini(); 482 483 mod_hash_destroy_hash(i_mac_impl_hash); 484 rw_destroy(&i_mac_impl_lock); 485 486 mac_client_fini(); 487 kmem_cache_destroy(mac_ring_cache); 488 489 mod_hash_destroy_hash(i_mactype_hash); 490 mac_soft_ring_finish(); 491 492 493 return (0); 494 } 495 496 /* 497 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 498 * (e.g. softmac) may pass in a NULL ops argument. 499 */ 500 void 501 mac_init_ops(struct dev_ops *ops, const char *name) 502 { 503 major_t major = ddi_name_to_major((char *)name); 504 505 /* 506 * By returning on error below, we are not letting the driver continue 507 * in an undefined context. The mac_register() function will faill if 508 * DN_GLDV3_DRIVER isn't set. 509 */ 510 if (major == DDI_MAJOR_T_NONE) 511 return; 512 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 513 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 514 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 515 if (ops != NULL) 516 dld_init_ops(ops, name); 517 } 518 519 void 520 mac_fini_ops(struct dev_ops *ops) 521 { 522 dld_fini_ops(ops); 523 } 524 525 /*ARGSUSED*/ 526 static int 527 i_mac_constructor(void *buf, void *arg, int kmflag) 528 { 529 mac_impl_t *mip = buf; 530 531 bzero(buf, sizeof (mac_impl_t)); 532 533 mip->mi_linkstate = LINK_STATE_UNKNOWN; 534 535 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 536 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 537 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 538 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 539 540 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 541 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 542 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 543 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 544 545 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 546 547 return (0); 548 } 549 550 /*ARGSUSED*/ 551 static void 552 i_mac_destructor(void *buf, void *arg) 553 { 554 mac_impl_t *mip = buf; 555 mac_cb_info_t *mcbi; 556 557 ASSERT(mip->mi_ref == 0); 558 ASSERT(mip->mi_active == 0); 559 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 560 ASSERT(mip->mi_devpromisc == 0); 561 ASSERT(mip->mi_ksp == NULL); 562 ASSERT(mip->mi_kstat_count == 0); 563 ASSERT(mip->mi_nclients == 0); 564 ASSERT(mip->mi_nactiveclients == 0); 565 ASSERT(mip->mi_single_active_client == NULL); 566 ASSERT(mip->mi_state_flags == 0); 567 ASSERT(mip->mi_factory_addr == NULL); 568 ASSERT(mip->mi_factory_addr_num == 0); 569 ASSERT(mip->mi_default_tx_ring == NULL); 570 571 mcbi = &mip->mi_notify_cb_info; 572 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 573 ASSERT(mip->mi_notify_bits == 0); 574 ASSERT(mip->mi_notify_thread == NULL); 575 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 576 mcbi->mcbi_lockp = NULL; 577 578 mcbi = &mip->mi_promisc_cb_info; 579 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 580 ASSERT(mip->mi_promisc_list == NULL); 581 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 582 mcbi->mcbi_lockp = NULL; 583 584 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 585 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 586 587 rw_destroy(&mip->mi_rw_lock); 588 589 mutex_destroy(&mip->mi_promisc_lock); 590 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 591 mutex_destroy(&mip->mi_notify_lock); 592 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 593 mutex_destroy(&mip->mi_ring_lock); 594 595 ASSERT(mip->mi_bridge_link == NULL); 596 } 597 598 /* ARGSUSED */ 599 static int 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 601 { 602 mac_ring_t *ring = (mac_ring_t *)buf; 603 604 bzero(ring, sizeof (mac_ring_t)); 605 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 606 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 607 ring->mr_state = MR_FREE; 608 return (0); 609 } 610 611 /* ARGSUSED */ 612 static void 613 i_mac_ring_dtor(void *buf, void *arg) 614 { 615 mac_ring_t *ring = (mac_ring_t *)buf; 616 617 cv_destroy(&ring->mr_cv); 618 mutex_destroy(&ring->mr_lock); 619 } 620 621 /* 622 * Common functions to do mac callback addition and deletion. Currently this is 623 * used by promisc callbacks and notify callbacks. List addition and deletion 624 * need to take care of list walkers. List walkers in general, can't hold list 625 * locks and make upcall callbacks due to potential lock order and recursive 626 * reentry issues. Instead list walkers increment the list walker count to mark 627 * the presence of a walker thread. Addition can be carefully done to ensure 628 * that the list walker always sees either the old list or the new list. 629 * However the deletion can't be done while the walker is active, instead the 630 * deleting thread simply marks the entry as logically deleted. The last walker 631 * physically deletes and frees up the logically deleted entries when the walk 632 * is complete. 633 */ 634 void 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 636 mac_cb_t *mcb_elem) 637 { 638 mac_cb_t *p; 639 mac_cb_t **pp; 640 641 /* Verify it is not already in the list */ 642 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 643 if (p == mcb_elem) 644 break; 645 } 646 VERIFY(p == NULL); 647 648 /* 649 * Add it to the head of the callback list. The membar ensures that 650 * the following list pointer manipulations reach global visibility 651 * in exactly the program order below. 652 */ 653 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 654 655 mcb_elem->mcb_nextp = *mcb_head; 656 membar_producer(); 657 *mcb_head = mcb_elem; 658 } 659 660 /* 661 * Mark the entry as logically deleted. If there aren't any walkers unlink 662 * from the list. In either case return the corresponding status. 663 */ 664 boolean_t 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 666 mac_cb_t *mcb_elem) 667 { 668 mac_cb_t *p; 669 mac_cb_t **pp; 670 671 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 672 /* 673 * Search the callback list for the entry to be removed 674 */ 675 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 676 if (p == mcb_elem) 677 break; 678 } 679 VERIFY(p != NULL); 680 681 /* 682 * If there are walkers just mark it as deleted and the last walker 683 * will remove from the list and free it. 684 */ 685 if (mcbi->mcbi_walker_cnt != 0) { 686 p->mcb_flags |= MCB_CONDEMNED; 687 mcbi->mcbi_del_cnt++; 688 return (B_FALSE); 689 } 690 691 ASSERT(mcbi->mcbi_del_cnt == 0); 692 *pp = p->mcb_nextp; 693 p->mcb_nextp = NULL; 694 return (B_TRUE); 695 } 696 697 /* 698 * Wait for all pending callback removals to be completed 699 */ 700 void 701 mac_callback_remove_wait(mac_cb_info_t *mcbi) 702 { 703 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 704 while (mcbi->mcbi_del_cnt != 0) { 705 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 706 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 707 } 708 } 709 710 void 711 mac_callback_barrier(mac_cb_info_t *mcbi) 712 { 713 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 714 ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX); 715 716 if (mcbi->mcbi_walker_cnt == 0) { 717 return; 718 } 719 720 mcbi->mcbi_barrier_cnt++; 721 do { 722 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 723 } while (mcbi->mcbi_walker_cnt > 0); 724 mcbi->mcbi_barrier_cnt--; 725 cv_broadcast(&mcbi->mcbi_cv); 726 } 727 728 void 729 mac_callback_walker_enter(mac_cb_info_t *mcbi) 730 { 731 mutex_enter(mcbi->mcbi_lockp); 732 /* 733 * Incoming walkers should give precedence to timely clean-up of 734 * deleted callback entries and requested barriers. 735 */ 736 while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) { 737 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 738 } 739 mcbi->mcbi_walker_cnt++; 740 mutex_exit(mcbi->mcbi_lockp); 741 } 742 743 /* 744 * The last mac callback walker does the cleanup. Walk the list and unlik 745 * all the logically deleted entries and construct a temporary list of 746 * removed entries. Return the list of removed entries to the caller. 747 */ 748 static mac_cb_t * 749 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 750 { 751 mac_cb_t *p; 752 mac_cb_t **pp; 753 mac_cb_t *rmlist = NULL; /* List of removed elements */ 754 int cnt = 0; 755 756 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 757 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 758 759 pp = mcb_head; 760 while (*pp != NULL) { 761 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 762 p = *pp; 763 *pp = p->mcb_nextp; 764 p->mcb_nextp = rmlist; 765 rmlist = p; 766 cnt++; 767 continue; 768 } 769 pp = &(*pp)->mcb_nextp; 770 } 771 772 ASSERT(mcbi->mcbi_del_cnt == cnt); 773 mcbi->mcbi_del_cnt = 0; 774 return (rmlist); 775 } 776 777 void 778 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp, 779 boolean_t is_promisc) 780 { 781 boolean_t do_wake = B_FALSE; 782 783 mutex_enter(mcbi->mcbi_lockp); 784 785 /* If walkers remain, nothing more can be done for now */ 786 if (--mcbi->mcbi_walker_cnt != 0) { 787 mutex_exit(mcbi->mcbi_lockp); 788 return; 789 } 790 791 if (mcbi->mcbi_del_cnt != 0) { 792 mac_cb_t *rmlist; 793 794 rmlist = mac_callback_walker_cleanup(mcbi, headp); 795 796 if (!is_promisc) { 797 /* The "normal" non-promisc callback clean-up */ 798 mac_callback_free(rmlist); 799 } else { 800 mac_cb_t *mcb, *mcb_next; 801 802 /* 803 * The promisc callbacks are in 2 lists, one off the 804 * 'mip' and another off the 'mcip' threaded by 805 * mpi_mi_link and mpi_mci_link respectively. There 806 * is, however, only a single shared total walker 807 * count, and an entry cannot be physically unlinked if 808 * a walker is active on either list. The last walker 809 * does this cleanup of logically deleted entries. 810 * 811 * With a list of callbacks deleted from above from 812 * mi_promisc_list (headp), remove the corresponding 813 * entry from mci_promisc_list (headp_pair) and free 814 * the structure. 815 */ 816 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 817 mac_promisc_impl_t *mpip; 818 mac_client_impl_t *mcip; 819 820 mcb_next = mcb->mcb_nextp; 821 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 822 mcip = mpip->mpi_mcip; 823 824 ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info, 825 ==, mcbi); 826 ASSERT3P(&mcip->mci_mip->mi_promisc_list, 827 ==, headp); 828 829 VERIFY(mac_callback_remove(mcbi, 830 &mcip->mci_promisc_list, 831 &mpip->mpi_mci_link)); 832 mcb->mcb_flags = 0; 833 mcb->mcb_nextp = NULL; 834 kmem_cache_free(mac_promisc_impl_cache, mpip); 835 } 836 } 837 838 /* 839 * Wake any walker threads that could be waiting in 840 * mac_callback_walker_enter() until deleted items have been 841 * cleaned from the list. 842 */ 843 do_wake = B_TRUE; 844 } 845 846 if (mcbi->mcbi_barrier_cnt != 0) { 847 /* 848 * One or more threads are waiting for all walkers to exit the 849 * callback list. Notify them, now that the list is clear. 850 */ 851 do_wake = B_TRUE; 852 } 853 854 if (do_wake) { 855 cv_broadcast(&mcbi->mcbi_cv); 856 } 857 mutex_exit(mcbi->mcbi_lockp); 858 } 859 860 static boolean_t 861 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 862 { 863 mac_cb_t *mcb; 864 865 /* Verify it is not already in the list */ 866 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 867 if (mcb == mcb_elem) 868 return (B_TRUE); 869 } 870 871 return (B_FALSE); 872 } 873 874 static boolean_t 875 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 876 { 877 boolean_t found; 878 879 mutex_enter(mcbi->mcbi_lockp); 880 found = mac_callback_lookup(mcb_headp, mcb_elem); 881 mutex_exit(mcbi->mcbi_lockp); 882 883 return (found); 884 } 885 886 /* Free the list of removed callbacks */ 887 void 888 mac_callback_free(mac_cb_t *rmlist) 889 { 890 mac_cb_t *mcb; 891 mac_cb_t *mcb_next; 892 893 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 894 mcb_next = mcb->mcb_nextp; 895 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 896 } 897 } 898 899 void 900 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 901 { 902 mac_cb_info_t *mcbi; 903 904 /* 905 * Signal the notify thread even after mi_ref has become zero and 906 * mi_disabled is set. The synchronization with the notify thread 907 * happens in mac_unregister and that implies the driver must make 908 * sure it is single-threaded (with respect to mac calls) and that 909 * all pending mac calls have returned before it calls mac_unregister 910 */ 911 rw_enter(&i_mac_impl_lock, RW_READER); 912 if (mip->mi_state_flags & MIS_DISABLED) 913 goto exit; 914 915 /* 916 * Guard against incorrect notifications. (Running a newer 917 * mac client against an older implementation?) 918 */ 919 if (type >= MAC_NNOTE) 920 goto exit; 921 922 mcbi = &mip->mi_notify_cb_info; 923 mutex_enter(mcbi->mcbi_lockp); 924 mip->mi_notify_bits |= (1 << type); 925 cv_broadcast(&mcbi->mcbi_cv); 926 mutex_exit(mcbi->mcbi_lockp); 927 928 exit: 929 rw_exit(&i_mac_impl_lock); 930 } 931 932 /* 933 * Mac serialization primitives. Please see the block comment at the 934 * top of the file. 935 */ 936 void 937 i_mac_perim_enter(mac_impl_t *mip) 938 { 939 mac_client_impl_t *mcip; 940 941 if (mip->mi_state_flags & MIS_IS_VNIC) { 942 /* 943 * This is a VNIC. Return the lower mac since that is what 944 * we want to serialize on. 945 */ 946 mcip = mac_vnic_lower(mip); 947 mip = mcip->mci_mip; 948 } 949 950 mutex_enter(&mip->mi_perim_lock); 951 if (mip->mi_perim_owner == curthread) { 952 mip->mi_perim_ocnt++; 953 mutex_exit(&mip->mi_perim_lock); 954 return; 955 } 956 957 while (mip->mi_perim_owner != NULL) 958 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 959 960 mip->mi_perim_owner = curthread; 961 ASSERT(mip->mi_perim_ocnt == 0); 962 mip->mi_perim_ocnt++; 963 #ifdef DEBUG 964 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 965 MAC_PERIM_STACK_DEPTH); 966 #endif 967 mutex_exit(&mip->mi_perim_lock); 968 } 969 970 int 971 i_mac_perim_enter_nowait(mac_impl_t *mip) 972 { 973 /* 974 * The vnic is a special case, since the serialization is done based 975 * on the lower mac. If the lower mac is busy, it does not imply the 976 * vnic can't be unregistered. But in the case of other drivers, 977 * a busy perimeter or open mac handles implies that the mac is busy 978 * and can't be unregistered. 979 */ 980 if (mip->mi_state_flags & MIS_IS_VNIC) { 981 i_mac_perim_enter(mip); 982 return (0); 983 } 984 985 mutex_enter(&mip->mi_perim_lock); 986 if (mip->mi_perim_owner != NULL) { 987 mutex_exit(&mip->mi_perim_lock); 988 return (EBUSY); 989 } 990 ASSERT(mip->mi_perim_ocnt == 0); 991 mip->mi_perim_owner = curthread; 992 mip->mi_perim_ocnt++; 993 mutex_exit(&mip->mi_perim_lock); 994 995 return (0); 996 } 997 998 void 999 i_mac_perim_exit(mac_impl_t *mip) 1000 { 1001 mac_client_impl_t *mcip; 1002 1003 if (mip->mi_state_flags & MIS_IS_VNIC) { 1004 /* 1005 * This is a VNIC. Return the lower mac since that is what 1006 * we want to serialize on. 1007 */ 1008 mcip = mac_vnic_lower(mip); 1009 mip = mcip->mci_mip; 1010 } 1011 1012 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 1013 1014 mutex_enter(&mip->mi_perim_lock); 1015 if (--mip->mi_perim_ocnt == 0) { 1016 mip->mi_perim_owner = NULL; 1017 cv_signal(&mip->mi_perim_cv); 1018 } 1019 mutex_exit(&mip->mi_perim_lock); 1020 } 1021 1022 /* 1023 * Returns whether the current thread holds the mac perimeter. Used in making 1024 * assertions. 1025 */ 1026 boolean_t 1027 mac_perim_held(mac_handle_t mh) 1028 { 1029 mac_impl_t *mip = (mac_impl_t *)mh; 1030 mac_client_impl_t *mcip; 1031 1032 if (mip->mi_state_flags & MIS_IS_VNIC) { 1033 /* 1034 * This is a VNIC. Return the lower mac since that is what 1035 * we want to serialize on. 1036 */ 1037 mcip = mac_vnic_lower(mip); 1038 mip = mcip->mci_mip; 1039 } 1040 return (mip->mi_perim_owner == curthread); 1041 } 1042 1043 /* 1044 * mac client interfaces to enter the mac perimeter of a mac end point, given 1045 * its mac handle, or macname or linkid. 1046 */ 1047 void 1048 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 1049 { 1050 mac_impl_t *mip = (mac_impl_t *)mh; 1051 1052 i_mac_perim_enter(mip); 1053 /* 1054 * The mac_perim_handle_t returned encodes the 'mip' and whether a 1055 * mac_open has been done internally while entering the perimeter. 1056 * This information is used in mac_perim_exit 1057 */ 1058 MAC_ENCODE_MPH(*mphp, mip, 0); 1059 } 1060 1061 int 1062 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 1063 { 1064 int err; 1065 mac_handle_t mh; 1066 1067 if ((err = mac_open(name, &mh)) != 0) 1068 return (err); 1069 1070 mac_perim_enter_by_mh(mh, mphp); 1071 MAC_ENCODE_MPH(*mphp, mh, 1); 1072 return (0); 1073 } 1074 1075 int 1076 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 1077 { 1078 int err; 1079 mac_handle_t mh; 1080 1081 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1082 return (err); 1083 1084 mac_perim_enter_by_mh(mh, mphp); 1085 MAC_ENCODE_MPH(*mphp, mh, 1); 1086 return (0); 1087 } 1088 1089 void 1090 mac_perim_exit(mac_perim_handle_t mph) 1091 { 1092 mac_impl_t *mip; 1093 boolean_t need_close; 1094 1095 MAC_DECODE_MPH(mph, mip, need_close); 1096 i_mac_perim_exit(mip); 1097 if (need_close) 1098 mac_close((mac_handle_t)mip); 1099 } 1100 1101 int 1102 mac_hold(const char *macname, mac_impl_t **pmip) 1103 { 1104 mac_impl_t *mip; 1105 int err; 1106 1107 /* 1108 * Check the device name length to make sure it won't overflow our 1109 * buffer. 1110 */ 1111 if (strlen(macname) >= MAXNAMELEN) 1112 return (EINVAL); 1113 1114 /* 1115 * Look up its entry in the global hash table. 1116 */ 1117 rw_enter(&i_mac_impl_lock, RW_WRITER); 1118 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1119 (mod_hash_val_t *)&mip); 1120 1121 if (err != 0) { 1122 rw_exit(&i_mac_impl_lock); 1123 return (ENOENT); 1124 } 1125 1126 if (mip->mi_state_flags & MIS_DISABLED) { 1127 rw_exit(&i_mac_impl_lock); 1128 return (ENOENT); 1129 } 1130 1131 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1132 rw_exit(&i_mac_impl_lock); 1133 return (EBUSY); 1134 } 1135 1136 mip->mi_ref++; 1137 rw_exit(&i_mac_impl_lock); 1138 1139 *pmip = mip; 1140 return (0); 1141 } 1142 1143 void 1144 mac_rele(mac_impl_t *mip) 1145 { 1146 rw_enter(&i_mac_impl_lock, RW_WRITER); 1147 ASSERT(mip->mi_ref != 0); 1148 if (--mip->mi_ref == 0) { 1149 ASSERT(mip->mi_nactiveclients == 0 && 1150 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1151 } 1152 rw_exit(&i_mac_impl_lock); 1153 } 1154 1155 /* 1156 * Private GLDv3 function to start a MAC instance. 1157 */ 1158 int 1159 mac_start(mac_handle_t mh) 1160 { 1161 mac_impl_t *mip = (mac_impl_t *)mh; 1162 int err = 0; 1163 mac_group_t *defgrp; 1164 1165 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1166 ASSERT(mip->mi_start != NULL); 1167 1168 /* 1169 * Check whether the device is already started. 1170 */ 1171 if (mip->mi_active++ == 0) { 1172 mac_ring_t *ring = NULL; 1173 1174 /* 1175 * Start the device. 1176 */ 1177 err = mip->mi_start(mip->mi_driver); 1178 if (err != 0) { 1179 mip->mi_active--; 1180 return (err); 1181 } 1182 1183 /* 1184 * Start the default tx ring. 1185 */ 1186 if (mip->mi_default_tx_ring != NULL) { 1187 1188 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1189 if (ring->mr_state != MR_INUSE) { 1190 err = mac_start_ring(ring); 1191 if (err != 0) { 1192 mip->mi_active--; 1193 return (err); 1194 } 1195 } 1196 } 1197 1198 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1199 /* 1200 * Start the default group which is responsible 1201 * for receiving broadcast and multicast 1202 * traffic for both primary and non-primary 1203 * MAC clients. 1204 */ 1205 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1206 err = mac_start_group_and_rings(defgrp); 1207 if (err != 0) { 1208 mip->mi_active--; 1209 if ((ring != NULL) && 1210 (ring->mr_state == MR_INUSE)) 1211 mac_stop_ring(ring); 1212 return (err); 1213 } 1214 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1215 } 1216 } 1217 1218 return (err); 1219 } 1220 1221 /* 1222 * Private GLDv3 function to stop a MAC instance. 1223 */ 1224 void 1225 mac_stop(mac_handle_t mh) 1226 { 1227 mac_impl_t *mip = (mac_impl_t *)mh; 1228 mac_group_t *grp; 1229 1230 ASSERT(mip->mi_stop != NULL); 1231 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1232 1233 /* 1234 * Check whether the device is still needed. 1235 */ 1236 ASSERT(mip->mi_active != 0); 1237 if (--mip->mi_active == 0) { 1238 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1239 /* 1240 * There should be no more active clients since the 1241 * MAC is being stopped. Stop the default RX group 1242 * and transition it back to registered state. 1243 * 1244 * When clients are torn down, the groups 1245 * are release via mac_release_rx_group which 1246 * knows the the default group is always in 1247 * started mode since broadcast uses it. So 1248 * we can assert that their are no clients 1249 * (since mac_bcast_add doesn't register itself 1250 * as a client) and group is in SHARED state. 1251 */ 1252 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1253 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1254 mip->mi_nactiveclients == 0); 1255 mac_stop_group_and_rings(grp); 1256 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1257 } 1258 1259 if (mip->mi_default_tx_ring != NULL) { 1260 mac_ring_t *ring; 1261 1262 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1263 if (ring->mr_state == MR_INUSE) { 1264 mac_stop_ring(ring); 1265 ring->mr_flag = 0; 1266 } 1267 } 1268 1269 /* 1270 * Stop the device. 1271 */ 1272 mip->mi_stop(mip->mi_driver); 1273 } 1274 } 1275 1276 int 1277 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1278 { 1279 int err = 0; 1280 1281 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1282 ASSERT(mip->mi_setpromisc != NULL); 1283 1284 if (on) { 1285 /* 1286 * Enable promiscuous mode on the device if not yet enabled. 1287 */ 1288 if (mip->mi_devpromisc++ == 0) { 1289 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1290 if (err != 0) { 1291 mip->mi_devpromisc--; 1292 return (err); 1293 } 1294 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1295 } 1296 } else { 1297 if (mip->mi_devpromisc == 0) 1298 return (EPROTO); 1299 1300 /* 1301 * Disable promiscuous mode on the device if this is the last 1302 * enabling. 1303 */ 1304 if (--mip->mi_devpromisc == 0) { 1305 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1306 if (err != 0) { 1307 mip->mi_devpromisc++; 1308 return (err); 1309 } 1310 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1311 } 1312 } 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * The promiscuity state can change any time. If the caller needs to take 1319 * actions that are atomic with the promiscuity state, then the caller needs 1320 * to bracket the entire sequence with mac_perim_enter/exit 1321 */ 1322 boolean_t 1323 mac_promisc_get(mac_handle_t mh) 1324 { 1325 mac_impl_t *mip = (mac_impl_t *)mh; 1326 1327 /* 1328 * Return the current promiscuity. 1329 */ 1330 return (mip->mi_devpromisc != 0); 1331 } 1332 1333 /* 1334 * Invoked at MAC instance attach time to initialize the list 1335 * of factory MAC addresses supported by a MAC instance. This function 1336 * builds a local cache in the mac_impl_t for the MAC addresses 1337 * supported by the underlying hardware. The MAC clients themselves 1338 * use the mac_addr_factory*() functions to query and reserve 1339 * factory MAC addresses. 1340 */ 1341 void 1342 mac_addr_factory_init(mac_impl_t *mip) 1343 { 1344 mac_capab_multifactaddr_t capab; 1345 uint8_t *addr; 1346 int i; 1347 1348 /* 1349 * First round to see how many factory MAC addresses are available. 1350 */ 1351 bzero(&capab, sizeof (capab)); 1352 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1353 &capab) || (capab.mcm_naddr == 0)) { 1354 /* 1355 * The MAC instance doesn't support multiple factory 1356 * MAC addresses, we're done here. 1357 */ 1358 return; 1359 } 1360 1361 /* 1362 * Allocate the space and get all the factory addresses. 1363 */ 1364 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1365 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1366 1367 mip->mi_factory_addr_num = capab.mcm_naddr; 1368 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1369 sizeof (mac_factory_addr_t), KM_SLEEP); 1370 1371 for (i = 0; i < capab.mcm_naddr; i++) { 1372 bcopy(addr + i * MAXMACADDRLEN, 1373 mip->mi_factory_addr[i].mfa_addr, 1374 mip->mi_type->mt_addr_length); 1375 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1376 } 1377 1378 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1379 } 1380 1381 void 1382 mac_addr_factory_fini(mac_impl_t *mip) 1383 { 1384 if (mip->mi_factory_addr == NULL) { 1385 ASSERT(mip->mi_factory_addr_num == 0); 1386 return; 1387 } 1388 1389 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1390 sizeof (mac_factory_addr_t)); 1391 1392 mip->mi_factory_addr = NULL; 1393 mip->mi_factory_addr_num = 0; 1394 } 1395 1396 /* 1397 * Reserve a factory MAC address. If *slot is set to -1, the function 1398 * attempts to reserve any of the available factory MAC addresses and 1399 * returns the reserved slot id. If no slots are available, the function 1400 * returns ENOSPC. If *slot is not set to -1, the function reserves 1401 * the specified slot if it is available, or returns EBUSY is the slot 1402 * is already used. Returns ENOTSUP if the underlying MAC does not 1403 * support multiple factory addresses. If the slot number is not -1 but 1404 * is invalid, returns EINVAL. 1405 */ 1406 int 1407 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1408 { 1409 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1410 mac_impl_t *mip = mcip->mci_mip; 1411 int i, ret = 0; 1412 1413 i_mac_perim_enter(mip); 1414 /* 1415 * Protect against concurrent readers that may need a self-consistent 1416 * view of the factory addresses 1417 */ 1418 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1419 1420 if (mip->mi_factory_addr_num == 0) { 1421 ret = ENOTSUP; 1422 goto bail; 1423 } 1424 1425 if (*slot != -1) { 1426 /* check the specified slot */ 1427 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1428 ret = EINVAL; 1429 goto bail; 1430 } 1431 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1432 ret = EBUSY; 1433 goto bail; 1434 } 1435 } else { 1436 /* pick the next available slot */ 1437 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1438 if (!mip->mi_factory_addr[i].mfa_in_use) 1439 break; 1440 } 1441 1442 if (i == mip->mi_factory_addr_num) { 1443 ret = ENOSPC; 1444 goto bail; 1445 } 1446 *slot = i+1; 1447 } 1448 1449 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1450 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1451 1452 bail: 1453 rw_exit(&mip->mi_rw_lock); 1454 i_mac_perim_exit(mip); 1455 return (ret); 1456 } 1457 1458 /* 1459 * Release the specified factory MAC address slot. 1460 */ 1461 void 1462 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1463 { 1464 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1465 mac_impl_t *mip = mcip->mci_mip; 1466 1467 i_mac_perim_enter(mip); 1468 /* 1469 * Protect against concurrent readers that may need a self-consistent 1470 * view of the factory addresses 1471 */ 1472 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1473 1474 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1475 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1476 1477 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1478 1479 rw_exit(&mip->mi_rw_lock); 1480 i_mac_perim_exit(mip); 1481 } 1482 1483 /* 1484 * Stores in mac_addr the value of the specified MAC address. Returns 1485 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1486 * The caller must provide a string of at least MAXNAMELEN bytes. 1487 */ 1488 void 1489 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1490 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1491 { 1492 mac_impl_t *mip = (mac_impl_t *)mh; 1493 boolean_t in_use; 1494 1495 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1496 1497 /* 1498 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1499 * and mi_rw_lock 1500 */ 1501 rw_enter(&mip->mi_rw_lock, RW_READER); 1502 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1503 *addr_len = mip->mi_type->mt_addr_length; 1504 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1505 if (in_use && client_name != NULL) { 1506 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1507 client_name, MAXNAMELEN); 1508 } 1509 if (in_use_arg != NULL) 1510 *in_use_arg = in_use; 1511 rw_exit(&mip->mi_rw_lock); 1512 } 1513 1514 /* 1515 * Returns the number of factory MAC addresses (in addition to the 1516 * primary MAC address), 0 if the underlying MAC doesn't support 1517 * that feature. 1518 */ 1519 uint_t 1520 mac_addr_factory_num(mac_handle_t mh) 1521 { 1522 mac_impl_t *mip = (mac_impl_t *)mh; 1523 1524 return (mip->mi_factory_addr_num); 1525 } 1526 1527 1528 void 1529 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1530 { 1531 mac_ring_t *ring; 1532 1533 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1534 ring->mr_flag &= ~flag; 1535 } 1536 1537 /* 1538 * The following mac_hwrings_xxx() functions are private mac client functions 1539 * used by the aggr driver to access and control the underlying HW Rx group 1540 * and rings. In this case, the aggr driver has exclusive control of the 1541 * underlying HW Rx group/rings, it calls the following functions to 1542 * start/stop the HW Rx rings, disable/enable polling, add/remove MAC 1543 * addresses, or set up the Rx callback. 1544 */ 1545 /* ARGSUSED */ 1546 static void 1547 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1548 mblk_t *mp_chain, boolean_t loopback) 1549 { 1550 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1551 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1552 mac_direct_rx_t proc; 1553 void *arg1; 1554 mac_resource_handle_t arg2; 1555 1556 proc = srs_rx->sr_func; 1557 arg1 = srs_rx->sr_arg1; 1558 arg2 = mac_srs->srs_mrh; 1559 1560 proc(arg1, arg2, mp_chain, NULL); 1561 } 1562 1563 /* 1564 * This function is called to get the list of HW rings that are reserved by 1565 * an exclusive mac client. 1566 * 1567 * Return value: the number of HW rings. 1568 */ 1569 int 1570 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1571 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1572 { 1573 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1574 flow_entry_t *flent = mcip->mci_flent; 1575 mac_group_t *grp; 1576 mac_ring_t *ring; 1577 int cnt = 0; 1578 1579 if (rtype == MAC_RING_TYPE_RX) { 1580 grp = flent->fe_rx_ring_group; 1581 } else if (rtype == MAC_RING_TYPE_TX) { 1582 grp = flent->fe_tx_ring_group; 1583 } else { 1584 ASSERT(B_FALSE); 1585 return (-1); 1586 } 1587 1588 /* 1589 * The MAC client did not reserve an Rx group, return directly. 1590 * This is probably because the underlying MAC does not support 1591 * any groups. 1592 */ 1593 if (hwgh != NULL) 1594 *hwgh = NULL; 1595 if (grp == NULL) 1596 return (0); 1597 /* 1598 * This group must be reserved by this MAC client. 1599 */ 1600 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1601 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1602 1603 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1604 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1605 hwrh[cnt] = (mac_ring_handle_t)ring; 1606 } 1607 if (hwgh != NULL) 1608 *hwgh = (mac_group_handle_t)grp; 1609 1610 return (cnt); 1611 } 1612 1613 /* 1614 * Get the HW ring handles of the given group index. If the MAC 1615 * doesn't have a group at this index, or any groups at all, then 0 is 1616 * returned and hwgh is set to NULL. This is a private client API. The 1617 * MAC perimeter must be held when calling this function. 1618 * 1619 * mh: A handle to the MAC that owns the group. 1620 * 1621 * idx: The index of the HW group to be read. 1622 * 1623 * hwgh: If non-NULL, contains a handle to the HW group on return. 1624 * 1625 * hwrh: An array of ring handles pointing to the HW rings in the 1626 * group. The array must be large enough to hold a handle to each ring 1627 * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP. 1628 * 1629 * rtype: Used to determine if we are fetching Rx or Tx rings. 1630 * 1631 * Returns the number of rings in the group. 1632 */ 1633 uint_t 1634 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh, 1635 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1636 { 1637 mac_impl_t *mip = (mac_impl_t *)mh; 1638 mac_group_t *grp; 1639 mac_ring_t *ring; 1640 uint_t cnt = 0; 1641 1642 /* 1643 * The MAC perimeter must be held when accessing the 1644 * mi_{rx,tx}_groups fields. 1645 */ 1646 ASSERT(MAC_PERIM_HELD(mh)); 1647 ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX); 1648 1649 if (rtype == MAC_RING_TYPE_RX) { 1650 grp = mip->mi_rx_groups; 1651 } else { 1652 ASSERT(rtype == MAC_RING_TYPE_TX); 1653 grp = mip->mi_tx_groups; 1654 } 1655 1656 while (grp != NULL && grp->mrg_index != idx) 1657 grp = grp->mrg_next; 1658 1659 /* 1660 * If the MAC doesn't have a group at this index or doesn't 1661 * impelement RINGS capab, then set hwgh to NULL and return 0. 1662 */ 1663 if (hwgh != NULL) 1664 *hwgh = NULL; 1665 1666 if (grp == NULL) 1667 return (0); 1668 1669 ASSERT3U(idx, ==, grp->mrg_index); 1670 1671 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1672 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP); 1673 hwrh[cnt] = (mac_ring_handle_t)ring; 1674 } 1675 1676 /* A group should always have at least one ring. */ 1677 ASSERT3U(cnt, >, 0); 1678 1679 if (hwgh != NULL) 1680 *hwgh = (mac_group_handle_t)grp; 1681 1682 return (cnt); 1683 } 1684 1685 /* 1686 * This function is called to get info about Tx/Rx rings. 1687 * 1688 * Return value: returns uint_t which will have various bits set 1689 * that indicates different properties of the ring. 1690 */ 1691 uint_t 1692 mac_hwring_getinfo(mac_ring_handle_t rh) 1693 { 1694 mac_ring_t *ring = (mac_ring_t *)rh; 1695 mac_ring_info_t *info = &ring->mr_info; 1696 1697 return (info->mri_flags); 1698 } 1699 1700 /* 1701 * Set the passthru callback on the hardware ring. 1702 */ 1703 void 1704 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1, 1705 mac_resource_handle_t arg2) 1706 { 1707 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1708 1709 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1710 1711 hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER; 1712 1713 hwring->mr_pt_fn = fn; 1714 hwring->mr_pt_arg1 = arg1; 1715 hwring->mr_pt_arg2 = arg2; 1716 } 1717 1718 /* 1719 * Clear the passthru callback on the hardware ring. 1720 */ 1721 void 1722 mac_hwring_clear_passthru(mac_ring_handle_t hwrh) 1723 { 1724 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1725 1726 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1727 1728 hwring->mr_classify_type = MAC_NO_CLASSIFIER; 1729 1730 hwring->mr_pt_fn = NULL; 1731 hwring->mr_pt_arg1 = NULL; 1732 hwring->mr_pt_arg2 = NULL; 1733 } 1734 1735 void 1736 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1) 1737 { 1738 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1739 flow_entry_t *flent = mcip->mci_flent; 1740 1741 mutex_enter(&flent->fe_lock); 1742 flent->fe_cb_fn = (flow_fn_t)func; 1743 flent->fe_cb_arg1 = arg1; 1744 flent->fe_cb_arg2 = NULL; 1745 flent->fe_flags &= ~FE_MC_NO_DATAPATH; 1746 mutex_exit(&flent->fe_lock); 1747 } 1748 1749 void 1750 mac_client_clear_flow_cb(mac_client_handle_t mch) 1751 { 1752 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1753 flow_entry_t *flent = mcip->mci_flent; 1754 1755 mutex_enter(&flent->fe_lock); 1756 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 1757 flent->fe_cb_arg1 = NULL; 1758 flent->fe_cb_arg2 = NULL; 1759 flent->fe_flags |= FE_MC_NO_DATAPATH; 1760 mutex_exit(&flent->fe_lock); 1761 } 1762 1763 /* 1764 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1765 * setup the RX callback of the mac client which exclusively controls 1766 * HW ring. 1767 */ 1768 void 1769 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1770 mac_ring_handle_t pseudo_rh) 1771 { 1772 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1773 mac_ring_t *pseudo_ring; 1774 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1775 1776 if (pseudo_rh != NULL) { 1777 pseudo_ring = (mac_ring_t *)pseudo_rh; 1778 /* Export the ddi handles to pseudo ring */ 1779 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1780 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1781 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1782 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1783 /* 1784 * Save a pointer to pseudo ring in the hw ring. If 1785 * interrupt handle changes, the hw ring will be 1786 * notified of the change (see mac_ring_intr_set()) 1787 * and the appropriate change has to be made to 1788 * the pseudo ring that has exported the ddi handle. 1789 */ 1790 hw_ring->mr_prh = pseudo_rh; 1791 } 1792 1793 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1794 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1795 mac_srs->srs_mrh = prh; 1796 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1797 } 1798 } 1799 1800 void 1801 mac_hwring_teardown(mac_ring_handle_t hwrh) 1802 { 1803 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1804 mac_soft_ring_set_t *mac_srs; 1805 1806 if (hw_ring == NULL) 1807 return; 1808 hw_ring->mr_prh = NULL; 1809 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1810 mac_srs = hw_ring->mr_srs; 1811 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1812 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1813 mac_srs->srs_mrh = NULL; 1814 } 1815 } 1816 1817 int 1818 mac_hwring_disable_intr(mac_ring_handle_t rh) 1819 { 1820 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1821 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1822 1823 return (intr->mi_disable(intr->mi_handle)); 1824 } 1825 1826 int 1827 mac_hwring_enable_intr(mac_ring_handle_t rh) 1828 { 1829 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1830 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1831 1832 return (intr->mi_enable(intr->mi_handle)); 1833 } 1834 1835 /* 1836 * Start the HW ring pointed to by rh. 1837 * 1838 * This is used by special MAC clients that are MAC themselves and 1839 * need to exert control over the underlying HW rings of the NIC. 1840 */ 1841 int 1842 mac_hwring_start(mac_ring_handle_t rh) 1843 { 1844 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1845 int rv = 0; 1846 1847 if (rr_ring->mr_state != MR_INUSE) 1848 rv = mac_start_ring(rr_ring); 1849 1850 return (rv); 1851 } 1852 1853 /* 1854 * Stop the HW ring pointed to by rh. Also see mac_hwring_start(). 1855 */ 1856 void 1857 mac_hwring_stop(mac_ring_handle_t rh) 1858 { 1859 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1860 1861 if (rr_ring->mr_state != MR_FREE) 1862 mac_stop_ring(rr_ring); 1863 } 1864 1865 /* 1866 * Remove the quiesced flag from the HW ring pointed to by rh. 1867 * 1868 * This is used by special MAC clients that are MAC themselves and 1869 * need to exert control over the underlying HW rings of the NIC. 1870 */ 1871 int 1872 mac_hwring_activate(mac_ring_handle_t rh) 1873 { 1874 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1875 1876 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1877 return (0); 1878 } 1879 1880 /* 1881 * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate(). 1882 */ 1883 void 1884 mac_hwring_quiesce(mac_ring_handle_t rh) 1885 { 1886 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1887 1888 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1889 } 1890 1891 mblk_t * 1892 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1893 { 1894 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1895 mac_ring_info_t *info = &rr_ring->mr_info; 1896 1897 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1898 } 1899 1900 /* 1901 * Send packets through a selected tx ring. 1902 */ 1903 mblk_t * 1904 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1905 { 1906 mac_ring_t *ring = (mac_ring_t *)rh; 1907 mac_ring_info_t *info = &ring->mr_info; 1908 1909 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1910 ring->mr_state >= MR_INUSE); 1911 return (info->mri_tx(info->mri_driver, mp)); 1912 } 1913 1914 /* 1915 * Query stats for a particular rx/tx ring 1916 */ 1917 int 1918 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1919 { 1920 mac_ring_t *ring = (mac_ring_t *)rh; 1921 mac_ring_info_t *info = &ring->mr_info; 1922 1923 return (info->mri_stat(info->mri_driver, stat, val)); 1924 } 1925 1926 /* 1927 * Private function that is only used by aggr to send packets through 1928 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1929 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1930 * access to mac_impl_t to send packets through m_tx() entry point. 1931 * It accomplishes this by calling mac_hwring_send_priv() function. 1932 */ 1933 mblk_t * 1934 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1935 { 1936 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1937 mac_impl_t *mip = mcip->mci_mip; 1938 1939 MAC_TX(mip, rh, mp, mcip); 1940 return (mp); 1941 } 1942 1943 /* 1944 * Private function that is only used by aggr to update the default transmission 1945 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1946 * temporarily be down, it may need to update the default ring that is used by 1947 * MAC such that it refers to a link that can actively be used to send traffic. 1948 * Note that this is different from the case where the port has been removed 1949 * from the group. In those cases, all of the rings will be torn down because 1950 * the ring will no longer exist. It's important to give aggr a case where the 1951 * rings can still exist such that it may be able to continue to send LACP PDUs 1952 * to potentially restore the link. 1953 * 1954 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1955 * This is to help out aggr which doesn't really know the internal state that 1956 * MAC does about the rings and can't know that it's not quite ready for use 1957 * yet. 1958 */ 1959 void 1960 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1961 { 1962 mac_impl_t *mip = (mac_impl_t *)mh; 1963 mac_ring_t *ring = (mac_ring_t *)rh; 1964 1965 ASSERT(MAC_PERIM_HELD(mh)); 1966 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1967 1968 if (ring->mr_state != MR_INUSE) 1969 return; 1970 1971 mip->mi_default_tx_ring = rh; 1972 } 1973 1974 int 1975 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1976 { 1977 mac_group_t *group = (mac_group_t *)gh; 1978 1979 return (mac_group_addmac(group, addr)); 1980 } 1981 1982 int 1983 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1984 { 1985 mac_group_t *group = (mac_group_t *)gh; 1986 1987 return (mac_group_remmac(group, addr)); 1988 } 1989 1990 /* 1991 * Program the group's HW VLAN filter if it has such support. 1992 * Otherwise, the group will implicitly accept tagged traffic and 1993 * there is nothing to do. 1994 */ 1995 int 1996 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid) 1997 { 1998 mac_group_t *group = (mac_group_t *)gh; 1999 2000 if (!MAC_GROUP_HW_VLAN(group)) 2001 return (0); 2002 2003 return (mac_group_addvlan(group, vid)); 2004 } 2005 2006 int 2007 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid) 2008 { 2009 mac_group_t *group = (mac_group_t *)gh; 2010 2011 if (!MAC_GROUP_HW_VLAN(group)) 2012 return (0); 2013 2014 return (mac_group_remvlan(group, vid)); 2015 } 2016 2017 /* 2018 * Determine if a MAC has HW VLAN support. This is a private API 2019 * consumed by aggr. In the future it might be nice to have a bitfield 2020 * in mac_capab_rings_t to track which forms of HW filtering are 2021 * supported by the MAC. 2022 */ 2023 boolean_t 2024 mac_has_hw_vlan(mac_handle_t mh) 2025 { 2026 mac_impl_t *mip = (mac_impl_t *)mh; 2027 2028 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups)); 2029 } 2030 2031 /* 2032 * Get the number of Rx HW groups on this MAC. 2033 */ 2034 uint_t 2035 mac_get_num_rx_groups(mac_handle_t mh) 2036 { 2037 mac_impl_t *mip = (mac_impl_t *)mh; 2038 2039 ASSERT(MAC_PERIM_HELD(mh)); 2040 return (mip->mi_rx_group_count); 2041 } 2042 2043 int 2044 mac_set_promisc(mac_handle_t mh, boolean_t value) 2045 { 2046 mac_impl_t *mip = (mac_impl_t *)mh; 2047 2048 ASSERT(MAC_PERIM_HELD(mh)); 2049 return (i_mac_promisc_set(mip, value)); 2050 } 2051 2052 /* 2053 * Set the RX group to be shared/reserved. Note that the group must be 2054 * started/stopped outside of this function. 2055 */ 2056 void 2057 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 2058 { 2059 /* 2060 * If there is no change in the group state, just return. 2061 */ 2062 if (grp->mrg_state == state) 2063 return; 2064 2065 switch (state) { 2066 case MAC_GROUP_STATE_RESERVED: 2067 /* 2068 * Successfully reserved the group. 2069 * 2070 * Given that there is an exclusive client controlling this 2071 * group, we enable the group level polling when available, 2072 * so that SRSs get to turn on/off individual rings they's 2073 * assigned to. 2074 */ 2075 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2076 2077 if (grp->mrg_type == MAC_RING_TYPE_RX && 2078 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 2079 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2080 } 2081 break; 2082 2083 case MAC_GROUP_STATE_SHARED: 2084 /* 2085 * Set all rings of this group to software classified. 2086 * If the group has an overriding interrupt, then re-enable it. 2087 */ 2088 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2089 2090 if (grp->mrg_type == MAC_RING_TYPE_RX && 2091 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 2092 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2093 } 2094 /* The ring is not available for reservations any more */ 2095 break; 2096 2097 case MAC_GROUP_STATE_REGISTERED: 2098 /* Also callable from mac_register, perim is not held */ 2099 break; 2100 2101 default: 2102 ASSERT(B_FALSE); 2103 break; 2104 } 2105 2106 grp->mrg_state = state; 2107 } 2108 2109 /* 2110 * Quiesce future hardware classified packets for the specified Rx ring 2111 */ 2112 static void 2113 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 2114 { 2115 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 2116 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 2117 2118 mutex_enter(&rx_ring->mr_lock); 2119 rx_ring->mr_flag |= ring_flag; 2120 while (rx_ring->mr_refcnt != 0) 2121 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 2122 mutex_exit(&rx_ring->mr_lock); 2123 } 2124 2125 /* 2126 * Please see mac_tx for details about the per cpu locking scheme 2127 */ 2128 static void 2129 mac_tx_lock_all(mac_client_impl_t *mcip) 2130 { 2131 int i; 2132 2133 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2134 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2135 } 2136 2137 static void 2138 mac_tx_unlock_all(mac_client_impl_t *mcip) 2139 { 2140 int i; 2141 2142 for (i = mac_tx_percpu_cnt; i >= 0; i--) 2143 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2144 } 2145 2146 static void 2147 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 2148 { 2149 int i; 2150 2151 for (i = mac_tx_percpu_cnt; i > 0; i--) 2152 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2153 } 2154 2155 static int 2156 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 2157 { 2158 int i; 2159 int refcnt = 0; 2160 2161 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2162 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 2163 2164 return (refcnt); 2165 } 2166 2167 /* 2168 * Stop future Tx packets coming down from the client in preparation for 2169 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 2170 * of rings between clients 2171 */ 2172 void 2173 mac_tx_client_block(mac_client_impl_t *mcip) 2174 { 2175 mac_tx_lock_all(mcip); 2176 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 2177 while (mac_tx_sum_refcnt(mcip) != 0) { 2178 mac_tx_unlock_allbutzero(mcip); 2179 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2180 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2181 mac_tx_lock_all(mcip); 2182 } 2183 mac_tx_unlock_all(mcip); 2184 } 2185 2186 void 2187 mac_tx_client_unblock(mac_client_impl_t *mcip) 2188 { 2189 mac_tx_lock_all(mcip); 2190 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 2191 mac_tx_unlock_all(mcip); 2192 /* 2193 * We may fail to disable flow control for the last MAC_NOTE_TX 2194 * notification because the MAC client is quiesced. Send the 2195 * notification again. 2196 */ 2197 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 2198 } 2199 2200 /* 2201 * Wait for an SRS to quiesce. The SRS worker will signal us when the 2202 * quiesce is done. 2203 */ 2204 static void 2205 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 2206 { 2207 mutex_enter(&srs->srs_lock); 2208 while (!(srs->srs_state & srs_flag)) 2209 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 2210 mutex_exit(&srs->srs_lock); 2211 } 2212 2213 /* 2214 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 2215 * works bottom up by cutting off packet flow from the bottommost point in the 2216 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 2217 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 2218 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 2219 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 2220 * for the SRS and MR flags. In the former case the threads pause waiting for 2221 * a restart, while in the latter case the threads exit. The Tx SRS teardown 2222 * is also mostly similar to the above. 2223 * 2224 * 1. Stop future hardware classified packets at the lowest level in the mac. 2225 * Remove any hardware classification rule (CONDEMNED case) and mark the 2226 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 2227 * from increasing. Upcalls from the driver that come through hardware 2228 * classification will be dropped in mac_rx from now on. Then we wait for 2229 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 2230 * sure there aren't any upcall threads from the driver through hardware 2231 * classification. In the case of SRS teardown we also remove the 2232 * classification rule in the driver. 2233 * 2234 * 2. Stop future software classified packets by marking the flow entry with 2235 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 2236 * increasing. We also remove the flow entry from the table in the latter 2237 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 2238 * that indicates there aren't any active threads using that flow entry. 2239 * 2240 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 2241 * SRS worker thread, and the soft ring threads are quiesced in sequence 2242 * with the SRS worker thread serving as a master controller. This 2243 * mechansim is explained in mac_srs_worker_quiesce(). 2244 * 2245 * The restart mechanism to reactivate the SRS and softrings is explained 2246 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 2247 * restart sequence. 2248 */ 2249 void 2250 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2251 { 2252 flow_entry_t *flent = srs->srs_flent; 2253 uint_t mr_flag, srs_done_flag; 2254 2255 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2256 ASSERT(!(srs->srs_type & SRST_TX)); 2257 2258 if (srs_quiesce_flag == SRS_CONDEMNED) { 2259 mr_flag = MR_CONDEMNED; 2260 srs_done_flag = SRS_CONDEMNED_DONE; 2261 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2262 mac_srs_client_poll_disable(srs->srs_mcip, srs); 2263 } else { 2264 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 2265 mr_flag = MR_QUIESCE; 2266 srs_done_flag = SRS_QUIESCE_DONE; 2267 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2268 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 2269 } 2270 2271 if (srs->srs_ring != NULL) { 2272 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 2273 } else { 2274 /* 2275 * SRS is driven by software classification. In case 2276 * of CONDEMNED, the top level teardown functions will 2277 * deal with flow removal. 2278 */ 2279 if (srs_quiesce_flag != SRS_CONDEMNED) { 2280 FLOW_MARK(flent, FE_QUIESCE); 2281 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2282 } 2283 } 2284 2285 /* 2286 * Signal the SRS to quiesce itself, and then cv_wait for the 2287 * SRS quiesce to complete. The SRS worker thread will wake us 2288 * up when the quiesce is complete 2289 */ 2290 mac_srs_signal(srs, srs_quiesce_flag); 2291 mac_srs_quiesce_wait(srs, srs_done_flag); 2292 } 2293 2294 /* 2295 * Remove an SRS. 2296 */ 2297 void 2298 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 2299 { 2300 flow_entry_t *flent = srs->srs_flent; 2301 int i; 2302 2303 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 2304 /* 2305 * Locate and remove our entry in the fe_rx_srs[] array, and 2306 * adjust the fe_rx_srs array entries and array count by 2307 * moving the last entry into the vacated spot. 2308 */ 2309 mutex_enter(&flent->fe_lock); 2310 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2311 if (flent->fe_rx_srs[i] == srs) 2312 break; 2313 } 2314 2315 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 2316 if (i != flent->fe_rx_srs_cnt - 1) { 2317 flent->fe_rx_srs[i] = 2318 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2319 i = flent->fe_rx_srs_cnt - 1; 2320 } 2321 2322 flent->fe_rx_srs[i] = NULL; 2323 flent->fe_rx_srs_cnt--; 2324 mutex_exit(&flent->fe_lock); 2325 2326 mac_srs_free(srs); 2327 } 2328 2329 static void 2330 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2331 { 2332 mutex_enter(&srs->srs_lock); 2333 srs->srs_state &= ~flag; 2334 mutex_exit(&srs->srs_lock); 2335 } 2336 2337 void 2338 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2339 { 2340 flow_entry_t *flent = srs->srs_flent; 2341 mac_ring_t *mr; 2342 2343 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2344 ASSERT((srs->srs_type & SRST_TX) == 0); 2345 2346 /* 2347 * This handles a change in the number of SRSs between the quiesce and 2348 * and restart operation of a flow. 2349 */ 2350 if (!SRS_QUIESCED(srs)) 2351 return; 2352 2353 /* 2354 * Signal the SRS to restart itself. Wait for the restart to complete 2355 * Note that we only restart the SRS if it is not marked as 2356 * permanently quiesced. 2357 */ 2358 if (!SRS_QUIESCED_PERMANENT(srs)) { 2359 mac_srs_signal(srs, SRS_RESTART); 2360 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2361 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2362 2363 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2364 } 2365 2366 /* Finally clear the flags to let the packets in */ 2367 mr = srs->srs_ring; 2368 if (mr != NULL) { 2369 MAC_RING_UNMARK(mr, MR_QUIESCE); 2370 /* In case the ring was stopped, safely restart it */ 2371 if (mr->mr_state != MR_INUSE) 2372 (void) mac_start_ring(mr); 2373 } else { 2374 FLOW_UNMARK(flent, FE_QUIESCE); 2375 } 2376 } 2377 2378 /* 2379 * Temporary quiesce of a flow and associated Rx SRS. 2380 * Please see block comment above mac_rx_classify_flow_rem. 2381 */ 2382 /* ARGSUSED */ 2383 int 2384 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2385 { 2386 int i; 2387 2388 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2389 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2390 SRS_QUIESCE); 2391 } 2392 return (0); 2393 } 2394 2395 /* 2396 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2397 * Please see block comment above mac_rx_classify_flow_rem 2398 */ 2399 /* ARGSUSED */ 2400 int 2401 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2402 { 2403 int i; 2404 2405 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2406 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2407 2408 return (0); 2409 } 2410 2411 void 2412 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2413 { 2414 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2415 flow_entry_t *flent = mcip->mci_flent; 2416 mac_impl_t *mip = mcip->mci_mip; 2417 mac_soft_ring_set_t *mac_srs; 2418 int i; 2419 2420 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2421 2422 if (flent == NULL) 2423 return; 2424 2425 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2426 mac_srs = flent->fe_rx_srs[i]; 2427 mutex_enter(&mac_srs->srs_lock); 2428 if (on) 2429 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2430 else 2431 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2432 mutex_exit(&mac_srs->srs_lock); 2433 } 2434 } 2435 2436 void 2437 mac_rx_client_quiesce(mac_client_handle_t mch) 2438 { 2439 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2440 mac_impl_t *mip = mcip->mci_mip; 2441 2442 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2443 2444 if (MCIP_DATAPATH_SETUP(mcip)) { 2445 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2446 NULL); 2447 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2448 mac_rx_classify_flow_quiesce, NULL); 2449 } 2450 } 2451 2452 void 2453 mac_rx_client_restart(mac_client_handle_t mch) 2454 { 2455 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2456 mac_impl_t *mip = mcip->mci_mip; 2457 2458 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2459 2460 if (MCIP_DATAPATH_SETUP(mcip)) { 2461 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2462 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2463 mac_rx_classify_flow_restart, NULL); 2464 } 2465 } 2466 2467 /* 2468 * This function only quiesces the Tx SRS and softring worker threads. Callers 2469 * need to make sure that there aren't any mac client threads doing current or 2470 * future transmits in the mac before calling this function. 2471 */ 2472 void 2473 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2474 { 2475 mac_client_impl_t *mcip = srs->srs_mcip; 2476 2477 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2478 2479 ASSERT(srs->srs_type & SRST_TX); 2480 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2481 srs_quiesce_flag == SRS_QUIESCE); 2482 2483 /* 2484 * Signal the SRS to quiesce itself, and then cv_wait for the 2485 * SRS quiesce to complete. The SRS worker thread will wake us 2486 * up when the quiesce is complete 2487 */ 2488 mac_srs_signal(srs, srs_quiesce_flag); 2489 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2490 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2491 } 2492 2493 void 2494 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2495 { 2496 /* 2497 * Resizing the fanout could result in creation of new SRSs. 2498 * They may not necessarily be in the quiesced state in which 2499 * case it need be restarted 2500 */ 2501 if (!SRS_QUIESCED(srs)) 2502 return; 2503 2504 mac_srs_signal(srs, SRS_RESTART); 2505 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2506 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2507 } 2508 2509 /* 2510 * Temporary quiesce of a flow and associated Rx SRS. 2511 * Please see block comment above mac_rx_srs_quiesce 2512 */ 2513 /* ARGSUSED */ 2514 int 2515 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2516 { 2517 /* 2518 * The fe_tx_srs is null for a subflow on an interface that is 2519 * not plumbed 2520 */ 2521 if (flent->fe_tx_srs != NULL) 2522 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2523 return (0); 2524 } 2525 2526 /* ARGSUSED */ 2527 int 2528 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2529 { 2530 /* 2531 * The fe_tx_srs is null for a subflow on an interface that is 2532 * not plumbed 2533 */ 2534 if (flent->fe_tx_srs != NULL) 2535 mac_tx_srs_restart(flent->fe_tx_srs); 2536 return (0); 2537 } 2538 2539 static void 2540 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2541 { 2542 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2543 2544 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2545 2546 mac_tx_client_block(mcip); 2547 if (MCIP_TX_SRS(mcip) != NULL) { 2548 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2549 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2550 mac_tx_flow_quiesce, NULL); 2551 } 2552 } 2553 2554 void 2555 mac_tx_client_quiesce(mac_client_handle_t mch) 2556 { 2557 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2558 } 2559 2560 void 2561 mac_tx_client_condemn(mac_client_handle_t mch) 2562 { 2563 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2564 } 2565 2566 void 2567 mac_tx_client_restart(mac_client_handle_t mch) 2568 { 2569 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2570 2571 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2572 2573 mac_tx_client_unblock(mcip); 2574 if (MCIP_TX_SRS(mcip) != NULL) { 2575 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2576 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2577 mac_tx_flow_restart, NULL); 2578 } 2579 } 2580 2581 void 2582 mac_tx_client_flush(mac_client_impl_t *mcip) 2583 { 2584 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2585 2586 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2587 mac_tx_client_restart((mac_client_handle_t)mcip); 2588 } 2589 2590 void 2591 mac_client_quiesce(mac_client_impl_t *mcip) 2592 { 2593 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2594 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2595 } 2596 2597 void 2598 mac_client_restart(mac_client_impl_t *mcip) 2599 { 2600 mac_rx_client_restart((mac_client_handle_t)mcip); 2601 mac_tx_client_restart((mac_client_handle_t)mcip); 2602 } 2603 2604 /* 2605 * Allocate a minor number. 2606 */ 2607 minor_t 2608 mac_minor_hold(boolean_t sleep) 2609 { 2610 id_t id; 2611 2612 /* 2613 * Grab a value from the arena. 2614 */ 2615 atomic_inc_32(&minor_count); 2616 2617 if (sleep) 2618 return ((uint_t)id_alloc(minor_ids)); 2619 2620 if ((id = id_alloc_nosleep(minor_ids)) == -1) { 2621 atomic_dec_32(&minor_count); 2622 return (0); 2623 } 2624 2625 return ((uint_t)id); 2626 } 2627 2628 /* 2629 * Release a previously allocated minor number. 2630 */ 2631 void 2632 mac_minor_rele(minor_t minor) 2633 { 2634 /* 2635 * Return the value to the arena. 2636 */ 2637 id_free(minor_ids, minor); 2638 atomic_dec_32(&minor_count); 2639 } 2640 2641 uint32_t 2642 mac_no_notification(mac_handle_t mh) 2643 { 2644 mac_impl_t *mip = (mac_impl_t *)mh; 2645 2646 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2647 mip->mi_capab_legacy.ml_unsup_note : 0); 2648 } 2649 2650 /* 2651 * Prevent any new opens of this mac in preparation for unregister 2652 */ 2653 int 2654 i_mac_disable(mac_impl_t *mip) 2655 { 2656 mac_client_impl_t *mcip; 2657 2658 rw_enter(&i_mac_impl_lock, RW_WRITER); 2659 if (mip->mi_state_flags & MIS_DISABLED) { 2660 /* Already disabled, return success */ 2661 rw_exit(&i_mac_impl_lock); 2662 return (0); 2663 } 2664 /* 2665 * See if there are any other references to this mac_t (e.g., VLAN's). 2666 * If so return failure. If all the other checks below pass, then 2667 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2668 * any new VLAN's from being created or new mac client opens of this 2669 * mac end point. 2670 */ 2671 if (mip->mi_ref > 0) { 2672 rw_exit(&i_mac_impl_lock); 2673 return (EBUSY); 2674 } 2675 2676 /* 2677 * mac clients must delete all multicast groups they join before 2678 * closing. bcast groups are reference counted, the last client 2679 * to delete the group will wait till the group is physically 2680 * deleted. Since all clients have closed this mac end point 2681 * mi_bcast_ngrps must be zero at this point 2682 */ 2683 ASSERT(mip->mi_bcast_ngrps == 0); 2684 2685 /* 2686 * Don't let go of this if it has some flows. 2687 * All other code guarantees no flows are added to a disabled 2688 * mac, therefore it is sufficient to check for the flow table 2689 * only here. 2690 */ 2691 mcip = mac_primary_client_handle(mip); 2692 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2693 rw_exit(&i_mac_impl_lock); 2694 return (ENOTEMPTY); 2695 } 2696 2697 mip->mi_state_flags |= MIS_DISABLED; 2698 rw_exit(&i_mac_impl_lock); 2699 return (0); 2700 } 2701 2702 int 2703 mac_disable_nowait(mac_handle_t mh) 2704 { 2705 mac_impl_t *mip = (mac_impl_t *)mh; 2706 int err; 2707 2708 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2709 return (err); 2710 err = i_mac_disable(mip); 2711 i_mac_perim_exit(mip); 2712 return (err); 2713 } 2714 2715 int 2716 mac_disable(mac_handle_t mh) 2717 { 2718 mac_impl_t *mip = (mac_impl_t *)mh; 2719 int err; 2720 2721 i_mac_perim_enter(mip); 2722 err = i_mac_disable(mip); 2723 i_mac_perim_exit(mip); 2724 2725 /* 2726 * Clean up notification thread and wait for it to exit. 2727 */ 2728 if (err == 0) 2729 i_mac_notify_exit(mip); 2730 2731 return (err); 2732 } 2733 2734 /* 2735 * Called when the MAC instance has a non empty flow table, to de-multiplex 2736 * incoming packets to the right flow. 2737 */ 2738 /* ARGSUSED */ 2739 static mblk_t * 2740 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2741 { 2742 flow_entry_t *flent = NULL; 2743 uint_t flags = FLOW_INBOUND; 2744 int err; 2745 2746 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2747 if (err != 0) { 2748 /* no registered receive function */ 2749 return (mp); 2750 } else { 2751 mac_client_impl_t *mcip; 2752 2753 /* 2754 * This flent might just be an additional one on the MAC client, 2755 * i.e. for classification purposes (different fdesc), however 2756 * the resources, SRS et. al., are in the mci_flent, so if 2757 * this isn't the mci_flent, we need to get it. 2758 */ 2759 if ((mcip = flent->fe_mcip) != NULL && 2760 mcip->mci_flent != flent) { 2761 FLOW_REFRELE(flent); 2762 flent = mcip->mci_flent; 2763 FLOW_TRY_REFHOLD(flent, err); 2764 if (err != 0) 2765 return (mp); 2766 } 2767 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2768 B_FALSE); 2769 FLOW_REFRELE(flent); 2770 } 2771 return (NULL); 2772 } 2773 2774 mblk_t * 2775 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2776 { 2777 mac_impl_t *mip = (mac_impl_t *)mh; 2778 mblk_t *bp, *bp1, **bpp, *list = NULL; 2779 2780 /* 2781 * We walk the chain and attempt to classify each packet. 2782 * The packets that couldn't be classified will be returned 2783 * back to the caller. 2784 */ 2785 bp = mp_chain; 2786 bpp = &list; 2787 while (bp != NULL) { 2788 bp1 = bp; 2789 bp = bp->b_next; 2790 bp1->b_next = NULL; 2791 2792 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2793 *bpp = bp1; 2794 bpp = &bp1->b_next; 2795 } 2796 } 2797 return (list); 2798 } 2799 2800 static int 2801 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2802 { 2803 mac_ring_handle_t ring = arg; 2804 2805 if (flent->fe_tx_srs) 2806 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2807 return (0); 2808 } 2809 2810 void 2811 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2812 { 2813 mac_client_impl_t *cclient; 2814 mac_soft_ring_set_t *mac_srs; 2815 2816 /* 2817 * After grabbing the mi_rw_lock, the list of clients can't change. 2818 * If there are any clients mi_disabled must be B_FALSE and can't 2819 * get set since there are clients. If there aren't any clients we 2820 * don't do anything. In any case the mip has to be valid. The driver 2821 * must make sure that it goes single threaded (with respect to mac 2822 * calls) and wait for all pending mac calls to finish before calling 2823 * mac_unregister. 2824 */ 2825 rw_enter(&i_mac_impl_lock, RW_READER); 2826 if (mip->mi_state_flags & MIS_DISABLED) { 2827 rw_exit(&i_mac_impl_lock); 2828 return; 2829 } 2830 2831 /* 2832 * Get MAC tx srs from walking mac_client_handle list. 2833 */ 2834 rw_enter(&mip->mi_rw_lock, RW_READER); 2835 for (cclient = mip->mi_clients_list; cclient != NULL; 2836 cclient = cclient->mci_client_next) { 2837 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2838 mac_tx_srs_wakeup(mac_srs, ring); 2839 } else { 2840 /* 2841 * Aggr opens underlying ports in exclusive mode 2842 * and registers flow control callbacks using 2843 * mac_tx_client_notify(). When opened in 2844 * exclusive mode, Tx SRS won't be created 2845 * during mac_unicast_add(). 2846 */ 2847 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2848 mac_tx_invoke_callbacks(cclient, 2849 (mac_tx_cookie_t)ring); 2850 } 2851 } 2852 (void) mac_flow_walk(cclient->mci_subflow_tab, 2853 mac_tx_flow_srs_wakeup, ring); 2854 } 2855 rw_exit(&mip->mi_rw_lock); 2856 rw_exit(&i_mac_impl_lock); 2857 } 2858 2859 /* ARGSUSED */ 2860 void 2861 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2862 boolean_t add) 2863 { 2864 mac_impl_t *mip = (mac_impl_t *)mh; 2865 2866 i_mac_perim_enter((mac_impl_t *)mh); 2867 /* 2868 * If no specific refresh function was given then default to the 2869 * driver's m_multicst entry point. 2870 */ 2871 if (refresh == NULL) { 2872 refresh = mip->mi_multicst; 2873 arg = mip->mi_driver; 2874 } 2875 2876 mac_bcast_refresh(mip, refresh, arg, add); 2877 i_mac_perim_exit((mac_impl_t *)mh); 2878 } 2879 2880 void 2881 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2882 { 2883 mac_impl_t *mip = (mac_impl_t *)mh; 2884 2885 /* 2886 * If no specific refresh function was given then default to the 2887 * driver's m_promisc entry point. 2888 */ 2889 if (refresh == NULL) { 2890 refresh = mip->mi_setpromisc; 2891 arg = mip->mi_driver; 2892 } 2893 ASSERT(refresh != NULL); 2894 2895 /* 2896 * Call the refresh function with the current promiscuity. 2897 */ 2898 refresh(arg, (mip->mi_devpromisc != 0)); 2899 } 2900 2901 /* 2902 * The mac client requests that the mac not to change its margin size to 2903 * be less than the specified value. If "current" is B_TRUE, then the client 2904 * requests the mac not to change its margin size to be smaller than the 2905 * current size. Further, return the current margin size value in this case. 2906 * 2907 * We keep every requested size in an ordered list from largest to smallest. 2908 */ 2909 int 2910 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2911 { 2912 mac_impl_t *mip = (mac_impl_t *)mh; 2913 mac_margin_req_t **pp, *p; 2914 int err = 0; 2915 2916 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2917 if (current) 2918 *marginp = mip->mi_margin; 2919 2920 /* 2921 * If the current margin value cannot satisfy the margin requested, 2922 * return ENOTSUP directly. 2923 */ 2924 if (*marginp > mip->mi_margin) { 2925 err = ENOTSUP; 2926 goto done; 2927 } 2928 2929 /* 2930 * Check whether the given margin is already in the list. If so, 2931 * bump the reference count. 2932 */ 2933 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2934 if (p->mmr_margin == *marginp) { 2935 /* 2936 * The margin requested is already in the list, 2937 * so just bump the reference count. 2938 */ 2939 p->mmr_ref++; 2940 goto done; 2941 } 2942 if (p->mmr_margin < *marginp) 2943 break; 2944 } 2945 2946 2947 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2948 p->mmr_margin = *marginp; 2949 p->mmr_ref++; 2950 p->mmr_nextp = *pp; 2951 *pp = p; 2952 2953 done: 2954 rw_exit(&(mip->mi_rw_lock)); 2955 return (err); 2956 } 2957 2958 /* 2959 * The mac client requests to cancel its previous mac_margin_add() request. 2960 * We remove the requested margin size from the list. 2961 */ 2962 int 2963 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2964 { 2965 mac_impl_t *mip = (mac_impl_t *)mh; 2966 mac_margin_req_t **pp, *p; 2967 int err = 0; 2968 2969 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2970 /* 2971 * Find the entry in the list for the given margin. 2972 */ 2973 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2974 if (p->mmr_margin == margin) { 2975 if (--p->mmr_ref == 0) 2976 break; 2977 2978 /* 2979 * There is still a reference to this address so 2980 * there's nothing more to do. 2981 */ 2982 goto done; 2983 } 2984 } 2985 2986 /* 2987 * We did not find an entry for the given margin. 2988 */ 2989 if (p == NULL) { 2990 err = ENOENT; 2991 goto done; 2992 } 2993 2994 ASSERT(p->mmr_ref == 0); 2995 2996 /* 2997 * Remove it from the list. 2998 */ 2999 *pp = p->mmr_nextp; 3000 kmem_free(p, sizeof (mac_margin_req_t)); 3001 done: 3002 rw_exit(&(mip->mi_rw_lock)); 3003 return (err); 3004 } 3005 3006 boolean_t 3007 mac_margin_update(mac_handle_t mh, uint32_t margin) 3008 { 3009 mac_impl_t *mip = (mac_impl_t *)mh; 3010 uint32_t margin_needed = 0; 3011 3012 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 3013 3014 if (mip->mi_mmrp != NULL) 3015 margin_needed = mip->mi_mmrp->mmr_margin; 3016 3017 if (margin_needed <= margin) 3018 mip->mi_margin = margin; 3019 3020 rw_exit(&(mip->mi_rw_lock)); 3021 3022 if (margin_needed <= margin) 3023 i_mac_notify(mip, MAC_NOTE_MARGIN); 3024 3025 return (margin_needed <= margin); 3026 } 3027 3028 /* 3029 * MAC clients use this interface to request that a MAC device not change its 3030 * MTU below the specified amount. At this time, that amount must be within the 3031 * range of the device's current minimum and the device's current maximum. eg. a 3032 * client cannot request a 3000 byte MTU when the device's MTU is currently 3033 * 2000. 3034 * 3035 * If "current" is set to B_TRUE, then the request is to simply to reserve the 3036 * current underlying mac's maximum for this mac client and return it in mtup. 3037 */ 3038 int 3039 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 3040 { 3041 mac_impl_t *mip = (mac_impl_t *)mh; 3042 mac_mtu_req_t *prev, *cur; 3043 mac_propval_range_t mpr; 3044 int err; 3045 3046 i_mac_perim_enter(mip); 3047 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3048 3049 if (current == B_TRUE) 3050 *mtup = mip->mi_sdu_max; 3051 mpr.mpr_count = 1; 3052 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 3053 if (err != 0) { 3054 rw_exit(&mip->mi_rw_lock); 3055 i_mac_perim_exit(mip); 3056 return (err); 3057 } 3058 3059 if (*mtup > mip->mi_sdu_max || 3060 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 3061 rw_exit(&mip->mi_rw_lock); 3062 i_mac_perim_exit(mip); 3063 return (ENOTSUP); 3064 } 3065 3066 prev = NULL; 3067 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3068 if (*mtup == cur->mtr_mtu) { 3069 cur->mtr_ref++; 3070 rw_exit(&mip->mi_rw_lock); 3071 i_mac_perim_exit(mip); 3072 return (0); 3073 } 3074 3075 if (*mtup > cur->mtr_mtu) 3076 break; 3077 3078 prev = cur; 3079 } 3080 3081 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 3082 cur->mtr_mtu = *mtup; 3083 cur->mtr_ref = 1; 3084 if (prev != NULL) { 3085 cur->mtr_nextp = prev->mtr_nextp; 3086 prev->mtr_nextp = cur; 3087 } else { 3088 cur->mtr_nextp = mip->mi_mtrp; 3089 mip->mi_mtrp = cur; 3090 } 3091 3092 rw_exit(&mip->mi_rw_lock); 3093 i_mac_perim_exit(mip); 3094 return (0); 3095 } 3096 3097 int 3098 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 3099 { 3100 mac_impl_t *mip = (mac_impl_t *)mh; 3101 mac_mtu_req_t *cur, *prev; 3102 3103 i_mac_perim_enter(mip); 3104 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3105 3106 prev = NULL; 3107 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3108 if (cur->mtr_mtu == mtu) { 3109 ASSERT(cur->mtr_ref > 0); 3110 cur->mtr_ref--; 3111 if (cur->mtr_ref == 0) { 3112 if (prev == NULL) { 3113 mip->mi_mtrp = cur->mtr_nextp; 3114 } else { 3115 prev->mtr_nextp = cur->mtr_nextp; 3116 } 3117 kmem_free(cur, sizeof (mac_mtu_req_t)); 3118 } 3119 rw_exit(&mip->mi_rw_lock); 3120 i_mac_perim_exit(mip); 3121 return (0); 3122 } 3123 3124 prev = cur; 3125 } 3126 3127 rw_exit(&mip->mi_rw_lock); 3128 i_mac_perim_exit(mip); 3129 return (ENOENT); 3130 } 3131 3132 /* 3133 * MAC Type Plugin functions. 3134 */ 3135 3136 mactype_t * 3137 mactype_getplugin(const char *pname) 3138 { 3139 mactype_t *mtype = NULL; 3140 boolean_t tried_modload = B_FALSE; 3141 3142 mutex_enter(&i_mactype_lock); 3143 3144 find_registered_mactype: 3145 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 3146 (mod_hash_val_t *)&mtype) != 0) { 3147 if (!tried_modload) { 3148 /* 3149 * If the plugin has not yet been loaded, then 3150 * attempt to load it now. If modload() succeeds, 3151 * the plugin should have registered using 3152 * mactype_register(), in which case we can go back 3153 * and attempt to find it again. 3154 */ 3155 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 3156 tried_modload = B_TRUE; 3157 goto find_registered_mactype; 3158 } 3159 } 3160 } else { 3161 /* 3162 * Note that there's no danger that the plugin we've loaded 3163 * could be unloaded between the modload() step and the 3164 * reference count bump here, as we're holding 3165 * i_mactype_lock, which mactype_unregister() also holds. 3166 */ 3167 atomic_inc_32(&mtype->mt_ref); 3168 } 3169 3170 mutex_exit(&i_mactype_lock); 3171 return (mtype); 3172 } 3173 3174 mactype_register_t * 3175 mactype_alloc(uint_t mactype_version) 3176 { 3177 mactype_register_t *mtrp; 3178 3179 /* 3180 * Make sure there isn't a version mismatch between the plugin and 3181 * the framework. In the future, if multiple versions are 3182 * supported, this check could become more sophisticated. 3183 */ 3184 if (mactype_version != MACTYPE_VERSION) 3185 return (NULL); 3186 3187 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 3188 mtrp->mtr_version = mactype_version; 3189 return (mtrp); 3190 } 3191 3192 void 3193 mactype_free(mactype_register_t *mtrp) 3194 { 3195 kmem_free(mtrp, sizeof (mactype_register_t)); 3196 } 3197 3198 int 3199 mactype_register(mactype_register_t *mtrp) 3200 { 3201 mactype_t *mtp; 3202 mactype_ops_t *ops = mtrp->mtr_ops; 3203 3204 /* Do some sanity checking before we register this MAC type. */ 3205 if (mtrp->mtr_ident == NULL || ops == NULL) 3206 return (EINVAL); 3207 3208 /* 3209 * Verify that all mandatory callbacks are set in the ops 3210 * vector. 3211 */ 3212 if (ops->mtops_unicst_verify == NULL || 3213 ops->mtops_multicst_verify == NULL || 3214 ops->mtops_sap_verify == NULL || 3215 ops->mtops_header == NULL || 3216 ops->mtops_header_info == NULL) { 3217 return (EINVAL); 3218 } 3219 3220 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 3221 mtp->mt_ident = mtrp->mtr_ident; 3222 mtp->mt_ops = *ops; 3223 mtp->mt_type = mtrp->mtr_mactype; 3224 mtp->mt_nativetype = mtrp->mtr_nativetype; 3225 mtp->mt_addr_length = mtrp->mtr_addrlen; 3226 if (mtrp->mtr_brdcst_addr != NULL) { 3227 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 3228 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 3229 mtrp->mtr_addrlen); 3230 } 3231 3232 mtp->mt_stats = mtrp->mtr_stats; 3233 mtp->mt_statcount = mtrp->mtr_statcount; 3234 3235 mtp->mt_mapping = mtrp->mtr_mapping; 3236 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 3237 3238 if (mod_hash_insert(i_mactype_hash, 3239 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 3240 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3241 kmem_free(mtp, sizeof (*mtp)); 3242 return (EEXIST); 3243 } 3244 return (0); 3245 } 3246 3247 int 3248 mactype_unregister(const char *ident) 3249 { 3250 mactype_t *mtp; 3251 mod_hash_val_t val; 3252 int err; 3253 3254 /* 3255 * Let's not allow MAC drivers to use this plugin while we're 3256 * trying to unregister it. Holding i_mactype_lock also prevents a 3257 * plugin from unregistering while a MAC driver is attempting to 3258 * hold a reference to it in i_mactype_getplugin(). 3259 */ 3260 mutex_enter(&i_mactype_lock); 3261 3262 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 3263 (mod_hash_val_t *)&mtp)) != 0) { 3264 /* A plugin is trying to unregister, but it never registered. */ 3265 err = ENXIO; 3266 goto done; 3267 } 3268 3269 if (mtp->mt_ref != 0) { 3270 err = EBUSY; 3271 goto done; 3272 } 3273 3274 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 3275 ASSERT(err == 0); 3276 if (err != 0) { 3277 /* This should never happen, thus the ASSERT() above. */ 3278 err = EINVAL; 3279 goto done; 3280 } 3281 ASSERT(mtp == (mactype_t *)val); 3282 3283 if (mtp->mt_brdcst_addr != NULL) 3284 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3285 kmem_free(mtp, sizeof (mactype_t)); 3286 done: 3287 mutex_exit(&i_mactype_lock); 3288 return (err); 3289 } 3290 3291 /* 3292 * Checks the size of the value size specified for a property as 3293 * part of a property operation. Returns B_TRUE if the size is 3294 * correct, B_FALSE otherwise. 3295 */ 3296 boolean_t 3297 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 3298 { 3299 uint_t minsize = 0; 3300 3301 if (is_range) 3302 return (valsize >= sizeof (mac_propval_range_t)); 3303 3304 switch (id) { 3305 case MAC_PROP_ZONE: 3306 minsize = sizeof (dld_ioc_zid_t); 3307 break; 3308 case MAC_PROP_AUTOPUSH: 3309 if (valsize != 0) 3310 minsize = sizeof (struct dlautopush); 3311 break; 3312 case MAC_PROP_TAGMODE: 3313 minsize = sizeof (link_tagmode_t); 3314 break; 3315 case MAC_PROP_RESOURCE: 3316 case MAC_PROP_RESOURCE_EFF: 3317 minsize = sizeof (mac_resource_props_t); 3318 break; 3319 case MAC_PROP_DUPLEX: 3320 minsize = sizeof (link_duplex_t); 3321 break; 3322 case MAC_PROP_SPEED: 3323 minsize = sizeof (uint64_t); 3324 break; 3325 case MAC_PROP_STATUS: 3326 minsize = sizeof (link_state_t); 3327 break; 3328 case MAC_PROP_AUTONEG: 3329 case MAC_PROP_EN_AUTONEG: 3330 minsize = sizeof (uint8_t); 3331 break; 3332 case MAC_PROP_MTU: 3333 case MAC_PROP_LLIMIT: 3334 case MAC_PROP_LDECAY: 3335 minsize = sizeof (uint32_t); 3336 break; 3337 case MAC_PROP_FLOWCTRL: 3338 minsize = sizeof (link_flowctrl_t); 3339 break; 3340 case MAC_PROP_ADV_5000FDX_CAP: 3341 case MAC_PROP_EN_5000FDX_CAP: 3342 case MAC_PROP_ADV_2500FDX_CAP: 3343 case MAC_PROP_EN_2500FDX_CAP: 3344 case MAC_PROP_ADV_100GFDX_CAP: 3345 case MAC_PROP_EN_100GFDX_CAP: 3346 case MAC_PROP_ADV_50GFDX_CAP: 3347 case MAC_PROP_EN_50GFDX_CAP: 3348 case MAC_PROP_ADV_40GFDX_CAP: 3349 case MAC_PROP_EN_40GFDX_CAP: 3350 case MAC_PROP_ADV_25GFDX_CAP: 3351 case MAC_PROP_EN_25GFDX_CAP: 3352 case MAC_PROP_ADV_10GFDX_CAP: 3353 case MAC_PROP_EN_10GFDX_CAP: 3354 case MAC_PROP_ADV_1000HDX_CAP: 3355 case MAC_PROP_EN_1000HDX_CAP: 3356 case MAC_PROP_ADV_100FDX_CAP: 3357 case MAC_PROP_EN_100FDX_CAP: 3358 case MAC_PROP_ADV_100HDX_CAP: 3359 case MAC_PROP_EN_100HDX_CAP: 3360 case MAC_PROP_ADV_10FDX_CAP: 3361 case MAC_PROP_EN_10FDX_CAP: 3362 case MAC_PROP_ADV_10HDX_CAP: 3363 case MAC_PROP_EN_10HDX_CAP: 3364 case MAC_PROP_ADV_100T4_CAP: 3365 case MAC_PROP_EN_100T4_CAP: 3366 minsize = sizeof (uint8_t); 3367 break; 3368 case MAC_PROP_PVID: 3369 minsize = sizeof (uint16_t); 3370 break; 3371 case MAC_PROP_IPTUN_HOPLIMIT: 3372 minsize = sizeof (uint32_t); 3373 break; 3374 case MAC_PROP_IPTUN_ENCAPLIMIT: 3375 minsize = sizeof (uint32_t); 3376 break; 3377 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3378 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3379 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3380 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3381 minsize = sizeof (uint_t); 3382 break; 3383 case MAC_PROP_WL_ESSID: 3384 minsize = sizeof (wl_linkstatus_t); 3385 break; 3386 case MAC_PROP_WL_BSSID: 3387 minsize = sizeof (wl_bssid_t); 3388 break; 3389 case MAC_PROP_WL_BSSTYPE: 3390 minsize = sizeof (wl_bss_type_t); 3391 break; 3392 case MAC_PROP_WL_LINKSTATUS: 3393 minsize = sizeof (wl_linkstatus_t); 3394 break; 3395 case MAC_PROP_WL_DESIRED_RATES: 3396 minsize = sizeof (wl_rates_t); 3397 break; 3398 case MAC_PROP_WL_SUPPORTED_RATES: 3399 minsize = sizeof (wl_rates_t); 3400 break; 3401 case MAC_PROP_WL_AUTH_MODE: 3402 minsize = sizeof (wl_authmode_t); 3403 break; 3404 case MAC_PROP_WL_ENCRYPTION: 3405 minsize = sizeof (wl_encryption_t); 3406 break; 3407 case MAC_PROP_WL_RSSI: 3408 minsize = sizeof (wl_rssi_t); 3409 break; 3410 case MAC_PROP_WL_PHY_CONFIG: 3411 minsize = sizeof (wl_phy_conf_t); 3412 break; 3413 case MAC_PROP_WL_CAPABILITY: 3414 minsize = sizeof (wl_capability_t); 3415 break; 3416 case MAC_PROP_WL_WPA: 3417 minsize = sizeof (wl_wpa_t); 3418 break; 3419 case MAC_PROP_WL_SCANRESULTS: 3420 minsize = sizeof (wl_wpa_ess_t); 3421 break; 3422 case MAC_PROP_WL_POWER_MODE: 3423 minsize = sizeof (wl_ps_mode_t); 3424 break; 3425 case MAC_PROP_WL_RADIO: 3426 minsize = sizeof (wl_radio_t); 3427 break; 3428 case MAC_PROP_WL_ESS_LIST: 3429 minsize = sizeof (wl_ess_list_t); 3430 break; 3431 case MAC_PROP_WL_KEY_TAB: 3432 minsize = sizeof (wl_wep_key_tab_t); 3433 break; 3434 case MAC_PROP_WL_CREATE_IBSS: 3435 minsize = sizeof (wl_create_ibss_t); 3436 break; 3437 case MAC_PROP_WL_SETOPTIE: 3438 minsize = sizeof (wl_wpa_ie_t); 3439 break; 3440 case MAC_PROP_WL_DELKEY: 3441 minsize = sizeof (wl_del_key_t); 3442 break; 3443 case MAC_PROP_WL_KEY: 3444 minsize = sizeof (wl_key_t); 3445 break; 3446 case MAC_PROP_WL_MLME: 3447 minsize = sizeof (wl_mlme_t); 3448 break; 3449 case MAC_PROP_VN_PROMISC_FILTERED: 3450 minsize = sizeof (boolean_t); 3451 break; 3452 } 3453 3454 return (valsize >= minsize); 3455 } 3456 3457 /* 3458 * mac_set_prop() sets MAC or hardware driver properties: 3459 * 3460 * - MAC-managed properties such as resource properties include maxbw, 3461 * priority, and cpu binding list, as well as the default port VID 3462 * used by bridging. These properties are consumed by the MAC layer 3463 * itself and not passed down to the driver. For resource control 3464 * properties, this function invokes mac_set_resources() which will 3465 * cache the property value in mac_impl_t and may call 3466 * mac_client_set_resource() to update property value of the primary 3467 * mac client, if it exists. 3468 * 3469 * - Properties which act on the hardware and must be passed to the 3470 * driver, such as MTU, through the driver's mc_setprop() entry point. 3471 */ 3472 int 3473 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3474 uint_t valsize) 3475 { 3476 int err = ENOTSUP; 3477 mac_impl_t *mip = (mac_impl_t *)mh; 3478 3479 ASSERT(MAC_PERIM_HELD(mh)); 3480 3481 switch (id) { 3482 case MAC_PROP_RESOURCE: { 3483 mac_resource_props_t *mrp; 3484 3485 /* call mac_set_resources() for MAC properties */ 3486 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3487 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3488 bcopy(val, mrp, sizeof (*mrp)); 3489 err = mac_set_resources(mh, mrp); 3490 kmem_free(mrp, sizeof (*mrp)); 3491 break; 3492 } 3493 3494 case MAC_PROP_PVID: 3495 ASSERT(valsize >= sizeof (uint16_t)); 3496 if (mip->mi_state_flags & MIS_IS_VNIC) 3497 return (EINVAL); 3498 err = mac_set_pvid(mh, *(uint16_t *)val); 3499 break; 3500 3501 case MAC_PROP_MTU: { 3502 uint32_t mtu; 3503 3504 ASSERT(valsize >= sizeof (uint32_t)); 3505 bcopy(val, &mtu, sizeof (mtu)); 3506 err = mac_set_mtu(mh, mtu, NULL); 3507 break; 3508 } 3509 3510 case MAC_PROP_LLIMIT: 3511 case MAC_PROP_LDECAY: { 3512 uint32_t learnval; 3513 3514 if (valsize < sizeof (learnval) || 3515 (mip->mi_state_flags & MIS_IS_VNIC)) 3516 return (EINVAL); 3517 bcopy(val, &learnval, sizeof (learnval)); 3518 if (learnval == 0 && id == MAC_PROP_LDECAY) 3519 return (EINVAL); 3520 if (id == MAC_PROP_LLIMIT) 3521 mip->mi_llimit = learnval; 3522 else 3523 mip->mi_ldecay = learnval; 3524 err = 0; 3525 break; 3526 } 3527 3528 default: 3529 /* For other driver properties, call driver's callback */ 3530 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3531 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3532 name, id, valsize, val); 3533 } 3534 } 3535 return (err); 3536 } 3537 3538 /* 3539 * mac_get_prop() gets MAC or device driver properties. 3540 * 3541 * If the property is a driver property, mac_get_prop() calls driver's callback 3542 * entry point to get it. 3543 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3544 * which returns the cached value in mac_impl_t. 3545 */ 3546 int 3547 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3548 uint_t valsize) 3549 { 3550 int err = ENOTSUP; 3551 mac_impl_t *mip = (mac_impl_t *)mh; 3552 uint_t rings; 3553 uint_t vlinks; 3554 3555 bzero(val, valsize); 3556 3557 switch (id) { 3558 case MAC_PROP_RESOURCE: { 3559 mac_resource_props_t *mrp; 3560 3561 /* If mac property, read from cache */ 3562 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3563 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3564 mac_get_resources(mh, mrp); 3565 bcopy(mrp, val, sizeof (*mrp)); 3566 kmem_free(mrp, sizeof (*mrp)); 3567 return (0); 3568 } 3569 case MAC_PROP_RESOURCE_EFF: { 3570 mac_resource_props_t *mrp; 3571 3572 /* If mac effective property, read from client */ 3573 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3574 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3575 mac_get_effective_resources(mh, mrp); 3576 bcopy(mrp, val, sizeof (*mrp)); 3577 kmem_free(mrp, sizeof (*mrp)); 3578 return (0); 3579 } 3580 3581 case MAC_PROP_PVID: 3582 ASSERT(valsize >= sizeof (uint16_t)); 3583 if (mip->mi_state_flags & MIS_IS_VNIC) 3584 return (EINVAL); 3585 *(uint16_t *)val = mac_get_pvid(mh); 3586 return (0); 3587 3588 case MAC_PROP_LLIMIT: 3589 case MAC_PROP_LDECAY: 3590 ASSERT(valsize >= sizeof (uint32_t)); 3591 if (mip->mi_state_flags & MIS_IS_VNIC) 3592 return (EINVAL); 3593 if (id == MAC_PROP_LLIMIT) 3594 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3595 else 3596 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3597 return (0); 3598 3599 case MAC_PROP_MTU: { 3600 uint32_t sdu; 3601 3602 ASSERT(valsize >= sizeof (uint32_t)); 3603 mac_sdu_get2(mh, NULL, &sdu, NULL); 3604 bcopy(&sdu, val, sizeof (sdu)); 3605 3606 return (0); 3607 } 3608 case MAC_PROP_STATUS: { 3609 link_state_t link_state; 3610 3611 if (valsize < sizeof (link_state)) 3612 return (EINVAL); 3613 link_state = mac_link_get(mh); 3614 bcopy(&link_state, val, sizeof (link_state)); 3615 3616 return (0); 3617 } 3618 3619 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3620 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3621 ASSERT(valsize >= sizeof (uint_t)); 3622 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3623 mac_rxavail_get(mh) : mac_txavail_get(mh); 3624 bcopy(&rings, val, sizeof (uint_t)); 3625 return (0); 3626 3627 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3628 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3629 ASSERT(valsize >= sizeof (uint_t)); 3630 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3631 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3632 bcopy(&vlinks, val, sizeof (uint_t)); 3633 return (0); 3634 3635 case MAC_PROP_RXRINGSRANGE: 3636 case MAC_PROP_TXRINGSRANGE: 3637 /* 3638 * The value for these properties are returned through 3639 * the MAC_PROP_RESOURCE property. 3640 */ 3641 return (0); 3642 3643 default: 3644 break; 3645 3646 } 3647 3648 /* If driver property, request from driver */ 3649 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3650 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3651 valsize, val); 3652 } 3653 3654 return (err); 3655 } 3656 3657 /* 3658 * Helper function to initialize the range structure for use in 3659 * mac_get_prop. If the type can be other than uint32, we can 3660 * pass that as an arg. 3661 */ 3662 static void 3663 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3664 { 3665 range->mpr_count = 1; 3666 range->mpr_type = MAC_PROPVAL_UINT32; 3667 range->mpr_range_uint32[0].mpur_min = min; 3668 range->mpr_range_uint32[0].mpur_max = max; 3669 } 3670 3671 /* 3672 * Returns information about the specified property, such as default 3673 * values or permissions. 3674 */ 3675 int 3676 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3677 void *default_val, uint_t default_size, mac_propval_range_t *range, 3678 uint_t *perm) 3679 { 3680 mac_prop_info_state_t state; 3681 mac_impl_t *mip = (mac_impl_t *)mh; 3682 uint_t max; 3683 3684 /* 3685 * A property is read/write by default unless the driver says 3686 * otherwise. 3687 */ 3688 if (perm != NULL) 3689 *perm = MAC_PROP_PERM_RW; 3690 3691 if (default_val != NULL) 3692 bzero(default_val, default_size); 3693 3694 /* 3695 * First, handle framework properties for which we don't need to 3696 * involve the driver. 3697 */ 3698 switch (id) { 3699 case MAC_PROP_RESOURCE: 3700 case MAC_PROP_PVID: 3701 case MAC_PROP_LLIMIT: 3702 case MAC_PROP_LDECAY: 3703 return (0); 3704 3705 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3706 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3707 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3708 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3709 if (perm != NULL) 3710 *perm = MAC_PROP_PERM_READ; 3711 return (0); 3712 3713 case MAC_PROP_RXRINGSRANGE: 3714 case MAC_PROP_TXRINGSRANGE: 3715 /* 3716 * Currently, we support range for RX and TX rings properties. 3717 * When we extend this support to maxbw, cpus and priority, 3718 * we should move this to mac_get_resources. 3719 * There is no default value for RX or TX rings. 3720 */ 3721 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3722 mac_is_vnic_primary(mh)) { 3723 /* 3724 * We don't support setting rings for a VLAN 3725 * data link because it shares its ring with the 3726 * primary MAC client. 3727 */ 3728 if (perm != NULL) 3729 *perm = MAC_PROP_PERM_READ; 3730 if (range != NULL) 3731 range->mpr_count = 0; 3732 } else if (range != NULL) { 3733 if (mip->mi_state_flags & MIS_IS_VNIC) 3734 mh = mac_get_lower_mac_handle(mh); 3735 mip = (mac_impl_t *)mh; 3736 if ((id == MAC_PROP_RXRINGSRANGE && 3737 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3738 (id == MAC_PROP_TXRINGSRANGE && 3739 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3740 if (id == MAC_PROP_RXRINGSRANGE) { 3741 if ((mac_rxhwlnksavail_get(mh) + 3742 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3743 /* 3744 * doesn't support groups or 3745 * rings 3746 */ 3747 range->mpr_count = 0; 3748 } else { 3749 /* 3750 * supports specifying groups, 3751 * but not rings 3752 */ 3753 _mac_set_range(range, 0, 0); 3754 } 3755 } else { 3756 if ((mac_txhwlnksavail_get(mh) + 3757 mac_txhwlnksrsvd_get(mh)) <= 1) { 3758 /* 3759 * doesn't support groups or 3760 * rings 3761 */ 3762 range->mpr_count = 0; 3763 } else { 3764 /* 3765 * supports specifying groups, 3766 * but not rings 3767 */ 3768 _mac_set_range(range, 0, 0); 3769 } 3770 } 3771 } else { 3772 max = id == MAC_PROP_RXRINGSRANGE ? 3773 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3774 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3775 if (max <= 1) { 3776 /* 3777 * doesn't support groups or 3778 * rings 3779 */ 3780 range->mpr_count = 0; 3781 } else { 3782 /* 3783 * -1 because we have to leave out the 3784 * default ring. 3785 */ 3786 _mac_set_range(range, 1, max - 1); 3787 } 3788 } 3789 } 3790 return (0); 3791 3792 case MAC_PROP_STATUS: 3793 if (perm != NULL) 3794 *perm = MAC_PROP_PERM_READ; 3795 return (0); 3796 } 3797 3798 /* 3799 * Get the property info from the driver if it implements the 3800 * property info entry point. 3801 */ 3802 bzero(&state, sizeof (state)); 3803 3804 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3805 state.pr_default = default_val; 3806 state.pr_default_size = default_size; 3807 3808 /* 3809 * The caller specifies the maximum number of ranges 3810 * it can accomodate using mpr_count. We don't touch 3811 * this value until the driver returns from its 3812 * mc_propinfo() callback, and ensure we don't exceed 3813 * this number of range as the driver defines 3814 * supported range from its mc_propinfo(). 3815 * 3816 * pr_range_cur_count keeps track of how many ranges 3817 * were defined by the driver from its mc_propinfo() 3818 * entry point. 3819 * 3820 * On exit, the user-specified range mpr_count returns 3821 * the number of ranges specified by the driver on 3822 * success, or the number of ranges it wanted to 3823 * define if that number of ranges could not be 3824 * accomodated by the specified range structure. In 3825 * the latter case, the caller will be able to 3826 * allocate a larger range structure, and query the 3827 * property again. 3828 */ 3829 state.pr_range_cur_count = 0; 3830 state.pr_range = range; 3831 3832 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3833 (mac_prop_info_handle_t)&state); 3834 3835 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3836 range->mpr_count = state.pr_range_cur_count; 3837 3838 /* 3839 * The operation could fail if the buffer supplied by 3840 * the user was too small for the range or default 3841 * value of the property. 3842 */ 3843 if (state.pr_errno != 0) 3844 return (state.pr_errno); 3845 3846 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3847 *perm = state.pr_perm; 3848 } 3849 3850 /* 3851 * The MAC layer may want to provide default values or allowed 3852 * ranges for properties if the driver does not provide a 3853 * property info entry point, or that entry point exists, but 3854 * it did not provide a default value or allowed ranges for 3855 * that property. 3856 */ 3857 switch (id) { 3858 case MAC_PROP_MTU: { 3859 uint32_t sdu; 3860 3861 mac_sdu_get2(mh, NULL, &sdu, NULL); 3862 3863 if (range != NULL && !(state.pr_flags & 3864 MAC_PROP_INFO_RANGE)) { 3865 /* MTU range */ 3866 _mac_set_range(range, sdu, sdu); 3867 } 3868 3869 if (default_val != NULL && !(state.pr_flags & 3870 MAC_PROP_INFO_DEFAULT)) { 3871 if (mip->mi_info.mi_media == DL_ETHER) 3872 sdu = ETHERMTU; 3873 /* default MTU value */ 3874 bcopy(&sdu, default_val, sizeof (sdu)); 3875 } 3876 } 3877 } 3878 3879 return (0); 3880 } 3881 3882 int 3883 mac_fastpath_disable(mac_handle_t mh) 3884 { 3885 mac_impl_t *mip = (mac_impl_t *)mh; 3886 3887 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3888 return (0); 3889 3890 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3891 } 3892 3893 void 3894 mac_fastpath_enable(mac_handle_t mh) 3895 { 3896 mac_impl_t *mip = (mac_impl_t *)mh; 3897 3898 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3899 return; 3900 3901 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3902 } 3903 3904 void 3905 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3906 { 3907 uint_t nprops, i; 3908 3909 if (priv_props == NULL) 3910 return; 3911 3912 nprops = 0; 3913 while (priv_props[nprops] != NULL) 3914 nprops++; 3915 if (nprops == 0) 3916 return; 3917 3918 3919 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3920 3921 for (i = 0; i < nprops; i++) { 3922 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3923 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3924 MAXLINKPROPNAME); 3925 } 3926 3927 mip->mi_priv_prop_count = nprops; 3928 } 3929 3930 void 3931 mac_unregister_priv_prop(mac_impl_t *mip) 3932 { 3933 uint_t i; 3934 3935 if (mip->mi_priv_prop_count == 0) { 3936 ASSERT(mip->mi_priv_prop == NULL); 3937 return; 3938 } 3939 3940 for (i = 0; i < mip->mi_priv_prop_count; i++) 3941 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3942 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3943 sizeof (char *)); 3944 3945 mip->mi_priv_prop = NULL; 3946 mip->mi_priv_prop_count = 0; 3947 } 3948 3949 /* 3950 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3951 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3952 * cases if MAC free's the ring structure after mac_stop_ring(), any 3953 * illegal access to the ring structure coming from the driver will panic 3954 * the system. In order to protect the system from such inadverent access, 3955 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3956 * When packets are received on free'd up rings, MAC (through the generation 3957 * count mechanism) will drop such packets. 3958 */ 3959 static mac_ring_t * 3960 mac_ring_alloc(mac_impl_t *mip) 3961 { 3962 mac_ring_t *ring; 3963 3964 mutex_enter(&mip->mi_ring_lock); 3965 if (mip->mi_ring_freelist != NULL) { 3966 ring = mip->mi_ring_freelist; 3967 mip->mi_ring_freelist = ring->mr_next; 3968 bzero(ring, sizeof (mac_ring_t)); 3969 mutex_exit(&mip->mi_ring_lock); 3970 } else { 3971 mutex_exit(&mip->mi_ring_lock); 3972 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3973 } 3974 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3975 return (ring); 3976 } 3977 3978 static void 3979 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3980 { 3981 ASSERT(ring->mr_state == MR_FREE); 3982 3983 mutex_enter(&mip->mi_ring_lock); 3984 ring->mr_state = MR_FREE; 3985 ring->mr_flag = 0; 3986 ring->mr_next = mip->mi_ring_freelist; 3987 ring->mr_mip = NULL; 3988 mip->mi_ring_freelist = ring; 3989 mac_ring_stat_delete(ring); 3990 mutex_exit(&mip->mi_ring_lock); 3991 } 3992 3993 static void 3994 mac_ring_freeall(mac_impl_t *mip) 3995 { 3996 mac_ring_t *ring_next; 3997 mutex_enter(&mip->mi_ring_lock); 3998 mac_ring_t *ring = mip->mi_ring_freelist; 3999 while (ring != NULL) { 4000 ring_next = ring->mr_next; 4001 kmem_cache_free(mac_ring_cache, ring); 4002 ring = ring_next; 4003 } 4004 mip->mi_ring_freelist = NULL; 4005 mutex_exit(&mip->mi_ring_lock); 4006 } 4007 4008 int 4009 mac_start_ring(mac_ring_t *ring) 4010 { 4011 int rv = 0; 4012 4013 ASSERT(ring->mr_state == MR_FREE); 4014 4015 if (ring->mr_start != NULL) { 4016 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 4017 if (rv != 0) 4018 return (rv); 4019 } 4020 4021 ring->mr_state = MR_INUSE; 4022 return (rv); 4023 } 4024 4025 void 4026 mac_stop_ring(mac_ring_t *ring) 4027 { 4028 ASSERT(ring->mr_state == MR_INUSE); 4029 4030 if (ring->mr_stop != NULL) 4031 ring->mr_stop(ring->mr_driver); 4032 4033 ring->mr_state = MR_FREE; 4034 4035 /* 4036 * Increment the ring generation number for this ring. 4037 */ 4038 ring->mr_gen_num++; 4039 } 4040 4041 int 4042 mac_start_group(mac_group_t *group) 4043 { 4044 int rv = 0; 4045 4046 if (group->mrg_start != NULL) 4047 rv = group->mrg_start(group->mrg_driver); 4048 4049 return (rv); 4050 } 4051 4052 void 4053 mac_stop_group(mac_group_t *group) 4054 { 4055 if (group->mrg_stop != NULL) 4056 group->mrg_stop(group->mrg_driver); 4057 } 4058 4059 /* 4060 * Called from mac_start() on the default Rx group. Broadcast and multicast 4061 * packets are received only on the default group. Hence the default group 4062 * needs to be up even if the primary client is not up, for the other groups 4063 * to be functional. We do this by calling this function at mac_start time 4064 * itself. However the broadcast packets that are received can't make their 4065 * way beyond mac_rx until a mac client creates a broadcast flow. 4066 */ 4067 static int 4068 mac_start_group_and_rings(mac_group_t *group) 4069 { 4070 mac_ring_t *ring; 4071 int rv = 0; 4072 4073 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 4074 if ((rv = mac_start_group(group)) != 0) 4075 return (rv); 4076 4077 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4078 ASSERT(ring->mr_state == MR_FREE); 4079 4080 if ((rv = mac_start_ring(ring)) != 0) 4081 goto error; 4082 4083 /* 4084 * When aggr_set_port_sdu() is called, it will remove 4085 * the port client's unicast address. This will cause 4086 * MAC to stop the default group's rings on the port 4087 * MAC. After it modifies the SDU, it will then re-add 4088 * the unicast address. At which time, this function is 4089 * called to start the default group's rings. Normally 4090 * this function would set the classify type to 4091 * MAC_SW_CLASSIFIER; but that will break aggr which 4092 * relies on the passthru classify mode being set for 4093 * correct delivery (see mac_rx_common()). To avoid 4094 * that, we check for a passthru callback and set the 4095 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was 4096 * before the rings were stopped. 4097 */ 4098 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ? 4099 MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER; 4100 } 4101 return (0); 4102 4103 error: 4104 mac_stop_group_and_rings(group); 4105 return (rv); 4106 } 4107 4108 /* Called from mac_stop on the default Rx group */ 4109 static void 4110 mac_stop_group_and_rings(mac_group_t *group) 4111 { 4112 mac_ring_t *ring; 4113 4114 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4115 if (ring->mr_state != MR_FREE) { 4116 mac_stop_ring(ring); 4117 ring->mr_flag = 0; 4118 ring->mr_classify_type = MAC_NO_CLASSIFIER; 4119 } 4120 } 4121 mac_stop_group(group); 4122 } 4123 4124 4125 static mac_ring_t * 4126 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 4127 mac_capab_rings_t *cap_rings) 4128 { 4129 mac_ring_t *ring, *rnext; 4130 mac_ring_info_t ring_info; 4131 ddi_intr_handle_t ddi_handle; 4132 4133 ring = mac_ring_alloc(mip); 4134 4135 /* Prepare basic information of ring */ 4136 4137 /* 4138 * Ring index is numbered to be unique across a particular device. 4139 * Ring index computation makes following assumptions: 4140 * - For drivers with static grouping (e.g. ixgbe, bge), 4141 * ring index exchanged with the driver (e.g. during mr_rget) 4142 * is unique only across the group the ring belongs to. 4143 * - Drivers with dynamic grouping (e.g. nxge), start 4144 * with single group (mrg_index = 0). 4145 */ 4146 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 4147 ring->mr_type = group->mrg_type; 4148 ring->mr_gh = (mac_group_handle_t)group; 4149 4150 /* Insert the new ring to the list. */ 4151 ring->mr_next = group->mrg_rings; 4152 group->mrg_rings = ring; 4153 4154 /* Zero to reuse the info data structure */ 4155 bzero(&ring_info, sizeof (ring_info)); 4156 4157 /* Query ring information from driver */ 4158 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 4159 index, &ring_info, (mac_ring_handle_t)ring); 4160 4161 ring->mr_info = ring_info; 4162 4163 /* 4164 * The interrupt handle could be shared among multiple rings. 4165 * Thus if there is a bunch of rings that are sharing an 4166 * interrupt, then only one ring among the bunch will be made 4167 * available for interrupt re-targeting; the rest will have 4168 * ddi_shared flag set to TRUE and would not be available for 4169 * be interrupt re-targeting. 4170 */ 4171 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 4172 rnext = ring->mr_next; 4173 while (rnext != NULL) { 4174 if (rnext->mr_info.mri_intr.mi_ddi_handle == 4175 ddi_handle) { 4176 /* 4177 * If default ring (mr_index == 0) is part 4178 * of a group of rings sharing an 4179 * interrupt, then set ddi_shared flag for 4180 * the default ring and give another ring 4181 * the chance to be re-targeted. 4182 */ 4183 if (rnext->mr_index == 0 && 4184 !rnext->mr_info.mri_intr.mi_ddi_shared) { 4185 rnext->mr_info.mri_intr.mi_ddi_shared = 4186 B_TRUE; 4187 } else { 4188 ring->mr_info.mri_intr.mi_ddi_shared = 4189 B_TRUE; 4190 } 4191 break; 4192 } 4193 rnext = rnext->mr_next; 4194 } 4195 /* 4196 * If rnext is NULL, then no matching ddi_handle was found. 4197 * Rx rings get registered first. So if this is a Tx ring, 4198 * then go through all the Rx rings and see if there is a 4199 * matching ddi handle. 4200 */ 4201 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 4202 mac_compare_ddi_handle(mip->mi_rx_groups, 4203 mip->mi_rx_group_count, ring); 4204 } 4205 } 4206 4207 /* Update ring's status */ 4208 ring->mr_state = MR_FREE; 4209 ring->mr_flag = 0; 4210 4211 /* Update the ring count of the group */ 4212 group->mrg_cur_count++; 4213 4214 /* Create per ring kstats */ 4215 if (ring->mr_stat != NULL) { 4216 ring->mr_mip = mip; 4217 mac_ring_stat_create(ring); 4218 } 4219 4220 return (ring); 4221 } 4222 4223 /* 4224 * Rings are chained together for easy regrouping. 4225 */ 4226 static void 4227 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 4228 mac_capab_rings_t *cap_rings) 4229 { 4230 int index; 4231 4232 /* 4233 * Initialize all ring members of this group. Size of zero will not 4234 * enter the loop, so it's safe for initializing an empty group. 4235 */ 4236 for (index = size - 1; index >= 0; index--) 4237 (void) mac_init_ring(mip, group, index, cap_rings); 4238 } 4239 4240 int 4241 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4242 { 4243 mac_capab_rings_t *cap_rings; 4244 mac_group_t *group; 4245 mac_group_t *groups; 4246 mac_group_info_t group_info; 4247 uint_t group_free = 0; 4248 uint_t ring_left; 4249 mac_ring_t *ring; 4250 int g; 4251 int err = 0; 4252 uint_t grpcnt; 4253 boolean_t pseudo_txgrp = B_FALSE; 4254 4255 switch (rtype) { 4256 case MAC_RING_TYPE_RX: 4257 ASSERT(mip->mi_rx_groups == NULL); 4258 4259 cap_rings = &mip->mi_rx_rings_cap; 4260 cap_rings->mr_type = MAC_RING_TYPE_RX; 4261 break; 4262 case MAC_RING_TYPE_TX: 4263 ASSERT(mip->mi_tx_groups == NULL); 4264 4265 cap_rings = &mip->mi_tx_rings_cap; 4266 cap_rings->mr_type = MAC_RING_TYPE_TX; 4267 break; 4268 default: 4269 ASSERT(B_FALSE); 4270 } 4271 4272 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 4273 return (0); 4274 grpcnt = cap_rings->mr_gnum; 4275 4276 /* 4277 * If we have multiple TX rings, but only one TX group, we can 4278 * create pseudo TX groups (one per TX ring) in the MAC layer, 4279 * except for an aggr. For an aggr currently we maintain only 4280 * one group with all the rings (for all its ports), going 4281 * forwards we might change this. 4282 */ 4283 if (rtype == MAC_RING_TYPE_TX && 4284 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 4285 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 4286 /* 4287 * The -1 here is because we create a default TX group 4288 * with all the rings in it. 4289 */ 4290 grpcnt = cap_rings->mr_rnum - 1; 4291 pseudo_txgrp = B_TRUE; 4292 } 4293 4294 /* 4295 * Allocate a contiguous buffer for all groups. 4296 */ 4297 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 4298 4299 ring_left = cap_rings->mr_rnum; 4300 4301 /* 4302 * Get all ring groups if any, and get their ring members 4303 * if any. 4304 */ 4305 for (g = 0; g < grpcnt; g++) { 4306 group = groups + g; 4307 4308 /* Prepare basic information of the group */ 4309 group->mrg_index = g; 4310 group->mrg_type = rtype; 4311 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4312 group->mrg_mh = (mac_handle_t)mip; 4313 group->mrg_next = group + 1; 4314 4315 /* Zero to reuse the info data structure */ 4316 bzero(&group_info, sizeof (group_info)); 4317 4318 if (pseudo_txgrp) { 4319 /* 4320 * This is a pseudo group that we created, apart 4321 * from setting the state there is nothing to be 4322 * done. 4323 */ 4324 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4325 group_free++; 4326 continue; 4327 } 4328 /* Query group information from driver */ 4329 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4330 (mac_group_handle_t)group); 4331 4332 switch (cap_rings->mr_group_type) { 4333 case MAC_GROUP_TYPE_DYNAMIC: 4334 if (cap_rings->mr_gaddring == NULL || 4335 cap_rings->mr_gremring == NULL) { 4336 DTRACE_PROBE3( 4337 mac__init__rings_no_addremring, 4338 char *, mip->mi_name, 4339 mac_group_add_ring_t, 4340 cap_rings->mr_gaddring, 4341 mac_group_add_ring_t, 4342 cap_rings->mr_gremring); 4343 err = EINVAL; 4344 goto bail; 4345 } 4346 4347 switch (rtype) { 4348 case MAC_RING_TYPE_RX: 4349 /* 4350 * The first RX group must have non-zero 4351 * rings, and the following groups must 4352 * have zero rings. 4353 */ 4354 if (g == 0 && group_info.mgi_count == 0) { 4355 DTRACE_PROBE1( 4356 mac__init__rings__rx__def__zero, 4357 char *, mip->mi_name); 4358 err = EINVAL; 4359 goto bail; 4360 } 4361 if (g > 0 && group_info.mgi_count != 0) { 4362 DTRACE_PROBE3( 4363 mac__init__rings__rx__nonzero, 4364 char *, mip->mi_name, 4365 int, g, int, group_info.mgi_count); 4366 err = EINVAL; 4367 goto bail; 4368 } 4369 break; 4370 case MAC_RING_TYPE_TX: 4371 /* 4372 * All TX ring groups must have zero rings. 4373 */ 4374 if (group_info.mgi_count != 0) { 4375 DTRACE_PROBE3( 4376 mac__init__rings__tx__nonzero, 4377 char *, mip->mi_name, 4378 int, g, int, group_info.mgi_count); 4379 err = EINVAL; 4380 goto bail; 4381 } 4382 break; 4383 } 4384 break; 4385 case MAC_GROUP_TYPE_STATIC: 4386 /* 4387 * Note that an empty group is allowed, e.g., an aggr 4388 * would start with an empty group. 4389 */ 4390 break; 4391 default: 4392 /* unknown group type */ 4393 DTRACE_PROBE2(mac__init__rings__unknown__type, 4394 char *, mip->mi_name, 4395 int, cap_rings->mr_group_type); 4396 err = EINVAL; 4397 goto bail; 4398 } 4399 4400 4401 /* 4402 * The driver must register some form of hardware MAC 4403 * filter in order for Rx groups to support multiple 4404 * MAC addresses. 4405 */ 4406 if (rtype == MAC_RING_TYPE_RX && 4407 (group_info.mgi_addmac == NULL || 4408 group_info.mgi_remmac == NULL)) { 4409 DTRACE_PROBE1(mac__init__rings__no__mac__filter, 4410 char *, mip->mi_name); 4411 err = EINVAL; 4412 goto bail; 4413 } 4414 4415 /* Cache driver-supplied information */ 4416 group->mrg_info = group_info; 4417 4418 /* Update the group's status and group count. */ 4419 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4420 group_free++; 4421 4422 group->mrg_rings = NULL; 4423 group->mrg_cur_count = 0; 4424 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4425 ring_left -= group_info.mgi_count; 4426 4427 /* The current group size should be equal to default value */ 4428 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4429 } 4430 4431 /* Build up a dummy group for free resources as a pool */ 4432 group = groups + grpcnt; 4433 4434 /* Prepare basic information of the group */ 4435 group->mrg_index = -1; 4436 group->mrg_type = rtype; 4437 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4438 group->mrg_mh = (mac_handle_t)mip; 4439 group->mrg_next = NULL; 4440 4441 /* 4442 * If there are ungrouped rings, allocate a continuous buffer for 4443 * remaining resources. 4444 */ 4445 if (ring_left != 0) { 4446 group->mrg_rings = NULL; 4447 group->mrg_cur_count = 0; 4448 mac_init_group(mip, group, ring_left, cap_rings); 4449 4450 /* The current group size should be equal to ring_left */ 4451 ASSERT(group->mrg_cur_count == ring_left); 4452 4453 ring_left = 0; 4454 4455 /* Update this group's status */ 4456 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4457 } else { 4458 group->mrg_rings = NULL; 4459 } 4460 4461 ASSERT(ring_left == 0); 4462 4463 bail: 4464 4465 /* Cache other important information to finalize the initialization */ 4466 switch (rtype) { 4467 case MAC_RING_TYPE_RX: 4468 mip->mi_rx_group_type = cap_rings->mr_group_type; 4469 mip->mi_rx_group_count = cap_rings->mr_gnum; 4470 mip->mi_rx_groups = groups; 4471 mip->mi_rx_donor_grp = groups; 4472 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4473 /* 4474 * The default ring is reserved since it is 4475 * used for sending the broadcast etc. packets. 4476 */ 4477 mip->mi_rxrings_avail = 4478 mip->mi_rx_groups->mrg_cur_count - 1; 4479 mip->mi_rxrings_rsvd = 1; 4480 } 4481 /* 4482 * The default group cannot be reserved. It is used by 4483 * all the clients that do not have an exclusive group. 4484 */ 4485 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4486 mip->mi_rxhwclnt_used = 1; 4487 break; 4488 case MAC_RING_TYPE_TX: 4489 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4490 cap_rings->mr_group_type; 4491 mip->mi_tx_group_count = grpcnt; 4492 mip->mi_tx_group_free = group_free; 4493 mip->mi_tx_groups = groups; 4494 4495 group = groups + grpcnt; 4496 ring = group->mrg_rings; 4497 /* 4498 * The ring can be NULL in the case of aggr. Aggr will 4499 * have an empty Tx group which will get populated 4500 * later when pseudo Tx rings are added after 4501 * mac_register() is done. 4502 */ 4503 if (ring == NULL) { 4504 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4505 /* 4506 * pass the group to aggr so it can add Tx 4507 * rings to the group later. 4508 */ 4509 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4510 (mac_group_handle_t)group); 4511 /* 4512 * Even though there are no rings at this time 4513 * (rings will come later), set the group 4514 * state to registered. 4515 */ 4516 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4517 } else { 4518 /* 4519 * Ring 0 is used as the default one and it could be 4520 * assigned to a client as well. 4521 */ 4522 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4523 ring = ring->mr_next; 4524 ASSERT(ring->mr_index == 0); 4525 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4526 } 4527 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4528 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4529 /* 4530 * The default ring cannot be reserved. 4531 */ 4532 mip->mi_txrings_rsvd = 1; 4533 } 4534 /* 4535 * The default group cannot be reserved. It will be shared 4536 * by clients that do not have an exclusive group. 4537 */ 4538 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4539 mip->mi_txhwclnt_used = 1; 4540 break; 4541 default: 4542 ASSERT(B_FALSE); 4543 } 4544 4545 if (err != 0) 4546 mac_free_rings(mip, rtype); 4547 4548 return (err); 4549 } 4550 4551 /* 4552 * The ddi interrupt handle could be shared amoung rings. If so, compare 4553 * the new ring's ddi handle with the existing ones and set ddi_shared 4554 * flag. 4555 */ 4556 void 4557 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4558 { 4559 mac_group_t *group; 4560 mac_ring_t *ring; 4561 ddi_intr_handle_t ddi_handle; 4562 int g; 4563 4564 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4565 for (g = 0; g < grpcnt; g++) { 4566 group = groups + g; 4567 for (ring = group->mrg_rings; ring != NULL; 4568 ring = ring->mr_next) { 4569 if (ring == cring) 4570 continue; 4571 if (ring->mr_info.mri_intr.mi_ddi_handle == 4572 ddi_handle) { 4573 if (cring->mr_type == MAC_RING_TYPE_RX && 4574 ring->mr_index == 0 && 4575 !ring->mr_info.mri_intr.mi_ddi_shared) { 4576 ring->mr_info.mri_intr.mi_ddi_shared = 4577 B_TRUE; 4578 } else { 4579 cring->mr_info.mri_intr.mi_ddi_shared = 4580 B_TRUE; 4581 } 4582 return; 4583 } 4584 } 4585 } 4586 } 4587 4588 /* 4589 * Called to free all groups of particular type (RX or TX). It's assumed that 4590 * no clients are using these groups. 4591 */ 4592 void 4593 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4594 { 4595 mac_group_t *group, *groups; 4596 uint_t group_count; 4597 4598 switch (rtype) { 4599 case MAC_RING_TYPE_RX: 4600 if (mip->mi_rx_groups == NULL) 4601 return; 4602 4603 groups = mip->mi_rx_groups; 4604 group_count = mip->mi_rx_group_count; 4605 4606 mip->mi_rx_groups = NULL; 4607 mip->mi_rx_donor_grp = NULL; 4608 mip->mi_rx_group_count = 0; 4609 break; 4610 case MAC_RING_TYPE_TX: 4611 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4612 4613 if (mip->mi_tx_groups == NULL) 4614 return; 4615 4616 groups = mip->mi_tx_groups; 4617 group_count = mip->mi_tx_group_count; 4618 4619 mip->mi_tx_groups = NULL; 4620 mip->mi_tx_group_count = 0; 4621 mip->mi_tx_group_free = 0; 4622 mip->mi_default_tx_ring = NULL; 4623 break; 4624 default: 4625 ASSERT(B_FALSE); 4626 } 4627 4628 for (group = groups; group != NULL; group = group->mrg_next) { 4629 mac_ring_t *ring; 4630 4631 if (group->mrg_cur_count == 0) 4632 continue; 4633 4634 ASSERT(group->mrg_rings != NULL); 4635 4636 while ((ring = group->mrg_rings) != NULL) { 4637 group->mrg_rings = ring->mr_next; 4638 mac_ring_free(mip, ring); 4639 } 4640 } 4641 4642 /* Free all the cached rings */ 4643 mac_ring_freeall(mip); 4644 /* Free the block of group data strutures */ 4645 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4646 } 4647 4648 /* 4649 * Associate the VLAN filter to the receive group. 4650 */ 4651 int 4652 mac_group_addvlan(mac_group_t *group, uint16_t vlan) 4653 { 4654 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4655 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL); 4656 4657 if (vlan > VLAN_ID_MAX) 4658 return (EINVAL); 4659 4660 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4661 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan)); 4662 } 4663 4664 /* 4665 * Dissociate the VLAN from the receive group. 4666 */ 4667 int 4668 mac_group_remvlan(mac_group_t *group, uint16_t vlan) 4669 { 4670 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4671 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL); 4672 4673 if (vlan > VLAN_ID_MAX) 4674 return (EINVAL); 4675 4676 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4677 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan)); 4678 } 4679 4680 /* 4681 * Associate a MAC address with a receive group. 4682 * 4683 * The return value of this function should always be checked properly, because 4684 * any type of failure could cause unexpected results. A group can be added 4685 * or removed with a MAC address only after it has been reserved. Ideally, 4686 * a successful reservation always leads to calling mac_group_addmac() to 4687 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4688 * always imply that the group is functioning abnormally. 4689 * 4690 * Currently this function is called everywhere, and it reflects assumptions 4691 * about MAC addresses in the implementation. CR 6735196. 4692 */ 4693 int 4694 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4695 { 4696 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4697 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL); 4698 4699 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4700 } 4701 4702 /* 4703 * Remove the association between MAC address and receive group. 4704 */ 4705 int 4706 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4707 { 4708 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4709 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL); 4710 4711 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4712 } 4713 4714 /* 4715 * This is the entry point for packets transmitted through the bridging code. 4716 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4717 * pointer may be NULL to select the default ring. 4718 */ 4719 mblk_t * 4720 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4721 { 4722 mac_handle_t mh; 4723 4724 /* 4725 * Once we take a reference on the bridge link, the bridge 4726 * module itself can't unload, so the callback pointers are 4727 * stable. 4728 */ 4729 mutex_enter(&mip->mi_bridge_lock); 4730 if ((mh = mip->mi_bridge_link) != NULL) 4731 mac_bridge_ref_cb(mh, B_TRUE); 4732 mutex_exit(&mip->mi_bridge_lock); 4733 if (mh == NULL) { 4734 MAC_RING_TX(mip, rh, mp, mp); 4735 } else { 4736 mp = mac_bridge_tx_cb(mh, rh, mp); 4737 mac_bridge_ref_cb(mh, B_FALSE); 4738 } 4739 4740 return (mp); 4741 } 4742 4743 /* 4744 * Find a ring from its index. 4745 */ 4746 mac_ring_handle_t 4747 mac_find_ring(mac_group_handle_t gh, int index) 4748 { 4749 mac_group_t *group = (mac_group_t *)gh; 4750 mac_ring_t *ring = group->mrg_rings; 4751 4752 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4753 if (ring->mr_index == index) 4754 break; 4755 4756 return ((mac_ring_handle_t)ring); 4757 } 4758 /* 4759 * Add a ring to an existing group. 4760 * 4761 * The ring must be either passed directly (for example if the ring 4762 * movement is initiated by the framework), or specified through a driver 4763 * index (for example when the ring is added by the driver. 4764 * 4765 * The caller needs to call mac_perim_enter() before calling this function. 4766 */ 4767 int 4768 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4769 { 4770 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4771 mac_capab_rings_t *cap_rings; 4772 boolean_t driver_call = (ring == NULL); 4773 mac_group_type_t group_type; 4774 int ret = 0; 4775 flow_entry_t *flent; 4776 4777 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4778 4779 switch (group->mrg_type) { 4780 case MAC_RING_TYPE_RX: 4781 cap_rings = &mip->mi_rx_rings_cap; 4782 group_type = mip->mi_rx_group_type; 4783 break; 4784 case MAC_RING_TYPE_TX: 4785 cap_rings = &mip->mi_tx_rings_cap; 4786 group_type = mip->mi_tx_group_type; 4787 break; 4788 default: 4789 ASSERT(B_FALSE); 4790 } 4791 4792 /* 4793 * There should be no ring with the same ring index in the target 4794 * group. 4795 */ 4796 ASSERT(mac_find_ring((mac_group_handle_t)group, 4797 driver_call ? index : ring->mr_index) == NULL); 4798 4799 if (driver_call) { 4800 /* 4801 * The function is called as a result of a request from 4802 * a driver to add a ring to an existing group, for example 4803 * from the aggregation driver. Allocate a new mac_ring_t 4804 * for that ring. 4805 */ 4806 ring = mac_init_ring(mip, group, index, cap_rings); 4807 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4808 } else { 4809 /* 4810 * The function is called as a result of a MAC layer request 4811 * to add a ring to an existing group. In this case the 4812 * ring is being moved between groups, which requires 4813 * the underlying driver to support dynamic grouping, 4814 * and the mac_ring_t already exists. 4815 */ 4816 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4817 ASSERT(group->mrg_driver == NULL || 4818 cap_rings->mr_gaddring != NULL); 4819 ASSERT(ring->mr_gh == NULL); 4820 } 4821 4822 /* 4823 * At this point the ring should not be in use, and it should be 4824 * of the right for the target group. 4825 */ 4826 ASSERT(ring->mr_state < MR_INUSE); 4827 ASSERT(ring->mr_srs == NULL); 4828 ASSERT(ring->mr_type == group->mrg_type); 4829 4830 if (!driver_call) { 4831 /* 4832 * Add the driver level hardware ring if the process was not 4833 * initiated by the driver, and the target group is not the 4834 * group. 4835 */ 4836 if (group->mrg_driver != NULL) { 4837 cap_rings->mr_gaddring(group->mrg_driver, 4838 ring->mr_driver, ring->mr_type); 4839 } 4840 4841 /* 4842 * Insert the ring ahead existing rings. 4843 */ 4844 ring->mr_next = group->mrg_rings; 4845 group->mrg_rings = ring; 4846 ring->mr_gh = (mac_group_handle_t)group; 4847 group->mrg_cur_count++; 4848 } 4849 4850 /* 4851 * If the group has not been actively used, we're done. 4852 */ 4853 if (group->mrg_index != -1 && 4854 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4855 return (0); 4856 4857 /* 4858 * Start the ring if needed. Failure causes to undo the grouping action. 4859 */ 4860 if (ring->mr_state != MR_INUSE) { 4861 if ((ret = mac_start_ring(ring)) != 0) { 4862 if (!driver_call) { 4863 cap_rings->mr_gremring(group->mrg_driver, 4864 ring->mr_driver, ring->mr_type); 4865 } 4866 group->mrg_cur_count--; 4867 group->mrg_rings = ring->mr_next; 4868 4869 ring->mr_gh = NULL; 4870 4871 if (driver_call) 4872 mac_ring_free(mip, ring); 4873 4874 return (ret); 4875 } 4876 } 4877 4878 /* 4879 * Set up SRS/SR according to the ring type. 4880 */ 4881 switch (ring->mr_type) { 4882 case MAC_RING_TYPE_RX: 4883 /* 4884 * Setup an SRS on top of the new ring if the group is 4885 * reserved for someone's exclusive use. 4886 */ 4887 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4888 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group); 4889 4890 VERIFY3P(mcip, !=, NULL); 4891 flent = mcip->mci_flent; 4892 VERIFY3S(flent->fe_rx_srs_cnt, >, 0); 4893 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4894 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4895 mac_rx_deliver, mcip, NULL, NULL); 4896 } else { 4897 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4898 } 4899 break; 4900 case MAC_RING_TYPE_TX: 4901 { 4902 mac_grp_client_t *mgcp = group->mrg_clients; 4903 mac_client_impl_t *mcip; 4904 mac_soft_ring_set_t *mac_srs; 4905 mac_srs_tx_t *tx; 4906 4907 if (MAC_GROUP_NO_CLIENT(group)) { 4908 if (ring->mr_state == MR_INUSE) 4909 mac_stop_ring(ring); 4910 ring->mr_flag = 0; 4911 break; 4912 } 4913 /* 4914 * If the rings are being moved to a group that has 4915 * clients using it, then add the new rings to the 4916 * clients SRS. 4917 */ 4918 while (mgcp != NULL) { 4919 boolean_t is_aggr; 4920 4921 mcip = mgcp->mgc_client; 4922 flent = mcip->mci_flent; 4923 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4924 mac_srs = MCIP_TX_SRS(mcip); 4925 tx = &mac_srs->srs_tx; 4926 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4927 /* 4928 * If we are growing from 1 to multiple rings. 4929 */ 4930 if (tx->st_mode == SRS_TX_BW || 4931 tx->st_mode == SRS_TX_SERIALIZE || 4932 tx->st_mode == SRS_TX_DEFAULT) { 4933 mac_ring_t *tx_ring = tx->st_arg2; 4934 4935 tx->st_arg2 = NULL; 4936 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4937 mac_tx_srs_add_ring(mac_srs, tx_ring); 4938 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4939 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4940 SRS_TX_BW_FANOUT; 4941 } else { 4942 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4943 SRS_TX_FANOUT; 4944 } 4945 tx->st_func = mac_tx_get_func(tx->st_mode); 4946 } 4947 mac_tx_srs_add_ring(mac_srs, ring); 4948 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4949 mac_rx_deliver, mcip, NULL, NULL); 4950 mac_tx_client_restart((mac_client_handle_t)mcip); 4951 mgcp = mgcp->mgc_next; 4952 } 4953 break; 4954 } 4955 default: 4956 ASSERT(B_FALSE); 4957 } 4958 /* 4959 * For aggr, the default ring will be NULL to begin with. If it 4960 * is NULL, then pick the first ring that gets added as the 4961 * default ring. Any ring in an aggregation can be removed at 4962 * any time (by the user action of removing a link) and if the 4963 * current default ring gets removed, then a new one gets 4964 * picked (see i_mac_group_rem_ring()). 4965 */ 4966 if (mip->mi_state_flags & MIS_IS_AGGR && 4967 mip->mi_default_tx_ring == NULL && 4968 ring->mr_type == MAC_RING_TYPE_TX) { 4969 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4970 } 4971 4972 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4973 return (0); 4974 } 4975 4976 /* 4977 * Remove a ring from it's current group. MAC internal function for dynamic 4978 * grouping. 4979 * 4980 * The caller needs to call mac_perim_enter() before calling this function. 4981 */ 4982 void 4983 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4984 boolean_t driver_call) 4985 { 4986 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4987 mac_capab_rings_t *cap_rings = NULL; 4988 mac_group_type_t group_type; 4989 4990 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4991 4992 ASSERT(mac_find_ring((mac_group_handle_t)group, 4993 ring->mr_index) == (mac_ring_handle_t)ring); 4994 ASSERT((mac_group_t *)ring->mr_gh == group); 4995 ASSERT(ring->mr_type == group->mrg_type); 4996 4997 if (ring->mr_state == MR_INUSE) 4998 mac_stop_ring(ring); 4999 switch (ring->mr_type) { 5000 case MAC_RING_TYPE_RX: 5001 group_type = mip->mi_rx_group_type; 5002 cap_rings = &mip->mi_rx_rings_cap; 5003 5004 /* 5005 * Only hardware classified packets hold a reference to the 5006 * ring all the way up the Rx path. mac_rx_srs_remove() 5007 * will take care of quiescing the Rx path and removing the 5008 * SRS. The software classified path neither holds a reference 5009 * nor any association with the ring in mac_rx. 5010 */ 5011 if (ring->mr_srs != NULL) { 5012 mac_rx_srs_remove(ring->mr_srs); 5013 ring->mr_srs = NULL; 5014 } 5015 5016 break; 5017 case MAC_RING_TYPE_TX: 5018 { 5019 mac_grp_client_t *mgcp; 5020 mac_client_impl_t *mcip; 5021 mac_soft_ring_set_t *mac_srs; 5022 mac_srs_tx_t *tx; 5023 mac_ring_t *rem_ring; 5024 mac_group_t *defgrp; 5025 uint_t ring_info = 0; 5026 5027 /* 5028 * For TX this function is invoked in three 5029 * cases: 5030 * 5031 * 1) In the case of a failure during the 5032 * initial creation of a group when a share is 5033 * associated with a MAC client. So the SRS is not 5034 * yet setup, and will be setup later after the 5035 * group has been reserved and populated. 5036 * 5037 * 2) From mac_release_tx_group() when freeing 5038 * a TX SRS. 5039 * 5040 * 3) In the case of aggr, when a port gets removed, 5041 * the pseudo Tx rings that it exposed gets removed. 5042 * 5043 * In the first two cases the SRS and its soft 5044 * rings are already quiesced. 5045 */ 5046 if (driver_call) { 5047 mac_client_impl_t *mcip; 5048 mac_soft_ring_set_t *mac_srs; 5049 mac_soft_ring_t *sringp; 5050 mac_srs_tx_t *srs_tx; 5051 5052 if (mip->mi_state_flags & MIS_IS_AGGR && 5053 mip->mi_default_tx_ring == 5054 (mac_ring_handle_t)ring) { 5055 /* pick a new default Tx ring */ 5056 mip->mi_default_tx_ring = 5057 (group->mrg_rings != ring) ? 5058 (mac_ring_handle_t)group->mrg_rings : 5059 (mac_ring_handle_t)(ring->mr_next); 5060 } 5061 /* Presently only aggr case comes here */ 5062 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 5063 break; 5064 5065 mcip = MAC_GROUP_ONLY_CLIENT(group); 5066 ASSERT(mcip != NULL); 5067 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 5068 mac_srs = MCIP_TX_SRS(mcip); 5069 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 5070 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 5071 srs_tx = &mac_srs->srs_tx; 5072 /* 5073 * Wakeup any callers blocked on this 5074 * Tx ring due to flow control. 5075 */ 5076 sringp = srs_tx->st_soft_rings[ring->mr_index]; 5077 ASSERT(sringp != NULL); 5078 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 5079 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5080 mac_tx_srs_del_ring(mac_srs, ring); 5081 mac_tx_client_restart((mac_client_handle_t)mcip); 5082 break; 5083 } 5084 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 5085 group_type = mip->mi_tx_group_type; 5086 cap_rings = &mip->mi_tx_rings_cap; 5087 /* 5088 * See if we need to take it out of the MAC clients using 5089 * this group 5090 */ 5091 if (MAC_GROUP_NO_CLIENT(group)) 5092 break; 5093 mgcp = group->mrg_clients; 5094 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5095 while (mgcp != NULL) { 5096 mcip = mgcp->mgc_client; 5097 mac_srs = MCIP_TX_SRS(mcip); 5098 tx = &mac_srs->srs_tx; 5099 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5100 /* 5101 * If we are here when removing rings from the 5102 * defgroup, mac_reserve_tx_ring would have 5103 * already deleted the ring from the MAC 5104 * clients in the group. 5105 */ 5106 if (group != defgrp) { 5107 mac_tx_invoke_callbacks(mcip, 5108 (mac_tx_cookie_t) 5109 mac_tx_srs_get_soft_ring(mac_srs, ring)); 5110 mac_tx_srs_del_ring(mac_srs, ring); 5111 } 5112 /* 5113 * Additionally, if we are left with only 5114 * one ring in the group after this, we need 5115 * to modify the mode etc. to. (We haven't 5116 * yet taken the ring out, so we check with 2). 5117 */ 5118 if (group->mrg_cur_count == 2) { 5119 if (ring->mr_next == NULL) 5120 rem_ring = group->mrg_rings; 5121 else 5122 rem_ring = ring->mr_next; 5123 mac_tx_invoke_callbacks(mcip, 5124 (mac_tx_cookie_t) 5125 mac_tx_srs_get_soft_ring(mac_srs, 5126 rem_ring)); 5127 mac_tx_srs_del_ring(mac_srs, rem_ring); 5128 if (rem_ring->mr_state != MR_INUSE) { 5129 (void) mac_start_ring(rem_ring); 5130 } 5131 tx->st_arg2 = (void *)rem_ring; 5132 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 5133 ring_info = mac_hwring_getinfo( 5134 (mac_ring_handle_t)rem_ring); 5135 /* 5136 * We are shrinking from multiple 5137 * to 1 ring. 5138 */ 5139 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5140 tx->st_mode = SRS_TX_BW; 5141 } else if (mac_tx_serialize || 5142 (ring_info & MAC_RING_TX_SERIALIZE)) { 5143 tx->st_mode = SRS_TX_SERIALIZE; 5144 } else { 5145 tx->st_mode = SRS_TX_DEFAULT; 5146 } 5147 tx->st_func = mac_tx_get_func(tx->st_mode); 5148 } 5149 mac_tx_client_restart((mac_client_handle_t)mcip); 5150 mgcp = mgcp->mgc_next; 5151 } 5152 break; 5153 } 5154 default: 5155 ASSERT(B_FALSE); 5156 } 5157 5158 /* 5159 * Remove the ring from the group. 5160 */ 5161 if (ring == group->mrg_rings) 5162 group->mrg_rings = ring->mr_next; 5163 else { 5164 mac_ring_t *pre; 5165 5166 pre = group->mrg_rings; 5167 while (pre->mr_next != ring) 5168 pre = pre->mr_next; 5169 pre->mr_next = ring->mr_next; 5170 } 5171 group->mrg_cur_count--; 5172 5173 if (!driver_call) { 5174 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 5175 ASSERT(group->mrg_driver == NULL || 5176 cap_rings->mr_gremring != NULL); 5177 5178 /* 5179 * Remove the driver level hardware ring. 5180 */ 5181 if (group->mrg_driver != NULL) { 5182 cap_rings->mr_gremring(group->mrg_driver, 5183 ring->mr_driver, ring->mr_type); 5184 } 5185 } 5186 5187 ring->mr_gh = NULL; 5188 if (driver_call) 5189 mac_ring_free(mip, ring); 5190 else 5191 ring->mr_flag = 0; 5192 } 5193 5194 /* 5195 * Move a ring to the target group. If needed, remove the ring from the group 5196 * that it currently belongs to. 5197 * 5198 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 5199 */ 5200 static int 5201 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 5202 { 5203 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 5204 int rv; 5205 5206 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5207 ASSERT(d_group != NULL); 5208 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh); 5209 5210 if (s_group == d_group) 5211 return (0); 5212 5213 /* 5214 * Remove it from current group first. 5215 */ 5216 if (s_group != NULL) 5217 i_mac_group_rem_ring(s_group, ring, B_FALSE); 5218 5219 /* 5220 * Add it to the new group. 5221 */ 5222 rv = i_mac_group_add_ring(d_group, ring, 0); 5223 if (rv != 0) { 5224 /* 5225 * Failed to add ring back to source group. If 5226 * that fails, the ring is stuck in limbo, log message. 5227 */ 5228 if (i_mac_group_add_ring(s_group, ring, 0)) { 5229 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 5230 mip->mi_name, (void *)ring); 5231 } 5232 } 5233 5234 return (rv); 5235 } 5236 5237 /* 5238 * Find a MAC address according to its value. 5239 */ 5240 mac_address_t * 5241 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 5242 { 5243 mac_address_t *map; 5244 5245 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5246 5247 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 5248 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 5249 break; 5250 } 5251 5252 return (map); 5253 } 5254 5255 /* 5256 * Check whether the MAC address is shared by multiple clients. 5257 */ 5258 boolean_t 5259 mac_check_macaddr_shared(mac_address_t *map) 5260 { 5261 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 5262 5263 return (map->ma_nusers > 1); 5264 } 5265 5266 /* 5267 * Remove the specified MAC address from the MAC address list and free it. 5268 */ 5269 static void 5270 mac_free_macaddr(mac_address_t *map) 5271 { 5272 mac_impl_t *mip = map->ma_mip; 5273 5274 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5275 VERIFY3P(mip->mi_addresses, !=, NULL); 5276 5277 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5278 VERIFY3P(map, !=, NULL); 5279 VERIFY3S(map->ma_nusers, ==, 0); 5280 VERIFY3P(map->ma_vlans, ==, NULL); 5281 5282 if (map == mip->mi_addresses) { 5283 mip->mi_addresses = map->ma_next; 5284 } else { 5285 mac_address_t *pre; 5286 5287 pre = mip->mi_addresses; 5288 while (pre->ma_next != map) 5289 pre = pre->ma_next; 5290 pre->ma_next = map->ma_next; 5291 } 5292 5293 kmem_free(map, sizeof (mac_address_t)); 5294 } 5295 5296 static mac_vlan_t * 5297 mac_find_vlan(mac_address_t *map, uint16_t vid) 5298 { 5299 mac_vlan_t *mvp; 5300 5301 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) { 5302 if (mvp->mv_vid == vid) 5303 return (mvp); 5304 } 5305 5306 return (NULL); 5307 } 5308 5309 static mac_vlan_t * 5310 mac_add_vlan(mac_address_t *map, uint16_t vid) 5311 { 5312 mac_vlan_t *mvp; 5313 5314 /* 5315 * We should never add the same {addr, VID} tuple more 5316 * than once, but let's be sure. 5317 */ 5318 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) 5319 VERIFY3U(mvp->mv_vid, !=, vid); 5320 5321 /* Add the VLAN to the head of the VLAN list. */ 5322 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP); 5323 mvp->mv_vid = vid; 5324 mvp->mv_next = map->ma_vlans; 5325 map->ma_vlans = mvp; 5326 5327 return (mvp); 5328 } 5329 5330 static void 5331 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp) 5332 { 5333 mac_vlan_t *pre; 5334 5335 if (map->ma_vlans == mvp) { 5336 map->ma_vlans = mvp->mv_next; 5337 } else { 5338 pre = map->ma_vlans; 5339 while (pre->mv_next != mvp) { 5340 pre = pre->mv_next; 5341 5342 /* 5343 * We've reached the end of the list without 5344 * finding mvp. 5345 */ 5346 VERIFY3P(pre, !=, NULL); 5347 } 5348 pre->mv_next = mvp->mv_next; 5349 } 5350 5351 kmem_free(mvp, sizeof (mac_vlan_t)); 5352 } 5353 5354 /* 5355 * Create a new mac_address_t if this is the first use of the address 5356 * or add a VID to an existing address. In either case, the 5357 * mac_address_t acts as a list of {addr, VID} tuples where each tuple 5358 * shares the same addr. If group is non-NULL then attempt to program 5359 * the MAC's HW filters for this group. Otherwise, if group is NULL, 5360 * then the MAC has no rings and there is nothing to program. 5361 */ 5362 int 5363 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr, 5364 uint16_t vid, boolean_t use_hw) 5365 { 5366 mac_address_t *map; 5367 mac_vlan_t *mvp; 5368 int err = 0; 5369 boolean_t allocated_map = B_FALSE; 5370 boolean_t hw_mac = B_FALSE; 5371 boolean_t hw_vlan = B_FALSE; 5372 5373 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5374 5375 map = mac_find_macaddr(mip, addr); 5376 5377 /* 5378 * If this is the first use of this MAC address then allocate 5379 * and initialize a new structure. 5380 */ 5381 if (map == NULL) { 5382 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5383 map->ma_len = mip->mi_type->mt_addr_length; 5384 bcopy(addr, map->ma_addr, map->ma_len); 5385 map->ma_nusers = 0; 5386 map->ma_group = group; 5387 map->ma_mip = mip; 5388 map->ma_untagged = B_FALSE; 5389 5390 /* Add the new MAC address to the head of the address list. */ 5391 map->ma_next = mip->mi_addresses; 5392 mip->mi_addresses = map; 5393 5394 allocated_map = B_TRUE; 5395 } 5396 5397 VERIFY(map->ma_group == NULL || map->ma_group == group); 5398 if (map->ma_group == NULL) 5399 map->ma_group = group; 5400 5401 if (vid == VLAN_ID_NONE) { 5402 map->ma_untagged = B_TRUE; 5403 mvp = NULL; 5404 } else { 5405 mvp = mac_add_vlan(map, vid); 5406 } 5407 5408 /* 5409 * Set the VLAN HW filter if: 5410 * 5411 * o the MAC's VLAN HW filtering is enabled, and 5412 * o the address does not currently rely on promisc mode. 5413 * 5414 * This is called even when the client specifies an untagged 5415 * address (VLAN_ID_NONE) because some MAC providers require 5416 * setting additional bits to accept untagged traffic when 5417 * VLAN HW filtering is enabled. 5418 */ 5419 if (MAC_GROUP_HW_VLAN(group) && 5420 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) { 5421 if ((err = mac_group_addvlan(group, vid)) != 0) 5422 goto bail; 5423 5424 hw_vlan = B_TRUE; 5425 } 5426 5427 VERIFY3S(map->ma_nusers, >=, 0); 5428 map->ma_nusers++; 5429 5430 /* 5431 * If this MAC address already has a HW filter then simply 5432 * increment the counter. 5433 */ 5434 if (map->ma_nusers > 1) 5435 return (0); 5436 5437 /* 5438 * All logic from here on out is executed during initial 5439 * creation only. 5440 */ 5441 VERIFY3S(map->ma_nusers, ==, 1); 5442 5443 /* 5444 * Activate this MAC address by adding it to the reserved group. 5445 */ 5446 if (group != NULL) { 5447 err = mac_group_addmac(group, (const uint8_t *)addr); 5448 5449 /* 5450 * If the driver is out of filters then we can 5451 * continue and use promisc mode. For any other error, 5452 * assume the driver is in a state where we can't 5453 * program the filters or use promisc mode; so we must 5454 * bail. 5455 */ 5456 if (err != 0 && err != ENOSPC) { 5457 map->ma_nusers--; 5458 goto bail; 5459 } 5460 5461 hw_mac = (err == 0); 5462 } 5463 5464 if (hw_mac) { 5465 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5466 return (0); 5467 } 5468 5469 /* 5470 * The MAC address addition failed. If the client requires a 5471 * hardware classified MAC address, fail the operation. This 5472 * feature is only used by sun4v vsw. 5473 */ 5474 if (use_hw && !hw_mac) { 5475 err = ENOSPC; 5476 map->ma_nusers--; 5477 goto bail; 5478 } 5479 5480 /* 5481 * If we reach this point then either the MAC doesn't have 5482 * RINGS capability or we are out of MAC address HW filters. 5483 * In any case we must put the MAC into promiscuous mode. 5484 */ 5485 VERIFY(group == NULL || !hw_mac); 5486 5487 /* 5488 * The one exception is the primary address. A non-RINGS 5489 * driver filters the primary address by default; promisc mode 5490 * is not needed. 5491 */ 5492 if ((group == NULL) && 5493 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5494 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5495 return (0); 5496 } 5497 5498 /* 5499 * Enable promiscuous mode in order to receive traffic to the 5500 * new MAC address. All existing HW filters still send their 5501 * traffic to their respective group/SRSes. But with promisc 5502 * enabled all unknown traffic is delivered to the default 5503 * group where it is SW classified via mac_rx_classify(). 5504 */ 5505 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5506 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5507 return (0); 5508 } 5509 5510 /* 5511 * We failed to set promisc mode and we are about to free 'map'. 5512 */ 5513 map->ma_nusers = 0; 5514 5515 bail: 5516 if (hw_vlan) { 5517 int err2 = mac_group_remvlan(group, vid); 5518 5519 if (err2 != 0) { 5520 cmn_err(CE_WARN, "Failed to remove VLAN %u from group" 5521 " %d on MAC %s: %d.", vid, group->mrg_index, 5522 mip->mi_name, err2); 5523 } 5524 } 5525 5526 if (mvp != NULL) 5527 mac_rem_vlan(map, mvp); 5528 5529 if (allocated_map) 5530 mac_free_macaddr(map); 5531 5532 return (err); 5533 } 5534 5535 int 5536 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid) 5537 { 5538 mac_vlan_t *mvp; 5539 mac_impl_t *mip = map->ma_mip; 5540 mac_group_t *group = map->ma_group; 5541 int err = 0; 5542 5543 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5544 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5545 5546 if (vid == VLAN_ID_NONE) { 5547 map->ma_untagged = B_FALSE; 5548 mvp = NULL; 5549 } else { 5550 mvp = mac_find_vlan(map, vid); 5551 VERIFY3P(mvp, !=, NULL); 5552 } 5553 5554 if (MAC_GROUP_HW_VLAN(group) && 5555 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED && 5556 ((err = mac_group_remvlan(group, vid)) != 0)) 5557 return (err); 5558 5559 if (mvp != NULL) 5560 mac_rem_vlan(map, mvp); 5561 5562 /* 5563 * If it's not the last client using this MAC address, only update 5564 * the MAC clients count. 5565 */ 5566 map->ma_nusers--; 5567 if (map->ma_nusers > 0) 5568 return (0); 5569 5570 VERIFY3S(map->ma_nusers, ==, 0); 5571 5572 /* 5573 * The MAC address is no longer used by any MAC client, so 5574 * remove it from its associated group. Turn off promiscuous 5575 * mode if this is the last address relying on it. 5576 */ 5577 switch (map->ma_type) { 5578 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5579 /* 5580 * Don't free the preset primary address for drivers that 5581 * don't advertise RINGS capability. 5582 */ 5583 if (group == NULL) 5584 return (0); 5585 5586 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) { 5587 if (vid == VLAN_ID_NONE) 5588 map->ma_untagged = B_TRUE; 5589 else 5590 (void) mac_add_vlan(map, vid); 5591 5592 /* 5593 * If we fail to remove the MAC address HW 5594 * filter but then also fail to re-add the 5595 * VLAN HW filter then we are in a busted 5596 * state. We do our best by logging a warning 5597 * and returning the original 'err' that got 5598 * us here. At this point, traffic for this 5599 * address + VLAN combination will be dropped 5600 * until the user reboots the system. In the 5601 * future, it would be nice to have a system 5602 * that can compare the state of expected 5603 * classification according to mac to the 5604 * actual state of the provider, and report 5605 * and fix any inconsistencies. 5606 */ 5607 if (MAC_GROUP_HW_VLAN(group)) { 5608 int err2; 5609 5610 err2 = mac_group_addvlan(group, vid); 5611 if (err2 != 0) { 5612 cmn_err(CE_WARN, "Failed to readd VLAN" 5613 " %u to group %d on MAC %s: %d.", 5614 vid, group->mrg_index, mip->mi_name, 5615 err2); 5616 } 5617 } 5618 5619 map->ma_nusers = 1; 5620 return (err); 5621 } 5622 5623 map->ma_group = NULL; 5624 break; 5625 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5626 err = i_mac_promisc_set(mip, B_FALSE); 5627 break; 5628 default: 5629 panic("Unexpected ma_type 0x%x, file: %s, line %d", 5630 map->ma_type, __FILE__, __LINE__); 5631 } 5632 5633 if (err != 0) { 5634 map->ma_nusers = 1; 5635 return (err); 5636 } 5637 5638 /* 5639 * We created MAC address for the primary one at registration, so we 5640 * won't free it here. mac_fini_macaddr() will take care of it. 5641 */ 5642 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5643 mac_free_macaddr(map); 5644 5645 return (0); 5646 } 5647 5648 /* 5649 * Update an existing MAC address. The caller need to make sure that the new 5650 * value has not been used. 5651 */ 5652 int 5653 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5654 { 5655 mac_impl_t *mip = map->ma_mip; 5656 int err = 0; 5657 5658 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5659 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5660 5661 switch (map->ma_type) { 5662 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5663 /* 5664 * Update the primary address for drivers that are not 5665 * RINGS capable. 5666 */ 5667 if (mip->mi_rx_groups == NULL) { 5668 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5669 mac_addr); 5670 if (err != 0) 5671 return (err); 5672 break; 5673 } 5674 5675 /* 5676 * If this MAC address is not currently in use, 5677 * simply break out and update the value. 5678 */ 5679 if (map->ma_nusers == 0) 5680 break; 5681 5682 /* 5683 * Need to replace the MAC address associated with a group. 5684 */ 5685 err = mac_group_remmac(map->ma_group, map->ma_addr); 5686 if (err != 0) 5687 return (err); 5688 5689 err = mac_group_addmac(map->ma_group, mac_addr); 5690 5691 /* 5692 * Failure hints hardware error. The MAC layer needs to 5693 * have error notification facility to handle this. 5694 * Now, simply try to restore the value. 5695 */ 5696 if (err != 0) 5697 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5698 5699 break; 5700 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5701 /* 5702 * Need to do nothing more if in promiscuous mode. 5703 */ 5704 break; 5705 default: 5706 ASSERT(B_FALSE); 5707 } 5708 5709 /* 5710 * Successfully replaced the MAC address. 5711 */ 5712 if (err == 0) 5713 bcopy(mac_addr, map->ma_addr, map->ma_len); 5714 5715 return (err); 5716 } 5717 5718 /* 5719 * Freshen the MAC address with new value. Its caller must have updated the 5720 * hardware MAC address before calling this function. 5721 * This funcitons is supposed to be used to handle the MAC address change 5722 * notification from underlying drivers. 5723 */ 5724 void 5725 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5726 { 5727 mac_impl_t *mip = map->ma_mip; 5728 5729 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5730 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5731 5732 /* 5733 * Freshen the MAC address with new value. 5734 */ 5735 bcopy(mac_addr, map->ma_addr, map->ma_len); 5736 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5737 5738 /* 5739 * Update all MAC clients that share this MAC address. 5740 */ 5741 mac_unicast_update_clients(mip, map); 5742 } 5743 5744 /* 5745 * Set up the primary MAC address. 5746 */ 5747 void 5748 mac_init_macaddr(mac_impl_t *mip) 5749 { 5750 mac_address_t *map; 5751 5752 /* 5753 * The reference count is initialized to zero, until it's really 5754 * activated. 5755 */ 5756 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5757 map->ma_len = mip->mi_type->mt_addr_length; 5758 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5759 5760 /* 5761 * If driver advertises RINGS capability, it shouldn't have initialized 5762 * its primary MAC address. For other drivers, including VNIC, the 5763 * primary address must work after registration. 5764 */ 5765 if (mip->mi_rx_groups == NULL) 5766 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5767 5768 map->ma_mip = mip; 5769 5770 mip->mi_addresses = map; 5771 } 5772 5773 /* 5774 * Clean up the primary MAC address. Note, only one primary MAC address 5775 * is allowed. All other MAC addresses must have been freed appropriately. 5776 */ 5777 void 5778 mac_fini_macaddr(mac_impl_t *mip) 5779 { 5780 mac_address_t *map = mip->mi_addresses; 5781 5782 if (map == NULL) 5783 return; 5784 5785 /* 5786 * If mi_addresses is initialized, there should be exactly one 5787 * entry left on the list with no users. 5788 */ 5789 VERIFY3S(map->ma_nusers, ==, 0); 5790 VERIFY3P(map->ma_next, ==, NULL); 5791 VERIFY3P(map->ma_vlans, ==, NULL); 5792 5793 kmem_free(map, sizeof (mac_address_t)); 5794 mip->mi_addresses = NULL; 5795 } 5796 5797 /* 5798 * Logging related functions. 5799 * 5800 * Note that Kernel statistics have been extended to maintain fine 5801 * granularity of statistics viz. hardware lane, software lane, fanout 5802 * stats etc. However, extended accounting continues to support only 5803 * aggregate statistics like before. 5804 */ 5805 5806 /* Write the flow description to a netinfo_t record */ 5807 static netinfo_t * 5808 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5809 { 5810 netinfo_t *ninfo; 5811 net_desc_t *ndesc; 5812 flow_desc_t *fdesc; 5813 mac_resource_props_t *mrp; 5814 5815 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5816 if (ninfo == NULL) 5817 return (NULL); 5818 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5819 if (ndesc == NULL) { 5820 kmem_free(ninfo, sizeof (netinfo_t)); 5821 return (NULL); 5822 } 5823 5824 /* 5825 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5826 * Updates to the fe_flow_desc are done under the fe_lock 5827 */ 5828 mutex_enter(&flent->fe_lock); 5829 fdesc = &flent->fe_flow_desc; 5830 mrp = &flent->fe_resource_props; 5831 5832 ndesc->nd_name = flent->fe_flow_name; 5833 ndesc->nd_devname = mcip->mci_name; 5834 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5835 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5836 ndesc->nd_sap = htonl(fdesc->fd_sap); 5837 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5838 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5839 if (ndesc->nd_isv4) { 5840 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5841 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5842 } else { 5843 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5844 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5845 } 5846 ndesc->nd_sport = htons(fdesc->fd_local_port); 5847 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5848 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5849 mutex_exit(&flent->fe_lock); 5850 5851 ninfo->ni_record = ndesc; 5852 ninfo->ni_size = sizeof (net_desc_t); 5853 ninfo->ni_type = EX_NET_FLDESC_REC; 5854 5855 return (ninfo); 5856 } 5857 5858 /* Write the flow statistics to a netinfo_t record */ 5859 static netinfo_t * 5860 mac_write_flow_stats(flow_entry_t *flent) 5861 { 5862 netinfo_t *ninfo; 5863 net_stat_t *nstat; 5864 mac_soft_ring_set_t *mac_srs; 5865 mac_rx_stats_t *mac_rx_stat; 5866 mac_tx_stats_t *mac_tx_stat; 5867 int i; 5868 5869 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5870 if (ninfo == NULL) 5871 return (NULL); 5872 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5873 if (nstat == NULL) { 5874 kmem_free(ninfo, sizeof (netinfo_t)); 5875 return (NULL); 5876 } 5877 5878 nstat->ns_name = flent->fe_flow_name; 5879 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5880 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5881 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5882 5883 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5884 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5885 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5886 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5887 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5888 } 5889 5890 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5891 if (mac_srs != NULL) { 5892 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5893 5894 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5895 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5896 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5897 } 5898 5899 ninfo->ni_record = nstat; 5900 ninfo->ni_size = sizeof (net_stat_t); 5901 ninfo->ni_type = EX_NET_FLSTAT_REC; 5902 5903 return (ninfo); 5904 } 5905 5906 /* Write the link description to a netinfo_t record */ 5907 static netinfo_t * 5908 mac_write_link_desc(mac_client_impl_t *mcip) 5909 { 5910 netinfo_t *ninfo; 5911 net_desc_t *ndesc; 5912 flow_entry_t *flent = mcip->mci_flent; 5913 5914 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5915 if (ninfo == NULL) 5916 return (NULL); 5917 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5918 if (ndesc == NULL) { 5919 kmem_free(ninfo, sizeof (netinfo_t)); 5920 return (NULL); 5921 } 5922 5923 ndesc->nd_name = mcip->mci_name; 5924 ndesc->nd_devname = mcip->mci_name; 5925 ndesc->nd_isv4 = B_TRUE; 5926 /* 5927 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5928 * Updates to the fe_flow_desc are done under the fe_lock 5929 * after removing the flent from the flow table. 5930 */ 5931 mutex_enter(&flent->fe_lock); 5932 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5933 mutex_exit(&flent->fe_lock); 5934 5935 ninfo->ni_record = ndesc; 5936 ninfo->ni_size = sizeof (net_desc_t); 5937 ninfo->ni_type = EX_NET_LNDESC_REC; 5938 5939 return (ninfo); 5940 } 5941 5942 /* Write the link statistics to a netinfo_t record */ 5943 static netinfo_t * 5944 mac_write_link_stats(mac_client_impl_t *mcip) 5945 { 5946 netinfo_t *ninfo; 5947 net_stat_t *nstat; 5948 flow_entry_t *flent; 5949 mac_soft_ring_set_t *mac_srs; 5950 mac_rx_stats_t *mac_rx_stat; 5951 mac_tx_stats_t *mac_tx_stat; 5952 int i; 5953 5954 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5955 if (ninfo == NULL) 5956 return (NULL); 5957 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5958 if (nstat == NULL) { 5959 kmem_free(ninfo, sizeof (netinfo_t)); 5960 return (NULL); 5961 } 5962 5963 nstat->ns_name = mcip->mci_name; 5964 flent = mcip->mci_flent; 5965 if (flent != NULL) { 5966 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5967 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5968 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5969 5970 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5971 mac_rx_stat->mrs_pollbytes + 5972 mac_rx_stat->mrs_lclbytes; 5973 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5974 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5975 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5976 } 5977 } 5978 5979 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5980 if (mac_srs != NULL) { 5981 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5982 5983 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5984 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5985 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5986 } 5987 5988 ninfo->ni_record = nstat; 5989 ninfo->ni_size = sizeof (net_stat_t); 5990 ninfo->ni_type = EX_NET_LNSTAT_REC; 5991 5992 return (ninfo); 5993 } 5994 5995 typedef struct i_mac_log_state_s { 5996 boolean_t mi_last; 5997 int mi_fenable; 5998 int mi_lenable; 5999 list_t *mi_list; 6000 } i_mac_log_state_t; 6001 6002 /* 6003 * For a given flow, if the description has not been logged before, do it now. 6004 * If it is a VNIC, then we have collected information about it from the MAC 6005 * table, so skip it. 6006 * 6007 * Called through mac_flow_walk_nolock() 6008 * 6009 * Return 0 if successful. 6010 */ 6011 static int 6012 mac_log_flowinfo(flow_entry_t *flent, void *arg) 6013 { 6014 mac_client_impl_t *mcip = flent->fe_mcip; 6015 i_mac_log_state_t *lstate = arg; 6016 netinfo_t *ninfo; 6017 6018 if (mcip == NULL) 6019 return (0); 6020 6021 /* 6022 * If the name starts with "vnic", and fe_user_generated is true (to 6023 * exclude the mcast and active flow entries created implicitly for 6024 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 6025 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 6026 */ 6027 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 6028 (flent->fe_type & FLOW_USER) != 0) { 6029 return (0); 6030 } 6031 6032 if (!flent->fe_desc_logged) { 6033 /* 6034 * We don't return error because we want to continue the 6035 * walk in case this is the last walk which means we 6036 * need to reset fe_desc_logged in all the flows. 6037 */ 6038 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 6039 return (0); 6040 list_insert_tail(lstate->mi_list, ninfo); 6041 flent->fe_desc_logged = B_TRUE; 6042 } 6043 6044 /* 6045 * Regardless of the error, we want to proceed in case we have to 6046 * reset fe_desc_logged. 6047 */ 6048 ninfo = mac_write_flow_stats(flent); 6049 if (ninfo == NULL) 6050 return (-1); 6051 6052 list_insert_tail(lstate->mi_list, ninfo); 6053 6054 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 6055 flent->fe_desc_logged = B_FALSE; 6056 6057 return (0); 6058 } 6059 6060 /* 6061 * Log the description for each mac client of this mac_impl_t, if it 6062 * hasn't already been done. Additionally, log statistics for the link as 6063 * well. Walk the flow table and log information for each flow as well. 6064 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 6065 * also fe_desc_logged, if flow logging is on) since we want to log the 6066 * description if and when logging is restarted. 6067 * 6068 * Return 0 upon success or -1 upon failure 6069 */ 6070 static int 6071 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 6072 { 6073 mac_client_impl_t *mcip; 6074 netinfo_t *ninfo; 6075 6076 i_mac_perim_enter(mip); 6077 /* 6078 * Only walk the client list for NIC and etherstub 6079 */ 6080 if ((mip->mi_state_flags & MIS_DISABLED) || 6081 ((mip->mi_state_flags & MIS_IS_VNIC) && 6082 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 6083 i_mac_perim_exit(mip); 6084 return (0); 6085 } 6086 6087 for (mcip = mip->mi_clients_list; mcip != NULL; 6088 mcip = mcip->mci_client_next) { 6089 if (!MCIP_DATAPATH_SETUP(mcip)) 6090 continue; 6091 if (lstate->mi_lenable) { 6092 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 6093 ninfo = mac_write_link_desc(mcip); 6094 if (ninfo == NULL) { 6095 /* 6096 * We can't terminate it if this is the last 6097 * walk, else there might be some links with 6098 * mi_desc_logged set to true, which means 6099 * their description won't be logged the next 6100 * time logging is started (similarly for the 6101 * flows within such links). We can continue 6102 * without walking the flow table (i.e. to 6103 * set fe_desc_logged to false) because we 6104 * won't have written any flow stuff for this 6105 * link as we haven't logged the link itself. 6106 */ 6107 i_mac_perim_exit(mip); 6108 if (lstate->mi_last) 6109 return (0); 6110 else 6111 return (-1); 6112 } 6113 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 6114 list_insert_tail(lstate->mi_list, ninfo); 6115 } 6116 } 6117 6118 ninfo = mac_write_link_stats(mcip); 6119 if (ninfo == NULL && !lstate->mi_last) { 6120 i_mac_perim_exit(mip); 6121 return (-1); 6122 } 6123 list_insert_tail(lstate->mi_list, ninfo); 6124 6125 if (lstate->mi_last) 6126 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 6127 6128 if (lstate->mi_fenable) { 6129 if (mcip->mci_subflow_tab != NULL) { 6130 (void) mac_flow_walk_nolock( 6131 mcip->mci_subflow_tab, mac_log_flowinfo, 6132 lstate); 6133 } 6134 } 6135 } 6136 i_mac_perim_exit(mip); 6137 return (0); 6138 } 6139 6140 /* 6141 * modhash walker function to add a mac_impl_t to a list 6142 */ 6143 /*ARGSUSED*/ 6144 static uint_t 6145 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 6146 { 6147 list_t *list = (list_t *)arg; 6148 mac_impl_t *mip = (mac_impl_t *)val; 6149 6150 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 6151 list_insert_tail(list, mip); 6152 mip->mi_ref++; 6153 } 6154 6155 return (MH_WALK_CONTINUE); 6156 } 6157 6158 void 6159 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 6160 { 6161 list_t mac_impl_list; 6162 mac_impl_t *mip; 6163 netinfo_t *ninfo; 6164 6165 /* Create list of mac_impls */ 6166 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 6167 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 6168 mi_node)); 6169 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 6170 rw_exit(&i_mac_impl_lock); 6171 6172 /* Create log entries for each mac_impl */ 6173 for (mip = list_head(&mac_impl_list); mip != NULL; 6174 mip = list_next(&mac_impl_list, mip)) { 6175 if (i_mac_impl_log(mip, lstate) != 0) 6176 continue; 6177 } 6178 6179 /* Remove elements and destroy list of mac_impls */ 6180 rw_enter(&i_mac_impl_lock, RW_WRITER); 6181 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 6182 mip->mi_ref--; 6183 } 6184 rw_exit(&i_mac_impl_lock); 6185 list_destroy(&mac_impl_list); 6186 6187 /* 6188 * Write log entries to files outside of locks, free associated 6189 * structures, and remove entries from the list. 6190 */ 6191 while ((ninfo = list_head(net_log_list)) != NULL) { 6192 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 6193 list_remove(net_log_list, ninfo); 6194 kmem_free(ninfo->ni_record, ninfo->ni_size); 6195 kmem_free(ninfo, sizeof (*ninfo)); 6196 } 6197 list_destroy(net_log_list); 6198 } 6199 6200 /* 6201 * The timer thread that runs every mac_logging_interval seconds and logs 6202 * link and/or flow information. 6203 */ 6204 /* ARGSUSED */ 6205 void 6206 mac_log_linkinfo(void *arg) 6207 { 6208 i_mac_log_state_t lstate; 6209 list_t net_log_list; 6210 6211 list_create(&net_log_list, sizeof (netinfo_t), 6212 offsetof(netinfo_t, ni_link)); 6213 6214 rw_enter(&i_mac_impl_lock, RW_READER); 6215 if (!mac_flow_log_enable && !mac_link_log_enable) { 6216 rw_exit(&i_mac_impl_lock); 6217 return; 6218 } 6219 lstate.mi_fenable = mac_flow_log_enable; 6220 lstate.mi_lenable = mac_link_log_enable; 6221 lstate.mi_last = B_FALSE; 6222 lstate.mi_list = &net_log_list; 6223 6224 /* Write log entries for each mac_impl in the list */ 6225 i_mac_log_info(&net_log_list, &lstate); 6226 6227 if (mac_flow_log_enable || mac_link_log_enable) { 6228 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 6229 SEC_TO_TICK(mac_logging_interval)); 6230 } 6231 } 6232 6233 typedef struct i_mac_fastpath_state_s { 6234 boolean_t mf_disable; 6235 int mf_err; 6236 } i_mac_fastpath_state_t; 6237 6238 /* modhash walker function to enable or disable fastpath */ 6239 /*ARGSUSED*/ 6240 static uint_t 6241 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 6242 void *arg) 6243 { 6244 i_mac_fastpath_state_t *state = arg; 6245 mac_handle_t mh = (mac_handle_t)val; 6246 6247 if (state->mf_disable) 6248 state->mf_err = mac_fastpath_disable(mh); 6249 else 6250 mac_fastpath_enable(mh); 6251 6252 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 6253 } 6254 6255 /* 6256 * Start the logging timer. 6257 */ 6258 int 6259 mac_start_logusage(mac_logtype_t type, uint_t interval) 6260 { 6261 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 6262 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6263 int err; 6264 6265 rw_enter(&i_mac_impl_lock, RW_WRITER); 6266 switch (type) { 6267 case MAC_LOGTYPE_FLOW: 6268 if (mac_flow_log_enable) { 6269 rw_exit(&i_mac_impl_lock); 6270 return (0); 6271 } 6272 /* FALLTHRU */ 6273 case MAC_LOGTYPE_LINK: 6274 if (mac_link_log_enable) { 6275 rw_exit(&i_mac_impl_lock); 6276 return (0); 6277 } 6278 break; 6279 default: 6280 ASSERT(0); 6281 } 6282 6283 /* Disable fastpath */ 6284 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 6285 if ((err = dstate.mf_err) != 0) { 6286 /* Reenable fastpath */ 6287 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6288 rw_exit(&i_mac_impl_lock); 6289 return (err); 6290 } 6291 6292 switch (type) { 6293 case MAC_LOGTYPE_FLOW: 6294 mac_flow_log_enable = B_TRUE; 6295 /* FALLTHRU */ 6296 case MAC_LOGTYPE_LINK: 6297 mac_link_log_enable = B_TRUE; 6298 break; 6299 } 6300 6301 mac_logging_interval = interval; 6302 rw_exit(&i_mac_impl_lock); 6303 mac_log_linkinfo(NULL); 6304 return (0); 6305 } 6306 6307 /* 6308 * Stop the logging timer if both link and flow logging are turned off. 6309 */ 6310 void 6311 mac_stop_logusage(mac_logtype_t type) 6312 { 6313 i_mac_log_state_t lstate; 6314 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6315 list_t net_log_list; 6316 6317 list_create(&net_log_list, sizeof (netinfo_t), 6318 offsetof(netinfo_t, ni_link)); 6319 6320 rw_enter(&i_mac_impl_lock, RW_WRITER); 6321 6322 lstate.mi_fenable = mac_flow_log_enable; 6323 lstate.mi_lenable = mac_link_log_enable; 6324 lstate.mi_list = &net_log_list; 6325 6326 /* Last walk */ 6327 lstate.mi_last = B_TRUE; 6328 6329 switch (type) { 6330 case MAC_LOGTYPE_FLOW: 6331 if (lstate.mi_fenable) { 6332 ASSERT(mac_link_log_enable); 6333 mac_flow_log_enable = B_FALSE; 6334 mac_link_log_enable = B_FALSE; 6335 break; 6336 } 6337 /* FALLTHRU */ 6338 case MAC_LOGTYPE_LINK: 6339 if (!lstate.mi_lenable || mac_flow_log_enable) { 6340 rw_exit(&i_mac_impl_lock); 6341 return; 6342 } 6343 mac_link_log_enable = B_FALSE; 6344 break; 6345 default: 6346 ASSERT(0); 6347 } 6348 6349 /* Reenable fastpath */ 6350 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6351 6352 (void) untimeout(mac_logging_timer); 6353 mac_logging_timer = NULL; 6354 6355 /* Write log entries for each mac_impl in the list */ 6356 i_mac_log_info(&net_log_list, &lstate); 6357 } 6358 6359 /* 6360 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 6361 */ 6362 void 6363 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 6364 { 6365 pri_t pri; 6366 int count; 6367 mac_soft_ring_set_t *mac_srs; 6368 6369 if (flent->fe_rx_srs_cnt <= 0) 6370 return; 6371 6372 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 6373 SRST_FLOW) { 6374 pri = FLOW_PRIORITY(mcip->mci_min_pri, 6375 mcip->mci_max_pri, 6376 flent->fe_resource_props.mrp_priority); 6377 } else { 6378 pri = mcip->mci_max_pri; 6379 } 6380 6381 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 6382 mac_srs = flent->fe_rx_srs[count]; 6383 mac_update_srs_priority(mac_srs, pri); 6384 } 6385 /* 6386 * If we have a Tx SRS, we need to modify all the threads associated 6387 * with it. 6388 */ 6389 if (flent->fe_tx_srs != NULL) 6390 mac_update_srs_priority(flent->fe_tx_srs, pri); 6391 } 6392 6393 /* 6394 * RX and TX rings are reserved according to different semantics depending 6395 * on the requests from the MAC clients and type of rings: 6396 * 6397 * On the Tx side, by default we reserve individual rings, independently from 6398 * the groups. 6399 * 6400 * On the Rx side, the reservation is at the granularity of the group 6401 * of rings, and used for v12n level 1 only. It has a special case for the 6402 * primary client. 6403 * 6404 * If a share is allocated to a MAC client, we allocate a TX group and an 6405 * RX group to the client, and assign TX rings and RX rings to these 6406 * groups according to information gathered from the driver through 6407 * the share capability. 6408 * 6409 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 6410 * to allocate individual rings out of a group and program the hw classifier 6411 * based on IP address or higher level criteria. 6412 */ 6413 6414 /* 6415 * mac_reserve_tx_ring() 6416 * Reserve a unused ring by marking it with MR_INUSE state. 6417 * As reserved, the ring is ready to function. 6418 * 6419 * Notes for Hybrid I/O: 6420 * 6421 * If a specific ring is needed, it is specified through the desired_ring 6422 * argument. Otherwise that argument is set to NULL. 6423 * If the desired ring was previous allocated to another client, this 6424 * function swaps it with a new ring from the group of unassigned rings. 6425 */ 6426 mac_ring_t * 6427 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 6428 { 6429 mac_group_t *group; 6430 mac_grp_client_t *mgcp; 6431 mac_client_impl_t *mcip; 6432 mac_soft_ring_set_t *srs; 6433 6434 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6435 6436 /* 6437 * Find an available ring and start it before changing its status. 6438 * The unassigned rings are at the end of the mi_tx_groups 6439 * array. 6440 */ 6441 group = MAC_DEFAULT_TX_GROUP(mip); 6442 6443 /* Can't take the default ring out of the default group */ 6444 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 6445 6446 if (desired_ring->mr_state == MR_FREE) { 6447 ASSERT(MAC_GROUP_NO_CLIENT(group)); 6448 if (mac_start_ring(desired_ring) != 0) 6449 return (NULL); 6450 return (desired_ring); 6451 } 6452 /* 6453 * There are clients using this ring, so let's move the clients 6454 * away from using this ring. 6455 */ 6456 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6457 mcip = mgcp->mgc_client; 6458 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6459 srs = MCIP_TX_SRS(mcip); 6460 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 6461 mac_tx_invoke_callbacks(mcip, 6462 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 6463 desired_ring)); 6464 mac_tx_srs_del_ring(srs, desired_ring); 6465 mac_tx_client_restart((mac_client_handle_t)mcip); 6466 } 6467 return (desired_ring); 6468 } 6469 6470 /* 6471 * For a non-default group with multiple clients, return the primary client. 6472 */ 6473 static mac_client_impl_t * 6474 mac_get_grp_primary(mac_group_t *grp) 6475 { 6476 mac_grp_client_t *mgcp = grp->mrg_clients; 6477 mac_client_impl_t *mcip; 6478 6479 while (mgcp != NULL) { 6480 mcip = mgcp->mgc_client; 6481 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 6482 return (mcip); 6483 mgcp = mgcp->mgc_next; 6484 } 6485 return (NULL); 6486 } 6487 6488 /* 6489 * Hybrid I/O specifies the ring that should be given to a share. 6490 * If the ring is already used by clients, then we need to release 6491 * the ring back to the default group so that we can give it to 6492 * the share. This means the clients using this ring now get a 6493 * replacement ring. If there aren't any replacement rings, this 6494 * function returns a failure. 6495 */ 6496 static int 6497 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 6498 mac_ring_t *ring, mac_ring_t **rings, int nrings) 6499 { 6500 mac_group_t *group = (mac_group_t *)ring->mr_gh; 6501 mac_resource_props_t *mrp; 6502 mac_client_impl_t *mcip; 6503 mac_group_t *defgrp; 6504 mac_ring_t *tring; 6505 mac_group_t *tgrp; 6506 int i; 6507 int j; 6508 6509 mcip = MAC_GROUP_ONLY_CLIENT(group); 6510 if (mcip == NULL) 6511 mcip = mac_get_grp_primary(group); 6512 ASSERT(mcip != NULL); 6513 ASSERT(mcip->mci_share == 0); 6514 6515 mrp = MCIP_RESOURCE_PROPS(mcip); 6516 if (ring_type == MAC_RING_TYPE_RX) { 6517 defgrp = mip->mi_rx_donor_grp; 6518 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 6519 /* Need to put this mac client in the default group */ 6520 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 6521 return (ENOSPC); 6522 } else { 6523 /* 6524 * Switch this ring with some other ring from 6525 * the default group. 6526 */ 6527 for (tring = defgrp->mrg_rings; tring != NULL; 6528 tring = tring->mr_next) { 6529 if (tring->mr_index == 0) 6530 continue; 6531 for (j = 0; j < nrings; j++) { 6532 if (rings[j] == tring) 6533 break; 6534 } 6535 if (j >= nrings) 6536 break; 6537 } 6538 if (tring == NULL) 6539 return (ENOSPC); 6540 if (mac_group_mov_ring(mip, group, tring) != 0) 6541 return (ENOSPC); 6542 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6543 (void) mac_group_mov_ring(mip, defgrp, tring); 6544 return (ENOSPC); 6545 } 6546 } 6547 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6548 return (0); 6549 } 6550 6551 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6552 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6553 /* 6554 * See if we can get a spare ring to replace the default 6555 * ring. 6556 */ 6557 if (defgrp->mrg_cur_count == 1) { 6558 /* 6559 * Need to get a ring from another client, see if 6560 * there are any clients that can be moved to 6561 * the default group, thereby freeing some rings. 6562 */ 6563 for (i = 0; i < mip->mi_tx_group_count; i++) { 6564 tgrp = &mip->mi_tx_groups[i]; 6565 if (tgrp->mrg_state == 6566 MAC_GROUP_STATE_REGISTERED) { 6567 continue; 6568 } 6569 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6570 if (mcip == NULL) 6571 mcip = mac_get_grp_primary(tgrp); 6572 ASSERT(mcip != NULL); 6573 mrp = MCIP_RESOURCE_PROPS(mcip); 6574 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6575 ASSERT(tgrp->mrg_cur_count == 1); 6576 /* 6577 * If this ring is part of the 6578 * rings asked by the share we cannot 6579 * use it as the default ring. 6580 */ 6581 for (j = 0; j < nrings; j++) { 6582 if (rings[j] == tgrp->mrg_rings) 6583 break; 6584 } 6585 if (j < nrings) 6586 continue; 6587 mac_tx_client_quiesce( 6588 (mac_client_handle_t)mcip); 6589 mac_tx_switch_group(mcip, tgrp, 6590 defgrp); 6591 mac_tx_client_restart( 6592 (mac_client_handle_t)mcip); 6593 break; 6594 } 6595 } 6596 /* 6597 * All the rings are reserved, can't give up the 6598 * default ring. 6599 */ 6600 if (defgrp->mrg_cur_count <= 1) 6601 return (ENOSPC); 6602 } 6603 /* 6604 * Swap the default ring with another. 6605 */ 6606 for (tring = defgrp->mrg_rings; tring != NULL; 6607 tring = tring->mr_next) { 6608 /* 6609 * If this ring is part of the rings asked by the 6610 * share we cannot use it as the default ring. 6611 */ 6612 for (j = 0; j < nrings; j++) { 6613 if (rings[j] == tring) 6614 break; 6615 } 6616 if (j >= nrings) 6617 break; 6618 } 6619 ASSERT(tring != NULL); 6620 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6621 return (0); 6622 } 6623 /* 6624 * The Tx ring is with a group reserved by a MAC client. See if 6625 * we can swap it. 6626 */ 6627 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6628 mcip = MAC_GROUP_ONLY_CLIENT(group); 6629 if (mcip == NULL) 6630 mcip = mac_get_grp_primary(group); 6631 ASSERT(mcip != NULL); 6632 mrp = MCIP_RESOURCE_PROPS(mcip); 6633 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6634 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6635 ASSERT(group->mrg_cur_count == 1); 6636 /* Put this mac client in the default group */ 6637 mac_tx_switch_group(mcip, group, defgrp); 6638 } else { 6639 /* 6640 * Switch this ring with some other ring from 6641 * the default group. 6642 */ 6643 for (tring = defgrp->mrg_rings; tring != NULL; 6644 tring = tring->mr_next) { 6645 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6646 continue; 6647 /* 6648 * If this ring is part of the rings asked by the 6649 * share we cannot use it for swapping. 6650 */ 6651 for (j = 0; j < nrings; j++) { 6652 if (rings[j] == tring) 6653 break; 6654 } 6655 if (j >= nrings) 6656 break; 6657 } 6658 if (tring == NULL) { 6659 mac_tx_client_restart((mac_client_handle_t)mcip); 6660 return (ENOSPC); 6661 } 6662 if (mac_group_mov_ring(mip, group, tring) != 0) { 6663 mac_tx_client_restart((mac_client_handle_t)mcip); 6664 return (ENOSPC); 6665 } 6666 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6667 (void) mac_group_mov_ring(mip, defgrp, tring); 6668 mac_tx_client_restart((mac_client_handle_t)mcip); 6669 return (ENOSPC); 6670 } 6671 } 6672 mac_tx_client_restart((mac_client_handle_t)mcip); 6673 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6674 return (0); 6675 } 6676 6677 /* 6678 * Populate a zero-ring group with rings. If the share is non-NULL, 6679 * the rings are chosen according to that share. 6680 * Invoked after allocating a new RX or TX group through 6681 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6682 * Returns zero on success, an errno otherwise. 6683 */ 6684 int 6685 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6686 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6687 uint32_t ringcnt) 6688 { 6689 mac_ring_t **rings, *ring; 6690 uint_t nrings; 6691 int rv = 0, i = 0, j; 6692 6693 ASSERT((ring_type == MAC_RING_TYPE_RX && 6694 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6695 (ring_type == MAC_RING_TYPE_TX && 6696 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6697 6698 /* 6699 * First find the rings to allocate to the group. 6700 */ 6701 if (share != 0) { 6702 /* get rings through ms_squery() */ 6703 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6704 ASSERT(nrings != 0); 6705 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6706 KM_SLEEP); 6707 mip->mi_share_capab.ms_squery(share, ring_type, 6708 (mac_ring_handle_t *)rings, &nrings); 6709 for (i = 0; i < nrings; i++) { 6710 /* 6711 * If we have given this ring to a non-default 6712 * group, we need to check if we can get this 6713 * ring. 6714 */ 6715 ring = rings[i]; 6716 if (ring->mr_gh != (mac_group_handle_t)src_group || 6717 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6718 if (mac_reclaim_ring_from_grp(mip, ring_type, 6719 ring, rings, nrings) != 0) { 6720 rv = ENOSPC; 6721 goto bail; 6722 } 6723 } 6724 } 6725 } else { 6726 /* 6727 * Pick one ring from default group. 6728 * 6729 * for now pick the second ring which requires the first ring 6730 * at index 0 to stay in the default group, since it is the 6731 * ring which carries the multicast traffic. 6732 * We need a better way for a driver to indicate this, 6733 * for example a per-ring flag. 6734 */ 6735 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6736 KM_SLEEP); 6737 for (ring = src_group->mrg_rings; ring != NULL; 6738 ring = ring->mr_next) { 6739 if (ring_type == MAC_RING_TYPE_RX && 6740 ring->mr_index == 0) { 6741 continue; 6742 } 6743 if (ring_type == MAC_RING_TYPE_TX && 6744 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6745 continue; 6746 } 6747 rings[i++] = ring; 6748 if (i == ringcnt) 6749 break; 6750 } 6751 ASSERT(ring != NULL); 6752 nrings = i; 6753 /* Not enough rings as required */ 6754 if (nrings != ringcnt) { 6755 rv = ENOSPC; 6756 goto bail; 6757 } 6758 } 6759 6760 switch (ring_type) { 6761 case MAC_RING_TYPE_RX: 6762 if (src_group->mrg_cur_count - nrings < 1) { 6763 /* we ran out of rings */ 6764 rv = ENOSPC; 6765 goto bail; 6766 } 6767 6768 /* move receive rings to new group */ 6769 for (i = 0; i < nrings; i++) { 6770 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6771 if (rv != 0) { 6772 /* move rings back on failure */ 6773 for (j = 0; j < i; j++) { 6774 (void) mac_group_mov_ring(mip, 6775 src_group, rings[j]); 6776 } 6777 goto bail; 6778 } 6779 } 6780 break; 6781 6782 case MAC_RING_TYPE_TX: { 6783 mac_ring_t *tmp_ring; 6784 6785 /* move the TX rings to the new group */ 6786 for (i = 0; i < nrings; i++) { 6787 /* get the desired ring */ 6788 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6789 if (tmp_ring == NULL) { 6790 rv = ENOSPC; 6791 goto bail; 6792 } 6793 ASSERT(tmp_ring == rings[i]); 6794 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6795 if (rv != 0) { 6796 /* cleanup on failure */ 6797 for (j = 0; j < i; j++) { 6798 (void) mac_group_mov_ring(mip, 6799 MAC_DEFAULT_TX_GROUP(mip), 6800 rings[j]); 6801 } 6802 goto bail; 6803 } 6804 } 6805 break; 6806 } 6807 } 6808 6809 /* add group to share */ 6810 if (share != 0) 6811 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6812 6813 bail: 6814 /* free temporary array of rings */ 6815 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6816 6817 return (rv); 6818 } 6819 6820 void 6821 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6822 { 6823 mac_grp_client_t *mgcp; 6824 6825 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6826 if (mgcp->mgc_client == mcip) 6827 break; 6828 } 6829 6830 ASSERT(mgcp == NULL); 6831 6832 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6833 mgcp->mgc_client = mcip; 6834 mgcp->mgc_next = grp->mrg_clients; 6835 grp->mrg_clients = mgcp; 6836 } 6837 6838 void 6839 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6840 { 6841 mac_grp_client_t *mgcp, **pprev; 6842 6843 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6844 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6845 if (mgcp->mgc_client == mcip) 6846 break; 6847 } 6848 6849 ASSERT(mgcp != NULL); 6850 6851 *pprev = mgcp->mgc_next; 6852 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6853 } 6854 6855 /* 6856 * Return true if any client on this group explicitly asked for HW 6857 * rings (of type mask) or have a bound share. 6858 */ 6859 static boolean_t 6860 i_mac_clients_hw(mac_group_t *grp, uint32_t mask) 6861 { 6862 mac_grp_client_t *mgcip; 6863 mac_client_impl_t *mcip; 6864 mac_resource_props_t *mrp; 6865 6866 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) { 6867 mcip = mgcip->mgc_client; 6868 mrp = MCIP_RESOURCE_PROPS(mcip); 6869 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0) 6870 return (B_TRUE); 6871 } 6872 6873 return (B_FALSE); 6874 } 6875 6876 /* 6877 * Finds an available group and exclusively reserves it for a client. 6878 * The group is chosen to suit the flow's resource controls (bandwidth and 6879 * fanout requirements) and the address type. 6880 * If the requestor is the pimary MAC then return the group with the 6881 * largest number of rings, otherwise the default ring when available. 6882 */ 6883 mac_group_t * 6884 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6885 { 6886 mac_share_handle_t share = mcip->mci_share; 6887 mac_impl_t *mip = mcip->mci_mip; 6888 mac_group_t *grp = NULL; 6889 int i; 6890 int err = 0; 6891 mac_address_t *map; 6892 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6893 int nrings; 6894 int donor_grp_rcnt; 6895 boolean_t need_exclgrp = B_FALSE; 6896 int need_rings = 0; 6897 mac_group_t *candidate_grp = NULL; 6898 mac_client_impl_t *gclient; 6899 mac_group_t *donorgrp = NULL; 6900 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6901 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6902 boolean_t isprimary; 6903 6904 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6905 6906 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6907 6908 /* 6909 * Check if a group already has this MAC address (case of VLANs) 6910 * unless we are moving this MAC client from one group to another. 6911 */ 6912 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6913 if (map->ma_group != NULL) 6914 return (map->ma_group); 6915 } 6916 6917 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6918 return (NULL); 6919 6920 /* 6921 * If this client is requesting exclusive MAC access then 6922 * return NULL to ensure the client uses the default group. 6923 */ 6924 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6925 return (NULL); 6926 6927 /* For dynamic groups default unspecified to 1 */ 6928 if (rxhw && unspec && 6929 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6930 mrp->mrp_nrxrings = 1; 6931 } 6932 6933 /* 6934 * For static grouping we allow only specifying rings=0 and 6935 * unspecified 6936 */ 6937 if (rxhw && mrp->mrp_nrxrings > 0 && 6938 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6939 return (NULL); 6940 } 6941 6942 if (rxhw) { 6943 /* 6944 * We have explicitly asked for a group (with nrxrings, 6945 * if unspec). 6946 */ 6947 if (unspec || mrp->mrp_nrxrings > 0) { 6948 need_exclgrp = B_TRUE; 6949 need_rings = mrp->mrp_nrxrings; 6950 } else if (mrp->mrp_nrxrings == 0) { 6951 /* 6952 * We have asked for a software group. 6953 */ 6954 return (NULL); 6955 } 6956 } else if (isprimary && mip->mi_nactiveclients == 1 && 6957 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6958 /* 6959 * If the primary is the only active client on this 6960 * mip and we have not asked for any rings, we give 6961 * it the default group so that the primary gets to 6962 * use all the rings. 6963 */ 6964 return (NULL); 6965 } 6966 6967 /* The group that can donate rings */ 6968 donorgrp = mip->mi_rx_donor_grp; 6969 6970 /* 6971 * The number of rings that the default group can donate. 6972 * We need to leave at least one ring. 6973 */ 6974 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6975 6976 /* 6977 * Try to exclusively reserve a RX group. 6978 * 6979 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6980 * client), try to reserve the a non-default RX group and give 6981 * it all the rings from the donor group, except the default ring 6982 * 6983 * For flows requiring HW_RING (unicast flow of other clients), try 6984 * to reserve non-default RX group with the specified number of 6985 * rings, if available. 6986 * 6987 * For flows that have not asked for software or hardware ring, 6988 * try to reserve a non-default group with 1 ring, if available. 6989 */ 6990 for (i = 1; i < mip->mi_rx_group_count; i++) { 6991 grp = &mip->mi_rx_groups[i]; 6992 6993 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6994 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6995 6996 /* 6997 * Check if this group could be a candidate group for 6998 * eviction if we need a group for this MAC client, 6999 * but there aren't any. A candidate group is one 7000 * that didn't ask for an exclusive group, but got 7001 * one and it has enough rings (combined with what 7002 * the donor group can donate) for the new MAC 7003 * client. 7004 */ 7005 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 7006 /* 7007 * If the donor group is not the default 7008 * group, don't bother looking for a candidate 7009 * group. If we don't have enough rings we 7010 * will check if the primary group can be 7011 * vacated. 7012 */ 7013 if (candidate_grp == NULL && 7014 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 7015 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) && 7016 (unspec || 7017 (grp->mrg_cur_count + donor_grp_rcnt >= 7018 need_rings))) { 7019 candidate_grp = grp; 7020 } 7021 } 7022 continue; 7023 } 7024 /* 7025 * This group could already be SHARED by other multicast 7026 * flows on this client. In that case, the group would 7027 * be shared and has already been started. 7028 */ 7029 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 7030 7031 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 7032 (mac_start_group(grp) != 0)) { 7033 continue; 7034 } 7035 7036 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7037 break; 7038 ASSERT(grp->mrg_cur_count == 0); 7039 7040 /* 7041 * Populate the group. Rings should be taken 7042 * from the donor group. 7043 */ 7044 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 7045 7046 /* 7047 * If the donor group can't donate, let's just walk and 7048 * see if someone can vacate a group, so that we have 7049 * enough rings for this, unless we already have 7050 * identified a candiate group.. 7051 */ 7052 if (nrings <= donor_grp_rcnt) { 7053 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7054 donorgrp, grp, share, nrings); 7055 if (err == 0) { 7056 /* 7057 * For a share i_mac_group_allocate_rings gets 7058 * the rings from the driver, let's populate 7059 * the property for the client now. 7060 */ 7061 if (share != 0) { 7062 mac_client_set_rings( 7063 (mac_client_handle_t)mcip, 7064 grp->mrg_cur_count, -1); 7065 } 7066 if (mac_is_primary_client(mcip) && !rxhw) 7067 mip->mi_rx_donor_grp = grp; 7068 break; 7069 } 7070 } 7071 7072 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7073 mip->mi_name, int, grp->mrg_index, int, err); 7074 7075 /* 7076 * It's a dynamic group but the grouping operation 7077 * failed. 7078 */ 7079 mac_stop_group(grp); 7080 } 7081 7082 /* We didn't find an exclusive group for this MAC client */ 7083 if (i >= mip->mi_rx_group_count) { 7084 7085 if (!need_exclgrp) 7086 return (NULL); 7087 7088 /* 7089 * If we found a candidate group then move the 7090 * existing MAC client from the candidate_group to the 7091 * default group and give the candidate_group to the 7092 * new MAC client. If we didn't find a candidate 7093 * group, then check if the primary is in its own 7094 * group and if it can make way for this MAC client. 7095 */ 7096 if (candidate_grp == NULL && 7097 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 7098 donorgrp->mrg_cur_count >= need_rings) { 7099 candidate_grp = donorgrp; 7100 } 7101 if (candidate_grp != NULL) { 7102 boolean_t prim_grp = B_FALSE; 7103 7104 /* 7105 * Switch the existing MAC client from the 7106 * candidate group to the default group. If 7107 * the candidate group is the donor group, 7108 * then after the switch we need to update the 7109 * donor group too. 7110 */ 7111 grp = candidate_grp; 7112 gclient = grp->mrg_clients->mgc_client; 7113 VERIFY3P(gclient, !=, NULL); 7114 if (grp == mip->mi_rx_donor_grp) 7115 prim_grp = B_TRUE; 7116 if (mac_rx_switch_group(gclient, grp, 7117 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 7118 return (NULL); 7119 } 7120 if (prim_grp) { 7121 mip->mi_rx_donor_grp = 7122 MAC_DEFAULT_RX_GROUP(mip); 7123 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 7124 } 7125 7126 /* 7127 * Now give this group with the required rings 7128 * to this MAC client. 7129 */ 7130 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7131 if (mac_start_group(grp) != 0) 7132 return (NULL); 7133 7134 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7135 return (grp); 7136 7137 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7138 ASSERT(grp->mrg_cur_count == 0); 7139 ASSERT(donor_grp_rcnt >= need_rings); 7140 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7141 donorgrp, grp, share, need_rings); 7142 if (err == 0) { 7143 /* 7144 * For a share i_mac_group_allocate_rings gets 7145 * the rings from the driver, let's populate 7146 * the property for the client now. 7147 */ 7148 if (share != 0) { 7149 mac_client_set_rings( 7150 (mac_client_handle_t)mcip, 7151 grp->mrg_cur_count, -1); 7152 } 7153 DTRACE_PROBE2(rx__group__reserved, 7154 char *, mip->mi_name, int, grp->mrg_index); 7155 return (grp); 7156 } 7157 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7158 mip->mi_name, int, grp->mrg_index, int, err); 7159 mac_stop_group(grp); 7160 } 7161 return (NULL); 7162 } 7163 ASSERT(grp != NULL); 7164 7165 DTRACE_PROBE2(rx__group__reserved, 7166 char *, mip->mi_name, int, grp->mrg_index); 7167 return (grp); 7168 } 7169 7170 /* 7171 * mac_rx_release_group() 7172 * 7173 * Release the group when it has no remaining clients. The group is 7174 * stopped and its shares are removed and all rings are assigned back 7175 * to default group. This should never be called against the default 7176 * group. 7177 */ 7178 void 7179 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 7180 { 7181 mac_impl_t *mip = mcip->mci_mip; 7182 mac_ring_t *ring; 7183 7184 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 7185 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE); 7186 7187 if (mip->mi_rx_donor_grp == group) 7188 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 7189 7190 /* 7191 * This is the case where there are no clients left. Any 7192 * SRS etc on this group have also be quiesced. 7193 */ 7194 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 7195 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 7196 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 7197 /* 7198 * Remove the SRS associated with the HW ring. 7199 * As a result, polling will be disabled. 7200 */ 7201 ring->mr_srs = NULL; 7202 } 7203 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 7204 ring->mr_state == MR_INUSE); 7205 if (ring->mr_state == MR_INUSE) { 7206 mac_stop_ring(ring); 7207 ring->mr_flag = 0; 7208 } 7209 } 7210 7211 /* remove group from share */ 7212 if (mcip->mci_share != 0) { 7213 mip->mi_share_capab.ms_sremove(mcip->mci_share, 7214 group->mrg_driver); 7215 } 7216 7217 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7218 mac_ring_t *ring; 7219 7220 /* 7221 * Rings were dynamically allocated to group. 7222 * Move rings back to default group. 7223 */ 7224 while ((ring = group->mrg_rings) != NULL) { 7225 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 7226 ring); 7227 } 7228 } 7229 mac_stop_group(group); 7230 /* 7231 * Possible improvement: See if we can assign the group just released 7232 * to a another client of the mip 7233 */ 7234 } 7235 7236 /* 7237 * Move the MAC address from fgrp to tgrp. 7238 */ 7239 static int 7240 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 7241 mac_group_t *tgrp) 7242 { 7243 mac_impl_t *mip = mcip->mci_mip; 7244 uint8_t maddr[MAXMACADDRLEN]; 7245 int err = 0; 7246 uint16_t vid; 7247 mac_unicast_impl_t *muip; 7248 boolean_t use_hw; 7249 7250 mac_rx_client_quiesce((mac_client_handle_t)mcip); 7251 VERIFY3P(mcip->mci_unicast, !=, NULL); 7252 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 7253 7254 /* 7255 * Does the client require MAC address hardware classifiction? 7256 */ 7257 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 7258 vid = i_mac_flow_vid(mcip->mci_flent); 7259 7260 /* 7261 * You can never move an address that is shared by multiple 7262 * clients. mac_datapath_setup() ensures that clients sharing 7263 * an address are placed on the default group. This guarantees 7264 * that a non-default group will only ever have one client and 7265 * thus make full use of HW filters. 7266 */ 7267 if (mac_check_macaddr_shared(mcip->mci_unicast)) 7268 return (EINVAL); 7269 7270 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid); 7271 7272 if (err != 0) { 7273 mac_rx_client_restart((mac_client_handle_t)mcip); 7274 return (err); 7275 } 7276 7277 /* 7278 * If this isn't the primary MAC address then the 7279 * mac_address_t has been freed by the last call to 7280 * mac_remove_macaddr_vlan(). In any case, NULL the reference 7281 * to avoid a dangling pointer. 7282 */ 7283 mcip->mci_unicast = NULL; 7284 7285 /* 7286 * We also have to NULL all the mui_map references -- sun4v 7287 * strikes again! 7288 */ 7289 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7290 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7291 muip->mui_map = NULL; 7292 rw_exit(&mcip->mci_rw_lock); 7293 7294 /* 7295 * Program the H/W Classifier first, if this fails we need not 7296 * proceed with the other stuff. 7297 */ 7298 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) { 7299 int err2; 7300 7301 /* Revert back the H/W Classifier */ 7302 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw); 7303 7304 if (err2 != 0) { 7305 cmn_err(CE_WARN, "Failed to revert HW classification" 7306 " on MAC %s, for client %s: %d.", mip->mi_name, 7307 mcip->mci_name, err2); 7308 } 7309 7310 mac_rx_client_restart((mac_client_handle_t)mcip); 7311 return (err); 7312 } 7313 7314 /* 7315 * Get a reference to the new mac_address_t and update the 7316 * client's reference. Then restart the client and add the 7317 * other clients of this MAC addr (if they exsit). 7318 */ 7319 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 7320 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7321 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7322 muip->mui_map = mcip->mci_unicast; 7323 rw_exit(&mcip->mci_rw_lock); 7324 mac_rx_client_restart((mac_client_handle_t)mcip); 7325 return (0); 7326 } 7327 7328 /* 7329 * Switch the MAC client from one group to another. This means we need 7330 * to remove the MAC address from the group, remove the MAC client, 7331 * teardown the SRSs and revert the group state. Then, we add the client 7332 * to the destination group, set the SRSs, and add the MAC address to the 7333 * group. 7334 */ 7335 int 7336 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7337 mac_group_t *tgrp) 7338 { 7339 int err; 7340 mac_group_state_t next_state; 7341 mac_client_impl_t *group_only_mcip; 7342 mac_client_impl_t *gmcip; 7343 mac_impl_t *mip = mcip->mci_mip; 7344 mac_grp_client_t *mgcp; 7345 7346 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group); 7347 7348 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 7349 return (err); 7350 7351 /* 7352 * If the group is marked as reserved and in use by a single 7353 * client, then there is an SRS to teardown. 7354 */ 7355 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 7356 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7357 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 7358 } 7359 7360 /* 7361 * If we are moving the client from a non-default group, then 7362 * we know that any additional clients on this group share the 7363 * same MAC address. Since we moved the MAC address filter, we 7364 * need to move these clients too. 7365 * 7366 * If we are moving the client from the default group and its 7367 * MAC address has VLAN clients, then we must move those 7368 * clients as well. 7369 * 7370 * In both cases the idea is the same: we moved the MAC 7371 * address filter to the tgrp, so we must move all clients 7372 * using that MAC address to tgrp as well. 7373 */ 7374 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 7375 mgcp = fgrp->mrg_clients; 7376 while (mgcp != NULL) { 7377 gmcip = mgcp->mgc_client; 7378 mgcp = mgcp->mgc_next; 7379 mac_group_remove_client(fgrp, gmcip); 7380 mac_group_add_client(tgrp, gmcip); 7381 gmcip->mci_flent->fe_rx_ring_group = tgrp; 7382 } 7383 mac_release_rx_group(mcip, fgrp); 7384 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE); 7385 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 7386 } else { 7387 mac_group_remove_client(fgrp, mcip); 7388 mac_group_add_client(tgrp, mcip); 7389 mcip->mci_flent->fe_rx_ring_group = tgrp; 7390 7391 /* 7392 * If there are other clients (VLANs) sharing this address 7393 * then move them too. 7394 */ 7395 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7396 /* 7397 * We need to move all the clients that are using 7398 * this MAC address. 7399 */ 7400 mgcp = fgrp->mrg_clients; 7401 while (mgcp != NULL) { 7402 gmcip = mgcp->mgc_client; 7403 mgcp = mgcp->mgc_next; 7404 if (mcip->mci_unicast == gmcip->mci_unicast) { 7405 mac_group_remove_client(fgrp, gmcip); 7406 mac_group_add_client(tgrp, gmcip); 7407 gmcip->mci_flent->fe_rx_ring_group = 7408 tgrp; 7409 } 7410 } 7411 } 7412 7413 /* 7414 * The default group still handles multicast and 7415 * broadcast traffic; it won't transition to 7416 * MAC_GROUP_STATE_REGISTERED. 7417 */ 7418 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 7419 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 7420 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 7421 } 7422 7423 next_state = mac_group_next_state(tgrp, &group_only_mcip, 7424 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 7425 mac_set_group_state(tgrp, next_state); 7426 7427 /* 7428 * If the destination group is reserved, then setup the SRSes. 7429 * Otherwise make sure to use SW classification. 7430 */ 7431 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7432 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 7433 mac_fanout_setup(mcip, mcip->mci_flent, 7434 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 7435 NULL); 7436 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 7437 } else { 7438 mac_rx_switch_grp_to_sw(tgrp); 7439 } 7440 7441 return (0); 7442 } 7443 7444 /* 7445 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 7446 * when a share was allocated to the client. 7447 */ 7448 mac_group_t * 7449 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 7450 { 7451 mac_impl_t *mip = mcip->mci_mip; 7452 mac_group_t *grp = NULL; 7453 int rv; 7454 int i; 7455 int err; 7456 mac_group_t *defgrp; 7457 mac_share_handle_t share = mcip->mci_share; 7458 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7459 int nrings; 7460 int defnrings; 7461 boolean_t need_exclgrp = B_FALSE; 7462 int need_rings = 0; 7463 mac_group_t *candidate_grp = NULL; 7464 mac_client_impl_t *gclient; 7465 mac_resource_props_t *gmrp; 7466 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 7467 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 7468 boolean_t isprimary; 7469 7470 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7471 7472 /* 7473 * When we come here for a VLAN on the primary (dladm create-vlan), 7474 * we need to pair it along with the primary (to keep it consistent 7475 * with the RX side). So, we check if the primary is already assigned 7476 * to a group and return the group if so. The other way is also 7477 * true, i.e. the VLAN is already created and now we are plumbing 7478 * the primary. 7479 */ 7480 if (!move && isprimary) { 7481 for (gclient = mip->mi_clients_list; gclient != NULL; 7482 gclient = gclient->mci_client_next) { 7483 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 7484 gclient->mci_flent->fe_tx_ring_group != NULL) { 7485 return (gclient->mci_flent->fe_tx_ring_group); 7486 } 7487 } 7488 } 7489 7490 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 7491 return (NULL); 7492 7493 /* For dynamic groups, default unspec to 1 */ 7494 if (txhw && unspec && 7495 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7496 mrp->mrp_ntxrings = 1; 7497 } 7498 /* 7499 * For static grouping we allow only specifying rings=0 and 7500 * unspecified 7501 */ 7502 if (txhw && mrp->mrp_ntxrings > 0 && 7503 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 7504 return (NULL); 7505 } 7506 7507 if (txhw) { 7508 /* 7509 * We have explicitly asked for a group (with ntxrings, 7510 * if unspec). 7511 */ 7512 if (unspec || mrp->mrp_ntxrings > 0) { 7513 need_exclgrp = B_TRUE; 7514 need_rings = mrp->mrp_ntxrings; 7515 } else if (mrp->mrp_ntxrings == 0) { 7516 /* 7517 * We have asked for a software group. 7518 */ 7519 return (NULL); 7520 } 7521 } 7522 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7523 /* 7524 * The number of rings that the default group can donate. 7525 * We need to leave at least one ring - the default ring - in 7526 * this group. 7527 */ 7528 defnrings = defgrp->mrg_cur_count - 1; 7529 7530 /* 7531 * Primary gets default group unless explicitly told not 7532 * to (i.e. rings > 0). 7533 */ 7534 if (isprimary && !need_exclgrp) 7535 return (NULL); 7536 7537 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 7538 for (i = 0; i < mip->mi_tx_group_count; i++) { 7539 grp = &mip->mi_tx_groups[i]; 7540 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 7541 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 7542 /* 7543 * Select a candidate for replacement if we don't 7544 * get an exclusive group. A candidate group is one 7545 * that didn't ask for an exclusive group, but got 7546 * one and it has enough rings (combined with what 7547 * the default group can donate) for the new MAC 7548 * client. 7549 */ 7550 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7551 candidate_grp == NULL) { 7552 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7553 VERIFY3P(gclient, !=, NULL); 7554 gmrp = MCIP_RESOURCE_PROPS(gclient); 7555 if (gclient->mci_share == 0 && 7556 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7557 (unspec || 7558 (grp->mrg_cur_count + defnrings) >= 7559 need_rings)) { 7560 candidate_grp = grp; 7561 } 7562 } 7563 continue; 7564 } 7565 /* 7566 * If the default can't donate let's just walk and 7567 * see if someone can vacate a group, so that we have 7568 * enough rings for this. 7569 */ 7570 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7571 nrings <= defnrings) { 7572 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7573 rv = mac_start_group(grp); 7574 ASSERT(rv == 0); 7575 } 7576 break; 7577 } 7578 } 7579 7580 /* The default group */ 7581 if (i >= mip->mi_tx_group_count) { 7582 /* 7583 * If we need an exclusive group and have identified a 7584 * candidate group we switch the MAC client from the 7585 * candidate group to the default group and give the 7586 * candidate group to this client. 7587 */ 7588 if (need_exclgrp && candidate_grp != NULL) { 7589 /* 7590 * Switch the MAC client from the candidate 7591 * group to the default group. We know the 7592 * candidate_grp came from a reserved group 7593 * and thus only has one client. 7594 */ 7595 grp = candidate_grp; 7596 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7597 VERIFY3P(gclient, !=, NULL); 7598 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7599 mac_tx_switch_group(gclient, grp, defgrp); 7600 mac_tx_client_restart((mac_client_handle_t)gclient); 7601 7602 /* 7603 * Give the candidate group with the specified number 7604 * of rings to this MAC client. 7605 */ 7606 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7607 rv = mac_start_group(grp); 7608 ASSERT(rv == 0); 7609 7610 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7611 return (grp); 7612 7613 ASSERT(grp->mrg_cur_count == 0); 7614 ASSERT(defgrp->mrg_cur_count > need_rings); 7615 7616 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7617 defgrp, grp, share, need_rings); 7618 if (err == 0) { 7619 /* 7620 * For a share i_mac_group_allocate_rings gets 7621 * the rings from the driver, let's populate 7622 * the property for the client now. 7623 */ 7624 if (share != 0) { 7625 mac_client_set_rings( 7626 (mac_client_handle_t)mcip, -1, 7627 grp->mrg_cur_count); 7628 } 7629 mip->mi_tx_group_free--; 7630 return (grp); 7631 } 7632 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7633 mip->mi_name, int, grp->mrg_index, int, err); 7634 mac_stop_group(grp); 7635 } 7636 return (NULL); 7637 } 7638 /* 7639 * We got an exclusive group, but it is not dynamic. 7640 */ 7641 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7642 mip->mi_tx_group_free--; 7643 return (grp); 7644 } 7645 7646 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7647 share, nrings); 7648 if (rv != 0) { 7649 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7650 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7651 mac_stop_group(grp); 7652 return (NULL); 7653 } 7654 /* 7655 * For a share i_mac_group_allocate_rings gets the rings from the 7656 * driver, let's populate the property for the client now. 7657 */ 7658 if (share != 0) { 7659 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7660 grp->mrg_cur_count); 7661 } 7662 mip->mi_tx_group_free--; 7663 return (grp); 7664 } 7665 7666 void 7667 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7668 { 7669 mac_impl_t *mip = mcip->mci_mip; 7670 mac_share_handle_t share = mcip->mci_share; 7671 mac_ring_t *ring; 7672 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7673 mac_group_t *defgrp; 7674 7675 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7676 if (srs != NULL) { 7677 if (srs->srs_soft_ring_count > 0) { 7678 for (ring = grp->mrg_rings; ring != NULL; 7679 ring = ring->mr_next) { 7680 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7681 mac_tx_invoke_callbacks(mcip, 7682 (mac_tx_cookie_t) 7683 mac_tx_srs_get_soft_ring(srs, ring)); 7684 mac_tx_srs_del_ring(srs, ring); 7685 } 7686 } else { 7687 ASSERT(srs->srs_tx.st_arg2 != NULL); 7688 srs->srs_tx.st_arg2 = NULL; 7689 mac_srs_stat_delete(srs); 7690 } 7691 } 7692 if (share != 0) 7693 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7694 7695 /* move the ring back to the pool */ 7696 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7697 while ((ring = grp->mrg_rings) != NULL) 7698 (void) mac_group_mov_ring(mip, defgrp, ring); 7699 } 7700 mac_stop_group(grp); 7701 mip->mi_tx_group_free++; 7702 } 7703 7704 /* 7705 * Disassociate a MAC client from a group, i.e go through the rings in the 7706 * group and delete all the soft rings tied to them. 7707 */ 7708 static void 7709 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7710 { 7711 mac_client_impl_t *mcip = flent->fe_mcip; 7712 mac_soft_ring_set_t *tx_srs; 7713 mac_srs_tx_t *tx; 7714 mac_ring_t *ring; 7715 7716 tx_srs = flent->fe_tx_srs; 7717 tx = &tx_srs->srs_tx; 7718 7719 /* Single ring case we haven't created any soft rings */ 7720 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7721 tx->st_mode == SRS_TX_DEFAULT) { 7722 tx->st_arg2 = NULL; 7723 mac_srs_stat_delete(tx_srs); 7724 /* Fanout case, where we have to dismantle the soft rings */ 7725 } else { 7726 for (ring = fgrp->mrg_rings; ring != NULL; 7727 ring = ring->mr_next) { 7728 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7729 mac_tx_invoke_callbacks(mcip, 7730 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7731 ring)); 7732 mac_tx_srs_del_ring(tx_srs, ring); 7733 } 7734 ASSERT(tx->st_arg2 == NULL); 7735 } 7736 } 7737 7738 /* 7739 * Switch the MAC client from one group to another. This means we need 7740 * to remove the MAC client, teardown the SRSs and revert the group state. 7741 * Then, we add the client to the destination roup, set the SRSs etc. 7742 */ 7743 void 7744 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7745 mac_group_t *tgrp) 7746 { 7747 mac_client_impl_t *group_only_mcip; 7748 mac_impl_t *mip = mcip->mci_mip; 7749 flow_entry_t *flent = mcip->mci_flent; 7750 mac_group_t *defgrp; 7751 mac_grp_client_t *mgcp; 7752 mac_client_impl_t *gmcip; 7753 flow_entry_t *gflent; 7754 7755 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7756 ASSERT(fgrp == flent->fe_tx_ring_group); 7757 7758 if (fgrp == defgrp) { 7759 /* 7760 * If this is the primary we need to find any VLANs on 7761 * the primary and move them too. 7762 */ 7763 mac_group_remove_client(fgrp, mcip); 7764 mac_tx_dismantle_soft_rings(fgrp, flent); 7765 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7766 mgcp = fgrp->mrg_clients; 7767 while (mgcp != NULL) { 7768 gmcip = mgcp->mgc_client; 7769 mgcp = mgcp->mgc_next; 7770 if (mcip->mci_unicast != gmcip->mci_unicast) 7771 continue; 7772 mac_tx_client_quiesce( 7773 (mac_client_handle_t)gmcip); 7774 7775 gflent = gmcip->mci_flent; 7776 mac_group_remove_client(fgrp, gmcip); 7777 mac_tx_dismantle_soft_rings(fgrp, gflent); 7778 7779 mac_group_add_client(tgrp, gmcip); 7780 gflent->fe_tx_ring_group = tgrp; 7781 /* We could directly set this to SHARED */ 7782 tgrp->mrg_state = mac_group_next_state(tgrp, 7783 &group_only_mcip, defgrp, B_FALSE); 7784 7785 mac_tx_srs_group_setup(gmcip, gflent, 7786 SRST_LINK); 7787 mac_fanout_setup(gmcip, gflent, 7788 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7789 gmcip, NULL, NULL); 7790 7791 mac_tx_client_restart( 7792 (mac_client_handle_t)gmcip); 7793 } 7794 } 7795 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7796 mac_ring_t *ring; 7797 int cnt; 7798 int ringcnt; 7799 7800 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7801 /* 7802 * Additionally, we also need to stop all 7803 * the rings in the default group, except 7804 * the default ring. The reason being 7805 * this group won't be released since it is 7806 * the default group, so the rings won't 7807 * be stopped otherwise. 7808 */ 7809 ringcnt = fgrp->mrg_cur_count; 7810 ring = fgrp->mrg_rings; 7811 for (cnt = 0; cnt < ringcnt; cnt++) { 7812 if (ring->mr_state == MR_INUSE && 7813 ring != 7814 (mac_ring_t *)mip->mi_default_tx_ring) { 7815 mac_stop_ring(ring); 7816 ring->mr_flag = 0; 7817 } 7818 ring = ring->mr_next; 7819 } 7820 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7821 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7822 } else { 7823 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7824 } 7825 } else { 7826 /* 7827 * We could have VLANs sharing the non-default group with 7828 * the primary. 7829 */ 7830 mgcp = fgrp->mrg_clients; 7831 while (mgcp != NULL) { 7832 gmcip = mgcp->mgc_client; 7833 mgcp = mgcp->mgc_next; 7834 if (gmcip == mcip) 7835 continue; 7836 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7837 gflent = gmcip->mci_flent; 7838 7839 mac_group_remove_client(fgrp, gmcip); 7840 mac_tx_dismantle_soft_rings(fgrp, gflent); 7841 7842 mac_group_add_client(tgrp, gmcip); 7843 gflent->fe_tx_ring_group = tgrp; 7844 /* We could directly set this to SHARED */ 7845 tgrp->mrg_state = mac_group_next_state(tgrp, 7846 &group_only_mcip, defgrp, B_FALSE); 7847 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7848 mac_fanout_setup(gmcip, gflent, 7849 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7850 gmcip, NULL, NULL); 7851 7852 mac_tx_client_restart((mac_client_handle_t)gmcip); 7853 } 7854 mac_group_remove_client(fgrp, mcip); 7855 mac_release_tx_group(mcip, fgrp); 7856 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7857 } 7858 7859 /* Add it to the tgroup */ 7860 mac_group_add_client(tgrp, mcip); 7861 flent->fe_tx_ring_group = tgrp; 7862 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7863 defgrp, B_FALSE); 7864 7865 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7866 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7867 mac_rx_deliver, mcip, NULL, NULL); 7868 } 7869 7870 /* 7871 * This is a 1-time control path activity initiated by the client (IP). 7872 * The mac perimeter protects against other simultaneous control activities, 7873 * for example an ioctl that attempts to change the degree of fanout and 7874 * increase or decrease the number of softrings associated with this Tx SRS. 7875 */ 7876 static mac_tx_notify_cb_t * 7877 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7878 mac_tx_notify_t notify, void *arg) 7879 { 7880 mac_cb_info_t *mcbi; 7881 mac_tx_notify_cb_t *mtnfp; 7882 7883 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7884 7885 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7886 mtnfp->mtnf_fn = notify; 7887 mtnfp->mtnf_arg = arg; 7888 mtnfp->mtnf_link.mcb_objp = mtnfp; 7889 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7890 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7891 7892 mcbi = &mcip->mci_tx_notify_cb_info; 7893 mutex_enter(mcbi->mcbi_lockp); 7894 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7895 mutex_exit(mcbi->mcbi_lockp); 7896 return (mtnfp); 7897 } 7898 7899 static void 7900 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7901 { 7902 mac_cb_info_t *mcbi; 7903 mac_cb_t **cblist; 7904 7905 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7906 7907 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7908 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7909 cmn_err(CE_WARN, 7910 "mac_client_tx_notify_remove: callback not " 7911 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7912 return; 7913 } 7914 7915 mcbi = &mcip->mci_tx_notify_cb_info; 7916 cblist = &mcip->mci_tx_notify_cb_list; 7917 mutex_enter(mcbi->mcbi_lockp); 7918 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7919 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7920 else 7921 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7922 mutex_exit(mcbi->mcbi_lockp); 7923 } 7924 7925 /* 7926 * mac_client_tx_notify(): 7927 * call to add and remove flow control callback routine. 7928 */ 7929 mac_tx_notify_handle_t 7930 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7931 void *ptr) 7932 { 7933 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7934 mac_tx_notify_cb_t *mtnfp = NULL; 7935 7936 i_mac_perim_enter(mcip->mci_mip); 7937 7938 if (callb_func != NULL) { 7939 /* Add a notify callback */ 7940 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7941 } else { 7942 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7943 } 7944 i_mac_perim_exit(mcip->mci_mip); 7945 7946 return ((mac_tx_notify_handle_t)mtnfp); 7947 } 7948 7949 void 7950 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7951 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7952 { 7953 mac_bridge_tx_cb = txf; 7954 mac_bridge_rx_cb = rxf; 7955 mac_bridge_ref_cb = reff; 7956 mac_bridge_ls_cb = lsf; 7957 } 7958 7959 int 7960 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7961 { 7962 mac_impl_t *mip = (mac_impl_t *)mh; 7963 int retv; 7964 7965 mutex_enter(&mip->mi_bridge_lock); 7966 if (mip->mi_bridge_link == NULL) { 7967 mip->mi_bridge_link = link; 7968 retv = 0; 7969 } else { 7970 retv = EBUSY; 7971 } 7972 mutex_exit(&mip->mi_bridge_lock); 7973 if (retv == 0) { 7974 mac_poll_state_change(mh, B_FALSE); 7975 mac_capab_update(mh); 7976 } 7977 return (retv); 7978 } 7979 7980 /* 7981 * Disable bridging on the indicated link. 7982 */ 7983 void 7984 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7985 { 7986 mac_impl_t *mip = (mac_impl_t *)mh; 7987 7988 mutex_enter(&mip->mi_bridge_lock); 7989 ASSERT(mip->mi_bridge_link == link); 7990 mip->mi_bridge_link = NULL; 7991 mutex_exit(&mip->mi_bridge_lock); 7992 mac_poll_state_change(mh, B_TRUE); 7993 mac_capab_update(mh); 7994 } 7995 7996 void 7997 mac_no_active(mac_handle_t mh) 7998 { 7999 mac_impl_t *mip = (mac_impl_t *)mh; 8000 8001 i_mac_perim_enter(mip); 8002 mip->mi_state_flags |= MIS_NO_ACTIVE; 8003 i_mac_perim_exit(mip); 8004 } 8005 8006 /* 8007 * Walk the primary VLAN clients whenever the primary's rings property 8008 * changes and update the mac_resource_props_t for the VLAN's client. 8009 * We need to do this since we don't support setting these properties 8010 * on the primary's VLAN clients, but the VLAN clients have to 8011 * follow the primary w.r.t the rings property. 8012 */ 8013 void 8014 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 8015 { 8016 mac_client_impl_t *vmcip; 8017 mac_resource_props_t *vmrp; 8018 8019 for (vmcip = mip->mi_clients_list; vmcip != NULL; 8020 vmcip = vmcip->mci_client_next) { 8021 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 8022 mac_client_vid((mac_client_handle_t)vmcip) == 8023 VLAN_ID_NONE) { 8024 continue; 8025 } 8026 vmrp = MCIP_RESOURCE_PROPS(vmcip); 8027 8028 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 8029 if (mrp->mrp_mask & MRP_RX_RINGS) 8030 vmrp->mrp_mask |= MRP_RX_RINGS; 8031 else if (vmrp->mrp_mask & MRP_RX_RINGS) 8032 vmrp->mrp_mask &= ~MRP_RX_RINGS; 8033 8034 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 8035 if (mrp->mrp_mask & MRP_TX_RINGS) 8036 vmrp->mrp_mask |= MRP_TX_RINGS; 8037 else if (vmrp->mrp_mask & MRP_TX_RINGS) 8038 vmrp->mrp_mask &= ~MRP_TX_RINGS; 8039 8040 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 8041 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 8042 else 8043 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 8044 8045 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 8046 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 8047 else 8048 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 8049 } 8050 } 8051 8052 /* 8053 * We are adding or removing ring(s) from a group. The source for taking 8054 * rings is the default group. The destination for giving rings back is 8055 * the default group. 8056 */ 8057 int 8058 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 8059 mac_group_t *defgrp) 8060 { 8061 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8062 uint_t modify; 8063 int count; 8064 mac_ring_t *ring; 8065 mac_ring_t *next; 8066 mac_impl_t *mip = mcip->mci_mip; 8067 mac_ring_t **rings; 8068 uint_t ringcnt; 8069 int i = 0; 8070 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 8071 int start; 8072 int end; 8073 mac_group_t *tgrp; 8074 int j; 8075 int rv = 0; 8076 8077 /* 8078 * If we are asked for just a group, we give 1 ring, else 8079 * the specified number of rings. 8080 */ 8081 if (rx_group) { 8082 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 8083 mrp->mrp_nrxrings; 8084 } else { 8085 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 8086 mrp->mrp_ntxrings; 8087 } 8088 8089 /* don't allow modifying rings for a share for now. */ 8090 ASSERT(mcip->mci_share == 0); 8091 8092 if (ringcnt == group->mrg_cur_count) 8093 return (0); 8094 8095 if (group->mrg_cur_count > ringcnt) { 8096 modify = group->mrg_cur_count - ringcnt; 8097 if (rx_group) { 8098 if (mip->mi_rx_donor_grp == group) { 8099 ASSERT(mac_is_primary_client(mcip)); 8100 mip->mi_rx_donor_grp = defgrp; 8101 } else { 8102 defgrp = mip->mi_rx_donor_grp; 8103 } 8104 } 8105 ring = group->mrg_rings; 8106 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 8107 KM_SLEEP); 8108 j = 0; 8109 for (count = 0; count < modify; count++) { 8110 next = ring->mr_next; 8111 rv = mac_group_mov_ring(mip, defgrp, ring); 8112 if (rv != 0) { 8113 /* cleanup on failure */ 8114 for (j = 0; j < count; j++) { 8115 (void) mac_group_mov_ring(mip, group, 8116 rings[j]); 8117 } 8118 break; 8119 } 8120 rings[j++] = ring; 8121 ring = next; 8122 } 8123 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 8124 return (rv); 8125 } 8126 if (ringcnt >= MAX_RINGS_PER_GROUP) 8127 return (EINVAL); 8128 8129 modify = ringcnt - group->mrg_cur_count; 8130 8131 if (rx_group) { 8132 if (group != mip->mi_rx_donor_grp) 8133 defgrp = mip->mi_rx_donor_grp; 8134 else 8135 /* 8136 * This is the donor group with all the remaining 8137 * rings. Default group now gets to be the donor 8138 */ 8139 mip->mi_rx_donor_grp = defgrp; 8140 start = 1; 8141 end = mip->mi_rx_group_count; 8142 } else { 8143 start = 0; 8144 end = mip->mi_tx_group_count - 1; 8145 } 8146 /* 8147 * If the default doesn't have any rings, lets see if we can 8148 * take rings given to an h/w client that doesn't need it. 8149 * For now, we just see if there is any one client that can donate 8150 * all the required rings. 8151 */ 8152 if (defgrp->mrg_cur_count < (modify + 1)) { 8153 for (i = start; i < end; i++) { 8154 if (rx_group) { 8155 tgrp = &mip->mi_rx_groups[i]; 8156 if (tgrp == group || tgrp->mrg_state < 8157 MAC_GROUP_STATE_RESERVED) { 8158 continue; 8159 } 8160 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS)) 8161 continue; 8162 mcip = tgrp->mrg_clients->mgc_client; 8163 VERIFY3P(mcip, !=, NULL); 8164 if ((tgrp->mrg_cur_count + 8165 defgrp->mrg_cur_count) < (modify + 1)) { 8166 continue; 8167 } 8168 if (mac_rx_switch_group(mcip, tgrp, 8169 defgrp) != 0) { 8170 return (ENOSPC); 8171 } 8172 } else { 8173 tgrp = &mip->mi_tx_groups[i]; 8174 if (tgrp == group || tgrp->mrg_state < 8175 MAC_GROUP_STATE_RESERVED) { 8176 continue; 8177 } 8178 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS)) 8179 continue; 8180 mcip = tgrp->mrg_clients->mgc_client; 8181 VERIFY3P(mcip, !=, NULL); 8182 if ((tgrp->mrg_cur_count + 8183 defgrp->mrg_cur_count) < (modify + 1)) { 8184 continue; 8185 } 8186 /* OK, we can switch this to s/w */ 8187 mac_tx_client_quiesce( 8188 (mac_client_handle_t)mcip); 8189 mac_tx_switch_group(mcip, tgrp, defgrp); 8190 mac_tx_client_restart( 8191 (mac_client_handle_t)mcip); 8192 } 8193 } 8194 if (defgrp->mrg_cur_count < (modify + 1)) 8195 return (ENOSPC); 8196 } 8197 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 8198 group, mcip->mci_share, modify)) != 0) { 8199 return (rv); 8200 } 8201 return (0); 8202 } 8203 8204 /* 8205 * Given the poolname in mac_resource_props, find the cpupart 8206 * that is associated with this pool. The cpupart will be used 8207 * later for finding the cpus to be bound to the networking threads. 8208 * 8209 * use_default is set B_TRUE if pools are enabled and pool_default 8210 * is returned. This avoids a 2nd lookup to set the poolname 8211 * for pool-effective. 8212 * 8213 * returns: 8214 * 8215 * NULL - pools are disabled or if the 'cpus' property is set. 8216 * cpupart of pool_default - pools are enabled and the pool 8217 * is not available or poolname is blank 8218 * cpupart of named pool - pools are enabled and the pool 8219 * is available. 8220 */ 8221 cpupart_t * 8222 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 8223 { 8224 pool_t *pool; 8225 cpupart_t *cpupart; 8226 8227 *use_default = B_FALSE; 8228 8229 /* CPUs property is set */ 8230 if (mrp->mrp_mask & MRP_CPUS) 8231 return (NULL); 8232 8233 ASSERT(pool_lock_held()); 8234 8235 /* Pools are disabled, no pset */ 8236 if (pool_state == POOL_DISABLED) 8237 return (NULL); 8238 8239 /* Pools property is set */ 8240 if (mrp->mrp_mask & MRP_POOL) { 8241 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 8242 /* Pool not found */ 8243 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 8244 mrp->mrp_pool); 8245 *use_default = B_TRUE; 8246 pool = pool_default; 8247 } 8248 /* Pools property is not set */ 8249 } else { 8250 *use_default = B_TRUE; 8251 pool = pool_default; 8252 } 8253 8254 /* Find the CPU pset that corresponds to the pool */ 8255 mutex_enter(&cpu_lock); 8256 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 8257 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 8258 pool->pool_pset->pset_id); 8259 } 8260 mutex_exit(&cpu_lock); 8261 8262 return (cpupart); 8263 } 8264 8265 void 8266 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 8267 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 8268 { 8269 ASSERT(pool_lock_held()); 8270 8271 if (cpupart != NULL) { 8272 emrp->mrp_mask |= MRP_POOL; 8273 if (use_default) { 8274 (void) strcpy(emrp->mrp_pool, 8275 "pool_default"); 8276 } else { 8277 ASSERT(strlen(mrp->mrp_pool) != 0); 8278 (void) strcpy(emrp->mrp_pool, 8279 mrp->mrp_pool); 8280 } 8281 } else { 8282 emrp->mrp_mask &= ~MRP_POOL; 8283 bzero(emrp->mrp_pool, MAXPATHLEN); 8284 } 8285 } 8286 8287 struct mac_pool_arg { 8288 char mpa_poolname[MAXPATHLEN]; 8289 pool_event_t mpa_what; 8290 }; 8291 8292 /*ARGSUSED*/ 8293 static uint_t 8294 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 8295 { 8296 struct mac_pool_arg *mpa = arg; 8297 mac_impl_t *mip = (mac_impl_t *)val; 8298 mac_client_impl_t *mcip; 8299 mac_resource_props_t *mrp, *emrp; 8300 boolean_t pool_update = B_FALSE; 8301 boolean_t pool_clear = B_FALSE; 8302 boolean_t use_default = B_FALSE; 8303 cpupart_t *cpupart = NULL; 8304 8305 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 8306 i_mac_perim_enter(mip); 8307 for (mcip = mip->mi_clients_list; mcip != NULL; 8308 mcip = mcip->mci_client_next) { 8309 pool_update = B_FALSE; 8310 pool_clear = B_FALSE; 8311 use_default = B_FALSE; 8312 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 8313 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8314 8315 /* 8316 * When pools are enabled 8317 */ 8318 if ((mpa->mpa_what == POOL_E_ENABLE) && 8319 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8320 mrp->mrp_mask |= MRP_POOL; 8321 pool_update = B_TRUE; 8322 } 8323 8324 /* 8325 * When pools are disabled 8326 */ 8327 if ((mpa->mpa_what == POOL_E_DISABLE) && 8328 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8329 mrp->mrp_mask |= MRP_POOL; 8330 pool_clear = B_TRUE; 8331 } 8332 8333 /* 8334 * Look for links with the pool property set and the poolname 8335 * matching the one which is changing. 8336 */ 8337 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 8338 /* 8339 * The pool associated with the link has changed. 8340 */ 8341 if (mpa->mpa_what == POOL_E_CHANGE) { 8342 mrp->mrp_mask |= MRP_POOL; 8343 pool_update = B_TRUE; 8344 } 8345 } 8346 8347 /* 8348 * This link is associated with pool_default and 8349 * pool_default has changed. 8350 */ 8351 if ((mpa->mpa_what == POOL_E_CHANGE) && 8352 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 8353 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 8354 mrp->mrp_mask |= MRP_POOL; 8355 pool_update = B_TRUE; 8356 } 8357 8358 /* 8359 * Get new list of cpus for the pool, bind network 8360 * threads to new list of cpus and update resources. 8361 */ 8362 if (pool_update) { 8363 if (MCIP_DATAPATH_SETUP(mcip)) { 8364 pool_lock(); 8365 cpupart = mac_pset_find(mrp, &use_default); 8366 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8367 mac_rx_deliver, mcip, NULL, cpupart); 8368 mac_set_pool_effective(use_default, cpupart, 8369 mrp, emrp); 8370 pool_unlock(); 8371 } 8372 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8373 B_FALSE); 8374 } 8375 8376 /* 8377 * Clear the effective pool and bind network threads 8378 * to any available CPU. 8379 */ 8380 if (pool_clear) { 8381 if (MCIP_DATAPATH_SETUP(mcip)) { 8382 emrp->mrp_mask &= ~MRP_POOL; 8383 bzero(emrp->mrp_pool, MAXPATHLEN); 8384 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8385 mac_rx_deliver, mcip, NULL, NULL); 8386 } 8387 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8388 B_FALSE); 8389 } 8390 } 8391 i_mac_perim_exit(mip); 8392 kmem_free(mrp, sizeof (*mrp)); 8393 return (MH_WALK_CONTINUE); 8394 } 8395 8396 static void 8397 mac_pool_update(void *arg) 8398 { 8399 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 8400 kmem_free(arg, sizeof (struct mac_pool_arg)); 8401 } 8402 8403 /* 8404 * Callback function to be executed when a noteworthy pool event 8405 * takes place. 8406 */ 8407 /* ARGSUSED */ 8408 static void 8409 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 8410 { 8411 pool_t *pool; 8412 char *poolname = NULL; 8413 struct mac_pool_arg *mpa; 8414 8415 pool_lock(); 8416 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 8417 8418 switch (what) { 8419 case POOL_E_ENABLE: 8420 case POOL_E_DISABLE: 8421 break; 8422 8423 case POOL_E_CHANGE: 8424 pool = pool_lookup_pool_by_id(id); 8425 if (pool == NULL) { 8426 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8427 pool_unlock(); 8428 return; 8429 } 8430 pool_get_name(pool, &poolname); 8431 (void) strlcpy(mpa->mpa_poolname, poolname, 8432 sizeof (mpa->mpa_poolname)); 8433 break; 8434 8435 default: 8436 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8437 pool_unlock(); 8438 return; 8439 } 8440 pool_unlock(); 8441 8442 mpa->mpa_what = what; 8443 8444 mac_pool_update(mpa); 8445 } 8446 8447 /* 8448 * Set effective rings property. This could be called from datapath_setup/ 8449 * datapath_teardown or set-linkprop. 8450 * If the group is reserved we just go ahead and set the effective rings. 8451 * Additionally, for TX this could mean the default group has lost/gained 8452 * some rings, so if the default group is reserved, we need to adjust the 8453 * effective rings for the default group clients. For RX, if we are working 8454 * with the non-default group, we just need to reset the effective props 8455 * for the default group clients. 8456 */ 8457 void 8458 mac_set_rings_effective(mac_client_impl_t *mcip) 8459 { 8460 mac_impl_t *mip = mcip->mci_mip; 8461 mac_group_t *grp; 8462 mac_group_t *defgrp; 8463 flow_entry_t *flent = mcip->mci_flent; 8464 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 8465 mac_grp_client_t *mgcp; 8466 mac_client_impl_t *gmcip; 8467 8468 grp = flent->fe_rx_ring_group; 8469 if (grp != NULL) { 8470 defgrp = MAC_DEFAULT_RX_GROUP(mip); 8471 /* 8472 * If we have reserved a group, set the effective rings 8473 * to the ring count in the group. 8474 */ 8475 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8476 emrp->mrp_mask |= MRP_RX_RINGS; 8477 emrp->mrp_nrxrings = grp->mrg_cur_count; 8478 } 8479 8480 /* 8481 * We go through the clients in the shared group and 8482 * reset the effective properties. It is possible this 8483 * might have already been done for some client (i.e. 8484 * if some client is being moved to a group that is 8485 * already shared). The case where the default group is 8486 * RESERVED is taken care of above (note in the RX side if 8487 * there is a non-default group, the default group is always 8488 * SHARED). 8489 */ 8490 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8491 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 8492 mgcp = grp->mrg_clients; 8493 else 8494 mgcp = defgrp->mrg_clients; 8495 while (mgcp != NULL) { 8496 gmcip = mgcp->mgc_client; 8497 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8498 if (emrp->mrp_mask & MRP_RX_RINGS) { 8499 emrp->mrp_mask &= ~MRP_RX_RINGS; 8500 emrp->mrp_nrxrings = 0; 8501 } 8502 mgcp = mgcp->mgc_next; 8503 } 8504 } 8505 } 8506 8507 /* Now the TX side */ 8508 grp = flent->fe_tx_ring_group; 8509 if (grp != NULL) { 8510 defgrp = MAC_DEFAULT_TX_GROUP(mip); 8511 8512 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8513 emrp->mrp_mask |= MRP_TX_RINGS; 8514 emrp->mrp_ntxrings = grp->mrg_cur_count; 8515 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8516 mgcp = grp->mrg_clients; 8517 while (mgcp != NULL) { 8518 gmcip = mgcp->mgc_client; 8519 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8520 if (emrp->mrp_mask & MRP_TX_RINGS) { 8521 emrp->mrp_mask &= ~MRP_TX_RINGS; 8522 emrp->mrp_ntxrings = 0; 8523 } 8524 mgcp = mgcp->mgc_next; 8525 } 8526 } 8527 8528 /* 8529 * If the group is not the default group and the default 8530 * group is reserved, the ring count in the default group 8531 * might have changed, update it. 8532 */ 8533 if (grp != defgrp && 8534 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8535 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 8536 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8537 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 8538 } 8539 } 8540 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8541 } 8542 8543 /* 8544 * Check if the primary is in the default group. If so, see if we 8545 * can give it a an exclusive group now that another client is 8546 * being configured. We take the primary out of the default group 8547 * because the multicast/broadcast packets for the all the clients 8548 * will land in the default ring in the default group which means 8549 * any client in the default group, even if it is the only on in 8550 * the group, will lose exclusive access to the rings, hence 8551 * polling. 8552 */ 8553 mac_client_impl_t * 8554 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8555 { 8556 mac_impl_t *mip = mcip->mci_mip; 8557 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8558 flow_entry_t *flent = mcip->mci_flent; 8559 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8560 uint8_t *mac_addr; 8561 mac_group_t *ngrp; 8562 8563 /* 8564 * Check if the primary is in the default group, if not 8565 * or if it is explicitly configured to be in the default 8566 * group OR set the RX rings property, return. 8567 */ 8568 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8569 return (NULL); 8570 8571 /* 8572 * If the new client needs an exclusive group and we 8573 * don't have another for the primary, return. 8574 */ 8575 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8576 return (NULL); 8577 8578 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8579 /* 8580 * We call this when we are setting up the datapath for 8581 * the first non-primary. 8582 */ 8583 ASSERT(mip->mi_nactiveclients == 2); 8584 8585 /* 8586 * OK, now we have the primary that needs to be relocated. 8587 */ 8588 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8589 if (ngrp == NULL) 8590 return (NULL); 8591 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8592 mac_stop_group(ngrp); 8593 return (NULL); 8594 } 8595 return (mcip); 8596 } 8597 8598 void 8599 mac_transceiver_init(mac_impl_t *mip) 8600 { 8601 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8602 &mip->mi_transceiver)) { 8603 /* 8604 * The driver set a flag that we don't know about. In this case, 8605 * we need to warn about that case and ignore this capability. 8606 */ 8607 if (mip->mi_transceiver.mct_flags != 0) { 8608 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8609 "flags to invalid value: 0x%x, ignoring " 8610 "capability", mip->mi_transceiver.mct_flags); 8611 bzero(&mip->mi_transceiver, 8612 sizeof (mac_capab_transceiver_t)); 8613 } 8614 } else { 8615 bzero(&mip->mi_transceiver, 8616 sizeof (mac_capab_transceiver_t)); 8617 } 8618 } 8619 8620 int 8621 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8622 { 8623 mac_impl_t *mip = (mac_impl_t *)mh; 8624 8625 ASSERT(MAC_PERIM_HELD(mh)); 8626 8627 if (mip->mi_transceiver.mct_ntransceivers == 0) 8628 return (ENOTSUP); 8629 8630 *countp = mip->mi_transceiver.mct_ntransceivers; 8631 return (0); 8632 } 8633 8634 int 8635 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8636 boolean_t *usable) 8637 { 8638 int ret; 8639 mac_transceiver_info_t info; 8640 8641 mac_impl_t *mip = (mac_impl_t *)mh; 8642 8643 ASSERT(MAC_PERIM_HELD(mh)); 8644 8645 if (mip->mi_transceiver.mct_info == NULL || 8646 mip->mi_transceiver.mct_ntransceivers == 0) 8647 return (ENOTSUP); 8648 8649 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8650 return (EINVAL); 8651 8652 bzero(&info, sizeof (mac_transceiver_info_t)); 8653 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8654 &info)) != 0) { 8655 return (ret); 8656 } 8657 8658 *present = info.mti_present; 8659 *usable = info.mti_usable; 8660 return (0); 8661 } 8662 8663 int 8664 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8665 size_t nbytes, off_t offset, size_t *nread) 8666 { 8667 int ret; 8668 size_t nr; 8669 mac_impl_t *mip = (mac_impl_t *)mh; 8670 8671 ASSERT(MAC_PERIM_HELD(mh)); 8672 8673 if (mip->mi_transceiver.mct_read == NULL) 8674 return (ENOTSUP); 8675 8676 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8677 return (EINVAL); 8678 8679 /* 8680 * All supported pages today are 256 bytes wide. Make sure offset + 8681 * nbytes never exceeds that. 8682 */ 8683 if (offset < 0 || offset >= 256 || nbytes > 256 || 8684 offset + nbytes > 256) 8685 return (EINVAL); 8686 8687 if (nread == NULL) 8688 nread = &nr; 8689 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8690 nbytes, offset, nread); 8691 if (ret == 0 && *nread > nbytes) { 8692 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8693 "%lu byte sized buffer, possible memory corruption", 8694 *nread, nbytes); 8695 } 8696 8697 return (ret); 8698 } 8699 8700 void 8701 mac_led_init(mac_impl_t *mip) 8702 { 8703 mip->mi_led_modes = MAC_LED_DEFAULT; 8704 8705 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8706 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8707 return; 8708 } 8709 8710 if (mip->mi_led.mcl_flags != 0) { 8711 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8712 "flags to invalid value: 0x%x, ignoring " 8713 "capability", mip->mi_transceiver.mct_flags); 8714 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8715 return; 8716 } 8717 8718 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8719 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8720 "supported modes to invalid value: 0x%x, ignoring " 8721 "capability", mip->mi_transceiver.mct_flags); 8722 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8723 return; 8724 } 8725 } 8726 8727 int 8728 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8729 { 8730 mac_impl_t *mip = (mac_impl_t *)mh; 8731 8732 ASSERT(MAC_PERIM_HELD(mh)); 8733 8734 if (mip->mi_led.mcl_set == NULL) 8735 return (ENOTSUP); 8736 8737 *supported = mip->mi_led.mcl_modes; 8738 *active = mip->mi_led_modes; 8739 8740 return (0); 8741 } 8742 8743 /* 8744 * Update and multiplex the various LED requests. We only ever send one LED to 8745 * the underlying driver at a time. As such, we end up multiplexing all 8746 * requested states and picking one to send down to the driver. 8747 */ 8748 int 8749 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8750 { 8751 int ret; 8752 mac_led_mode_t driver; 8753 8754 mac_impl_t *mip = (mac_impl_t *)mh; 8755 8756 ASSERT(MAC_PERIM_HELD(mh)); 8757 8758 /* 8759 * If we've been passed a desired value of zero, that indicates that 8760 * we're basically resetting to the value of zero, which is our default 8761 * value. 8762 */ 8763 if (desired == 0) 8764 desired = MAC_LED_DEFAULT; 8765 8766 if (mip->mi_led.mcl_set == NULL) 8767 return (ENOTSUP); 8768 8769 /* 8770 * Catch both values that we don't know about and those that the driver 8771 * doesn't support. 8772 */ 8773 if ((desired & ~MAC_LED_ALL) != 0) 8774 return (EINVAL); 8775 8776 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8777 return (ENOTSUP); 8778 8779 /* 8780 * If we have the same value, then there is nothing to do. 8781 */ 8782 if (desired == mip->mi_led_modes) 8783 return (0); 8784 8785 /* 8786 * Based on the desired value, determine what to send to the driver. We 8787 * only will send a single bit to the driver at any given time. IDENT 8788 * takes priority over OFF or ON. We also let OFF take priority over the 8789 * rest. 8790 */ 8791 if (desired & MAC_LED_IDENT) { 8792 driver = MAC_LED_IDENT; 8793 } else if (desired & MAC_LED_OFF) { 8794 driver = MAC_LED_OFF; 8795 } else if (desired & MAC_LED_ON) { 8796 driver = MAC_LED_ON; 8797 } else { 8798 driver = MAC_LED_DEFAULT; 8799 } 8800 8801 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8802 mip->mi_led_modes = desired; 8803 } 8804 8805 return (ret); 8806 } 8807