1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2017, Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 347 int mac_dbg = 0; 348 349 #define MACTYPE_KMODDIR "mac" 350 #define MACTYPE_HASHSZ 67 351 static mod_hash_t *i_mactype_hash; 352 /* 353 * i_mactype_lock synchronizes threads that obtain references to mactype_t 354 * structures through i_mactype_getplugin(). 355 */ 356 static kmutex_t i_mactype_lock; 357 358 /* 359 * mac_tx_percpu_cnt 360 * 361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 365 */ 366 int mac_tx_percpu_cnt; 367 int mac_tx_percpu_cnt_max = 128; 368 369 /* 370 * Call back functions for the bridge module. These are guaranteed to be valid 371 * when holding a reference on a link or when holding mip->mi_bridge_lock and 372 * mi_bridge_link is non-NULL. 373 */ 374 mac_bridge_tx_t mac_bridge_tx_cb; 375 mac_bridge_rx_t mac_bridge_rx_cb; 376 mac_bridge_ref_t mac_bridge_ref_cb; 377 mac_bridge_ls_t mac_bridge_ls_cb; 378 379 static int i_mac_constructor(void *, void *, int); 380 static void i_mac_destructor(void *, void *); 381 static int i_mac_ring_ctor(void *, void *, int); 382 static void i_mac_ring_dtor(void *, void *); 383 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 384 void mac_tx_client_flush(mac_client_impl_t *); 385 void mac_tx_client_block(mac_client_impl_t *); 386 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 387 static int mac_start_group_and_rings(mac_group_t *); 388 static void mac_stop_group_and_rings(mac_group_t *); 389 static void mac_pool_event_cb(pool_event_t, int, void *); 390 391 typedef struct netinfo_s { 392 list_node_t ni_link; 393 void *ni_record; 394 int ni_size; 395 int ni_type; 396 } netinfo_t; 397 398 /* 399 * Module initialization functions. 400 */ 401 402 void 403 mac_init(void) 404 { 405 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 406 boot_max_ncpus); 407 408 /* Upper bound is mac_tx_percpu_cnt_max */ 409 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 410 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 411 412 if (mac_tx_percpu_cnt < 1) { 413 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 414 mac_tx_percpu_cnt = 1; 415 } 416 417 ASSERT(mac_tx_percpu_cnt >= 1); 418 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 419 /* 420 * Make it of the form 2**N - 1 in the range 421 * [0 .. mac_tx_percpu_cnt_max - 1] 422 */ 423 mac_tx_percpu_cnt--; 424 425 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 426 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 427 NULL, NULL, NULL, 0); 428 ASSERT(i_mac_impl_cachep != NULL); 429 430 mac_ring_cache = kmem_cache_create("mac_ring_cache", 431 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 432 NULL, NULL, 0); 433 ASSERT(mac_ring_cache != NULL); 434 435 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 436 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 437 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 438 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 439 440 mac_flow_init(); 441 mac_soft_ring_init(); 442 mac_bcast_init(); 443 mac_client_init(); 444 445 i_mac_impl_count = 0; 446 447 i_mactype_hash = mod_hash_create_extended("mactype_hash", 448 MACTYPE_HASHSZ, 449 mod_hash_null_keydtor, mod_hash_null_valdtor, 450 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 451 452 /* 453 * Allocate an id space to manage minor numbers. The range of the 454 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 455 * leaves half of the 32-bit minors available for driver private use. 456 */ 457 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 458 MAC_PRIVATE_MINOR-1); 459 ASSERT(minor_ids != NULL); 460 minor_count = 0; 461 462 /* Let's default to 20 seconds */ 463 mac_logging_interval = 20; 464 mac_flow_log_enable = B_FALSE; 465 mac_link_log_enable = B_FALSE; 466 mac_logging_timer = 0; 467 468 /* Register to be notified of noteworthy pools events */ 469 mac_pool_event_reg.pec_func = mac_pool_event_cb; 470 mac_pool_event_reg.pec_arg = NULL; 471 pool_event_cb_register(&mac_pool_event_reg); 472 } 473 474 int 475 mac_fini(void) 476 { 477 478 if (i_mac_impl_count > 0 || minor_count > 0) 479 return (EBUSY); 480 481 pool_event_cb_unregister(&mac_pool_event_reg); 482 483 id_space_destroy(minor_ids); 484 mac_flow_fini(); 485 486 mod_hash_destroy_hash(i_mac_impl_hash); 487 rw_destroy(&i_mac_impl_lock); 488 489 mac_client_fini(); 490 kmem_cache_destroy(mac_ring_cache); 491 492 mod_hash_destroy_hash(i_mactype_hash); 493 mac_soft_ring_finish(); 494 495 496 return (0); 497 } 498 499 /* 500 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 501 * (e.g. softmac) may pass in a NULL ops argument. 502 */ 503 void 504 mac_init_ops(struct dev_ops *ops, const char *name) 505 { 506 major_t major = ddi_name_to_major((char *)name); 507 508 /* 509 * By returning on error below, we are not letting the driver continue 510 * in an undefined context. The mac_register() function will faill if 511 * DN_GLDV3_DRIVER isn't set. 512 */ 513 if (major == DDI_MAJOR_T_NONE) 514 return; 515 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 516 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 517 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 518 if (ops != NULL) 519 dld_init_ops(ops, name); 520 } 521 522 void 523 mac_fini_ops(struct dev_ops *ops) 524 { 525 dld_fini_ops(ops); 526 } 527 528 /*ARGSUSED*/ 529 static int 530 i_mac_constructor(void *buf, void *arg, int kmflag) 531 { 532 mac_impl_t *mip = buf; 533 534 bzero(buf, sizeof (mac_impl_t)); 535 536 mip->mi_linkstate = LINK_STATE_UNKNOWN; 537 538 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 539 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 540 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 541 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 542 543 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 544 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 545 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 546 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 547 548 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 549 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static void 555 i_mac_destructor(void *buf, void *arg) 556 { 557 mac_impl_t *mip = buf; 558 mac_cb_info_t *mcbi; 559 560 ASSERT(mip->mi_ref == 0); 561 ASSERT(mip->mi_active == 0); 562 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 563 ASSERT(mip->mi_devpromisc == 0); 564 ASSERT(mip->mi_ksp == NULL); 565 ASSERT(mip->mi_kstat_count == 0); 566 ASSERT(mip->mi_nclients == 0); 567 ASSERT(mip->mi_nactiveclients == 0); 568 ASSERT(mip->mi_single_active_client == NULL); 569 ASSERT(mip->mi_state_flags == 0); 570 ASSERT(mip->mi_factory_addr == NULL); 571 ASSERT(mip->mi_factory_addr_num == 0); 572 ASSERT(mip->mi_default_tx_ring == NULL); 573 574 mcbi = &mip->mi_notify_cb_info; 575 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 576 ASSERT(mip->mi_notify_bits == 0); 577 ASSERT(mip->mi_notify_thread == NULL); 578 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 579 mcbi->mcbi_lockp = NULL; 580 581 mcbi = &mip->mi_promisc_cb_info; 582 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 583 ASSERT(mip->mi_promisc_list == NULL); 584 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 585 mcbi->mcbi_lockp = NULL; 586 587 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 588 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 589 590 rw_destroy(&mip->mi_rw_lock); 591 592 mutex_destroy(&mip->mi_promisc_lock); 593 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 594 mutex_destroy(&mip->mi_notify_lock); 595 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 596 mutex_destroy(&mip->mi_ring_lock); 597 598 ASSERT(mip->mi_bridge_link == NULL); 599 } 600 601 /* ARGSUSED */ 602 static int 603 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 604 { 605 mac_ring_t *ring = (mac_ring_t *)buf; 606 607 bzero(ring, sizeof (mac_ring_t)); 608 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 609 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 610 ring->mr_state = MR_FREE; 611 return (0); 612 } 613 614 /* ARGSUSED */ 615 static void 616 i_mac_ring_dtor(void *buf, void *arg) 617 { 618 mac_ring_t *ring = (mac_ring_t *)buf; 619 620 cv_destroy(&ring->mr_cv); 621 mutex_destroy(&ring->mr_lock); 622 } 623 624 /* 625 * Common functions to do mac callback addition and deletion. Currently this is 626 * used by promisc callbacks and notify callbacks. List addition and deletion 627 * need to take care of list walkers. List walkers in general, can't hold list 628 * locks and make upcall callbacks due to potential lock order and recursive 629 * reentry issues. Instead list walkers increment the list walker count to mark 630 * the presence of a walker thread. Addition can be carefully done to ensure 631 * that the list walker always sees either the old list or the new list. 632 * However the deletion can't be done while the walker is active, instead the 633 * deleting thread simply marks the entry as logically deleted. The last walker 634 * physically deletes and frees up the logically deleted entries when the walk 635 * is complete. 636 */ 637 void 638 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 639 mac_cb_t *mcb_elem) 640 { 641 mac_cb_t *p; 642 mac_cb_t **pp; 643 644 /* Verify it is not already in the list */ 645 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 646 if (p == mcb_elem) 647 break; 648 } 649 VERIFY(p == NULL); 650 651 /* 652 * Add it to the head of the callback list. The membar ensures that 653 * the following list pointer manipulations reach global visibility 654 * in exactly the program order below. 655 */ 656 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 657 658 mcb_elem->mcb_nextp = *mcb_head; 659 membar_producer(); 660 *mcb_head = mcb_elem; 661 } 662 663 /* 664 * Mark the entry as logically deleted. If there aren't any walkers unlink 665 * from the list. In either case return the corresponding status. 666 */ 667 boolean_t 668 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 669 mac_cb_t *mcb_elem) 670 { 671 mac_cb_t *p; 672 mac_cb_t **pp; 673 674 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 675 /* 676 * Search the callback list for the entry to be removed 677 */ 678 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 679 if (p == mcb_elem) 680 break; 681 } 682 VERIFY(p != NULL); 683 684 /* 685 * If there are walkers just mark it as deleted and the last walker 686 * will remove from the list and free it. 687 */ 688 if (mcbi->mcbi_walker_cnt != 0) { 689 p->mcb_flags |= MCB_CONDEMNED; 690 mcbi->mcbi_del_cnt++; 691 return (B_FALSE); 692 } 693 694 ASSERT(mcbi->mcbi_del_cnt == 0); 695 *pp = p->mcb_nextp; 696 p->mcb_nextp = NULL; 697 return (B_TRUE); 698 } 699 700 /* 701 * Wait for all pending callback removals to be completed 702 */ 703 void 704 mac_callback_remove_wait(mac_cb_info_t *mcbi) 705 { 706 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 707 while (mcbi->mcbi_del_cnt != 0) { 708 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 709 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 710 } 711 } 712 713 /* 714 * The last mac callback walker does the cleanup. Walk the list and unlik 715 * all the logically deleted entries and construct a temporary list of 716 * removed entries. Return the list of removed entries to the caller. 717 */ 718 mac_cb_t * 719 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 720 { 721 mac_cb_t *p; 722 mac_cb_t **pp; 723 mac_cb_t *rmlist = NULL; /* List of removed elements */ 724 int cnt = 0; 725 726 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 727 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 728 729 pp = mcb_head; 730 while (*pp != NULL) { 731 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 732 p = *pp; 733 *pp = p->mcb_nextp; 734 p->mcb_nextp = rmlist; 735 rmlist = p; 736 cnt++; 737 continue; 738 } 739 pp = &(*pp)->mcb_nextp; 740 } 741 742 ASSERT(mcbi->mcbi_del_cnt == cnt); 743 mcbi->mcbi_del_cnt = 0; 744 return (rmlist); 745 } 746 747 boolean_t 748 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 749 { 750 mac_cb_t *mcb; 751 752 /* Verify it is not already in the list */ 753 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 754 if (mcb == mcb_elem) 755 return (B_TRUE); 756 } 757 758 return (B_FALSE); 759 } 760 761 boolean_t 762 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 763 { 764 boolean_t found; 765 766 mutex_enter(mcbi->mcbi_lockp); 767 found = mac_callback_lookup(mcb_headp, mcb_elem); 768 mutex_exit(mcbi->mcbi_lockp); 769 770 return (found); 771 } 772 773 /* Free the list of removed callbacks */ 774 void 775 mac_callback_free(mac_cb_t *rmlist) 776 { 777 mac_cb_t *mcb; 778 mac_cb_t *mcb_next; 779 780 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 781 mcb_next = mcb->mcb_nextp; 782 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 783 } 784 } 785 786 /* 787 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 788 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 789 * is only a single shared total walker count, and an entry can't be physically 790 * unlinked if a walker is active on either list. The last walker does this 791 * cleanup of logically deleted entries. 792 */ 793 void 794 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 795 { 796 mac_cb_t *rmlist; 797 mac_cb_t *mcb; 798 mac_cb_t *mcb_next; 799 mac_promisc_impl_t *mpip; 800 801 /* 802 * Construct a temporary list of deleted callbacks by walking the 803 * the mi_promisc_list. Then for each entry in the temporary list, 804 * remove it from the mci_promisc_list and free the entry. 805 */ 806 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 807 &mip->mi_promisc_list); 808 809 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 810 mcb_next = mcb->mcb_nextp; 811 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 812 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 813 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 814 mcb->mcb_flags = 0; 815 mcb->mcb_nextp = NULL; 816 kmem_cache_free(mac_promisc_impl_cache, mpip); 817 } 818 } 819 820 void 821 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 822 { 823 mac_cb_info_t *mcbi; 824 825 /* 826 * Signal the notify thread even after mi_ref has become zero and 827 * mi_disabled is set. The synchronization with the notify thread 828 * happens in mac_unregister and that implies the driver must make 829 * sure it is single-threaded (with respect to mac calls) and that 830 * all pending mac calls have returned before it calls mac_unregister 831 */ 832 rw_enter(&i_mac_impl_lock, RW_READER); 833 if (mip->mi_state_flags & MIS_DISABLED) 834 goto exit; 835 836 /* 837 * Guard against incorrect notifications. (Running a newer 838 * mac client against an older implementation?) 839 */ 840 if (type >= MAC_NNOTE) 841 goto exit; 842 843 mcbi = &mip->mi_notify_cb_info; 844 mutex_enter(mcbi->mcbi_lockp); 845 mip->mi_notify_bits |= (1 << type); 846 cv_broadcast(&mcbi->mcbi_cv); 847 mutex_exit(mcbi->mcbi_lockp); 848 849 exit: 850 rw_exit(&i_mac_impl_lock); 851 } 852 853 /* 854 * Mac serialization primitives. Please see the block comment at the 855 * top of the file. 856 */ 857 void 858 i_mac_perim_enter(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 mutex_enter(&mip->mi_perim_lock); 872 if (mip->mi_perim_owner == curthread) { 873 mip->mi_perim_ocnt++; 874 mutex_exit(&mip->mi_perim_lock); 875 return; 876 } 877 878 while (mip->mi_perim_owner != NULL) 879 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 880 881 mip->mi_perim_owner = curthread; 882 ASSERT(mip->mi_perim_ocnt == 0); 883 mip->mi_perim_ocnt++; 884 #ifdef DEBUG 885 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 886 MAC_PERIM_STACK_DEPTH); 887 #endif 888 mutex_exit(&mip->mi_perim_lock); 889 } 890 891 int 892 i_mac_perim_enter_nowait(mac_impl_t *mip) 893 { 894 /* 895 * The vnic is a special case, since the serialization is done based 896 * on the lower mac. If the lower mac is busy, it does not imply the 897 * vnic can't be unregistered. But in the case of other drivers, 898 * a busy perimeter or open mac handles implies that the mac is busy 899 * and can't be unregistered. 900 */ 901 if (mip->mi_state_flags & MIS_IS_VNIC) { 902 i_mac_perim_enter(mip); 903 return (0); 904 } 905 906 mutex_enter(&mip->mi_perim_lock); 907 if (mip->mi_perim_owner != NULL) { 908 mutex_exit(&mip->mi_perim_lock); 909 return (EBUSY); 910 } 911 ASSERT(mip->mi_perim_ocnt == 0); 912 mip->mi_perim_owner = curthread; 913 mip->mi_perim_ocnt++; 914 mutex_exit(&mip->mi_perim_lock); 915 916 return (0); 917 } 918 919 void 920 i_mac_perim_exit(mac_impl_t *mip) 921 { 922 mac_client_impl_t *mcip; 923 924 if (mip->mi_state_flags & MIS_IS_VNIC) { 925 /* 926 * This is a VNIC. Return the lower mac since that is what 927 * we want to serialize on. 928 */ 929 mcip = mac_vnic_lower(mip); 930 mip = mcip->mci_mip; 931 } 932 933 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 934 935 mutex_enter(&mip->mi_perim_lock); 936 if (--mip->mi_perim_ocnt == 0) { 937 mip->mi_perim_owner = NULL; 938 cv_signal(&mip->mi_perim_cv); 939 } 940 mutex_exit(&mip->mi_perim_lock); 941 } 942 943 /* 944 * Returns whether the current thread holds the mac perimeter. Used in making 945 * assertions. 946 */ 947 boolean_t 948 mac_perim_held(mac_handle_t mh) 949 { 950 mac_impl_t *mip = (mac_impl_t *)mh; 951 mac_client_impl_t *mcip; 952 953 if (mip->mi_state_flags & MIS_IS_VNIC) { 954 /* 955 * This is a VNIC. Return the lower mac since that is what 956 * we want to serialize on. 957 */ 958 mcip = mac_vnic_lower(mip); 959 mip = mcip->mci_mip; 960 } 961 return (mip->mi_perim_owner == curthread); 962 } 963 964 /* 965 * mac client interfaces to enter the mac perimeter of a mac end point, given 966 * its mac handle, or macname or linkid. 967 */ 968 void 969 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 970 { 971 mac_impl_t *mip = (mac_impl_t *)mh; 972 973 i_mac_perim_enter(mip); 974 /* 975 * The mac_perim_handle_t returned encodes the 'mip' and whether a 976 * mac_open has been done internally while entering the perimeter. 977 * This information is used in mac_perim_exit 978 */ 979 MAC_ENCODE_MPH(*mphp, mip, 0); 980 } 981 982 int 983 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 984 { 985 int err; 986 mac_handle_t mh; 987 988 if ((err = mac_open(name, &mh)) != 0) 989 return (err); 990 991 mac_perim_enter_by_mh(mh, mphp); 992 MAC_ENCODE_MPH(*mphp, mh, 1); 993 return (0); 994 } 995 996 int 997 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 998 { 999 int err; 1000 mac_handle_t mh; 1001 1002 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1003 return (err); 1004 1005 mac_perim_enter_by_mh(mh, mphp); 1006 MAC_ENCODE_MPH(*mphp, mh, 1); 1007 return (0); 1008 } 1009 1010 void 1011 mac_perim_exit(mac_perim_handle_t mph) 1012 { 1013 mac_impl_t *mip; 1014 boolean_t need_close; 1015 1016 MAC_DECODE_MPH(mph, mip, need_close); 1017 i_mac_perim_exit(mip); 1018 if (need_close) 1019 mac_close((mac_handle_t)mip); 1020 } 1021 1022 int 1023 mac_hold(const char *macname, mac_impl_t **pmip) 1024 { 1025 mac_impl_t *mip; 1026 int err; 1027 1028 /* 1029 * Check the device name length to make sure it won't overflow our 1030 * buffer. 1031 */ 1032 if (strlen(macname) >= MAXNAMELEN) 1033 return (EINVAL); 1034 1035 /* 1036 * Look up its entry in the global hash table. 1037 */ 1038 rw_enter(&i_mac_impl_lock, RW_WRITER); 1039 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1040 (mod_hash_val_t *)&mip); 1041 1042 if (err != 0) { 1043 rw_exit(&i_mac_impl_lock); 1044 return (ENOENT); 1045 } 1046 1047 if (mip->mi_state_flags & MIS_DISABLED) { 1048 rw_exit(&i_mac_impl_lock); 1049 return (ENOENT); 1050 } 1051 1052 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1053 rw_exit(&i_mac_impl_lock); 1054 return (EBUSY); 1055 } 1056 1057 mip->mi_ref++; 1058 rw_exit(&i_mac_impl_lock); 1059 1060 *pmip = mip; 1061 return (0); 1062 } 1063 1064 void 1065 mac_rele(mac_impl_t *mip) 1066 { 1067 rw_enter(&i_mac_impl_lock, RW_WRITER); 1068 ASSERT(mip->mi_ref != 0); 1069 if (--mip->mi_ref == 0) { 1070 ASSERT(mip->mi_nactiveclients == 0 && 1071 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1072 } 1073 rw_exit(&i_mac_impl_lock); 1074 } 1075 1076 /* 1077 * Private GLDv3 function to start a MAC instance. 1078 */ 1079 int 1080 mac_start(mac_handle_t mh) 1081 { 1082 mac_impl_t *mip = (mac_impl_t *)mh; 1083 int err = 0; 1084 mac_group_t *defgrp; 1085 1086 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1087 ASSERT(mip->mi_start != NULL); 1088 1089 /* 1090 * Check whether the device is already started. 1091 */ 1092 if (mip->mi_active++ == 0) { 1093 mac_ring_t *ring = NULL; 1094 1095 /* 1096 * Start the device. 1097 */ 1098 err = mip->mi_start(mip->mi_driver); 1099 if (err != 0) { 1100 mip->mi_active--; 1101 return (err); 1102 } 1103 1104 /* 1105 * Start the default tx ring. 1106 */ 1107 if (mip->mi_default_tx_ring != NULL) { 1108 1109 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1110 if (ring->mr_state != MR_INUSE) { 1111 err = mac_start_ring(ring); 1112 if (err != 0) { 1113 mip->mi_active--; 1114 return (err); 1115 } 1116 } 1117 } 1118 1119 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1120 /* 1121 * Start the default ring, since it will be needed 1122 * to receive broadcast and multicast traffic for 1123 * both primary and non-primary MAC clients. 1124 */ 1125 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1126 err = mac_start_group_and_rings(defgrp); 1127 if (err != 0) { 1128 mip->mi_active--; 1129 if ((ring != NULL) && 1130 (ring->mr_state == MR_INUSE)) 1131 mac_stop_ring(ring); 1132 return (err); 1133 } 1134 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1135 } 1136 } 1137 1138 return (err); 1139 } 1140 1141 /* 1142 * Private GLDv3 function to stop a MAC instance. 1143 */ 1144 void 1145 mac_stop(mac_handle_t mh) 1146 { 1147 mac_impl_t *mip = (mac_impl_t *)mh; 1148 mac_group_t *grp; 1149 1150 ASSERT(mip->mi_stop != NULL); 1151 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1152 1153 /* 1154 * Check whether the device is still needed. 1155 */ 1156 ASSERT(mip->mi_active != 0); 1157 if (--mip->mi_active == 0) { 1158 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1159 /* 1160 * There should be no more active clients since the 1161 * MAC is being stopped. Stop the default RX group 1162 * and transition it back to registered state. 1163 * 1164 * When clients are torn down, the groups 1165 * are release via mac_release_rx_group which 1166 * knows the the default group is always in 1167 * started mode since broadcast uses it. So 1168 * we can assert that their are no clients 1169 * (since mac_bcast_add doesn't register itself 1170 * as a client) and group is in SHARED state. 1171 */ 1172 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1173 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1174 mip->mi_nactiveclients == 0); 1175 mac_stop_group_and_rings(grp); 1176 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1177 } 1178 1179 if (mip->mi_default_tx_ring != NULL) { 1180 mac_ring_t *ring; 1181 1182 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1183 if (ring->mr_state == MR_INUSE) { 1184 mac_stop_ring(ring); 1185 ring->mr_flag = 0; 1186 } 1187 } 1188 1189 /* 1190 * Stop the device. 1191 */ 1192 mip->mi_stop(mip->mi_driver); 1193 } 1194 } 1195 1196 int 1197 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1198 { 1199 int err = 0; 1200 1201 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1202 ASSERT(mip->mi_setpromisc != NULL); 1203 1204 if (on) { 1205 /* 1206 * Enable promiscuous mode on the device if not yet enabled. 1207 */ 1208 if (mip->mi_devpromisc++ == 0) { 1209 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1210 if (err != 0) { 1211 mip->mi_devpromisc--; 1212 return (err); 1213 } 1214 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1215 } 1216 } else { 1217 if (mip->mi_devpromisc == 0) 1218 return (EPROTO); 1219 1220 /* 1221 * Disable promiscuous mode on the device if this is the last 1222 * enabling. 1223 */ 1224 if (--mip->mi_devpromisc == 0) { 1225 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1226 if (err != 0) { 1227 mip->mi_devpromisc++; 1228 return (err); 1229 } 1230 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1231 } 1232 } 1233 1234 return (0); 1235 } 1236 1237 /* 1238 * The promiscuity state can change any time. If the caller needs to take 1239 * actions that are atomic with the promiscuity state, then the caller needs 1240 * to bracket the entire sequence with mac_perim_enter/exit 1241 */ 1242 boolean_t 1243 mac_promisc_get(mac_handle_t mh) 1244 { 1245 mac_impl_t *mip = (mac_impl_t *)mh; 1246 1247 /* 1248 * Return the current promiscuity. 1249 */ 1250 return (mip->mi_devpromisc != 0); 1251 } 1252 1253 /* 1254 * Invoked at MAC instance attach time to initialize the list 1255 * of factory MAC addresses supported by a MAC instance. This function 1256 * builds a local cache in the mac_impl_t for the MAC addresses 1257 * supported by the underlying hardware. The MAC clients themselves 1258 * use the mac_addr_factory*() functions to query and reserve 1259 * factory MAC addresses. 1260 */ 1261 void 1262 mac_addr_factory_init(mac_impl_t *mip) 1263 { 1264 mac_capab_multifactaddr_t capab; 1265 uint8_t *addr; 1266 int i; 1267 1268 /* 1269 * First round to see how many factory MAC addresses are available. 1270 */ 1271 bzero(&capab, sizeof (capab)); 1272 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1273 &capab) || (capab.mcm_naddr == 0)) { 1274 /* 1275 * The MAC instance doesn't support multiple factory 1276 * MAC addresses, we're done here. 1277 */ 1278 return; 1279 } 1280 1281 /* 1282 * Allocate the space and get all the factory addresses. 1283 */ 1284 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1285 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1286 1287 mip->mi_factory_addr_num = capab.mcm_naddr; 1288 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1289 sizeof (mac_factory_addr_t), KM_SLEEP); 1290 1291 for (i = 0; i < capab.mcm_naddr; i++) { 1292 bcopy(addr + i * MAXMACADDRLEN, 1293 mip->mi_factory_addr[i].mfa_addr, 1294 mip->mi_type->mt_addr_length); 1295 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1296 } 1297 1298 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1299 } 1300 1301 void 1302 mac_addr_factory_fini(mac_impl_t *mip) 1303 { 1304 if (mip->mi_factory_addr == NULL) { 1305 ASSERT(mip->mi_factory_addr_num == 0); 1306 return; 1307 } 1308 1309 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1310 sizeof (mac_factory_addr_t)); 1311 1312 mip->mi_factory_addr = NULL; 1313 mip->mi_factory_addr_num = 0; 1314 } 1315 1316 /* 1317 * Reserve a factory MAC address. If *slot is set to -1, the function 1318 * attempts to reserve any of the available factory MAC addresses and 1319 * returns the reserved slot id. If no slots are available, the function 1320 * returns ENOSPC. If *slot is not set to -1, the function reserves 1321 * the specified slot if it is available, or returns EBUSY is the slot 1322 * is already used. Returns ENOTSUP if the underlying MAC does not 1323 * support multiple factory addresses. If the slot number is not -1 but 1324 * is invalid, returns EINVAL. 1325 */ 1326 int 1327 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1328 { 1329 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1330 mac_impl_t *mip = mcip->mci_mip; 1331 int i, ret = 0; 1332 1333 i_mac_perim_enter(mip); 1334 /* 1335 * Protect against concurrent readers that may need a self-consistent 1336 * view of the factory addresses 1337 */ 1338 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1339 1340 if (mip->mi_factory_addr_num == 0) { 1341 ret = ENOTSUP; 1342 goto bail; 1343 } 1344 1345 if (*slot != -1) { 1346 /* check the specified slot */ 1347 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1348 ret = EINVAL; 1349 goto bail; 1350 } 1351 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1352 ret = EBUSY; 1353 goto bail; 1354 } 1355 } else { 1356 /* pick the next available slot */ 1357 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1358 if (!mip->mi_factory_addr[i].mfa_in_use) 1359 break; 1360 } 1361 1362 if (i == mip->mi_factory_addr_num) { 1363 ret = ENOSPC; 1364 goto bail; 1365 } 1366 *slot = i+1; 1367 } 1368 1369 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1370 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1371 1372 bail: 1373 rw_exit(&mip->mi_rw_lock); 1374 i_mac_perim_exit(mip); 1375 return (ret); 1376 } 1377 1378 /* 1379 * Release the specified factory MAC address slot. 1380 */ 1381 void 1382 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1383 { 1384 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1385 mac_impl_t *mip = mcip->mci_mip; 1386 1387 i_mac_perim_enter(mip); 1388 /* 1389 * Protect against concurrent readers that may need a self-consistent 1390 * view of the factory addresses 1391 */ 1392 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1393 1394 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1395 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1396 1397 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1398 1399 rw_exit(&mip->mi_rw_lock); 1400 i_mac_perim_exit(mip); 1401 } 1402 1403 /* 1404 * Stores in mac_addr the value of the specified MAC address. Returns 1405 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1406 * The caller must provide a string of at least MAXNAMELEN bytes. 1407 */ 1408 void 1409 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1410 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1411 { 1412 mac_impl_t *mip = (mac_impl_t *)mh; 1413 boolean_t in_use; 1414 1415 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1416 1417 /* 1418 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1419 * and mi_rw_lock 1420 */ 1421 rw_enter(&mip->mi_rw_lock, RW_READER); 1422 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1423 *addr_len = mip->mi_type->mt_addr_length; 1424 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1425 if (in_use && client_name != NULL) { 1426 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1427 client_name, MAXNAMELEN); 1428 } 1429 if (in_use_arg != NULL) 1430 *in_use_arg = in_use; 1431 rw_exit(&mip->mi_rw_lock); 1432 } 1433 1434 /* 1435 * Returns the number of factory MAC addresses (in addition to the 1436 * primary MAC address), 0 if the underlying MAC doesn't support 1437 * that feature. 1438 */ 1439 uint_t 1440 mac_addr_factory_num(mac_handle_t mh) 1441 { 1442 mac_impl_t *mip = (mac_impl_t *)mh; 1443 1444 return (mip->mi_factory_addr_num); 1445 } 1446 1447 1448 void 1449 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1450 { 1451 mac_ring_t *ring; 1452 1453 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1454 ring->mr_flag &= ~flag; 1455 } 1456 1457 /* 1458 * The following mac_hwrings_xxx() functions are private mac client functions 1459 * used by the aggr driver to access and control the underlying HW Rx group 1460 * and rings. In this case, the aggr driver has exclusive control of the 1461 * underlying HW Rx group/rings, it calls the following functions to 1462 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1463 * addresses, or set up the Rx callback. 1464 */ 1465 /* ARGSUSED */ 1466 static void 1467 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1468 mblk_t *mp_chain, boolean_t loopback) 1469 { 1470 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1471 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1472 mac_direct_rx_t proc; 1473 void *arg1; 1474 mac_resource_handle_t arg2; 1475 1476 proc = srs_rx->sr_func; 1477 arg1 = srs_rx->sr_arg1; 1478 arg2 = mac_srs->srs_mrh; 1479 1480 proc(arg1, arg2, mp_chain, NULL); 1481 } 1482 1483 /* 1484 * This function is called to get the list of HW rings that are reserved by 1485 * an exclusive mac client. 1486 * 1487 * Return value: the number of HW rings. 1488 */ 1489 int 1490 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1491 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1492 { 1493 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1494 flow_entry_t *flent = mcip->mci_flent; 1495 mac_group_t *grp; 1496 mac_ring_t *ring; 1497 int cnt = 0; 1498 1499 if (rtype == MAC_RING_TYPE_RX) { 1500 grp = flent->fe_rx_ring_group; 1501 } else if (rtype == MAC_RING_TYPE_TX) { 1502 grp = flent->fe_tx_ring_group; 1503 } else { 1504 ASSERT(B_FALSE); 1505 return (-1); 1506 } 1507 /* 1508 * The mac client did not reserve any RX group, return directly. 1509 * This is probably because the underlying MAC does not support 1510 * any groups. 1511 */ 1512 if (hwgh != NULL) 1513 *hwgh = NULL; 1514 if (grp == NULL) 1515 return (0); 1516 /* 1517 * This group must be reserved by this mac client. 1518 */ 1519 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1520 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1521 1522 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1523 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1524 hwrh[cnt] = (mac_ring_handle_t)ring; 1525 } 1526 if (hwgh != NULL) 1527 *hwgh = (mac_group_handle_t)grp; 1528 1529 return (cnt); 1530 } 1531 1532 /* 1533 * This function is called to get info about Tx/Rx rings. 1534 * 1535 * Return value: returns uint_t which will have various bits set 1536 * that indicates different properties of the ring. 1537 */ 1538 uint_t 1539 mac_hwring_getinfo(mac_ring_handle_t rh) 1540 { 1541 mac_ring_t *ring = (mac_ring_t *)rh; 1542 mac_ring_info_t *info = &ring->mr_info; 1543 1544 return (info->mri_flags); 1545 } 1546 1547 /* 1548 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1549 * setup the RX callback of the mac client which exclusively controls 1550 * HW ring. 1551 */ 1552 void 1553 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1554 mac_ring_handle_t pseudo_rh) 1555 { 1556 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1557 mac_ring_t *pseudo_ring; 1558 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1559 1560 if (pseudo_rh != NULL) { 1561 pseudo_ring = (mac_ring_t *)pseudo_rh; 1562 /* Export the ddi handles to pseudo ring */ 1563 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1564 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1565 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1566 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1567 /* 1568 * Save a pointer to pseudo ring in the hw ring. If 1569 * interrupt handle changes, the hw ring will be 1570 * notified of the change (see mac_ring_intr_set()) 1571 * and the appropriate change has to be made to 1572 * the pseudo ring that has exported the ddi handle. 1573 */ 1574 hw_ring->mr_prh = pseudo_rh; 1575 } 1576 1577 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1578 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1579 mac_srs->srs_mrh = prh; 1580 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1581 } 1582 } 1583 1584 void 1585 mac_hwring_teardown(mac_ring_handle_t hwrh) 1586 { 1587 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1588 mac_soft_ring_set_t *mac_srs; 1589 1590 if (hw_ring == NULL) 1591 return; 1592 hw_ring->mr_prh = NULL; 1593 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1594 mac_srs = hw_ring->mr_srs; 1595 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1596 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1597 mac_srs->srs_mrh = NULL; 1598 } 1599 } 1600 1601 int 1602 mac_hwring_disable_intr(mac_ring_handle_t rh) 1603 { 1604 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1605 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1606 1607 return (intr->mi_disable(intr->mi_handle)); 1608 } 1609 1610 int 1611 mac_hwring_enable_intr(mac_ring_handle_t rh) 1612 { 1613 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1614 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1615 1616 return (intr->mi_enable(intr->mi_handle)); 1617 } 1618 1619 int 1620 mac_hwring_start(mac_ring_handle_t rh) 1621 { 1622 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1623 1624 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1625 return (0); 1626 } 1627 1628 void 1629 mac_hwring_stop(mac_ring_handle_t rh) 1630 { 1631 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1632 1633 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1634 } 1635 1636 mblk_t * 1637 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1638 { 1639 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1640 mac_ring_info_t *info = &rr_ring->mr_info; 1641 1642 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1643 } 1644 1645 /* 1646 * Send packets through a selected tx ring. 1647 */ 1648 mblk_t * 1649 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1650 { 1651 mac_ring_t *ring = (mac_ring_t *)rh; 1652 mac_ring_info_t *info = &ring->mr_info; 1653 1654 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1655 ring->mr_state >= MR_INUSE); 1656 return (info->mri_tx(info->mri_driver, mp)); 1657 } 1658 1659 /* 1660 * Query stats for a particular rx/tx ring 1661 */ 1662 int 1663 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1664 { 1665 mac_ring_t *ring = (mac_ring_t *)rh; 1666 mac_ring_info_t *info = &ring->mr_info; 1667 1668 return (info->mri_stat(info->mri_driver, stat, val)); 1669 } 1670 1671 /* 1672 * Private function that is only used by aggr to send packets through 1673 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1674 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1675 * access to mac_impl_t to send packets through m_tx() entry point. 1676 * It accomplishes this by calling mac_hwring_send_priv() function. 1677 */ 1678 mblk_t * 1679 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1680 { 1681 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1682 mac_impl_t *mip = mcip->mci_mip; 1683 1684 MAC_TX(mip, rh, mp, mcip); 1685 return (mp); 1686 } 1687 1688 /* 1689 * Private function that is only used by aggr to update the default transmission 1690 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1691 * temporarily be down, it may need to update the default ring that is used by 1692 * MAC such that it refers to a link that can actively be used to send traffic. 1693 * Note that this is different from the case where the port has been removed 1694 * from the group. In those cases, all of the rings will be torn down because 1695 * the ring will no longer exist. It's important to give aggr a case where the 1696 * rings can still exist such that it may be able to continue to send LACP PDUs 1697 * to potentially restore the link. 1698 * 1699 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1700 * This is to help out aggr which doesn't really know the internal state that 1701 * MAC does about the rings and can't know that it's not quite ready for use 1702 * yet. 1703 */ 1704 void 1705 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1706 { 1707 mac_impl_t *mip = (mac_impl_t *)mh; 1708 mac_ring_t *ring = (mac_ring_t *)rh; 1709 1710 ASSERT(MAC_PERIM_HELD(mh)); 1711 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1712 1713 if (ring->mr_state != MR_INUSE) 1714 return; 1715 1716 mip->mi_default_tx_ring = rh; 1717 } 1718 1719 int 1720 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1721 { 1722 mac_group_t *group = (mac_group_t *)gh; 1723 1724 return (mac_group_addmac(group, addr)); 1725 } 1726 1727 int 1728 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1729 { 1730 mac_group_t *group = (mac_group_t *)gh; 1731 1732 return (mac_group_remmac(group, addr)); 1733 } 1734 1735 /* 1736 * Set the RX group to be shared/reserved. Note that the group must be 1737 * started/stopped outside of this function. 1738 */ 1739 void 1740 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1741 { 1742 /* 1743 * If there is no change in the group state, just return. 1744 */ 1745 if (grp->mrg_state == state) 1746 return; 1747 1748 switch (state) { 1749 case MAC_GROUP_STATE_RESERVED: 1750 /* 1751 * Successfully reserved the group. 1752 * 1753 * Given that there is an exclusive client controlling this 1754 * group, we enable the group level polling when available, 1755 * so that SRSs get to turn on/off individual rings they's 1756 * assigned to. 1757 */ 1758 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1759 1760 if (grp->mrg_type == MAC_RING_TYPE_RX && 1761 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1762 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1763 } 1764 break; 1765 1766 case MAC_GROUP_STATE_SHARED: 1767 /* 1768 * Set all rings of this group to software classified. 1769 * If the group has an overriding interrupt, then re-enable it. 1770 */ 1771 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1772 1773 if (grp->mrg_type == MAC_RING_TYPE_RX && 1774 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1775 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1776 } 1777 /* The ring is not available for reservations any more */ 1778 break; 1779 1780 case MAC_GROUP_STATE_REGISTERED: 1781 /* Also callable from mac_register, perim is not held */ 1782 break; 1783 1784 default: 1785 ASSERT(B_FALSE); 1786 break; 1787 } 1788 1789 grp->mrg_state = state; 1790 } 1791 1792 /* 1793 * Quiesce future hardware classified packets for the specified Rx ring 1794 */ 1795 static void 1796 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1797 { 1798 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1799 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1800 1801 mutex_enter(&rx_ring->mr_lock); 1802 rx_ring->mr_flag |= ring_flag; 1803 while (rx_ring->mr_refcnt != 0) 1804 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1805 mutex_exit(&rx_ring->mr_lock); 1806 } 1807 1808 /* 1809 * Please see mac_tx for details about the per cpu locking scheme 1810 */ 1811 static void 1812 mac_tx_lock_all(mac_client_impl_t *mcip) 1813 { 1814 int i; 1815 1816 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1817 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1818 } 1819 1820 static void 1821 mac_tx_unlock_all(mac_client_impl_t *mcip) 1822 { 1823 int i; 1824 1825 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1826 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1827 } 1828 1829 static void 1830 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1831 { 1832 int i; 1833 1834 for (i = mac_tx_percpu_cnt; i > 0; i--) 1835 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1836 } 1837 1838 static int 1839 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1840 { 1841 int i; 1842 int refcnt = 0; 1843 1844 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1845 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1846 1847 return (refcnt); 1848 } 1849 1850 /* 1851 * Stop future Tx packets coming down from the client in preparation for 1852 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1853 * of rings between clients 1854 */ 1855 void 1856 mac_tx_client_block(mac_client_impl_t *mcip) 1857 { 1858 mac_tx_lock_all(mcip); 1859 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1860 while (mac_tx_sum_refcnt(mcip) != 0) { 1861 mac_tx_unlock_allbutzero(mcip); 1862 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1863 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1864 mac_tx_lock_all(mcip); 1865 } 1866 mac_tx_unlock_all(mcip); 1867 } 1868 1869 void 1870 mac_tx_client_unblock(mac_client_impl_t *mcip) 1871 { 1872 mac_tx_lock_all(mcip); 1873 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1874 mac_tx_unlock_all(mcip); 1875 /* 1876 * We may fail to disable flow control for the last MAC_NOTE_TX 1877 * notification because the MAC client is quiesced. Send the 1878 * notification again. 1879 */ 1880 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1881 } 1882 1883 /* 1884 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1885 * quiesce is done. 1886 */ 1887 static void 1888 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1889 { 1890 mutex_enter(&srs->srs_lock); 1891 while (!(srs->srs_state & srs_flag)) 1892 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1893 mutex_exit(&srs->srs_lock); 1894 } 1895 1896 /* 1897 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1898 * works bottom up by cutting off packet flow from the bottommost point in the 1899 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1900 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1901 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1902 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1903 * for the SRS and MR flags. In the former case the threads pause waiting for 1904 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1905 * is also mostly similar to the above. 1906 * 1907 * 1. Stop future hardware classified packets at the lowest level in the mac. 1908 * Remove any hardware classification rule (CONDEMNED case) and mark the 1909 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1910 * from increasing. Upcalls from the driver that come through hardware 1911 * classification will be dropped in mac_rx from now on. Then we wait for 1912 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1913 * sure there aren't any upcall threads from the driver through hardware 1914 * classification. In the case of SRS teardown we also remove the 1915 * classification rule in the driver. 1916 * 1917 * 2. Stop future software classified packets by marking the flow entry with 1918 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1919 * increasing. We also remove the flow entry from the table in the latter 1920 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1921 * that indicates there aren't any active threads using that flow entry. 1922 * 1923 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1924 * SRS worker thread, and the soft ring threads are quiesced in sequence 1925 * with the SRS worker thread serving as a master controller. This 1926 * mechansim is explained in mac_srs_worker_quiesce(). 1927 * 1928 * The restart mechanism to reactivate the SRS and softrings is explained 1929 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1930 * restart sequence. 1931 */ 1932 void 1933 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1934 { 1935 flow_entry_t *flent = srs->srs_flent; 1936 uint_t mr_flag, srs_done_flag; 1937 1938 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1939 ASSERT(!(srs->srs_type & SRST_TX)); 1940 1941 if (srs_quiesce_flag == SRS_CONDEMNED) { 1942 mr_flag = MR_CONDEMNED; 1943 srs_done_flag = SRS_CONDEMNED_DONE; 1944 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1945 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1946 } else { 1947 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1948 mr_flag = MR_QUIESCE; 1949 srs_done_flag = SRS_QUIESCE_DONE; 1950 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1951 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1952 } 1953 1954 if (srs->srs_ring != NULL) { 1955 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1956 } else { 1957 /* 1958 * SRS is driven by software classification. In case 1959 * of CONDEMNED, the top level teardown functions will 1960 * deal with flow removal. 1961 */ 1962 if (srs_quiesce_flag != SRS_CONDEMNED) { 1963 FLOW_MARK(flent, FE_QUIESCE); 1964 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1965 } 1966 } 1967 1968 /* 1969 * Signal the SRS to quiesce itself, and then cv_wait for the 1970 * SRS quiesce to complete. The SRS worker thread will wake us 1971 * up when the quiesce is complete 1972 */ 1973 mac_srs_signal(srs, srs_quiesce_flag); 1974 mac_srs_quiesce_wait(srs, srs_done_flag); 1975 } 1976 1977 /* 1978 * Remove an SRS. 1979 */ 1980 void 1981 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1982 { 1983 flow_entry_t *flent = srs->srs_flent; 1984 int i; 1985 1986 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1987 /* 1988 * Locate and remove our entry in the fe_rx_srs[] array, and 1989 * adjust the fe_rx_srs array entries and array count by 1990 * moving the last entry into the vacated spot. 1991 */ 1992 mutex_enter(&flent->fe_lock); 1993 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1994 if (flent->fe_rx_srs[i] == srs) 1995 break; 1996 } 1997 1998 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1999 if (i != flent->fe_rx_srs_cnt - 1) { 2000 flent->fe_rx_srs[i] = 2001 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2002 i = flent->fe_rx_srs_cnt - 1; 2003 } 2004 2005 flent->fe_rx_srs[i] = NULL; 2006 flent->fe_rx_srs_cnt--; 2007 mutex_exit(&flent->fe_lock); 2008 2009 mac_srs_free(srs); 2010 } 2011 2012 static void 2013 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2014 { 2015 mutex_enter(&srs->srs_lock); 2016 srs->srs_state &= ~flag; 2017 mutex_exit(&srs->srs_lock); 2018 } 2019 2020 void 2021 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2022 { 2023 flow_entry_t *flent = srs->srs_flent; 2024 mac_ring_t *mr; 2025 2026 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2027 ASSERT((srs->srs_type & SRST_TX) == 0); 2028 2029 /* 2030 * This handles a change in the number of SRSs between the quiesce and 2031 * and restart operation of a flow. 2032 */ 2033 if (!SRS_QUIESCED(srs)) 2034 return; 2035 2036 /* 2037 * Signal the SRS to restart itself. Wait for the restart to complete 2038 * Note that we only restart the SRS if it is not marked as 2039 * permanently quiesced. 2040 */ 2041 if (!SRS_QUIESCED_PERMANENT(srs)) { 2042 mac_srs_signal(srs, SRS_RESTART); 2043 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2044 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2045 2046 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2047 } 2048 2049 /* Finally clear the flags to let the packets in */ 2050 mr = srs->srs_ring; 2051 if (mr != NULL) { 2052 MAC_RING_UNMARK(mr, MR_QUIESCE); 2053 /* In case the ring was stopped, safely restart it */ 2054 if (mr->mr_state != MR_INUSE) 2055 (void) mac_start_ring(mr); 2056 } else { 2057 FLOW_UNMARK(flent, FE_QUIESCE); 2058 } 2059 } 2060 2061 /* 2062 * Temporary quiesce of a flow and associated Rx SRS. 2063 * Please see block comment above mac_rx_classify_flow_rem. 2064 */ 2065 /* ARGSUSED */ 2066 int 2067 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2068 { 2069 int i; 2070 2071 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2072 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2073 SRS_QUIESCE); 2074 } 2075 return (0); 2076 } 2077 2078 /* 2079 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2080 * Please see block comment above mac_rx_classify_flow_rem 2081 */ 2082 /* ARGSUSED */ 2083 int 2084 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2085 { 2086 int i; 2087 2088 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2089 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2090 2091 return (0); 2092 } 2093 2094 void 2095 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2096 { 2097 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2098 flow_entry_t *flent = mcip->mci_flent; 2099 mac_impl_t *mip = mcip->mci_mip; 2100 mac_soft_ring_set_t *mac_srs; 2101 int i; 2102 2103 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2104 2105 if (flent == NULL) 2106 return; 2107 2108 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2109 mac_srs = flent->fe_rx_srs[i]; 2110 mutex_enter(&mac_srs->srs_lock); 2111 if (on) 2112 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2113 else 2114 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2115 mutex_exit(&mac_srs->srs_lock); 2116 } 2117 } 2118 2119 void 2120 mac_rx_client_quiesce(mac_client_handle_t mch) 2121 { 2122 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2123 mac_impl_t *mip = mcip->mci_mip; 2124 2125 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2126 2127 if (MCIP_DATAPATH_SETUP(mcip)) { 2128 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2129 NULL); 2130 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2131 mac_rx_classify_flow_quiesce, NULL); 2132 } 2133 } 2134 2135 void 2136 mac_rx_client_restart(mac_client_handle_t mch) 2137 { 2138 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2139 mac_impl_t *mip = mcip->mci_mip; 2140 2141 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2142 2143 if (MCIP_DATAPATH_SETUP(mcip)) { 2144 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2145 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2146 mac_rx_classify_flow_restart, NULL); 2147 } 2148 } 2149 2150 /* 2151 * This function only quiesces the Tx SRS and softring worker threads. Callers 2152 * need to make sure that there aren't any mac client threads doing current or 2153 * future transmits in the mac before calling this function. 2154 */ 2155 void 2156 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2157 { 2158 mac_client_impl_t *mcip = srs->srs_mcip; 2159 2160 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2161 2162 ASSERT(srs->srs_type & SRST_TX); 2163 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2164 srs_quiesce_flag == SRS_QUIESCE); 2165 2166 /* 2167 * Signal the SRS to quiesce itself, and then cv_wait for the 2168 * SRS quiesce to complete. The SRS worker thread will wake us 2169 * up when the quiesce is complete 2170 */ 2171 mac_srs_signal(srs, srs_quiesce_flag); 2172 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2173 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2174 } 2175 2176 void 2177 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2178 { 2179 /* 2180 * Resizing the fanout could result in creation of new SRSs. 2181 * They may not necessarily be in the quiesced state in which 2182 * case it need be restarted 2183 */ 2184 if (!SRS_QUIESCED(srs)) 2185 return; 2186 2187 mac_srs_signal(srs, SRS_RESTART); 2188 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2189 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2190 } 2191 2192 /* 2193 * Temporary quiesce of a flow and associated Rx SRS. 2194 * Please see block comment above mac_rx_srs_quiesce 2195 */ 2196 /* ARGSUSED */ 2197 int 2198 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2199 { 2200 /* 2201 * The fe_tx_srs is null for a subflow on an interface that is 2202 * not plumbed 2203 */ 2204 if (flent->fe_tx_srs != NULL) 2205 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2206 return (0); 2207 } 2208 2209 /* ARGSUSED */ 2210 int 2211 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2212 { 2213 /* 2214 * The fe_tx_srs is null for a subflow on an interface that is 2215 * not plumbed 2216 */ 2217 if (flent->fe_tx_srs != NULL) 2218 mac_tx_srs_restart(flent->fe_tx_srs); 2219 return (0); 2220 } 2221 2222 static void 2223 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2224 { 2225 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2226 2227 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2228 2229 mac_tx_client_block(mcip); 2230 if (MCIP_TX_SRS(mcip) != NULL) { 2231 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2232 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2233 mac_tx_flow_quiesce, NULL); 2234 } 2235 } 2236 2237 void 2238 mac_tx_client_quiesce(mac_client_handle_t mch) 2239 { 2240 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2241 } 2242 2243 void 2244 mac_tx_client_condemn(mac_client_handle_t mch) 2245 { 2246 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2247 } 2248 2249 void 2250 mac_tx_client_restart(mac_client_handle_t mch) 2251 { 2252 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2253 2254 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2255 2256 mac_tx_client_unblock(mcip); 2257 if (MCIP_TX_SRS(mcip) != NULL) { 2258 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2259 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2260 mac_tx_flow_restart, NULL); 2261 } 2262 } 2263 2264 void 2265 mac_tx_client_flush(mac_client_impl_t *mcip) 2266 { 2267 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2268 2269 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2270 mac_tx_client_restart((mac_client_handle_t)mcip); 2271 } 2272 2273 void 2274 mac_client_quiesce(mac_client_impl_t *mcip) 2275 { 2276 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2277 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2278 } 2279 2280 void 2281 mac_client_restart(mac_client_impl_t *mcip) 2282 { 2283 mac_rx_client_restart((mac_client_handle_t)mcip); 2284 mac_tx_client_restart((mac_client_handle_t)mcip); 2285 } 2286 2287 /* 2288 * Allocate a minor number. 2289 */ 2290 minor_t 2291 mac_minor_hold(boolean_t sleep) 2292 { 2293 minor_t minor; 2294 2295 /* 2296 * Grab a value from the arena. 2297 */ 2298 atomic_inc_32(&minor_count); 2299 2300 if (sleep) 2301 minor = (uint_t)id_alloc(minor_ids); 2302 else 2303 minor = (uint_t)id_alloc_nosleep(minor_ids); 2304 2305 if (minor == 0) { 2306 atomic_dec_32(&minor_count); 2307 return (0); 2308 } 2309 2310 return (minor); 2311 } 2312 2313 /* 2314 * Release a previously allocated minor number. 2315 */ 2316 void 2317 mac_minor_rele(minor_t minor) 2318 { 2319 /* 2320 * Return the value to the arena. 2321 */ 2322 id_free(minor_ids, minor); 2323 atomic_dec_32(&minor_count); 2324 } 2325 2326 uint32_t 2327 mac_no_notification(mac_handle_t mh) 2328 { 2329 mac_impl_t *mip = (mac_impl_t *)mh; 2330 2331 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2332 mip->mi_capab_legacy.ml_unsup_note : 0); 2333 } 2334 2335 /* 2336 * Prevent any new opens of this mac in preparation for unregister 2337 */ 2338 int 2339 i_mac_disable(mac_impl_t *mip) 2340 { 2341 mac_client_impl_t *mcip; 2342 2343 rw_enter(&i_mac_impl_lock, RW_WRITER); 2344 if (mip->mi_state_flags & MIS_DISABLED) { 2345 /* Already disabled, return success */ 2346 rw_exit(&i_mac_impl_lock); 2347 return (0); 2348 } 2349 /* 2350 * See if there are any other references to this mac_t (e.g., VLAN's). 2351 * If so return failure. If all the other checks below pass, then 2352 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2353 * any new VLAN's from being created or new mac client opens of this 2354 * mac end point. 2355 */ 2356 if (mip->mi_ref > 0) { 2357 rw_exit(&i_mac_impl_lock); 2358 return (EBUSY); 2359 } 2360 2361 /* 2362 * mac clients must delete all multicast groups they join before 2363 * closing. bcast groups are reference counted, the last client 2364 * to delete the group will wait till the group is physically 2365 * deleted. Since all clients have closed this mac end point 2366 * mi_bcast_ngrps must be zero at this point 2367 */ 2368 ASSERT(mip->mi_bcast_ngrps == 0); 2369 2370 /* 2371 * Don't let go of this if it has some flows. 2372 * All other code guarantees no flows are added to a disabled 2373 * mac, therefore it is sufficient to check for the flow table 2374 * only here. 2375 */ 2376 mcip = mac_primary_client_handle(mip); 2377 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2378 rw_exit(&i_mac_impl_lock); 2379 return (ENOTEMPTY); 2380 } 2381 2382 mip->mi_state_flags |= MIS_DISABLED; 2383 rw_exit(&i_mac_impl_lock); 2384 return (0); 2385 } 2386 2387 int 2388 mac_disable_nowait(mac_handle_t mh) 2389 { 2390 mac_impl_t *mip = (mac_impl_t *)mh; 2391 int err; 2392 2393 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2394 return (err); 2395 err = i_mac_disable(mip); 2396 i_mac_perim_exit(mip); 2397 return (err); 2398 } 2399 2400 int 2401 mac_disable(mac_handle_t mh) 2402 { 2403 mac_impl_t *mip = (mac_impl_t *)mh; 2404 int err; 2405 2406 i_mac_perim_enter(mip); 2407 err = i_mac_disable(mip); 2408 i_mac_perim_exit(mip); 2409 2410 /* 2411 * Clean up notification thread and wait for it to exit. 2412 */ 2413 if (err == 0) 2414 i_mac_notify_exit(mip); 2415 2416 return (err); 2417 } 2418 2419 /* 2420 * Called when the MAC instance has a non empty flow table, to de-multiplex 2421 * incoming packets to the right flow. 2422 * The MAC's rw lock is assumed held as a READER. 2423 */ 2424 /* ARGSUSED */ 2425 static mblk_t * 2426 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2427 { 2428 flow_entry_t *flent = NULL; 2429 uint_t flags = FLOW_INBOUND; 2430 int err; 2431 2432 /* 2433 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2434 * to mac_flow_lookup() so that the VLAN packets can be successfully 2435 * passed to the non-VLAN aggregation flows. 2436 * 2437 * Note that there is possibly a race between this and 2438 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2439 * classified to non-VLAN flows of non-aggregation mac clients. These 2440 * VLAN packets will be then filtered out by the mac module. 2441 */ 2442 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2443 flags |= FLOW_IGNORE_VLAN; 2444 2445 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2446 if (err != 0) { 2447 /* no registered receive function */ 2448 return (mp); 2449 } else { 2450 mac_client_impl_t *mcip; 2451 2452 /* 2453 * This flent might just be an additional one on the MAC client, 2454 * i.e. for classification purposes (different fdesc), however 2455 * the resources, SRS et. al., are in the mci_flent, so if 2456 * this isn't the mci_flent, we need to get it. 2457 */ 2458 if ((mcip = flent->fe_mcip) != NULL && 2459 mcip->mci_flent != flent) { 2460 FLOW_REFRELE(flent); 2461 flent = mcip->mci_flent; 2462 FLOW_TRY_REFHOLD(flent, err); 2463 if (err != 0) 2464 return (mp); 2465 } 2466 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2467 B_FALSE); 2468 FLOW_REFRELE(flent); 2469 } 2470 return (NULL); 2471 } 2472 2473 mblk_t * 2474 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2475 { 2476 mac_impl_t *mip = (mac_impl_t *)mh; 2477 mblk_t *bp, *bp1, **bpp, *list = NULL; 2478 2479 /* 2480 * We walk the chain and attempt to classify each packet. 2481 * The packets that couldn't be classified will be returned 2482 * back to the caller. 2483 */ 2484 bp = mp_chain; 2485 bpp = &list; 2486 while (bp != NULL) { 2487 bp1 = bp; 2488 bp = bp->b_next; 2489 bp1->b_next = NULL; 2490 2491 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2492 *bpp = bp1; 2493 bpp = &bp1->b_next; 2494 } 2495 } 2496 return (list); 2497 } 2498 2499 static int 2500 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2501 { 2502 mac_ring_handle_t ring = arg; 2503 2504 if (flent->fe_tx_srs) 2505 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2506 return (0); 2507 } 2508 2509 void 2510 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2511 { 2512 mac_client_impl_t *cclient; 2513 mac_soft_ring_set_t *mac_srs; 2514 2515 /* 2516 * After grabbing the mi_rw_lock, the list of clients can't change. 2517 * If there are any clients mi_disabled must be B_FALSE and can't 2518 * get set since there are clients. If there aren't any clients we 2519 * don't do anything. In any case the mip has to be valid. The driver 2520 * must make sure that it goes single threaded (with respect to mac 2521 * calls) and wait for all pending mac calls to finish before calling 2522 * mac_unregister. 2523 */ 2524 rw_enter(&i_mac_impl_lock, RW_READER); 2525 if (mip->mi_state_flags & MIS_DISABLED) { 2526 rw_exit(&i_mac_impl_lock); 2527 return; 2528 } 2529 2530 /* 2531 * Get MAC tx srs from walking mac_client_handle list. 2532 */ 2533 rw_enter(&mip->mi_rw_lock, RW_READER); 2534 for (cclient = mip->mi_clients_list; cclient != NULL; 2535 cclient = cclient->mci_client_next) { 2536 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2537 mac_tx_srs_wakeup(mac_srs, ring); 2538 } else { 2539 /* 2540 * Aggr opens underlying ports in exclusive mode 2541 * and registers flow control callbacks using 2542 * mac_tx_client_notify(). When opened in 2543 * exclusive mode, Tx SRS won't be created 2544 * during mac_unicast_add(). 2545 */ 2546 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2547 mac_tx_invoke_callbacks(cclient, 2548 (mac_tx_cookie_t)ring); 2549 } 2550 } 2551 (void) mac_flow_walk(cclient->mci_subflow_tab, 2552 mac_tx_flow_srs_wakeup, ring); 2553 } 2554 rw_exit(&mip->mi_rw_lock); 2555 rw_exit(&i_mac_impl_lock); 2556 } 2557 2558 /* ARGSUSED */ 2559 void 2560 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2561 boolean_t add) 2562 { 2563 mac_impl_t *mip = (mac_impl_t *)mh; 2564 2565 i_mac_perim_enter((mac_impl_t *)mh); 2566 /* 2567 * If no specific refresh function was given then default to the 2568 * driver's m_multicst entry point. 2569 */ 2570 if (refresh == NULL) { 2571 refresh = mip->mi_multicst; 2572 arg = mip->mi_driver; 2573 } 2574 2575 mac_bcast_refresh(mip, refresh, arg, add); 2576 i_mac_perim_exit((mac_impl_t *)mh); 2577 } 2578 2579 void 2580 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2581 { 2582 mac_impl_t *mip = (mac_impl_t *)mh; 2583 2584 /* 2585 * If no specific refresh function was given then default to the 2586 * driver's m_promisc entry point. 2587 */ 2588 if (refresh == NULL) { 2589 refresh = mip->mi_setpromisc; 2590 arg = mip->mi_driver; 2591 } 2592 ASSERT(refresh != NULL); 2593 2594 /* 2595 * Call the refresh function with the current promiscuity. 2596 */ 2597 refresh(arg, (mip->mi_devpromisc != 0)); 2598 } 2599 2600 /* 2601 * The mac client requests that the mac not to change its margin size to 2602 * be less than the specified value. If "current" is B_TRUE, then the client 2603 * requests the mac not to change its margin size to be smaller than the 2604 * current size. Further, return the current margin size value in this case. 2605 * 2606 * We keep every requested size in an ordered list from largest to smallest. 2607 */ 2608 int 2609 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2610 { 2611 mac_impl_t *mip = (mac_impl_t *)mh; 2612 mac_margin_req_t **pp, *p; 2613 int err = 0; 2614 2615 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2616 if (current) 2617 *marginp = mip->mi_margin; 2618 2619 /* 2620 * If the current margin value cannot satisfy the margin requested, 2621 * return ENOTSUP directly. 2622 */ 2623 if (*marginp > mip->mi_margin) { 2624 err = ENOTSUP; 2625 goto done; 2626 } 2627 2628 /* 2629 * Check whether the given margin is already in the list. If so, 2630 * bump the reference count. 2631 */ 2632 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2633 if (p->mmr_margin == *marginp) { 2634 /* 2635 * The margin requested is already in the list, 2636 * so just bump the reference count. 2637 */ 2638 p->mmr_ref++; 2639 goto done; 2640 } 2641 if (p->mmr_margin < *marginp) 2642 break; 2643 } 2644 2645 2646 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2647 p->mmr_margin = *marginp; 2648 p->mmr_ref++; 2649 p->mmr_nextp = *pp; 2650 *pp = p; 2651 2652 done: 2653 rw_exit(&(mip->mi_rw_lock)); 2654 return (err); 2655 } 2656 2657 /* 2658 * The mac client requests to cancel its previous mac_margin_add() request. 2659 * We remove the requested margin size from the list. 2660 */ 2661 int 2662 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2663 { 2664 mac_impl_t *mip = (mac_impl_t *)mh; 2665 mac_margin_req_t **pp, *p; 2666 int err = 0; 2667 2668 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2669 /* 2670 * Find the entry in the list for the given margin. 2671 */ 2672 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2673 if (p->mmr_margin == margin) { 2674 if (--p->mmr_ref == 0) 2675 break; 2676 2677 /* 2678 * There is still a reference to this address so 2679 * there's nothing more to do. 2680 */ 2681 goto done; 2682 } 2683 } 2684 2685 /* 2686 * We did not find an entry for the given margin. 2687 */ 2688 if (p == NULL) { 2689 err = ENOENT; 2690 goto done; 2691 } 2692 2693 ASSERT(p->mmr_ref == 0); 2694 2695 /* 2696 * Remove it from the list. 2697 */ 2698 *pp = p->mmr_nextp; 2699 kmem_free(p, sizeof (mac_margin_req_t)); 2700 done: 2701 rw_exit(&(mip->mi_rw_lock)); 2702 return (err); 2703 } 2704 2705 boolean_t 2706 mac_margin_update(mac_handle_t mh, uint32_t margin) 2707 { 2708 mac_impl_t *mip = (mac_impl_t *)mh; 2709 uint32_t margin_needed = 0; 2710 2711 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2712 2713 if (mip->mi_mmrp != NULL) 2714 margin_needed = mip->mi_mmrp->mmr_margin; 2715 2716 if (margin_needed <= margin) 2717 mip->mi_margin = margin; 2718 2719 rw_exit(&(mip->mi_rw_lock)); 2720 2721 if (margin_needed <= margin) 2722 i_mac_notify(mip, MAC_NOTE_MARGIN); 2723 2724 return (margin_needed <= margin); 2725 } 2726 2727 /* 2728 * MAC clients use this interface to request that a MAC device not change its 2729 * MTU below the specified amount. At this time, that amount must be within the 2730 * range of the device's current minimum and the device's current maximum. eg. a 2731 * client cannot request a 3000 byte MTU when the device's MTU is currently 2732 * 2000. 2733 * 2734 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2735 * current underlying mac's maximum for this mac client and return it in mtup. 2736 */ 2737 int 2738 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2739 { 2740 mac_impl_t *mip = (mac_impl_t *)mh; 2741 mac_mtu_req_t *prev, *cur; 2742 mac_propval_range_t mpr; 2743 int err; 2744 2745 i_mac_perim_enter(mip); 2746 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2747 2748 if (current == B_TRUE) 2749 *mtup = mip->mi_sdu_max; 2750 mpr.mpr_count = 1; 2751 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2752 if (err != 0) { 2753 rw_exit(&mip->mi_rw_lock); 2754 i_mac_perim_exit(mip); 2755 return (err); 2756 } 2757 2758 if (*mtup > mip->mi_sdu_max || 2759 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2760 rw_exit(&mip->mi_rw_lock); 2761 i_mac_perim_exit(mip); 2762 return (ENOTSUP); 2763 } 2764 2765 prev = NULL; 2766 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2767 if (*mtup == cur->mtr_mtu) { 2768 cur->mtr_ref++; 2769 rw_exit(&mip->mi_rw_lock); 2770 i_mac_perim_exit(mip); 2771 return (0); 2772 } 2773 2774 if (*mtup > cur->mtr_mtu) 2775 break; 2776 2777 prev = cur; 2778 } 2779 2780 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2781 cur->mtr_mtu = *mtup; 2782 cur->mtr_ref = 1; 2783 if (prev != NULL) { 2784 cur->mtr_nextp = prev->mtr_nextp; 2785 prev->mtr_nextp = cur; 2786 } else { 2787 cur->mtr_nextp = mip->mi_mtrp; 2788 mip->mi_mtrp = cur; 2789 } 2790 2791 rw_exit(&mip->mi_rw_lock); 2792 i_mac_perim_exit(mip); 2793 return (0); 2794 } 2795 2796 int 2797 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 2798 { 2799 mac_impl_t *mip = (mac_impl_t *)mh; 2800 mac_mtu_req_t *cur, *prev; 2801 2802 i_mac_perim_enter(mip); 2803 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2804 2805 prev = NULL; 2806 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2807 if (cur->mtr_mtu == mtu) { 2808 ASSERT(cur->mtr_ref > 0); 2809 cur->mtr_ref--; 2810 if (cur->mtr_ref == 0) { 2811 if (prev == NULL) { 2812 mip->mi_mtrp = cur->mtr_nextp; 2813 } else { 2814 prev->mtr_nextp = cur->mtr_nextp; 2815 } 2816 kmem_free(cur, sizeof (mac_mtu_req_t)); 2817 } 2818 rw_exit(&mip->mi_rw_lock); 2819 i_mac_perim_exit(mip); 2820 return (0); 2821 } 2822 2823 prev = cur; 2824 } 2825 2826 rw_exit(&mip->mi_rw_lock); 2827 i_mac_perim_exit(mip); 2828 return (ENOENT); 2829 } 2830 2831 /* 2832 * MAC Type Plugin functions. 2833 */ 2834 2835 mactype_t * 2836 mactype_getplugin(const char *pname) 2837 { 2838 mactype_t *mtype = NULL; 2839 boolean_t tried_modload = B_FALSE; 2840 2841 mutex_enter(&i_mactype_lock); 2842 2843 find_registered_mactype: 2844 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2845 (mod_hash_val_t *)&mtype) != 0) { 2846 if (!tried_modload) { 2847 /* 2848 * If the plugin has not yet been loaded, then 2849 * attempt to load it now. If modload() succeeds, 2850 * the plugin should have registered using 2851 * mactype_register(), in which case we can go back 2852 * and attempt to find it again. 2853 */ 2854 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2855 tried_modload = B_TRUE; 2856 goto find_registered_mactype; 2857 } 2858 } 2859 } else { 2860 /* 2861 * Note that there's no danger that the plugin we've loaded 2862 * could be unloaded between the modload() step and the 2863 * reference count bump here, as we're holding 2864 * i_mactype_lock, which mactype_unregister() also holds. 2865 */ 2866 atomic_inc_32(&mtype->mt_ref); 2867 } 2868 2869 mutex_exit(&i_mactype_lock); 2870 return (mtype); 2871 } 2872 2873 mactype_register_t * 2874 mactype_alloc(uint_t mactype_version) 2875 { 2876 mactype_register_t *mtrp; 2877 2878 /* 2879 * Make sure there isn't a version mismatch between the plugin and 2880 * the framework. In the future, if multiple versions are 2881 * supported, this check could become more sophisticated. 2882 */ 2883 if (mactype_version != MACTYPE_VERSION) 2884 return (NULL); 2885 2886 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2887 mtrp->mtr_version = mactype_version; 2888 return (mtrp); 2889 } 2890 2891 void 2892 mactype_free(mactype_register_t *mtrp) 2893 { 2894 kmem_free(mtrp, sizeof (mactype_register_t)); 2895 } 2896 2897 int 2898 mactype_register(mactype_register_t *mtrp) 2899 { 2900 mactype_t *mtp; 2901 mactype_ops_t *ops = mtrp->mtr_ops; 2902 2903 /* Do some sanity checking before we register this MAC type. */ 2904 if (mtrp->mtr_ident == NULL || ops == NULL) 2905 return (EINVAL); 2906 2907 /* 2908 * Verify that all mandatory callbacks are set in the ops 2909 * vector. 2910 */ 2911 if (ops->mtops_unicst_verify == NULL || 2912 ops->mtops_multicst_verify == NULL || 2913 ops->mtops_sap_verify == NULL || 2914 ops->mtops_header == NULL || 2915 ops->mtops_header_info == NULL) { 2916 return (EINVAL); 2917 } 2918 2919 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2920 mtp->mt_ident = mtrp->mtr_ident; 2921 mtp->mt_ops = *ops; 2922 mtp->mt_type = mtrp->mtr_mactype; 2923 mtp->mt_nativetype = mtrp->mtr_nativetype; 2924 mtp->mt_addr_length = mtrp->mtr_addrlen; 2925 if (mtrp->mtr_brdcst_addr != NULL) { 2926 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2927 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2928 mtrp->mtr_addrlen); 2929 } 2930 2931 mtp->mt_stats = mtrp->mtr_stats; 2932 mtp->mt_statcount = mtrp->mtr_statcount; 2933 2934 mtp->mt_mapping = mtrp->mtr_mapping; 2935 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2936 2937 if (mod_hash_insert(i_mactype_hash, 2938 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2939 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2940 kmem_free(mtp, sizeof (*mtp)); 2941 return (EEXIST); 2942 } 2943 return (0); 2944 } 2945 2946 int 2947 mactype_unregister(const char *ident) 2948 { 2949 mactype_t *mtp; 2950 mod_hash_val_t val; 2951 int err; 2952 2953 /* 2954 * Let's not allow MAC drivers to use this plugin while we're 2955 * trying to unregister it. Holding i_mactype_lock also prevents a 2956 * plugin from unregistering while a MAC driver is attempting to 2957 * hold a reference to it in i_mactype_getplugin(). 2958 */ 2959 mutex_enter(&i_mactype_lock); 2960 2961 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2962 (mod_hash_val_t *)&mtp)) != 0) { 2963 /* A plugin is trying to unregister, but it never registered. */ 2964 err = ENXIO; 2965 goto done; 2966 } 2967 2968 if (mtp->mt_ref != 0) { 2969 err = EBUSY; 2970 goto done; 2971 } 2972 2973 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2974 ASSERT(err == 0); 2975 if (err != 0) { 2976 /* This should never happen, thus the ASSERT() above. */ 2977 err = EINVAL; 2978 goto done; 2979 } 2980 ASSERT(mtp == (mactype_t *)val); 2981 2982 if (mtp->mt_brdcst_addr != NULL) 2983 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2984 kmem_free(mtp, sizeof (mactype_t)); 2985 done: 2986 mutex_exit(&i_mactype_lock); 2987 return (err); 2988 } 2989 2990 /* 2991 * Checks the size of the value size specified for a property as 2992 * part of a property operation. Returns B_TRUE if the size is 2993 * correct, B_FALSE otherwise. 2994 */ 2995 boolean_t 2996 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2997 { 2998 uint_t minsize = 0; 2999 3000 if (is_range) 3001 return (valsize >= sizeof (mac_propval_range_t)); 3002 3003 switch (id) { 3004 case MAC_PROP_ZONE: 3005 minsize = sizeof (dld_ioc_zid_t); 3006 break; 3007 case MAC_PROP_AUTOPUSH: 3008 if (valsize != 0) 3009 minsize = sizeof (struct dlautopush); 3010 break; 3011 case MAC_PROP_TAGMODE: 3012 minsize = sizeof (link_tagmode_t); 3013 break; 3014 case MAC_PROP_RESOURCE: 3015 case MAC_PROP_RESOURCE_EFF: 3016 minsize = sizeof (mac_resource_props_t); 3017 break; 3018 case MAC_PROP_DUPLEX: 3019 minsize = sizeof (link_duplex_t); 3020 break; 3021 case MAC_PROP_SPEED: 3022 minsize = sizeof (uint64_t); 3023 break; 3024 case MAC_PROP_STATUS: 3025 minsize = sizeof (link_state_t); 3026 break; 3027 case MAC_PROP_AUTONEG: 3028 case MAC_PROP_EN_AUTONEG: 3029 minsize = sizeof (uint8_t); 3030 break; 3031 case MAC_PROP_MTU: 3032 case MAC_PROP_LLIMIT: 3033 case MAC_PROP_LDECAY: 3034 minsize = sizeof (uint32_t); 3035 break; 3036 case MAC_PROP_FLOWCTRL: 3037 minsize = sizeof (link_flowctrl_t); 3038 break; 3039 case MAC_PROP_ADV_5000FDX_CAP: 3040 case MAC_PROP_EN_5000FDX_CAP: 3041 case MAC_PROP_ADV_2500FDX_CAP: 3042 case MAC_PROP_EN_2500FDX_CAP: 3043 case MAC_PROP_ADV_100GFDX_CAP: 3044 case MAC_PROP_EN_100GFDX_CAP: 3045 case MAC_PROP_ADV_50GFDX_CAP: 3046 case MAC_PROP_EN_50GFDX_CAP: 3047 case MAC_PROP_ADV_40GFDX_CAP: 3048 case MAC_PROP_EN_40GFDX_CAP: 3049 case MAC_PROP_ADV_25GFDX_CAP: 3050 case MAC_PROP_EN_25GFDX_CAP: 3051 case MAC_PROP_ADV_10GFDX_CAP: 3052 case MAC_PROP_EN_10GFDX_CAP: 3053 case MAC_PROP_ADV_1000HDX_CAP: 3054 case MAC_PROP_EN_1000HDX_CAP: 3055 case MAC_PROP_ADV_100FDX_CAP: 3056 case MAC_PROP_EN_100FDX_CAP: 3057 case MAC_PROP_ADV_100HDX_CAP: 3058 case MAC_PROP_EN_100HDX_CAP: 3059 case MAC_PROP_ADV_10FDX_CAP: 3060 case MAC_PROP_EN_10FDX_CAP: 3061 case MAC_PROP_ADV_10HDX_CAP: 3062 case MAC_PROP_EN_10HDX_CAP: 3063 case MAC_PROP_ADV_100T4_CAP: 3064 case MAC_PROP_EN_100T4_CAP: 3065 minsize = sizeof (uint8_t); 3066 break; 3067 case MAC_PROP_PVID: 3068 minsize = sizeof (uint16_t); 3069 break; 3070 case MAC_PROP_IPTUN_HOPLIMIT: 3071 minsize = sizeof (uint32_t); 3072 break; 3073 case MAC_PROP_IPTUN_ENCAPLIMIT: 3074 minsize = sizeof (uint32_t); 3075 break; 3076 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3077 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3078 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3079 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3080 minsize = sizeof (uint_t); 3081 break; 3082 case MAC_PROP_WL_ESSID: 3083 minsize = sizeof (wl_linkstatus_t); 3084 break; 3085 case MAC_PROP_WL_BSSID: 3086 minsize = sizeof (wl_bssid_t); 3087 break; 3088 case MAC_PROP_WL_BSSTYPE: 3089 minsize = sizeof (wl_bss_type_t); 3090 break; 3091 case MAC_PROP_WL_LINKSTATUS: 3092 minsize = sizeof (wl_linkstatus_t); 3093 break; 3094 case MAC_PROP_WL_DESIRED_RATES: 3095 minsize = sizeof (wl_rates_t); 3096 break; 3097 case MAC_PROP_WL_SUPPORTED_RATES: 3098 minsize = sizeof (wl_rates_t); 3099 break; 3100 case MAC_PROP_WL_AUTH_MODE: 3101 minsize = sizeof (wl_authmode_t); 3102 break; 3103 case MAC_PROP_WL_ENCRYPTION: 3104 minsize = sizeof (wl_encryption_t); 3105 break; 3106 case MAC_PROP_WL_RSSI: 3107 minsize = sizeof (wl_rssi_t); 3108 break; 3109 case MAC_PROP_WL_PHY_CONFIG: 3110 minsize = sizeof (wl_phy_conf_t); 3111 break; 3112 case MAC_PROP_WL_CAPABILITY: 3113 minsize = sizeof (wl_capability_t); 3114 break; 3115 case MAC_PROP_WL_WPA: 3116 minsize = sizeof (wl_wpa_t); 3117 break; 3118 case MAC_PROP_WL_SCANRESULTS: 3119 minsize = sizeof (wl_wpa_ess_t); 3120 break; 3121 case MAC_PROP_WL_POWER_MODE: 3122 minsize = sizeof (wl_ps_mode_t); 3123 break; 3124 case MAC_PROP_WL_RADIO: 3125 minsize = sizeof (wl_radio_t); 3126 break; 3127 case MAC_PROP_WL_ESS_LIST: 3128 minsize = sizeof (wl_ess_list_t); 3129 break; 3130 case MAC_PROP_WL_KEY_TAB: 3131 minsize = sizeof (wl_wep_key_tab_t); 3132 break; 3133 case MAC_PROP_WL_CREATE_IBSS: 3134 minsize = sizeof (wl_create_ibss_t); 3135 break; 3136 case MAC_PROP_WL_SETOPTIE: 3137 minsize = sizeof (wl_wpa_ie_t); 3138 break; 3139 case MAC_PROP_WL_DELKEY: 3140 minsize = sizeof (wl_del_key_t); 3141 break; 3142 case MAC_PROP_WL_KEY: 3143 minsize = sizeof (wl_key_t); 3144 break; 3145 case MAC_PROP_WL_MLME: 3146 minsize = sizeof (wl_mlme_t); 3147 break; 3148 case MAC_PROP_VN_PROMISC_FILTERED: 3149 minsize = sizeof (boolean_t); 3150 break; 3151 } 3152 3153 return (valsize >= minsize); 3154 } 3155 3156 /* 3157 * mac_set_prop() sets MAC or hardware driver properties: 3158 * 3159 * - MAC-managed properties such as resource properties include maxbw, 3160 * priority, and cpu binding list, as well as the default port VID 3161 * used by bridging. These properties are consumed by the MAC layer 3162 * itself and not passed down to the driver. For resource control 3163 * properties, this function invokes mac_set_resources() which will 3164 * cache the property value in mac_impl_t and may call 3165 * mac_client_set_resource() to update property value of the primary 3166 * mac client, if it exists. 3167 * 3168 * - Properties which act on the hardware and must be passed to the 3169 * driver, such as MTU, through the driver's mc_setprop() entry point. 3170 */ 3171 int 3172 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3173 uint_t valsize) 3174 { 3175 int err = ENOTSUP; 3176 mac_impl_t *mip = (mac_impl_t *)mh; 3177 3178 ASSERT(MAC_PERIM_HELD(mh)); 3179 3180 switch (id) { 3181 case MAC_PROP_RESOURCE: { 3182 mac_resource_props_t *mrp; 3183 3184 /* call mac_set_resources() for MAC properties */ 3185 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3186 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3187 bcopy(val, mrp, sizeof (*mrp)); 3188 err = mac_set_resources(mh, mrp); 3189 kmem_free(mrp, sizeof (*mrp)); 3190 break; 3191 } 3192 3193 case MAC_PROP_PVID: 3194 ASSERT(valsize >= sizeof (uint16_t)); 3195 if (mip->mi_state_flags & MIS_IS_VNIC) 3196 return (EINVAL); 3197 err = mac_set_pvid(mh, *(uint16_t *)val); 3198 break; 3199 3200 case MAC_PROP_MTU: { 3201 uint32_t mtu; 3202 3203 ASSERT(valsize >= sizeof (uint32_t)); 3204 bcopy(val, &mtu, sizeof (mtu)); 3205 err = mac_set_mtu(mh, mtu, NULL); 3206 break; 3207 } 3208 3209 case MAC_PROP_LLIMIT: 3210 case MAC_PROP_LDECAY: { 3211 uint32_t learnval; 3212 3213 if (valsize < sizeof (learnval) || 3214 (mip->mi_state_flags & MIS_IS_VNIC)) 3215 return (EINVAL); 3216 bcopy(val, &learnval, sizeof (learnval)); 3217 if (learnval == 0 && id == MAC_PROP_LDECAY) 3218 return (EINVAL); 3219 if (id == MAC_PROP_LLIMIT) 3220 mip->mi_llimit = learnval; 3221 else 3222 mip->mi_ldecay = learnval; 3223 err = 0; 3224 break; 3225 } 3226 3227 default: 3228 /* For other driver properties, call driver's callback */ 3229 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3230 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3231 name, id, valsize, val); 3232 } 3233 } 3234 return (err); 3235 } 3236 3237 /* 3238 * mac_get_prop() gets MAC or device driver properties. 3239 * 3240 * If the property is a driver property, mac_get_prop() calls driver's callback 3241 * entry point to get it. 3242 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3243 * which returns the cached value in mac_impl_t. 3244 */ 3245 int 3246 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3247 uint_t valsize) 3248 { 3249 int err = ENOTSUP; 3250 mac_impl_t *mip = (mac_impl_t *)mh; 3251 uint_t rings; 3252 uint_t vlinks; 3253 3254 bzero(val, valsize); 3255 3256 switch (id) { 3257 case MAC_PROP_RESOURCE: { 3258 mac_resource_props_t *mrp; 3259 3260 /* If mac property, read from cache */ 3261 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3262 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3263 mac_get_resources(mh, mrp); 3264 bcopy(mrp, val, sizeof (*mrp)); 3265 kmem_free(mrp, sizeof (*mrp)); 3266 return (0); 3267 } 3268 case MAC_PROP_RESOURCE_EFF: { 3269 mac_resource_props_t *mrp; 3270 3271 /* If mac effective property, read from client */ 3272 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3273 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3274 mac_get_effective_resources(mh, mrp); 3275 bcopy(mrp, val, sizeof (*mrp)); 3276 kmem_free(mrp, sizeof (*mrp)); 3277 return (0); 3278 } 3279 3280 case MAC_PROP_PVID: 3281 ASSERT(valsize >= sizeof (uint16_t)); 3282 if (mip->mi_state_flags & MIS_IS_VNIC) 3283 return (EINVAL); 3284 *(uint16_t *)val = mac_get_pvid(mh); 3285 return (0); 3286 3287 case MAC_PROP_LLIMIT: 3288 case MAC_PROP_LDECAY: 3289 ASSERT(valsize >= sizeof (uint32_t)); 3290 if (mip->mi_state_flags & MIS_IS_VNIC) 3291 return (EINVAL); 3292 if (id == MAC_PROP_LLIMIT) 3293 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3294 else 3295 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3296 return (0); 3297 3298 case MAC_PROP_MTU: { 3299 uint32_t sdu; 3300 3301 ASSERT(valsize >= sizeof (uint32_t)); 3302 mac_sdu_get2(mh, NULL, &sdu, NULL); 3303 bcopy(&sdu, val, sizeof (sdu)); 3304 3305 return (0); 3306 } 3307 case MAC_PROP_STATUS: { 3308 link_state_t link_state; 3309 3310 if (valsize < sizeof (link_state)) 3311 return (EINVAL); 3312 link_state = mac_link_get(mh); 3313 bcopy(&link_state, val, sizeof (link_state)); 3314 3315 return (0); 3316 } 3317 3318 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3319 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3320 ASSERT(valsize >= sizeof (uint_t)); 3321 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3322 mac_rxavail_get(mh) : mac_txavail_get(mh); 3323 bcopy(&rings, val, sizeof (uint_t)); 3324 return (0); 3325 3326 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3327 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3328 ASSERT(valsize >= sizeof (uint_t)); 3329 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3330 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3331 bcopy(&vlinks, val, sizeof (uint_t)); 3332 return (0); 3333 3334 case MAC_PROP_RXRINGSRANGE: 3335 case MAC_PROP_TXRINGSRANGE: 3336 /* 3337 * The value for these properties are returned through 3338 * the MAC_PROP_RESOURCE property. 3339 */ 3340 return (0); 3341 3342 default: 3343 break; 3344 3345 } 3346 3347 /* If driver property, request from driver */ 3348 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3349 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3350 valsize, val); 3351 } 3352 3353 return (err); 3354 } 3355 3356 /* 3357 * Helper function to initialize the range structure for use in 3358 * mac_get_prop. If the type can be other than uint32, we can 3359 * pass that as an arg. 3360 */ 3361 static void 3362 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3363 { 3364 range->mpr_count = 1; 3365 range->mpr_type = MAC_PROPVAL_UINT32; 3366 range->mpr_range_uint32[0].mpur_min = min; 3367 range->mpr_range_uint32[0].mpur_max = max; 3368 } 3369 3370 /* 3371 * Returns information about the specified property, such as default 3372 * values or permissions. 3373 */ 3374 int 3375 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3376 void *default_val, uint_t default_size, mac_propval_range_t *range, 3377 uint_t *perm) 3378 { 3379 mac_prop_info_state_t state; 3380 mac_impl_t *mip = (mac_impl_t *)mh; 3381 uint_t max; 3382 3383 /* 3384 * A property is read/write by default unless the driver says 3385 * otherwise. 3386 */ 3387 if (perm != NULL) 3388 *perm = MAC_PROP_PERM_RW; 3389 3390 if (default_val != NULL) 3391 bzero(default_val, default_size); 3392 3393 /* 3394 * First, handle framework properties for which we don't need to 3395 * involve the driver. 3396 */ 3397 switch (id) { 3398 case MAC_PROP_RESOURCE: 3399 case MAC_PROP_PVID: 3400 case MAC_PROP_LLIMIT: 3401 case MAC_PROP_LDECAY: 3402 return (0); 3403 3404 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3405 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3406 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3407 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3408 if (perm != NULL) 3409 *perm = MAC_PROP_PERM_READ; 3410 return (0); 3411 3412 case MAC_PROP_RXRINGSRANGE: 3413 case MAC_PROP_TXRINGSRANGE: 3414 /* 3415 * Currently, we support range for RX and TX rings properties. 3416 * When we extend this support to maxbw, cpus and priority, 3417 * we should move this to mac_get_resources. 3418 * There is no default value for RX or TX rings. 3419 */ 3420 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3421 mac_is_vnic_primary(mh)) { 3422 /* 3423 * We don't support setting rings for a VLAN 3424 * data link because it shares its ring with the 3425 * primary MAC client. 3426 */ 3427 if (perm != NULL) 3428 *perm = MAC_PROP_PERM_READ; 3429 if (range != NULL) 3430 range->mpr_count = 0; 3431 } else if (range != NULL) { 3432 if (mip->mi_state_flags & MIS_IS_VNIC) 3433 mh = mac_get_lower_mac_handle(mh); 3434 mip = (mac_impl_t *)mh; 3435 if ((id == MAC_PROP_RXRINGSRANGE && 3436 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3437 (id == MAC_PROP_TXRINGSRANGE && 3438 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3439 if (id == MAC_PROP_RXRINGSRANGE) { 3440 if ((mac_rxhwlnksavail_get(mh) + 3441 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3442 /* 3443 * doesn't support groups or 3444 * rings 3445 */ 3446 range->mpr_count = 0; 3447 } else { 3448 /* 3449 * supports specifying groups, 3450 * but not rings 3451 */ 3452 _mac_set_range(range, 0, 0); 3453 } 3454 } else { 3455 if ((mac_txhwlnksavail_get(mh) + 3456 mac_txhwlnksrsvd_get(mh)) <= 1) { 3457 /* 3458 * doesn't support groups or 3459 * rings 3460 */ 3461 range->mpr_count = 0; 3462 } else { 3463 /* 3464 * supports specifying groups, 3465 * but not rings 3466 */ 3467 _mac_set_range(range, 0, 0); 3468 } 3469 } 3470 } else { 3471 max = id == MAC_PROP_RXRINGSRANGE ? 3472 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3473 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3474 if (max <= 1) { 3475 /* 3476 * doesn't support groups or 3477 * rings 3478 */ 3479 range->mpr_count = 0; 3480 } else { 3481 /* 3482 * -1 because we have to leave out the 3483 * default ring. 3484 */ 3485 _mac_set_range(range, 1, max - 1); 3486 } 3487 } 3488 } 3489 return (0); 3490 3491 case MAC_PROP_STATUS: 3492 if (perm != NULL) 3493 *perm = MAC_PROP_PERM_READ; 3494 return (0); 3495 } 3496 3497 /* 3498 * Get the property info from the driver if it implements the 3499 * property info entry point. 3500 */ 3501 bzero(&state, sizeof (state)); 3502 3503 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3504 state.pr_default = default_val; 3505 state.pr_default_size = default_size; 3506 3507 /* 3508 * The caller specifies the maximum number of ranges 3509 * it can accomodate using mpr_count. We don't touch 3510 * this value until the driver returns from its 3511 * mc_propinfo() callback, and ensure we don't exceed 3512 * this number of range as the driver defines 3513 * supported range from its mc_propinfo(). 3514 * 3515 * pr_range_cur_count keeps track of how many ranges 3516 * were defined by the driver from its mc_propinfo() 3517 * entry point. 3518 * 3519 * On exit, the user-specified range mpr_count returns 3520 * the number of ranges specified by the driver on 3521 * success, or the number of ranges it wanted to 3522 * define if that number of ranges could not be 3523 * accomodated by the specified range structure. In 3524 * the latter case, the caller will be able to 3525 * allocate a larger range structure, and query the 3526 * property again. 3527 */ 3528 state.pr_range_cur_count = 0; 3529 state.pr_range = range; 3530 3531 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3532 (mac_prop_info_handle_t)&state); 3533 3534 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3535 range->mpr_count = state.pr_range_cur_count; 3536 3537 /* 3538 * The operation could fail if the buffer supplied by 3539 * the user was too small for the range or default 3540 * value of the property. 3541 */ 3542 if (state.pr_errno != 0) 3543 return (state.pr_errno); 3544 3545 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3546 *perm = state.pr_perm; 3547 } 3548 3549 /* 3550 * The MAC layer may want to provide default values or allowed 3551 * ranges for properties if the driver does not provide a 3552 * property info entry point, or that entry point exists, but 3553 * it did not provide a default value or allowed ranges for 3554 * that property. 3555 */ 3556 switch (id) { 3557 case MAC_PROP_MTU: { 3558 uint32_t sdu; 3559 3560 mac_sdu_get2(mh, NULL, &sdu, NULL); 3561 3562 if (range != NULL && !(state.pr_flags & 3563 MAC_PROP_INFO_RANGE)) { 3564 /* MTU range */ 3565 _mac_set_range(range, sdu, sdu); 3566 } 3567 3568 if (default_val != NULL && !(state.pr_flags & 3569 MAC_PROP_INFO_DEFAULT)) { 3570 if (mip->mi_info.mi_media == DL_ETHER) 3571 sdu = ETHERMTU; 3572 /* default MTU value */ 3573 bcopy(&sdu, default_val, sizeof (sdu)); 3574 } 3575 } 3576 } 3577 3578 return (0); 3579 } 3580 3581 int 3582 mac_fastpath_disable(mac_handle_t mh) 3583 { 3584 mac_impl_t *mip = (mac_impl_t *)mh; 3585 3586 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3587 return (0); 3588 3589 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3590 } 3591 3592 void 3593 mac_fastpath_enable(mac_handle_t mh) 3594 { 3595 mac_impl_t *mip = (mac_impl_t *)mh; 3596 3597 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3598 return; 3599 3600 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3601 } 3602 3603 void 3604 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3605 { 3606 uint_t nprops, i; 3607 3608 if (priv_props == NULL) 3609 return; 3610 3611 nprops = 0; 3612 while (priv_props[nprops] != NULL) 3613 nprops++; 3614 if (nprops == 0) 3615 return; 3616 3617 3618 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3619 3620 for (i = 0; i < nprops; i++) { 3621 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3622 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3623 MAXLINKPROPNAME); 3624 } 3625 3626 mip->mi_priv_prop_count = nprops; 3627 } 3628 3629 void 3630 mac_unregister_priv_prop(mac_impl_t *mip) 3631 { 3632 uint_t i; 3633 3634 if (mip->mi_priv_prop_count == 0) { 3635 ASSERT(mip->mi_priv_prop == NULL); 3636 return; 3637 } 3638 3639 for (i = 0; i < mip->mi_priv_prop_count; i++) 3640 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3641 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3642 sizeof (char *)); 3643 3644 mip->mi_priv_prop = NULL; 3645 mip->mi_priv_prop_count = 0; 3646 } 3647 3648 /* 3649 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3650 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3651 * cases if MAC free's the ring structure after mac_stop_ring(), any 3652 * illegal access to the ring structure coming from the driver will panic 3653 * the system. In order to protect the system from such inadverent access, 3654 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3655 * When packets are received on free'd up rings, MAC (through the generation 3656 * count mechanism) will drop such packets. 3657 */ 3658 static mac_ring_t * 3659 mac_ring_alloc(mac_impl_t *mip) 3660 { 3661 mac_ring_t *ring; 3662 3663 mutex_enter(&mip->mi_ring_lock); 3664 if (mip->mi_ring_freelist != NULL) { 3665 ring = mip->mi_ring_freelist; 3666 mip->mi_ring_freelist = ring->mr_next; 3667 bzero(ring, sizeof (mac_ring_t)); 3668 mutex_exit(&mip->mi_ring_lock); 3669 } else { 3670 mutex_exit(&mip->mi_ring_lock); 3671 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3672 } 3673 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3674 return (ring); 3675 } 3676 3677 static void 3678 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3679 { 3680 ASSERT(ring->mr_state == MR_FREE); 3681 3682 mutex_enter(&mip->mi_ring_lock); 3683 ring->mr_state = MR_FREE; 3684 ring->mr_flag = 0; 3685 ring->mr_next = mip->mi_ring_freelist; 3686 ring->mr_mip = NULL; 3687 mip->mi_ring_freelist = ring; 3688 mac_ring_stat_delete(ring); 3689 mutex_exit(&mip->mi_ring_lock); 3690 } 3691 3692 static void 3693 mac_ring_freeall(mac_impl_t *mip) 3694 { 3695 mac_ring_t *ring_next; 3696 mutex_enter(&mip->mi_ring_lock); 3697 mac_ring_t *ring = mip->mi_ring_freelist; 3698 while (ring != NULL) { 3699 ring_next = ring->mr_next; 3700 kmem_cache_free(mac_ring_cache, ring); 3701 ring = ring_next; 3702 } 3703 mip->mi_ring_freelist = NULL; 3704 mutex_exit(&mip->mi_ring_lock); 3705 } 3706 3707 int 3708 mac_start_ring(mac_ring_t *ring) 3709 { 3710 int rv = 0; 3711 3712 ASSERT(ring->mr_state == MR_FREE); 3713 3714 if (ring->mr_start != NULL) { 3715 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3716 if (rv != 0) 3717 return (rv); 3718 } 3719 3720 ring->mr_state = MR_INUSE; 3721 return (rv); 3722 } 3723 3724 void 3725 mac_stop_ring(mac_ring_t *ring) 3726 { 3727 ASSERT(ring->mr_state == MR_INUSE); 3728 3729 if (ring->mr_stop != NULL) 3730 ring->mr_stop(ring->mr_driver); 3731 3732 ring->mr_state = MR_FREE; 3733 3734 /* 3735 * Increment the ring generation number for this ring. 3736 */ 3737 ring->mr_gen_num++; 3738 } 3739 3740 int 3741 mac_start_group(mac_group_t *group) 3742 { 3743 int rv = 0; 3744 3745 if (group->mrg_start != NULL) 3746 rv = group->mrg_start(group->mrg_driver); 3747 3748 return (rv); 3749 } 3750 3751 void 3752 mac_stop_group(mac_group_t *group) 3753 { 3754 if (group->mrg_stop != NULL) 3755 group->mrg_stop(group->mrg_driver); 3756 } 3757 3758 /* 3759 * Called from mac_start() on the default Rx group. Broadcast and multicast 3760 * packets are received only on the default group. Hence the default group 3761 * needs to be up even if the primary client is not up, for the other groups 3762 * to be functional. We do this by calling this function at mac_start time 3763 * itself. However the broadcast packets that are received can't make their 3764 * way beyond mac_rx until a mac client creates a broadcast flow. 3765 */ 3766 static int 3767 mac_start_group_and_rings(mac_group_t *group) 3768 { 3769 mac_ring_t *ring; 3770 int rv = 0; 3771 3772 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3773 if ((rv = mac_start_group(group)) != 0) 3774 return (rv); 3775 3776 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3777 ASSERT(ring->mr_state == MR_FREE); 3778 if ((rv = mac_start_ring(ring)) != 0) 3779 goto error; 3780 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3781 } 3782 return (0); 3783 3784 error: 3785 mac_stop_group_and_rings(group); 3786 return (rv); 3787 } 3788 3789 /* Called from mac_stop on the default Rx group */ 3790 static void 3791 mac_stop_group_and_rings(mac_group_t *group) 3792 { 3793 mac_ring_t *ring; 3794 3795 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3796 if (ring->mr_state != MR_FREE) { 3797 mac_stop_ring(ring); 3798 ring->mr_flag = 0; 3799 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3800 } 3801 } 3802 mac_stop_group(group); 3803 } 3804 3805 3806 static mac_ring_t * 3807 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3808 mac_capab_rings_t *cap_rings) 3809 { 3810 mac_ring_t *ring, *rnext; 3811 mac_ring_info_t ring_info; 3812 ddi_intr_handle_t ddi_handle; 3813 3814 ring = mac_ring_alloc(mip); 3815 3816 /* Prepare basic information of ring */ 3817 3818 /* 3819 * Ring index is numbered to be unique across a particular device. 3820 * Ring index computation makes following assumptions: 3821 * - For drivers with static grouping (e.g. ixgbe, bge), 3822 * ring index exchanged with the driver (e.g. during mr_rget) 3823 * is unique only across the group the ring belongs to. 3824 * - Drivers with dynamic grouping (e.g. nxge), start 3825 * with single group (mrg_index = 0). 3826 */ 3827 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3828 ring->mr_type = group->mrg_type; 3829 ring->mr_gh = (mac_group_handle_t)group; 3830 3831 /* Insert the new ring to the list. */ 3832 ring->mr_next = group->mrg_rings; 3833 group->mrg_rings = ring; 3834 3835 /* Zero to reuse the info data structure */ 3836 bzero(&ring_info, sizeof (ring_info)); 3837 3838 /* Query ring information from driver */ 3839 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3840 index, &ring_info, (mac_ring_handle_t)ring); 3841 3842 ring->mr_info = ring_info; 3843 3844 /* 3845 * The interrupt handle could be shared among multiple rings. 3846 * Thus if there is a bunch of rings that are sharing an 3847 * interrupt, then only one ring among the bunch will be made 3848 * available for interrupt re-targeting; the rest will have 3849 * ddi_shared flag set to TRUE and would not be available for 3850 * be interrupt re-targeting. 3851 */ 3852 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3853 rnext = ring->mr_next; 3854 while (rnext != NULL) { 3855 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3856 ddi_handle) { 3857 /* 3858 * If default ring (mr_index == 0) is part 3859 * of a group of rings sharing an 3860 * interrupt, then set ddi_shared flag for 3861 * the default ring and give another ring 3862 * the chance to be re-targeted. 3863 */ 3864 if (rnext->mr_index == 0 && 3865 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3866 rnext->mr_info.mri_intr.mi_ddi_shared = 3867 B_TRUE; 3868 } else { 3869 ring->mr_info.mri_intr.mi_ddi_shared = 3870 B_TRUE; 3871 } 3872 break; 3873 } 3874 rnext = rnext->mr_next; 3875 } 3876 /* 3877 * If rnext is NULL, then no matching ddi_handle was found. 3878 * Rx rings get registered first. So if this is a Tx ring, 3879 * then go through all the Rx rings and see if there is a 3880 * matching ddi handle. 3881 */ 3882 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3883 mac_compare_ddi_handle(mip->mi_rx_groups, 3884 mip->mi_rx_group_count, ring); 3885 } 3886 } 3887 3888 /* Update ring's status */ 3889 ring->mr_state = MR_FREE; 3890 ring->mr_flag = 0; 3891 3892 /* Update the ring count of the group */ 3893 group->mrg_cur_count++; 3894 3895 /* Create per ring kstats */ 3896 if (ring->mr_stat != NULL) { 3897 ring->mr_mip = mip; 3898 mac_ring_stat_create(ring); 3899 } 3900 3901 return (ring); 3902 } 3903 3904 /* 3905 * Rings are chained together for easy regrouping. 3906 */ 3907 static void 3908 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3909 mac_capab_rings_t *cap_rings) 3910 { 3911 int index; 3912 3913 /* 3914 * Initialize all ring members of this group. Size of zero will not 3915 * enter the loop, so it's safe for initializing an empty group. 3916 */ 3917 for (index = size - 1; index >= 0; index--) 3918 (void) mac_init_ring(mip, group, index, cap_rings); 3919 } 3920 3921 int 3922 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3923 { 3924 mac_capab_rings_t *cap_rings; 3925 mac_group_t *group; 3926 mac_group_t *groups; 3927 mac_group_info_t group_info; 3928 uint_t group_free = 0; 3929 uint_t ring_left; 3930 mac_ring_t *ring; 3931 int g; 3932 int err = 0; 3933 uint_t grpcnt; 3934 boolean_t pseudo_txgrp = B_FALSE; 3935 3936 switch (rtype) { 3937 case MAC_RING_TYPE_RX: 3938 ASSERT(mip->mi_rx_groups == NULL); 3939 3940 cap_rings = &mip->mi_rx_rings_cap; 3941 cap_rings->mr_type = MAC_RING_TYPE_RX; 3942 break; 3943 case MAC_RING_TYPE_TX: 3944 ASSERT(mip->mi_tx_groups == NULL); 3945 3946 cap_rings = &mip->mi_tx_rings_cap; 3947 cap_rings->mr_type = MAC_RING_TYPE_TX; 3948 break; 3949 default: 3950 ASSERT(B_FALSE); 3951 } 3952 3953 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3954 return (0); 3955 grpcnt = cap_rings->mr_gnum; 3956 3957 /* 3958 * If we have multiple TX rings, but only one TX group, we can 3959 * create pseudo TX groups (one per TX ring) in the MAC layer, 3960 * except for an aggr. For an aggr currently we maintain only 3961 * one group with all the rings (for all its ports), going 3962 * forwards we might change this. 3963 */ 3964 if (rtype == MAC_RING_TYPE_TX && 3965 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3966 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3967 /* 3968 * The -1 here is because we create a default TX group 3969 * with all the rings in it. 3970 */ 3971 grpcnt = cap_rings->mr_rnum - 1; 3972 pseudo_txgrp = B_TRUE; 3973 } 3974 3975 /* 3976 * Allocate a contiguous buffer for all groups. 3977 */ 3978 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3979 3980 ring_left = cap_rings->mr_rnum; 3981 3982 /* 3983 * Get all ring groups if any, and get their ring members 3984 * if any. 3985 */ 3986 for (g = 0; g < grpcnt; g++) { 3987 group = groups + g; 3988 3989 /* Prepare basic information of the group */ 3990 group->mrg_index = g; 3991 group->mrg_type = rtype; 3992 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3993 group->mrg_mh = (mac_handle_t)mip; 3994 group->mrg_next = group + 1; 3995 3996 /* Zero to reuse the info data structure */ 3997 bzero(&group_info, sizeof (group_info)); 3998 3999 if (pseudo_txgrp) { 4000 /* 4001 * This is a pseudo group that we created, apart 4002 * from setting the state there is nothing to be 4003 * done. 4004 */ 4005 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4006 group_free++; 4007 continue; 4008 } 4009 /* Query group information from driver */ 4010 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4011 (mac_group_handle_t)group); 4012 4013 switch (cap_rings->mr_group_type) { 4014 case MAC_GROUP_TYPE_DYNAMIC: 4015 if (cap_rings->mr_gaddring == NULL || 4016 cap_rings->mr_gremring == NULL) { 4017 DTRACE_PROBE3( 4018 mac__init__rings_no_addremring, 4019 char *, mip->mi_name, 4020 mac_group_add_ring_t, 4021 cap_rings->mr_gaddring, 4022 mac_group_add_ring_t, 4023 cap_rings->mr_gremring); 4024 err = EINVAL; 4025 goto bail; 4026 } 4027 4028 switch (rtype) { 4029 case MAC_RING_TYPE_RX: 4030 /* 4031 * The first RX group must have non-zero 4032 * rings, and the following groups must 4033 * have zero rings. 4034 */ 4035 if (g == 0 && group_info.mgi_count == 0) { 4036 DTRACE_PROBE1( 4037 mac__init__rings__rx__def__zero, 4038 char *, mip->mi_name); 4039 err = EINVAL; 4040 goto bail; 4041 } 4042 if (g > 0 && group_info.mgi_count != 0) { 4043 DTRACE_PROBE3( 4044 mac__init__rings__rx__nonzero, 4045 char *, mip->mi_name, 4046 int, g, int, group_info.mgi_count); 4047 err = EINVAL; 4048 goto bail; 4049 } 4050 break; 4051 case MAC_RING_TYPE_TX: 4052 /* 4053 * All TX ring groups must have zero rings. 4054 */ 4055 if (group_info.mgi_count != 0) { 4056 DTRACE_PROBE3( 4057 mac__init__rings__tx__nonzero, 4058 char *, mip->mi_name, 4059 int, g, int, group_info.mgi_count); 4060 err = EINVAL; 4061 goto bail; 4062 } 4063 break; 4064 } 4065 break; 4066 case MAC_GROUP_TYPE_STATIC: 4067 /* 4068 * Note that an empty group is allowed, e.g., an aggr 4069 * would start with an empty group. 4070 */ 4071 break; 4072 default: 4073 /* unknown group type */ 4074 DTRACE_PROBE2(mac__init__rings__unknown__type, 4075 char *, mip->mi_name, 4076 int, cap_rings->mr_group_type); 4077 err = EINVAL; 4078 goto bail; 4079 } 4080 4081 4082 /* 4083 * Driver must register group->mgi_addmac/remmac() for rx groups 4084 * to support multiple MAC addresses. 4085 */ 4086 if (rtype == MAC_RING_TYPE_RX && 4087 ((group_info.mgi_addmac == NULL) || 4088 (group_info.mgi_remmac == NULL))) { 4089 err = EINVAL; 4090 goto bail; 4091 } 4092 4093 /* Cache driver-supplied information */ 4094 group->mrg_info = group_info; 4095 4096 /* Update the group's status and group count. */ 4097 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4098 group_free++; 4099 4100 group->mrg_rings = NULL; 4101 group->mrg_cur_count = 0; 4102 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4103 ring_left -= group_info.mgi_count; 4104 4105 /* The current group size should be equal to default value */ 4106 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4107 } 4108 4109 /* Build up a dummy group for free resources as a pool */ 4110 group = groups + grpcnt; 4111 4112 /* Prepare basic information of the group */ 4113 group->mrg_index = -1; 4114 group->mrg_type = rtype; 4115 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4116 group->mrg_mh = (mac_handle_t)mip; 4117 group->mrg_next = NULL; 4118 4119 /* 4120 * If there are ungrouped rings, allocate a continuous buffer for 4121 * remaining resources. 4122 */ 4123 if (ring_left != 0) { 4124 group->mrg_rings = NULL; 4125 group->mrg_cur_count = 0; 4126 mac_init_group(mip, group, ring_left, cap_rings); 4127 4128 /* The current group size should be equal to ring_left */ 4129 ASSERT(group->mrg_cur_count == ring_left); 4130 4131 ring_left = 0; 4132 4133 /* Update this group's status */ 4134 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4135 } else 4136 group->mrg_rings = NULL; 4137 4138 ASSERT(ring_left == 0); 4139 4140 bail: 4141 4142 /* Cache other important information to finalize the initialization */ 4143 switch (rtype) { 4144 case MAC_RING_TYPE_RX: 4145 mip->mi_rx_group_type = cap_rings->mr_group_type; 4146 mip->mi_rx_group_count = cap_rings->mr_gnum; 4147 mip->mi_rx_groups = groups; 4148 mip->mi_rx_donor_grp = groups; 4149 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4150 /* 4151 * The default ring is reserved since it is 4152 * used for sending the broadcast etc. packets. 4153 */ 4154 mip->mi_rxrings_avail = 4155 mip->mi_rx_groups->mrg_cur_count - 1; 4156 mip->mi_rxrings_rsvd = 1; 4157 } 4158 /* 4159 * The default group cannot be reserved. It is used by 4160 * all the clients that do not have an exclusive group. 4161 */ 4162 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4163 mip->mi_rxhwclnt_used = 1; 4164 break; 4165 case MAC_RING_TYPE_TX: 4166 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4167 cap_rings->mr_group_type; 4168 mip->mi_tx_group_count = grpcnt; 4169 mip->mi_tx_group_free = group_free; 4170 mip->mi_tx_groups = groups; 4171 4172 group = groups + grpcnt; 4173 ring = group->mrg_rings; 4174 /* 4175 * The ring can be NULL in the case of aggr. Aggr will 4176 * have an empty Tx group which will get populated 4177 * later when pseudo Tx rings are added after 4178 * mac_register() is done. 4179 */ 4180 if (ring == NULL) { 4181 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4182 /* 4183 * pass the group to aggr so it can add Tx 4184 * rings to the group later. 4185 */ 4186 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4187 (mac_group_handle_t)group); 4188 /* 4189 * Even though there are no rings at this time 4190 * (rings will come later), set the group 4191 * state to registered. 4192 */ 4193 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4194 } else { 4195 /* 4196 * Ring 0 is used as the default one and it could be 4197 * assigned to a client as well. 4198 */ 4199 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4200 ring = ring->mr_next; 4201 ASSERT(ring->mr_index == 0); 4202 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4203 } 4204 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4205 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4206 /* 4207 * The default ring cannot be reserved. 4208 */ 4209 mip->mi_txrings_rsvd = 1; 4210 } 4211 /* 4212 * The default group cannot be reserved. It will be shared 4213 * by clients that do not have an exclusive group. 4214 */ 4215 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4216 mip->mi_txhwclnt_used = 1; 4217 break; 4218 default: 4219 ASSERT(B_FALSE); 4220 } 4221 4222 if (err != 0) 4223 mac_free_rings(mip, rtype); 4224 4225 return (err); 4226 } 4227 4228 /* 4229 * The ddi interrupt handle could be shared amoung rings. If so, compare 4230 * the new ring's ddi handle with the existing ones and set ddi_shared 4231 * flag. 4232 */ 4233 void 4234 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4235 { 4236 mac_group_t *group; 4237 mac_ring_t *ring; 4238 ddi_intr_handle_t ddi_handle; 4239 int g; 4240 4241 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4242 for (g = 0; g < grpcnt; g++) { 4243 group = groups + g; 4244 for (ring = group->mrg_rings; ring != NULL; 4245 ring = ring->mr_next) { 4246 if (ring == cring) 4247 continue; 4248 if (ring->mr_info.mri_intr.mi_ddi_handle == 4249 ddi_handle) { 4250 if (cring->mr_type == MAC_RING_TYPE_RX && 4251 ring->mr_index == 0 && 4252 !ring->mr_info.mri_intr.mi_ddi_shared) { 4253 ring->mr_info.mri_intr.mi_ddi_shared = 4254 B_TRUE; 4255 } else { 4256 cring->mr_info.mri_intr.mi_ddi_shared = 4257 B_TRUE; 4258 } 4259 return; 4260 } 4261 } 4262 } 4263 } 4264 4265 /* 4266 * Called to free all groups of particular type (RX or TX). It's assumed that 4267 * no clients are using these groups. 4268 */ 4269 void 4270 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4271 { 4272 mac_group_t *group, *groups; 4273 uint_t group_count; 4274 4275 switch (rtype) { 4276 case MAC_RING_TYPE_RX: 4277 if (mip->mi_rx_groups == NULL) 4278 return; 4279 4280 groups = mip->mi_rx_groups; 4281 group_count = mip->mi_rx_group_count; 4282 4283 mip->mi_rx_groups = NULL; 4284 mip->mi_rx_donor_grp = NULL; 4285 mip->mi_rx_group_count = 0; 4286 break; 4287 case MAC_RING_TYPE_TX: 4288 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4289 4290 if (mip->mi_tx_groups == NULL) 4291 return; 4292 4293 groups = mip->mi_tx_groups; 4294 group_count = mip->mi_tx_group_count; 4295 4296 mip->mi_tx_groups = NULL; 4297 mip->mi_tx_group_count = 0; 4298 mip->mi_tx_group_free = 0; 4299 mip->mi_default_tx_ring = NULL; 4300 break; 4301 default: 4302 ASSERT(B_FALSE); 4303 } 4304 4305 for (group = groups; group != NULL; group = group->mrg_next) { 4306 mac_ring_t *ring; 4307 4308 if (group->mrg_cur_count == 0) 4309 continue; 4310 4311 ASSERT(group->mrg_rings != NULL); 4312 4313 while ((ring = group->mrg_rings) != NULL) { 4314 group->mrg_rings = ring->mr_next; 4315 mac_ring_free(mip, ring); 4316 } 4317 } 4318 4319 /* Free all the cached rings */ 4320 mac_ring_freeall(mip); 4321 /* Free the block of group data strutures */ 4322 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4323 } 4324 4325 /* 4326 * Associate a MAC address with a receive group. 4327 * 4328 * The return value of this function should always be checked properly, because 4329 * any type of failure could cause unexpected results. A group can be added 4330 * or removed with a MAC address only after it has been reserved. Ideally, 4331 * a successful reservation always leads to calling mac_group_addmac() to 4332 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4333 * always imply that the group is functioning abnormally. 4334 * 4335 * Currently this function is called everywhere, and it reflects assumptions 4336 * about MAC addresses in the implementation. CR 6735196. 4337 */ 4338 int 4339 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4340 { 4341 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4342 ASSERT(group->mrg_info.mgi_addmac != NULL); 4343 4344 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4345 } 4346 4347 /* 4348 * Remove the association between MAC address and receive group. 4349 */ 4350 int 4351 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4352 { 4353 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4354 ASSERT(group->mrg_info.mgi_remmac != NULL); 4355 4356 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4357 } 4358 4359 /* 4360 * This is the entry point for packets transmitted through the bridging code. 4361 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4362 * pointer may be NULL to select the default ring. 4363 */ 4364 mblk_t * 4365 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4366 { 4367 mac_handle_t mh; 4368 4369 /* 4370 * Once we take a reference on the bridge link, the bridge 4371 * module itself can't unload, so the callback pointers are 4372 * stable. 4373 */ 4374 mutex_enter(&mip->mi_bridge_lock); 4375 if ((mh = mip->mi_bridge_link) != NULL) 4376 mac_bridge_ref_cb(mh, B_TRUE); 4377 mutex_exit(&mip->mi_bridge_lock); 4378 if (mh == NULL) { 4379 MAC_RING_TX(mip, rh, mp, mp); 4380 } else { 4381 mp = mac_bridge_tx_cb(mh, rh, mp); 4382 mac_bridge_ref_cb(mh, B_FALSE); 4383 } 4384 4385 return (mp); 4386 } 4387 4388 /* 4389 * Find a ring from its index. 4390 */ 4391 mac_ring_handle_t 4392 mac_find_ring(mac_group_handle_t gh, int index) 4393 { 4394 mac_group_t *group = (mac_group_t *)gh; 4395 mac_ring_t *ring = group->mrg_rings; 4396 4397 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4398 if (ring->mr_index == index) 4399 break; 4400 4401 return ((mac_ring_handle_t)ring); 4402 } 4403 /* 4404 * Add a ring to an existing group. 4405 * 4406 * The ring must be either passed directly (for example if the ring 4407 * movement is initiated by the framework), or specified through a driver 4408 * index (for example when the ring is added by the driver. 4409 * 4410 * The caller needs to call mac_perim_enter() before calling this function. 4411 */ 4412 int 4413 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4414 { 4415 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4416 mac_capab_rings_t *cap_rings; 4417 boolean_t driver_call = (ring == NULL); 4418 mac_group_type_t group_type; 4419 int ret = 0; 4420 flow_entry_t *flent; 4421 4422 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4423 4424 switch (group->mrg_type) { 4425 case MAC_RING_TYPE_RX: 4426 cap_rings = &mip->mi_rx_rings_cap; 4427 group_type = mip->mi_rx_group_type; 4428 break; 4429 case MAC_RING_TYPE_TX: 4430 cap_rings = &mip->mi_tx_rings_cap; 4431 group_type = mip->mi_tx_group_type; 4432 break; 4433 default: 4434 ASSERT(B_FALSE); 4435 } 4436 4437 /* 4438 * There should be no ring with the same ring index in the target 4439 * group. 4440 */ 4441 ASSERT(mac_find_ring((mac_group_handle_t)group, 4442 driver_call ? index : ring->mr_index) == NULL); 4443 4444 if (driver_call) { 4445 /* 4446 * The function is called as a result of a request from 4447 * a driver to add a ring to an existing group, for example 4448 * from the aggregation driver. Allocate a new mac_ring_t 4449 * for that ring. 4450 */ 4451 ring = mac_init_ring(mip, group, index, cap_rings); 4452 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4453 } else { 4454 /* 4455 * The function is called as a result of a MAC layer request 4456 * to add a ring to an existing group. In this case the 4457 * ring is being moved between groups, which requires 4458 * the underlying driver to support dynamic grouping, 4459 * and the mac_ring_t already exists. 4460 */ 4461 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4462 ASSERT(group->mrg_driver == NULL || 4463 cap_rings->mr_gaddring != NULL); 4464 ASSERT(ring->mr_gh == NULL); 4465 } 4466 4467 /* 4468 * At this point the ring should not be in use, and it should be 4469 * of the right for the target group. 4470 */ 4471 ASSERT(ring->mr_state < MR_INUSE); 4472 ASSERT(ring->mr_srs == NULL); 4473 ASSERT(ring->mr_type == group->mrg_type); 4474 4475 if (!driver_call) { 4476 /* 4477 * Add the driver level hardware ring if the process was not 4478 * initiated by the driver, and the target group is not the 4479 * group. 4480 */ 4481 if (group->mrg_driver != NULL) { 4482 cap_rings->mr_gaddring(group->mrg_driver, 4483 ring->mr_driver, ring->mr_type); 4484 } 4485 4486 /* 4487 * Insert the ring ahead existing rings. 4488 */ 4489 ring->mr_next = group->mrg_rings; 4490 group->mrg_rings = ring; 4491 ring->mr_gh = (mac_group_handle_t)group; 4492 group->mrg_cur_count++; 4493 } 4494 4495 /* 4496 * If the group has not been actively used, we're done. 4497 */ 4498 if (group->mrg_index != -1 && 4499 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4500 return (0); 4501 4502 /* 4503 * Start the ring if needed. Failure causes to undo the grouping action. 4504 */ 4505 if (ring->mr_state != MR_INUSE) { 4506 if ((ret = mac_start_ring(ring)) != 0) { 4507 if (!driver_call) { 4508 cap_rings->mr_gremring(group->mrg_driver, 4509 ring->mr_driver, ring->mr_type); 4510 } 4511 group->mrg_cur_count--; 4512 group->mrg_rings = ring->mr_next; 4513 4514 ring->mr_gh = NULL; 4515 4516 if (driver_call) 4517 mac_ring_free(mip, ring); 4518 4519 return (ret); 4520 } 4521 } 4522 4523 /* 4524 * Set up SRS/SR according to the ring type. 4525 */ 4526 switch (ring->mr_type) { 4527 case MAC_RING_TYPE_RX: 4528 /* 4529 * Setup SRS on top of the new ring if the group is 4530 * reserved for someones exclusive use. 4531 */ 4532 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4533 mac_client_impl_t *mcip; 4534 4535 mcip = MAC_GROUP_ONLY_CLIENT(group); 4536 /* 4537 * Even though this group is reserved we migth still 4538 * have multiple clients, i.e a VLAN shares the 4539 * group with the primary mac client. 4540 */ 4541 if (mcip != NULL) { 4542 flent = mcip->mci_flent; 4543 ASSERT(flent->fe_rx_srs_cnt > 0); 4544 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4545 mac_fanout_setup(mcip, flent, 4546 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4547 mcip, NULL, NULL); 4548 } else { 4549 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4550 } 4551 } 4552 break; 4553 case MAC_RING_TYPE_TX: 4554 { 4555 mac_grp_client_t *mgcp = group->mrg_clients; 4556 mac_client_impl_t *mcip; 4557 mac_soft_ring_set_t *mac_srs; 4558 mac_srs_tx_t *tx; 4559 4560 if (MAC_GROUP_NO_CLIENT(group)) { 4561 if (ring->mr_state == MR_INUSE) 4562 mac_stop_ring(ring); 4563 ring->mr_flag = 0; 4564 break; 4565 } 4566 /* 4567 * If the rings are being moved to a group that has 4568 * clients using it, then add the new rings to the 4569 * clients SRS. 4570 */ 4571 while (mgcp != NULL) { 4572 boolean_t is_aggr; 4573 4574 mcip = mgcp->mgc_client; 4575 flent = mcip->mci_flent; 4576 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4577 mac_srs = MCIP_TX_SRS(mcip); 4578 tx = &mac_srs->srs_tx; 4579 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4580 /* 4581 * If we are growing from 1 to multiple rings. 4582 */ 4583 if (tx->st_mode == SRS_TX_BW || 4584 tx->st_mode == SRS_TX_SERIALIZE || 4585 tx->st_mode == SRS_TX_DEFAULT) { 4586 mac_ring_t *tx_ring = tx->st_arg2; 4587 4588 tx->st_arg2 = NULL; 4589 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4590 mac_tx_srs_add_ring(mac_srs, tx_ring); 4591 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4592 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4593 SRS_TX_BW_FANOUT; 4594 } else { 4595 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4596 SRS_TX_FANOUT; 4597 } 4598 tx->st_func = mac_tx_get_func(tx->st_mode); 4599 } 4600 mac_tx_srs_add_ring(mac_srs, ring); 4601 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4602 mac_rx_deliver, mcip, NULL, NULL); 4603 mac_tx_client_restart((mac_client_handle_t)mcip); 4604 mgcp = mgcp->mgc_next; 4605 } 4606 break; 4607 } 4608 default: 4609 ASSERT(B_FALSE); 4610 } 4611 /* 4612 * For aggr, the default ring will be NULL to begin with. If it 4613 * is NULL, then pick the first ring that gets added as the 4614 * default ring. Any ring in an aggregation can be removed at 4615 * any time (by the user action of removing a link) and if the 4616 * current default ring gets removed, then a new one gets 4617 * picked (see i_mac_group_rem_ring()). 4618 */ 4619 if (mip->mi_state_flags & MIS_IS_AGGR && 4620 mip->mi_default_tx_ring == NULL && 4621 ring->mr_type == MAC_RING_TYPE_TX) { 4622 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4623 } 4624 4625 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4626 return (0); 4627 } 4628 4629 /* 4630 * Remove a ring from it's current group. MAC internal function for dynamic 4631 * grouping. 4632 * 4633 * The caller needs to call mac_perim_enter() before calling this function. 4634 */ 4635 void 4636 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4637 boolean_t driver_call) 4638 { 4639 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4640 mac_capab_rings_t *cap_rings = NULL; 4641 mac_group_type_t group_type; 4642 4643 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4644 4645 ASSERT(mac_find_ring((mac_group_handle_t)group, 4646 ring->mr_index) == (mac_ring_handle_t)ring); 4647 ASSERT((mac_group_t *)ring->mr_gh == group); 4648 ASSERT(ring->mr_type == group->mrg_type); 4649 4650 if (ring->mr_state == MR_INUSE) 4651 mac_stop_ring(ring); 4652 switch (ring->mr_type) { 4653 case MAC_RING_TYPE_RX: 4654 group_type = mip->mi_rx_group_type; 4655 cap_rings = &mip->mi_rx_rings_cap; 4656 4657 /* 4658 * Only hardware classified packets hold a reference to the 4659 * ring all the way up the Rx path. mac_rx_srs_remove() 4660 * will take care of quiescing the Rx path and removing the 4661 * SRS. The software classified path neither holds a reference 4662 * nor any association with the ring in mac_rx. 4663 */ 4664 if (ring->mr_srs != NULL) { 4665 mac_rx_srs_remove(ring->mr_srs); 4666 ring->mr_srs = NULL; 4667 } 4668 4669 break; 4670 case MAC_RING_TYPE_TX: 4671 { 4672 mac_grp_client_t *mgcp; 4673 mac_client_impl_t *mcip; 4674 mac_soft_ring_set_t *mac_srs; 4675 mac_srs_tx_t *tx; 4676 mac_ring_t *rem_ring; 4677 mac_group_t *defgrp; 4678 uint_t ring_info = 0; 4679 4680 /* 4681 * For TX this function is invoked in three 4682 * cases: 4683 * 4684 * 1) In the case of a failure during the 4685 * initial creation of a group when a share is 4686 * associated with a MAC client. So the SRS is not 4687 * yet setup, and will be setup later after the 4688 * group has been reserved and populated. 4689 * 4690 * 2) From mac_release_tx_group() when freeing 4691 * a TX SRS. 4692 * 4693 * 3) In the case of aggr, when a port gets removed, 4694 * the pseudo Tx rings that it exposed gets removed. 4695 * 4696 * In the first two cases the SRS and its soft 4697 * rings are already quiesced. 4698 */ 4699 if (driver_call) { 4700 mac_client_impl_t *mcip; 4701 mac_soft_ring_set_t *mac_srs; 4702 mac_soft_ring_t *sringp; 4703 mac_srs_tx_t *srs_tx; 4704 4705 if (mip->mi_state_flags & MIS_IS_AGGR && 4706 mip->mi_default_tx_ring == 4707 (mac_ring_handle_t)ring) { 4708 /* pick a new default Tx ring */ 4709 mip->mi_default_tx_ring = 4710 (group->mrg_rings != ring) ? 4711 (mac_ring_handle_t)group->mrg_rings : 4712 (mac_ring_handle_t)(ring->mr_next); 4713 } 4714 /* Presently only aggr case comes here */ 4715 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4716 break; 4717 4718 mcip = MAC_GROUP_ONLY_CLIENT(group); 4719 ASSERT(mcip != NULL); 4720 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4721 mac_srs = MCIP_TX_SRS(mcip); 4722 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4723 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4724 srs_tx = &mac_srs->srs_tx; 4725 /* 4726 * Wakeup any callers blocked on this 4727 * Tx ring due to flow control. 4728 */ 4729 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4730 ASSERT(sringp != NULL); 4731 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4732 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4733 mac_tx_srs_del_ring(mac_srs, ring); 4734 mac_tx_client_restart((mac_client_handle_t)mcip); 4735 break; 4736 } 4737 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4738 group_type = mip->mi_tx_group_type; 4739 cap_rings = &mip->mi_tx_rings_cap; 4740 /* 4741 * See if we need to take it out of the MAC clients using 4742 * this group 4743 */ 4744 if (MAC_GROUP_NO_CLIENT(group)) 4745 break; 4746 mgcp = group->mrg_clients; 4747 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4748 while (mgcp != NULL) { 4749 mcip = mgcp->mgc_client; 4750 mac_srs = MCIP_TX_SRS(mcip); 4751 tx = &mac_srs->srs_tx; 4752 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4753 /* 4754 * If we are here when removing rings from the 4755 * defgroup, mac_reserve_tx_ring would have 4756 * already deleted the ring from the MAC 4757 * clients in the group. 4758 */ 4759 if (group != defgrp) { 4760 mac_tx_invoke_callbacks(mcip, 4761 (mac_tx_cookie_t) 4762 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4763 mac_tx_srs_del_ring(mac_srs, ring); 4764 } 4765 /* 4766 * Additionally, if we are left with only 4767 * one ring in the group after this, we need 4768 * to modify the mode etc. to. (We haven't 4769 * yet taken the ring out, so we check with 2). 4770 */ 4771 if (group->mrg_cur_count == 2) { 4772 if (ring->mr_next == NULL) 4773 rem_ring = group->mrg_rings; 4774 else 4775 rem_ring = ring->mr_next; 4776 mac_tx_invoke_callbacks(mcip, 4777 (mac_tx_cookie_t) 4778 mac_tx_srs_get_soft_ring(mac_srs, 4779 rem_ring)); 4780 mac_tx_srs_del_ring(mac_srs, rem_ring); 4781 if (rem_ring->mr_state != MR_INUSE) { 4782 (void) mac_start_ring(rem_ring); 4783 } 4784 tx->st_arg2 = (void *)rem_ring; 4785 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4786 ring_info = mac_hwring_getinfo( 4787 (mac_ring_handle_t)rem_ring); 4788 /* 4789 * We are shrinking from multiple 4790 * to 1 ring. 4791 */ 4792 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4793 tx->st_mode = SRS_TX_BW; 4794 } else if (mac_tx_serialize || 4795 (ring_info & MAC_RING_TX_SERIALIZE)) { 4796 tx->st_mode = SRS_TX_SERIALIZE; 4797 } else { 4798 tx->st_mode = SRS_TX_DEFAULT; 4799 } 4800 tx->st_func = mac_tx_get_func(tx->st_mode); 4801 } 4802 mac_tx_client_restart((mac_client_handle_t)mcip); 4803 mgcp = mgcp->mgc_next; 4804 } 4805 break; 4806 } 4807 default: 4808 ASSERT(B_FALSE); 4809 } 4810 4811 /* 4812 * Remove the ring from the group. 4813 */ 4814 if (ring == group->mrg_rings) 4815 group->mrg_rings = ring->mr_next; 4816 else { 4817 mac_ring_t *pre; 4818 4819 pre = group->mrg_rings; 4820 while (pre->mr_next != ring) 4821 pre = pre->mr_next; 4822 pre->mr_next = ring->mr_next; 4823 } 4824 group->mrg_cur_count--; 4825 4826 if (!driver_call) { 4827 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4828 ASSERT(group->mrg_driver == NULL || 4829 cap_rings->mr_gremring != NULL); 4830 4831 /* 4832 * Remove the driver level hardware ring. 4833 */ 4834 if (group->mrg_driver != NULL) { 4835 cap_rings->mr_gremring(group->mrg_driver, 4836 ring->mr_driver, ring->mr_type); 4837 } 4838 } 4839 4840 ring->mr_gh = NULL; 4841 if (driver_call) 4842 mac_ring_free(mip, ring); 4843 else 4844 ring->mr_flag = 0; 4845 } 4846 4847 /* 4848 * Move a ring to the target group. If needed, remove the ring from the group 4849 * that it currently belongs to. 4850 * 4851 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4852 */ 4853 static int 4854 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4855 { 4856 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4857 int rv; 4858 4859 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4860 ASSERT(d_group != NULL); 4861 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4862 4863 if (s_group == d_group) 4864 return (0); 4865 4866 /* 4867 * Remove it from current group first. 4868 */ 4869 if (s_group != NULL) 4870 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4871 4872 /* 4873 * Add it to the new group. 4874 */ 4875 rv = i_mac_group_add_ring(d_group, ring, 0); 4876 if (rv != 0) { 4877 /* 4878 * Failed to add ring back to source group. If 4879 * that fails, the ring is stuck in limbo, log message. 4880 */ 4881 if (i_mac_group_add_ring(s_group, ring, 0)) { 4882 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4883 mip->mi_name, (void *)ring); 4884 } 4885 } 4886 4887 return (rv); 4888 } 4889 4890 /* 4891 * Find a MAC address according to its value. 4892 */ 4893 mac_address_t * 4894 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4895 { 4896 mac_address_t *map; 4897 4898 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4899 4900 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4901 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4902 break; 4903 } 4904 4905 return (map); 4906 } 4907 4908 /* 4909 * Check whether the MAC address is shared by multiple clients. 4910 */ 4911 boolean_t 4912 mac_check_macaddr_shared(mac_address_t *map) 4913 { 4914 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4915 4916 return (map->ma_nusers > 1); 4917 } 4918 4919 /* 4920 * Remove the specified MAC address from the MAC address list and free it. 4921 */ 4922 static void 4923 mac_free_macaddr(mac_address_t *map) 4924 { 4925 mac_impl_t *mip = map->ma_mip; 4926 4927 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4928 ASSERT(mip->mi_addresses != NULL); 4929 4930 map = mac_find_macaddr(mip, map->ma_addr); 4931 4932 ASSERT(map != NULL); 4933 ASSERT(map->ma_nusers == 0); 4934 4935 if (map == mip->mi_addresses) { 4936 mip->mi_addresses = map->ma_next; 4937 } else { 4938 mac_address_t *pre; 4939 4940 pre = mip->mi_addresses; 4941 while (pre->ma_next != map) 4942 pre = pre->ma_next; 4943 pre->ma_next = map->ma_next; 4944 } 4945 4946 kmem_free(map, sizeof (mac_address_t)); 4947 } 4948 4949 /* 4950 * Add a MAC address reference for a client. If the desired MAC address 4951 * exists, add a reference to it. Otherwise, add the new address by adding 4952 * it to a reserved group or setting promiscuous mode. Won't try different 4953 * group is the group is non-NULL, so the caller must explictly share 4954 * default group when needed. 4955 * 4956 * Note, the primary MAC address is initialized at registration time, so 4957 * to add it to default group only need to activate it if its reference 4958 * count is still zero. Also, some drivers may not have advertised RINGS 4959 * capability. 4960 */ 4961 int 4962 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4963 boolean_t use_hw) 4964 { 4965 mac_address_t *map; 4966 int err = 0; 4967 boolean_t allocated_map = B_FALSE; 4968 4969 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4970 4971 map = mac_find_macaddr(mip, mac_addr); 4972 4973 /* 4974 * If the new MAC address has not been added. Allocate a new one 4975 * and set it up. 4976 */ 4977 if (map == NULL) { 4978 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4979 map->ma_len = mip->mi_type->mt_addr_length; 4980 bcopy(mac_addr, map->ma_addr, map->ma_len); 4981 map->ma_nusers = 0; 4982 map->ma_group = group; 4983 map->ma_mip = mip; 4984 4985 /* add the new MAC address to the head of the address list */ 4986 map->ma_next = mip->mi_addresses; 4987 mip->mi_addresses = map; 4988 4989 allocated_map = B_TRUE; 4990 } 4991 4992 ASSERT(map->ma_group == NULL || map->ma_group == group); 4993 if (map->ma_group == NULL) 4994 map->ma_group = group; 4995 4996 /* 4997 * If the MAC address is already in use, simply account for the 4998 * new client. 4999 */ 5000 if (map->ma_nusers++ > 0) 5001 return (0); 5002 5003 /* 5004 * Activate this MAC address by adding it to the reserved group. 5005 */ 5006 if (group != NULL) { 5007 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 5008 if (err == 0) { 5009 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5010 return (0); 5011 } 5012 } 5013 5014 /* 5015 * The MAC address addition failed. If the client requires a 5016 * hardware classified MAC address, fail the operation. 5017 */ 5018 if (use_hw) { 5019 err = ENOSPC; 5020 goto bail; 5021 } 5022 5023 /* 5024 * Try promiscuous mode. 5025 * 5026 * For drivers that don't advertise RINGS capability, do 5027 * nothing for the primary address. 5028 */ 5029 if ((group == NULL) && 5030 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5031 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5032 return (0); 5033 } 5034 5035 /* 5036 * Enable promiscuous mode in order to receive traffic 5037 * to the new MAC address. 5038 */ 5039 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5040 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5041 return (0); 5042 } 5043 5044 /* 5045 * Free the MAC address that could not be added. Don't free 5046 * a pre-existing address, it could have been the entry 5047 * for the primary MAC address which was pre-allocated by 5048 * mac_init_macaddr(), and which must remain on the list. 5049 */ 5050 bail: 5051 map->ma_nusers--; 5052 if (allocated_map) 5053 mac_free_macaddr(map); 5054 return (err); 5055 } 5056 5057 /* 5058 * Remove a reference to a MAC address. This may cause to remove the MAC 5059 * address from an associated group or to turn off promiscuous mode. 5060 * The caller needs to handle the failure properly. 5061 */ 5062 int 5063 mac_remove_macaddr(mac_address_t *map) 5064 { 5065 mac_impl_t *mip = map->ma_mip; 5066 int err = 0; 5067 5068 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5069 5070 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 5071 5072 /* 5073 * If it's not the last client using this MAC address, only update 5074 * the MAC clients count. 5075 */ 5076 if (--map->ma_nusers > 0) 5077 return (0); 5078 5079 /* 5080 * The MAC address is no longer used by any MAC client, so remove 5081 * it from its associated group, or turn off promiscuous mode 5082 * if it was enabled for the MAC address. 5083 */ 5084 switch (map->ma_type) { 5085 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5086 /* 5087 * Don't free the preset primary address for drivers that 5088 * don't advertise RINGS capability. 5089 */ 5090 if (map->ma_group == NULL) 5091 return (0); 5092 5093 err = mac_group_remmac(map->ma_group, map->ma_addr); 5094 if (err == 0) 5095 map->ma_group = NULL; 5096 break; 5097 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5098 err = i_mac_promisc_set(mip, B_FALSE); 5099 break; 5100 default: 5101 ASSERT(B_FALSE); 5102 } 5103 5104 if (err != 0) 5105 return (err); 5106 5107 /* 5108 * We created MAC address for the primary one at registration, so we 5109 * won't free it here. mac_fini_macaddr() will take care of it. 5110 */ 5111 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5112 mac_free_macaddr(map); 5113 5114 return (0); 5115 } 5116 5117 /* 5118 * Update an existing MAC address. The caller need to make sure that the new 5119 * value has not been used. 5120 */ 5121 int 5122 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5123 { 5124 mac_impl_t *mip = map->ma_mip; 5125 int err = 0; 5126 5127 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5128 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5129 5130 switch (map->ma_type) { 5131 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5132 /* 5133 * Update the primary address for drivers that are not 5134 * RINGS capable. 5135 */ 5136 if (mip->mi_rx_groups == NULL) { 5137 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5138 mac_addr); 5139 if (err != 0) 5140 return (err); 5141 break; 5142 } 5143 5144 /* 5145 * If this MAC address is not currently in use, 5146 * simply break out and update the value. 5147 */ 5148 if (map->ma_nusers == 0) 5149 break; 5150 5151 /* 5152 * Need to replace the MAC address associated with a group. 5153 */ 5154 err = mac_group_remmac(map->ma_group, map->ma_addr); 5155 if (err != 0) 5156 return (err); 5157 5158 err = mac_group_addmac(map->ma_group, mac_addr); 5159 5160 /* 5161 * Failure hints hardware error. The MAC layer needs to 5162 * have error notification facility to handle this. 5163 * Now, simply try to restore the value. 5164 */ 5165 if (err != 0) 5166 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5167 5168 break; 5169 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5170 /* 5171 * Need to do nothing more if in promiscuous mode. 5172 */ 5173 break; 5174 default: 5175 ASSERT(B_FALSE); 5176 } 5177 5178 /* 5179 * Successfully replaced the MAC address. 5180 */ 5181 if (err == 0) 5182 bcopy(mac_addr, map->ma_addr, map->ma_len); 5183 5184 return (err); 5185 } 5186 5187 /* 5188 * Freshen the MAC address with new value. Its caller must have updated the 5189 * hardware MAC address before calling this function. 5190 * This funcitons is supposed to be used to handle the MAC address change 5191 * notification from underlying drivers. 5192 */ 5193 void 5194 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5195 { 5196 mac_impl_t *mip = map->ma_mip; 5197 5198 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5199 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5200 5201 /* 5202 * Freshen the MAC address with new value. 5203 */ 5204 bcopy(mac_addr, map->ma_addr, map->ma_len); 5205 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5206 5207 /* 5208 * Update all MAC clients that share this MAC address. 5209 */ 5210 mac_unicast_update_clients(mip, map); 5211 } 5212 5213 /* 5214 * Set up the primary MAC address. 5215 */ 5216 void 5217 mac_init_macaddr(mac_impl_t *mip) 5218 { 5219 mac_address_t *map; 5220 5221 /* 5222 * The reference count is initialized to zero, until it's really 5223 * activated. 5224 */ 5225 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5226 map->ma_len = mip->mi_type->mt_addr_length; 5227 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5228 5229 /* 5230 * If driver advertises RINGS capability, it shouldn't have initialized 5231 * its primary MAC address. For other drivers, including VNIC, the 5232 * primary address must work after registration. 5233 */ 5234 if (mip->mi_rx_groups == NULL) 5235 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5236 5237 map->ma_mip = mip; 5238 5239 mip->mi_addresses = map; 5240 } 5241 5242 /* 5243 * Clean up the primary MAC address. Note, only one primary MAC address 5244 * is allowed. All other MAC addresses must have been freed appropriately. 5245 */ 5246 void 5247 mac_fini_macaddr(mac_impl_t *mip) 5248 { 5249 mac_address_t *map = mip->mi_addresses; 5250 5251 if (map == NULL) 5252 return; 5253 5254 /* 5255 * If mi_addresses is initialized, there should be exactly one 5256 * entry left on the list with no users. 5257 */ 5258 ASSERT(map->ma_nusers == 0); 5259 ASSERT(map->ma_next == NULL); 5260 5261 kmem_free(map, sizeof (mac_address_t)); 5262 mip->mi_addresses = NULL; 5263 } 5264 5265 /* 5266 * Logging related functions. 5267 * 5268 * Note that Kernel statistics have been extended to maintain fine 5269 * granularity of statistics viz. hardware lane, software lane, fanout 5270 * stats etc. However, extended accounting continues to support only 5271 * aggregate statistics like before. 5272 */ 5273 5274 /* Write the flow description to a netinfo_t record */ 5275 static netinfo_t * 5276 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5277 { 5278 netinfo_t *ninfo; 5279 net_desc_t *ndesc; 5280 flow_desc_t *fdesc; 5281 mac_resource_props_t *mrp; 5282 5283 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5284 if (ninfo == NULL) 5285 return (NULL); 5286 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5287 if (ndesc == NULL) { 5288 kmem_free(ninfo, sizeof (netinfo_t)); 5289 return (NULL); 5290 } 5291 5292 /* 5293 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5294 * Updates to the fe_flow_desc are done under the fe_lock 5295 */ 5296 mutex_enter(&flent->fe_lock); 5297 fdesc = &flent->fe_flow_desc; 5298 mrp = &flent->fe_resource_props; 5299 5300 ndesc->nd_name = flent->fe_flow_name; 5301 ndesc->nd_devname = mcip->mci_name; 5302 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5303 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5304 ndesc->nd_sap = htonl(fdesc->fd_sap); 5305 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5306 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5307 if (ndesc->nd_isv4) { 5308 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5309 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5310 } else { 5311 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5312 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5313 } 5314 ndesc->nd_sport = htons(fdesc->fd_local_port); 5315 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5316 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5317 mutex_exit(&flent->fe_lock); 5318 5319 ninfo->ni_record = ndesc; 5320 ninfo->ni_size = sizeof (net_desc_t); 5321 ninfo->ni_type = EX_NET_FLDESC_REC; 5322 5323 return (ninfo); 5324 } 5325 5326 /* Write the flow statistics to a netinfo_t record */ 5327 static netinfo_t * 5328 mac_write_flow_stats(flow_entry_t *flent) 5329 { 5330 netinfo_t *ninfo; 5331 net_stat_t *nstat; 5332 mac_soft_ring_set_t *mac_srs; 5333 mac_rx_stats_t *mac_rx_stat; 5334 mac_tx_stats_t *mac_tx_stat; 5335 int i; 5336 5337 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5338 if (ninfo == NULL) 5339 return (NULL); 5340 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5341 if (nstat == NULL) { 5342 kmem_free(ninfo, sizeof (netinfo_t)); 5343 return (NULL); 5344 } 5345 5346 nstat->ns_name = flent->fe_flow_name; 5347 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5348 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5349 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5350 5351 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5352 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5353 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5354 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5355 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5356 } 5357 5358 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5359 if (mac_srs != NULL) { 5360 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5361 5362 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5363 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5364 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5365 } 5366 5367 ninfo->ni_record = nstat; 5368 ninfo->ni_size = sizeof (net_stat_t); 5369 ninfo->ni_type = EX_NET_FLSTAT_REC; 5370 5371 return (ninfo); 5372 } 5373 5374 /* Write the link description to a netinfo_t record */ 5375 static netinfo_t * 5376 mac_write_link_desc(mac_client_impl_t *mcip) 5377 { 5378 netinfo_t *ninfo; 5379 net_desc_t *ndesc; 5380 flow_entry_t *flent = mcip->mci_flent; 5381 5382 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5383 if (ninfo == NULL) 5384 return (NULL); 5385 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5386 if (ndesc == NULL) { 5387 kmem_free(ninfo, sizeof (netinfo_t)); 5388 return (NULL); 5389 } 5390 5391 ndesc->nd_name = mcip->mci_name; 5392 ndesc->nd_devname = mcip->mci_name; 5393 ndesc->nd_isv4 = B_TRUE; 5394 /* 5395 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5396 * Updates to the fe_flow_desc are done under the fe_lock 5397 * after removing the flent from the flow table. 5398 */ 5399 mutex_enter(&flent->fe_lock); 5400 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5401 mutex_exit(&flent->fe_lock); 5402 5403 ninfo->ni_record = ndesc; 5404 ninfo->ni_size = sizeof (net_desc_t); 5405 ninfo->ni_type = EX_NET_LNDESC_REC; 5406 5407 return (ninfo); 5408 } 5409 5410 /* Write the link statistics to a netinfo_t record */ 5411 static netinfo_t * 5412 mac_write_link_stats(mac_client_impl_t *mcip) 5413 { 5414 netinfo_t *ninfo; 5415 net_stat_t *nstat; 5416 flow_entry_t *flent; 5417 mac_soft_ring_set_t *mac_srs; 5418 mac_rx_stats_t *mac_rx_stat; 5419 mac_tx_stats_t *mac_tx_stat; 5420 int i; 5421 5422 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5423 if (ninfo == NULL) 5424 return (NULL); 5425 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5426 if (nstat == NULL) { 5427 kmem_free(ninfo, sizeof (netinfo_t)); 5428 return (NULL); 5429 } 5430 5431 nstat->ns_name = mcip->mci_name; 5432 flent = mcip->mci_flent; 5433 if (flent != NULL) { 5434 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5435 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5436 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5437 5438 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5439 mac_rx_stat->mrs_pollbytes + 5440 mac_rx_stat->mrs_lclbytes; 5441 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5442 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5443 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5444 } 5445 } 5446 5447 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5448 if (mac_srs != NULL) { 5449 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5450 5451 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5452 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5453 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5454 } 5455 5456 ninfo->ni_record = nstat; 5457 ninfo->ni_size = sizeof (net_stat_t); 5458 ninfo->ni_type = EX_NET_LNSTAT_REC; 5459 5460 return (ninfo); 5461 } 5462 5463 typedef struct i_mac_log_state_s { 5464 boolean_t mi_last; 5465 int mi_fenable; 5466 int mi_lenable; 5467 list_t *mi_list; 5468 } i_mac_log_state_t; 5469 5470 /* 5471 * For a given flow, if the description has not been logged before, do it now. 5472 * If it is a VNIC, then we have collected information about it from the MAC 5473 * table, so skip it. 5474 * 5475 * Called through mac_flow_walk_nolock() 5476 * 5477 * Return 0 if successful. 5478 */ 5479 static int 5480 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5481 { 5482 mac_client_impl_t *mcip = flent->fe_mcip; 5483 i_mac_log_state_t *lstate = arg; 5484 netinfo_t *ninfo; 5485 5486 if (mcip == NULL) 5487 return (0); 5488 5489 /* 5490 * If the name starts with "vnic", and fe_user_generated is true (to 5491 * exclude the mcast and active flow entries created implicitly for 5492 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5493 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5494 */ 5495 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5496 (flent->fe_type & FLOW_USER) != 0) { 5497 return (0); 5498 } 5499 5500 if (!flent->fe_desc_logged) { 5501 /* 5502 * We don't return error because we want to continue the 5503 * walk in case this is the last walk which means we 5504 * need to reset fe_desc_logged in all the flows. 5505 */ 5506 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5507 return (0); 5508 list_insert_tail(lstate->mi_list, ninfo); 5509 flent->fe_desc_logged = B_TRUE; 5510 } 5511 5512 /* 5513 * Regardless of the error, we want to proceed in case we have to 5514 * reset fe_desc_logged. 5515 */ 5516 ninfo = mac_write_flow_stats(flent); 5517 if (ninfo == NULL) 5518 return (-1); 5519 5520 list_insert_tail(lstate->mi_list, ninfo); 5521 5522 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5523 flent->fe_desc_logged = B_FALSE; 5524 5525 return (0); 5526 } 5527 5528 /* 5529 * Log the description for each mac client of this mac_impl_t, if it 5530 * hasn't already been done. Additionally, log statistics for the link as 5531 * well. Walk the flow table and log information for each flow as well. 5532 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5533 * also fe_desc_logged, if flow logging is on) since we want to log the 5534 * description if and when logging is restarted. 5535 * 5536 * Return 0 upon success or -1 upon failure 5537 */ 5538 static int 5539 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5540 { 5541 mac_client_impl_t *mcip; 5542 netinfo_t *ninfo; 5543 5544 i_mac_perim_enter(mip); 5545 /* 5546 * Only walk the client list for NIC and etherstub 5547 */ 5548 if ((mip->mi_state_flags & MIS_DISABLED) || 5549 ((mip->mi_state_flags & MIS_IS_VNIC) && 5550 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5551 i_mac_perim_exit(mip); 5552 return (0); 5553 } 5554 5555 for (mcip = mip->mi_clients_list; mcip != NULL; 5556 mcip = mcip->mci_client_next) { 5557 if (!MCIP_DATAPATH_SETUP(mcip)) 5558 continue; 5559 if (lstate->mi_lenable) { 5560 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5561 ninfo = mac_write_link_desc(mcip); 5562 if (ninfo == NULL) { 5563 /* 5564 * We can't terminate it if this is the last 5565 * walk, else there might be some links with 5566 * mi_desc_logged set to true, which means 5567 * their description won't be logged the next 5568 * time logging is started (similarly for the 5569 * flows within such links). We can continue 5570 * without walking the flow table (i.e. to 5571 * set fe_desc_logged to false) because we 5572 * won't have written any flow stuff for this 5573 * link as we haven't logged the link itself. 5574 */ 5575 i_mac_perim_exit(mip); 5576 if (lstate->mi_last) 5577 return (0); 5578 else 5579 return (-1); 5580 } 5581 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5582 list_insert_tail(lstate->mi_list, ninfo); 5583 } 5584 } 5585 5586 ninfo = mac_write_link_stats(mcip); 5587 if (ninfo == NULL && !lstate->mi_last) { 5588 i_mac_perim_exit(mip); 5589 return (-1); 5590 } 5591 list_insert_tail(lstate->mi_list, ninfo); 5592 5593 if (lstate->mi_last) 5594 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5595 5596 if (lstate->mi_fenable) { 5597 if (mcip->mci_subflow_tab != NULL) { 5598 (void) mac_flow_walk_nolock( 5599 mcip->mci_subflow_tab, mac_log_flowinfo, 5600 lstate); 5601 } 5602 } 5603 } 5604 i_mac_perim_exit(mip); 5605 return (0); 5606 } 5607 5608 /* 5609 * modhash walker function to add a mac_impl_t to a list 5610 */ 5611 /*ARGSUSED*/ 5612 static uint_t 5613 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5614 { 5615 list_t *list = (list_t *)arg; 5616 mac_impl_t *mip = (mac_impl_t *)val; 5617 5618 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5619 list_insert_tail(list, mip); 5620 mip->mi_ref++; 5621 } 5622 5623 return (MH_WALK_CONTINUE); 5624 } 5625 5626 void 5627 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5628 { 5629 list_t mac_impl_list; 5630 mac_impl_t *mip; 5631 netinfo_t *ninfo; 5632 5633 /* Create list of mac_impls */ 5634 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5635 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5636 mi_node)); 5637 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5638 rw_exit(&i_mac_impl_lock); 5639 5640 /* Create log entries for each mac_impl */ 5641 for (mip = list_head(&mac_impl_list); mip != NULL; 5642 mip = list_next(&mac_impl_list, mip)) { 5643 if (i_mac_impl_log(mip, lstate) != 0) 5644 continue; 5645 } 5646 5647 /* Remove elements and destroy list of mac_impls */ 5648 rw_enter(&i_mac_impl_lock, RW_WRITER); 5649 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5650 mip->mi_ref--; 5651 } 5652 rw_exit(&i_mac_impl_lock); 5653 list_destroy(&mac_impl_list); 5654 5655 /* 5656 * Write log entries to files outside of locks, free associated 5657 * structures, and remove entries from the list. 5658 */ 5659 while ((ninfo = list_head(net_log_list)) != NULL) { 5660 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5661 list_remove(net_log_list, ninfo); 5662 kmem_free(ninfo->ni_record, ninfo->ni_size); 5663 kmem_free(ninfo, sizeof (*ninfo)); 5664 } 5665 list_destroy(net_log_list); 5666 } 5667 5668 /* 5669 * The timer thread that runs every mac_logging_interval seconds and logs 5670 * link and/or flow information. 5671 */ 5672 /* ARGSUSED */ 5673 void 5674 mac_log_linkinfo(void *arg) 5675 { 5676 i_mac_log_state_t lstate; 5677 list_t net_log_list; 5678 5679 list_create(&net_log_list, sizeof (netinfo_t), 5680 offsetof(netinfo_t, ni_link)); 5681 5682 rw_enter(&i_mac_impl_lock, RW_READER); 5683 if (!mac_flow_log_enable && !mac_link_log_enable) { 5684 rw_exit(&i_mac_impl_lock); 5685 return; 5686 } 5687 lstate.mi_fenable = mac_flow_log_enable; 5688 lstate.mi_lenable = mac_link_log_enable; 5689 lstate.mi_last = B_FALSE; 5690 lstate.mi_list = &net_log_list; 5691 5692 /* Write log entries for each mac_impl in the list */ 5693 i_mac_log_info(&net_log_list, &lstate); 5694 5695 if (mac_flow_log_enable || mac_link_log_enable) { 5696 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5697 SEC_TO_TICK(mac_logging_interval)); 5698 } 5699 } 5700 5701 typedef struct i_mac_fastpath_state_s { 5702 boolean_t mf_disable; 5703 int mf_err; 5704 } i_mac_fastpath_state_t; 5705 5706 /* modhash walker function to enable or disable fastpath */ 5707 /*ARGSUSED*/ 5708 static uint_t 5709 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5710 void *arg) 5711 { 5712 i_mac_fastpath_state_t *state = arg; 5713 mac_handle_t mh = (mac_handle_t)val; 5714 5715 if (state->mf_disable) 5716 state->mf_err = mac_fastpath_disable(mh); 5717 else 5718 mac_fastpath_enable(mh); 5719 5720 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5721 } 5722 5723 /* 5724 * Start the logging timer. 5725 */ 5726 int 5727 mac_start_logusage(mac_logtype_t type, uint_t interval) 5728 { 5729 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5730 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5731 int err; 5732 5733 rw_enter(&i_mac_impl_lock, RW_WRITER); 5734 switch (type) { 5735 case MAC_LOGTYPE_FLOW: 5736 if (mac_flow_log_enable) { 5737 rw_exit(&i_mac_impl_lock); 5738 return (0); 5739 } 5740 /* FALLTHRU */ 5741 case MAC_LOGTYPE_LINK: 5742 if (mac_link_log_enable) { 5743 rw_exit(&i_mac_impl_lock); 5744 return (0); 5745 } 5746 break; 5747 default: 5748 ASSERT(0); 5749 } 5750 5751 /* Disable fastpath */ 5752 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5753 if ((err = dstate.mf_err) != 0) { 5754 /* Reenable fastpath */ 5755 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5756 rw_exit(&i_mac_impl_lock); 5757 return (err); 5758 } 5759 5760 switch (type) { 5761 case MAC_LOGTYPE_FLOW: 5762 mac_flow_log_enable = B_TRUE; 5763 /* FALLTHRU */ 5764 case MAC_LOGTYPE_LINK: 5765 mac_link_log_enable = B_TRUE; 5766 break; 5767 } 5768 5769 mac_logging_interval = interval; 5770 rw_exit(&i_mac_impl_lock); 5771 mac_log_linkinfo(NULL); 5772 return (0); 5773 } 5774 5775 /* 5776 * Stop the logging timer if both link and flow logging are turned off. 5777 */ 5778 void 5779 mac_stop_logusage(mac_logtype_t type) 5780 { 5781 i_mac_log_state_t lstate; 5782 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5783 list_t net_log_list; 5784 5785 list_create(&net_log_list, sizeof (netinfo_t), 5786 offsetof(netinfo_t, ni_link)); 5787 5788 rw_enter(&i_mac_impl_lock, RW_WRITER); 5789 5790 lstate.mi_fenable = mac_flow_log_enable; 5791 lstate.mi_lenable = mac_link_log_enable; 5792 lstate.mi_list = &net_log_list; 5793 5794 /* Last walk */ 5795 lstate.mi_last = B_TRUE; 5796 5797 switch (type) { 5798 case MAC_LOGTYPE_FLOW: 5799 if (lstate.mi_fenable) { 5800 ASSERT(mac_link_log_enable); 5801 mac_flow_log_enable = B_FALSE; 5802 mac_link_log_enable = B_FALSE; 5803 break; 5804 } 5805 /* FALLTHRU */ 5806 case MAC_LOGTYPE_LINK: 5807 if (!lstate.mi_lenable || mac_flow_log_enable) { 5808 rw_exit(&i_mac_impl_lock); 5809 return; 5810 } 5811 mac_link_log_enable = B_FALSE; 5812 break; 5813 default: 5814 ASSERT(0); 5815 } 5816 5817 /* Reenable fastpath */ 5818 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5819 5820 (void) untimeout(mac_logging_timer); 5821 mac_logging_timer = 0; 5822 5823 /* Write log entries for each mac_impl in the list */ 5824 i_mac_log_info(&net_log_list, &lstate); 5825 } 5826 5827 /* 5828 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5829 */ 5830 void 5831 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5832 { 5833 pri_t pri; 5834 int count; 5835 mac_soft_ring_set_t *mac_srs; 5836 5837 if (flent->fe_rx_srs_cnt <= 0) 5838 return; 5839 5840 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5841 SRST_FLOW) { 5842 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5843 mcip->mci_max_pri, 5844 flent->fe_resource_props.mrp_priority); 5845 } else { 5846 pri = mcip->mci_max_pri; 5847 } 5848 5849 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5850 mac_srs = flent->fe_rx_srs[count]; 5851 mac_update_srs_priority(mac_srs, pri); 5852 } 5853 /* 5854 * If we have a Tx SRS, we need to modify all the threads associated 5855 * with it. 5856 */ 5857 if (flent->fe_tx_srs != NULL) 5858 mac_update_srs_priority(flent->fe_tx_srs, pri); 5859 } 5860 5861 /* 5862 * RX and TX rings are reserved according to different semantics depending 5863 * on the requests from the MAC clients and type of rings: 5864 * 5865 * On the Tx side, by default we reserve individual rings, independently from 5866 * the groups. 5867 * 5868 * On the Rx side, the reservation is at the granularity of the group 5869 * of rings, and used for v12n level 1 only. It has a special case for the 5870 * primary client. 5871 * 5872 * If a share is allocated to a MAC client, we allocate a TX group and an 5873 * RX group to the client, and assign TX rings and RX rings to these 5874 * groups according to information gathered from the driver through 5875 * the share capability. 5876 * 5877 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5878 * to allocate individual rings out of a group and program the hw classifier 5879 * based on IP address or higher level criteria. 5880 */ 5881 5882 /* 5883 * mac_reserve_tx_ring() 5884 * Reserve a unused ring by marking it with MR_INUSE state. 5885 * As reserved, the ring is ready to function. 5886 * 5887 * Notes for Hybrid I/O: 5888 * 5889 * If a specific ring is needed, it is specified through the desired_ring 5890 * argument. Otherwise that argument is set to NULL. 5891 * If the desired ring was previous allocated to another client, this 5892 * function swaps it with a new ring from the group of unassigned rings. 5893 */ 5894 mac_ring_t * 5895 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5896 { 5897 mac_group_t *group; 5898 mac_grp_client_t *mgcp; 5899 mac_client_impl_t *mcip; 5900 mac_soft_ring_set_t *srs; 5901 5902 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5903 5904 /* 5905 * Find an available ring and start it before changing its status. 5906 * The unassigned rings are at the end of the mi_tx_groups 5907 * array. 5908 */ 5909 group = MAC_DEFAULT_TX_GROUP(mip); 5910 5911 /* Can't take the default ring out of the default group */ 5912 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5913 5914 if (desired_ring->mr_state == MR_FREE) { 5915 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5916 if (mac_start_ring(desired_ring) != 0) 5917 return (NULL); 5918 return (desired_ring); 5919 } 5920 /* 5921 * There are clients using this ring, so let's move the clients 5922 * away from using this ring. 5923 */ 5924 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5925 mcip = mgcp->mgc_client; 5926 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5927 srs = MCIP_TX_SRS(mcip); 5928 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5929 mac_tx_invoke_callbacks(mcip, 5930 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5931 desired_ring)); 5932 mac_tx_srs_del_ring(srs, desired_ring); 5933 mac_tx_client_restart((mac_client_handle_t)mcip); 5934 } 5935 return (desired_ring); 5936 } 5937 5938 /* 5939 * For a reserved group with multiple clients, return the primary client. 5940 */ 5941 static mac_client_impl_t * 5942 mac_get_grp_primary(mac_group_t *grp) 5943 { 5944 mac_grp_client_t *mgcp = grp->mrg_clients; 5945 mac_client_impl_t *mcip; 5946 5947 while (mgcp != NULL) { 5948 mcip = mgcp->mgc_client; 5949 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5950 return (mcip); 5951 mgcp = mgcp->mgc_next; 5952 } 5953 return (NULL); 5954 } 5955 5956 /* 5957 * Hybrid I/O specifies the ring that should be given to a share. 5958 * If the ring is already used by clients, then we need to release 5959 * the ring back to the default group so that we can give it to 5960 * the share. This means the clients using this ring now get a 5961 * replacement ring. If there aren't any replacement rings, this 5962 * function returns a failure. 5963 */ 5964 static int 5965 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5966 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5967 { 5968 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5969 mac_resource_props_t *mrp; 5970 mac_client_impl_t *mcip; 5971 mac_group_t *defgrp; 5972 mac_ring_t *tring; 5973 mac_group_t *tgrp; 5974 int i; 5975 int j; 5976 5977 mcip = MAC_GROUP_ONLY_CLIENT(group); 5978 if (mcip == NULL) 5979 mcip = mac_get_grp_primary(group); 5980 ASSERT(mcip != NULL); 5981 ASSERT(mcip->mci_share == NULL); 5982 5983 mrp = MCIP_RESOURCE_PROPS(mcip); 5984 if (ring_type == MAC_RING_TYPE_RX) { 5985 defgrp = mip->mi_rx_donor_grp; 5986 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5987 /* Need to put this mac client in the default group */ 5988 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5989 return (ENOSPC); 5990 } else { 5991 /* 5992 * Switch this ring with some other ring from 5993 * the default group. 5994 */ 5995 for (tring = defgrp->mrg_rings; tring != NULL; 5996 tring = tring->mr_next) { 5997 if (tring->mr_index == 0) 5998 continue; 5999 for (j = 0; j < nrings; j++) { 6000 if (rings[j] == tring) 6001 break; 6002 } 6003 if (j >= nrings) 6004 break; 6005 } 6006 if (tring == NULL) 6007 return (ENOSPC); 6008 if (mac_group_mov_ring(mip, group, tring) != 0) 6009 return (ENOSPC); 6010 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6011 (void) mac_group_mov_ring(mip, defgrp, tring); 6012 return (ENOSPC); 6013 } 6014 } 6015 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6016 return (0); 6017 } 6018 6019 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6020 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6021 /* 6022 * See if we can get a spare ring to replace the default 6023 * ring. 6024 */ 6025 if (defgrp->mrg_cur_count == 1) { 6026 /* 6027 * Need to get a ring from another client, see if 6028 * there are any clients that can be moved to 6029 * the default group, thereby freeing some rings. 6030 */ 6031 for (i = 0; i < mip->mi_tx_group_count; i++) { 6032 tgrp = &mip->mi_tx_groups[i]; 6033 if (tgrp->mrg_state == 6034 MAC_GROUP_STATE_REGISTERED) { 6035 continue; 6036 } 6037 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6038 if (mcip == NULL) 6039 mcip = mac_get_grp_primary(tgrp); 6040 ASSERT(mcip != NULL); 6041 mrp = MCIP_RESOURCE_PROPS(mcip); 6042 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6043 ASSERT(tgrp->mrg_cur_count == 1); 6044 /* 6045 * If this ring is part of the 6046 * rings asked by the share we cannot 6047 * use it as the default ring. 6048 */ 6049 for (j = 0; j < nrings; j++) { 6050 if (rings[j] == tgrp->mrg_rings) 6051 break; 6052 } 6053 if (j < nrings) 6054 continue; 6055 mac_tx_client_quiesce( 6056 (mac_client_handle_t)mcip); 6057 mac_tx_switch_group(mcip, tgrp, 6058 defgrp); 6059 mac_tx_client_restart( 6060 (mac_client_handle_t)mcip); 6061 break; 6062 } 6063 } 6064 /* 6065 * All the rings are reserved, can't give up the 6066 * default ring. 6067 */ 6068 if (defgrp->mrg_cur_count <= 1) 6069 return (ENOSPC); 6070 } 6071 /* 6072 * Swap the default ring with another. 6073 */ 6074 for (tring = defgrp->mrg_rings; tring != NULL; 6075 tring = tring->mr_next) { 6076 /* 6077 * If this ring is part of the rings asked by the 6078 * share we cannot use it as the default ring. 6079 */ 6080 for (j = 0; j < nrings; j++) { 6081 if (rings[j] == tring) 6082 break; 6083 } 6084 if (j >= nrings) 6085 break; 6086 } 6087 ASSERT(tring != NULL); 6088 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6089 return (0); 6090 } 6091 /* 6092 * The Tx ring is with a group reserved by a MAC client. See if 6093 * we can swap it. 6094 */ 6095 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6096 mcip = MAC_GROUP_ONLY_CLIENT(group); 6097 if (mcip == NULL) 6098 mcip = mac_get_grp_primary(group); 6099 ASSERT(mcip != NULL); 6100 mrp = MCIP_RESOURCE_PROPS(mcip); 6101 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6102 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6103 ASSERT(group->mrg_cur_count == 1); 6104 /* Put this mac client in the default group */ 6105 mac_tx_switch_group(mcip, group, defgrp); 6106 } else { 6107 /* 6108 * Switch this ring with some other ring from 6109 * the default group. 6110 */ 6111 for (tring = defgrp->mrg_rings; tring != NULL; 6112 tring = tring->mr_next) { 6113 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6114 continue; 6115 /* 6116 * If this ring is part of the rings asked by the 6117 * share we cannot use it for swapping. 6118 */ 6119 for (j = 0; j < nrings; j++) { 6120 if (rings[j] == tring) 6121 break; 6122 } 6123 if (j >= nrings) 6124 break; 6125 } 6126 if (tring == NULL) { 6127 mac_tx_client_restart((mac_client_handle_t)mcip); 6128 return (ENOSPC); 6129 } 6130 if (mac_group_mov_ring(mip, group, tring) != 0) { 6131 mac_tx_client_restart((mac_client_handle_t)mcip); 6132 return (ENOSPC); 6133 } 6134 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6135 (void) mac_group_mov_ring(mip, defgrp, tring); 6136 mac_tx_client_restart((mac_client_handle_t)mcip); 6137 return (ENOSPC); 6138 } 6139 } 6140 mac_tx_client_restart((mac_client_handle_t)mcip); 6141 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6142 return (0); 6143 } 6144 6145 /* 6146 * Populate a zero-ring group with rings. If the share is non-NULL, 6147 * the rings are chosen according to that share. 6148 * Invoked after allocating a new RX or TX group through 6149 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6150 * Returns zero on success, an errno otherwise. 6151 */ 6152 int 6153 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6154 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6155 uint32_t ringcnt) 6156 { 6157 mac_ring_t **rings, *ring; 6158 uint_t nrings; 6159 int rv = 0, i = 0, j; 6160 6161 ASSERT((ring_type == MAC_RING_TYPE_RX && 6162 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6163 (ring_type == MAC_RING_TYPE_TX && 6164 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6165 6166 /* 6167 * First find the rings to allocate to the group. 6168 */ 6169 if (share != NULL) { 6170 /* get rings through ms_squery() */ 6171 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6172 ASSERT(nrings != 0); 6173 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6174 KM_SLEEP); 6175 mip->mi_share_capab.ms_squery(share, ring_type, 6176 (mac_ring_handle_t *)rings, &nrings); 6177 for (i = 0; i < nrings; i++) { 6178 /* 6179 * If we have given this ring to a non-default 6180 * group, we need to check if we can get this 6181 * ring. 6182 */ 6183 ring = rings[i]; 6184 if (ring->mr_gh != (mac_group_handle_t)src_group || 6185 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6186 if (mac_reclaim_ring_from_grp(mip, ring_type, 6187 ring, rings, nrings) != 0) { 6188 rv = ENOSPC; 6189 goto bail; 6190 } 6191 } 6192 } 6193 } else { 6194 /* 6195 * Pick one ring from default group. 6196 * 6197 * for now pick the second ring which requires the first ring 6198 * at index 0 to stay in the default group, since it is the 6199 * ring which carries the multicast traffic. 6200 * We need a better way for a driver to indicate this, 6201 * for example a per-ring flag. 6202 */ 6203 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6204 KM_SLEEP); 6205 for (ring = src_group->mrg_rings; ring != NULL; 6206 ring = ring->mr_next) { 6207 if (ring_type == MAC_RING_TYPE_RX && 6208 ring->mr_index == 0) { 6209 continue; 6210 } 6211 if (ring_type == MAC_RING_TYPE_TX && 6212 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6213 continue; 6214 } 6215 rings[i++] = ring; 6216 if (i == ringcnt) 6217 break; 6218 } 6219 ASSERT(ring != NULL); 6220 nrings = i; 6221 /* Not enough rings as required */ 6222 if (nrings != ringcnt) { 6223 rv = ENOSPC; 6224 goto bail; 6225 } 6226 } 6227 6228 switch (ring_type) { 6229 case MAC_RING_TYPE_RX: 6230 if (src_group->mrg_cur_count - nrings < 1) { 6231 /* we ran out of rings */ 6232 rv = ENOSPC; 6233 goto bail; 6234 } 6235 6236 /* move receive rings to new group */ 6237 for (i = 0; i < nrings; i++) { 6238 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6239 if (rv != 0) { 6240 /* move rings back on failure */ 6241 for (j = 0; j < i; j++) { 6242 (void) mac_group_mov_ring(mip, 6243 src_group, rings[j]); 6244 } 6245 goto bail; 6246 } 6247 } 6248 break; 6249 6250 case MAC_RING_TYPE_TX: { 6251 mac_ring_t *tmp_ring; 6252 6253 /* move the TX rings to the new group */ 6254 for (i = 0; i < nrings; i++) { 6255 /* get the desired ring */ 6256 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6257 if (tmp_ring == NULL) { 6258 rv = ENOSPC; 6259 goto bail; 6260 } 6261 ASSERT(tmp_ring == rings[i]); 6262 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6263 if (rv != 0) { 6264 /* cleanup on failure */ 6265 for (j = 0; j < i; j++) { 6266 (void) mac_group_mov_ring(mip, 6267 MAC_DEFAULT_TX_GROUP(mip), 6268 rings[j]); 6269 } 6270 goto bail; 6271 } 6272 } 6273 break; 6274 } 6275 } 6276 6277 /* add group to share */ 6278 if (share != NULL) 6279 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6280 6281 bail: 6282 /* free temporary array of rings */ 6283 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6284 6285 return (rv); 6286 } 6287 6288 void 6289 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6290 { 6291 mac_grp_client_t *mgcp; 6292 6293 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6294 if (mgcp->mgc_client == mcip) 6295 break; 6296 } 6297 6298 VERIFY(mgcp == NULL); 6299 6300 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6301 mgcp->mgc_client = mcip; 6302 mgcp->mgc_next = grp->mrg_clients; 6303 grp->mrg_clients = mgcp; 6304 6305 } 6306 6307 void 6308 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6309 { 6310 mac_grp_client_t *mgcp, **pprev; 6311 6312 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6313 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6314 if (mgcp->mgc_client == mcip) 6315 break; 6316 } 6317 6318 ASSERT(mgcp != NULL); 6319 6320 *pprev = mgcp->mgc_next; 6321 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6322 } 6323 6324 /* 6325 * mac_reserve_rx_group() 6326 * 6327 * Finds an available group and exclusively reserves it for a client. 6328 * The group is chosen to suit the flow's resource controls (bandwidth and 6329 * fanout requirements) and the address type. 6330 * If the requestor is the pimary MAC then return the group with the 6331 * largest number of rings, otherwise the default ring when available. 6332 */ 6333 mac_group_t * 6334 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6335 { 6336 mac_share_handle_t share = mcip->mci_share; 6337 mac_impl_t *mip = mcip->mci_mip; 6338 mac_group_t *grp = NULL; 6339 int i; 6340 int err = 0; 6341 mac_address_t *map; 6342 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6343 int nrings; 6344 int donor_grp_rcnt; 6345 boolean_t need_exclgrp = B_FALSE; 6346 int need_rings = 0; 6347 mac_group_t *candidate_grp = NULL; 6348 mac_client_impl_t *gclient; 6349 mac_resource_props_t *gmrp; 6350 mac_group_t *donorgrp = NULL; 6351 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6352 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6353 boolean_t isprimary; 6354 6355 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6356 6357 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6358 6359 /* 6360 * Check if a group already has this mac address (case of VLANs) 6361 * unless we are moving this MAC client from one group to another. 6362 */ 6363 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6364 if (map->ma_group != NULL) 6365 return (map->ma_group); 6366 } 6367 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6368 return (NULL); 6369 /* 6370 * If exclusive open, return NULL which will enable the 6371 * caller to use the default group. 6372 */ 6373 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6374 return (NULL); 6375 6376 /* For dynamic groups default unspecified to 1 */ 6377 if (rxhw && unspec && 6378 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6379 mrp->mrp_nrxrings = 1; 6380 } 6381 /* 6382 * For static grouping we allow only specifying rings=0 and 6383 * unspecified 6384 */ 6385 if (rxhw && mrp->mrp_nrxrings > 0 && 6386 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6387 return (NULL); 6388 } 6389 if (rxhw) { 6390 /* 6391 * We have explicitly asked for a group (with nrxrings, 6392 * if unspec). 6393 */ 6394 if (unspec || mrp->mrp_nrxrings > 0) { 6395 need_exclgrp = B_TRUE; 6396 need_rings = mrp->mrp_nrxrings; 6397 } else if (mrp->mrp_nrxrings == 0) { 6398 /* 6399 * We have asked for a software group. 6400 */ 6401 return (NULL); 6402 } 6403 } else if (isprimary && mip->mi_nactiveclients == 1 && 6404 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6405 /* 6406 * If the primary is the only active client on this 6407 * mip and we have not asked for any rings, we give 6408 * it the default group so that the primary gets to 6409 * use all the rings. 6410 */ 6411 return (NULL); 6412 } 6413 6414 /* The group that can donate rings */ 6415 donorgrp = mip->mi_rx_donor_grp; 6416 6417 /* 6418 * The number of rings that the default group can donate. 6419 * We need to leave at least one ring. 6420 */ 6421 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6422 6423 /* 6424 * Try to exclusively reserve a RX group. 6425 * 6426 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6427 * client), try to reserve the a non-default RX group and give 6428 * it all the rings from the donor group, except the default ring 6429 * 6430 * For flows requiring HW_RING (unicast flow of other clients), try 6431 * to reserve non-default RX group with the specified number of 6432 * rings, if available. 6433 * 6434 * For flows that have not asked for software or hardware ring, 6435 * try to reserve a non-default group with 1 ring, if available. 6436 */ 6437 for (i = 1; i < mip->mi_rx_group_count; i++) { 6438 grp = &mip->mi_rx_groups[i]; 6439 6440 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6441 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6442 6443 /* 6444 * Check if this group could be a candidate group for 6445 * eviction if we need a group for this MAC client, 6446 * but there aren't any. A candidate group is one 6447 * that didn't ask for an exclusive group, but got 6448 * one and it has enough rings (combined with what 6449 * the donor group can donate) for the new MAC 6450 * client 6451 */ 6452 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6453 /* 6454 * If the primary/donor group is not the default 6455 * group, don't bother looking for a candidate group. 6456 * If we don't have enough rings we will check 6457 * if the primary group can be vacated. 6458 */ 6459 if (candidate_grp == NULL && 6460 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6461 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6462 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6463 if (gclient == NULL) 6464 gclient = mac_get_grp_primary(grp); 6465 ASSERT(gclient != NULL); 6466 gmrp = MCIP_RESOURCE_PROPS(gclient); 6467 if (gclient->mci_share == NULL && 6468 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6469 (unspec || 6470 (grp->mrg_cur_count + donor_grp_rcnt >= 6471 need_rings))) { 6472 candidate_grp = grp; 6473 } 6474 } 6475 continue; 6476 } 6477 /* 6478 * This group could already be SHARED by other multicast 6479 * flows on this client. In that case, the group would 6480 * be shared and has already been started. 6481 */ 6482 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6483 6484 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6485 (mac_start_group(grp) != 0)) { 6486 continue; 6487 } 6488 6489 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6490 break; 6491 ASSERT(grp->mrg_cur_count == 0); 6492 6493 /* 6494 * Populate the group. Rings should be taken 6495 * from the donor group. 6496 */ 6497 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6498 6499 /* 6500 * If the donor group can't donate, let's just walk and 6501 * see if someone can vacate a group, so that we have 6502 * enough rings for this, unless we already have 6503 * identified a candiate group.. 6504 */ 6505 if (nrings <= donor_grp_rcnt) { 6506 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6507 donorgrp, grp, share, nrings); 6508 if (err == 0) { 6509 /* 6510 * For a share i_mac_group_allocate_rings gets 6511 * the rings from the driver, let's populate 6512 * the property for the client now. 6513 */ 6514 if (share != NULL) { 6515 mac_client_set_rings( 6516 (mac_client_handle_t)mcip, 6517 grp->mrg_cur_count, -1); 6518 } 6519 if (mac_is_primary_client(mcip) && !rxhw) 6520 mip->mi_rx_donor_grp = grp; 6521 break; 6522 } 6523 } 6524 6525 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6526 mip->mi_name, int, grp->mrg_index, int, err); 6527 6528 /* 6529 * It's a dynamic group but the grouping operation 6530 * failed. 6531 */ 6532 mac_stop_group(grp); 6533 } 6534 /* We didn't find an exclusive group for this MAC client */ 6535 if (i >= mip->mi_rx_group_count) { 6536 6537 if (!need_exclgrp) 6538 return (NULL); 6539 6540 /* 6541 * If we found a candidate group then we switch the 6542 * MAC client from the candidate_group to the default 6543 * group and give the group to this MAC client. If 6544 * we didn't find a candidate_group, check if the 6545 * primary is in its own group and if it can make way 6546 * for this MAC client. 6547 */ 6548 if (candidate_grp == NULL && 6549 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6550 donorgrp->mrg_cur_count >= need_rings) { 6551 candidate_grp = donorgrp; 6552 } 6553 if (candidate_grp != NULL) { 6554 boolean_t prim_grp = B_FALSE; 6555 6556 /* 6557 * Switch the MAC client from the candidate group 6558 * to the default group.. If this group was the 6559 * donor group, then after the switch we need 6560 * to update the donor group too. 6561 */ 6562 grp = candidate_grp; 6563 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6564 if (gclient == NULL) 6565 gclient = mac_get_grp_primary(grp); 6566 if (grp == mip->mi_rx_donor_grp) 6567 prim_grp = B_TRUE; 6568 if (mac_rx_switch_group(gclient, grp, 6569 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6570 return (NULL); 6571 } 6572 if (prim_grp) { 6573 mip->mi_rx_donor_grp = 6574 MAC_DEFAULT_RX_GROUP(mip); 6575 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6576 } 6577 6578 6579 /* 6580 * Now give this group with the required rings 6581 * to this MAC client. 6582 */ 6583 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6584 if (mac_start_group(grp) != 0) 6585 return (NULL); 6586 6587 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6588 return (grp); 6589 6590 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6591 ASSERT(grp->mrg_cur_count == 0); 6592 ASSERT(donor_grp_rcnt >= need_rings); 6593 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6594 donorgrp, grp, share, need_rings); 6595 if (err == 0) { 6596 /* 6597 * For a share i_mac_group_allocate_rings gets 6598 * the rings from the driver, let's populate 6599 * the property for the client now. 6600 */ 6601 if (share != NULL) { 6602 mac_client_set_rings( 6603 (mac_client_handle_t)mcip, 6604 grp->mrg_cur_count, -1); 6605 } 6606 DTRACE_PROBE2(rx__group__reserved, 6607 char *, mip->mi_name, int, grp->mrg_index); 6608 return (grp); 6609 } 6610 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6611 mip->mi_name, int, grp->mrg_index, int, err); 6612 mac_stop_group(grp); 6613 } 6614 return (NULL); 6615 } 6616 ASSERT(grp != NULL); 6617 6618 DTRACE_PROBE2(rx__group__reserved, 6619 char *, mip->mi_name, int, grp->mrg_index); 6620 return (grp); 6621 } 6622 6623 /* 6624 * mac_rx_release_group() 6625 * 6626 * This is called when there are no clients left for the group. 6627 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6628 * and if it is a non default group, the shares are removed and 6629 * all rings are assigned back to default group. 6630 */ 6631 void 6632 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6633 { 6634 mac_impl_t *mip = mcip->mci_mip; 6635 mac_ring_t *ring; 6636 6637 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6638 6639 if (mip->mi_rx_donor_grp == group) 6640 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6641 6642 /* 6643 * This is the case where there are no clients left. Any 6644 * SRS etc on this group have also be quiesced. 6645 */ 6646 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6647 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6648 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6649 /* 6650 * Remove the SRS associated with the HW ring. 6651 * As a result, polling will be disabled. 6652 */ 6653 ring->mr_srs = NULL; 6654 } 6655 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6656 ring->mr_state == MR_INUSE); 6657 if (ring->mr_state == MR_INUSE) { 6658 mac_stop_ring(ring); 6659 ring->mr_flag = 0; 6660 } 6661 } 6662 6663 /* remove group from share */ 6664 if (mcip->mci_share != NULL) { 6665 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6666 group->mrg_driver); 6667 } 6668 6669 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6670 mac_ring_t *ring; 6671 6672 /* 6673 * Rings were dynamically allocated to group. 6674 * Move rings back to default group. 6675 */ 6676 while ((ring = group->mrg_rings) != NULL) { 6677 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6678 ring); 6679 } 6680 } 6681 mac_stop_group(group); 6682 /* 6683 * Possible improvement: See if we can assign the group just released 6684 * to a another client of the mip 6685 */ 6686 } 6687 6688 /* 6689 * When we move the primary's mac address between groups, we need to also 6690 * take all the clients sharing the same mac address along with it (VLANs) 6691 * We remove the mac address for such clients from the group after quiescing 6692 * them. When we add the mac address we restart the client. Note that 6693 * the primary's mac address is removed from the group after all the 6694 * other clients sharing the address are removed. Similarly, the primary's 6695 * mac address is added before all the other client's mac address are 6696 * added. While grp is the group where the clients reside, tgrp is 6697 * the group where the addresses have to be added. 6698 */ 6699 static void 6700 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6701 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6702 { 6703 mac_impl_t *mip = mcip->mci_mip; 6704 mac_grp_client_t *mgcp = grp->mrg_clients; 6705 mac_client_impl_t *gmcip; 6706 boolean_t prim; 6707 6708 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6709 6710 /* 6711 * If the clients are in a non-default group, we just have to 6712 * walk the group's client list. If it is in the default group 6713 * (which will be shared by other clients as well, we need to 6714 * check if the unicast address matches mcip's unicast. 6715 */ 6716 while (mgcp != NULL) { 6717 gmcip = mgcp->mgc_client; 6718 if (gmcip != mcip && 6719 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6720 mcip->mci_unicast == gmcip->mci_unicast)) { 6721 if (!add) { 6722 mac_rx_client_quiesce( 6723 (mac_client_handle_t)gmcip); 6724 (void) mac_remove_macaddr(mcip->mci_unicast); 6725 } else { 6726 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6727 mac_rx_client_restart( 6728 (mac_client_handle_t)gmcip); 6729 } 6730 } 6731 mgcp = mgcp->mgc_next; 6732 } 6733 } 6734 6735 6736 /* 6737 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6738 * we need to take any VLANs etc. together too. 6739 */ 6740 static int 6741 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6742 mac_group_t *tgrp) 6743 { 6744 mac_impl_t *mip = mcip->mci_mip; 6745 uint8_t maddr[MAXMACADDRLEN]; 6746 int err = 0; 6747 boolean_t prim; 6748 boolean_t multiclnt = B_FALSE; 6749 6750 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6751 ASSERT(mcip->mci_unicast != NULL); 6752 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6753 6754 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6755 if (mcip->mci_unicast->ma_nusers > 1) { 6756 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6757 multiclnt = B_TRUE; 6758 } 6759 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6760 err = mac_remove_macaddr(mcip->mci_unicast); 6761 if (err != 0) { 6762 mac_rx_client_restart((mac_client_handle_t)mcip); 6763 if (multiclnt) { 6764 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6765 B_TRUE); 6766 } 6767 return (err); 6768 } 6769 /* 6770 * Program the H/W Classifier first, if this fails we need 6771 * not proceed with the other stuff. 6772 */ 6773 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6774 /* Revert back the H/W Classifier */ 6775 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6776 /* 6777 * This should not fail now since it worked earlier, 6778 * should we panic? 6779 */ 6780 cmn_err(CE_WARN, 6781 "mac_rx_switch_group: switching %p back" 6782 " to group %p failed!!", (void *)mcip, 6783 (void *)fgrp); 6784 } 6785 mac_rx_client_restart((mac_client_handle_t)mcip); 6786 if (multiclnt) { 6787 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6788 B_TRUE); 6789 } 6790 return (err); 6791 } 6792 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6793 mac_rx_client_restart((mac_client_handle_t)mcip); 6794 if (multiclnt) 6795 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6796 return (err); 6797 } 6798 6799 /* 6800 * Switch the MAC client from one group to another. This means we need 6801 * to remove the MAC address from the group, remove the MAC client, 6802 * teardown the SRSs and revert the group state. Then, we add the client 6803 * to the destination group, set the SRSs, and add the MAC address to the 6804 * group. 6805 */ 6806 int 6807 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6808 mac_group_t *tgrp) 6809 { 6810 int err; 6811 mac_group_state_t next_state; 6812 mac_client_impl_t *group_only_mcip; 6813 mac_client_impl_t *gmcip; 6814 mac_impl_t *mip = mcip->mci_mip; 6815 mac_grp_client_t *mgcp; 6816 6817 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6818 6819 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6820 return (err); 6821 6822 /* 6823 * The group might be reserved, but SRSs may not be set up, e.g. 6824 * primary and its vlans using a reserved group. 6825 */ 6826 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6827 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6828 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6829 } 6830 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6831 mgcp = fgrp->mrg_clients; 6832 while (mgcp != NULL) { 6833 gmcip = mgcp->mgc_client; 6834 mgcp = mgcp->mgc_next; 6835 mac_group_remove_client(fgrp, gmcip); 6836 mac_group_add_client(tgrp, gmcip); 6837 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6838 } 6839 mac_release_rx_group(mcip, fgrp); 6840 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6841 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6842 } else { 6843 mac_group_remove_client(fgrp, mcip); 6844 mac_group_add_client(tgrp, mcip); 6845 mcip->mci_flent->fe_rx_ring_group = tgrp; 6846 /* 6847 * If there are other clients (VLANs) sharing this address 6848 * we should be here only for the primary. 6849 */ 6850 if (mcip->mci_unicast->ma_nusers > 1) { 6851 /* 6852 * We need to move all the clients that are using 6853 * this h/w address. 6854 */ 6855 mgcp = fgrp->mrg_clients; 6856 while (mgcp != NULL) { 6857 gmcip = mgcp->mgc_client; 6858 mgcp = mgcp->mgc_next; 6859 if (mcip->mci_unicast == gmcip->mci_unicast) { 6860 mac_group_remove_client(fgrp, gmcip); 6861 mac_group_add_client(tgrp, gmcip); 6862 gmcip->mci_flent->fe_rx_ring_group = 6863 tgrp; 6864 } 6865 } 6866 } 6867 /* 6868 * The default group will still take the multicast, 6869 * broadcast traffic etc., so it won't go to 6870 * MAC_GROUP_STATE_REGISTERED. 6871 */ 6872 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6873 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6874 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6875 } 6876 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6877 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6878 mac_set_group_state(tgrp, next_state); 6879 /* 6880 * If the destination group is reserved, setup the SRSs etc. 6881 */ 6882 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6883 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6884 mac_fanout_setup(mcip, mcip->mci_flent, 6885 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6886 NULL); 6887 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6888 } else { 6889 mac_rx_switch_grp_to_sw(tgrp); 6890 } 6891 return (0); 6892 } 6893 6894 /* 6895 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6896 * when a share was allocated to the client. 6897 */ 6898 mac_group_t * 6899 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6900 { 6901 mac_impl_t *mip = mcip->mci_mip; 6902 mac_group_t *grp = NULL; 6903 int rv; 6904 int i; 6905 int err; 6906 mac_group_t *defgrp; 6907 mac_share_handle_t share = mcip->mci_share; 6908 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6909 int nrings; 6910 int defnrings; 6911 boolean_t need_exclgrp = B_FALSE; 6912 int need_rings = 0; 6913 mac_group_t *candidate_grp = NULL; 6914 mac_client_impl_t *gclient; 6915 mac_resource_props_t *gmrp; 6916 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6917 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6918 boolean_t isprimary; 6919 6920 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6921 /* 6922 * When we come here for a VLAN on the primary (dladm create-vlan), 6923 * we need to pair it along with the primary (to keep it consistent 6924 * with the RX side). So, we check if the primary is already assigned 6925 * to a group and return the group if so. The other way is also 6926 * true, i.e. the VLAN is already created and now we are plumbing 6927 * the primary. 6928 */ 6929 if (!move && isprimary) { 6930 for (gclient = mip->mi_clients_list; gclient != NULL; 6931 gclient = gclient->mci_client_next) { 6932 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6933 gclient->mci_flent->fe_tx_ring_group != NULL) { 6934 return (gclient->mci_flent->fe_tx_ring_group); 6935 } 6936 } 6937 } 6938 6939 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6940 return (NULL); 6941 6942 /* For dynamic groups, default unspec to 1 */ 6943 if (txhw && unspec && 6944 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6945 mrp->mrp_ntxrings = 1; 6946 } 6947 /* 6948 * For static grouping we allow only specifying rings=0 and 6949 * unspecified 6950 */ 6951 if (txhw && mrp->mrp_ntxrings > 0 && 6952 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6953 return (NULL); 6954 } 6955 6956 if (txhw) { 6957 /* 6958 * We have explicitly asked for a group (with ntxrings, 6959 * if unspec). 6960 */ 6961 if (unspec || mrp->mrp_ntxrings > 0) { 6962 need_exclgrp = B_TRUE; 6963 need_rings = mrp->mrp_ntxrings; 6964 } else if (mrp->mrp_ntxrings == 0) { 6965 /* 6966 * We have asked for a software group. 6967 */ 6968 return (NULL); 6969 } 6970 } 6971 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6972 /* 6973 * The number of rings that the default group can donate. 6974 * We need to leave at least one ring - the default ring - in 6975 * this group. 6976 */ 6977 defnrings = defgrp->mrg_cur_count - 1; 6978 6979 /* 6980 * Primary gets default group unless explicitly told not 6981 * to (i.e. rings > 0). 6982 */ 6983 if (isprimary && !need_exclgrp) 6984 return (NULL); 6985 6986 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6987 for (i = 0; i < mip->mi_tx_group_count; i++) { 6988 grp = &mip->mi_tx_groups[i]; 6989 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6990 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6991 /* 6992 * Select a candidate for replacement if we don't 6993 * get an exclusive group. A candidate group is one 6994 * that didn't ask for an exclusive group, but got 6995 * one and it has enough rings (combined with what 6996 * the default group can donate) for the new MAC 6997 * client. 6998 */ 6999 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7000 candidate_grp == NULL) { 7001 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7002 if (gclient == NULL) 7003 gclient = mac_get_grp_primary(grp); 7004 gmrp = MCIP_RESOURCE_PROPS(gclient); 7005 if (gclient->mci_share == NULL && 7006 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7007 (unspec || 7008 (grp->mrg_cur_count + defnrings) >= 7009 need_rings)) { 7010 candidate_grp = grp; 7011 } 7012 } 7013 continue; 7014 } 7015 /* 7016 * If the default can't donate let's just walk and 7017 * see if someone can vacate a group, so that we have 7018 * enough rings for this. 7019 */ 7020 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7021 nrings <= defnrings) { 7022 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7023 rv = mac_start_group(grp); 7024 ASSERT(rv == 0); 7025 } 7026 break; 7027 } 7028 } 7029 7030 /* The default group */ 7031 if (i >= mip->mi_tx_group_count) { 7032 /* 7033 * If we need an exclusive group and have identified a 7034 * candidate group we switch the MAC client from the 7035 * candidate group to the default group and give the 7036 * candidate group to this client. 7037 */ 7038 if (need_exclgrp && candidate_grp != NULL) { 7039 /* 7040 * Switch the MAC client from the candidate group 7041 * to the default group. 7042 */ 7043 grp = candidate_grp; 7044 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7045 if (gclient == NULL) 7046 gclient = mac_get_grp_primary(grp); 7047 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7048 mac_tx_switch_group(gclient, grp, defgrp); 7049 mac_tx_client_restart((mac_client_handle_t)gclient); 7050 7051 /* 7052 * Give the candidate group with the specified number 7053 * of rings to this MAC client. 7054 */ 7055 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7056 rv = mac_start_group(grp); 7057 ASSERT(rv == 0); 7058 7059 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7060 return (grp); 7061 7062 ASSERT(grp->mrg_cur_count == 0); 7063 ASSERT(defgrp->mrg_cur_count > need_rings); 7064 7065 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7066 defgrp, grp, share, need_rings); 7067 if (err == 0) { 7068 /* 7069 * For a share i_mac_group_allocate_rings gets 7070 * the rings from the driver, let's populate 7071 * the property for the client now. 7072 */ 7073 if (share != NULL) { 7074 mac_client_set_rings( 7075 (mac_client_handle_t)mcip, -1, 7076 grp->mrg_cur_count); 7077 } 7078 mip->mi_tx_group_free--; 7079 return (grp); 7080 } 7081 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7082 mip->mi_name, int, grp->mrg_index, int, err); 7083 mac_stop_group(grp); 7084 } 7085 return (NULL); 7086 } 7087 /* 7088 * We got an exclusive group, but it is not dynamic. 7089 */ 7090 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7091 mip->mi_tx_group_free--; 7092 return (grp); 7093 } 7094 7095 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7096 share, nrings); 7097 if (rv != 0) { 7098 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7099 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7100 mac_stop_group(grp); 7101 return (NULL); 7102 } 7103 /* 7104 * For a share i_mac_group_allocate_rings gets the rings from the 7105 * driver, let's populate the property for the client now. 7106 */ 7107 if (share != NULL) { 7108 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7109 grp->mrg_cur_count); 7110 } 7111 mip->mi_tx_group_free--; 7112 return (grp); 7113 } 7114 7115 void 7116 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7117 { 7118 mac_impl_t *mip = mcip->mci_mip; 7119 mac_share_handle_t share = mcip->mci_share; 7120 mac_ring_t *ring; 7121 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7122 mac_group_t *defgrp; 7123 7124 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7125 if (srs != NULL) { 7126 if (srs->srs_soft_ring_count > 0) { 7127 for (ring = grp->mrg_rings; ring != NULL; 7128 ring = ring->mr_next) { 7129 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7130 mac_tx_invoke_callbacks(mcip, 7131 (mac_tx_cookie_t) 7132 mac_tx_srs_get_soft_ring(srs, ring)); 7133 mac_tx_srs_del_ring(srs, ring); 7134 } 7135 } else { 7136 ASSERT(srs->srs_tx.st_arg2 != NULL); 7137 srs->srs_tx.st_arg2 = NULL; 7138 mac_srs_stat_delete(srs); 7139 } 7140 } 7141 if (share != NULL) 7142 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7143 7144 /* move the ring back to the pool */ 7145 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7146 while ((ring = grp->mrg_rings) != NULL) 7147 (void) mac_group_mov_ring(mip, defgrp, ring); 7148 } 7149 mac_stop_group(grp); 7150 mip->mi_tx_group_free++; 7151 } 7152 7153 /* 7154 * Disassociate a MAC client from a group, i.e go through the rings in the 7155 * group and delete all the soft rings tied to them. 7156 */ 7157 static void 7158 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7159 { 7160 mac_client_impl_t *mcip = flent->fe_mcip; 7161 mac_soft_ring_set_t *tx_srs; 7162 mac_srs_tx_t *tx; 7163 mac_ring_t *ring; 7164 7165 tx_srs = flent->fe_tx_srs; 7166 tx = &tx_srs->srs_tx; 7167 7168 /* Single ring case we haven't created any soft rings */ 7169 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7170 tx->st_mode == SRS_TX_DEFAULT) { 7171 tx->st_arg2 = NULL; 7172 mac_srs_stat_delete(tx_srs); 7173 /* Fanout case, where we have to dismantle the soft rings */ 7174 } else { 7175 for (ring = fgrp->mrg_rings; ring != NULL; 7176 ring = ring->mr_next) { 7177 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7178 mac_tx_invoke_callbacks(mcip, 7179 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7180 ring)); 7181 mac_tx_srs_del_ring(tx_srs, ring); 7182 } 7183 ASSERT(tx->st_arg2 == NULL); 7184 } 7185 } 7186 7187 /* 7188 * Switch the MAC client from one group to another. This means we need 7189 * to remove the MAC client, teardown the SRSs and revert the group state. 7190 * Then, we add the client to the destination roup, set the SRSs etc. 7191 */ 7192 void 7193 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7194 mac_group_t *tgrp) 7195 { 7196 mac_client_impl_t *group_only_mcip; 7197 mac_impl_t *mip = mcip->mci_mip; 7198 flow_entry_t *flent = mcip->mci_flent; 7199 mac_group_t *defgrp; 7200 mac_grp_client_t *mgcp; 7201 mac_client_impl_t *gmcip; 7202 flow_entry_t *gflent; 7203 7204 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7205 ASSERT(fgrp == flent->fe_tx_ring_group); 7206 7207 if (fgrp == defgrp) { 7208 /* 7209 * If this is the primary we need to find any VLANs on 7210 * the primary and move them too. 7211 */ 7212 mac_group_remove_client(fgrp, mcip); 7213 mac_tx_dismantle_soft_rings(fgrp, flent); 7214 if (mcip->mci_unicast->ma_nusers > 1) { 7215 mgcp = fgrp->mrg_clients; 7216 while (mgcp != NULL) { 7217 gmcip = mgcp->mgc_client; 7218 mgcp = mgcp->mgc_next; 7219 if (mcip->mci_unicast != gmcip->mci_unicast) 7220 continue; 7221 mac_tx_client_quiesce( 7222 (mac_client_handle_t)gmcip); 7223 7224 gflent = gmcip->mci_flent; 7225 mac_group_remove_client(fgrp, gmcip); 7226 mac_tx_dismantle_soft_rings(fgrp, gflent); 7227 7228 mac_group_add_client(tgrp, gmcip); 7229 gflent->fe_tx_ring_group = tgrp; 7230 /* We could directly set this to SHARED */ 7231 tgrp->mrg_state = mac_group_next_state(tgrp, 7232 &group_only_mcip, defgrp, B_FALSE); 7233 7234 mac_tx_srs_group_setup(gmcip, gflent, 7235 SRST_LINK); 7236 mac_fanout_setup(gmcip, gflent, 7237 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7238 gmcip, NULL, NULL); 7239 7240 mac_tx_client_restart( 7241 (mac_client_handle_t)gmcip); 7242 } 7243 } 7244 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7245 mac_ring_t *ring; 7246 int cnt; 7247 int ringcnt; 7248 7249 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7250 /* 7251 * Additionally, we also need to stop all 7252 * the rings in the default group, except 7253 * the default ring. The reason being 7254 * this group won't be released since it is 7255 * the default group, so the rings won't 7256 * be stopped otherwise. 7257 */ 7258 ringcnt = fgrp->mrg_cur_count; 7259 ring = fgrp->mrg_rings; 7260 for (cnt = 0; cnt < ringcnt; cnt++) { 7261 if (ring->mr_state == MR_INUSE && 7262 ring != 7263 (mac_ring_t *)mip->mi_default_tx_ring) { 7264 mac_stop_ring(ring); 7265 ring->mr_flag = 0; 7266 } 7267 ring = ring->mr_next; 7268 } 7269 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7270 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7271 } else { 7272 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7273 } 7274 } else { 7275 /* 7276 * We could have VLANs sharing the non-default group with 7277 * the primary. 7278 */ 7279 mgcp = fgrp->mrg_clients; 7280 while (mgcp != NULL) { 7281 gmcip = mgcp->mgc_client; 7282 mgcp = mgcp->mgc_next; 7283 if (gmcip == mcip) 7284 continue; 7285 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7286 gflent = gmcip->mci_flent; 7287 7288 mac_group_remove_client(fgrp, gmcip); 7289 mac_tx_dismantle_soft_rings(fgrp, gflent); 7290 7291 mac_group_add_client(tgrp, gmcip); 7292 gflent->fe_tx_ring_group = tgrp; 7293 /* We could directly set this to SHARED */ 7294 tgrp->mrg_state = mac_group_next_state(tgrp, 7295 &group_only_mcip, defgrp, B_FALSE); 7296 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7297 mac_fanout_setup(gmcip, gflent, 7298 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7299 gmcip, NULL, NULL); 7300 7301 mac_tx_client_restart((mac_client_handle_t)gmcip); 7302 } 7303 mac_group_remove_client(fgrp, mcip); 7304 mac_release_tx_group(mcip, fgrp); 7305 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7306 } 7307 7308 /* Add it to the tgroup */ 7309 mac_group_add_client(tgrp, mcip); 7310 flent->fe_tx_ring_group = tgrp; 7311 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7312 defgrp, B_FALSE); 7313 7314 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7315 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7316 mac_rx_deliver, mcip, NULL, NULL); 7317 } 7318 7319 /* 7320 * This is a 1-time control path activity initiated by the client (IP). 7321 * The mac perimeter protects against other simultaneous control activities, 7322 * for example an ioctl that attempts to change the degree of fanout and 7323 * increase or decrease the number of softrings associated with this Tx SRS. 7324 */ 7325 static mac_tx_notify_cb_t * 7326 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7327 mac_tx_notify_t notify, void *arg) 7328 { 7329 mac_cb_info_t *mcbi; 7330 mac_tx_notify_cb_t *mtnfp; 7331 7332 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7333 7334 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7335 mtnfp->mtnf_fn = notify; 7336 mtnfp->mtnf_arg = arg; 7337 mtnfp->mtnf_link.mcb_objp = mtnfp; 7338 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7339 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7340 7341 mcbi = &mcip->mci_tx_notify_cb_info; 7342 mutex_enter(mcbi->mcbi_lockp); 7343 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7344 mutex_exit(mcbi->mcbi_lockp); 7345 return (mtnfp); 7346 } 7347 7348 static void 7349 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7350 { 7351 mac_cb_info_t *mcbi; 7352 mac_cb_t **cblist; 7353 7354 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7355 7356 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7357 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7358 cmn_err(CE_WARN, 7359 "mac_client_tx_notify_remove: callback not " 7360 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7361 return; 7362 } 7363 7364 mcbi = &mcip->mci_tx_notify_cb_info; 7365 cblist = &mcip->mci_tx_notify_cb_list; 7366 mutex_enter(mcbi->mcbi_lockp); 7367 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7368 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7369 else 7370 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7371 mutex_exit(mcbi->mcbi_lockp); 7372 } 7373 7374 /* 7375 * mac_client_tx_notify(): 7376 * call to add and remove flow control callback routine. 7377 */ 7378 mac_tx_notify_handle_t 7379 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7380 void *ptr) 7381 { 7382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7383 mac_tx_notify_cb_t *mtnfp = NULL; 7384 7385 i_mac_perim_enter(mcip->mci_mip); 7386 7387 if (callb_func != NULL) { 7388 /* Add a notify callback */ 7389 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7390 } else { 7391 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7392 } 7393 i_mac_perim_exit(mcip->mci_mip); 7394 7395 return ((mac_tx_notify_handle_t)mtnfp); 7396 } 7397 7398 void 7399 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7400 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7401 { 7402 mac_bridge_tx_cb = txf; 7403 mac_bridge_rx_cb = rxf; 7404 mac_bridge_ref_cb = reff; 7405 mac_bridge_ls_cb = lsf; 7406 } 7407 7408 int 7409 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7410 { 7411 mac_impl_t *mip = (mac_impl_t *)mh; 7412 int retv; 7413 7414 mutex_enter(&mip->mi_bridge_lock); 7415 if (mip->mi_bridge_link == NULL) { 7416 mip->mi_bridge_link = link; 7417 retv = 0; 7418 } else { 7419 retv = EBUSY; 7420 } 7421 mutex_exit(&mip->mi_bridge_lock); 7422 if (retv == 0) { 7423 mac_poll_state_change(mh, B_FALSE); 7424 mac_capab_update(mh); 7425 } 7426 return (retv); 7427 } 7428 7429 /* 7430 * Disable bridging on the indicated link. 7431 */ 7432 void 7433 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7434 { 7435 mac_impl_t *mip = (mac_impl_t *)mh; 7436 7437 mutex_enter(&mip->mi_bridge_lock); 7438 ASSERT(mip->mi_bridge_link == link); 7439 mip->mi_bridge_link = NULL; 7440 mutex_exit(&mip->mi_bridge_lock); 7441 mac_poll_state_change(mh, B_TRUE); 7442 mac_capab_update(mh); 7443 } 7444 7445 void 7446 mac_no_active(mac_handle_t mh) 7447 { 7448 mac_impl_t *mip = (mac_impl_t *)mh; 7449 7450 i_mac_perim_enter(mip); 7451 mip->mi_state_flags |= MIS_NO_ACTIVE; 7452 i_mac_perim_exit(mip); 7453 } 7454 7455 /* 7456 * Walk the primary VLAN clients whenever the primary's rings property 7457 * changes and update the mac_resource_props_t for the VLAN's client. 7458 * We need to do this since we don't support setting these properties 7459 * on the primary's VLAN clients, but the VLAN clients have to 7460 * follow the primary w.r.t the rings property; 7461 */ 7462 void 7463 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7464 { 7465 mac_client_impl_t *vmcip; 7466 mac_resource_props_t *vmrp; 7467 7468 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7469 vmcip = vmcip->mci_client_next) { 7470 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7471 mac_client_vid((mac_client_handle_t)vmcip) == 7472 VLAN_ID_NONE) { 7473 continue; 7474 } 7475 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7476 7477 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7478 if (mrp->mrp_mask & MRP_RX_RINGS) 7479 vmrp->mrp_mask |= MRP_RX_RINGS; 7480 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7481 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7482 7483 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7484 if (mrp->mrp_mask & MRP_TX_RINGS) 7485 vmrp->mrp_mask |= MRP_TX_RINGS; 7486 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7487 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7488 7489 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7490 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7491 else 7492 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7493 7494 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7495 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7496 else 7497 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7498 } 7499 } 7500 7501 /* 7502 * We are adding or removing ring(s) from a group. The source for taking 7503 * rings is the default group. The destination for giving rings back is 7504 * the default group. 7505 */ 7506 int 7507 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7508 mac_group_t *defgrp) 7509 { 7510 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7511 uint_t modify; 7512 int count; 7513 mac_ring_t *ring; 7514 mac_ring_t *next; 7515 mac_impl_t *mip = mcip->mci_mip; 7516 mac_ring_t **rings; 7517 uint_t ringcnt; 7518 int i = 0; 7519 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7520 int start; 7521 int end; 7522 mac_group_t *tgrp; 7523 int j; 7524 int rv = 0; 7525 7526 /* 7527 * If we are asked for just a group, we give 1 ring, else 7528 * the specified number of rings. 7529 */ 7530 if (rx_group) { 7531 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7532 mrp->mrp_nrxrings; 7533 } else { 7534 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7535 mrp->mrp_ntxrings; 7536 } 7537 7538 /* don't allow modifying rings for a share for now. */ 7539 ASSERT(mcip->mci_share == NULL); 7540 7541 if (ringcnt == group->mrg_cur_count) 7542 return (0); 7543 7544 if (group->mrg_cur_count > ringcnt) { 7545 modify = group->mrg_cur_count - ringcnt; 7546 if (rx_group) { 7547 if (mip->mi_rx_donor_grp == group) { 7548 ASSERT(mac_is_primary_client(mcip)); 7549 mip->mi_rx_donor_grp = defgrp; 7550 } else { 7551 defgrp = mip->mi_rx_donor_grp; 7552 } 7553 } 7554 ring = group->mrg_rings; 7555 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7556 KM_SLEEP); 7557 j = 0; 7558 for (count = 0; count < modify; count++) { 7559 next = ring->mr_next; 7560 rv = mac_group_mov_ring(mip, defgrp, ring); 7561 if (rv != 0) { 7562 /* cleanup on failure */ 7563 for (j = 0; j < count; j++) { 7564 (void) mac_group_mov_ring(mip, group, 7565 rings[j]); 7566 } 7567 break; 7568 } 7569 rings[j++] = ring; 7570 ring = next; 7571 } 7572 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7573 return (rv); 7574 } 7575 if (ringcnt >= MAX_RINGS_PER_GROUP) 7576 return (EINVAL); 7577 7578 modify = ringcnt - group->mrg_cur_count; 7579 7580 if (rx_group) { 7581 if (group != mip->mi_rx_donor_grp) 7582 defgrp = mip->mi_rx_donor_grp; 7583 else 7584 /* 7585 * This is the donor group with all the remaining 7586 * rings. Default group now gets to be the donor 7587 */ 7588 mip->mi_rx_donor_grp = defgrp; 7589 start = 1; 7590 end = mip->mi_rx_group_count; 7591 } else { 7592 start = 0; 7593 end = mip->mi_tx_group_count - 1; 7594 } 7595 /* 7596 * If the default doesn't have any rings, lets see if we can 7597 * take rings given to an h/w client that doesn't need it. 7598 * For now, we just see if there is any one client that can donate 7599 * all the required rings. 7600 */ 7601 if (defgrp->mrg_cur_count < (modify + 1)) { 7602 for (i = start; i < end; i++) { 7603 if (rx_group) { 7604 tgrp = &mip->mi_rx_groups[i]; 7605 if (tgrp == group || tgrp->mrg_state < 7606 MAC_GROUP_STATE_RESERVED) { 7607 continue; 7608 } 7609 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7610 if (mcip == NULL) 7611 mcip = mac_get_grp_primary(tgrp); 7612 ASSERT(mcip != NULL); 7613 mrp = MCIP_RESOURCE_PROPS(mcip); 7614 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7615 continue; 7616 if ((tgrp->mrg_cur_count + 7617 defgrp->mrg_cur_count) < (modify + 1)) { 7618 continue; 7619 } 7620 if (mac_rx_switch_group(mcip, tgrp, 7621 defgrp) != 0) { 7622 return (ENOSPC); 7623 } 7624 } else { 7625 tgrp = &mip->mi_tx_groups[i]; 7626 if (tgrp == group || tgrp->mrg_state < 7627 MAC_GROUP_STATE_RESERVED) { 7628 continue; 7629 } 7630 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7631 if (mcip == NULL) 7632 mcip = mac_get_grp_primary(tgrp); 7633 mrp = MCIP_RESOURCE_PROPS(mcip); 7634 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7635 continue; 7636 if ((tgrp->mrg_cur_count + 7637 defgrp->mrg_cur_count) < (modify + 1)) { 7638 continue; 7639 } 7640 /* OK, we can switch this to s/w */ 7641 mac_tx_client_quiesce( 7642 (mac_client_handle_t)mcip); 7643 mac_tx_switch_group(mcip, tgrp, defgrp); 7644 mac_tx_client_restart( 7645 (mac_client_handle_t)mcip); 7646 } 7647 } 7648 if (defgrp->mrg_cur_count < (modify + 1)) 7649 return (ENOSPC); 7650 } 7651 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7652 group, mcip->mci_share, modify)) != 0) { 7653 return (rv); 7654 } 7655 return (0); 7656 } 7657 7658 /* 7659 * Given the poolname in mac_resource_props, find the cpupart 7660 * that is associated with this pool. The cpupart will be used 7661 * later for finding the cpus to be bound to the networking threads. 7662 * 7663 * use_default is set B_TRUE if pools are enabled and pool_default 7664 * is returned. This avoids a 2nd lookup to set the poolname 7665 * for pool-effective. 7666 * 7667 * returns: 7668 * 7669 * NULL - pools are disabled or if the 'cpus' property is set. 7670 * cpupart of pool_default - pools are enabled and the pool 7671 * is not available or poolname is blank 7672 * cpupart of named pool - pools are enabled and the pool 7673 * is available. 7674 */ 7675 cpupart_t * 7676 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7677 { 7678 pool_t *pool; 7679 cpupart_t *cpupart; 7680 7681 *use_default = B_FALSE; 7682 7683 /* CPUs property is set */ 7684 if (mrp->mrp_mask & MRP_CPUS) 7685 return (NULL); 7686 7687 ASSERT(pool_lock_held()); 7688 7689 /* Pools are disabled, no pset */ 7690 if (pool_state == POOL_DISABLED) 7691 return (NULL); 7692 7693 /* Pools property is set */ 7694 if (mrp->mrp_mask & MRP_POOL) { 7695 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7696 /* Pool not found */ 7697 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7698 mrp->mrp_pool); 7699 *use_default = B_TRUE; 7700 pool = pool_default; 7701 } 7702 /* Pools property is not set */ 7703 } else { 7704 *use_default = B_TRUE; 7705 pool = pool_default; 7706 } 7707 7708 /* Find the CPU pset that corresponds to the pool */ 7709 mutex_enter(&cpu_lock); 7710 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7711 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7712 pool->pool_pset->pset_id); 7713 } 7714 mutex_exit(&cpu_lock); 7715 7716 return (cpupart); 7717 } 7718 7719 void 7720 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7721 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7722 { 7723 ASSERT(pool_lock_held()); 7724 7725 if (cpupart != NULL) { 7726 emrp->mrp_mask |= MRP_POOL; 7727 if (use_default) { 7728 (void) strcpy(emrp->mrp_pool, 7729 "pool_default"); 7730 } else { 7731 ASSERT(strlen(mrp->mrp_pool) != 0); 7732 (void) strcpy(emrp->mrp_pool, 7733 mrp->mrp_pool); 7734 } 7735 } else { 7736 emrp->mrp_mask &= ~MRP_POOL; 7737 bzero(emrp->mrp_pool, MAXPATHLEN); 7738 } 7739 } 7740 7741 struct mac_pool_arg { 7742 char mpa_poolname[MAXPATHLEN]; 7743 pool_event_t mpa_what; 7744 }; 7745 7746 /*ARGSUSED*/ 7747 static uint_t 7748 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7749 { 7750 struct mac_pool_arg *mpa = arg; 7751 mac_impl_t *mip = (mac_impl_t *)val; 7752 mac_client_impl_t *mcip; 7753 mac_resource_props_t *mrp, *emrp; 7754 boolean_t pool_update = B_FALSE; 7755 boolean_t pool_clear = B_FALSE; 7756 boolean_t use_default = B_FALSE; 7757 cpupart_t *cpupart = NULL; 7758 7759 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7760 i_mac_perim_enter(mip); 7761 for (mcip = mip->mi_clients_list; mcip != NULL; 7762 mcip = mcip->mci_client_next) { 7763 pool_update = B_FALSE; 7764 pool_clear = B_FALSE; 7765 use_default = B_FALSE; 7766 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7767 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7768 7769 /* 7770 * When pools are enabled 7771 */ 7772 if ((mpa->mpa_what == POOL_E_ENABLE) && 7773 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7774 mrp->mrp_mask |= MRP_POOL; 7775 pool_update = B_TRUE; 7776 } 7777 7778 /* 7779 * When pools are disabled 7780 */ 7781 if ((mpa->mpa_what == POOL_E_DISABLE) && 7782 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7783 mrp->mrp_mask |= MRP_POOL; 7784 pool_clear = B_TRUE; 7785 } 7786 7787 /* 7788 * Look for links with the pool property set and the poolname 7789 * matching the one which is changing. 7790 */ 7791 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7792 /* 7793 * The pool associated with the link has changed. 7794 */ 7795 if (mpa->mpa_what == POOL_E_CHANGE) { 7796 mrp->mrp_mask |= MRP_POOL; 7797 pool_update = B_TRUE; 7798 } 7799 } 7800 7801 /* 7802 * This link is associated with pool_default and 7803 * pool_default has changed. 7804 */ 7805 if ((mpa->mpa_what == POOL_E_CHANGE) && 7806 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7807 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7808 mrp->mrp_mask |= MRP_POOL; 7809 pool_update = B_TRUE; 7810 } 7811 7812 /* 7813 * Get new list of cpus for the pool, bind network 7814 * threads to new list of cpus and update resources. 7815 */ 7816 if (pool_update) { 7817 if (MCIP_DATAPATH_SETUP(mcip)) { 7818 pool_lock(); 7819 cpupart = mac_pset_find(mrp, &use_default); 7820 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7821 mac_rx_deliver, mcip, NULL, cpupart); 7822 mac_set_pool_effective(use_default, cpupart, 7823 mrp, emrp); 7824 pool_unlock(); 7825 } 7826 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7827 B_FALSE); 7828 } 7829 7830 /* 7831 * Clear the effective pool and bind network threads 7832 * to any available CPU. 7833 */ 7834 if (pool_clear) { 7835 if (MCIP_DATAPATH_SETUP(mcip)) { 7836 emrp->mrp_mask &= ~MRP_POOL; 7837 bzero(emrp->mrp_pool, MAXPATHLEN); 7838 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7839 mac_rx_deliver, mcip, NULL, NULL); 7840 } 7841 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7842 B_FALSE); 7843 } 7844 } 7845 i_mac_perim_exit(mip); 7846 kmem_free(mrp, sizeof (*mrp)); 7847 return (MH_WALK_CONTINUE); 7848 } 7849 7850 static void 7851 mac_pool_update(void *arg) 7852 { 7853 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7854 kmem_free(arg, sizeof (struct mac_pool_arg)); 7855 } 7856 7857 /* 7858 * Callback function to be executed when a noteworthy pool event 7859 * takes place. 7860 */ 7861 /* ARGSUSED */ 7862 static void 7863 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7864 { 7865 pool_t *pool; 7866 char *poolname = NULL; 7867 struct mac_pool_arg *mpa; 7868 7869 pool_lock(); 7870 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7871 7872 switch (what) { 7873 case POOL_E_ENABLE: 7874 case POOL_E_DISABLE: 7875 break; 7876 7877 case POOL_E_CHANGE: 7878 pool = pool_lookup_pool_by_id(id); 7879 if (pool == NULL) { 7880 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7881 pool_unlock(); 7882 return; 7883 } 7884 pool_get_name(pool, &poolname); 7885 (void) strlcpy(mpa->mpa_poolname, poolname, 7886 sizeof (mpa->mpa_poolname)); 7887 break; 7888 7889 default: 7890 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7891 pool_unlock(); 7892 return; 7893 } 7894 pool_unlock(); 7895 7896 mpa->mpa_what = what; 7897 7898 mac_pool_update(mpa); 7899 } 7900 7901 /* 7902 * Set effective rings property. This could be called from datapath_setup/ 7903 * datapath_teardown or set-linkprop. 7904 * If the group is reserved we just go ahead and set the effective rings. 7905 * Additionally, for TX this could mean the default group has lost/gained 7906 * some rings, so if the default group is reserved, we need to adjust the 7907 * effective rings for the default group clients. For RX, if we are working 7908 * with the non-default group, we just need * to reset the effective props 7909 * for the default group clients. 7910 */ 7911 void 7912 mac_set_rings_effective(mac_client_impl_t *mcip) 7913 { 7914 mac_impl_t *mip = mcip->mci_mip; 7915 mac_group_t *grp; 7916 mac_group_t *defgrp; 7917 flow_entry_t *flent = mcip->mci_flent; 7918 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7919 mac_grp_client_t *mgcp; 7920 mac_client_impl_t *gmcip; 7921 7922 grp = flent->fe_rx_ring_group; 7923 if (grp != NULL) { 7924 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7925 /* 7926 * If we have reserved a group, set the effective rings 7927 * to the ring count in the group. 7928 */ 7929 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7930 emrp->mrp_mask |= MRP_RX_RINGS; 7931 emrp->mrp_nrxrings = grp->mrg_cur_count; 7932 } 7933 7934 /* 7935 * We go through the clients in the shared group and 7936 * reset the effective properties. It is possible this 7937 * might have already been done for some client (i.e. 7938 * if some client is being moved to a group that is 7939 * already shared). The case where the default group is 7940 * RESERVED is taken care of above (note in the RX side if 7941 * there is a non-default group, the default group is always 7942 * SHARED). 7943 */ 7944 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7945 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7946 mgcp = grp->mrg_clients; 7947 else 7948 mgcp = defgrp->mrg_clients; 7949 while (mgcp != NULL) { 7950 gmcip = mgcp->mgc_client; 7951 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7952 if (emrp->mrp_mask & MRP_RX_RINGS) { 7953 emrp->mrp_mask &= ~MRP_RX_RINGS; 7954 emrp->mrp_nrxrings = 0; 7955 } 7956 mgcp = mgcp->mgc_next; 7957 } 7958 } 7959 } 7960 7961 /* Now the TX side */ 7962 grp = flent->fe_tx_ring_group; 7963 if (grp != NULL) { 7964 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7965 7966 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7967 emrp->mrp_mask |= MRP_TX_RINGS; 7968 emrp->mrp_ntxrings = grp->mrg_cur_count; 7969 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7970 mgcp = grp->mrg_clients; 7971 while (mgcp != NULL) { 7972 gmcip = mgcp->mgc_client; 7973 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7974 if (emrp->mrp_mask & MRP_TX_RINGS) { 7975 emrp->mrp_mask &= ~MRP_TX_RINGS; 7976 emrp->mrp_ntxrings = 0; 7977 } 7978 mgcp = mgcp->mgc_next; 7979 } 7980 } 7981 7982 /* 7983 * If the group is not the default group and the default 7984 * group is reserved, the ring count in the default group 7985 * might have changed, update it. 7986 */ 7987 if (grp != defgrp && 7988 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7989 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7990 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7991 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7992 } 7993 } 7994 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7995 } 7996 7997 /* 7998 * Check if the primary is in the default group. If so, see if we 7999 * can give it a an exclusive group now that another client is 8000 * being configured. We take the primary out of the default group 8001 * because the multicast/broadcast packets for the all the clients 8002 * will land in the default ring in the default group which means 8003 * any client in the default group, even if it is the only on in 8004 * the group, will lose exclusive access to the rings, hence 8005 * polling. 8006 */ 8007 mac_client_impl_t * 8008 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8009 { 8010 mac_impl_t *mip = mcip->mci_mip; 8011 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8012 flow_entry_t *flent = mcip->mci_flent; 8013 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8014 uint8_t *mac_addr; 8015 mac_group_t *ngrp; 8016 8017 /* 8018 * Check if the primary is in the default group, if not 8019 * or if it is explicitly configured to be in the default 8020 * group OR set the RX rings property, return. 8021 */ 8022 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8023 return (NULL); 8024 8025 /* 8026 * If the new client needs an exclusive group and we 8027 * don't have another for the primary, return. 8028 */ 8029 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8030 return (NULL); 8031 8032 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8033 /* 8034 * We call this when we are setting up the datapath for 8035 * the first non-primary. 8036 */ 8037 ASSERT(mip->mi_nactiveclients == 2); 8038 /* 8039 * OK, now we have the primary that needs to be relocated. 8040 */ 8041 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8042 if (ngrp == NULL) 8043 return (NULL); 8044 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8045 mac_stop_group(ngrp); 8046 return (NULL); 8047 } 8048 return (mcip); 8049 } 8050 8051 void 8052 mac_transceiver_init(mac_impl_t *mip) 8053 { 8054 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8055 &mip->mi_transceiver)) { 8056 /* 8057 * The driver set a flag that we don't know about. In this case, 8058 * we need to warn about that case and ignore this capability. 8059 */ 8060 if (mip->mi_transceiver.mct_flags != 0) { 8061 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8062 "flags to invalid value: 0x%x, ignoring " 8063 "capability", mip->mi_transceiver.mct_flags); 8064 bzero(&mip->mi_transceiver, 8065 sizeof (mac_capab_transceiver_t)); 8066 } 8067 } else { 8068 bzero(&mip->mi_transceiver, 8069 sizeof (mac_capab_transceiver_t)); 8070 } 8071 } 8072 8073 int 8074 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8075 { 8076 mac_impl_t *mip = (mac_impl_t *)mh; 8077 8078 ASSERT(MAC_PERIM_HELD(mh)); 8079 8080 if (mip->mi_transceiver.mct_ntransceivers == 0) 8081 return (ENOTSUP); 8082 8083 *countp = mip->mi_transceiver.mct_ntransceivers; 8084 return (0); 8085 } 8086 8087 int 8088 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8089 boolean_t *usable) 8090 { 8091 int ret; 8092 mac_transceiver_info_t info; 8093 8094 mac_impl_t *mip = (mac_impl_t *)mh; 8095 8096 ASSERT(MAC_PERIM_HELD(mh)); 8097 8098 if (mip->mi_transceiver.mct_info == NULL || 8099 mip->mi_transceiver.mct_ntransceivers == 0) 8100 return (ENOTSUP); 8101 8102 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8103 return (EINVAL); 8104 8105 bzero(&info, sizeof (mac_transceiver_info_t)); 8106 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8107 &info)) != 0) { 8108 return (ret); 8109 } 8110 8111 *present = info.mti_present; 8112 *usable = info.mti_usable; 8113 return (0); 8114 } 8115 8116 int 8117 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8118 size_t nbytes, off_t offset, size_t *nread) 8119 { 8120 int ret; 8121 size_t nr; 8122 mac_impl_t *mip = (mac_impl_t *)mh; 8123 8124 ASSERT(MAC_PERIM_HELD(mh)); 8125 8126 if (mip->mi_transceiver.mct_read == NULL) 8127 return (ENOTSUP); 8128 8129 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8130 return (EINVAL); 8131 8132 /* 8133 * All supported pages today are 256 bytes wide. Make sure offset + 8134 * nbytes never exceeds that. 8135 */ 8136 if (offset < 0 || offset >= 256 || nbytes > 256 || 8137 offset + nbytes > 256) 8138 return (EINVAL); 8139 8140 if (nread == NULL) 8141 nread = &nr; 8142 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8143 nbytes, offset, nread); 8144 if (ret == 0 && *nread > nbytes) { 8145 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8146 "%lu byte sized buffer, possible memory corruption", 8147 *nread, nbytes); 8148 } 8149 8150 return (ret); 8151 } 8152