xref: /illumos-gate/usr/src/uts/common/io/mac/mac.c (revision 8e458de0baeb1fee50643403223bc7e909a48464)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2020 Joyent, Inc.
25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26  * Copyright 2020 RackTop Systems, Inc.
27  */
28 
29 /*
30  * MAC Services Module
31  *
32  * The GLDv3 framework locking -  The MAC layer
33  * --------------------------------------------
34  *
35  * The MAC layer is central to the GLD framework and can provide the locking
36  * framework needed for itself and for the use of MAC clients. MAC end points
37  * are fairly disjoint and don't share a lot of state. So a coarse grained
38  * multi-threading scheme is to single thread all create/modify/delete or set
39  * type of control operations on a per mac end point while allowing data threads
40  * concurrently.
41  *
42  * Control operations (set) that modify a mac end point are always serialized on
43  * a per mac end point basis, We have at most 1 such thread per mac end point
44  * at a time.
45  *
46  * All other operations that are not serialized are essentially multi-threaded.
47  * For example a control operation (get) like getting statistics which may not
48  * care about reading values atomically or data threads sending or receiving
49  * data. Mostly these type of operations don't modify the control state. Any
50  * state these operations care about are protected using traditional locks.
51  *
52  * The perimeter only serializes serial operations. It does not imply there
53  * aren't any other concurrent operations. However a serialized operation may
54  * sometimes need to make sure it is the only thread. In this case it needs
55  * to use reference counting mechanisms to cv_wait until any current data
56  * threads are done.
57  *
58  * The mac layer itself does not hold any locks across a call to another layer.
59  * The perimeter is however held across a down call to the driver to make the
60  * whole control operation atomic with respect to other control operations.
61  * Also the data path and get type control operations may proceed concurrently.
62  * These operations synchronize with the single serial operation on a given mac
63  * end point using regular locks. The perimeter ensures that conflicting
64  * operations like say a mac_multicast_add and a mac_multicast_remove on the
65  * same mac end point don't interfere with each other and also ensures that the
66  * changes in the mac layer and the call to the underlying driver to say add a
67  * multicast address are done atomically without interference from a thread
68  * trying to delete the same address.
69  *
70  * For example, consider
71  * mac_multicst_add()
72  * {
73  *	mac_perimeter_enter();	serialize all control operations
74  *
75  *	grab list lock		protect against access by data threads
76  *	add to list
77  *	drop list lock
78  *
79  *	call driver's mi_multicst
80  *
81  *	mac_perimeter_exit();
82  * }
83  *
84  * To lessen the number of serialization locks and simplify the lock hierarchy,
85  * we serialize all the control operations on a per mac end point by using a
86  * single serialization lock called the perimeter. We allow recursive entry into
87  * the perimeter to facilitate use of this mechanism by both the mac client and
88  * the MAC layer itself.
89  *
90  * MAC client means an entity that does an operation on a mac handle
91  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
92  * an entity that does an operation on a mac handle obtained from a
93  * mac_register. An entity could be both client and driver but on different
94  * handles eg. aggr. and should only make the corresponding mac interface calls
95  * i.e. mac driver interface or mac client interface as appropriate for that
96  * mac handle.
97  *
98  * General rules.
99  * -------------
100  *
101  * R1. The lock order of upcall threads is natually opposite to downcall
102  * threads. Hence upcalls must not hold any locks across layers for fear of
103  * recursive lock enter and lock order violation. This applies to all layers.
104  *
105  * R2. The perimeter is just another lock. Since it is held in the down
106  * direction, acquiring the perimeter in an upcall is prohibited as it would
107  * cause a deadlock. This applies to all layers.
108  *
109  * Note that upcalls that need to grab the mac perimeter (for example
110  * mac_notify upcalls) can still achieve that by posting the request to a
111  * thread, which can then grab all the required perimeters and locks in the
112  * right global order. Note that in the above example the mac layer iself
113  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
114  * to the client must do that. Please see the aggr code for an example.
115  *
116  * MAC client rules
117  * ----------------
118  *
119  * R3. A MAC client may use the MAC provided perimeter facility to serialize
120  * control operations on a per mac end point. It does this by by acquring
121  * and holding the perimeter across a sequence of calls to the mac layer.
122  * This ensures atomicity across the entire block of mac calls. In this
123  * model the MAC client must not hold any client locks across the calls to
124  * the mac layer. This model is the preferred solution.
125  *
126  * R4. However if a MAC client has a lot of global state across all mac end
127  * points the per mac end point serialization may not be sufficient. In this
128  * case the client may choose to use global locks or use its own serialization.
129  * To avoid deadlocks, these client layer locks held across the mac calls
130  * in the control path must never be acquired by the data path for the reason
131  * mentioned below.
132  *
133  * (Assume that a control operation that holds a client lock blocks in the
134  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
135  * data thread that holds this reference count, tries to acquire the same
136  * client lock subsequently it will deadlock).
137  *
138  * A MAC client may follow either the R3 model or the R4 model, but can't
139  * mix both. In the former, the hierarchy is Perim -> client locks, but in
140  * the latter it is client locks -> Perim.
141  *
142  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
143  * context since they may block while trying to acquire the perimeter.
144  * In addition some calls may block waiting for upcall refcnts to come down to
145  * zero.
146  *
147  * R6. MAC clients must make sure that they are single threaded and all threads
148  * from the top (in particular data threads) have finished before calling
149  * mac_client_close. The MAC framework does not track the number of client
150  * threads using the mac client handle. Also mac clients must make sure
151  * they have undone all the control operations before calling mac_client_close.
152  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
153  * mac_unicast_add/mac_multicast_add.
154  *
155  * MAC framework rules
156  * -------------------
157  *
158  * R7. The mac layer itself must not hold any mac layer locks (except the mac
159  * perimeter) across a call to any other layer from the mac layer. The call to
160  * any other layer could be via mi_* entry points, classifier entry points into
161  * the driver or via upcall pointers into layers above. The mac perimeter may
162  * be acquired or held only in the down direction, for e.g. when calling into
163  * a mi_* driver enty point to provide atomicity of the operation.
164  *
165  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
166  * mac driver interfaces, the MAC layer must provide a cut out for control
167  * interfaces like upcall notifications and start them in a separate thread.
168  *
169  * R9. Note that locking order also implies a plumbing order. For example
170  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
171  * to plumb in any other order must be failed at mac_open time, otherwise it
172  * could lead to deadlocks due to inverse locking order.
173  *
174  * R10. MAC driver interfaces must not block since the driver could call them
175  * in interrupt context.
176  *
177  * R11. Walkers must preferably not hold any locks while calling walker
178  * callbacks. Instead these can operate on reference counts. In simple
179  * callbacks it may be ok to hold a lock and call the callbacks, but this is
180  * harder to maintain in the general case of arbitrary callbacks.
181  *
182  * R12. The MAC layer must protect upcall notification callbacks using reference
183  * counts rather than holding locks across the callbacks.
184  *
185  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
186  * sure that any pointers (such as mac ring pointers) it passes to the driver
187  * remain valid until mac unregister time. Currently the mac layer achieves
188  * this by using generation numbers for rings and freeing the mac rings only
189  * at unregister time.  The MAC layer must provide a layer of indirection and
190  * must not expose underlying driver rings or driver data structures/pointers
191  * directly to MAC clients.
192  *
193  * MAC driver rules
194  * ----------------
195  *
196  * R14. It would be preferable if MAC drivers don't hold any locks across any
197  * mac call. However at a minimum they must not hold any locks across data
198  * upcalls. They must also make sure that all references to mac data structures
199  * are cleaned up and that it is single threaded at mac_unregister time.
200  *
201  * R15. MAC driver interfaces don't block and so the action may be done
202  * asynchronously in a separate thread as for example handling notifications.
203  * The driver must not assume that the action is complete when the call
204  * returns.
205  *
206  * R16. Drivers must maintain a generation number per Rx ring, and pass it
207  * back to mac_rx_ring(); They are expected to increment the generation
208  * number whenever the ring's stop routine is invoked.
209  * See comments in mac_rx_ring();
210  *
211  * R17 Similarly mi_stop is another synchronization point and the driver must
212  * ensure that all upcalls are done and there won't be any future upcall
213  * before returning from mi_stop.
214  *
215  * R18. The driver may assume that all set/modify control operations via
216  * the mi_* entry points are single threaded on a per mac end point.
217  *
218  * Lock and Perimeter hierarchy scenarios
219  * ---------------------------------------
220  *
221  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
222  *
223  * ft_lock -> fe_lock [mac_flow_lookup]
224  *
225  * mi_rw_lock -> fe_lock [mac_bcast_send]
226  *
227  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
228  *
229  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
230  *
231  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
232  *
233  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
234  * client to driver. In the case of clients that explictly use the mac provided
235  * perimeter mechanism for its serialization, the hierarchy is
236  * Perimeter -> mac layer locks, since the client never holds any locks across
237  * the mac calls. In the case of clients that use its own locks the hierarchy
238  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
239  * calls mac_perim_enter/exit in this case.
240  *
241  * Subflow creation rules
242  * ---------------------------
243  * o In case of a user specified cpulist present on underlying link and flows,
244  * the flows cpulist must be a subset of the underlying link.
245  * o In case of a user specified fanout mode present on link and flow, the
246  * subflow fanout count has to be less than or equal to that of the
247  * underlying link. The cpu-bindings for the subflows will be a subset of
248  * the underlying link.
249  * o In case if no cpulist specified on both underlying link and flow, the
250  * underlying link relies on a  MAC tunable to provide out of box fanout.
251  * The subflow will have no cpulist (the subflow will be unbound)
252  * o In case if no cpulist is specified on the underlying link, a subflow can
253  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
254  * for the subflow will not adhere to restriction that they need to be subset
255  * of the underlying link.
256  * o In case where the underlying link is carrying either a user specified
257  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
258  * created unbound.
259  * o While creating unbound subflows, bandwidth mode changes attempt to
260  * figure a right fanout count. In such cases the fanout count will override
261  * the unbound cpu-binding behavior.
262  * o In addition to this, while cycling between flow and link properties, we
263  * impose a restriction that if a link property has a subflow with
264  * user-specified attributes, we will not allow changing the link property.
265  * The administrator needs to reset all the user specified properties for the
266  * subflows before attempting a link property change.
267  * Some of the above rules can be overridden by specifying additional command
268  * line options while creating or modifying link or subflow properties.
269  *
270  * Datapath
271  * --------
272  *
273  * For information on the datapath, the world of soft rings, hardware rings, how
274  * it is structured, and the path of an mblk_t between a driver and a mac
275  * client, see mac_sched.c.
276  */
277 
278 #include <sys/types.h>
279 #include <sys/conf.h>
280 #include <sys/id_space.h>
281 #include <sys/esunddi.h>
282 #include <sys/stat.h>
283 #include <sys/mkdev.h>
284 #include <sys/stream.h>
285 #include <sys/strsun.h>
286 #include <sys/strsubr.h>
287 #include <sys/dlpi.h>
288 #include <sys/list.h>
289 #include <sys/modhash.h>
290 #include <sys/mac_provider.h>
291 #include <sys/mac_client_impl.h>
292 #include <sys/mac_soft_ring.h>
293 #include <sys/mac_stat.h>
294 #include <sys/mac_impl.h>
295 #include <sys/mac.h>
296 #include <sys/dls.h>
297 #include <sys/dld.h>
298 #include <sys/modctl.h>
299 #include <sys/fs/dv_node.h>
300 #include <sys/thread.h>
301 #include <sys/proc.h>
302 #include <sys/callb.h>
303 #include <sys/cpuvar.h>
304 #include <sys/atomic.h>
305 #include <sys/bitmap.h>
306 #include <sys/sdt.h>
307 #include <sys/mac_flow.h>
308 #include <sys/ddi_intr_impl.h>
309 #include <sys/disp.h>
310 #include <sys/sdt.h>
311 #include <sys/vnic.h>
312 #include <sys/vnic_impl.h>
313 #include <sys/vlan.h>
314 #include <inet/ip.h>
315 #include <inet/ip6.h>
316 #include <sys/exacct.h>
317 #include <sys/exacct_impl.h>
318 #include <inet/nd.h>
319 #include <sys/ethernet.h>
320 #include <sys/pool.h>
321 #include <sys/pool_pset.h>
322 #include <sys/cpupart.h>
323 #include <inet/wifi_ioctl.h>
324 #include <net/wpa.h>
325 
326 #define	IMPL_HASHSZ	67	/* prime */
327 
328 kmem_cache_t		*i_mac_impl_cachep;
329 mod_hash_t		*i_mac_impl_hash;
330 krwlock_t		i_mac_impl_lock;
331 uint_t			i_mac_impl_count;
332 static kmem_cache_t	*mac_ring_cache;
333 static id_space_t	*minor_ids;
334 static uint32_t		minor_count;
335 static pool_event_cb_t	mac_pool_event_reg;
336 
337 /*
338  * Logging stuff. Perhaps mac_logging_interval could be broken into
339  * mac_flow_log_interval and mac_link_log_interval if we want to be
340  * able to schedule them differently.
341  */
342 uint_t			mac_logging_interval;
343 boolean_t		mac_flow_log_enable;
344 boolean_t		mac_link_log_enable;
345 timeout_id_t		mac_logging_timer;
346 
347 #define	MACTYPE_KMODDIR	"mac"
348 #define	MACTYPE_HASHSZ	67
349 static mod_hash_t	*i_mactype_hash;
350 /*
351  * i_mactype_lock synchronizes threads that obtain references to mactype_t
352  * structures through i_mactype_getplugin().
353  */
354 static kmutex_t		i_mactype_lock;
355 
356 /*
357  * mac_tx_percpu_cnt
358  *
359  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
360  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
361  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
362  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
363  */
364 int mac_tx_percpu_cnt;
365 int mac_tx_percpu_cnt_max = 128;
366 
367 /*
368  * Call back functions for the bridge module.  These are guaranteed to be valid
369  * when holding a reference on a link or when holding mip->mi_bridge_lock and
370  * mi_bridge_link is non-NULL.
371  */
372 mac_bridge_tx_t mac_bridge_tx_cb;
373 mac_bridge_rx_t mac_bridge_rx_cb;
374 mac_bridge_ref_t mac_bridge_ref_cb;
375 mac_bridge_ls_t mac_bridge_ls_cb;
376 
377 static int i_mac_constructor(void *, void *, int);
378 static void i_mac_destructor(void *, void *);
379 static int i_mac_ring_ctor(void *, void *, int);
380 static void i_mac_ring_dtor(void *, void *);
381 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
382 void mac_tx_client_flush(mac_client_impl_t *);
383 void mac_tx_client_block(mac_client_impl_t *);
384 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
385 static int mac_start_group_and_rings(mac_group_t *);
386 static void mac_stop_group_and_rings(mac_group_t *);
387 static void mac_pool_event_cb(pool_event_t, int, void *);
388 
389 typedef struct netinfo_s {
390 	list_node_t	ni_link;
391 	void		*ni_record;
392 	int		ni_size;
393 	int		ni_type;
394 } netinfo_t;
395 
396 /*
397  * Module initialization functions.
398  */
399 
400 void
401 mac_init(void)
402 {
403 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
404 	    boot_max_ncpus);
405 
406 	/* Upper bound is mac_tx_percpu_cnt_max */
407 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
408 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
409 
410 	if (mac_tx_percpu_cnt < 1) {
411 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
412 		mac_tx_percpu_cnt = 1;
413 	}
414 
415 	ASSERT(mac_tx_percpu_cnt >= 1);
416 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
417 	/*
418 	 * Make it of the form 2**N - 1 in the range
419 	 * [0 .. mac_tx_percpu_cnt_max - 1]
420 	 */
421 	mac_tx_percpu_cnt--;
422 
423 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
424 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
425 	    NULL, NULL, NULL, 0);
426 	ASSERT(i_mac_impl_cachep != NULL);
427 
428 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
429 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
430 	    NULL, NULL, 0);
431 	ASSERT(mac_ring_cache != NULL);
432 
433 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
434 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
435 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
436 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
437 
438 	mac_flow_init();
439 	mac_soft_ring_init();
440 	mac_bcast_init();
441 	mac_client_init();
442 
443 	i_mac_impl_count = 0;
444 
445 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
446 	    MACTYPE_HASHSZ,
447 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
448 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
449 
450 	/*
451 	 * Allocate an id space to manage minor numbers. The range of the
452 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
453 	 * leaves half of the 32-bit minors available for driver private use.
454 	 */
455 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
456 	    MAC_PRIVATE_MINOR-1);
457 	ASSERT(minor_ids != NULL);
458 	minor_count = 0;
459 
460 	/* Let's default to 20 seconds */
461 	mac_logging_interval = 20;
462 	mac_flow_log_enable = B_FALSE;
463 	mac_link_log_enable = B_FALSE;
464 	mac_logging_timer = NULL;
465 
466 	/* Register to be notified of noteworthy pools events */
467 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
468 	mac_pool_event_reg.pec_arg = NULL;
469 	pool_event_cb_register(&mac_pool_event_reg);
470 }
471 
472 int
473 mac_fini(void)
474 {
475 
476 	if (i_mac_impl_count > 0 || minor_count > 0)
477 		return (EBUSY);
478 
479 	pool_event_cb_unregister(&mac_pool_event_reg);
480 
481 	id_space_destroy(minor_ids);
482 	mac_flow_fini();
483 
484 	mod_hash_destroy_hash(i_mac_impl_hash);
485 	rw_destroy(&i_mac_impl_lock);
486 
487 	mac_client_fini();
488 	kmem_cache_destroy(mac_ring_cache);
489 
490 	mod_hash_destroy_hash(i_mactype_hash);
491 	mac_soft_ring_finish();
492 
493 
494 	return (0);
495 }
496 
497 /*
498  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
499  * (e.g. softmac) may pass in a NULL ops argument.
500  */
501 void
502 mac_init_ops(struct dev_ops *ops, const char *name)
503 {
504 	major_t major = ddi_name_to_major((char *)name);
505 
506 	/*
507 	 * By returning on error below, we are not letting the driver continue
508 	 * in an undefined context.  The mac_register() function will faill if
509 	 * DN_GLDV3_DRIVER isn't set.
510 	 */
511 	if (major == DDI_MAJOR_T_NONE)
512 		return;
513 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
514 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
515 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
516 	if (ops != NULL)
517 		dld_init_ops(ops, name);
518 }
519 
520 void
521 mac_fini_ops(struct dev_ops *ops)
522 {
523 	dld_fini_ops(ops);
524 }
525 
526 /*ARGSUSED*/
527 static int
528 i_mac_constructor(void *buf, void *arg, int kmflag)
529 {
530 	mac_impl_t	*mip = buf;
531 
532 	bzero(buf, sizeof (mac_impl_t));
533 
534 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
535 
536 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
537 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
538 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
539 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
540 
541 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
542 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
543 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
544 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
545 
546 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
547 
548 	return (0);
549 }
550 
551 /*ARGSUSED*/
552 static void
553 i_mac_destructor(void *buf, void *arg)
554 {
555 	mac_impl_t	*mip = buf;
556 	mac_cb_info_t	*mcbi;
557 
558 	ASSERT(mip->mi_ref == 0);
559 	ASSERT(mip->mi_active == 0);
560 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
561 	ASSERT(mip->mi_devpromisc == 0);
562 	ASSERT(mip->mi_ksp == NULL);
563 	ASSERT(mip->mi_kstat_count == 0);
564 	ASSERT(mip->mi_nclients == 0);
565 	ASSERT(mip->mi_nactiveclients == 0);
566 	ASSERT(mip->mi_single_active_client == NULL);
567 	ASSERT(mip->mi_state_flags == 0);
568 	ASSERT(mip->mi_factory_addr == NULL);
569 	ASSERT(mip->mi_factory_addr_num == 0);
570 	ASSERT(mip->mi_default_tx_ring == NULL);
571 
572 	mcbi = &mip->mi_notify_cb_info;
573 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
574 	ASSERT(mip->mi_notify_bits == 0);
575 	ASSERT(mip->mi_notify_thread == NULL);
576 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
577 	mcbi->mcbi_lockp = NULL;
578 
579 	mcbi = &mip->mi_promisc_cb_info;
580 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
581 	ASSERT(mip->mi_promisc_list == NULL);
582 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
583 	mcbi->mcbi_lockp = NULL;
584 
585 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
586 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
587 
588 	rw_destroy(&mip->mi_rw_lock);
589 
590 	mutex_destroy(&mip->mi_promisc_lock);
591 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
592 	mutex_destroy(&mip->mi_notify_lock);
593 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
594 	mutex_destroy(&mip->mi_ring_lock);
595 
596 	ASSERT(mip->mi_bridge_link == NULL);
597 }
598 
599 /* ARGSUSED */
600 static int
601 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
602 {
603 	mac_ring_t *ring = (mac_ring_t *)buf;
604 
605 	bzero(ring, sizeof (mac_ring_t));
606 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
607 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
608 	ring->mr_state = MR_FREE;
609 	return (0);
610 }
611 
612 /* ARGSUSED */
613 static void
614 i_mac_ring_dtor(void *buf, void *arg)
615 {
616 	mac_ring_t *ring = (mac_ring_t *)buf;
617 
618 	cv_destroy(&ring->mr_cv);
619 	mutex_destroy(&ring->mr_lock);
620 }
621 
622 /*
623  * Common functions to do mac callback addition and deletion. Currently this is
624  * used by promisc callbacks and notify callbacks. List addition and deletion
625  * need to take care of list walkers. List walkers in general, can't hold list
626  * locks and make upcall callbacks due to potential lock order and recursive
627  * reentry issues. Instead list walkers increment the list walker count to mark
628  * the presence of a walker thread. Addition can be carefully done to ensure
629  * that the list walker always sees either the old list or the new list.
630  * However the deletion can't be done while the walker is active, instead the
631  * deleting thread simply marks the entry as logically deleted. The last walker
632  * physically deletes and frees up the logically deleted entries when the walk
633  * is complete.
634  */
635 void
636 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
637     mac_cb_t *mcb_elem)
638 {
639 	mac_cb_t	*p;
640 	mac_cb_t	**pp;
641 
642 	/* Verify it is not already in the list */
643 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
644 		if (p == mcb_elem)
645 			break;
646 	}
647 	VERIFY(p == NULL);
648 
649 	/*
650 	 * Add it to the head of the callback list. The membar ensures that
651 	 * the following list pointer manipulations reach global visibility
652 	 * in exactly the program order below.
653 	 */
654 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
655 
656 	mcb_elem->mcb_nextp = *mcb_head;
657 	membar_producer();
658 	*mcb_head = mcb_elem;
659 }
660 
661 /*
662  * Mark the entry as logically deleted. If there aren't any walkers unlink
663  * from the list. In either case return the corresponding status.
664  */
665 boolean_t
666 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
667     mac_cb_t *mcb_elem)
668 {
669 	mac_cb_t	*p;
670 	mac_cb_t	**pp;
671 
672 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
673 	/*
674 	 * Search the callback list for the entry to be removed
675 	 */
676 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
677 		if (p == mcb_elem)
678 			break;
679 	}
680 	VERIFY(p != NULL);
681 
682 	/*
683 	 * If there are walkers just mark it as deleted and the last walker
684 	 * will remove from the list and free it.
685 	 */
686 	if (mcbi->mcbi_walker_cnt != 0) {
687 		p->mcb_flags |= MCB_CONDEMNED;
688 		mcbi->mcbi_del_cnt++;
689 		return (B_FALSE);
690 	}
691 
692 	ASSERT(mcbi->mcbi_del_cnt == 0);
693 	*pp = p->mcb_nextp;
694 	p->mcb_nextp = NULL;
695 	return (B_TRUE);
696 }
697 
698 /*
699  * Wait for all pending callback removals to be completed
700  */
701 void
702 mac_callback_remove_wait(mac_cb_info_t *mcbi)
703 {
704 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
705 	while (mcbi->mcbi_del_cnt != 0) {
706 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
707 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
708 	}
709 }
710 
711 void
712 mac_callback_barrier(mac_cb_info_t *mcbi)
713 {
714 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
715 	ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX);
716 
717 	if (mcbi->mcbi_walker_cnt == 0) {
718 		return;
719 	}
720 
721 	mcbi->mcbi_barrier_cnt++;
722 	do {
723 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
724 	} while (mcbi->mcbi_walker_cnt > 0);
725 	mcbi->mcbi_barrier_cnt--;
726 	cv_broadcast(&mcbi->mcbi_cv);
727 }
728 
729 void
730 mac_callback_walker_enter(mac_cb_info_t *mcbi)
731 {
732 	mutex_enter(mcbi->mcbi_lockp);
733 	/*
734 	 * Incoming walkers should give precedence to timely clean-up of
735 	 * deleted callback entries and requested barriers.
736 	 */
737 	while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) {
738 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
739 	}
740 	mcbi->mcbi_walker_cnt++;
741 	mutex_exit(mcbi->mcbi_lockp);
742 }
743 
744 /*
745  * The last mac callback walker does the cleanup. Walk the list and unlik
746  * all the logically deleted entries and construct a temporary list of
747  * removed entries. Return the list of removed entries to the caller.
748  */
749 static mac_cb_t *
750 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
751 {
752 	mac_cb_t	*p;
753 	mac_cb_t	**pp;
754 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
755 	int	cnt = 0;
756 
757 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
758 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
759 
760 	pp = mcb_head;
761 	while (*pp != NULL) {
762 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
763 			p = *pp;
764 			*pp = p->mcb_nextp;
765 			p->mcb_nextp = rmlist;
766 			rmlist = p;
767 			cnt++;
768 			continue;
769 		}
770 		pp = &(*pp)->mcb_nextp;
771 	}
772 
773 	ASSERT(mcbi->mcbi_del_cnt == cnt);
774 	mcbi->mcbi_del_cnt = 0;
775 	return (rmlist);
776 }
777 
778 void
779 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp,
780     boolean_t is_promisc)
781 {
782 	boolean_t do_wake = B_FALSE;
783 
784 	mutex_enter(mcbi->mcbi_lockp);
785 
786 	/* If walkers remain, nothing more can be done for now */
787 	if (--mcbi->mcbi_walker_cnt != 0) {
788 		mutex_exit(mcbi->mcbi_lockp);
789 		return;
790 	}
791 
792 	if (mcbi->mcbi_del_cnt != 0) {
793 		mac_cb_t *rmlist;
794 
795 		rmlist = mac_callback_walker_cleanup(mcbi, headp);
796 
797 		if (!is_promisc) {
798 			/* The "normal" non-promisc callback clean-up */
799 			mac_callback_free(rmlist);
800 		} else {
801 			mac_cb_t *mcb, *mcb_next;
802 
803 			/*
804 			 * The promisc callbacks are in 2 lists, one off the
805 			 * 'mip' and another off the 'mcip' threaded by
806 			 * mpi_mi_link and mpi_mci_link respectively.  There
807 			 * is, however, only a single shared total walker
808 			 * count, and an entry cannot be physically unlinked if
809 			 * a walker is active on either list. The last walker
810 			 * does this cleanup of logically deleted entries.
811 			 *
812 			 * With a list of callbacks deleted from above from
813 			 * mi_promisc_list (headp), remove the corresponding
814 			 * entry from mci_promisc_list (headp_pair) and free
815 			 * the structure.
816 			 */
817 			for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
818 				mac_promisc_impl_t *mpip;
819 				mac_client_impl_t *mcip;
820 
821 				mcb_next = mcb->mcb_nextp;
822 				mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
823 				mcip = mpip->mpi_mcip;
824 
825 				ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info,
826 				    ==, mcbi);
827 				ASSERT3P(&mcip->mci_mip->mi_promisc_list,
828 				    ==, headp);
829 
830 				VERIFY(mac_callback_remove(mcbi,
831 				    &mcip->mci_promisc_list,
832 				    &mpip->mpi_mci_link));
833 				mcb->mcb_flags = 0;
834 				mcb->mcb_nextp = NULL;
835 				kmem_cache_free(mac_promisc_impl_cache, mpip);
836 			}
837 		}
838 
839 		/*
840 		 * Wake any walker threads that could be waiting in
841 		 * mac_callback_walker_enter() until deleted items have been
842 		 * cleaned from the list.
843 		 */
844 		do_wake = B_TRUE;
845 	}
846 
847 	if (mcbi->mcbi_barrier_cnt != 0) {
848 		/*
849 		 * One or more threads are waiting for all walkers to exit the
850 		 * callback list.  Notify them, now that the list is clear.
851 		 */
852 		do_wake = B_TRUE;
853 	}
854 
855 	if (do_wake) {
856 		cv_broadcast(&mcbi->mcbi_cv);
857 	}
858 	mutex_exit(mcbi->mcbi_lockp);
859 }
860 
861 static boolean_t
862 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
863 {
864 	mac_cb_t	*mcb;
865 
866 	/* Verify it is not already in the list */
867 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
868 		if (mcb == mcb_elem)
869 			return (B_TRUE);
870 	}
871 
872 	return (B_FALSE);
873 }
874 
875 static boolean_t
876 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
877 {
878 	boolean_t	found;
879 
880 	mutex_enter(mcbi->mcbi_lockp);
881 	found = mac_callback_lookup(mcb_headp, mcb_elem);
882 	mutex_exit(mcbi->mcbi_lockp);
883 
884 	return (found);
885 }
886 
887 /* Free the list of removed callbacks */
888 void
889 mac_callback_free(mac_cb_t *rmlist)
890 {
891 	mac_cb_t	*mcb;
892 	mac_cb_t	*mcb_next;
893 
894 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
895 		mcb_next = mcb->mcb_nextp;
896 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
897 	}
898 }
899 
900 void
901 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
902 {
903 	mac_cb_info_t	*mcbi;
904 
905 	/*
906 	 * Signal the notify thread even after mi_ref has become zero and
907 	 * mi_disabled is set. The synchronization with the notify thread
908 	 * happens in mac_unregister and that implies the driver must make
909 	 * sure it is single-threaded (with respect to mac calls) and that
910 	 * all pending mac calls have returned before it calls mac_unregister
911 	 */
912 	rw_enter(&i_mac_impl_lock, RW_READER);
913 	if (mip->mi_state_flags & MIS_DISABLED)
914 		goto exit;
915 
916 	/*
917 	 * Guard against incorrect notifications.  (Running a newer
918 	 * mac client against an older implementation?)
919 	 */
920 	if (type >= MAC_NNOTE)
921 		goto exit;
922 
923 	mcbi = &mip->mi_notify_cb_info;
924 	mutex_enter(mcbi->mcbi_lockp);
925 	mip->mi_notify_bits |= (1 << type);
926 	cv_broadcast(&mcbi->mcbi_cv);
927 	mutex_exit(mcbi->mcbi_lockp);
928 
929 exit:
930 	rw_exit(&i_mac_impl_lock);
931 }
932 
933 /*
934  * Mac serialization primitives. Please see the block comment at the
935  * top of the file.
936  */
937 void
938 i_mac_perim_enter(mac_impl_t *mip)
939 {
940 	mac_client_impl_t	*mcip;
941 
942 	if (mip->mi_state_flags & MIS_IS_VNIC) {
943 		/*
944 		 * This is a VNIC. Return the lower mac since that is what
945 		 * we want to serialize on.
946 		 */
947 		mcip = mac_vnic_lower(mip);
948 		mip = mcip->mci_mip;
949 	}
950 
951 	mutex_enter(&mip->mi_perim_lock);
952 	if (mip->mi_perim_owner == curthread) {
953 		mip->mi_perim_ocnt++;
954 		mutex_exit(&mip->mi_perim_lock);
955 		return;
956 	}
957 
958 	while (mip->mi_perim_owner != NULL)
959 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
960 
961 	mip->mi_perim_owner = curthread;
962 	ASSERT(mip->mi_perim_ocnt == 0);
963 	mip->mi_perim_ocnt++;
964 #ifdef DEBUG
965 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
966 	    MAC_PERIM_STACK_DEPTH);
967 #endif
968 	mutex_exit(&mip->mi_perim_lock);
969 }
970 
971 int
972 i_mac_perim_enter_nowait(mac_impl_t *mip)
973 {
974 	/*
975 	 * The vnic is a special case, since the serialization is done based
976 	 * on the lower mac. If the lower mac is busy, it does not imply the
977 	 * vnic can't be unregistered. But in the case of other drivers,
978 	 * a busy perimeter or open mac handles implies that the mac is busy
979 	 * and can't be unregistered.
980 	 */
981 	if (mip->mi_state_flags & MIS_IS_VNIC) {
982 		i_mac_perim_enter(mip);
983 		return (0);
984 	}
985 
986 	mutex_enter(&mip->mi_perim_lock);
987 	if (mip->mi_perim_owner != NULL) {
988 		mutex_exit(&mip->mi_perim_lock);
989 		return (EBUSY);
990 	}
991 	ASSERT(mip->mi_perim_ocnt == 0);
992 	mip->mi_perim_owner = curthread;
993 	mip->mi_perim_ocnt++;
994 	mutex_exit(&mip->mi_perim_lock);
995 
996 	return (0);
997 }
998 
999 void
1000 i_mac_perim_exit(mac_impl_t *mip)
1001 {
1002 	mac_client_impl_t *mcip;
1003 
1004 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1005 		/*
1006 		 * This is a VNIC. Return the lower mac since that is what
1007 		 * we want to serialize on.
1008 		 */
1009 		mcip = mac_vnic_lower(mip);
1010 		mip = mcip->mci_mip;
1011 	}
1012 
1013 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
1014 
1015 	mutex_enter(&mip->mi_perim_lock);
1016 	if (--mip->mi_perim_ocnt == 0) {
1017 		mip->mi_perim_owner = NULL;
1018 		cv_signal(&mip->mi_perim_cv);
1019 	}
1020 	mutex_exit(&mip->mi_perim_lock);
1021 }
1022 
1023 /*
1024  * Returns whether the current thread holds the mac perimeter. Used in making
1025  * assertions.
1026  */
1027 boolean_t
1028 mac_perim_held(mac_handle_t mh)
1029 {
1030 	mac_impl_t	*mip = (mac_impl_t *)mh;
1031 	mac_client_impl_t *mcip;
1032 
1033 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1034 		/*
1035 		 * This is a VNIC. Return the lower mac since that is what
1036 		 * we want to serialize on.
1037 		 */
1038 		mcip = mac_vnic_lower(mip);
1039 		mip = mcip->mci_mip;
1040 	}
1041 	return (mip->mi_perim_owner == curthread);
1042 }
1043 
1044 /*
1045  * mac client interfaces to enter the mac perimeter of a mac end point, given
1046  * its mac handle, or macname or linkid.
1047  */
1048 void
1049 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
1050 {
1051 	mac_impl_t	*mip = (mac_impl_t *)mh;
1052 
1053 	i_mac_perim_enter(mip);
1054 	/*
1055 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
1056 	 * mac_open has been done internally while entering the perimeter.
1057 	 * This information is used in mac_perim_exit
1058 	 */
1059 	MAC_ENCODE_MPH(*mphp, mip, 0);
1060 }
1061 
1062 int
1063 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
1064 {
1065 	int	err;
1066 	mac_handle_t	mh;
1067 
1068 	if ((err = mac_open(name, &mh)) != 0)
1069 		return (err);
1070 
1071 	mac_perim_enter_by_mh(mh, mphp);
1072 	MAC_ENCODE_MPH(*mphp, mh, 1);
1073 	return (0);
1074 }
1075 
1076 int
1077 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
1078 {
1079 	int	err;
1080 	mac_handle_t	mh;
1081 
1082 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1083 		return (err);
1084 
1085 	mac_perim_enter_by_mh(mh, mphp);
1086 	MAC_ENCODE_MPH(*mphp, mh, 1);
1087 	return (0);
1088 }
1089 
1090 void
1091 mac_perim_exit(mac_perim_handle_t mph)
1092 {
1093 	mac_impl_t	*mip;
1094 	boolean_t	need_close;
1095 
1096 	MAC_DECODE_MPH(mph, mip, need_close);
1097 	i_mac_perim_exit(mip);
1098 	if (need_close)
1099 		mac_close((mac_handle_t)mip);
1100 }
1101 
1102 int
1103 mac_hold(const char *macname, mac_impl_t **pmip)
1104 {
1105 	mac_impl_t	*mip;
1106 	int		err;
1107 
1108 	/*
1109 	 * Check the device name length to make sure it won't overflow our
1110 	 * buffer.
1111 	 */
1112 	if (strlen(macname) >= MAXNAMELEN)
1113 		return (EINVAL);
1114 
1115 	/*
1116 	 * Look up its entry in the global hash table.
1117 	 */
1118 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1119 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1120 	    (mod_hash_val_t *)&mip);
1121 
1122 	if (err != 0) {
1123 		rw_exit(&i_mac_impl_lock);
1124 		return (ENOENT);
1125 	}
1126 
1127 	if (mip->mi_state_flags & MIS_DISABLED) {
1128 		rw_exit(&i_mac_impl_lock);
1129 		return (ENOENT);
1130 	}
1131 
1132 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1133 		rw_exit(&i_mac_impl_lock);
1134 		return (EBUSY);
1135 	}
1136 
1137 	mip->mi_ref++;
1138 	rw_exit(&i_mac_impl_lock);
1139 
1140 	*pmip = mip;
1141 	return (0);
1142 }
1143 
1144 void
1145 mac_rele(mac_impl_t *mip)
1146 {
1147 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1148 	ASSERT(mip->mi_ref != 0);
1149 	if (--mip->mi_ref == 0) {
1150 		ASSERT(mip->mi_nactiveclients == 0 &&
1151 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1152 	}
1153 	rw_exit(&i_mac_impl_lock);
1154 }
1155 
1156 /*
1157  * Private GLDv3 function to start a MAC instance.
1158  */
1159 int
1160 mac_start(mac_handle_t mh)
1161 {
1162 	mac_impl_t	*mip = (mac_impl_t *)mh;
1163 	int		err = 0;
1164 	mac_group_t	*defgrp;
1165 
1166 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1167 	ASSERT(mip->mi_start != NULL);
1168 
1169 	/*
1170 	 * Check whether the device is already started.
1171 	 */
1172 	if (mip->mi_active++ == 0) {
1173 		mac_ring_t *ring = NULL;
1174 
1175 		/*
1176 		 * Start the device.
1177 		 */
1178 		err = mip->mi_start(mip->mi_driver);
1179 		if (err != 0) {
1180 			mip->mi_active--;
1181 			return (err);
1182 		}
1183 
1184 		/*
1185 		 * Start the default tx ring.
1186 		 */
1187 		if (mip->mi_default_tx_ring != NULL) {
1188 
1189 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1190 			if (ring->mr_state != MR_INUSE) {
1191 				err = mac_start_ring(ring);
1192 				if (err != 0) {
1193 					mip->mi_active--;
1194 					return (err);
1195 				}
1196 			}
1197 		}
1198 
1199 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1200 			/*
1201 			 * Start the default group which is responsible
1202 			 * for receiving broadcast and multicast
1203 			 * traffic for both primary and non-primary
1204 			 * MAC clients.
1205 			 */
1206 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1207 			err = mac_start_group_and_rings(defgrp);
1208 			if (err != 0) {
1209 				mip->mi_active--;
1210 				if ((ring != NULL) &&
1211 				    (ring->mr_state == MR_INUSE))
1212 					mac_stop_ring(ring);
1213 				return (err);
1214 			}
1215 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1216 		}
1217 	}
1218 
1219 	return (err);
1220 }
1221 
1222 /*
1223  * Private GLDv3 function to stop a MAC instance.
1224  */
1225 void
1226 mac_stop(mac_handle_t mh)
1227 {
1228 	mac_impl_t	*mip = (mac_impl_t *)mh;
1229 	mac_group_t	*grp;
1230 
1231 	ASSERT(mip->mi_stop != NULL);
1232 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1233 
1234 	/*
1235 	 * Check whether the device is still needed.
1236 	 */
1237 	ASSERT(mip->mi_active != 0);
1238 	if (--mip->mi_active == 0) {
1239 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1240 			/*
1241 			 * There should be no more active clients since the
1242 			 * MAC is being stopped. Stop the default RX group
1243 			 * and transition it back to registered state.
1244 			 *
1245 			 * When clients are torn down, the groups
1246 			 * are release via mac_release_rx_group which
1247 			 * knows the the default group is always in
1248 			 * started mode since broadcast uses it. So
1249 			 * we can assert that their are no clients
1250 			 * (since mac_bcast_add doesn't register itself
1251 			 * as a client) and group is in SHARED state.
1252 			 */
1253 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1254 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1255 			    mip->mi_nactiveclients == 0);
1256 			mac_stop_group_and_rings(grp);
1257 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1258 		}
1259 
1260 		if (mip->mi_default_tx_ring != NULL) {
1261 			mac_ring_t *ring;
1262 
1263 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1264 			if (ring->mr_state == MR_INUSE) {
1265 				mac_stop_ring(ring);
1266 				ring->mr_flag = 0;
1267 			}
1268 		}
1269 
1270 		/*
1271 		 * Stop the device.
1272 		 */
1273 		mip->mi_stop(mip->mi_driver);
1274 	}
1275 }
1276 
1277 int
1278 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1279 {
1280 	int		err = 0;
1281 
1282 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1283 	ASSERT(mip->mi_setpromisc != NULL);
1284 
1285 	if (on) {
1286 		/*
1287 		 * Enable promiscuous mode on the device if not yet enabled.
1288 		 */
1289 		if (mip->mi_devpromisc++ == 0) {
1290 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1291 			if (err != 0) {
1292 				mip->mi_devpromisc--;
1293 				return (err);
1294 			}
1295 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1296 		}
1297 	} else {
1298 		if (mip->mi_devpromisc == 0)
1299 			return (EPROTO);
1300 
1301 		/*
1302 		 * Disable promiscuous mode on the device if this is the last
1303 		 * enabling.
1304 		 */
1305 		if (--mip->mi_devpromisc == 0) {
1306 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1307 			if (err != 0) {
1308 				mip->mi_devpromisc++;
1309 				return (err);
1310 			}
1311 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1312 		}
1313 	}
1314 
1315 	return (0);
1316 }
1317 
1318 /*
1319  * The promiscuity state can change any time. If the caller needs to take
1320  * actions that are atomic with the promiscuity state, then the caller needs
1321  * to bracket the entire sequence with mac_perim_enter/exit
1322  */
1323 boolean_t
1324 mac_promisc_get(mac_handle_t mh)
1325 {
1326 	mac_impl_t		*mip = (mac_impl_t *)mh;
1327 
1328 	/*
1329 	 * Return the current promiscuity.
1330 	 */
1331 	return (mip->mi_devpromisc != 0);
1332 }
1333 
1334 /*
1335  * Invoked at MAC instance attach time to initialize the list
1336  * of factory MAC addresses supported by a MAC instance. This function
1337  * builds a local cache in the mac_impl_t for the MAC addresses
1338  * supported by the underlying hardware. The MAC clients themselves
1339  * use the mac_addr_factory*() functions to query and reserve
1340  * factory MAC addresses.
1341  */
1342 void
1343 mac_addr_factory_init(mac_impl_t *mip)
1344 {
1345 	mac_capab_multifactaddr_t capab;
1346 	uint8_t *addr;
1347 	int i;
1348 
1349 	/*
1350 	 * First round to see how many factory MAC addresses are available.
1351 	 */
1352 	bzero(&capab, sizeof (capab));
1353 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1354 	    &capab) || (capab.mcm_naddr == 0)) {
1355 		/*
1356 		 * The MAC instance doesn't support multiple factory
1357 		 * MAC addresses, we're done here.
1358 		 */
1359 		return;
1360 	}
1361 
1362 	/*
1363 	 * Allocate the space and get all the factory addresses.
1364 	 */
1365 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1366 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1367 
1368 	mip->mi_factory_addr_num = capab.mcm_naddr;
1369 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1370 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1371 
1372 	for (i = 0; i < capab.mcm_naddr; i++) {
1373 		bcopy(addr + i * MAXMACADDRLEN,
1374 		    mip->mi_factory_addr[i].mfa_addr,
1375 		    mip->mi_type->mt_addr_length);
1376 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1377 	}
1378 
1379 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1380 }
1381 
1382 void
1383 mac_addr_factory_fini(mac_impl_t *mip)
1384 {
1385 	if (mip->mi_factory_addr == NULL) {
1386 		ASSERT(mip->mi_factory_addr_num == 0);
1387 		return;
1388 	}
1389 
1390 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1391 	    sizeof (mac_factory_addr_t));
1392 
1393 	mip->mi_factory_addr = NULL;
1394 	mip->mi_factory_addr_num = 0;
1395 }
1396 
1397 /*
1398  * Reserve a factory MAC address. If *slot is set to -1, the function
1399  * attempts to reserve any of the available factory MAC addresses and
1400  * returns the reserved slot id. If no slots are available, the function
1401  * returns ENOSPC. If *slot is not set to -1, the function reserves
1402  * the specified slot if it is available, or returns EBUSY is the slot
1403  * is already used. Returns ENOTSUP if the underlying MAC does not
1404  * support multiple factory addresses. If the slot number is not -1 but
1405  * is invalid, returns EINVAL.
1406  */
1407 int
1408 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1409 {
1410 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1411 	mac_impl_t *mip = mcip->mci_mip;
1412 	int i, ret = 0;
1413 
1414 	i_mac_perim_enter(mip);
1415 	/*
1416 	 * Protect against concurrent readers that may need a self-consistent
1417 	 * view of the factory addresses
1418 	 */
1419 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1420 
1421 	if (mip->mi_factory_addr_num == 0) {
1422 		ret = ENOTSUP;
1423 		goto bail;
1424 	}
1425 
1426 	if (*slot != -1) {
1427 		/* check the specified slot */
1428 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1429 			ret = EINVAL;
1430 			goto bail;
1431 		}
1432 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1433 			ret = EBUSY;
1434 			goto bail;
1435 		}
1436 	} else {
1437 		/* pick the next available slot */
1438 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1439 			if (!mip->mi_factory_addr[i].mfa_in_use)
1440 				break;
1441 		}
1442 
1443 		if (i == mip->mi_factory_addr_num) {
1444 			ret = ENOSPC;
1445 			goto bail;
1446 		}
1447 		*slot = i+1;
1448 	}
1449 
1450 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1451 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1452 
1453 bail:
1454 	rw_exit(&mip->mi_rw_lock);
1455 	i_mac_perim_exit(mip);
1456 	return (ret);
1457 }
1458 
1459 /*
1460  * Release the specified factory MAC address slot.
1461  */
1462 void
1463 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1464 {
1465 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1466 	mac_impl_t *mip = mcip->mci_mip;
1467 
1468 	i_mac_perim_enter(mip);
1469 	/*
1470 	 * Protect against concurrent readers that may need a self-consistent
1471 	 * view of the factory addresses
1472 	 */
1473 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1474 
1475 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1476 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1477 
1478 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1479 
1480 	rw_exit(&mip->mi_rw_lock);
1481 	i_mac_perim_exit(mip);
1482 }
1483 
1484 /*
1485  * Stores in mac_addr the value of the specified MAC address. Returns
1486  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1487  * The caller must provide a string of at least MAXNAMELEN bytes.
1488  */
1489 void
1490 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1491     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1492 {
1493 	mac_impl_t *mip = (mac_impl_t *)mh;
1494 	boolean_t in_use;
1495 
1496 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1497 
1498 	/*
1499 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1500 	 * and mi_rw_lock
1501 	 */
1502 	rw_enter(&mip->mi_rw_lock, RW_READER);
1503 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1504 	*addr_len = mip->mi_type->mt_addr_length;
1505 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1506 	if (in_use && client_name != NULL) {
1507 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1508 		    client_name, MAXNAMELEN);
1509 	}
1510 	if (in_use_arg != NULL)
1511 		*in_use_arg = in_use;
1512 	rw_exit(&mip->mi_rw_lock);
1513 }
1514 
1515 /*
1516  * Returns the number of factory MAC addresses (in addition to the
1517  * primary MAC address), 0 if the underlying MAC doesn't support
1518  * that feature.
1519  */
1520 uint_t
1521 mac_addr_factory_num(mac_handle_t mh)
1522 {
1523 	mac_impl_t *mip = (mac_impl_t *)mh;
1524 
1525 	return (mip->mi_factory_addr_num);
1526 }
1527 
1528 
1529 void
1530 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1531 {
1532 	mac_ring_t	*ring;
1533 
1534 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1535 		ring->mr_flag &= ~flag;
1536 }
1537 
1538 /*
1539  * The following mac_hwrings_xxx() functions are private mac client functions
1540  * used by the aggr driver to access and control the underlying HW Rx group
1541  * and rings. In this case, the aggr driver has exclusive control of the
1542  * underlying HW Rx group/rings, it calls the following functions to
1543  * start/stop the HW Rx rings, disable/enable polling, add/remove MAC
1544  * addresses, or set up the Rx callback.
1545  */
1546 /* ARGSUSED */
1547 static void
1548 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1549     mblk_t *mp_chain, boolean_t loopback)
1550 {
1551 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1552 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1553 	mac_direct_rx_t		proc;
1554 	void			*arg1;
1555 	mac_resource_handle_t	arg2;
1556 
1557 	proc = srs_rx->sr_func;
1558 	arg1 = srs_rx->sr_arg1;
1559 	arg2 = mac_srs->srs_mrh;
1560 
1561 	proc(arg1, arg2, mp_chain, NULL);
1562 }
1563 
1564 /*
1565  * This function is called to get the list of HW rings that are reserved by
1566  * an exclusive mac client.
1567  *
1568  * Return value: the number of HW rings.
1569  */
1570 int
1571 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1572     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1573 {
1574 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1575 	flow_entry_t		*flent = mcip->mci_flent;
1576 	mac_group_t		*grp;
1577 	mac_ring_t		*ring;
1578 	int			cnt = 0;
1579 
1580 	if (rtype == MAC_RING_TYPE_RX) {
1581 		grp = flent->fe_rx_ring_group;
1582 	} else if (rtype == MAC_RING_TYPE_TX) {
1583 		grp = flent->fe_tx_ring_group;
1584 	} else {
1585 		ASSERT(B_FALSE);
1586 		return (-1);
1587 	}
1588 
1589 	/*
1590 	 * The MAC client did not reserve an Rx group, return directly.
1591 	 * This is probably because the underlying MAC does not support
1592 	 * any groups.
1593 	 */
1594 	if (hwgh != NULL)
1595 		*hwgh = NULL;
1596 	if (grp == NULL)
1597 		return (0);
1598 	/*
1599 	 * This group must be reserved by this MAC client.
1600 	 */
1601 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1602 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1603 
1604 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1605 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1606 		hwrh[cnt] = (mac_ring_handle_t)ring;
1607 	}
1608 	if (hwgh != NULL)
1609 		*hwgh = (mac_group_handle_t)grp;
1610 
1611 	return (cnt);
1612 }
1613 
1614 /*
1615  * Get the HW ring handles of the given group index. If the MAC
1616  * doesn't have a group at this index, or any groups at all, then 0 is
1617  * returned and hwgh is set to NULL. This is a private client API. The
1618  * MAC perimeter must be held when calling this function.
1619  *
1620  * mh: A handle to the MAC that owns the group.
1621  *
1622  * idx: The index of the HW group to be read.
1623  *
1624  * hwgh: If non-NULL, contains a handle to the HW group on return.
1625  *
1626  * hwrh: An array of ring handles pointing to the HW rings in the
1627  * group. The array must be large enough to hold a handle to each ring
1628  * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP.
1629  *
1630  * rtype: Used to determine if we are fetching Rx or Tx rings.
1631  *
1632  * Returns the number of rings in the group.
1633  */
1634 uint_t
1635 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh,
1636     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1637 {
1638 	mac_impl_t		*mip = (mac_impl_t *)mh;
1639 	mac_group_t		*grp;
1640 	mac_ring_t		*ring;
1641 	uint_t			cnt = 0;
1642 
1643 	/*
1644 	 * The MAC perimeter must be held when accessing the
1645 	 * mi_{rx,tx}_groups fields.
1646 	 */
1647 	ASSERT(MAC_PERIM_HELD(mh));
1648 	ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX);
1649 
1650 	if (rtype == MAC_RING_TYPE_RX) {
1651 		grp = mip->mi_rx_groups;
1652 	} else {
1653 		ASSERT(rtype == MAC_RING_TYPE_TX);
1654 		grp = mip->mi_tx_groups;
1655 	}
1656 
1657 	while (grp != NULL && grp->mrg_index != idx)
1658 		grp = grp->mrg_next;
1659 
1660 	/*
1661 	 * If the MAC doesn't have a group at this index or doesn't
1662 	 * impelement RINGS capab, then set hwgh to NULL and return 0.
1663 	 */
1664 	if (hwgh != NULL)
1665 		*hwgh = NULL;
1666 
1667 	if (grp == NULL)
1668 		return (0);
1669 
1670 	ASSERT3U(idx, ==, grp->mrg_index);
1671 
1672 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1673 		ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP);
1674 		hwrh[cnt] = (mac_ring_handle_t)ring;
1675 	}
1676 
1677 	/* A group should always have at least one ring. */
1678 	ASSERT3U(cnt, >, 0);
1679 
1680 	if (hwgh != NULL)
1681 		*hwgh = (mac_group_handle_t)grp;
1682 
1683 	return (cnt);
1684 }
1685 
1686 /*
1687  * This function is called to get info about Tx/Rx rings.
1688  *
1689  * Return value: returns uint_t which will have various bits set
1690  * that indicates different properties of the ring.
1691  */
1692 uint_t
1693 mac_hwring_getinfo(mac_ring_handle_t rh)
1694 {
1695 	mac_ring_t *ring = (mac_ring_t *)rh;
1696 	mac_ring_info_t *info = &ring->mr_info;
1697 
1698 	return (info->mri_flags);
1699 }
1700 
1701 /*
1702  * Set the passthru callback on the hardware ring.
1703  */
1704 void
1705 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1,
1706     mac_resource_handle_t arg2)
1707 {
1708 	mac_ring_t *hwring = (mac_ring_t *)hwrh;
1709 
1710 	ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1711 
1712 	hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER;
1713 
1714 	hwring->mr_pt_fn = fn;
1715 	hwring->mr_pt_arg1 = arg1;
1716 	hwring->mr_pt_arg2 = arg2;
1717 }
1718 
1719 /*
1720  * Clear the passthru callback on the hardware ring.
1721  */
1722 void
1723 mac_hwring_clear_passthru(mac_ring_handle_t hwrh)
1724 {
1725 	mac_ring_t *hwring = (mac_ring_t *)hwrh;
1726 
1727 	ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1728 
1729 	hwring->mr_classify_type = MAC_NO_CLASSIFIER;
1730 
1731 	hwring->mr_pt_fn = NULL;
1732 	hwring->mr_pt_arg1 = NULL;
1733 	hwring->mr_pt_arg2 = NULL;
1734 }
1735 
1736 void
1737 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1)
1738 {
1739 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1740 	flow_entry_t		*flent = mcip->mci_flent;
1741 
1742 	mutex_enter(&flent->fe_lock);
1743 	flent->fe_cb_fn = (flow_fn_t)func;
1744 	flent->fe_cb_arg1 = arg1;
1745 	flent->fe_cb_arg2 = NULL;
1746 	flent->fe_flags &= ~FE_MC_NO_DATAPATH;
1747 	mutex_exit(&flent->fe_lock);
1748 }
1749 
1750 void
1751 mac_client_clear_flow_cb(mac_client_handle_t mch)
1752 {
1753 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1754 	flow_entry_t		*flent = mcip->mci_flent;
1755 
1756 	mutex_enter(&flent->fe_lock);
1757 	flent->fe_cb_fn = (flow_fn_t)mac_rx_def;
1758 	flent->fe_cb_arg1 = NULL;
1759 	flent->fe_cb_arg2 = NULL;
1760 	flent->fe_flags |= FE_MC_NO_DATAPATH;
1761 	mutex_exit(&flent->fe_lock);
1762 }
1763 
1764 /*
1765  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1766  * setup the RX callback of the mac client which exclusively controls
1767  * HW ring.
1768  */
1769 void
1770 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1771     mac_ring_handle_t pseudo_rh)
1772 {
1773 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1774 	mac_ring_t		*pseudo_ring;
1775 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1776 
1777 	if (pseudo_rh != NULL) {
1778 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1779 		/* Export the ddi handles to pseudo ring */
1780 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1781 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1782 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1783 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1784 		/*
1785 		 * Save a pointer to pseudo ring in the hw ring. If
1786 		 * interrupt handle changes, the hw ring will be
1787 		 * notified of the change (see mac_ring_intr_set())
1788 		 * and the appropriate change has to be made to
1789 		 * the pseudo ring that has exported the ddi handle.
1790 		 */
1791 		hw_ring->mr_prh = pseudo_rh;
1792 	}
1793 
1794 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1795 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1796 		mac_srs->srs_mrh = prh;
1797 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1798 	}
1799 }
1800 
1801 void
1802 mac_hwring_teardown(mac_ring_handle_t hwrh)
1803 {
1804 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1805 	mac_soft_ring_set_t	*mac_srs;
1806 
1807 	if (hw_ring == NULL)
1808 		return;
1809 	hw_ring->mr_prh = NULL;
1810 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1811 		mac_srs = hw_ring->mr_srs;
1812 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1813 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1814 		mac_srs->srs_mrh = NULL;
1815 	}
1816 }
1817 
1818 int
1819 mac_hwring_disable_intr(mac_ring_handle_t rh)
1820 {
1821 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1822 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1823 
1824 	return (intr->mi_disable(intr->mi_handle));
1825 }
1826 
1827 int
1828 mac_hwring_enable_intr(mac_ring_handle_t rh)
1829 {
1830 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1831 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1832 
1833 	return (intr->mi_enable(intr->mi_handle));
1834 }
1835 
1836 /*
1837  * Start the HW ring pointed to by rh.
1838  *
1839  * This is used by special MAC clients that are MAC themselves and
1840  * need to exert control over the underlying HW rings of the NIC.
1841  */
1842 int
1843 mac_hwring_start(mac_ring_handle_t rh)
1844 {
1845 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1846 	int rv = 0;
1847 
1848 	if (rr_ring->mr_state != MR_INUSE)
1849 		rv = mac_start_ring(rr_ring);
1850 
1851 	return (rv);
1852 }
1853 
1854 /*
1855  * Stop the HW ring pointed to by rh. Also see mac_hwring_start().
1856  */
1857 void
1858 mac_hwring_stop(mac_ring_handle_t rh)
1859 {
1860 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1861 
1862 	if (rr_ring->mr_state != MR_FREE)
1863 		mac_stop_ring(rr_ring);
1864 }
1865 
1866 /*
1867  * Remove the quiesced flag from the HW ring pointed to by rh.
1868  *
1869  * This is used by special MAC clients that are MAC themselves and
1870  * need to exert control over the underlying HW rings of the NIC.
1871  */
1872 int
1873 mac_hwring_activate(mac_ring_handle_t rh)
1874 {
1875 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1876 
1877 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1878 	return (0);
1879 }
1880 
1881 /*
1882  * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate().
1883  */
1884 void
1885 mac_hwring_quiesce(mac_ring_handle_t rh)
1886 {
1887 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1888 
1889 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1890 }
1891 
1892 mblk_t *
1893 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1894 {
1895 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1896 	mac_ring_info_t *info = &rr_ring->mr_info;
1897 
1898 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1899 }
1900 
1901 /*
1902  * Send packets through a selected tx ring.
1903  */
1904 mblk_t *
1905 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1906 {
1907 	mac_ring_t *ring = (mac_ring_t *)rh;
1908 	mac_ring_info_t *info = &ring->mr_info;
1909 
1910 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1911 	    ring->mr_state >= MR_INUSE);
1912 	return (info->mri_tx(info->mri_driver, mp));
1913 }
1914 
1915 /*
1916  * Query stats for a particular rx/tx ring
1917  */
1918 int
1919 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1920 {
1921 	mac_ring_t	*ring = (mac_ring_t *)rh;
1922 	mac_ring_info_t *info = &ring->mr_info;
1923 
1924 	return (info->mri_stat(info->mri_driver, stat, val));
1925 }
1926 
1927 /*
1928  * Private function that is only used by aggr to send packets through
1929  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1930  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1931  * access to mac_impl_t to send packets through m_tx() entry point.
1932  * It accomplishes this by calling mac_hwring_send_priv() function.
1933  */
1934 mblk_t *
1935 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1936 {
1937 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1938 	mac_impl_t *mip = mcip->mci_mip;
1939 
1940 	return (mac_provider_tx(mip, rh, mp, mcip));
1941 }
1942 
1943 /*
1944  * Private function that is only used by aggr to update the default transmission
1945  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1946  * temporarily be down, it may need to update the default ring that is used by
1947  * MAC such that it refers to a link that can actively be used to send traffic.
1948  * Note that this is different from the case where the port has been removed
1949  * from the group. In those cases, all of the rings will be torn down because
1950  * the ring will no longer exist. It's important to give aggr a case where the
1951  * rings can still exist such that it may be able to continue to send LACP PDUs
1952  * to potentially restore the link.
1953  */
1954 void
1955 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1956 {
1957 	mac_impl_t *mip = (mac_impl_t *)mh;
1958 	mac_ring_t *ring = (mac_ring_t *)rh;
1959 
1960 	ASSERT(MAC_PERIM_HELD(mh));
1961 	VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1962 
1963 	/*
1964 	 * We used to condition this assignment on the ring's
1965 	 * 'mr_state' being one of 'MR_INUSE'. However, there are
1966 	 * cases where this is called before the ring has any active
1967 	 * clients, and therefore is not marked as in use. Since the
1968 	 * sole purpose of this function is for aggr to make sure
1969 	 * 'mi_default_tx_ring' matches 'lg_tx_ports[0]', its
1970 	 * imperative that we update its value regardless of ring
1971 	 * state. Otherwise, we can end up in a state where
1972 	 * 'mi_default_tx_ring' points to a pseudo ring of a downed
1973 	 * port, even when 'lg_tx_ports[0]' points to a port that is
1974 	 * up.
1975 	 */
1976 	mip->mi_default_tx_ring = rh;
1977 }
1978 
1979 int
1980 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1981 {
1982 	mac_group_t *group = (mac_group_t *)gh;
1983 
1984 	return (mac_group_addmac(group, addr));
1985 }
1986 
1987 int
1988 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1989 {
1990 	mac_group_t *group = (mac_group_t *)gh;
1991 
1992 	return (mac_group_remmac(group, addr));
1993 }
1994 
1995 /*
1996  * Program the group's HW VLAN filter if it has such support.
1997  * Otherwise, the group will implicitly accept tagged traffic and
1998  * there is nothing to do.
1999  */
2000 int
2001 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid)
2002 {
2003 	mac_group_t *group = (mac_group_t *)gh;
2004 
2005 	if (!MAC_GROUP_HW_VLAN(group))
2006 		return (0);
2007 
2008 	return (mac_group_addvlan(group, vid));
2009 }
2010 
2011 int
2012 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid)
2013 {
2014 	mac_group_t *group = (mac_group_t *)gh;
2015 
2016 	if (!MAC_GROUP_HW_VLAN(group))
2017 		return (0);
2018 
2019 	return (mac_group_remvlan(group, vid));
2020 }
2021 
2022 /*
2023  * Determine if a MAC has HW VLAN support. This is a private API
2024  * consumed by aggr. In the future it might be nice to have a bitfield
2025  * in mac_capab_rings_t to track which forms of HW filtering are
2026  * supported by the MAC.
2027  */
2028 boolean_t
2029 mac_has_hw_vlan(mac_handle_t mh)
2030 {
2031 	mac_impl_t *mip = (mac_impl_t *)mh;
2032 
2033 	return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups));
2034 }
2035 
2036 /*
2037  * Get the number of Rx HW groups on this MAC.
2038  */
2039 uint_t
2040 mac_get_num_rx_groups(mac_handle_t mh)
2041 {
2042 	mac_impl_t *mip = (mac_impl_t *)mh;
2043 
2044 	ASSERT(MAC_PERIM_HELD(mh));
2045 	return (mip->mi_rx_group_count);
2046 }
2047 
2048 int
2049 mac_set_promisc(mac_handle_t mh, boolean_t value)
2050 {
2051 	mac_impl_t *mip = (mac_impl_t *)mh;
2052 
2053 	ASSERT(MAC_PERIM_HELD(mh));
2054 	return (i_mac_promisc_set(mip, value));
2055 }
2056 
2057 /*
2058  * Set the RX group to be shared/reserved. Note that the group must be
2059  * started/stopped outside of this function.
2060  */
2061 void
2062 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
2063 {
2064 	/*
2065 	 * If there is no change in the group state, just return.
2066 	 */
2067 	if (grp->mrg_state == state)
2068 		return;
2069 
2070 	switch (state) {
2071 	case MAC_GROUP_STATE_RESERVED:
2072 		/*
2073 		 * Successfully reserved the group.
2074 		 *
2075 		 * Given that there is an exclusive client controlling this
2076 		 * group, we enable the group level polling when available,
2077 		 * so that SRSs get to turn on/off individual rings they's
2078 		 * assigned to.
2079 		 */
2080 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2081 
2082 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
2083 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
2084 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2085 		}
2086 		break;
2087 
2088 	case MAC_GROUP_STATE_SHARED:
2089 		/*
2090 		 * Set all rings of this group to software classified.
2091 		 * If the group has an overriding interrupt, then re-enable it.
2092 		 */
2093 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2094 
2095 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
2096 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
2097 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2098 		}
2099 		/* The ring is not available for reservations any more */
2100 		break;
2101 
2102 	case MAC_GROUP_STATE_REGISTERED:
2103 		/* Also callable from mac_register, perim is not held */
2104 		break;
2105 
2106 	default:
2107 		ASSERT(B_FALSE);
2108 		break;
2109 	}
2110 
2111 	grp->mrg_state = state;
2112 }
2113 
2114 /*
2115  * Quiesce future hardware classified packets for the specified Rx ring
2116  */
2117 static void
2118 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
2119 {
2120 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
2121 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
2122 
2123 	mutex_enter(&rx_ring->mr_lock);
2124 	rx_ring->mr_flag |= ring_flag;
2125 	while (rx_ring->mr_refcnt != 0)
2126 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
2127 	mutex_exit(&rx_ring->mr_lock);
2128 }
2129 
2130 /*
2131  * Please see mac_tx for details about the per cpu locking scheme
2132  */
2133 static void
2134 mac_tx_lock_all(mac_client_impl_t *mcip)
2135 {
2136 	int	i;
2137 
2138 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
2139 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2140 }
2141 
2142 static void
2143 mac_tx_unlock_all(mac_client_impl_t *mcip)
2144 {
2145 	int	i;
2146 
2147 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
2148 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2149 }
2150 
2151 static void
2152 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
2153 {
2154 	int	i;
2155 
2156 	for (i = mac_tx_percpu_cnt; i > 0; i--)
2157 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2158 }
2159 
2160 static int
2161 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
2162 {
2163 	int	i;
2164 	int	refcnt = 0;
2165 
2166 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
2167 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
2168 
2169 	return (refcnt);
2170 }
2171 
2172 /*
2173  * Stop future Tx packets coming down from the client in preparation for
2174  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
2175  * of rings between clients
2176  */
2177 void
2178 mac_tx_client_block(mac_client_impl_t *mcip)
2179 {
2180 	mac_tx_lock_all(mcip);
2181 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
2182 	while (mac_tx_sum_refcnt(mcip) != 0) {
2183 		mac_tx_unlock_allbutzero(mcip);
2184 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2185 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2186 		mac_tx_lock_all(mcip);
2187 	}
2188 	mac_tx_unlock_all(mcip);
2189 }
2190 
2191 void
2192 mac_tx_client_unblock(mac_client_impl_t *mcip)
2193 {
2194 	mac_tx_lock_all(mcip);
2195 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
2196 	mac_tx_unlock_all(mcip);
2197 	/*
2198 	 * We may fail to disable flow control for the last MAC_NOTE_TX
2199 	 * notification because the MAC client is quiesced. Send the
2200 	 * notification again.
2201 	 */
2202 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
2203 }
2204 
2205 /*
2206  * Wait for an SRS to quiesce. The SRS worker will signal us when the
2207  * quiesce is done.
2208  */
2209 static void
2210 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
2211 {
2212 	mutex_enter(&srs->srs_lock);
2213 	while (!(srs->srs_state & srs_flag))
2214 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
2215 	mutex_exit(&srs->srs_lock);
2216 }
2217 
2218 /*
2219  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
2220  * works bottom up by cutting off packet flow from the bottommost point in the
2221  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
2222  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
2223  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
2224  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
2225  * for the SRS and MR flags. In the former case the threads pause waiting for
2226  * a restart, while in the latter case the threads exit. The Tx SRS teardown
2227  * is also mostly similar to the above.
2228  *
2229  * 1. Stop future hardware classified packets at the lowest level in the mac.
2230  *    Remove any hardware classification rule (CONDEMNED case) and mark the
2231  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
2232  *    from increasing. Upcalls from the driver that come through hardware
2233  *    classification will be dropped in mac_rx from now on. Then we wait for
2234  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
2235  *    sure there aren't any upcall threads from the driver through hardware
2236  *    classification. In the case of SRS teardown we also remove the
2237  *    classification rule in the driver.
2238  *
2239  * 2. Stop future software classified packets by marking the flow entry with
2240  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
2241  *    increasing. We also remove the flow entry from the table in the latter
2242  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
2243  *    that indicates there aren't any active threads using that flow entry.
2244  *
2245  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
2246  *    SRS worker thread, and the soft ring threads are quiesced in sequence
2247  *    with the SRS worker thread serving as a master controller. This
2248  *    mechansim is explained in mac_srs_worker_quiesce().
2249  *
2250  * The restart mechanism to reactivate the SRS and softrings is explained
2251  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
2252  * restart sequence.
2253  */
2254 void
2255 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2256 {
2257 	flow_entry_t	*flent = srs->srs_flent;
2258 	uint_t	mr_flag, srs_done_flag;
2259 
2260 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2261 	ASSERT(!(srs->srs_type & SRST_TX));
2262 
2263 	if (srs_quiesce_flag == SRS_CONDEMNED) {
2264 		mr_flag = MR_CONDEMNED;
2265 		srs_done_flag = SRS_CONDEMNED_DONE;
2266 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2267 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
2268 	} else {
2269 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
2270 		mr_flag = MR_QUIESCE;
2271 		srs_done_flag = SRS_QUIESCE_DONE;
2272 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2273 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
2274 	}
2275 
2276 	if (srs->srs_ring != NULL) {
2277 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
2278 	} else {
2279 		/*
2280 		 * SRS is driven by software classification. In case
2281 		 * of CONDEMNED, the top level teardown functions will
2282 		 * deal with flow removal.
2283 		 */
2284 		if (srs_quiesce_flag != SRS_CONDEMNED) {
2285 			FLOW_MARK(flent, FE_QUIESCE);
2286 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2287 		}
2288 	}
2289 
2290 	/*
2291 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2292 	 * SRS quiesce to complete. The SRS worker thread will wake us
2293 	 * up when the quiesce is complete
2294 	 */
2295 	mac_srs_signal(srs, srs_quiesce_flag);
2296 	mac_srs_quiesce_wait(srs, srs_done_flag);
2297 }
2298 
2299 /*
2300  * Remove an SRS.
2301  */
2302 void
2303 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
2304 {
2305 	flow_entry_t *flent = srs->srs_flent;
2306 	int i;
2307 
2308 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
2309 	/*
2310 	 * Locate and remove our entry in the fe_rx_srs[] array, and
2311 	 * adjust the fe_rx_srs array entries and array count by
2312 	 * moving the last entry into the vacated spot.
2313 	 */
2314 	mutex_enter(&flent->fe_lock);
2315 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2316 		if (flent->fe_rx_srs[i] == srs)
2317 			break;
2318 	}
2319 
2320 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
2321 	if (i != flent->fe_rx_srs_cnt - 1) {
2322 		flent->fe_rx_srs[i] =
2323 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2324 		i = flent->fe_rx_srs_cnt - 1;
2325 	}
2326 
2327 	flent->fe_rx_srs[i] = NULL;
2328 	flent->fe_rx_srs_cnt--;
2329 	mutex_exit(&flent->fe_lock);
2330 
2331 	mac_srs_free(srs);
2332 }
2333 
2334 static void
2335 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2336 {
2337 	mutex_enter(&srs->srs_lock);
2338 	srs->srs_state &= ~flag;
2339 	mutex_exit(&srs->srs_lock);
2340 }
2341 
2342 void
2343 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2344 {
2345 	flow_entry_t	*flent = srs->srs_flent;
2346 	mac_ring_t	*mr;
2347 
2348 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2349 	ASSERT((srs->srs_type & SRST_TX) == 0);
2350 
2351 	/*
2352 	 * This handles a change in the number of SRSs between the quiesce and
2353 	 * and restart operation of a flow.
2354 	 */
2355 	if (!SRS_QUIESCED(srs))
2356 		return;
2357 
2358 	/*
2359 	 * Signal the SRS to restart itself. Wait for the restart to complete
2360 	 * Note that we only restart the SRS if it is not marked as
2361 	 * permanently quiesced.
2362 	 */
2363 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2364 		mac_srs_signal(srs, SRS_RESTART);
2365 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2366 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2367 
2368 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2369 	}
2370 
2371 	/* Finally clear the flags to let the packets in */
2372 	mr = srs->srs_ring;
2373 	if (mr != NULL) {
2374 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2375 		/* In case the ring was stopped, safely restart it */
2376 		if (mr->mr_state != MR_INUSE)
2377 			(void) mac_start_ring(mr);
2378 	} else {
2379 		FLOW_UNMARK(flent, FE_QUIESCE);
2380 	}
2381 }
2382 
2383 /*
2384  * Temporary quiesce of a flow and associated Rx SRS.
2385  * Please see block comment above mac_rx_classify_flow_rem.
2386  */
2387 /* ARGSUSED */
2388 int
2389 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2390 {
2391 	int		i;
2392 
2393 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2394 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2395 		    SRS_QUIESCE);
2396 	}
2397 	return (0);
2398 }
2399 
2400 /*
2401  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2402  * Please see block comment above mac_rx_classify_flow_rem
2403  */
2404 /* ARGSUSED */
2405 int
2406 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2407 {
2408 	int		i;
2409 
2410 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2411 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2412 
2413 	return (0);
2414 }
2415 
2416 void
2417 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2418 {
2419 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2420 	flow_entry_t		*flent = mcip->mci_flent;
2421 	mac_impl_t		*mip = mcip->mci_mip;
2422 	mac_soft_ring_set_t	*mac_srs;
2423 	int			i;
2424 
2425 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2426 
2427 	if (flent == NULL)
2428 		return;
2429 
2430 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2431 		mac_srs = flent->fe_rx_srs[i];
2432 		mutex_enter(&mac_srs->srs_lock);
2433 		if (on)
2434 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2435 		else
2436 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2437 		mutex_exit(&mac_srs->srs_lock);
2438 	}
2439 }
2440 
2441 void
2442 mac_rx_client_quiesce(mac_client_handle_t mch)
2443 {
2444 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2445 	mac_impl_t		*mip = mcip->mci_mip;
2446 
2447 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2448 
2449 	if (MCIP_DATAPATH_SETUP(mcip)) {
2450 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2451 		    NULL);
2452 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2453 		    mac_rx_classify_flow_quiesce, NULL);
2454 	}
2455 }
2456 
2457 void
2458 mac_rx_client_restart(mac_client_handle_t mch)
2459 {
2460 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2461 	mac_impl_t		*mip = mcip->mci_mip;
2462 
2463 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2464 
2465 	if (MCIP_DATAPATH_SETUP(mcip)) {
2466 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2467 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2468 		    mac_rx_classify_flow_restart, NULL);
2469 	}
2470 }
2471 
2472 /*
2473  * This function only quiesces the Tx SRS and softring worker threads. Callers
2474  * need to make sure that there aren't any mac client threads doing current or
2475  * future transmits in the mac before calling this function.
2476  */
2477 void
2478 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2479 {
2480 	mac_client_impl_t	*mcip = srs->srs_mcip;
2481 
2482 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2483 
2484 	ASSERT(srs->srs_type & SRST_TX);
2485 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2486 	    srs_quiesce_flag == SRS_QUIESCE);
2487 
2488 	/*
2489 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2490 	 * SRS quiesce to complete. The SRS worker thread will wake us
2491 	 * up when the quiesce is complete
2492 	 */
2493 	mac_srs_signal(srs, srs_quiesce_flag);
2494 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2495 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2496 }
2497 
2498 void
2499 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2500 {
2501 	/*
2502 	 * Resizing the fanout could result in creation of new SRSs.
2503 	 * They may not necessarily be in the quiesced state in which
2504 	 * case it need be restarted
2505 	 */
2506 	if (!SRS_QUIESCED(srs))
2507 		return;
2508 
2509 	mac_srs_signal(srs, SRS_RESTART);
2510 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2511 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2512 }
2513 
2514 /*
2515  * Temporary quiesce of a flow and associated Rx SRS.
2516  * Please see block comment above mac_rx_srs_quiesce
2517  */
2518 /* ARGSUSED */
2519 int
2520 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2521 {
2522 	/*
2523 	 * The fe_tx_srs is null for a subflow on an interface that is
2524 	 * not plumbed
2525 	 */
2526 	if (flent->fe_tx_srs != NULL)
2527 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2528 	return (0);
2529 }
2530 
2531 /* ARGSUSED */
2532 int
2533 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2534 {
2535 	/*
2536 	 * The fe_tx_srs is null for a subflow on an interface that is
2537 	 * not plumbed
2538 	 */
2539 	if (flent->fe_tx_srs != NULL)
2540 		mac_tx_srs_restart(flent->fe_tx_srs);
2541 	return (0);
2542 }
2543 
2544 static void
2545 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2546 {
2547 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2548 
2549 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2550 
2551 	mac_tx_client_block(mcip);
2552 	if (MCIP_TX_SRS(mcip) != NULL) {
2553 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2554 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2555 		    mac_tx_flow_quiesce, NULL);
2556 	}
2557 }
2558 
2559 void
2560 mac_tx_client_quiesce(mac_client_handle_t mch)
2561 {
2562 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2563 }
2564 
2565 void
2566 mac_tx_client_condemn(mac_client_handle_t mch)
2567 {
2568 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2569 }
2570 
2571 void
2572 mac_tx_client_restart(mac_client_handle_t mch)
2573 {
2574 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2575 
2576 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2577 
2578 	mac_tx_client_unblock(mcip);
2579 	if (MCIP_TX_SRS(mcip) != NULL) {
2580 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2581 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2582 		    mac_tx_flow_restart, NULL);
2583 	}
2584 }
2585 
2586 void
2587 mac_tx_client_flush(mac_client_impl_t *mcip)
2588 {
2589 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2590 
2591 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2592 	mac_tx_client_restart((mac_client_handle_t)mcip);
2593 }
2594 
2595 void
2596 mac_client_quiesce(mac_client_impl_t *mcip)
2597 {
2598 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2599 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2600 }
2601 
2602 void
2603 mac_client_restart(mac_client_impl_t *mcip)
2604 {
2605 	mac_rx_client_restart((mac_client_handle_t)mcip);
2606 	mac_tx_client_restart((mac_client_handle_t)mcip);
2607 }
2608 
2609 /*
2610  * Allocate a minor number.
2611  */
2612 minor_t
2613 mac_minor_hold(boolean_t sleep)
2614 {
2615 	id_t id;
2616 
2617 	/*
2618 	 * Grab a value from the arena.
2619 	 */
2620 	atomic_inc_32(&minor_count);
2621 
2622 	if (sleep)
2623 		return ((uint_t)id_alloc(minor_ids));
2624 
2625 	if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2626 		atomic_dec_32(&minor_count);
2627 		return (0);
2628 	}
2629 
2630 	return ((uint_t)id);
2631 }
2632 
2633 /*
2634  * Release a previously allocated minor number.
2635  */
2636 void
2637 mac_minor_rele(minor_t minor)
2638 {
2639 	/*
2640 	 * Return the value to the arena.
2641 	 */
2642 	id_free(minor_ids, minor);
2643 	atomic_dec_32(&minor_count);
2644 }
2645 
2646 uint32_t
2647 mac_no_notification(mac_handle_t mh)
2648 {
2649 	mac_impl_t *mip = (mac_impl_t *)mh;
2650 
2651 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2652 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2653 }
2654 
2655 /*
2656  * Prevent any new opens of this mac in preparation for unregister
2657  */
2658 int
2659 i_mac_disable(mac_impl_t *mip)
2660 {
2661 	mac_client_impl_t	*mcip;
2662 
2663 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2664 	if (mip->mi_state_flags & MIS_DISABLED) {
2665 		/* Already disabled, return success */
2666 		rw_exit(&i_mac_impl_lock);
2667 		return (0);
2668 	}
2669 	/*
2670 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2671 	 * If so return failure. If all the other checks below pass, then
2672 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2673 	 * any new VLAN's from being created or new mac client opens of this
2674 	 * mac end point.
2675 	 */
2676 	if (mip->mi_ref > 0) {
2677 		rw_exit(&i_mac_impl_lock);
2678 		return (EBUSY);
2679 	}
2680 
2681 	/*
2682 	 * mac clients must delete all multicast groups they join before
2683 	 * closing. bcast groups are reference counted, the last client
2684 	 * to delete the group will wait till the group is physically
2685 	 * deleted. Since all clients have closed this mac end point
2686 	 * mi_bcast_ngrps must be zero at this point
2687 	 */
2688 	ASSERT(mip->mi_bcast_ngrps == 0);
2689 
2690 	/*
2691 	 * Don't let go of this if it has some flows.
2692 	 * All other code guarantees no flows are added to a disabled
2693 	 * mac, therefore it is sufficient to check for the flow table
2694 	 * only here.
2695 	 */
2696 	mcip = mac_primary_client_handle(mip);
2697 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2698 		rw_exit(&i_mac_impl_lock);
2699 		return (ENOTEMPTY);
2700 	}
2701 
2702 	mip->mi_state_flags |= MIS_DISABLED;
2703 	rw_exit(&i_mac_impl_lock);
2704 	return (0);
2705 }
2706 
2707 int
2708 mac_disable_nowait(mac_handle_t mh)
2709 {
2710 	mac_impl_t	*mip = (mac_impl_t *)mh;
2711 	int err;
2712 
2713 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2714 		return (err);
2715 	err = i_mac_disable(mip);
2716 	i_mac_perim_exit(mip);
2717 	return (err);
2718 }
2719 
2720 int
2721 mac_disable(mac_handle_t mh)
2722 {
2723 	mac_impl_t	*mip = (mac_impl_t *)mh;
2724 	int err;
2725 
2726 	i_mac_perim_enter(mip);
2727 	err = i_mac_disable(mip);
2728 	i_mac_perim_exit(mip);
2729 
2730 	/*
2731 	 * Clean up notification thread and wait for it to exit.
2732 	 */
2733 	if (err == 0)
2734 		i_mac_notify_exit(mip);
2735 
2736 	return (err);
2737 }
2738 
2739 /*
2740  * Called when the MAC instance has a non empty flow table, to de-multiplex
2741  * incoming packets to the right flow.
2742  */
2743 /* ARGSUSED */
2744 static mblk_t *
2745 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2746 {
2747 	flow_entry_t	*flent = NULL;
2748 	uint_t		flags = FLOW_INBOUND;
2749 	int		err;
2750 
2751 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2752 	if (err != 0) {
2753 		/* no registered receive function */
2754 		return (mp);
2755 	} else {
2756 		mac_client_impl_t	*mcip;
2757 
2758 		/*
2759 		 * This flent might just be an additional one on the MAC client,
2760 		 * i.e. for classification purposes (different fdesc), however
2761 		 * the resources, SRS et. al., are in the mci_flent, so if
2762 		 * this isn't the mci_flent, we need to get it.
2763 		 */
2764 		if ((mcip = flent->fe_mcip) != NULL &&
2765 		    mcip->mci_flent != flent) {
2766 			FLOW_REFRELE(flent);
2767 			flent = mcip->mci_flent;
2768 			FLOW_TRY_REFHOLD(flent, err);
2769 			if (err != 0)
2770 				return (mp);
2771 		}
2772 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2773 		    B_FALSE);
2774 		FLOW_REFRELE(flent);
2775 	}
2776 	return (NULL);
2777 }
2778 
2779 mblk_t *
2780 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2781 {
2782 	mac_impl_t	*mip = (mac_impl_t *)mh;
2783 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2784 
2785 	/*
2786 	 * We walk the chain and attempt to classify each packet.
2787 	 * The packets that couldn't be classified will be returned
2788 	 * back to the caller.
2789 	 */
2790 	bp = mp_chain;
2791 	bpp = &list;
2792 	while (bp != NULL) {
2793 		bp1 = bp;
2794 		bp = bp->b_next;
2795 		bp1->b_next = NULL;
2796 
2797 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2798 			*bpp = bp1;
2799 			bpp = &bp1->b_next;
2800 		}
2801 	}
2802 	return (list);
2803 }
2804 
2805 static int
2806 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2807 {
2808 	mac_ring_handle_t ring = arg;
2809 
2810 	if (flent->fe_tx_srs)
2811 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2812 	return (0);
2813 }
2814 
2815 void
2816 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2817 {
2818 	mac_client_impl_t	*cclient;
2819 	mac_soft_ring_set_t	*mac_srs;
2820 
2821 	/*
2822 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2823 	 * If there are any clients mi_disabled must be B_FALSE and can't
2824 	 * get set since there are clients. If there aren't any clients we
2825 	 * don't do anything. In any case the mip has to be valid. The driver
2826 	 * must make sure that it goes single threaded (with respect to mac
2827 	 * calls) and wait for all pending mac calls to finish before calling
2828 	 * mac_unregister.
2829 	 */
2830 	rw_enter(&i_mac_impl_lock, RW_READER);
2831 	if (mip->mi_state_flags & MIS_DISABLED) {
2832 		rw_exit(&i_mac_impl_lock);
2833 		return;
2834 	}
2835 
2836 	/*
2837 	 * Get MAC tx srs from walking mac_client_handle list.
2838 	 */
2839 	rw_enter(&mip->mi_rw_lock, RW_READER);
2840 	for (cclient = mip->mi_clients_list; cclient != NULL;
2841 	    cclient = cclient->mci_client_next) {
2842 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2843 			mac_tx_srs_wakeup(mac_srs, ring);
2844 		} else {
2845 			/*
2846 			 * Aggr opens underlying ports in exclusive mode
2847 			 * and registers flow control callbacks using
2848 			 * mac_tx_client_notify(). When opened in
2849 			 * exclusive mode, Tx SRS won't be created
2850 			 * during mac_unicast_add().
2851 			 */
2852 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2853 				mac_tx_invoke_callbacks(cclient,
2854 				    (mac_tx_cookie_t)ring);
2855 			}
2856 		}
2857 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2858 		    mac_tx_flow_srs_wakeup, ring);
2859 	}
2860 	rw_exit(&mip->mi_rw_lock);
2861 	rw_exit(&i_mac_impl_lock);
2862 }
2863 
2864 /* ARGSUSED */
2865 void
2866 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2867     boolean_t add)
2868 {
2869 	mac_impl_t *mip = (mac_impl_t *)mh;
2870 
2871 	i_mac_perim_enter((mac_impl_t *)mh);
2872 	/*
2873 	 * If no specific refresh function was given then default to the
2874 	 * driver's m_multicst entry point.
2875 	 */
2876 	if (refresh == NULL) {
2877 		refresh = mip->mi_multicst;
2878 		arg = mip->mi_driver;
2879 	}
2880 
2881 	mac_bcast_refresh(mip, refresh, arg, add);
2882 	i_mac_perim_exit((mac_impl_t *)mh);
2883 }
2884 
2885 void
2886 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2887 {
2888 	mac_impl_t	*mip = (mac_impl_t *)mh;
2889 
2890 	/*
2891 	 * If no specific refresh function was given then default to the
2892 	 * driver's m_promisc entry point.
2893 	 */
2894 	if (refresh == NULL) {
2895 		refresh = mip->mi_setpromisc;
2896 		arg = mip->mi_driver;
2897 	}
2898 	ASSERT(refresh != NULL);
2899 
2900 	/*
2901 	 * Call the refresh function with the current promiscuity.
2902 	 */
2903 	refresh(arg, (mip->mi_devpromisc != 0));
2904 }
2905 
2906 /*
2907  * The mac client requests that the mac not to change its margin size to
2908  * be less than the specified value.  If "current" is B_TRUE, then the client
2909  * requests the mac not to change its margin size to be smaller than the
2910  * current size. Further, return the current margin size value in this case.
2911  *
2912  * We keep every requested size in an ordered list from largest to smallest.
2913  */
2914 int
2915 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2916 {
2917 	mac_impl_t		*mip = (mac_impl_t *)mh;
2918 	mac_margin_req_t	**pp, *p;
2919 	int			err = 0;
2920 
2921 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2922 	if (current)
2923 		*marginp = mip->mi_margin;
2924 
2925 	/*
2926 	 * If the current margin value cannot satisfy the margin requested,
2927 	 * return ENOTSUP directly.
2928 	 */
2929 	if (*marginp > mip->mi_margin) {
2930 		err = ENOTSUP;
2931 		goto done;
2932 	}
2933 
2934 	/*
2935 	 * Check whether the given margin is already in the list. If so,
2936 	 * bump the reference count.
2937 	 */
2938 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2939 		if (p->mmr_margin == *marginp) {
2940 			/*
2941 			 * The margin requested is already in the list,
2942 			 * so just bump the reference count.
2943 			 */
2944 			p->mmr_ref++;
2945 			goto done;
2946 		}
2947 		if (p->mmr_margin < *marginp)
2948 			break;
2949 	}
2950 
2951 
2952 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2953 	p->mmr_margin = *marginp;
2954 	p->mmr_ref++;
2955 	p->mmr_nextp = *pp;
2956 	*pp = p;
2957 
2958 done:
2959 	rw_exit(&(mip->mi_rw_lock));
2960 	return (err);
2961 }
2962 
2963 /*
2964  * The mac client requests to cancel its previous mac_margin_add() request.
2965  * We remove the requested margin size from the list.
2966  */
2967 int
2968 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2969 {
2970 	mac_impl_t		*mip = (mac_impl_t *)mh;
2971 	mac_margin_req_t	**pp, *p;
2972 	int			err = 0;
2973 
2974 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2975 	/*
2976 	 * Find the entry in the list for the given margin.
2977 	 */
2978 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2979 		if (p->mmr_margin == margin) {
2980 			if (--p->mmr_ref == 0)
2981 				break;
2982 
2983 			/*
2984 			 * There is still a reference to this address so
2985 			 * there's nothing more to do.
2986 			 */
2987 			goto done;
2988 		}
2989 	}
2990 
2991 	/*
2992 	 * We did not find an entry for the given margin.
2993 	 */
2994 	if (p == NULL) {
2995 		err = ENOENT;
2996 		goto done;
2997 	}
2998 
2999 	ASSERT(p->mmr_ref == 0);
3000 
3001 	/*
3002 	 * Remove it from the list.
3003 	 */
3004 	*pp = p->mmr_nextp;
3005 	kmem_free(p, sizeof (mac_margin_req_t));
3006 done:
3007 	rw_exit(&(mip->mi_rw_lock));
3008 	return (err);
3009 }
3010 
3011 boolean_t
3012 mac_margin_update(mac_handle_t mh, uint32_t margin)
3013 {
3014 	mac_impl_t	*mip = (mac_impl_t *)mh;
3015 	uint32_t	margin_needed = 0;
3016 
3017 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
3018 
3019 	if (mip->mi_mmrp != NULL)
3020 		margin_needed = mip->mi_mmrp->mmr_margin;
3021 
3022 	if (margin_needed <= margin)
3023 		mip->mi_margin = margin;
3024 
3025 	rw_exit(&(mip->mi_rw_lock));
3026 
3027 	if (margin_needed <= margin)
3028 		i_mac_notify(mip, MAC_NOTE_MARGIN);
3029 
3030 	return (margin_needed <= margin);
3031 }
3032 
3033 /*
3034  * MAC clients use this interface to request that a MAC device not change its
3035  * MTU below the specified amount. At this time, that amount must be within the
3036  * range of the device's current minimum and the device's current maximum. eg. a
3037  * client cannot request a 3000 byte MTU when the device's MTU is currently
3038  * 2000.
3039  *
3040  * If "current" is set to B_TRUE, then the request is to simply to reserve the
3041  * current underlying mac's maximum for this mac client and return it in mtup.
3042  */
3043 int
3044 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
3045 {
3046 	mac_impl_t		*mip = (mac_impl_t *)mh;
3047 	mac_mtu_req_t		*prev, *cur;
3048 	mac_propval_range_t	mpr;
3049 	int			err;
3050 
3051 	i_mac_perim_enter(mip);
3052 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3053 
3054 	if (current == B_TRUE)
3055 		*mtup = mip->mi_sdu_max;
3056 	mpr.mpr_count = 1;
3057 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
3058 	if (err != 0) {
3059 		rw_exit(&mip->mi_rw_lock);
3060 		i_mac_perim_exit(mip);
3061 		return (err);
3062 	}
3063 
3064 	if (*mtup > mip->mi_sdu_max ||
3065 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
3066 		rw_exit(&mip->mi_rw_lock);
3067 		i_mac_perim_exit(mip);
3068 		return (ENOTSUP);
3069 	}
3070 
3071 	prev = NULL;
3072 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3073 		if (*mtup == cur->mtr_mtu) {
3074 			cur->mtr_ref++;
3075 			rw_exit(&mip->mi_rw_lock);
3076 			i_mac_perim_exit(mip);
3077 			return (0);
3078 		}
3079 
3080 		if (*mtup > cur->mtr_mtu)
3081 			break;
3082 
3083 		prev = cur;
3084 	}
3085 
3086 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
3087 	cur->mtr_mtu = *mtup;
3088 	cur->mtr_ref = 1;
3089 	if (prev != NULL) {
3090 		cur->mtr_nextp = prev->mtr_nextp;
3091 		prev->mtr_nextp = cur;
3092 	} else {
3093 		cur->mtr_nextp = mip->mi_mtrp;
3094 		mip->mi_mtrp = cur;
3095 	}
3096 
3097 	rw_exit(&mip->mi_rw_lock);
3098 	i_mac_perim_exit(mip);
3099 	return (0);
3100 }
3101 
3102 int
3103 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
3104 {
3105 	mac_impl_t *mip = (mac_impl_t *)mh;
3106 	mac_mtu_req_t *cur, *prev;
3107 
3108 	i_mac_perim_enter(mip);
3109 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3110 
3111 	prev = NULL;
3112 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3113 		if (cur->mtr_mtu == mtu) {
3114 			ASSERT(cur->mtr_ref > 0);
3115 			cur->mtr_ref--;
3116 			if (cur->mtr_ref == 0) {
3117 				if (prev == NULL) {
3118 					mip->mi_mtrp = cur->mtr_nextp;
3119 				} else {
3120 					prev->mtr_nextp = cur->mtr_nextp;
3121 				}
3122 				kmem_free(cur, sizeof (mac_mtu_req_t));
3123 			}
3124 			rw_exit(&mip->mi_rw_lock);
3125 			i_mac_perim_exit(mip);
3126 			return (0);
3127 		}
3128 
3129 		prev = cur;
3130 	}
3131 
3132 	rw_exit(&mip->mi_rw_lock);
3133 	i_mac_perim_exit(mip);
3134 	return (ENOENT);
3135 }
3136 
3137 /*
3138  * MAC Type Plugin functions.
3139  */
3140 
3141 mactype_t *
3142 mactype_getplugin(const char *pname)
3143 {
3144 	mactype_t	*mtype = NULL;
3145 	boolean_t	tried_modload = B_FALSE;
3146 
3147 	mutex_enter(&i_mactype_lock);
3148 
3149 find_registered_mactype:
3150 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
3151 	    (mod_hash_val_t *)&mtype) != 0) {
3152 		if (!tried_modload) {
3153 			/*
3154 			 * If the plugin has not yet been loaded, then
3155 			 * attempt to load it now.  If modload() succeeds,
3156 			 * the plugin should have registered using
3157 			 * mactype_register(), in which case we can go back
3158 			 * and attempt to find it again.
3159 			 */
3160 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
3161 				tried_modload = B_TRUE;
3162 				goto find_registered_mactype;
3163 			}
3164 		}
3165 	} else {
3166 		/*
3167 		 * Note that there's no danger that the plugin we've loaded
3168 		 * could be unloaded between the modload() step and the
3169 		 * reference count bump here, as we're holding
3170 		 * i_mactype_lock, which mactype_unregister() also holds.
3171 		 */
3172 		atomic_inc_32(&mtype->mt_ref);
3173 	}
3174 
3175 	mutex_exit(&i_mactype_lock);
3176 	return (mtype);
3177 }
3178 
3179 mactype_register_t *
3180 mactype_alloc(uint_t mactype_version)
3181 {
3182 	mactype_register_t *mtrp;
3183 
3184 	/*
3185 	 * Make sure there isn't a version mismatch between the plugin and
3186 	 * the framework.  In the future, if multiple versions are
3187 	 * supported, this check could become more sophisticated.
3188 	 */
3189 	if (mactype_version != MACTYPE_VERSION)
3190 		return (NULL);
3191 
3192 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
3193 	mtrp->mtr_version = mactype_version;
3194 	return (mtrp);
3195 }
3196 
3197 void
3198 mactype_free(mactype_register_t *mtrp)
3199 {
3200 	kmem_free(mtrp, sizeof (mactype_register_t));
3201 }
3202 
3203 int
3204 mactype_register(mactype_register_t *mtrp)
3205 {
3206 	mactype_t	*mtp;
3207 	mactype_ops_t	*ops = mtrp->mtr_ops;
3208 
3209 	/* Do some sanity checking before we register this MAC type. */
3210 	if (mtrp->mtr_ident == NULL || ops == NULL)
3211 		return (EINVAL);
3212 
3213 	/*
3214 	 * Verify that all mandatory callbacks are set in the ops
3215 	 * vector.
3216 	 */
3217 	if (ops->mtops_unicst_verify == NULL ||
3218 	    ops->mtops_multicst_verify == NULL ||
3219 	    ops->mtops_sap_verify == NULL ||
3220 	    ops->mtops_header == NULL ||
3221 	    ops->mtops_header_info == NULL) {
3222 		return (EINVAL);
3223 	}
3224 
3225 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
3226 	mtp->mt_ident = mtrp->mtr_ident;
3227 	mtp->mt_ops = *ops;
3228 	mtp->mt_type = mtrp->mtr_mactype;
3229 	mtp->mt_nativetype = mtrp->mtr_nativetype;
3230 	mtp->mt_addr_length = mtrp->mtr_addrlen;
3231 	if (mtrp->mtr_brdcst_addr != NULL) {
3232 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
3233 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
3234 		    mtrp->mtr_addrlen);
3235 	}
3236 
3237 	mtp->mt_stats = mtrp->mtr_stats;
3238 	mtp->mt_statcount = mtrp->mtr_statcount;
3239 
3240 	mtp->mt_mapping = mtrp->mtr_mapping;
3241 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
3242 
3243 	if (mod_hash_insert(i_mactype_hash,
3244 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
3245 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3246 		kmem_free(mtp, sizeof (*mtp));
3247 		return (EEXIST);
3248 	}
3249 	return (0);
3250 }
3251 
3252 int
3253 mactype_unregister(const char *ident)
3254 {
3255 	mactype_t	*mtp;
3256 	mod_hash_val_t	val;
3257 	int		err;
3258 
3259 	/*
3260 	 * Let's not allow MAC drivers to use this plugin while we're
3261 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
3262 	 * plugin from unregistering while a MAC driver is attempting to
3263 	 * hold a reference to it in i_mactype_getplugin().
3264 	 */
3265 	mutex_enter(&i_mactype_lock);
3266 
3267 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
3268 	    (mod_hash_val_t *)&mtp)) != 0) {
3269 		/* A plugin is trying to unregister, but it never registered. */
3270 		err = ENXIO;
3271 		goto done;
3272 	}
3273 
3274 	if (mtp->mt_ref != 0) {
3275 		err = EBUSY;
3276 		goto done;
3277 	}
3278 
3279 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
3280 	ASSERT(err == 0);
3281 	if (err != 0) {
3282 		/* This should never happen, thus the ASSERT() above. */
3283 		err = EINVAL;
3284 		goto done;
3285 	}
3286 	ASSERT(mtp == (mactype_t *)val);
3287 
3288 	if (mtp->mt_brdcst_addr != NULL)
3289 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3290 	kmem_free(mtp, sizeof (mactype_t));
3291 done:
3292 	mutex_exit(&i_mactype_lock);
3293 	return (err);
3294 }
3295 
3296 /*
3297  * Checks the size of the value size specified for a property as
3298  * part of a property operation. Returns B_TRUE if the size is
3299  * correct, B_FALSE otherwise.
3300  */
3301 boolean_t
3302 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
3303 {
3304 	uint_t minsize = 0;
3305 
3306 	if (is_range)
3307 		return (valsize >= sizeof (mac_propval_range_t));
3308 
3309 	switch (id) {
3310 	case MAC_PROP_ZONE:
3311 		minsize = sizeof (dld_ioc_zid_t);
3312 		break;
3313 	case MAC_PROP_AUTOPUSH:
3314 		if (valsize != 0)
3315 			minsize = sizeof (struct dlautopush);
3316 		break;
3317 	case MAC_PROP_TAGMODE:
3318 		minsize = sizeof (link_tagmode_t);
3319 		break;
3320 	case MAC_PROP_RESOURCE:
3321 	case MAC_PROP_RESOURCE_EFF:
3322 		minsize = sizeof (mac_resource_props_t);
3323 		break;
3324 	case MAC_PROP_DUPLEX:
3325 		minsize = sizeof (link_duplex_t);
3326 		break;
3327 	case MAC_PROP_SPEED:
3328 		minsize = sizeof (uint64_t);
3329 		break;
3330 	case MAC_PROP_STATUS:
3331 		minsize = sizeof (link_state_t);
3332 		break;
3333 	case MAC_PROP_AUTONEG:
3334 	case MAC_PROP_EN_AUTONEG:
3335 		minsize = sizeof (uint8_t);
3336 		break;
3337 	case MAC_PROP_MTU:
3338 	case MAC_PROP_LLIMIT:
3339 	case MAC_PROP_LDECAY:
3340 		minsize = sizeof (uint32_t);
3341 		break;
3342 	case MAC_PROP_FLOWCTRL:
3343 		minsize = sizeof (link_flowctrl_t);
3344 		break;
3345 	case MAC_PROP_ADV_FEC_CAP:
3346 	case MAC_PROP_EN_FEC_CAP:
3347 		minsize = sizeof (link_fec_t);
3348 		break;
3349 	case MAC_PROP_ADV_5000FDX_CAP:
3350 	case MAC_PROP_EN_5000FDX_CAP:
3351 	case MAC_PROP_ADV_2500FDX_CAP:
3352 	case MAC_PROP_EN_2500FDX_CAP:
3353 	case MAC_PROP_ADV_100GFDX_CAP:
3354 	case MAC_PROP_EN_100GFDX_CAP:
3355 	case MAC_PROP_ADV_50GFDX_CAP:
3356 	case MAC_PROP_EN_50GFDX_CAP:
3357 	case MAC_PROP_ADV_40GFDX_CAP:
3358 	case MAC_PROP_EN_40GFDX_CAP:
3359 	case MAC_PROP_ADV_25GFDX_CAP:
3360 	case MAC_PROP_EN_25GFDX_CAP:
3361 	case MAC_PROP_ADV_10GFDX_CAP:
3362 	case MAC_PROP_EN_10GFDX_CAP:
3363 	case MAC_PROP_ADV_1000HDX_CAP:
3364 	case MAC_PROP_EN_1000HDX_CAP:
3365 	case MAC_PROP_ADV_100FDX_CAP:
3366 	case MAC_PROP_EN_100FDX_CAP:
3367 	case MAC_PROP_ADV_100HDX_CAP:
3368 	case MAC_PROP_EN_100HDX_CAP:
3369 	case MAC_PROP_ADV_10FDX_CAP:
3370 	case MAC_PROP_EN_10FDX_CAP:
3371 	case MAC_PROP_ADV_10HDX_CAP:
3372 	case MAC_PROP_EN_10HDX_CAP:
3373 	case MAC_PROP_ADV_100T4_CAP:
3374 	case MAC_PROP_EN_100T4_CAP:
3375 		minsize = sizeof (uint8_t);
3376 		break;
3377 	case MAC_PROP_PVID:
3378 		minsize = sizeof (uint16_t);
3379 		break;
3380 	case MAC_PROP_IPTUN_HOPLIMIT:
3381 		minsize = sizeof (uint32_t);
3382 		break;
3383 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3384 		minsize = sizeof (uint32_t);
3385 		break;
3386 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3387 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3388 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3389 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3390 		minsize = sizeof (uint_t);
3391 		break;
3392 	case MAC_PROP_WL_ESSID:
3393 		minsize = sizeof (wl_linkstatus_t);
3394 		break;
3395 	case MAC_PROP_WL_BSSID:
3396 		minsize = sizeof (wl_bssid_t);
3397 		break;
3398 	case MAC_PROP_WL_BSSTYPE:
3399 		minsize = sizeof (wl_bss_type_t);
3400 		break;
3401 	case MAC_PROP_WL_LINKSTATUS:
3402 		minsize = sizeof (wl_linkstatus_t);
3403 		break;
3404 	case MAC_PROP_WL_DESIRED_RATES:
3405 		minsize = sizeof (wl_rates_t);
3406 		break;
3407 	case MAC_PROP_WL_SUPPORTED_RATES:
3408 		minsize = sizeof (wl_rates_t);
3409 		break;
3410 	case MAC_PROP_WL_AUTH_MODE:
3411 		minsize = sizeof (wl_authmode_t);
3412 		break;
3413 	case MAC_PROP_WL_ENCRYPTION:
3414 		minsize = sizeof (wl_encryption_t);
3415 		break;
3416 	case MAC_PROP_WL_RSSI:
3417 		minsize = sizeof (wl_rssi_t);
3418 		break;
3419 	case MAC_PROP_WL_PHY_CONFIG:
3420 		minsize = sizeof (wl_phy_conf_t);
3421 		break;
3422 	case MAC_PROP_WL_CAPABILITY:
3423 		minsize = sizeof (wl_capability_t);
3424 		break;
3425 	case MAC_PROP_WL_WPA:
3426 		minsize = sizeof (wl_wpa_t);
3427 		break;
3428 	case MAC_PROP_WL_SCANRESULTS:
3429 		minsize = sizeof (wl_wpa_ess_t);
3430 		break;
3431 	case MAC_PROP_WL_POWER_MODE:
3432 		minsize = sizeof (wl_ps_mode_t);
3433 		break;
3434 	case MAC_PROP_WL_RADIO:
3435 		minsize = sizeof (wl_radio_t);
3436 		break;
3437 	case MAC_PROP_WL_ESS_LIST:
3438 		minsize = sizeof (wl_ess_list_t);
3439 		break;
3440 	case MAC_PROP_WL_KEY_TAB:
3441 		minsize = sizeof (wl_wep_key_tab_t);
3442 		break;
3443 	case MAC_PROP_WL_CREATE_IBSS:
3444 		minsize = sizeof (wl_create_ibss_t);
3445 		break;
3446 	case MAC_PROP_WL_SETOPTIE:
3447 		minsize = sizeof (wl_wpa_ie_t);
3448 		break;
3449 	case MAC_PROP_WL_DELKEY:
3450 		minsize = sizeof (wl_del_key_t);
3451 		break;
3452 	case MAC_PROP_WL_KEY:
3453 		minsize = sizeof (wl_key_t);
3454 		break;
3455 	case MAC_PROP_WL_MLME:
3456 		minsize = sizeof (wl_mlme_t);
3457 		break;
3458 	case MAC_PROP_VN_PROMISC_FILTERED:
3459 		minsize = sizeof (boolean_t);
3460 		break;
3461 	}
3462 
3463 	return (valsize >= minsize);
3464 }
3465 
3466 /*
3467  * mac_set_prop() sets MAC or hardware driver properties:
3468  *
3469  * - MAC-managed properties such as resource properties include maxbw,
3470  *   priority, and cpu binding list, as well as the default port VID
3471  *   used by bridging. These properties are consumed by the MAC layer
3472  *   itself and not passed down to the driver. For resource control
3473  *   properties, this function invokes mac_set_resources() which will
3474  *   cache the property value in mac_impl_t and may call
3475  *   mac_client_set_resource() to update property value of the primary
3476  *   mac client, if it exists.
3477  *
3478  * - Properties which act on the hardware and must be passed to the
3479  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3480  */
3481 int
3482 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3483     uint_t valsize)
3484 {
3485 	int err = ENOTSUP;
3486 	mac_impl_t *mip = (mac_impl_t *)mh;
3487 
3488 	ASSERT(MAC_PERIM_HELD(mh));
3489 
3490 	switch (id) {
3491 	case MAC_PROP_RESOURCE: {
3492 		mac_resource_props_t *mrp;
3493 
3494 		/* call mac_set_resources() for MAC properties */
3495 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3496 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3497 		bcopy(val, mrp, sizeof (*mrp));
3498 		err = mac_set_resources(mh, mrp);
3499 		kmem_free(mrp, sizeof (*mrp));
3500 		break;
3501 	}
3502 
3503 	case MAC_PROP_PVID:
3504 		ASSERT(valsize >= sizeof (uint16_t));
3505 		if (mip->mi_state_flags & MIS_IS_VNIC)
3506 			return (EINVAL);
3507 		err = mac_set_pvid(mh, *(uint16_t *)val);
3508 		break;
3509 
3510 	case MAC_PROP_MTU: {
3511 		uint32_t mtu;
3512 
3513 		ASSERT(valsize >= sizeof (uint32_t));
3514 		bcopy(val, &mtu, sizeof (mtu));
3515 		err = mac_set_mtu(mh, mtu, NULL);
3516 		break;
3517 	}
3518 
3519 	case MAC_PROP_LLIMIT:
3520 	case MAC_PROP_LDECAY: {
3521 		uint32_t learnval;
3522 
3523 		if (valsize < sizeof (learnval) ||
3524 		    (mip->mi_state_flags & MIS_IS_VNIC))
3525 			return (EINVAL);
3526 		bcopy(val, &learnval, sizeof (learnval));
3527 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3528 			return (EINVAL);
3529 		if (id == MAC_PROP_LLIMIT)
3530 			mip->mi_llimit = learnval;
3531 		else
3532 			mip->mi_ldecay = learnval;
3533 		err = 0;
3534 		break;
3535 	}
3536 
3537 	case MAC_PROP_ADV_FEC_CAP:
3538 	case MAC_PROP_EN_FEC_CAP: {
3539 		link_fec_t fec;
3540 
3541 		ASSERT(valsize >= sizeof (link_fec_t));
3542 
3543 		/*
3544 		 * fec cannot be zero, and auto must be set exclusively.
3545 		 */
3546 		bcopy(val, &fec, sizeof (link_fec_t));
3547 		if (fec == 0)
3548 			return (EINVAL);
3549 		if ((fec & LINK_FEC_AUTO) != 0 && (fec & ~LINK_FEC_AUTO) != 0)
3550 			return (EINVAL);
3551 
3552 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3553 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3554 			    name, id, valsize, val);
3555 		}
3556 		break;
3557 	}
3558 
3559 	default:
3560 		/* For other driver properties, call driver's callback */
3561 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3562 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3563 			    name, id, valsize, val);
3564 		}
3565 	}
3566 	return (err);
3567 }
3568 
3569 /*
3570  * mac_get_prop() gets MAC or device driver properties.
3571  *
3572  * If the property is a driver property, mac_get_prop() calls driver's callback
3573  * entry point to get it.
3574  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3575  * which returns the cached value in mac_impl_t.
3576  */
3577 int
3578 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3579     uint_t valsize)
3580 {
3581 	int err = ENOTSUP;
3582 	mac_impl_t *mip = (mac_impl_t *)mh;
3583 	uint_t	rings;
3584 	uint_t	vlinks;
3585 
3586 	bzero(val, valsize);
3587 
3588 	switch (id) {
3589 	case MAC_PROP_RESOURCE: {
3590 		mac_resource_props_t *mrp;
3591 
3592 		/* If mac property, read from cache */
3593 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3594 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3595 		mac_get_resources(mh, mrp);
3596 		bcopy(mrp, val, sizeof (*mrp));
3597 		kmem_free(mrp, sizeof (*mrp));
3598 		return (0);
3599 	}
3600 	case MAC_PROP_RESOURCE_EFF: {
3601 		mac_resource_props_t *mrp;
3602 
3603 		/* If mac effective property, read from client */
3604 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3605 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3606 		mac_get_effective_resources(mh, mrp);
3607 		bcopy(mrp, val, sizeof (*mrp));
3608 		kmem_free(mrp, sizeof (*mrp));
3609 		return (0);
3610 	}
3611 
3612 	case MAC_PROP_PVID:
3613 		ASSERT(valsize >= sizeof (uint16_t));
3614 		if (mip->mi_state_flags & MIS_IS_VNIC)
3615 			return (EINVAL);
3616 		*(uint16_t *)val = mac_get_pvid(mh);
3617 		return (0);
3618 
3619 	case MAC_PROP_LLIMIT:
3620 	case MAC_PROP_LDECAY:
3621 		ASSERT(valsize >= sizeof (uint32_t));
3622 		if (mip->mi_state_flags & MIS_IS_VNIC)
3623 			return (EINVAL);
3624 		if (id == MAC_PROP_LLIMIT)
3625 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3626 		else
3627 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3628 		return (0);
3629 
3630 	case MAC_PROP_MTU: {
3631 		uint32_t sdu;
3632 
3633 		ASSERT(valsize >= sizeof (uint32_t));
3634 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3635 		bcopy(&sdu, val, sizeof (sdu));
3636 
3637 		return (0);
3638 	}
3639 	case MAC_PROP_STATUS: {
3640 		link_state_t link_state;
3641 
3642 		if (valsize < sizeof (link_state))
3643 			return (EINVAL);
3644 		link_state = mac_link_get(mh);
3645 		bcopy(&link_state, val, sizeof (link_state));
3646 
3647 		return (0);
3648 	}
3649 
3650 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3651 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3652 		ASSERT(valsize >= sizeof (uint_t));
3653 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3654 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3655 		bcopy(&rings, val, sizeof (uint_t));
3656 		return (0);
3657 
3658 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3659 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3660 		ASSERT(valsize >= sizeof (uint_t));
3661 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3662 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3663 		bcopy(&vlinks, val, sizeof (uint_t));
3664 		return (0);
3665 
3666 	case MAC_PROP_RXRINGSRANGE:
3667 	case MAC_PROP_TXRINGSRANGE:
3668 		/*
3669 		 * The value for these properties are returned through
3670 		 * the MAC_PROP_RESOURCE property.
3671 		 */
3672 		return (0);
3673 
3674 	default:
3675 		break;
3676 
3677 	}
3678 
3679 	/* If driver property, request from driver */
3680 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3681 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3682 		    valsize, val);
3683 	}
3684 
3685 	return (err);
3686 }
3687 
3688 /*
3689  * Helper function to initialize the range structure for use in
3690  * mac_get_prop. If the type can be other than uint32, we can
3691  * pass that as an arg.
3692  */
3693 static void
3694 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3695 {
3696 	range->mpr_count = 1;
3697 	range->mpr_type = MAC_PROPVAL_UINT32;
3698 	range->mpr_range_uint32[0].mpur_min = min;
3699 	range->mpr_range_uint32[0].mpur_max = max;
3700 }
3701 
3702 /*
3703  * Returns information about the specified property, such as default
3704  * values or permissions.
3705  */
3706 int
3707 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3708     void *default_val, uint_t default_size, mac_propval_range_t *range,
3709     uint_t *perm)
3710 {
3711 	mac_prop_info_state_t state;
3712 	mac_impl_t *mip = (mac_impl_t *)mh;
3713 	uint_t	max;
3714 
3715 	/*
3716 	 * A property is read/write by default unless the driver says
3717 	 * otherwise.
3718 	 */
3719 	if (perm != NULL)
3720 		*perm = MAC_PROP_PERM_RW;
3721 
3722 	if (default_val != NULL)
3723 		bzero(default_val, default_size);
3724 
3725 	/*
3726 	 * First, handle framework properties for which we don't need to
3727 	 * involve the driver.
3728 	 */
3729 	switch (id) {
3730 	case MAC_PROP_RESOURCE:
3731 	case MAC_PROP_PVID:
3732 	case MAC_PROP_LLIMIT:
3733 	case MAC_PROP_LDECAY:
3734 		return (0);
3735 
3736 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3737 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3738 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3739 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3740 		if (perm != NULL)
3741 			*perm = MAC_PROP_PERM_READ;
3742 		return (0);
3743 
3744 	case MAC_PROP_RXRINGSRANGE:
3745 	case MAC_PROP_TXRINGSRANGE:
3746 		/*
3747 		 * Currently, we support range for RX and TX rings properties.
3748 		 * When we extend this support to maxbw, cpus and priority,
3749 		 * we should move this to mac_get_resources.
3750 		 * There is no default value for RX or TX rings.
3751 		 */
3752 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3753 		    mac_is_vnic_primary(mh)) {
3754 			/*
3755 			 * We don't support setting rings for a VLAN
3756 			 * data link because it shares its ring with the
3757 			 * primary MAC client.
3758 			 */
3759 			if (perm != NULL)
3760 				*perm = MAC_PROP_PERM_READ;
3761 			if (range != NULL)
3762 				range->mpr_count = 0;
3763 		} else if (range != NULL) {
3764 			if (mip->mi_state_flags & MIS_IS_VNIC)
3765 				mh = mac_get_lower_mac_handle(mh);
3766 			mip = (mac_impl_t *)mh;
3767 			if ((id == MAC_PROP_RXRINGSRANGE &&
3768 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3769 			    (id == MAC_PROP_TXRINGSRANGE &&
3770 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3771 				if (id == MAC_PROP_RXRINGSRANGE) {
3772 					if ((mac_rxhwlnksavail_get(mh) +
3773 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3774 						/*
3775 						 * doesn't support groups or
3776 						 * rings
3777 						 */
3778 						range->mpr_count = 0;
3779 					} else {
3780 						/*
3781 						 * supports specifying groups,
3782 						 * but not rings
3783 						 */
3784 						_mac_set_range(range, 0, 0);
3785 					}
3786 				} else {
3787 					if ((mac_txhwlnksavail_get(mh) +
3788 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3789 						/*
3790 						 * doesn't support groups or
3791 						 * rings
3792 						 */
3793 						range->mpr_count = 0;
3794 					} else {
3795 						/*
3796 						 * supports specifying groups,
3797 						 * but not rings
3798 						 */
3799 						_mac_set_range(range, 0, 0);
3800 					}
3801 				}
3802 			} else {
3803 				max = id == MAC_PROP_RXRINGSRANGE ?
3804 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3805 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3806 				if (max <= 1) {
3807 					/*
3808 					 * doesn't support groups or
3809 					 * rings
3810 					 */
3811 					range->mpr_count = 0;
3812 				} else  {
3813 					/*
3814 					 * -1 because we have to leave out the
3815 					 * default ring.
3816 					 */
3817 					_mac_set_range(range, 1, max - 1);
3818 				}
3819 			}
3820 		}
3821 		return (0);
3822 
3823 	case MAC_PROP_STATUS:
3824 		if (perm != NULL)
3825 			*perm = MAC_PROP_PERM_READ;
3826 		return (0);
3827 	}
3828 
3829 	/*
3830 	 * Get the property info from the driver if it implements the
3831 	 * property info entry point.
3832 	 */
3833 	bzero(&state, sizeof (state));
3834 
3835 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3836 		state.pr_default = default_val;
3837 		state.pr_default_size = default_size;
3838 
3839 		/*
3840 		 * The caller specifies the maximum number of ranges
3841 		 * it can accomodate using mpr_count. We don't touch
3842 		 * this value until the driver returns from its
3843 		 * mc_propinfo() callback, and ensure we don't exceed
3844 		 * this number of range as the driver defines
3845 		 * supported range from its mc_propinfo().
3846 		 *
3847 		 * pr_range_cur_count keeps track of how many ranges
3848 		 * were defined by the driver from its mc_propinfo()
3849 		 * entry point.
3850 		 *
3851 		 * On exit, the user-specified range mpr_count returns
3852 		 * the number of ranges specified by the driver on
3853 		 * success, or the number of ranges it wanted to
3854 		 * define if that number of ranges could not be
3855 		 * accomodated by the specified range structure.  In
3856 		 * the latter case, the caller will be able to
3857 		 * allocate a larger range structure, and query the
3858 		 * property again.
3859 		 */
3860 		state.pr_range_cur_count = 0;
3861 		state.pr_range = range;
3862 
3863 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3864 		    (mac_prop_info_handle_t)&state);
3865 
3866 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3867 			range->mpr_count = state.pr_range_cur_count;
3868 
3869 		/*
3870 		 * The operation could fail if the buffer supplied by
3871 		 * the user was too small for the range or default
3872 		 * value of the property.
3873 		 */
3874 		if (state.pr_errno != 0)
3875 			return (state.pr_errno);
3876 
3877 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3878 			*perm = state.pr_perm;
3879 	}
3880 
3881 	/*
3882 	 * The MAC layer may want to provide default values or allowed
3883 	 * ranges for properties if the driver does not provide a
3884 	 * property info entry point, or that entry point exists, but
3885 	 * it did not provide a default value or allowed ranges for
3886 	 * that property.
3887 	 */
3888 	switch (id) {
3889 	case MAC_PROP_MTU: {
3890 		uint32_t sdu;
3891 
3892 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3893 
3894 		if (range != NULL && !(state.pr_flags &
3895 		    MAC_PROP_INFO_RANGE)) {
3896 			/* MTU range */
3897 			_mac_set_range(range, sdu, sdu);
3898 		}
3899 
3900 		if (default_val != NULL && !(state.pr_flags &
3901 		    MAC_PROP_INFO_DEFAULT)) {
3902 			if (mip->mi_info.mi_media == DL_ETHER)
3903 				sdu = ETHERMTU;
3904 			/* default MTU value */
3905 			bcopy(&sdu, default_val, sizeof (sdu));
3906 		}
3907 	}
3908 	}
3909 
3910 	return (0);
3911 }
3912 
3913 int
3914 mac_fastpath_disable(mac_handle_t mh)
3915 {
3916 	mac_impl_t	*mip = (mac_impl_t *)mh;
3917 
3918 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3919 		return (0);
3920 
3921 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3922 }
3923 
3924 void
3925 mac_fastpath_enable(mac_handle_t mh)
3926 {
3927 	mac_impl_t	*mip = (mac_impl_t *)mh;
3928 
3929 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3930 		return;
3931 
3932 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3933 }
3934 
3935 void
3936 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3937 {
3938 	uint_t nprops, i;
3939 
3940 	if (priv_props == NULL)
3941 		return;
3942 
3943 	nprops = 0;
3944 	while (priv_props[nprops] != NULL)
3945 		nprops++;
3946 	if (nprops == 0)
3947 		return;
3948 
3949 
3950 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3951 
3952 	for (i = 0; i < nprops; i++) {
3953 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3954 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3955 		    MAXLINKPROPNAME);
3956 	}
3957 
3958 	mip->mi_priv_prop_count = nprops;
3959 }
3960 
3961 void
3962 mac_unregister_priv_prop(mac_impl_t *mip)
3963 {
3964 	uint_t i;
3965 
3966 	if (mip->mi_priv_prop_count == 0) {
3967 		ASSERT(mip->mi_priv_prop == NULL);
3968 		return;
3969 	}
3970 
3971 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3972 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3973 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3974 	    sizeof (char *));
3975 
3976 	mip->mi_priv_prop = NULL;
3977 	mip->mi_priv_prop_count = 0;
3978 }
3979 
3980 /*
3981  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3982  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3983  * cases if MAC free's the ring structure after mac_stop_ring(), any
3984  * illegal access to the ring structure coming from the driver will panic
3985  * the system. In order to protect the system from such inadverent access,
3986  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3987  * When packets are received on free'd up rings, MAC (through the generation
3988  * count mechanism) will drop such packets.
3989  */
3990 static mac_ring_t *
3991 mac_ring_alloc(mac_impl_t *mip)
3992 {
3993 	mac_ring_t *ring;
3994 
3995 	mutex_enter(&mip->mi_ring_lock);
3996 	if (mip->mi_ring_freelist != NULL) {
3997 		ring = mip->mi_ring_freelist;
3998 		mip->mi_ring_freelist = ring->mr_next;
3999 		bzero(ring, sizeof (mac_ring_t));
4000 		mutex_exit(&mip->mi_ring_lock);
4001 	} else {
4002 		mutex_exit(&mip->mi_ring_lock);
4003 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
4004 	}
4005 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
4006 	return (ring);
4007 }
4008 
4009 static void
4010 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
4011 {
4012 	ASSERT(ring->mr_state == MR_FREE);
4013 
4014 	mutex_enter(&mip->mi_ring_lock);
4015 	ring->mr_state = MR_FREE;
4016 	ring->mr_flag = 0;
4017 	ring->mr_next = mip->mi_ring_freelist;
4018 	ring->mr_mip = NULL;
4019 	mip->mi_ring_freelist = ring;
4020 	mac_ring_stat_delete(ring);
4021 	mutex_exit(&mip->mi_ring_lock);
4022 }
4023 
4024 static void
4025 mac_ring_freeall(mac_impl_t *mip)
4026 {
4027 	mac_ring_t *ring_next;
4028 	mutex_enter(&mip->mi_ring_lock);
4029 	mac_ring_t *ring = mip->mi_ring_freelist;
4030 	while (ring != NULL) {
4031 		ring_next = ring->mr_next;
4032 		kmem_cache_free(mac_ring_cache, ring);
4033 		ring = ring_next;
4034 	}
4035 	mip->mi_ring_freelist = NULL;
4036 	mutex_exit(&mip->mi_ring_lock);
4037 }
4038 
4039 int
4040 mac_start_ring(mac_ring_t *ring)
4041 {
4042 	int rv = 0;
4043 
4044 	ASSERT(ring->mr_state == MR_FREE);
4045 
4046 	if (ring->mr_start != NULL) {
4047 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
4048 		if (rv != 0)
4049 			return (rv);
4050 	}
4051 
4052 	ring->mr_state = MR_INUSE;
4053 	return (rv);
4054 }
4055 
4056 void
4057 mac_stop_ring(mac_ring_t *ring)
4058 {
4059 	ASSERT(ring->mr_state == MR_INUSE);
4060 
4061 	if (ring->mr_stop != NULL)
4062 		ring->mr_stop(ring->mr_driver);
4063 
4064 	ring->mr_state = MR_FREE;
4065 
4066 	/*
4067 	 * Increment the ring generation number for this ring.
4068 	 */
4069 	ring->mr_gen_num++;
4070 }
4071 
4072 int
4073 mac_start_group(mac_group_t *group)
4074 {
4075 	int rv = 0;
4076 
4077 	if (group->mrg_start != NULL)
4078 		rv = group->mrg_start(group->mrg_driver);
4079 
4080 	return (rv);
4081 }
4082 
4083 void
4084 mac_stop_group(mac_group_t *group)
4085 {
4086 	if (group->mrg_stop != NULL)
4087 		group->mrg_stop(group->mrg_driver);
4088 }
4089 
4090 /*
4091  * Called from mac_start() on the default Rx group. Broadcast and multicast
4092  * packets are received only on the default group. Hence the default group
4093  * needs to be up even if the primary client is not up, for the other groups
4094  * to be functional. We do this by calling this function at mac_start time
4095  * itself. However the broadcast packets that are received can't make their
4096  * way beyond mac_rx until a mac client creates a broadcast flow.
4097  */
4098 static int
4099 mac_start_group_and_rings(mac_group_t *group)
4100 {
4101 	mac_ring_t	*ring;
4102 	int		rv = 0;
4103 
4104 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
4105 	if ((rv = mac_start_group(group)) != 0)
4106 		return (rv);
4107 
4108 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4109 		ASSERT(ring->mr_state == MR_FREE);
4110 
4111 		if ((rv = mac_start_ring(ring)) != 0)
4112 			goto error;
4113 
4114 		/*
4115 		 * When aggr_set_port_sdu() is called, it will remove
4116 		 * the port client's unicast address. This will cause
4117 		 * MAC to stop the default group's rings on the port
4118 		 * MAC. After it modifies the SDU, it will then re-add
4119 		 * the unicast address. At which time, this function is
4120 		 * called to start the default group's rings. Normally
4121 		 * this function would set the classify type to
4122 		 * MAC_SW_CLASSIFIER; but that will break aggr which
4123 		 * relies on the passthru classify mode being set for
4124 		 * correct delivery (see mac_rx_common()). To avoid
4125 		 * that, we check for a passthru callback and set the
4126 		 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was
4127 		 * before the rings were stopped.
4128 		 */
4129 		ring->mr_classify_type = (ring->mr_pt_fn != NULL) ?
4130 		    MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER;
4131 	}
4132 	return (0);
4133 
4134 error:
4135 	mac_stop_group_and_rings(group);
4136 	return (rv);
4137 }
4138 
4139 /* Called from mac_stop on the default Rx group */
4140 static void
4141 mac_stop_group_and_rings(mac_group_t *group)
4142 {
4143 	mac_ring_t	*ring;
4144 
4145 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4146 		if (ring->mr_state != MR_FREE) {
4147 			mac_stop_ring(ring);
4148 			ring->mr_flag = 0;
4149 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
4150 		}
4151 	}
4152 	mac_stop_group(group);
4153 }
4154 
4155 
4156 static mac_ring_t *
4157 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
4158     mac_capab_rings_t *cap_rings)
4159 {
4160 	mac_ring_t *ring, *rnext;
4161 	mac_ring_info_t ring_info;
4162 	ddi_intr_handle_t ddi_handle;
4163 
4164 	ring = mac_ring_alloc(mip);
4165 
4166 	/* Prepare basic information of ring */
4167 
4168 	/*
4169 	 * Ring index is numbered to be unique across a particular device.
4170 	 * Ring index computation makes following assumptions:
4171 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
4172 	 *	ring index exchanged with the driver (e.g. during mr_rget)
4173 	 *	is unique only across the group the ring belongs to.
4174 	 *	- Drivers with dynamic grouping (e.g. nxge), start
4175 	 *	with single group (mrg_index = 0).
4176 	 */
4177 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
4178 	ring->mr_type = group->mrg_type;
4179 	ring->mr_gh = (mac_group_handle_t)group;
4180 
4181 	/* Insert the new ring to the list. */
4182 	ring->mr_next = group->mrg_rings;
4183 	group->mrg_rings = ring;
4184 
4185 	/* Zero to reuse the info data structure */
4186 	bzero(&ring_info, sizeof (ring_info));
4187 
4188 	/* Query ring information from driver */
4189 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
4190 	    index, &ring_info, (mac_ring_handle_t)ring);
4191 
4192 	ring->mr_info = ring_info;
4193 
4194 	/*
4195 	 * The interrupt handle could be shared among multiple rings.
4196 	 * Thus if there is a bunch of rings that are sharing an
4197 	 * interrupt, then only one ring among the bunch will be made
4198 	 * available for interrupt re-targeting; the rest will have
4199 	 * ddi_shared flag set to TRUE and would not be available for
4200 	 * be interrupt re-targeting.
4201 	 */
4202 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
4203 		rnext = ring->mr_next;
4204 		while (rnext != NULL) {
4205 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
4206 			    ddi_handle) {
4207 				/*
4208 				 * If default ring (mr_index == 0) is part
4209 				 * of a group of rings sharing an
4210 				 * interrupt, then set ddi_shared flag for
4211 				 * the default ring and give another ring
4212 				 * the chance to be re-targeted.
4213 				 */
4214 				if (rnext->mr_index == 0 &&
4215 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
4216 					rnext->mr_info.mri_intr.mi_ddi_shared =
4217 					    B_TRUE;
4218 				} else {
4219 					ring->mr_info.mri_intr.mi_ddi_shared =
4220 					    B_TRUE;
4221 				}
4222 				break;
4223 			}
4224 			rnext = rnext->mr_next;
4225 		}
4226 		/*
4227 		 * If rnext is NULL, then no matching ddi_handle was found.
4228 		 * Rx rings get registered first. So if this is a Tx ring,
4229 		 * then go through all the Rx rings and see if there is a
4230 		 * matching ddi handle.
4231 		 */
4232 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
4233 			mac_compare_ddi_handle(mip->mi_rx_groups,
4234 			    mip->mi_rx_group_count, ring);
4235 		}
4236 	}
4237 
4238 	/* Update ring's status */
4239 	ring->mr_state = MR_FREE;
4240 	ring->mr_flag = 0;
4241 
4242 	/* Update the ring count of the group */
4243 	group->mrg_cur_count++;
4244 
4245 	/* Create per ring kstats */
4246 	if (ring->mr_stat != NULL) {
4247 		ring->mr_mip = mip;
4248 		mac_ring_stat_create(ring);
4249 	}
4250 
4251 	return (ring);
4252 }
4253 
4254 /*
4255  * Rings are chained together for easy regrouping.
4256  */
4257 static void
4258 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
4259     mac_capab_rings_t *cap_rings)
4260 {
4261 	int index;
4262 
4263 	/*
4264 	 * Initialize all ring members of this group. Size of zero will not
4265 	 * enter the loop, so it's safe for initializing an empty group.
4266 	 */
4267 	for (index = size - 1; index >= 0; index--)
4268 		(void) mac_init_ring(mip, group, index, cap_rings);
4269 }
4270 
4271 int
4272 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4273 {
4274 	mac_capab_rings_t	*cap_rings;
4275 	mac_group_t		*group;
4276 	mac_group_t		*groups;
4277 	mac_group_info_t	group_info;
4278 	uint_t			group_free = 0;
4279 	uint_t			ring_left;
4280 	mac_ring_t		*ring;
4281 	int			g;
4282 	int			err = 0;
4283 	uint_t			grpcnt;
4284 	boolean_t		pseudo_txgrp = B_FALSE;
4285 
4286 	switch (rtype) {
4287 	case MAC_RING_TYPE_RX:
4288 		ASSERT(mip->mi_rx_groups == NULL);
4289 
4290 		cap_rings = &mip->mi_rx_rings_cap;
4291 		cap_rings->mr_type = MAC_RING_TYPE_RX;
4292 		break;
4293 	case MAC_RING_TYPE_TX:
4294 		ASSERT(mip->mi_tx_groups == NULL);
4295 
4296 		cap_rings = &mip->mi_tx_rings_cap;
4297 		cap_rings->mr_type = MAC_RING_TYPE_TX;
4298 		break;
4299 	default:
4300 		ASSERT(B_FALSE);
4301 	}
4302 
4303 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
4304 		return (0);
4305 	grpcnt = cap_rings->mr_gnum;
4306 
4307 	/*
4308 	 * If we have multiple TX rings, but only one TX group, we can
4309 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
4310 	 * except for an aggr. For an aggr currently we maintain only
4311 	 * one group with all the rings (for all its ports), going
4312 	 * forwards we might change this.
4313 	 */
4314 	if (rtype == MAC_RING_TYPE_TX &&
4315 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
4316 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
4317 		/*
4318 		 * The -1 here is because we create a default TX group
4319 		 * with all the rings in it.
4320 		 */
4321 		grpcnt = cap_rings->mr_rnum - 1;
4322 		pseudo_txgrp = B_TRUE;
4323 	}
4324 
4325 	/*
4326 	 * Allocate a contiguous buffer for all groups.
4327 	 */
4328 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
4329 
4330 	ring_left = cap_rings->mr_rnum;
4331 
4332 	/*
4333 	 * Get all ring groups if any, and get their ring members
4334 	 * if any.
4335 	 */
4336 	for (g = 0; g < grpcnt; g++) {
4337 		group = groups + g;
4338 
4339 		/* Prepare basic information of the group */
4340 		group->mrg_index = g;
4341 		group->mrg_type = rtype;
4342 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
4343 		group->mrg_mh = (mac_handle_t)mip;
4344 		group->mrg_next = group + 1;
4345 
4346 		/* Zero to reuse the info data structure */
4347 		bzero(&group_info, sizeof (group_info));
4348 
4349 		if (pseudo_txgrp) {
4350 			/*
4351 			 * This is a pseudo group that we created, apart
4352 			 * from setting the state there is nothing to be
4353 			 * done.
4354 			 */
4355 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4356 			group_free++;
4357 			continue;
4358 		}
4359 		/* Query group information from driver */
4360 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4361 		    (mac_group_handle_t)group);
4362 
4363 		switch (cap_rings->mr_group_type) {
4364 		case MAC_GROUP_TYPE_DYNAMIC:
4365 			if (cap_rings->mr_gaddring == NULL ||
4366 			    cap_rings->mr_gremring == NULL) {
4367 				DTRACE_PROBE3(
4368 				    mac__init__rings_no_addremring,
4369 				    char *, mip->mi_name,
4370 				    mac_group_add_ring_t,
4371 				    cap_rings->mr_gaddring,
4372 				    mac_group_add_ring_t,
4373 				    cap_rings->mr_gremring);
4374 				err = EINVAL;
4375 				goto bail;
4376 			}
4377 
4378 			switch (rtype) {
4379 			case MAC_RING_TYPE_RX:
4380 				/*
4381 				 * The first RX group must have non-zero
4382 				 * rings, and the following groups must
4383 				 * have zero rings.
4384 				 */
4385 				if (g == 0 && group_info.mgi_count == 0) {
4386 					DTRACE_PROBE1(
4387 					    mac__init__rings__rx__def__zero,
4388 					    char *, mip->mi_name);
4389 					err = EINVAL;
4390 					goto bail;
4391 				}
4392 				if (g > 0 && group_info.mgi_count != 0) {
4393 					DTRACE_PROBE3(
4394 					    mac__init__rings__rx__nonzero,
4395 					    char *, mip->mi_name,
4396 					    int, g, int, group_info.mgi_count);
4397 					err = EINVAL;
4398 					goto bail;
4399 				}
4400 				break;
4401 			case MAC_RING_TYPE_TX:
4402 				/*
4403 				 * All TX ring groups must have zero rings.
4404 				 */
4405 				if (group_info.mgi_count != 0) {
4406 					DTRACE_PROBE3(
4407 					    mac__init__rings__tx__nonzero,
4408 					    char *, mip->mi_name,
4409 					    int, g, int, group_info.mgi_count);
4410 					err = EINVAL;
4411 					goto bail;
4412 				}
4413 				break;
4414 			}
4415 			break;
4416 		case MAC_GROUP_TYPE_STATIC:
4417 			/*
4418 			 * Note that an empty group is allowed, e.g., an aggr
4419 			 * would start with an empty group.
4420 			 */
4421 			break;
4422 		default:
4423 			/* unknown group type */
4424 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4425 			    char *, mip->mi_name,
4426 			    int, cap_rings->mr_group_type);
4427 			err = EINVAL;
4428 			goto bail;
4429 		}
4430 
4431 
4432 		/*
4433 		 * The driver must register some form of hardware MAC
4434 		 * filter in order for Rx groups to support multiple
4435 		 * MAC addresses.
4436 		 */
4437 		if (rtype == MAC_RING_TYPE_RX &&
4438 		    (group_info.mgi_addmac == NULL ||
4439 		    group_info.mgi_remmac == NULL)) {
4440 			DTRACE_PROBE1(mac__init__rings__no__mac__filter,
4441 			    char *, mip->mi_name);
4442 			err = EINVAL;
4443 			goto bail;
4444 		}
4445 
4446 		/* Cache driver-supplied information */
4447 		group->mrg_info = group_info;
4448 
4449 		/* Update the group's status and group count. */
4450 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4451 		group_free++;
4452 
4453 		group->mrg_rings = NULL;
4454 		group->mrg_cur_count = 0;
4455 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4456 		ring_left -= group_info.mgi_count;
4457 
4458 		/* The current group size should be equal to default value */
4459 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4460 	}
4461 
4462 	/* Build up a dummy group for free resources as a pool */
4463 	group = groups + grpcnt;
4464 
4465 	/* Prepare basic information of the group */
4466 	group->mrg_index = -1;
4467 	group->mrg_type = rtype;
4468 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4469 	group->mrg_mh = (mac_handle_t)mip;
4470 	group->mrg_next = NULL;
4471 
4472 	/*
4473 	 * If there are ungrouped rings, allocate a continuous buffer for
4474 	 * remaining resources.
4475 	 */
4476 	if (ring_left != 0) {
4477 		group->mrg_rings = NULL;
4478 		group->mrg_cur_count = 0;
4479 		mac_init_group(mip, group, ring_left, cap_rings);
4480 
4481 		/* The current group size should be equal to ring_left */
4482 		ASSERT(group->mrg_cur_count == ring_left);
4483 
4484 		ring_left = 0;
4485 
4486 		/* Update this group's status */
4487 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4488 	} else {
4489 		group->mrg_rings = NULL;
4490 	}
4491 
4492 	ASSERT(ring_left == 0);
4493 
4494 bail:
4495 
4496 	/* Cache other important information to finalize the initialization */
4497 	switch (rtype) {
4498 	case MAC_RING_TYPE_RX:
4499 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4500 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4501 		mip->mi_rx_groups = groups;
4502 		mip->mi_rx_donor_grp = groups;
4503 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4504 			/*
4505 			 * The default ring is reserved since it is
4506 			 * used for sending the broadcast etc. packets.
4507 			 */
4508 			mip->mi_rxrings_avail =
4509 			    mip->mi_rx_groups->mrg_cur_count - 1;
4510 			mip->mi_rxrings_rsvd = 1;
4511 		}
4512 		/*
4513 		 * The default group cannot be reserved. It is used by
4514 		 * all the clients that do not have an exclusive group.
4515 		 */
4516 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4517 		mip->mi_rxhwclnt_used = 1;
4518 		break;
4519 	case MAC_RING_TYPE_TX:
4520 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4521 		    cap_rings->mr_group_type;
4522 		mip->mi_tx_group_count = grpcnt;
4523 		mip->mi_tx_group_free = group_free;
4524 		mip->mi_tx_groups = groups;
4525 
4526 		group = groups + grpcnt;
4527 		ring = group->mrg_rings;
4528 		/*
4529 		 * The ring can be NULL in the case of aggr. Aggr will
4530 		 * have an empty Tx group which will get populated
4531 		 * later when pseudo Tx rings are added after
4532 		 * mac_register() is done.
4533 		 */
4534 		if (ring == NULL) {
4535 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4536 			/*
4537 			 * pass the group to aggr so it can add Tx
4538 			 * rings to the group later.
4539 			 */
4540 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4541 			    (mac_group_handle_t)group);
4542 			/*
4543 			 * Even though there are no rings at this time
4544 			 * (rings will come later), set the group
4545 			 * state to registered.
4546 			 */
4547 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4548 		} else {
4549 			/*
4550 			 * Ring 0 is used as the default one and it could be
4551 			 * assigned to a client as well.
4552 			 */
4553 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4554 				ring = ring->mr_next;
4555 			ASSERT(ring->mr_index == 0);
4556 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4557 		}
4558 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4559 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4560 			/*
4561 			 * The default ring cannot be reserved.
4562 			 */
4563 			mip->mi_txrings_rsvd = 1;
4564 		}
4565 		/*
4566 		 * The default group cannot be reserved. It will be shared
4567 		 * by clients that do not have an exclusive group.
4568 		 */
4569 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4570 		mip->mi_txhwclnt_used = 1;
4571 		break;
4572 	default:
4573 		ASSERT(B_FALSE);
4574 	}
4575 
4576 	if (err != 0)
4577 		mac_free_rings(mip, rtype);
4578 
4579 	return (err);
4580 }
4581 
4582 /*
4583  * The ddi interrupt handle could be shared amoung rings. If so, compare
4584  * the new ring's ddi handle with the existing ones and set ddi_shared
4585  * flag.
4586  */
4587 void
4588 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4589 {
4590 	mac_group_t *group;
4591 	mac_ring_t *ring;
4592 	ddi_intr_handle_t ddi_handle;
4593 	int g;
4594 
4595 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4596 	for (g = 0; g < grpcnt; g++) {
4597 		group = groups + g;
4598 		for (ring = group->mrg_rings; ring != NULL;
4599 		    ring = ring->mr_next) {
4600 			if (ring == cring)
4601 				continue;
4602 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4603 			    ddi_handle) {
4604 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4605 				    ring->mr_index == 0 &&
4606 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4607 					ring->mr_info.mri_intr.mi_ddi_shared =
4608 					    B_TRUE;
4609 				} else {
4610 					cring->mr_info.mri_intr.mi_ddi_shared =
4611 					    B_TRUE;
4612 				}
4613 				return;
4614 			}
4615 		}
4616 	}
4617 }
4618 
4619 /*
4620  * Called to free all groups of particular type (RX or TX). It's assumed that
4621  * no clients are using these groups.
4622  */
4623 void
4624 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4625 {
4626 	mac_group_t *group, *groups;
4627 	uint_t group_count;
4628 
4629 	switch (rtype) {
4630 	case MAC_RING_TYPE_RX:
4631 		if (mip->mi_rx_groups == NULL)
4632 			return;
4633 
4634 		groups = mip->mi_rx_groups;
4635 		group_count = mip->mi_rx_group_count;
4636 
4637 		mip->mi_rx_groups = NULL;
4638 		mip->mi_rx_donor_grp = NULL;
4639 		mip->mi_rx_group_count = 0;
4640 		break;
4641 	case MAC_RING_TYPE_TX:
4642 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4643 
4644 		if (mip->mi_tx_groups == NULL)
4645 			return;
4646 
4647 		groups = mip->mi_tx_groups;
4648 		group_count = mip->mi_tx_group_count;
4649 
4650 		mip->mi_tx_groups = NULL;
4651 		mip->mi_tx_group_count = 0;
4652 		mip->mi_tx_group_free = 0;
4653 		mip->mi_default_tx_ring = NULL;
4654 		break;
4655 	default:
4656 		ASSERT(B_FALSE);
4657 	}
4658 
4659 	for (group = groups; group != NULL; group = group->mrg_next) {
4660 		mac_ring_t *ring;
4661 
4662 		if (group->mrg_cur_count == 0)
4663 			continue;
4664 
4665 		ASSERT(group->mrg_rings != NULL);
4666 
4667 		while ((ring = group->mrg_rings) != NULL) {
4668 			group->mrg_rings = ring->mr_next;
4669 			mac_ring_free(mip, ring);
4670 		}
4671 	}
4672 
4673 	/* Free all the cached rings */
4674 	mac_ring_freeall(mip);
4675 	/* Free the block of group data strutures */
4676 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4677 }
4678 
4679 /*
4680  * Associate the VLAN filter to the receive group.
4681  */
4682 int
4683 mac_group_addvlan(mac_group_t *group, uint16_t vlan)
4684 {
4685 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4686 	VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL);
4687 
4688 	if (vlan > VLAN_ID_MAX)
4689 		return (EINVAL);
4690 
4691 	vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4692 	return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan));
4693 }
4694 
4695 /*
4696  * Dissociate the VLAN from the receive group.
4697  */
4698 int
4699 mac_group_remvlan(mac_group_t *group, uint16_t vlan)
4700 {
4701 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4702 	VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL);
4703 
4704 	if (vlan > VLAN_ID_MAX)
4705 		return (EINVAL);
4706 
4707 	vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4708 	return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan));
4709 }
4710 
4711 /*
4712  * Associate a MAC address with a receive group.
4713  *
4714  * The return value of this function should always be checked properly, because
4715  * any type of failure could cause unexpected results. A group can be added
4716  * or removed with a MAC address only after it has been reserved. Ideally,
4717  * a successful reservation always leads to calling mac_group_addmac() to
4718  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4719  * always imply that the group is functioning abnormally.
4720  *
4721  * Currently this function is called everywhere, and it reflects assumptions
4722  * about MAC addresses in the implementation. CR 6735196.
4723  */
4724 int
4725 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4726 {
4727 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4728 	VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL);
4729 
4730 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4731 }
4732 
4733 /*
4734  * Remove the association between MAC address and receive group.
4735  */
4736 int
4737 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4738 {
4739 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4740 	VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL);
4741 
4742 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4743 }
4744 
4745 /*
4746  * This is the entry point for packets transmitted through the bridge
4747  * code. If no bridge is in place, mac_ring_tx() transmits via the tx
4748  * ring. The 'rh' pointer may be NULL to select the default ring.
4749  */
4750 mblk_t *
4751 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4752 {
4753 	mac_handle_t mh;
4754 
4755 	/*
4756 	 * Once we take a reference on the bridge link, the bridge
4757 	 * module itself can't unload, so the callback pointers are
4758 	 * stable.
4759 	 */
4760 	mutex_enter(&mip->mi_bridge_lock);
4761 	if ((mh = mip->mi_bridge_link) != NULL)
4762 		mac_bridge_ref_cb(mh, B_TRUE);
4763 	mutex_exit(&mip->mi_bridge_lock);
4764 	if (mh == NULL) {
4765 		mp = mac_ring_tx((mac_handle_t)mip, rh, mp);
4766 	} else {
4767 		/*
4768 		 * The bridge may place this mblk on a provider's Tx
4769 		 * path, a mac's Rx path, or both. Since we don't have
4770 		 * enough information at this point, we can't be sure
4771 		 * that the destination(s) are capable of handling the
4772 		 * hardware offloads requested by the mblk. We emulate
4773 		 * them here as it is the safest choice. In the
4774 		 * future, if bridge performance becomes a priority,
4775 		 * we can elide the emulation here and leave the
4776 		 * choice up to bridge.
4777 		 *
4778 		 * We don't clear the DB_CKSUMFLAGS here because
4779 		 * HCK_IPV4_HDRCKSUM (Tx) and HCK_IPV4_HDRCKSUM_OK
4780 		 * (Rx) still have the same value. If the bridge
4781 		 * receives a packet from a HCKSUM_IPHDRCKSUM NIC then
4782 		 * the mac(s) it is forwarded on may calculate the
4783 		 * checksum again, but incorrectly (because the
4784 		 * checksum field is not zero). Until the
4785 		 * HCK_IPV4_HDRCKSUM/HCK_IPV4_HDRCKSUM_OK issue is
4786 		 * resovled, we leave the flag clearing in bridge
4787 		 * itself.
4788 		 */
4789 		if ((DB_CKSUMFLAGS(mp) & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) {
4790 			mac_hw_emul(&mp, NULL, NULL, MAC_ALL_EMULS);
4791 		}
4792 
4793 		mp = mac_bridge_tx_cb(mh, rh, mp);
4794 		mac_bridge_ref_cb(mh, B_FALSE);
4795 	}
4796 
4797 	return (mp);
4798 }
4799 
4800 /*
4801  * Find a ring from its index.
4802  */
4803 mac_ring_handle_t
4804 mac_find_ring(mac_group_handle_t gh, int index)
4805 {
4806 	mac_group_t *group = (mac_group_t *)gh;
4807 	mac_ring_t *ring = group->mrg_rings;
4808 
4809 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4810 		if (ring->mr_index == index)
4811 			break;
4812 
4813 	return ((mac_ring_handle_t)ring);
4814 }
4815 /*
4816  * Add a ring to an existing group.
4817  *
4818  * The ring must be either passed directly (for example if the ring
4819  * movement is initiated by the framework), or specified through a driver
4820  * index (for example when the ring is added by the driver.
4821  *
4822  * The caller needs to call mac_perim_enter() before calling this function.
4823  */
4824 int
4825 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4826 {
4827 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4828 	mac_capab_rings_t *cap_rings;
4829 	boolean_t driver_call = (ring == NULL);
4830 	mac_group_type_t group_type;
4831 	int ret = 0;
4832 	flow_entry_t *flent;
4833 
4834 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4835 
4836 	switch (group->mrg_type) {
4837 	case MAC_RING_TYPE_RX:
4838 		cap_rings = &mip->mi_rx_rings_cap;
4839 		group_type = mip->mi_rx_group_type;
4840 		break;
4841 	case MAC_RING_TYPE_TX:
4842 		cap_rings = &mip->mi_tx_rings_cap;
4843 		group_type = mip->mi_tx_group_type;
4844 		break;
4845 	default:
4846 		ASSERT(B_FALSE);
4847 	}
4848 
4849 	/*
4850 	 * There should be no ring with the same ring index in the target
4851 	 * group.
4852 	 */
4853 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4854 	    driver_call ? index : ring->mr_index) == NULL);
4855 
4856 	if (driver_call) {
4857 		/*
4858 		 * The function is called as a result of a request from
4859 		 * a driver to add a ring to an existing group, for example
4860 		 * from the aggregation driver. Allocate a new mac_ring_t
4861 		 * for that ring.
4862 		 */
4863 		ring = mac_init_ring(mip, group, index, cap_rings);
4864 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4865 	} else {
4866 		/*
4867 		 * The function is called as a result of a MAC layer request
4868 		 * to add a ring to an existing group. In this case the
4869 		 * ring is being moved between groups, which requires
4870 		 * the underlying driver to support dynamic grouping,
4871 		 * and the mac_ring_t already exists.
4872 		 */
4873 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4874 		ASSERT(group->mrg_driver == NULL ||
4875 		    cap_rings->mr_gaddring != NULL);
4876 		ASSERT(ring->mr_gh == NULL);
4877 	}
4878 
4879 	/*
4880 	 * At this point the ring should not be in use, and it should be
4881 	 * of the right for the target group.
4882 	 */
4883 	ASSERT(ring->mr_state < MR_INUSE);
4884 	ASSERT(ring->mr_srs == NULL);
4885 	ASSERT(ring->mr_type == group->mrg_type);
4886 
4887 	if (!driver_call) {
4888 		/*
4889 		 * Add the driver level hardware ring if the process was not
4890 		 * initiated by the driver, and the target group is not the
4891 		 * group.
4892 		 */
4893 		if (group->mrg_driver != NULL) {
4894 			cap_rings->mr_gaddring(group->mrg_driver,
4895 			    ring->mr_driver, ring->mr_type);
4896 		}
4897 
4898 		/*
4899 		 * Insert the ring ahead existing rings.
4900 		 */
4901 		ring->mr_next = group->mrg_rings;
4902 		group->mrg_rings = ring;
4903 		ring->mr_gh = (mac_group_handle_t)group;
4904 		group->mrg_cur_count++;
4905 	}
4906 
4907 	/*
4908 	 * If the group has not been actively used, we're done.
4909 	 */
4910 	if (group->mrg_index != -1 &&
4911 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4912 		return (0);
4913 
4914 	/*
4915 	 * Start the ring if needed. Failure causes to undo the grouping action.
4916 	 */
4917 	if (ring->mr_state != MR_INUSE) {
4918 		if ((ret = mac_start_ring(ring)) != 0) {
4919 			if (!driver_call) {
4920 				cap_rings->mr_gremring(group->mrg_driver,
4921 				    ring->mr_driver, ring->mr_type);
4922 			}
4923 			group->mrg_cur_count--;
4924 			group->mrg_rings = ring->mr_next;
4925 
4926 			ring->mr_gh = NULL;
4927 
4928 			if (driver_call)
4929 				mac_ring_free(mip, ring);
4930 
4931 			return (ret);
4932 		}
4933 	}
4934 
4935 	/*
4936 	 * Set up SRS/SR according to the ring type.
4937 	 */
4938 	switch (ring->mr_type) {
4939 	case MAC_RING_TYPE_RX:
4940 		/*
4941 		 * Setup an SRS on top of the new ring if the group is
4942 		 * reserved for someone's exclusive use.
4943 		 */
4944 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4945 			mac_client_impl_t *mcip =  MAC_GROUP_ONLY_CLIENT(group);
4946 
4947 			VERIFY3P(mcip, !=, NULL);
4948 			flent = mcip->mci_flent;
4949 			VERIFY3S(flent->fe_rx_srs_cnt, >, 0);
4950 			mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4951 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4952 			    mac_rx_deliver, mcip, NULL, NULL);
4953 		} else {
4954 			ring->mr_classify_type = MAC_SW_CLASSIFIER;
4955 		}
4956 		break;
4957 	case MAC_RING_TYPE_TX:
4958 	{
4959 		mac_grp_client_t	*mgcp = group->mrg_clients;
4960 		mac_client_impl_t	*mcip;
4961 		mac_soft_ring_set_t	*mac_srs;
4962 		mac_srs_tx_t		*tx;
4963 
4964 		if (MAC_GROUP_NO_CLIENT(group)) {
4965 			if (ring->mr_state == MR_INUSE)
4966 				mac_stop_ring(ring);
4967 			ring->mr_flag = 0;
4968 			break;
4969 		}
4970 		/*
4971 		 * If the rings are being moved to a group that has
4972 		 * clients using it, then add the new rings to the
4973 		 * clients SRS.
4974 		 */
4975 		while (mgcp != NULL) {
4976 			boolean_t	is_aggr;
4977 
4978 			mcip = mgcp->mgc_client;
4979 			flent = mcip->mci_flent;
4980 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4981 			mac_srs = MCIP_TX_SRS(mcip);
4982 			tx = &mac_srs->srs_tx;
4983 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4984 			/*
4985 			 * If we are  growing from 1 to multiple rings.
4986 			 */
4987 			if (tx->st_mode == SRS_TX_BW ||
4988 			    tx->st_mode == SRS_TX_SERIALIZE ||
4989 			    tx->st_mode == SRS_TX_DEFAULT) {
4990 				mac_ring_t	*tx_ring = tx->st_arg2;
4991 
4992 				tx->st_arg2 = NULL;
4993 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4994 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4995 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4996 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4997 					    SRS_TX_BW_FANOUT;
4998 				} else {
4999 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
5000 					    SRS_TX_FANOUT;
5001 				}
5002 				tx->st_func = mac_tx_get_func(tx->st_mode);
5003 			}
5004 			mac_tx_srs_add_ring(mac_srs, ring);
5005 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
5006 			    mac_rx_deliver, mcip, NULL, NULL);
5007 			mac_tx_client_restart((mac_client_handle_t)mcip);
5008 			mgcp = mgcp->mgc_next;
5009 		}
5010 		break;
5011 	}
5012 	default:
5013 		ASSERT(B_FALSE);
5014 	}
5015 	/*
5016 	 * For aggr, the default ring will be NULL to begin with. If it
5017 	 * is NULL, then pick the first ring that gets added as the
5018 	 * default ring. Any ring in an aggregation can be removed at
5019 	 * any time (by the user action of removing a link) and if the
5020 	 * current default ring gets removed, then a new one gets
5021 	 * picked (see i_mac_group_rem_ring()).
5022 	 */
5023 	if (mip->mi_state_flags & MIS_IS_AGGR &&
5024 	    mip->mi_default_tx_ring == NULL &&
5025 	    ring->mr_type == MAC_RING_TYPE_TX) {
5026 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
5027 	}
5028 
5029 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
5030 	return (0);
5031 }
5032 
5033 /*
5034  * Remove a ring from it's current group. MAC internal function for dynamic
5035  * grouping.
5036  *
5037  * The caller needs to call mac_perim_enter() before calling this function.
5038  */
5039 void
5040 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
5041     boolean_t driver_call)
5042 {
5043 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
5044 	mac_capab_rings_t *cap_rings = NULL;
5045 	mac_group_type_t group_type;
5046 
5047 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5048 
5049 	ASSERT(mac_find_ring((mac_group_handle_t)group,
5050 	    ring->mr_index) == (mac_ring_handle_t)ring);
5051 	ASSERT((mac_group_t *)ring->mr_gh == group);
5052 	ASSERT(ring->mr_type == group->mrg_type);
5053 
5054 	if (ring->mr_state == MR_INUSE)
5055 		mac_stop_ring(ring);
5056 	switch (ring->mr_type) {
5057 	case MAC_RING_TYPE_RX:
5058 		group_type = mip->mi_rx_group_type;
5059 		cap_rings = &mip->mi_rx_rings_cap;
5060 
5061 		/*
5062 		 * Only hardware classified packets hold a reference to the
5063 		 * ring all the way up the Rx path. mac_rx_srs_remove()
5064 		 * will take care of quiescing the Rx path and removing the
5065 		 * SRS. The software classified path neither holds a reference
5066 		 * nor any association with the ring in mac_rx.
5067 		 */
5068 		if (ring->mr_srs != NULL) {
5069 			mac_rx_srs_remove(ring->mr_srs);
5070 			ring->mr_srs = NULL;
5071 		}
5072 
5073 		break;
5074 	case MAC_RING_TYPE_TX:
5075 	{
5076 		mac_grp_client_t	*mgcp;
5077 		mac_client_impl_t	*mcip;
5078 		mac_soft_ring_set_t	*mac_srs;
5079 		mac_srs_tx_t		*tx;
5080 		mac_ring_t		*rem_ring;
5081 		mac_group_t		*defgrp;
5082 		uint_t			ring_info = 0;
5083 
5084 		/*
5085 		 * For TX this function is invoked in three
5086 		 * cases:
5087 		 *
5088 		 * 1) In the case of a failure during the
5089 		 * initial creation of a group when a share is
5090 		 * associated with a MAC client. So the SRS is not
5091 		 * yet setup, and will be setup later after the
5092 		 * group has been reserved and populated.
5093 		 *
5094 		 * 2) From mac_release_tx_group() when freeing
5095 		 * a TX SRS.
5096 		 *
5097 		 * 3) In the case of aggr, when a port gets removed,
5098 		 * the pseudo Tx rings that it exposed gets removed.
5099 		 *
5100 		 * In the first two cases the SRS and its soft
5101 		 * rings are already quiesced.
5102 		 */
5103 		if (driver_call) {
5104 			mac_client_impl_t *mcip;
5105 			mac_soft_ring_set_t *mac_srs;
5106 			mac_soft_ring_t *sringp;
5107 			mac_srs_tx_t *srs_tx;
5108 
5109 			if (mip->mi_state_flags & MIS_IS_AGGR &&
5110 			    mip->mi_default_tx_ring ==
5111 			    (mac_ring_handle_t)ring) {
5112 				/* pick a new default Tx ring */
5113 				mip->mi_default_tx_ring =
5114 				    (group->mrg_rings != ring) ?
5115 				    (mac_ring_handle_t)group->mrg_rings :
5116 				    (mac_ring_handle_t)(ring->mr_next);
5117 			}
5118 			/* Presently only aggr case comes here */
5119 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
5120 				break;
5121 
5122 			mcip = MAC_GROUP_ONLY_CLIENT(group);
5123 			ASSERT(mcip != NULL);
5124 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
5125 			mac_srs = MCIP_TX_SRS(mcip);
5126 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
5127 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
5128 			srs_tx = &mac_srs->srs_tx;
5129 			/*
5130 			 * Wakeup any callers blocked on this
5131 			 * Tx ring due to flow control.
5132 			 */
5133 			sringp = srs_tx->st_soft_rings[ring->mr_index];
5134 			ASSERT(sringp != NULL);
5135 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
5136 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
5137 			mac_tx_srs_del_ring(mac_srs, ring);
5138 			mac_tx_client_restart((mac_client_handle_t)mcip);
5139 			break;
5140 		}
5141 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
5142 		group_type = mip->mi_tx_group_type;
5143 		cap_rings = &mip->mi_tx_rings_cap;
5144 		/*
5145 		 * See if we need to take it out of the MAC clients using
5146 		 * this group
5147 		 */
5148 		if (MAC_GROUP_NO_CLIENT(group))
5149 			break;
5150 		mgcp = group->mrg_clients;
5151 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
5152 		while (mgcp != NULL) {
5153 			mcip = mgcp->mgc_client;
5154 			mac_srs = MCIP_TX_SRS(mcip);
5155 			tx = &mac_srs->srs_tx;
5156 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
5157 			/*
5158 			 * If we are here when removing rings from the
5159 			 * defgroup, mac_reserve_tx_ring would have
5160 			 * already deleted the ring from the MAC
5161 			 * clients in the group.
5162 			 */
5163 			if (group != defgrp) {
5164 				mac_tx_invoke_callbacks(mcip,
5165 				    (mac_tx_cookie_t)
5166 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
5167 				mac_tx_srs_del_ring(mac_srs, ring);
5168 			}
5169 			/*
5170 			 * Additionally, if  we are left with only
5171 			 * one ring in the group after this, we need
5172 			 * to modify the mode etc. to. (We haven't
5173 			 * yet taken the ring out, so we check with 2).
5174 			 */
5175 			if (group->mrg_cur_count == 2) {
5176 				if (ring->mr_next == NULL)
5177 					rem_ring = group->mrg_rings;
5178 				else
5179 					rem_ring = ring->mr_next;
5180 				mac_tx_invoke_callbacks(mcip,
5181 				    (mac_tx_cookie_t)
5182 				    mac_tx_srs_get_soft_ring(mac_srs,
5183 				    rem_ring));
5184 				mac_tx_srs_del_ring(mac_srs, rem_ring);
5185 				if (rem_ring->mr_state != MR_INUSE) {
5186 					(void) mac_start_ring(rem_ring);
5187 				}
5188 				tx->st_arg2 = (void *)rem_ring;
5189 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
5190 				ring_info = mac_hwring_getinfo(
5191 				    (mac_ring_handle_t)rem_ring);
5192 				/*
5193 				 * We are  shrinking from multiple
5194 				 * to 1 ring.
5195 				 */
5196 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
5197 					tx->st_mode = SRS_TX_BW;
5198 				} else if (mac_tx_serialize ||
5199 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
5200 					tx->st_mode = SRS_TX_SERIALIZE;
5201 				} else {
5202 					tx->st_mode = SRS_TX_DEFAULT;
5203 				}
5204 				tx->st_func = mac_tx_get_func(tx->st_mode);
5205 			}
5206 			mac_tx_client_restart((mac_client_handle_t)mcip);
5207 			mgcp = mgcp->mgc_next;
5208 		}
5209 		break;
5210 	}
5211 	default:
5212 		ASSERT(B_FALSE);
5213 	}
5214 
5215 	/*
5216 	 * Remove the ring from the group.
5217 	 */
5218 	if (ring == group->mrg_rings)
5219 		group->mrg_rings = ring->mr_next;
5220 	else {
5221 		mac_ring_t *pre;
5222 
5223 		pre = group->mrg_rings;
5224 		while (pre->mr_next != ring)
5225 			pre = pre->mr_next;
5226 		pre->mr_next = ring->mr_next;
5227 	}
5228 	group->mrg_cur_count--;
5229 
5230 	if (!driver_call) {
5231 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
5232 		ASSERT(group->mrg_driver == NULL ||
5233 		    cap_rings->mr_gremring != NULL);
5234 
5235 		/*
5236 		 * Remove the driver level hardware ring.
5237 		 */
5238 		if (group->mrg_driver != NULL) {
5239 			cap_rings->mr_gremring(group->mrg_driver,
5240 			    ring->mr_driver, ring->mr_type);
5241 		}
5242 	}
5243 
5244 	ring->mr_gh = NULL;
5245 	if (driver_call)
5246 		mac_ring_free(mip, ring);
5247 	else
5248 		ring->mr_flag = 0;
5249 }
5250 
5251 /*
5252  * Move a ring to the target group. If needed, remove the ring from the group
5253  * that it currently belongs to.
5254  *
5255  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
5256  */
5257 static int
5258 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
5259 {
5260 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
5261 	int rv;
5262 
5263 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5264 	ASSERT(d_group != NULL);
5265 	ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
5266 
5267 	if (s_group == d_group)
5268 		return (0);
5269 
5270 	/*
5271 	 * Remove it from current group first.
5272 	 */
5273 	if (s_group != NULL)
5274 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
5275 
5276 	/*
5277 	 * Add it to the new group.
5278 	 */
5279 	rv = i_mac_group_add_ring(d_group, ring, 0);
5280 	if (rv != 0) {
5281 		/*
5282 		 * Failed to add ring back to source group. If
5283 		 * that fails, the ring is stuck in limbo, log message.
5284 		 */
5285 		if (i_mac_group_add_ring(s_group, ring, 0)) {
5286 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
5287 			    mip->mi_name, (void *)ring);
5288 		}
5289 	}
5290 
5291 	return (rv);
5292 }
5293 
5294 /*
5295  * Find a MAC address according to its value.
5296  */
5297 mac_address_t *
5298 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
5299 {
5300 	mac_address_t *map;
5301 
5302 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5303 
5304 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
5305 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
5306 			break;
5307 	}
5308 
5309 	return (map);
5310 }
5311 
5312 /*
5313  * Check whether the MAC address is shared by multiple clients.
5314  */
5315 boolean_t
5316 mac_check_macaddr_shared(mac_address_t *map)
5317 {
5318 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
5319 
5320 	return (map->ma_nusers > 1);
5321 }
5322 
5323 /*
5324  * Remove the specified MAC address from the MAC address list and free it.
5325  */
5326 static void
5327 mac_free_macaddr(mac_address_t *map)
5328 {
5329 	mac_impl_t *mip = map->ma_mip;
5330 
5331 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5332 	VERIFY3P(mip->mi_addresses, !=, NULL);
5333 
5334 	VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5335 	VERIFY3P(map, !=, NULL);
5336 	VERIFY3S(map->ma_nusers, ==, 0);
5337 	VERIFY3P(map->ma_vlans, ==, NULL);
5338 
5339 	if (map == mip->mi_addresses) {
5340 		mip->mi_addresses = map->ma_next;
5341 	} else {
5342 		mac_address_t *pre;
5343 
5344 		pre = mip->mi_addresses;
5345 		while (pre->ma_next != map)
5346 			pre = pre->ma_next;
5347 		pre->ma_next = map->ma_next;
5348 	}
5349 
5350 	kmem_free(map, sizeof (mac_address_t));
5351 }
5352 
5353 static mac_vlan_t *
5354 mac_find_vlan(mac_address_t *map, uint16_t vid)
5355 {
5356 	mac_vlan_t *mvp;
5357 
5358 	for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) {
5359 		if (mvp->mv_vid == vid)
5360 			return (mvp);
5361 	}
5362 
5363 	return (NULL);
5364 }
5365 
5366 static mac_vlan_t *
5367 mac_add_vlan(mac_address_t *map, uint16_t vid)
5368 {
5369 	mac_vlan_t *mvp;
5370 
5371 	/*
5372 	 * We should never add the same {addr, VID} tuple more
5373 	 * than once, but let's be sure.
5374 	 */
5375 	for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next)
5376 		VERIFY3U(mvp->mv_vid, !=, vid);
5377 
5378 	/* Add the VLAN to the head of the VLAN list. */
5379 	mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP);
5380 	mvp->mv_vid = vid;
5381 	mvp->mv_next = map->ma_vlans;
5382 	map->ma_vlans = mvp;
5383 
5384 	return (mvp);
5385 }
5386 
5387 static void
5388 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp)
5389 {
5390 	mac_vlan_t *pre;
5391 
5392 	if (map->ma_vlans == mvp) {
5393 		map->ma_vlans = mvp->mv_next;
5394 	} else {
5395 		pre = map->ma_vlans;
5396 		while (pre->mv_next != mvp) {
5397 			pre = pre->mv_next;
5398 
5399 			/*
5400 			 * We've reached the end of the list without
5401 			 * finding mvp.
5402 			 */
5403 			VERIFY3P(pre, !=, NULL);
5404 		}
5405 		pre->mv_next = mvp->mv_next;
5406 	}
5407 
5408 	kmem_free(mvp, sizeof (mac_vlan_t));
5409 }
5410 
5411 /*
5412  * Create a new mac_address_t if this is the first use of the address
5413  * or add a VID to an existing address. In either case, the
5414  * mac_address_t acts as a list of {addr, VID} tuples where each tuple
5415  * shares the same addr. If group is non-NULL then attempt to program
5416  * the MAC's HW filters for this group. Otherwise, if group is NULL,
5417  * then the MAC has no rings and there is nothing to program.
5418  */
5419 int
5420 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr,
5421     uint16_t vid, boolean_t use_hw)
5422 {
5423 	mac_address_t	*map;
5424 	mac_vlan_t	*mvp;
5425 	int		err = 0;
5426 	boolean_t	allocated_map = B_FALSE;
5427 	boolean_t	hw_mac = B_FALSE;
5428 	boolean_t	hw_vlan = B_FALSE;
5429 
5430 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5431 
5432 	map = mac_find_macaddr(mip, addr);
5433 
5434 	/*
5435 	 * If this is the first use of this MAC address then allocate
5436 	 * and initialize a new structure.
5437 	 */
5438 	if (map == NULL) {
5439 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5440 		map->ma_len = mip->mi_type->mt_addr_length;
5441 		bcopy(addr, map->ma_addr, map->ma_len);
5442 		map->ma_nusers = 0;
5443 		map->ma_group = group;
5444 		map->ma_mip = mip;
5445 		map->ma_untagged = B_FALSE;
5446 
5447 		/* Add the new MAC address to the head of the address list. */
5448 		map->ma_next = mip->mi_addresses;
5449 		mip->mi_addresses = map;
5450 
5451 		allocated_map = B_TRUE;
5452 	}
5453 
5454 	VERIFY(map->ma_group == NULL || map->ma_group == group);
5455 	if (map->ma_group == NULL)
5456 		map->ma_group = group;
5457 
5458 	if (vid == VLAN_ID_NONE) {
5459 		map->ma_untagged = B_TRUE;
5460 		mvp = NULL;
5461 	} else {
5462 		mvp = mac_add_vlan(map, vid);
5463 	}
5464 
5465 	/*
5466 	 * Set the VLAN HW filter if:
5467 	 *
5468 	 * o the MAC's VLAN HW filtering is enabled, and
5469 	 * o the address does not currently rely on promisc mode.
5470 	 *
5471 	 * This is called even when the client specifies an untagged
5472 	 * address (VLAN_ID_NONE) because some MAC providers require
5473 	 * setting additional bits to accept untagged traffic when
5474 	 * VLAN HW filtering is enabled.
5475 	 */
5476 	if (MAC_GROUP_HW_VLAN(group) &&
5477 	    map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) {
5478 		if ((err = mac_group_addvlan(group, vid)) != 0)
5479 			goto bail;
5480 
5481 		hw_vlan = B_TRUE;
5482 	}
5483 
5484 	VERIFY3S(map->ma_nusers, >=, 0);
5485 	map->ma_nusers++;
5486 
5487 	/*
5488 	 * If this MAC address already has a HW filter then simply
5489 	 * increment the counter.
5490 	 */
5491 	if (map->ma_nusers > 1)
5492 		return (0);
5493 
5494 	/*
5495 	 * All logic from here on out is executed during initial
5496 	 * creation only.
5497 	 */
5498 	VERIFY3S(map->ma_nusers, ==, 1);
5499 
5500 	/*
5501 	 * Activate this MAC address by adding it to the reserved group.
5502 	 */
5503 	if (group != NULL) {
5504 		err = mac_group_addmac(group, (const uint8_t *)addr);
5505 
5506 		/*
5507 		 * If the driver is out of filters then we can
5508 		 * continue and use promisc mode. For any other error,
5509 		 * assume the driver is in a state where we can't
5510 		 * program the filters or use promisc mode; so we must
5511 		 * bail.
5512 		 */
5513 		if (err != 0 && err != ENOSPC) {
5514 			map->ma_nusers--;
5515 			goto bail;
5516 		}
5517 
5518 		hw_mac = (err == 0);
5519 	}
5520 
5521 	if (hw_mac) {
5522 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5523 		return (0);
5524 	}
5525 
5526 	/*
5527 	 * The MAC address addition failed. If the client requires a
5528 	 * hardware classified MAC address, fail the operation. This
5529 	 * feature is only used by sun4v vsw.
5530 	 */
5531 	if (use_hw && !hw_mac) {
5532 		err = ENOSPC;
5533 		map->ma_nusers--;
5534 		goto bail;
5535 	}
5536 
5537 	/*
5538 	 * If we reach this point then either the MAC doesn't have
5539 	 * RINGS capability or we are out of MAC address HW filters.
5540 	 * In any case we must put the MAC into promiscuous mode.
5541 	 */
5542 	VERIFY(group == NULL || !hw_mac);
5543 
5544 	/*
5545 	 * The one exception is the primary address. A non-RINGS
5546 	 * driver filters the primary address by default; promisc mode
5547 	 * is not needed.
5548 	 */
5549 	if ((group == NULL) &&
5550 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5551 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5552 		return (0);
5553 	}
5554 
5555 	/*
5556 	 * Enable promiscuous mode in order to receive traffic to the
5557 	 * new MAC address. All existing HW filters still send their
5558 	 * traffic to their respective group/SRSes. But with promisc
5559 	 * enabled all unknown traffic is delivered to the default
5560 	 * group where it is SW classified via mac_rx_classify().
5561 	 */
5562 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5563 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5564 		return (0);
5565 	}
5566 
5567 	/*
5568 	 * We failed to set promisc mode and we are about to free 'map'.
5569 	 */
5570 	map->ma_nusers = 0;
5571 
5572 bail:
5573 	if (hw_vlan) {
5574 		int err2 = mac_group_remvlan(group, vid);
5575 
5576 		if (err2 != 0) {
5577 			cmn_err(CE_WARN, "Failed to remove VLAN %u from group"
5578 			    " %d on MAC %s: %d.", vid, group->mrg_index,
5579 			    mip->mi_name, err2);
5580 		}
5581 	}
5582 
5583 	if (mvp != NULL)
5584 		mac_rem_vlan(map, mvp);
5585 
5586 	if (allocated_map)
5587 		mac_free_macaddr(map);
5588 
5589 	return (err);
5590 }
5591 
5592 int
5593 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid)
5594 {
5595 	mac_vlan_t	*mvp;
5596 	mac_impl_t	*mip = map->ma_mip;
5597 	mac_group_t	*group = map->ma_group;
5598 	int		err = 0;
5599 
5600 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5601 	VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5602 
5603 	if (vid == VLAN_ID_NONE) {
5604 		map->ma_untagged = B_FALSE;
5605 		mvp = NULL;
5606 	} else {
5607 		mvp = mac_find_vlan(map, vid);
5608 		VERIFY3P(mvp, !=, NULL);
5609 	}
5610 
5611 	if (MAC_GROUP_HW_VLAN(group) &&
5612 	    map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED &&
5613 	    ((err = mac_group_remvlan(group, vid)) != 0))
5614 		return (err);
5615 
5616 	if (mvp != NULL)
5617 		mac_rem_vlan(map, mvp);
5618 
5619 	/*
5620 	 * If it's not the last client using this MAC address, only update
5621 	 * the MAC clients count.
5622 	 */
5623 	map->ma_nusers--;
5624 	if (map->ma_nusers > 0)
5625 		return (0);
5626 
5627 	VERIFY3S(map->ma_nusers, ==, 0);
5628 
5629 	/*
5630 	 * The MAC address is no longer used by any MAC client, so
5631 	 * remove it from its associated group. Turn off promiscuous
5632 	 * mode if this is the last address relying on it.
5633 	 */
5634 	switch (map->ma_type) {
5635 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5636 		/*
5637 		 * Don't free the preset primary address for drivers that
5638 		 * don't advertise RINGS capability.
5639 		 */
5640 		if (group == NULL)
5641 			return (0);
5642 
5643 		if ((err = mac_group_remmac(group, map->ma_addr)) != 0) {
5644 			if (vid == VLAN_ID_NONE)
5645 				map->ma_untagged = B_TRUE;
5646 			else
5647 				(void) mac_add_vlan(map, vid);
5648 
5649 			/*
5650 			 * If we fail to remove the MAC address HW
5651 			 * filter but then also fail to re-add the
5652 			 * VLAN HW filter then we are in a busted
5653 			 * state. We do our best by logging a warning
5654 			 * and returning the original 'err' that got
5655 			 * us here. At this point, traffic for this
5656 			 * address + VLAN combination will be dropped
5657 			 * until the user reboots the system. In the
5658 			 * future, it would be nice to have a system
5659 			 * that can compare the state of expected
5660 			 * classification according to mac to the
5661 			 * actual state of the provider, and report
5662 			 * and fix any inconsistencies.
5663 			 */
5664 			if (MAC_GROUP_HW_VLAN(group)) {
5665 				int err2;
5666 
5667 				err2 = mac_group_addvlan(group, vid);
5668 				if (err2 != 0) {
5669 					cmn_err(CE_WARN, "Failed to readd VLAN"
5670 					    " %u to group %d on MAC %s: %d.",
5671 					    vid, group->mrg_index, mip->mi_name,
5672 					    err2);
5673 				}
5674 			}
5675 
5676 			map->ma_nusers = 1;
5677 			return (err);
5678 		}
5679 
5680 		map->ma_group = NULL;
5681 		break;
5682 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5683 		err = i_mac_promisc_set(mip, B_FALSE);
5684 		break;
5685 	default:
5686 		panic("Unexpected ma_type 0x%x, file: %s, line %d",
5687 		    map->ma_type, __FILE__, __LINE__);
5688 	}
5689 
5690 	if (err != 0) {
5691 		map->ma_nusers = 1;
5692 		return (err);
5693 	}
5694 
5695 	/*
5696 	 * We created MAC address for the primary one at registration, so we
5697 	 * won't free it here. mac_fini_macaddr() will take care of it.
5698 	 */
5699 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5700 		mac_free_macaddr(map);
5701 
5702 	return (0);
5703 }
5704 
5705 /*
5706  * Update an existing MAC address. The caller need to make sure that the new
5707  * value has not been used.
5708  */
5709 int
5710 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5711 {
5712 	mac_impl_t *mip = map->ma_mip;
5713 	int err = 0;
5714 
5715 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5716 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5717 
5718 	switch (map->ma_type) {
5719 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5720 		/*
5721 		 * Update the primary address for drivers that are not
5722 		 * RINGS capable.
5723 		 */
5724 		if (mip->mi_rx_groups == NULL) {
5725 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5726 			    mac_addr);
5727 			if (err != 0)
5728 				return (err);
5729 			break;
5730 		}
5731 
5732 		/*
5733 		 * If this MAC address is not currently in use,
5734 		 * simply break out and update the value.
5735 		 */
5736 		if (map->ma_nusers == 0)
5737 			break;
5738 
5739 		/*
5740 		 * Need to replace the MAC address associated with a group.
5741 		 */
5742 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5743 		if (err != 0)
5744 			return (err);
5745 
5746 		err = mac_group_addmac(map->ma_group, mac_addr);
5747 
5748 		/*
5749 		 * Failure hints hardware error. The MAC layer needs to
5750 		 * have error notification facility to handle this.
5751 		 * Now, simply try to restore the value.
5752 		 */
5753 		if (err != 0)
5754 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5755 
5756 		break;
5757 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5758 		/*
5759 		 * Need to do nothing more if in promiscuous mode.
5760 		 */
5761 		break;
5762 	default:
5763 		ASSERT(B_FALSE);
5764 	}
5765 
5766 	/*
5767 	 * Successfully replaced the MAC address.
5768 	 */
5769 	if (err == 0)
5770 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5771 
5772 	return (err);
5773 }
5774 
5775 /*
5776  * Freshen the MAC address with new value. Its caller must have updated the
5777  * hardware MAC address before calling this function.
5778  * This funcitons is supposed to be used to handle the MAC address change
5779  * notification from underlying drivers.
5780  */
5781 void
5782 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5783 {
5784 	mac_impl_t *mip = map->ma_mip;
5785 
5786 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5787 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5788 
5789 	/*
5790 	 * Freshen the MAC address with new value.
5791 	 */
5792 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5793 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5794 
5795 	/*
5796 	 * Update all MAC clients that share this MAC address.
5797 	 */
5798 	mac_unicast_update_clients(mip, map);
5799 }
5800 
5801 /*
5802  * Set up the primary MAC address.
5803  */
5804 void
5805 mac_init_macaddr(mac_impl_t *mip)
5806 {
5807 	mac_address_t *map;
5808 
5809 	/*
5810 	 * The reference count is initialized to zero, until it's really
5811 	 * activated.
5812 	 */
5813 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5814 	map->ma_len = mip->mi_type->mt_addr_length;
5815 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5816 
5817 	/*
5818 	 * If driver advertises RINGS capability, it shouldn't have initialized
5819 	 * its primary MAC address. For other drivers, including VNIC, the
5820 	 * primary address must work after registration.
5821 	 */
5822 	if (mip->mi_rx_groups == NULL)
5823 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5824 
5825 	map->ma_mip = mip;
5826 
5827 	mip->mi_addresses = map;
5828 }
5829 
5830 /*
5831  * Clean up the primary MAC address. Note, only one primary MAC address
5832  * is allowed. All other MAC addresses must have been freed appropriately.
5833  */
5834 void
5835 mac_fini_macaddr(mac_impl_t *mip)
5836 {
5837 	mac_address_t *map = mip->mi_addresses;
5838 
5839 	if (map == NULL)
5840 		return;
5841 
5842 	/*
5843 	 * If mi_addresses is initialized, there should be exactly one
5844 	 * entry left on the list with no users.
5845 	 */
5846 	VERIFY3S(map->ma_nusers, ==, 0);
5847 	VERIFY3P(map->ma_next, ==, NULL);
5848 	VERIFY3P(map->ma_vlans, ==, NULL);
5849 
5850 	kmem_free(map, sizeof (mac_address_t));
5851 	mip->mi_addresses = NULL;
5852 }
5853 
5854 /*
5855  * Logging related functions.
5856  *
5857  * Note that Kernel statistics have been extended to maintain fine
5858  * granularity of statistics viz. hardware lane, software lane, fanout
5859  * stats etc. However, extended accounting continues to support only
5860  * aggregate statistics like before.
5861  */
5862 
5863 /* Write the flow description to a netinfo_t record */
5864 static netinfo_t *
5865 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5866 {
5867 	netinfo_t		*ninfo;
5868 	net_desc_t		*ndesc;
5869 	flow_desc_t		*fdesc;
5870 	mac_resource_props_t	*mrp;
5871 
5872 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5873 	if (ninfo == NULL)
5874 		return (NULL);
5875 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5876 	if (ndesc == NULL) {
5877 		kmem_free(ninfo, sizeof (netinfo_t));
5878 		return (NULL);
5879 	}
5880 
5881 	/*
5882 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5883 	 * Updates to the fe_flow_desc are done under the fe_lock
5884 	 */
5885 	mutex_enter(&flent->fe_lock);
5886 	fdesc = &flent->fe_flow_desc;
5887 	mrp = &flent->fe_resource_props;
5888 
5889 	ndesc->nd_name = flent->fe_flow_name;
5890 	ndesc->nd_devname = mcip->mci_name;
5891 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5892 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5893 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5894 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5895 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5896 	if (ndesc->nd_isv4) {
5897 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5898 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5899 	} else {
5900 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5901 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5902 	}
5903 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5904 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5905 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5906 	mutex_exit(&flent->fe_lock);
5907 
5908 	ninfo->ni_record = ndesc;
5909 	ninfo->ni_size = sizeof (net_desc_t);
5910 	ninfo->ni_type = EX_NET_FLDESC_REC;
5911 
5912 	return (ninfo);
5913 }
5914 
5915 /* Write the flow statistics to a netinfo_t record */
5916 static netinfo_t *
5917 mac_write_flow_stats(flow_entry_t *flent)
5918 {
5919 	netinfo_t		*ninfo;
5920 	net_stat_t		*nstat;
5921 	mac_soft_ring_set_t	*mac_srs;
5922 	mac_rx_stats_t		*mac_rx_stat;
5923 	mac_tx_stats_t		*mac_tx_stat;
5924 	int			i;
5925 
5926 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5927 	if (ninfo == NULL)
5928 		return (NULL);
5929 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5930 	if (nstat == NULL) {
5931 		kmem_free(ninfo, sizeof (netinfo_t));
5932 		return (NULL);
5933 	}
5934 
5935 	nstat->ns_name = flent->fe_flow_name;
5936 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5937 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5938 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5939 
5940 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5941 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5942 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5943 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5944 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5945 	}
5946 
5947 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5948 	if (mac_srs != NULL) {
5949 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5950 
5951 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5952 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5953 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5954 	}
5955 
5956 	ninfo->ni_record = nstat;
5957 	ninfo->ni_size = sizeof (net_stat_t);
5958 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5959 
5960 	return (ninfo);
5961 }
5962 
5963 /* Write the link description to a netinfo_t record */
5964 static netinfo_t *
5965 mac_write_link_desc(mac_client_impl_t *mcip)
5966 {
5967 	netinfo_t		*ninfo;
5968 	net_desc_t		*ndesc;
5969 	flow_entry_t		*flent = mcip->mci_flent;
5970 
5971 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5972 	if (ninfo == NULL)
5973 		return (NULL);
5974 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5975 	if (ndesc == NULL) {
5976 		kmem_free(ninfo, sizeof (netinfo_t));
5977 		return (NULL);
5978 	}
5979 
5980 	ndesc->nd_name = mcip->mci_name;
5981 	ndesc->nd_devname = mcip->mci_name;
5982 	ndesc->nd_isv4 = B_TRUE;
5983 	/*
5984 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5985 	 * Updates to the fe_flow_desc are done under the fe_lock
5986 	 * after removing the flent from the flow table.
5987 	 */
5988 	mutex_enter(&flent->fe_lock);
5989 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5990 	mutex_exit(&flent->fe_lock);
5991 
5992 	ninfo->ni_record = ndesc;
5993 	ninfo->ni_size = sizeof (net_desc_t);
5994 	ninfo->ni_type = EX_NET_LNDESC_REC;
5995 
5996 	return (ninfo);
5997 }
5998 
5999 /* Write the link statistics to a netinfo_t record */
6000 static netinfo_t *
6001 mac_write_link_stats(mac_client_impl_t *mcip)
6002 {
6003 	netinfo_t		*ninfo;
6004 	net_stat_t		*nstat;
6005 	flow_entry_t		*flent;
6006 	mac_soft_ring_set_t	*mac_srs;
6007 	mac_rx_stats_t		*mac_rx_stat;
6008 	mac_tx_stats_t		*mac_tx_stat;
6009 	int			i;
6010 
6011 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
6012 	if (ninfo == NULL)
6013 		return (NULL);
6014 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
6015 	if (nstat == NULL) {
6016 		kmem_free(ninfo, sizeof (netinfo_t));
6017 		return (NULL);
6018 	}
6019 
6020 	nstat->ns_name = mcip->mci_name;
6021 	flent = mcip->mci_flent;
6022 	if (flent != NULL)  {
6023 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
6024 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
6025 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
6026 
6027 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
6028 			    mac_rx_stat->mrs_pollbytes +
6029 			    mac_rx_stat->mrs_lclbytes;
6030 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
6031 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
6032 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
6033 		}
6034 	}
6035 
6036 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
6037 	if (mac_srs != NULL) {
6038 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
6039 
6040 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
6041 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
6042 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
6043 	}
6044 
6045 	ninfo->ni_record = nstat;
6046 	ninfo->ni_size = sizeof (net_stat_t);
6047 	ninfo->ni_type = EX_NET_LNSTAT_REC;
6048 
6049 	return (ninfo);
6050 }
6051 
6052 typedef struct i_mac_log_state_s {
6053 	boolean_t	mi_last;
6054 	int		mi_fenable;
6055 	int		mi_lenable;
6056 	list_t		*mi_list;
6057 } i_mac_log_state_t;
6058 
6059 /*
6060  * For a given flow, if the description has not been logged before, do it now.
6061  * If it is a VNIC, then we have collected information about it from the MAC
6062  * table, so skip it.
6063  *
6064  * Called through mac_flow_walk_nolock()
6065  *
6066  * Return 0 if successful.
6067  */
6068 static int
6069 mac_log_flowinfo(flow_entry_t *flent, void *arg)
6070 {
6071 	mac_client_impl_t	*mcip = flent->fe_mcip;
6072 	i_mac_log_state_t	*lstate = arg;
6073 	netinfo_t		*ninfo;
6074 
6075 	if (mcip == NULL)
6076 		return (0);
6077 
6078 	/*
6079 	 * If the name starts with "vnic", and fe_user_generated is true (to
6080 	 * exclude the mcast and active flow entries created implicitly for
6081 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
6082 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
6083 	 */
6084 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
6085 	    (flent->fe_type & FLOW_USER) != 0) {
6086 		return (0);
6087 	}
6088 
6089 	if (!flent->fe_desc_logged) {
6090 		/*
6091 		 * We don't return error because we want to continue the
6092 		 * walk in case this is the last walk which means we
6093 		 * need to reset fe_desc_logged in all the flows.
6094 		 */
6095 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
6096 			return (0);
6097 		list_insert_tail(lstate->mi_list, ninfo);
6098 		flent->fe_desc_logged = B_TRUE;
6099 	}
6100 
6101 	/*
6102 	 * Regardless of the error, we want to proceed in case we have to
6103 	 * reset fe_desc_logged.
6104 	 */
6105 	ninfo = mac_write_flow_stats(flent);
6106 	if (ninfo == NULL)
6107 		return (-1);
6108 
6109 	list_insert_tail(lstate->mi_list, ninfo);
6110 
6111 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
6112 		flent->fe_desc_logged = B_FALSE;
6113 
6114 	return (0);
6115 }
6116 
6117 /*
6118  * Log the description for each mac client of this mac_impl_t, if it
6119  * hasn't already been done. Additionally, log statistics for the link as
6120  * well. Walk the flow table and log information for each flow as well.
6121  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
6122  * also fe_desc_logged, if flow logging is on) since we want to log the
6123  * description if and when logging is restarted.
6124  *
6125  * Return 0 upon success or -1 upon failure
6126  */
6127 static int
6128 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
6129 {
6130 	mac_client_impl_t	*mcip;
6131 	netinfo_t		*ninfo;
6132 
6133 	i_mac_perim_enter(mip);
6134 	/*
6135 	 * Only walk the client list for NIC and etherstub
6136 	 */
6137 	if ((mip->mi_state_flags & MIS_DISABLED) ||
6138 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
6139 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
6140 		i_mac_perim_exit(mip);
6141 		return (0);
6142 	}
6143 
6144 	for (mcip = mip->mi_clients_list; mcip != NULL;
6145 	    mcip = mcip->mci_client_next) {
6146 		if (!MCIP_DATAPATH_SETUP(mcip))
6147 			continue;
6148 		if (lstate->mi_lenable) {
6149 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
6150 				ninfo = mac_write_link_desc(mcip);
6151 				if (ninfo == NULL) {
6152 				/*
6153 				 * We can't terminate it if this is the last
6154 				 * walk, else there might be some links with
6155 				 * mi_desc_logged set to true, which means
6156 				 * their description won't be logged the next
6157 				 * time logging is started (similarly for the
6158 				 * flows within such links). We can continue
6159 				 * without walking the flow table (i.e. to
6160 				 * set fe_desc_logged to false) because we
6161 				 * won't have written any flow stuff for this
6162 				 * link as we haven't logged the link itself.
6163 				 */
6164 					i_mac_perim_exit(mip);
6165 					if (lstate->mi_last)
6166 						return (0);
6167 					else
6168 						return (-1);
6169 				}
6170 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
6171 				list_insert_tail(lstate->mi_list, ninfo);
6172 			}
6173 		}
6174 
6175 		ninfo = mac_write_link_stats(mcip);
6176 		if (ninfo == NULL && !lstate->mi_last) {
6177 			i_mac_perim_exit(mip);
6178 			return (-1);
6179 		}
6180 		list_insert_tail(lstate->mi_list, ninfo);
6181 
6182 		if (lstate->mi_last)
6183 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
6184 
6185 		if (lstate->mi_fenable) {
6186 			if (mcip->mci_subflow_tab != NULL) {
6187 				(void) mac_flow_walk_nolock(
6188 				    mcip->mci_subflow_tab, mac_log_flowinfo,
6189 				    lstate);
6190 			}
6191 		}
6192 	}
6193 	i_mac_perim_exit(mip);
6194 	return (0);
6195 }
6196 
6197 /*
6198  * modhash walker function to add a mac_impl_t to a list
6199  */
6200 /*ARGSUSED*/
6201 static uint_t
6202 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
6203 {
6204 	list_t			*list = (list_t *)arg;
6205 	mac_impl_t		*mip = (mac_impl_t *)val;
6206 
6207 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
6208 		list_insert_tail(list, mip);
6209 		mip->mi_ref++;
6210 	}
6211 
6212 	return (MH_WALK_CONTINUE);
6213 }
6214 
6215 void
6216 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
6217 {
6218 	list_t			mac_impl_list;
6219 	mac_impl_t		*mip;
6220 	netinfo_t		*ninfo;
6221 
6222 	/* Create list of mac_impls */
6223 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
6224 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
6225 	    mi_node));
6226 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
6227 	rw_exit(&i_mac_impl_lock);
6228 
6229 	/* Create log entries for each mac_impl */
6230 	for (mip = list_head(&mac_impl_list); mip != NULL;
6231 	    mip = list_next(&mac_impl_list, mip)) {
6232 		if (i_mac_impl_log(mip, lstate) != 0)
6233 			continue;
6234 	}
6235 
6236 	/* Remove elements and destroy list of mac_impls */
6237 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6238 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
6239 		mip->mi_ref--;
6240 	}
6241 	rw_exit(&i_mac_impl_lock);
6242 	list_destroy(&mac_impl_list);
6243 
6244 	/*
6245 	 * Write log entries to files outside of locks, free associated
6246 	 * structures, and remove entries from the list.
6247 	 */
6248 	while ((ninfo = list_head(net_log_list)) != NULL) {
6249 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
6250 		list_remove(net_log_list, ninfo);
6251 		kmem_free(ninfo->ni_record, ninfo->ni_size);
6252 		kmem_free(ninfo, sizeof (*ninfo));
6253 	}
6254 	list_destroy(net_log_list);
6255 }
6256 
6257 /*
6258  * The timer thread that runs every mac_logging_interval seconds and logs
6259  * link and/or flow information.
6260  */
6261 /* ARGSUSED */
6262 void
6263 mac_log_linkinfo(void *arg)
6264 {
6265 	i_mac_log_state_t	lstate;
6266 	list_t			net_log_list;
6267 
6268 	list_create(&net_log_list, sizeof (netinfo_t),
6269 	    offsetof(netinfo_t, ni_link));
6270 
6271 	rw_enter(&i_mac_impl_lock, RW_READER);
6272 	if (!mac_flow_log_enable && !mac_link_log_enable) {
6273 		rw_exit(&i_mac_impl_lock);
6274 		return;
6275 	}
6276 	lstate.mi_fenable = mac_flow_log_enable;
6277 	lstate.mi_lenable = mac_link_log_enable;
6278 	lstate.mi_last = B_FALSE;
6279 	lstate.mi_list = &net_log_list;
6280 
6281 	/* Write log entries for each mac_impl in the list */
6282 	i_mac_log_info(&net_log_list, &lstate);
6283 
6284 	if (mac_flow_log_enable || mac_link_log_enable) {
6285 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
6286 		    SEC_TO_TICK(mac_logging_interval));
6287 	}
6288 }
6289 
6290 typedef struct i_mac_fastpath_state_s {
6291 	boolean_t	mf_disable;
6292 	int		mf_err;
6293 } i_mac_fastpath_state_t;
6294 
6295 /* modhash walker function to enable or disable fastpath */
6296 /*ARGSUSED*/
6297 static uint_t
6298 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
6299     void *arg)
6300 {
6301 	i_mac_fastpath_state_t	*state = arg;
6302 	mac_handle_t		mh = (mac_handle_t)val;
6303 
6304 	if (state->mf_disable)
6305 		state->mf_err = mac_fastpath_disable(mh);
6306 	else
6307 		mac_fastpath_enable(mh);
6308 
6309 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
6310 }
6311 
6312 /*
6313  * Start the logging timer.
6314  */
6315 int
6316 mac_start_logusage(mac_logtype_t type, uint_t interval)
6317 {
6318 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
6319 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
6320 	int			err;
6321 
6322 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6323 	switch (type) {
6324 	case MAC_LOGTYPE_FLOW:
6325 		if (mac_flow_log_enable) {
6326 			rw_exit(&i_mac_impl_lock);
6327 			return (0);
6328 		}
6329 		/* FALLTHRU */
6330 	case MAC_LOGTYPE_LINK:
6331 		if (mac_link_log_enable) {
6332 			rw_exit(&i_mac_impl_lock);
6333 			return (0);
6334 		}
6335 		break;
6336 	default:
6337 		ASSERT(0);
6338 	}
6339 
6340 	/* Disable fastpath */
6341 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
6342 	if ((err = dstate.mf_err) != 0) {
6343 		/* Reenable fastpath  */
6344 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6345 		rw_exit(&i_mac_impl_lock);
6346 		return (err);
6347 	}
6348 
6349 	switch (type) {
6350 	case MAC_LOGTYPE_FLOW:
6351 		mac_flow_log_enable = B_TRUE;
6352 		/* FALLTHRU */
6353 	case MAC_LOGTYPE_LINK:
6354 		mac_link_log_enable = B_TRUE;
6355 		break;
6356 	}
6357 
6358 	mac_logging_interval = interval;
6359 	rw_exit(&i_mac_impl_lock);
6360 	mac_log_linkinfo(NULL);
6361 	return (0);
6362 }
6363 
6364 /*
6365  * Stop the logging timer if both link and flow logging are turned off.
6366  */
6367 void
6368 mac_stop_logusage(mac_logtype_t type)
6369 {
6370 	i_mac_log_state_t	lstate;
6371 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
6372 	list_t			net_log_list;
6373 
6374 	list_create(&net_log_list, sizeof (netinfo_t),
6375 	    offsetof(netinfo_t, ni_link));
6376 
6377 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6378 
6379 	lstate.mi_fenable = mac_flow_log_enable;
6380 	lstate.mi_lenable = mac_link_log_enable;
6381 	lstate.mi_list = &net_log_list;
6382 
6383 	/* Last walk */
6384 	lstate.mi_last = B_TRUE;
6385 
6386 	switch (type) {
6387 	case MAC_LOGTYPE_FLOW:
6388 		if (lstate.mi_fenable) {
6389 			ASSERT(mac_link_log_enable);
6390 			mac_flow_log_enable = B_FALSE;
6391 			mac_link_log_enable = B_FALSE;
6392 			break;
6393 		}
6394 		/* FALLTHRU */
6395 	case MAC_LOGTYPE_LINK:
6396 		if (!lstate.mi_lenable || mac_flow_log_enable) {
6397 			rw_exit(&i_mac_impl_lock);
6398 			return;
6399 		}
6400 		mac_link_log_enable = B_FALSE;
6401 		break;
6402 	default:
6403 		ASSERT(0);
6404 	}
6405 
6406 	/* Reenable fastpath */
6407 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6408 
6409 	(void) untimeout(mac_logging_timer);
6410 	mac_logging_timer = NULL;
6411 
6412 	/* Write log entries for each mac_impl in the list */
6413 	i_mac_log_info(&net_log_list, &lstate);
6414 }
6415 
6416 /*
6417  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
6418  */
6419 void
6420 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
6421 {
6422 	pri_t			pri;
6423 	int			count;
6424 	mac_soft_ring_set_t	*mac_srs;
6425 
6426 	if (flent->fe_rx_srs_cnt <= 0)
6427 		return;
6428 
6429 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
6430 	    SRST_FLOW) {
6431 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
6432 		    mcip->mci_max_pri,
6433 		    flent->fe_resource_props.mrp_priority);
6434 	} else {
6435 		pri = mcip->mci_max_pri;
6436 	}
6437 
6438 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
6439 		mac_srs = flent->fe_rx_srs[count];
6440 		mac_update_srs_priority(mac_srs, pri);
6441 	}
6442 	/*
6443 	 * If we have a Tx SRS, we need to modify all the threads associated
6444 	 * with it.
6445 	 */
6446 	if (flent->fe_tx_srs != NULL)
6447 		mac_update_srs_priority(flent->fe_tx_srs, pri);
6448 }
6449 
6450 /*
6451  * RX and TX rings are reserved according to different semantics depending
6452  * on the requests from the MAC clients and type of rings:
6453  *
6454  * On the Tx side, by default we reserve individual rings, independently from
6455  * the groups.
6456  *
6457  * On the Rx side, the reservation is at the granularity of the group
6458  * of rings, and used for v12n level 1 only. It has a special case for the
6459  * primary client.
6460  *
6461  * If a share is allocated to a MAC client, we allocate a TX group and an
6462  * RX group to the client, and assign TX rings and RX rings to these
6463  * groups according to information gathered from the driver through
6464  * the share capability.
6465  *
6466  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
6467  * to allocate individual rings out of a group and program the hw classifier
6468  * based on IP address or higher level criteria.
6469  */
6470 
6471 /*
6472  * mac_reserve_tx_ring()
6473  * Reserve a unused ring by marking it with MR_INUSE state.
6474  * As reserved, the ring is ready to function.
6475  *
6476  * Notes for Hybrid I/O:
6477  *
6478  * If a specific ring is needed, it is specified through the desired_ring
6479  * argument. Otherwise that argument is set to NULL.
6480  * If the desired ring was previous allocated to another client, this
6481  * function swaps it with a new ring from the group of unassigned rings.
6482  */
6483 mac_ring_t *
6484 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
6485 {
6486 	mac_group_t		*group;
6487 	mac_grp_client_t	*mgcp;
6488 	mac_client_impl_t	*mcip;
6489 	mac_soft_ring_set_t	*srs;
6490 
6491 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6492 
6493 	/*
6494 	 * Find an available ring and start it before changing its status.
6495 	 * The unassigned rings are at the end of the mi_tx_groups
6496 	 * array.
6497 	 */
6498 	group = MAC_DEFAULT_TX_GROUP(mip);
6499 
6500 	/* Can't take the default ring out of the default group */
6501 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
6502 
6503 	if (desired_ring->mr_state == MR_FREE) {
6504 		ASSERT(MAC_GROUP_NO_CLIENT(group));
6505 		if (mac_start_ring(desired_ring) != 0)
6506 			return (NULL);
6507 		return (desired_ring);
6508 	}
6509 	/*
6510 	 * There are clients using this ring, so let's move the clients
6511 	 * away from using this ring.
6512 	 */
6513 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6514 		mcip = mgcp->mgc_client;
6515 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
6516 		srs = MCIP_TX_SRS(mcip);
6517 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
6518 		mac_tx_invoke_callbacks(mcip,
6519 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
6520 		    desired_ring));
6521 		mac_tx_srs_del_ring(srs, desired_ring);
6522 		mac_tx_client_restart((mac_client_handle_t)mcip);
6523 	}
6524 	return (desired_ring);
6525 }
6526 
6527 /*
6528  * For a non-default group with multiple clients, return the primary client.
6529  */
6530 static mac_client_impl_t *
6531 mac_get_grp_primary(mac_group_t *grp)
6532 {
6533 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6534 	mac_client_impl_t	*mcip;
6535 
6536 	while (mgcp != NULL) {
6537 		mcip = mgcp->mgc_client;
6538 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
6539 			return (mcip);
6540 		mgcp = mgcp->mgc_next;
6541 	}
6542 	return (NULL);
6543 }
6544 
6545 /*
6546  * Hybrid I/O specifies the ring that should be given to a share.
6547  * If the ring is already used by clients, then we need to release
6548  * the ring back to the default group so that we can give it to
6549  * the share. This means the clients using this ring now get a
6550  * replacement ring. If there aren't any replacement rings, this
6551  * function returns a failure.
6552  */
6553 static int
6554 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
6555     mac_ring_t *ring, mac_ring_t **rings, int nrings)
6556 {
6557 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
6558 	mac_resource_props_t	*mrp;
6559 	mac_client_impl_t	*mcip;
6560 	mac_group_t		*defgrp;
6561 	mac_ring_t		*tring;
6562 	mac_group_t		*tgrp;
6563 	int			i;
6564 	int			j;
6565 
6566 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6567 	if (mcip == NULL)
6568 		mcip = mac_get_grp_primary(group);
6569 	ASSERT(mcip != NULL);
6570 	ASSERT(mcip->mci_share == 0);
6571 
6572 	mrp = MCIP_RESOURCE_PROPS(mcip);
6573 	if (ring_type == MAC_RING_TYPE_RX) {
6574 		defgrp = mip->mi_rx_donor_grp;
6575 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
6576 			/* Need to put this mac client in the default group */
6577 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
6578 				return (ENOSPC);
6579 		} else {
6580 			/*
6581 			 * Switch this ring with some other ring from
6582 			 * the default group.
6583 			 */
6584 			for (tring = defgrp->mrg_rings; tring != NULL;
6585 			    tring = tring->mr_next) {
6586 				if (tring->mr_index == 0)
6587 					continue;
6588 				for (j = 0; j < nrings; j++) {
6589 					if (rings[j] == tring)
6590 						break;
6591 				}
6592 				if (j >= nrings)
6593 					break;
6594 			}
6595 			if (tring == NULL)
6596 				return (ENOSPC);
6597 			if (mac_group_mov_ring(mip, group, tring) != 0)
6598 				return (ENOSPC);
6599 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6600 				(void) mac_group_mov_ring(mip, defgrp, tring);
6601 				return (ENOSPC);
6602 			}
6603 		}
6604 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6605 		return (0);
6606 	}
6607 
6608 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6609 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6610 		/*
6611 		 * See if we can get a spare ring to replace the default
6612 		 * ring.
6613 		 */
6614 		if (defgrp->mrg_cur_count == 1) {
6615 			/*
6616 			 * Need to get a ring from another client, see if
6617 			 * there are any clients that can be moved to
6618 			 * the default group, thereby freeing some rings.
6619 			 */
6620 			for (i = 0; i < mip->mi_tx_group_count; i++) {
6621 				tgrp = &mip->mi_tx_groups[i];
6622 				if (tgrp->mrg_state ==
6623 				    MAC_GROUP_STATE_REGISTERED) {
6624 					continue;
6625 				}
6626 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6627 				if (mcip == NULL)
6628 					mcip = mac_get_grp_primary(tgrp);
6629 				ASSERT(mcip != NULL);
6630 				mrp = MCIP_RESOURCE_PROPS(mcip);
6631 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6632 					ASSERT(tgrp->mrg_cur_count == 1);
6633 					/*
6634 					 * If this ring is part of the
6635 					 * rings asked by the share we cannot
6636 					 * use it as the default ring.
6637 					 */
6638 					for (j = 0; j < nrings; j++) {
6639 						if (rings[j] == tgrp->mrg_rings)
6640 							break;
6641 					}
6642 					if (j < nrings)
6643 						continue;
6644 					mac_tx_client_quiesce(
6645 					    (mac_client_handle_t)mcip);
6646 					mac_tx_switch_group(mcip, tgrp,
6647 					    defgrp);
6648 					mac_tx_client_restart(
6649 					    (mac_client_handle_t)mcip);
6650 					break;
6651 				}
6652 			}
6653 			/*
6654 			 * All the rings are reserved, can't give up the
6655 			 * default ring.
6656 			 */
6657 			if (defgrp->mrg_cur_count <= 1)
6658 				return (ENOSPC);
6659 		}
6660 		/*
6661 		 * Swap the default ring with another.
6662 		 */
6663 		for (tring = defgrp->mrg_rings; tring != NULL;
6664 		    tring = tring->mr_next) {
6665 			/*
6666 			 * If this ring is part of the rings asked by the
6667 			 * share we cannot use it as the default ring.
6668 			 */
6669 			for (j = 0; j < nrings; j++) {
6670 				if (rings[j] == tring)
6671 					break;
6672 			}
6673 			if (j >= nrings)
6674 				break;
6675 		}
6676 		ASSERT(tring != NULL);
6677 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6678 		return (0);
6679 	}
6680 	/*
6681 	 * The Tx ring is with a group reserved by a MAC client. See if
6682 	 * we can swap it.
6683 	 */
6684 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6685 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6686 	if (mcip == NULL)
6687 		mcip = mac_get_grp_primary(group);
6688 	ASSERT(mcip !=  NULL);
6689 	mrp = MCIP_RESOURCE_PROPS(mcip);
6690 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6691 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6692 		ASSERT(group->mrg_cur_count == 1);
6693 		/* Put this mac client in the default group */
6694 		mac_tx_switch_group(mcip, group, defgrp);
6695 	} else {
6696 		/*
6697 		 * Switch this ring with some other ring from
6698 		 * the default group.
6699 		 */
6700 		for (tring = defgrp->mrg_rings; tring != NULL;
6701 		    tring = tring->mr_next) {
6702 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6703 				continue;
6704 			/*
6705 			 * If this ring is part of the rings asked by the
6706 			 * share we cannot use it for swapping.
6707 			 */
6708 			for (j = 0; j < nrings; j++) {
6709 				if (rings[j] == tring)
6710 					break;
6711 			}
6712 			if (j >= nrings)
6713 				break;
6714 		}
6715 		if (tring == NULL) {
6716 			mac_tx_client_restart((mac_client_handle_t)mcip);
6717 			return (ENOSPC);
6718 		}
6719 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6720 			mac_tx_client_restart((mac_client_handle_t)mcip);
6721 			return (ENOSPC);
6722 		}
6723 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6724 			(void) mac_group_mov_ring(mip, defgrp, tring);
6725 			mac_tx_client_restart((mac_client_handle_t)mcip);
6726 			return (ENOSPC);
6727 		}
6728 	}
6729 	mac_tx_client_restart((mac_client_handle_t)mcip);
6730 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6731 	return (0);
6732 }
6733 
6734 /*
6735  * Populate a zero-ring group with rings. If the share is non-NULL,
6736  * the rings are chosen according to that share.
6737  * Invoked after allocating a new RX or TX group through
6738  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6739  * Returns zero on success, an errno otherwise.
6740  */
6741 int
6742 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6743     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6744     uint32_t ringcnt)
6745 {
6746 	mac_ring_t **rings, *ring;
6747 	uint_t nrings;
6748 	int rv = 0, i = 0, j;
6749 
6750 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6751 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6752 	    (ring_type == MAC_RING_TYPE_TX &&
6753 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6754 
6755 	/*
6756 	 * First find the rings to allocate to the group.
6757 	 */
6758 	if (share != 0) {
6759 		/* get rings through ms_squery() */
6760 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6761 		ASSERT(nrings != 0);
6762 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6763 		    KM_SLEEP);
6764 		mip->mi_share_capab.ms_squery(share, ring_type,
6765 		    (mac_ring_handle_t *)rings, &nrings);
6766 		for (i = 0; i < nrings; i++) {
6767 			/*
6768 			 * If we have given this ring to a non-default
6769 			 * group, we need to check if we can get this
6770 			 * ring.
6771 			 */
6772 			ring = rings[i];
6773 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6774 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6775 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6776 				    ring, rings, nrings) != 0) {
6777 					rv = ENOSPC;
6778 					goto bail;
6779 				}
6780 			}
6781 		}
6782 	} else {
6783 		/*
6784 		 * Pick one ring from default group.
6785 		 *
6786 		 * for now pick the second ring which requires the first ring
6787 		 * at index 0 to stay in the default group, since it is the
6788 		 * ring which carries the multicast traffic.
6789 		 * We need a better way for a driver to indicate this,
6790 		 * for example a per-ring flag.
6791 		 */
6792 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6793 		    KM_SLEEP);
6794 		for (ring = src_group->mrg_rings; ring != NULL;
6795 		    ring = ring->mr_next) {
6796 			if (ring_type == MAC_RING_TYPE_RX &&
6797 			    ring->mr_index == 0) {
6798 				continue;
6799 			}
6800 			if (ring_type == MAC_RING_TYPE_TX &&
6801 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6802 				continue;
6803 			}
6804 			rings[i++] = ring;
6805 			if (i == ringcnt)
6806 				break;
6807 		}
6808 		ASSERT(ring != NULL);
6809 		nrings = i;
6810 		/* Not enough rings as required */
6811 		if (nrings != ringcnt) {
6812 			rv = ENOSPC;
6813 			goto bail;
6814 		}
6815 	}
6816 
6817 	switch (ring_type) {
6818 	case MAC_RING_TYPE_RX:
6819 		if (src_group->mrg_cur_count - nrings < 1) {
6820 			/* we ran out of rings */
6821 			rv = ENOSPC;
6822 			goto bail;
6823 		}
6824 
6825 		/* move receive rings to new group */
6826 		for (i = 0; i < nrings; i++) {
6827 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6828 			if (rv != 0) {
6829 				/* move rings back on failure */
6830 				for (j = 0; j < i; j++) {
6831 					(void) mac_group_mov_ring(mip,
6832 					    src_group, rings[j]);
6833 				}
6834 				goto bail;
6835 			}
6836 		}
6837 		break;
6838 
6839 	case MAC_RING_TYPE_TX: {
6840 		mac_ring_t *tmp_ring;
6841 
6842 		/* move the TX rings to the new group */
6843 		for (i = 0; i < nrings; i++) {
6844 			/* get the desired ring */
6845 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6846 			if (tmp_ring == NULL) {
6847 				rv = ENOSPC;
6848 				goto bail;
6849 			}
6850 			ASSERT(tmp_ring == rings[i]);
6851 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6852 			if (rv != 0) {
6853 				/* cleanup on failure */
6854 				for (j = 0; j < i; j++) {
6855 					(void) mac_group_mov_ring(mip,
6856 					    MAC_DEFAULT_TX_GROUP(mip),
6857 					    rings[j]);
6858 				}
6859 				goto bail;
6860 			}
6861 		}
6862 		break;
6863 	}
6864 	}
6865 
6866 	/* add group to share */
6867 	if (share != 0)
6868 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6869 
6870 bail:
6871 	/* free temporary array of rings */
6872 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6873 
6874 	return (rv);
6875 }
6876 
6877 void
6878 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6879 {
6880 	mac_grp_client_t *mgcp;
6881 
6882 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6883 		if (mgcp->mgc_client == mcip)
6884 			break;
6885 	}
6886 
6887 	ASSERT(mgcp == NULL);
6888 
6889 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6890 	mgcp->mgc_client = mcip;
6891 	mgcp->mgc_next = grp->mrg_clients;
6892 	grp->mrg_clients = mgcp;
6893 }
6894 
6895 void
6896 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6897 {
6898 	mac_grp_client_t *mgcp, **pprev;
6899 
6900 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6901 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6902 		if (mgcp->mgc_client == mcip)
6903 			break;
6904 	}
6905 
6906 	ASSERT(mgcp != NULL);
6907 
6908 	*pprev = mgcp->mgc_next;
6909 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6910 }
6911 
6912 /*
6913  * Return true if any client on this group explicitly asked for HW
6914  * rings (of type mask) or have a bound share.
6915  */
6916 static boolean_t
6917 i_mac_clients_hw(mac_group_t *grp, uint32_t mask)
6918 {
6919 	mac_grp_client_t	*mgcip;
6920 	mac_client_impl_t	*mcip;
6921 	mac_resource_props_t	*mrp;
6922 
6923 	for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) {
6924 		mcip = mgcip->mgc_client;
6925 		mrp = MCIP_RESOURCE_PROPS(mcip);
6926 		if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0)
6927 			return (B_TRUE);
6928 	}
6929 
6930 	return (B_FALSE);
6931 }
6932 
6933 /*
6934  * Finds an available group and exclusively reserves it for a client.
6935  * The group is chosen to suit the flow's resource controls (bandwidth and
6936  * fanout requirements) and the address type.
6937  * If the requestor is the pimary MAC then return the group with the
6938  * largest number of rings, otherwise the default ring when available.
6939  */
6940 mac_group_t *
6941 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6942 {
6943 	mac_share_handle_t	share = mcip->mci_share;
6944 	mac_impl_t		*mip = mcip->mci_mip;
6945 	mac_group_t		*grp = NULL;
6946 	int			i;
6947 	int			err = 0;
6948 	mac_address_t		*map;
6949 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6950 	int			nrings;
6951 	int			donor_grp_rcnt;
6952 	boolean_t		need_exclgrp = B_FALSE;
6953 	int			need_rings = 0;
6954 	mac_group_t		*candidate_grp = NULL;
6955 	mac_client_impl_t	*gclient;
6956 	mac_group_t		*donorgrp = NULL;
6957 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6958 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6959 	boolean_t		isprimary;
6960 
6961 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6962 
6963 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6964 
6965 	/*
6966 	 * Check if a group already has this MAC address (case of VLANs)
6967 	 * unless we are moving this MAC client from one group to another.
6968 	 */
6969 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6970 		if (map->ma_group != NULL)
6971 			return (map->ma_group);
6972 	}
6973 
6974 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6975 		return (NULL);
6976 
6977 	/*
6978 	 * If this client is requesting exclusive MAC access then
6979 	 * return NULL to ensure the client uses the default group.
6980 	 */
6981 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6982 		return (NULL);
6983 
6984 	/* For dynamic groups default unspecified to 1 */
6985 	if (rxhw && unspec &&
6986 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6987 		mrp->mrp_nrxrings = 1;
6988 	}
6989 
6990 	/*
6991 	 * For static grouping we allow only specifying rings=0 and
6992 	 * unspecified
6993 	 */
6994 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6995 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6996 		return (NULL);
6997 	}
6998 
6999 	if (rxhw) {
7000 		/*
7001 		 * We have explicitly asked for a group (with nrxrings,
7002 		 * if unspec).
7003 		 */
7004 		if (unspec || mrp->mrp_nrxrings > 0) {
7005 			need_exclgrp = B_TRUE;
7006 			need_rings = mrp->mrp_nrxrings;
7007 		} else if (mrp->mrp_nrxrings == 0) {
7008 			/*
7009 			 * We have asked for a software group.
7010 			 */
7011 			return (NULL);
7012 		}
7013 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
7014 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7015 		/*
7016 		 * If the primary is the only active client on this
7017 		 * mip and we have not asked for any rings, we give
7018 		 * it the default group so that the primary gets to
7019 		 * use all the rings.
7020 		 */
7021 		return (NULL);
7022 	}
7023 
7024 	/* The group that can donate rings */
7025 	donorgrp = mip->mi_rx_donor_grp;
7026 
7027 	/*
7028 	 * The number of rings that the default group can donate.
7029 	 * We need to leave at least one ring.
7030 	 */
7031 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7032 
7033 	/*
7034 	 * Try to exclusively reserve a RX group.
7035 	 *
7036 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
7037 	 * client), try to reserve the a non-default RX group and give
7038 	 * it all the rings from the donor group, except the default ring
7039 	 *
7040 	 * For flows requiring HW_RING (unicast flow of other clients), try
7041 	 * to reserve non-default RX group with the specified number of
7042 	 * rings, if available.
7043 	 *
7044 	 * For flows that have not asked for software or hardware ring,
7045 	 * try to reserve a non-default group with 1 ring, if available.
7046 	 */
7047 	for (i = 1; i < mip->mi_rx_group_count; i++) {
7048 		grp = &mip->mi_rx_groups[i];
7049 
7050 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
7051 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
7052 
7053 		/*
7054 		 * Check if this group could be a candidate group for
7055 		 * eviction if we need a group for this MAC client,
7056 		 * but there aren't any. A candidate group is one
7057 		 * that didn't ask for an exclusive group, but got
7058 		 * one and it has enough rings (combined with what
7059 		 * the donor group can donate) for the new MAC
7060 		 * client.
7061 		 */
7062 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
7063 			/*
7064 			 * If the donor group is not the default
7065 			 * group, don't bother looking for a candidate
7066 			 * group. If we don't have enough rings we
7067 			 * will check if the primary group can be
7068 			 * vacated.
7069 			 */
7070 			if (candidate_grp == NULL &&
7071 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
7072 				if (!i_mac_clients_hw(grp, MRP_RX_RINGS) &&
7073 				    (unspec ||
7074 				    (grp->mrg_cur_count + donor_grp_rcnt >=
7075 				    need_rings))) {
7076 					candidate_grp = grp;
7077 				}
7078 			}
7079 			continue;
7080 		}
7081 		/*
7082 		 * This group could already be SHARED by other multicast
7083 		 * flows on this client. In that case, the group would
7084 		 * be shared and has already been started.
7085 		 */
7086 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
7087 
7088 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
7089 		    (mac_start_group(grp) != 0)) {
7090 			continue;
7091 		}
7092 
7093 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7094 			break;
7095 		ASSERT(grp->mrg_cur_count == 0);
7096 
7097 		/*
7098 		 * Populate the group. Rings should be taken
7099 		 * from the donor group.
7100 		 */
7101 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
7102 
7103 		/*
7104 		 * If the donor group can't donate, let's just walk and
7105 		 * see if someone can vacate a group, so that we have
7106 		 * enough rings for this, unless we already have
7107 		 * identified a candiate group..
7108 		 */
7109 		if (nrings <= donor_grp_rcnt) {
7110 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7111 			    donorgrp, grp, share, nrings);
7112 			if (err == 0) {
7113 				/*
7114 				 * For a share i_mac_group_allocate_rings gets
7115 				 * the rings from the driver, let's populate
7116 				 * the property for the client now.
7117 				 */
7118 				if (share != 0) {
7119 					mac_client_set_rings(
7120 					    (mac_client_handle_t)mcip,
7121 					    grp->mrg_cur_count, -1);
7122 				}
7123 				if (mac_is_primary_client(mcip) && !rxhw)
7124 					mip->mi_rx_donor_grp = grp;
7125 				break;
7126 			}
7127 		}
7128 
7129 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7130 		    mip->mi_name, int, grp->mrg_index, int, err);
7131 
7132 		/*
7133 		 * It's a dynamic group but the grouping operation
7134 		 * failed.
7135 		 */
7136 		mac_stop_group(grp);
7137 	}
7138 
7139 	/* We didn't find an exclusive group for this MAC client */
7140 	if (i >= mip->mi_rx_group_count) {
7141 
7142 		if (!need_exclgrp)
7143 			return (NULL);
7144 
7145 		/*
7146 		 * If we found a candidate group then move the
7147 		 * existing MAC client from the candidate_group to the
7148 		 * default group and give the candidate_group to the
7149 		 * new MAC client. If we didn't find a candidate
7150 		 * group, then check if the primary is in its own
7151 		 * group and if it can make way for this MAC client.
7152 		 */
7153 		if (candidate_grp == NULL &&
7154 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
7155 		    donorgrp->mrg_cur_count >= need_rings) {
7156 			candidate_grp = donorgrp;
7157 		}
7158 		if (candidate_grp != NULL) {
7159 			boolean_t	prim_grp = B_FALSE;
7160 
7161 			/*
7162 			 * Switch the existing MAC client from the
7163 			 * candidate group to the default group. If
7164 			 * the candidate group is the donor group,
7165 			 * then after the switch we need to update the
7166 			 * donor group too.
7167 			 */
7168 			grp = candidate_grp;
7169 			gclient = grp->mrg_clients->mgc_client;
7170 			VERIFY3P(gclient, !=, NULL);
7171 			if (grp == mip->mi_rx_donor_grp)
7172 				prim_grp = B_TRUE;
7173 			if (mac_rx_switch_group(gclient, grp,
7174 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
7175 				return (NULL);
7176 			}
7177 			if (prim_grp) {
7178 				mip->mi_rx_donor_grp =
7179 				    MAC_DEFAULT_RX_GROUP(mip);
7180 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
7181 			}
7182 
7183 			/*
7184 			 * Now give this group with the required rings
7185 			 * to this MAC client.
7186 			 */
7187 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7188 			if (mac_start_group(grp) != 0)
7189 				return (NULL);
7190 
7191 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7192 				return (grp);
7193 
7194 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7195 			ASSERT(grp->mrg_cur_count == 0);
7196 			ASSERT(donor_grp_rcnt >= need_rings);
7197 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7198 			    donorgrp, grp, share, need_rings);
7199 			if (err == 0) {
7200 				/*
7201 				 * For a share i_mac_group_allocate_rings gets
7202 				 * the rings from the driver, let's populate
7203 				 * the property for the client now.
7204 				 */
7205 				if (share != 0) {
7206 					mac_client_set_rings(
7207 					    (mac_client_handle_t)mcip,
7208 					    grp->mrg_cur_count, -1);
7209 				}
7210 				DTRACE_PROBE2(rx__group__reserved,
7211 				    char *, mip->mi_name, int, grp->mrg_index);
7212 				return (grp);
7213 			}
7214 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7215 			    mip->mi_name, int, grp->mrg_index, int, err);
7216 			mac_stop_group(grp);
7217 		}
7218 		return (NULL);
7219 	}
7220 	ASSERT(grp != NULL);
7221 
7222 	DTRACE_PROBE2(rx__group__reserved,
7223 	    char *, mip->mi_name, int, grp->mrg_index);
7224 	return (grp);
7225 }
7226 
7227 /*
7228  * mac_rx_release_group()
7229  *
7230  * Release the group when it has no remaining clients. The group is
7231  * stopped and its shares are removed and all rings are assigned back
7232  * to default group. This should never be called against the default
7233  * group.
7234  */
7235 void
7236 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
7237 {
7238 	mac_impl_t		*mip = mcip->mci_mip;
7239 	mac_ring_t		*ring;
7240 
7241 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
7242 	ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE);
7243 
7244 	if (mip->mi_rx_donor_grp == group)
7245 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
7246 
7247 	/*
7248 	 * This is the case where there are no clients left. Any
7249 	 * SRS etc on this group have also be quiesced.
7250 	 */
7251 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
7252 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
7253 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
7254 			/*
7255 			 * Remove the SRS associated with the HW ring.
7256 			 * As a result, polling will be disabled.
7257 			 */
7258 			ring->mr_srs = NULL;
7259 		}
7260 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
7261 		    ring->mr_state == MR_INUSE);
7262 		if (ring->mr_state == MR_INUSE) {
7263 			mac_stop_ring(ring);
7264 			ring->mr_flag = 0;
7265 		}
7266 	}
7267 
7268 	/* remove group from share */
7269 	if (mcip->mci_share != 0) {
7270 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
7271 		    group->mrg_driver);
7272 	}
7273 
7274 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7275 		mac_ring_t *ring;
7276 
7277 		/*
7278 		 * Rings were dynamically allocated to group.
7279 		 * Move rings back to default group.
7280 		 */
7281 		while ((ring = group->mrg_rings) != NULL) {
7282 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
7283 			    ring);
7284 		}
7285 	}
7286 	mac_stop_group(group);
7287 	/*
7288 	 * Possible improvement: See if we can assign the group just released
7289 	 * to a another client of the mip
7290 	 */
7291 }
7292 
7293 /*
7294  * Move the MAC address from fgrp to tgrp.
7295  */
7296 static int
7297 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
7298     mac_group_t *tgrp)
7299 {
7300 	mac_impl_t		*mip = mcip->mci_mip;
7301 	uint8_t			maddr[MAXMACADDRLEN];
7302 	int			err = 0;
7303 	uint16_t		vid;
7304 	mac_unicast_impl_t	*muip;
7305 	boolean_t		use_hw;
7306 
7307 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
7308 	VERIFY3P(mcip->mci_unicast, !=, NULL);
7309 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
7310 
7311 	/*
7312 	 * Does the client require MAC address hardware classifiction?
7313 	 */
7314 	use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
7315 	vid = i_mac_flow_vid(mcip->mci_flent);
7316 
7317 	/*
7318 	 * You can never move an address that is shared by multiple
7319 	 * clients. mac_datapath_setup() ensures that clients sharing
7320 	 * an address are placed on the default group. This guarantees
7321 	 * that a non-default group will only ever have one client and
7322 	 * thus make full use of HW filters.
7323 	 */
7324 	if (mac_check_macaddr_shared(mcip->mci_unicast))
7325 		return (EINVAL);
7326 
7327 	err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid);
7328 
7329 	if (err != 0) {
7330 		mac_rx_client_restart((mac_client_handle_t)mcip);
7331 		return (err);
7332 	}
7333 
7334 	/*
7335 	 * If this isn't the primary MAC address then the
7336 	 * mac_address_t has been freed by the last call to
7337 	 * mac_remove_macaddr_vlan(). In any case, NULL the reference
7338 	 * to avoid a dangling pointer.
7339 	 */
7340 	mcip->mci_unicast = NULL;
7341 
7342 	/*
7343 	 * We also have to NULL all the mui_map references -- sun4v
7344 	 * strikes again!
7345 	 */
7346 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7347 	for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7348 		muip->mui_map = NULL;
7349 	rw_exit(&mcip->mci_rw_lock);
7350 
7351 	/*
7352 	 * Program the H/W Classifier first, if this fails we need not
7353 	 * proceed with the other stuff.
7354 	 */
7355 	if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) {
7356 		int err2;
7357 
7358 		/* Revert back the H/W Classifier */
7359 		err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw);
7360 
7361 		if (err2 != 0) {
7362 			cmn_err(CE_WARN, "Failed to revert HW classification"
7363 			    " on MAC %s, for client %s: %d.", mip->mi_name,
7364 			    mcip->mci_name, err2);
7365 		}
7366 
7367 		mac_rx_client_restart((mac_client_handle_t)mcip);
7368 		return (err);
7369 	}
7370 
7371 	/*
7372 	 * Get a reference to the new mac_address_t and update the
7373 	 * client's reference. Then restart the client and add the
7374 	 * other clients of this MAC addr (if they exsit).
7375 	 */
7376 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
7377 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7378 	for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7379 		muip->mui_map = mcip->mci_unicast;
7380 	rw_exit(&mcip->mci_rw_lock);
7381 	mac_rx_client_restart((mac_client_handle_t)mcip);
7382 	return (0);
7383 }
7384 
7385 /*
7386  * Switch the MAC client from one group to another. This means we need
7387  * to remove the MAC address from the group, remove the MAC client,
7388  * teardown the SRSs and revert the group state. Then, we add the client
7389  * to the destination group, set the SRSs, and add the MAC address to the
7390  * group.
7391  */
7392 int
7393 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7394     mac_group_t *tgrp)
7395 {
7396 	int			err;
7397 	mac_group_state_t	next_state;
7398 	mac_client_impl_t	*group_only_mcip;
7399 	mac_client_impl_t	*gmcip;
7400 	mac_impl_t		*mip = mcip->mci_mip;
7401 	mac_grp_client_t	*mgcp;
7402 
7403 	VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group);
7404 
7405 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
7406 		return (err);
7407 
7408 	/*
7409 	 * If the group is marked as reserved and in use by a single
7410 	 * client, then there is an SRS to teardown.
7411 	 */
7412 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7413 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7414 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
7415 	}
7416 
7417 	/*
7418 	 * If we are moving the client from a non-default group, then
7419 	 * we know that any additional clients on this group share the
7420 	 * same MAC address. Since we moved the MAC address filter, we
7421 	 * need to move these clients too.
7422 	 *
7423 	 * If we are moving the client from the default group and its
7424 	 * MAC address has VLAN clients, then we must move those
7425 	 * clients as well.
7426 	 *
7427 	 * In both cases the idea is the same: we moved the MAC
7428 	 * address filter to the tgrp, so we must move all clients
7429 	 * using that MAC address to tgrp as well.
7430 	 */
7431 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
7432 		mgcp = fgrp->mrg_clients;
7433 		while (mgcp != NULL) {
7434 			gmcip = mgcp->mgc_client;
7435 			mgcp = mgcp->mgc_next;
7436 			mac_group_remove_client(fgrp, gmcip);
7437 			mac_group_add_client(tgrp, gmcip);
7438 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
7439 		}
7440 		mac_release_rx_group(mcip, fgrp);
7441 		VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE);
7442 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
7443 	} else {
7444 		mac_group_remove_client(fgrp, mcip);
7445 		mac_group_add_client(tgrp, mcip);
7446 		mcip->mci_flent->fe_rx_ring_group = tgrp;
7447 
7448 		/*
7449 		 * If there are other clients (VLANs) sharing this address
7450 		 * then move them too.
7451 		 */
7452 		if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7453 			/*
7454 			 * We need to move all the clients that are using
7455 			 * this MAC address.
7456 			 */
7457 			mgcp = fgrp->mrg_clients;
7458 			while (mgcp != NULL) {
7459 				gmcip = mgcp->mgc_client;
7460 				mgcp = mgcp->mgc_next;
7461 				if (mcip->mci_unicast == gmcip->mci_unicast) {
7462 					mac_group_remove_client(fgrp, gmcip);
7463 					mac_group_add_client(tgrp, gmcip);
7464 					gmcip->mci_flent->fe_rx_ring_group =
7465 					    tgrp;
7466 				}
7467 			}
7468 		}
7469 
7470 		/*
7471 		 * The default group still handles multicast and
7472 		 * broadcast traffic; it won't transition to
7473 		 * MAC_GROUP_STATE_REGISTERED.
7474 		 */
7475 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
7476 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
7477 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
7478 	}
7479 
7480 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
7481 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
7482 	mac_set_group_state(tgrp, next_state);
7483 
7484 	/*
7485 	 * If the destination group is reserved, then setup the SRSes.
7486 	 * Otherwise make sure to use SW classification.
7487 	 */
7488 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7489 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
7490 		mac_fanout_setup(mcip, mcip->mci_flent,
7491 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
7492 		    NULL);
7493 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
7494 	} else {
7495 		mac_rx_switch_grp_to_sw(tgrp);
7496 	}
7497 
7498 	return (0);
7499 }
7500 
7501 /*
7502  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
7503  * when a share was allocated to the client.
7504  */
7505 mac_group_t *
7506 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
7507 {
7508 	mac_impl_t		*mip = mcip->mci_mip;
7509 	mac_group_t		*grp = NULL;
7510 	int			rv;
7511 	int			i;
7512 	int			err;
7513 	mac_group_t		*defgrp;
7514 	mac_share_handle_t	share = mcip->mci_share;
7515 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7516 	int			nrings;
7517 	int			defnrings;
7518 	boolean_t		need_exclgrp = B_FALSE;
7519 	int			need_rings = 0;
7520 	mac_group_t		*candidate_grp = NULL;
7521 	mac_client_impl_t	*gclient;
7522 	mac_resource_props_t	*gmrp;
7523 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
7524 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
7525 	boolean_t		isprimary;
7526 
7527 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7528 
7529 	/*
7530 	 * When we come here for a VLAN on the primary (dladm create-vlan),
7531 	 * we need to pair it along with the primary (to keep it consistent
7532 	 * with the RX side). So, we check if the primary is already assigned
7533 	 * to a group and return the group if so. The other way is also
7534 	 * true, i.e. the VLAN is already created and now we are plumbing
7535 	 * the primary.
7536 	 */
7537 	if (!move && isprimary) {
7538 		for (gclient = mip->mi_clients_list; gclient != NULL;
7539 		    gclient = gclient->mci_client_next) {
7540 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
7541 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
7542 				return (gclient->mci_flent->fe_tx_ring_group);
7543 			}
7544 		}
7545 	}
7546 
7547 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
7548 		return (NULL);
7549 
7550 	/* For dynamic groups, default unspec to 1 */
7551 	if (txhw && unspec &&
7552 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7553 		mrp->mrp_ntxrings = 1;
7554 	}
7555 	/*
7556 	 * For static grouping we allow only specifying rings=0 and
7557 	 * unspecified
7558 	 */
7559 	if (txhw && mrp->mrp_ntxrings > 0 &&
7560 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
7561 		return (NULL);
7562 	}
7563 
7564 	if (txhw) {
7565 		/*
7566 		 * We have explicitly asked for a group (with ntxrings,
7567 		 * if unspec).
7568 		 */
7569 		if (unspec || mrp->mrp_ntxrings > 0) {
7570 			need_exclgrp = B_TRUE;
7571 			need_rings = mrp->mrp_ntxrings;
7572 		} else if (mrp->mrp_ntxrings == 0) {
7573 			/*
7574 			 * We have asked for a software group.
7575 			 */
7576 			return (NULL);
7577 		}
7578 	}
7579 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7580 	/*
7581 	 * The number of rings that the default group can donate.
7582 	 * We need to leave at least one ring - the default ring - in
7583 	 * this group.
7584 	 */
7585 	defnrings = defgrp->mrg_cur_count - 1;
7586 
7587 	/*
7588 	 * Primary gets default group unless explicitly told not
7589 	 * to  (i.e. rings > 0).
7590 	 */
7591 	if (isprimary && !need_exclgrp)
7592 		return (NULL);
7593 
7594 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
7595 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
7596 		grp = &mip->mi_tx_groups[i];
7597 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
7598 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
7599 			/*
7600 			 * Select a candidate for replacement if we don't
7601 			 * get an exclusive group. A candidate group is one
7602 			 * that didn't ask for an exclusive group, but got
7603 			 * one and it has enough rings (combined with what
7604 			 * the default group can donate) for the new MAC
7605 			 * client.
7606 			 */
7607 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7608 			    candidate_grp == NULL) {
7609 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
7610 				VERIFY3P(gclient, !=, NULL);
7611 				gmrp = MCIP_RESOURCE_PROPS(gclient);
7612 				if (gclient->mci_share == 0 &&
7613 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7614 				    (unspec ||
7615 				    (grp->mrg_cur_count + defnrings) >=
7616 				    need_rings)) {
7617 					candidate_grp = grp;
7618 				}
7619 			}
7620 			continue;
7621 		}
7622 		/*
7623 		 * If the default can't donate let's just walk and
7624 		 * see if someone can vacate a group, so that we have
7625 		 * enough rings for this.
7626 		 */
7627 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7628 		    nrings <= defnrings) {
7629 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7630 				rv = mac_start_group(grp);
7631 				ASSERT(rv == 0);
7632 			}
7633 			break;
7634 		}
7635 	}
7636 
7637 	/* The default group */
7638 	if (i >= mip->mi_tx_group_count) {
7639 		/*
7640 		 * If we need an exclusive group and have identified a
7641 		 * candidate group we switch the MAC client from the
7642 		 * candidate group to the default group and give the
7643 		 * candidate group to this client.
7644 		 */
7645 		if (need_exclgrp && candidate_grp != NULL) {
7646 			/*
7647 			 * Switch the MAC client from the candidate
7648 			 * group to the default group. We know the
7649 			 * candidate_grp came from a reserved group
7650 			 * and thus only has one client.
7651 			 */
7652 			grp = candidate_grp;
7653 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
7654 			VERIFY3P(gclient, !=, NULL);
7655 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7656 			mac_tx_switch_group(gclient, grp, defgrp);
7657 			mac_tx_client_restart((mac_client_handle_t)gclient);
7658 
7659 			/*
7660 			 * Give the candidate group with the specified number
7661 			 * of rings to this MAC client.
7662 			 */
7663 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7664 			rv = mac_start_group(grp);
7665 			ASSERT(rv == 0);
7666 
7667 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7668 				return (grp);
7669 
7670 			ASSERT(grp->mrg_cur_count == 0);
7671 			ASSERT(defgrp->mrg_cur_count > need_rings);
7672 
7673 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7674 			    defgrp, grp, share, need_rings);
7675 			if (err == 0) {
7676 				/*
7677 				 * For a share i_mac_group_allocate_rings gets
7678 				 * the rings from the driver, let's populate
7679 				 * the property for the client now.
7680 				 */
7681 				if (share != 0) {
7682 					mac_client_set_rings(
7683 					    (mac_client_handle_t)mcip, -1,
7684 					    grp->mrg_cur_count);
7685 				}
7686 				mip->mi_tx_group_free--;
7687 				return (grp);
7688 			}
7689 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7690 			    mip->mi_name, int, grp->mrg_index, int, err);
7691 			mac_stop_group(grp);
7692 		}
7693 		return (NULL);
7694 	}
7695 	/*
7696 	 * We got an exclusive group, but it is not dynamic.
7697 	 */
7698 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7699 		mip->mi_tx_group_free--;
7700 		return (grp);
7701 	}
7702 
7703 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7704 	    share, nrings);
7705 	if (rv != 0) {
7706 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7707 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7708 		mac_stop_group(grp);
7709 		return (NULL);
7710 	}
7711 	/*
7712 	 * For a share i_mac_group_allocate_rings gets the rings from the
7713 	 * driver, let's populate the property for the client now.
7714 	 */
7715 	if (share != 0) {
7716 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7717 		    grp->mrg_cur_count);
7718 	}
7719 	mip->mi_tx_group_free--;
7720 	return (grp);
7721 }
7722 
7723 void
7724 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7725 {
7726 	mac_impl_t		*mip = mcip->mci_mip;
7727 	mac_share_handle_t	share = mcip->mci_share;
7728 	mac_ring_t		*ring;
7729 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7730 	mac_group_t		*defgrp;
7731 
7732 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7733 	if (srs != NULL) {
7734 		if (srs->srs_soft_ring_count > 0) {
7735 			for (ring = grp->mrg_rings; ring != NULL;
7736 			    ring = ring->mr_next) {
7737 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7738 				mac_tx_invoke_callbacks(mcip,
7739 				    (mac_tx_cookie_t)
7740 				    mac_tx_srs_get_soft_ring(srs, ring));
7741 				mac_tx_srs_del_ring(srs, ring);
7742 			}
7743 		} else {
7744 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7745 			srs->srs_tx.st_arg2 = NULL;
7746 			mac_srs_stat_delete(srs);
7747 		}
7748 	}
7749 	if (share != 0)
7750 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7751 
7752 	/* move the ring back to the pool */
7753 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7754 		while ((ring = grp->mrg_rings) != NULL)
7755 			(void) mac_group_mov_ring(mip, defgrp, ring);
7756 	}
7757 	mac_stop_group(grp);
7758 	mip->mi_tx_group_free++;
7759 }
7760 
7761 /*
7762  * Disassociate a MAC client from a group, i.e go through the rings in the
7763  * group and delete all the soft rings tied to them.
7764  */
7765 static void
7766 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7767 {
7768 	mac_client_impl_t	*mcip = flent->fe_mcip;
7769 	mac_soft_ring_set_t	*tx_srs;
7770 	mac_srs_tx_t		*tx;
7771 	mac_ring_t		*ring;
7772 
7773 	tx_srs = flent->fe_tx_srs;
7774 	tx = &tx_srs->srs_tx;
7775 
7776 	/* Single ring case we haven't created any soft rings */
7777 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7778 	    tx->st_mode == SRS_TX_DEFAULT) {
7779 		tx->st_arg2 = NULL;
7780 		mac_srs_stat_delete(tx_srs);
7781 	/* Fanout case, where we have to dismantle the soft rings */
7782 	} else {
7783 		for (ring = fgrp->mrg_rings; ring != NULL;
7784 		    ring = ring->mr_next) {
7785 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7786 			mac_tx_invoke_callbacks(mcip,
7787 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7788 			    ring));
7789 			mac_tx_srs_del_ring(tx_srs, ring);
7790 		}
7791 		ASSERT(tx->st_arg2 == NULL);
7792 	}
7793 }
7794 
7795 /*
7796  * Switch the MAC client from one group to another. This means we need
7797  * to remove the MAC client, teardown the SRSs and revert the group state.
7798  * Then, we add the client to the destination roup, set the SRSs etc.
7799  */
7800 void
7801 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7802     mac_group_t *tgrp)
7803 {
7804 	mac_client_impl_t	*group_only_mcip;
7805 	mac_impl_t		*mip = mcip->mci_mip;
7806 	flow_entry_t		*flent = mcip->mci_flent;
7807 	mac_group_t		*defgrp;
7808 	mac_grp_client_t	*mgcp;
7809 	mac_client_impl_t	*gmcip;
7810 	flow_entry_t		*gflent;
7811 
7812 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7813 	ASSERT(fgrp == flent->fe_tx_ring_group);
7814 
7815 	if (fgrp == defgrp) {
7816 		/*
7817 		 * If this is the primary we need to find any VLANs on
7818 		 * the primary and move them too.
7819 		 */
7820 		mac_group_remove_client(fgrp, mcip);
7821 		mac_tx_dismantle_soft_rings(fgrp, flent);
7822 		if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7823 			mgcp = fgrp->mrg_clients;
7824 			while (mgcp != NULL) {
7825 				gmcip = mgcp->mgc_client;
7826 				mgcp = mgcp->mgc_next;
7827 				if (mcip->mci_unicast != gmcip->mci_unicast)
7828 					continue;
7829 				mac_tx_client_quiesce(
7830 				    (mac_client_handle_t)gmcip);
7831 
7832 				gflent = gmcip->mci_flent;
7833 				mac_group_remove_client(fgrp, gmcip);
7834 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7835 
7836 				mac_group_add_client(tgrp, gmcip);
7837 				gflent->fe_tx_ring_group = tgrp;
7838 				/* We could directly set this to SHARED */
7839 				tgrp->mrg_state = mac_group_next_state(tgrp,
7840 				    &group_only_mcip, defgrp, B_FALSE);
7841 
7842 				mac_tx_srs_group_setup(gmcip, gflent,
7843 				    SRST_LINK);
7844 				mac_fanout_setup(gmcip, gflent,
7845 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7846 				    gmcip, NULL, NULL);
7847 
7848 				mac_tx_client_restart(
7849 				    (mac_client_handle_t)gmcip);
7850 			}
7851 		}
7852 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7853 			mac_ring_t	*ring;
7854 			int		cnt;
7855 			int		ringcnt;
7856 
7857 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7858 			/*
7859 			 * Additionally, we also need to stop all
7860 			 * the rings in the default group, except
7861 			 * the default ring. The reason being
7862 			 * this group won't be released since it is
7863 			 * the default group, so the rings won't
7864 			 * be stopped otherwise.
7865 			 */
7866 			ringcnt = fgrp->mrg_cur_count;
7867 			ring = fgrp->mrg_rings;
7868 			for (cnt = 0; cnt < ringcnt; cnt++) {
7869 				if (ring->mr_state == MR_INUSE &&
7870 				    ring !=
7871 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7872 					mac_stop_ring(ring);
7873 					ring->mr_flag = 0;
7874 				}
7875 				ring = ring->mr_next;
7876 			}
7877 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7878 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7879 		} else {
7880 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7881 		}
7882 	} else {
7883 		/*
7884 		 * We could have VLANs sharing the non-default group with
7885 		 * the primary.
7886 		 */
7887 		mgcp = fgrp->mrg_clients;
7888 		while (mgcp != NULL) {
7889 			gmcip = mgcp->mgc_client;
7890 			mgcp = mgcp->mgc_next;
7891 			if (gmcip == mcip)
7892 				continue;
7893 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7894 			gflent = gmcip->mci_flent;
7895 
7896 			mac_group_remove_client(fgrp, gmcip);
7897 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7898 
7899 			mac_group_add_client(tgrp, gmcip);
7900 			gflent->fe_tx_ring_group = tgrp;
7901 			/* We could directly set this to SHARED */
7902 			tgrp->mrg_state = mac_group_next_state(tgrp,
7903 			    &group_only_mcip, defgrp, B_FALSE);
7904 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7905 			mac_fanout_setup(gmcip, gflent,
7906 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7907 			    gmcip, NULL, NULL);
7908 
7909 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7910 		}
7911 		mac_group_remove_client(fgrp, mcip);
7912 		mac_release_tx_group(mcip, fgrp);
7913 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7914 	}
7915 
7916 	/* Add it to the tgroup */
7917 	mac_group_add_client(tgrp, mcip);
7918 	flent->fe_tx_ring_group = tgrp;
7919 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7920 	    defgrp, B_FALSE);
7921 
7922 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7923 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7924 	    mac_rx_deliver, mcip, NULL, NULL);
7925 }
7926 
7927 /*
7928  * This is a 1-time control path activity initiated by the client (IP).
7929  * The mac perimeter protects against other simultaneous control activities,
7930  * for example an ioctl that attempts to change the degree of fanout and
7931  * increase or decrease the number of softrings associated with this Tx SRS.
7932  */
7933 static mac_tx_notify_cb_t *
7934 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7935     mac_tx_notify_t notify, void *arg)
7936 {
7937 	mac_cb_info_t *mcbi;
7938 	mac_tx_notify_cb_t *mtnfp;
7939 
7940 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7941 
7942 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7943 	mtnfp->mtnf_fn = notify;
7944 	mtnfp->mtnf_arg = arg;
7945 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7946 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7947 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7948 
7949 	mcbi = &mcip->mci_tx_notify_cb_info;
7950 	mutex_enter(mcbi->mcbi_lockp);
7951 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7952 	mutex_exit(mcbi->mcbi_lockp);
7953 	return (mtnfp);
7954 }
7955 
7956 static void
7957 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7958 {
7959 	mac_cb_info_t	*mcbi;
7960 	mac_cb_t	**cblist;
7961 
7962 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7963 
7964 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7965 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7966 		cmn_err(CE_WARN,
7967 		    "mac_client_tx_notify_remove: callback not "
7968 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7969 		return;
7970 	}
7971 
7972 	mcbi = &mcip->mci_tx_notify_cb_info;
7973 	cblist = &mcip->mci_tx_notify_cb_list;
7974 	mutex_enter(mcbi->mcbi_lockp);
7975 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7976 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7977 	else
7978 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7979 	mutex_exit(mcbi->mcbi_lockp);
7980 }
7981 
7982 /*
7983  * mac_client_tx_notify():
7984  * call to add and remove flow control callback routine.
7985  */
7986 mac_tx_notify_handle_t
7987 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7988     void *ptr)
7989 {
7990 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7991 	mac_tx_notify_cb_t	*mtnfp = NULL;
7992 
7993 	i_mac_perim_enter(mcip->mci_mip);
7994 
7995 	if (callb_func != NULL) {
7996 		/* Add a notify callback */
7997 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7998 	} else {
7999 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
8000 	}
8001 	i_mac_perim_exit(mcip->mci_mip);
8002 
8003 	return ((mac_tx_notify_handle_t)mtnfp);
8004 }
8005 
8006 void
8007 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
8008     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
8009 {
8010 	mac_bridge_tx_cb = txf;
8011 	mac_bridge_rx_cb = rxf;
8012 	mac_bridge_ref_cb = reff;
8013 	mac_bridge_ls_cb = lsf;
8014 }
8015 
8016 int
8017 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
8018 {
8019 	mac_impl_t *mip = (mac_impl_t *)mh;
8020 	int retv;
8021 
8022 	mutex_enter(&mip->mi_bridge_lock);
8023 	if (mip->mi_bridge_link == NULL) {
8024 		mip->mi_bridge_link = link;
8025 		retv = 0;
8026 	} else {
8027 		retv = EBUSY;
8028 	}
8029 	mutex_exit(&mip->mi_bridge_lock);
8030 	if (retv == 0) {
8031 		mac_poll_state_change(mh, B_FALSE);
8032 		mac_capab_update(mh);
8033 	}
8034 	return (retv);
8035 }
8036 
8037 /*
8038  * Disable bridging on the indicated link.
8039  */
8040 void
8041 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
8042 {
8043 	mac_impl_t *mip = (mac_impl_t *)mh;
8044 
8045 	mutex_enter(&mip->mi_bridge_lock);
8046 	ASSERT(mip->mi_bridge_link == link);
8047 	mip->mi_bridge_link = NULL;
8048 	mutex_exit(&mip->mi_bridge_lock);
8049 	mac_poll_state_change(mh, B_TRUE);
8050 	mac_capab_update(mh);
8051 }
8052 
8053 void
8054 mac_no_active(mac_handle_t mh)
8055 {
8056 	mac_impl_t *mip = (mac_impl_t *)mh;
8057 
8058 	i_mac_perim_enter(mip);
8059 	mip->mi_state_flags |= MIS_NO_ACTIVE;
8060 	i_mac_perim_exit(mip);
8061 }
8062 
8063 /*
8064  * Walk the primary VLAN clients whenever the primary's rings property
8065  * changes and update the mac_resource_props_t for the VLAN's client.
8066  * We need to do this since we don't support setting these properties
8067  * on the primary's VLAN clients, but the VLAN clients have to
8068  * follow the primary w.r.t the rings property.
8069  */
8070 void
8071 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
8072 {
8073 	mac_client_impl_t	*vmcip;
8074 	mac_resource_props_t	*vmrp;
8075 
8076 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
8077 	    vmcip = vmcip->mci_client_next) {
8078 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
8079 		    mac_client_vid((mac_client_handle_t)vmcip) ==
8080 		    VLAN_ID_NONE) {
8081 			continue;
8082 		}
8083 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
8084 
8085 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
8086 		if (mrp->mrp_mask & MRP_RX_RINGS)
8087 			vmrp->mrp_mask |= MRP_RX_RINGS;
8088 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
8089 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
8090 
8091 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
8092 		if (mrp->mrp_mask & MRP_TX_RINGS)
8093 			vmrp->mrp_mask |= MRP_TX_RINGS;
8094 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
8095 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
8096 
8097 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
8098 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
8099 		else
8100 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
8101 
8102 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
8103 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
8104 		else
8105 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
8106 	}
8107 }
8108 
8109 /*
8110  * We are adding or removing ring(s) from a group. The source for taking
8111  * rings is the default group. The destination for giving rings back is
8112  * the default group.
8113  */
8114 int
8115 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
8116     mac_group_t *defgrp)
8117 {
8118 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8119 	uint_t			modify;
8120 	int			count;
8121 	mac_ring_t		*ring;
8122 	mac_ring_t		*next;
8123 	mac_impl_t		*mip = mcip->mci_mip;
8124 	mac_ring_t		**rings;
8125 	uint_t			ringcnt;
8126 	int			i = 0;
8127 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
8128 	int			start;
8129 	int			end;
8130 	mac_group_t		*tgrp;
8131 	int			j;
8132 	int			rv = 0;
8133 
8134 	/*
8135 	 * If we are asked for just a group, we give 1 ring, else
8136 	 * the specified number of rings.
8137 	 */
8138 	if (rx_group) {
8139 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
8140 		    mrp->mrp_nrxrings;
8141 	} else {
8142 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
8143 		    mrp->mrp_ntxrings;
8144 	}
8145 
8146 	/* don't allow modifying rings for a share for now. */
8147 	ASSERT(mcip->mci_share == 0);
8148 
8149 	if (ringcnt == group->mrg_cur_count)
8150 		return (0);
8151 
8152 	if (group->mrg_cur_count > ringcnt) {
8153 		modify = group->mrg_cur_count - ringcnt;
8154 		if (rx_group) {
8155 			if (mip->mi_rx_donor_grp == group) {
8156 				ASSERT(mac_is_primary_client(mcip));
8157 				mip->mi_rx_donor_grp = defgrp;
8158 			} else {
8159 				defgrp = mip->mi_rx_donor_grp;
8160 			}
8161 		}
8162 		ring = group->mrg_rings;
8163 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
8164 		    KM_SLEEP);
8165 		j = 0;
8166 		for (count = 0; count < modify; count++) {
8167 			next = ring->mr_next;
8168 			rv = mac_group_mov_ring(mip, defgrp, ring);
8169 			if (rv != 0) {
8170 				/* cleanup on failure */
8171 				for (j = 0; j < count; j++) {
8172 					(void) mac_group_mov_ring(mip, group,
8173 					    rings[j]);
8174 				}
8175 				break;
8176 			}
8177 			rings[j++] = ring;
8178 			ring = next;
8179 		}
8180 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
8181 		return (rv);
8182 	}
8183 	if (ringcnt >= MAX_RINGS_PER_GROUP)
8184 		return (EINVAL);
8185 
8186 	modify = ringcnt - group->mrg_cur_count;
8187 
8188 	if (rx_group) {
8189 		if (group != mip->mi_rx_donor_grp)
8190 			defgrp = mip->mi_rx_donor_grp;
8191 		else
8192 			/*
8193 			 * This is the donor group with all the remaining
8194 			 * rings. Default group now gets to be the donor
8195 			 */
8196 			mip->mi_rx_donor_grp = defgrp;
8197 		start = 1;
8198 		end = mip->mi_rx_group_count;
8199 	} else {
8200 		start = 0;
8201 		end = mip->mi_tx_group_count - 1;
8202 	}
8203 	/*
8204 	 * If the default doesn't have any rings, lets see if we can
8205 	 * take rings given to an h/w client that doesn't need it.
8206 	 * For now, we just see if there is  any one client that can donate
8207 	 * all the required rings.
8208 	 */
8209 	if (defgrp->mrg_cur_count < (modify + 1)) {
8210 		for (i = start; i < end; i++) {
8211 			if (rx_group) {
8212 				tgrp = &mip->mi_rx_groups[i];
8213 				if (tgrp == group || tgrp->mrg_state <
8214 				    MAC_GROUP_STATE_RESERVED) {
8215 					continue;
8216 				}
8217 				if (i_mac_clients_hw(tgrp, MRP_RX_RINGS))
8218 					continue;
8219 				mcip = tgrp->mrg_clients->mgc_client;
8220 				VERIFY3P(mcip, !=, NULL);
8221 				if ((tgrp->mrg_cur_count +
8222 				    defgrp->mrg_cur_count) < (modify + 1)) {
8223 					continue;
8224 				}
8225 				if (mac_rx_switch_group(mcip, tgrp,
8226 				    defgrp) != 0) {
8227 					return (ENOSPC);
8228 				}
8229 			} else {
8230 				tgrp = &mip->mi_tx_groups[i];
8231 				if (tgrp == group || tgrp->mrg_state <
8232 				    MAC_GROUP_STATE_RESERVED) {
8233 					continue;
8234 				}
8235 				if (i_mac_clients_hw(tgrp, MRP_TX_RINGS))
8236 					continue;
8237 				mcip = tgrp->mrg_clients->mgc_client;
8238 				VERIFY3P(mcip, !=, NULL);
8239 				if ((tgrp->mrg_cur_count +
8240 				    defgrp->mrg_cur_count) < (modify + 1)) {
8241 					continue;
8242 				}
8243 				/* OK, we can switch this to s/w */
8244 				mac_tx_client_quiesce(
8245 				    (mac_client_handle_t)mcip);
8246 				mac_tx_switch_group(mcip, tgrp, defgrp);
8247 				mac_tx_client_restart(
8248 				    (mac_client_handle_t)mcip);
8249 			}
8250 		}
8251 		if (defgrp->mrg_cur_count < (modify + 1))
8252 			return (ENOSPC);
8253 	}
8254 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
8255 	    group, mcip->mci_share, modify)) != 0) {
8256 		return (rv);
8257 	}
8258 	return (0);
8259 }
8260 
8261 /*
8262  * Given the poolname in mac_resource_props, find the cpupart
8263  * that is associated with this pool.  The cpupart will be used
8264  * later for finding the cpus to be bound to the networking threads.
8265  *
8266  * use_default is set B_TRUE if pools are enabled and pool_default
8267  * is returned.  This avoids a 2nd lookup to set the poolname
8268  * for pool-effective.
8269  *
8270  * returns:
8271  *
8272  *    NULL -   pools are disabled or if the 'cpus' property is set.
8273  *    cpupart of pool_default  - pools are enabled and the pool
8274  *             is not available or poolname is blank
8275  *    cpupart of named pool    - pools are enabled and the pool
8276  *             is available.
8277  */
8278 cpupart_t *
8279 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
8280 {
8281 	pool_t		*pool;
8282 	cpupart_t	*cpupart;
8283 
8284 	*use_default = B_FALSE;
8285 
8286 	/* CPUs property is set */
8287 	if (mrp->mrp_mask & MRP_CPUS)
8288 		return (NULL);
8289 
8290 	ASSERT(pool_lock_held());
8291 
8292 	/* Pools are disabled, no pset */
8293 	if (pool_state == POOL_DISABLED)
8294 		return (NULL);
8295 
8296 	/* Pools property is set */
8297 	if (mrp->mrp_mask & MRP_POOL) {
8298 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
8299 			/* Pool not found */
8300 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
8301 			    mrp->mrp_pool);
8302 			*use_default = B_TRUE;
8303 			pool = pool_default;
8304 		}
8305 	/* Pools property is not set */
8306 	} else {
8307 		*use_default = B_TRUE;
8308 		pool = pool_default;
8309 	}
8310 
8311 	/* Find the CPU pset that corresponds to the pool */
8312 	mutex_enter(&cpu_lock);
8313 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
8314 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
8315 		    pool->pool_pset->pset_id);
8316 	}
8317 	mutex_exit(&cpu_lock);
8318 
8319 	return (cpupart);
8320 }
8321 
8322 void
8323 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
8324     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
8325 {
8326 	ASSERT(pool_lock_held());
8327 
8328 	if (cpupart != NULL) {
8329 		emrp->mrp_mask |= MRP_POOL;
8330 		if (use_default) {
8331 			(void) strcpy(emrp->mrp_pool,
8332 			    "pool_default");
8333 		} else {
8334 			ASSERT(strlen(mrp->mrp_pool) != 0);
8335 			(void) strcpy(emrp->mrp_pool,
8336 			    mrp->mrp_pool);
8337 		}
8338 	} else {
8339 		emrp->mrp_mask &= ~MRP_POOL;
8340 		bzero(emrp->mrp_pool, MAXPATHLEN);
8341 	}
8342 }
8343 
8344 struct mac_pool_arg {
8345 	char		mpa_poolname[MAXPATHLEN];
8346 	pool_event_t	mpa_what;
8347 };
8348 
8349 /*ARGSUSED*/
8350 static uint_t
8351 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
8352 {
8353 	struct mac_pool_arg	*mpa = arg;
8354 	mac_impl_t		*mip = (mac_impl_t *)val;
8355 	mac_client_impl_t	*mcip;
8356 	mac_resource_props_t	*mrp, *emrp;
8357 	boolean_t		pool_update = B_FALSE;
8358 	boolean_t		pool_clear = B_FALSE;
8359 	boolean_t		use_default = B_FALSE;
8360 	cpupart_t		*cpupart = NULL;
8361 
8362 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
8363 	i_mac_perim_enter(mip);
8364 	for (mcip = mip->mi_clients_list; mcip != NULL;
8365 	    mcip = mcip->mci_client_next) {
8366 		pool_update = B_FALSE;
8367 		pool_clear = B_FALSE;
8368 		use_default = B_FALSE;
8369 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
8370 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
8371 
8372 		/*
8373 		 * When pools are enabled
8374 		 */
8375 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
8376 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8377 			mrp->mrp_mask |= MRP_POOL;
8378 			pool_update = B_TRUE;
8379 		}
8380 
8381 		/*
8382 		 * When pools are disabled
8383 		 */
8384 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
8385 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8386 			mrp->mrp_mask |= MRP_POOL;
8387 			pool_clear = B_TRUE;
8388 		}
8389 
8390 		/*
8391 		 * Look for links with the pool property set and the poolname
8392 		 * matching the one which is changing.
8393 		 */
8394 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
8395 			/*
8396 			 * The pool associated with the link has changed.
8397 			 */
8398 			if (mpa->mpa_what == POOL_E_CHANGE) {
8399 				mrp->mrp_mask |= MRP_POOL;
8400 				pool_update = B_TRUE;
8401 			}
8402 		}
8403 
8404 		/*
8405 		 * This link is associated with pool_default and
8406 		 * pool_default has changed.
8407 		 */
8408 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
8409 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
8410 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
8411 			mrp->mrp_mask |= MRP_POOL;
8412 			pool_update = B_TRUE;
8413 		}
8414 
8415 		/*
8416 		 * Get new list of cpus for the pool, bind network
8417 		 * threads to new list of cpus and update resources.
8418 		 */
8419 		if (pool_update) {
8420 			if (MCIP_DATAPATH_SETUP(mcip)) {
8421 				pool_lock();
8422 				cpupart = mac_pset_find(mrp, &use_default);
8423 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8424 				    mac_rx_deliver, mcip, NULL, cpupart);
8425 				mac_set_pool_effective(use_default, cpupart,
8426 				    mrp, emrp);
8427 				pool_unlock();
8428 			}
8429 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8430 			    B_FALSE);
8431 		}
8432 
8433 		/*
8434 		 * Clear the effective pool and bind network threads
8435 		 * to any available CPU.
8436 		 */
8437 		if (pool_clear) {
8438 			if (MCIP_DATAPATH_SETUP(mcip)) {
8439 				emrp->mrp_mask &= ~MRP_POOL;
8440 				bzero(emrp->mrp_pool, MAXPATHLEN);
8441 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8442 				    mac_rx_deliver, mcip, NULL, NULL);
8443 			}
8444 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8445 			    B_FALSE);
8446 		}
8447 	}
8448 	i_mac_perim_exit(mip);
8449 	kmem_free(mrp, sizeof (*mrp));
8450 	return (MH_WALK_CONTINUE);
8451 }
8452 
8453 static void
8454 mac_pool_update(void *arg)
8455 {
8456 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
8457 	kmem_free(arg, sizeof (struct mac_pool_arg));
8458 }
8459 
8460 /*
8461  * Callback function to be executed when a noteworthy pool event
8462  * takes place.
8463  */
8464 /* ARGSUSED */
8465 static void
8466 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
8467 {
8468 	pool_t			*pool;
8469 	char			*poolname = NULL;
8470 	struct mac_pool_arg	*mpa;
8471 
8472 	pool_lock();
8473 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
8474 
8475 	switch (what) {
8476 	case POOL_E_ENABLE:
8477 	case POOL_E_DISABLE:
8478 		break;
8479 
8480 	case POOL_E_CHANGE:
8481 		pool = pool_lookup_pool_by_id(id);
8482 		if (pool == NULL) {
8483 			kmem_free(mpa, sizeof (struct mac_pool_arg));
8484 			pool_unlock();
8485 			return;
8486 		}
8487 		pool_get_name(pool, &poolname);
8488 		(void) strlcpy(mpa->mpa_poolname, poolname,
8489 		    sizeof (mpa->mpa_poolname));
8490 		break;
8491 
8492 	default:
8493 		kmem_free(mpa, sizeof (struct mac_pool_arg));
8494 		pool_unlock();
8495 		return;
8496 	}
8497 	pool_unlock();
8498 
8499 	mpa->mpa_what = what;
8500 
8501 	mac_pool_update(mpa);
8502 }
8503 
8504 /*
8505  * Set effective rings property. This could be called from datapath_setup/
8506  * datapath_teardown or set-linkprop.
8507  * If the group is reserved we just go ahead and set the effective rings.
8508  * Additionally, for TX this could mean the default group has lost/gained
8509  * some rings, so if the default group is reserved, we need to adjust the
8510  * effective rings for the default group clients. For RX, if we are working
8511  * with the non-default group, we just need to reset the effective props
8512  * for the default group clients.
8513  */
8514 void
8515 mac_set_rings_effective(mac_client_impl_t *mcip)
8516 {
8517 	mac_impl_t		*mip = mcip->mci_mip;
8518 	mac_group_t		*grp;
8519 	mac_group_t		*defgrp;
8520 	flow_entry_t		*flent = mcip->mci_flent;
8521 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
8522 	mac_grp_client_t	*mgcp;
8523 	mac_client_impl_t	*gmcip;
8524 
8525 	grp = flent->fe_rx_ring_group;
8526 	if (grp != NULL) {
8527 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
8528 		/*
8529 		 * If we have reserved a group, set the effective rings
8530 		 * to the ring count in the group.
8531 		 */
8532 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8533 			emrp->mrp_mask |= MRP_RX_RINGS;
8534 			emrp->mrp_nrxrings = grp->mrg_cur_count;
8535 		}
8536 
8537 		/*
8538 		 * We go through the clients in the shared group and
8539 		 * reset the effective properties. It is possible this
8540 		 * might have already been done for some client (i.e.
8541 		 * if some client is being moved to a group that is
8542 		 * already shared). The case where the default group is
8543 		 * RESERVED is taken care of above (note in the RX side if
8544 		 * there is a non-default group, the default group is always
8545 		 * SHARED).
8546 		 */
8547 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8548 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
8549 				mgcp = grp->mrg_clients;
8550 			else
8551 				mgcp = defgrp->mrg_clients;
8552 			while (mgcp != NULL) {
8553 				gmcip = mgcp->mgc_client;
8554 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8555 				if (emrp->mrp_mask & MRP_RX_RINGS) {
8556 					emrp->mrp_mask &= ~MRP_RX_RINGS;
8557 					emrp->mrp_nrxrings = 0;
8558 				}
8559 				mgcp = mgcp->mgc_next;
8560 			}
8561 		}
8562 	}
8563 
8564 	/* Now the TX side */
8565 	grp = flent->fe_tx_ring_group;
8566 	if (grp != NULL) {
8567 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
8568 
8569 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8570 			emrp->mrp_mask |= MRP_TX_RINGS;
8571 			emrp->mrp_ntxrings = grp->mrg_cur_count;
8572 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8573 			mgcp = grp->mrg_clients;
8574 			while (mgcp != NULL) {
8575 				gmcip = mgcp->mgc_client;
8576 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8577 				if (emrp->mrp_mask & MRP_TX_RINGS) {
8578 					emrp->mrp_mask &= ~MRP_TX_RINGS;
8579 					emrp->mrp_ntxrings = 0;
8580 				}
8581 				mgcp = mgcp->mgc_next;
8582 			}
8583 		}
8584 
8585 		/*
8586 		 * If the group is not the default group and the default
8587 		 * group is reserved, the ring count in the default group
8588 		 * might have changed, update it.
8589 		 */
8590 		if (grp != defgrp &&
8591 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8592 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
8593 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8594 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
8595 		}
8596 	}
8597 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
8598 }
8599 
8600 /*
8601  * Check if the primary is in the default group. If so, see if we
8602  * can give it a an exclusive group now that another client is
8603  * being configured. We take the primary out of the default group
8604  * because the multicast/broadcast packets for the all the clients
8605  * will land in the default ring in the default group which means
8606  * any client in the default group, even if it is the only on in
8607  * the group, will lose exclusive access to the rings, hence
8608  * polling.
8609  */
8610 mac_client_impl_t *
8611 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8612 {
8613 	mac_impl_t		*mip = mcip->mci_mip;
8614 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
8615 	flow_entry_t		*flent = mcip->mci_flent;
8616 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8617 	uint8_t			*mac_addr;
8618 	mac_group_t		*ngrp;
8619 
8620 	/*
8621 	 * Check if the primary is in the default group, if not
8622 	 * or if it is explicitly configured to be in the default
8623 	 * group OR set the RX rings property, return.
8624 	 */
8625 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8626 		return (NULL);
8627 
8628 	/*
8629 	 * If the new client needs an exclusive group and we
8630 	 * don't have another for the primary, return.
8631 	 */
8632 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
8633 		return (NULL);
8634 
8635 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
8636 	/*
8637 	 * We call this when we are setting up the datapath for
8638 	 * the first non-primary.
8639 	 */
8640 	ASSERT(mip->mi_nactiveclients == 2);
8641 
8642 	/*
8643 	 * OK, now we have the primary that needs to be relocated.
8644 	 */
8645 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8646 	if (ngrp == NULL)
8647 		return (NULL);
8648 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8649 		mac_stop_group(ngrp);
8650 		return (NULL);
8651 	}
8652 	return (mcip);
8653 }
8654 
8655 void
8656 mac_transceiver_init(mac_impl_t *mip)
8657 {
8658 	if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8659 	    &mip->mi_transceiver)) {
8660 		/*
8661 		 * The driver set a flag that we don't know about. In this case,
8662 		 * we need to warn about that case and ignore this capability.
8663 		 */
8664 		if (mip->mi_transceiver.mct_flags != 0) {
8665 			dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8666 			    "flags to invalid value: 0x%x, ignoring "
8667 			    "capability", mip->mi_transceiver.mct_flags);
8668 			bzero(&mip->mi_transceiver,
8669 			    sizeof (mac_capab_transceiver_t));
8670 		}
8671 	} else {
8672 			bzero(&mip->mi_transceiver,
8673 			    sizeof (mac_capab_transceiver_t));
8674 	}
8675 }
8676 
8677 int
8678 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8679 {
8680 	mac_impl_t *mip = (mac_impl_t *)mh;
8681 
8682 	ASSERT(MAC_PERIM_HELD(mh));
8683 
8684 	if (mip->mi_transceiver.mct_ntransceivers == 0)
8685 		return (ENOTSUP);
8686 
8687 	*countp = mip->mi_transceiver.mct_ntransceivers;
8688 	return (0);
8689 }
8690 
8691 int
8692 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8693     boolean_t *usable)
8694 {
8695 	int ret;
8696 	mac_transceiver_info_t info;
8697 
8698 	mac_impl_t *mip = (mac_impl_t *)mh;
8699 
8700 	ASSERT(MAC_PERIM_HELD(mh));
8701 
8702 	if (mip->mi_transceiver.mct_info == NULL ||
8703 	    mip->mi_transceiver.mct_ntransceivers == 0)
8704 		return (ENOTSUP);
8705 
8706 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8707 		return (EINVAL);
8708 
8709 	bzero(&info, sizeof (mac_transceiver_info_t));
8710 	if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8711 	    &info)) != 0) {
8712 		return (ret);
8713 	}
8714 
8715 	*present = info.mti_present;
8716 	*usable = info.mti_usable;
8717 	return (0);
8718 }
8719 
8720 int
8721 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8722     size_t nbytes, off_t offset, size_t *nread)
8723 {
8724 	int ret;
8725 	size_t nr;
8726 	mac_impl_t *mip = (mac_impl_t *)mh;
8727 
8728 	ASSERT(MAC_PERIM_HELD(mh));
8729 
8730 	if (mip->mi_transceiver.mct_read == NULL)
8731 		return (ENOTSUP);
8732 
8733 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8734 		return (EINVAL);
8735 
8736 	/*
8737 	 * All supported pages today are 256 bytes wide. Make sure offset +
8738 	 * nbytes never exceeds that.
8739 	 */
8740 	if (offset < 0 || offset >= 256 || nbytes > 256 ||
8741 	    offset + nbytes > 256)
8742 		return (EINVAL);
8743 
8744 	if (nread == NULL)
8745 		nread = &nr;
8746 	ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8747 	    nbytes, offset, nread);
8748 	if (ret == 0 && *nread > nbytes) {
8749 		dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8750 		    "%lu byte sized buffer, possible memory corruption",
8751 		    *nread, nbytes);
8752 	}
8753 
8754 	return (ret);
8755 }
8756 
8757 void
8758 mac_led_init(mac_impl_t *mip)
8759 {
8760 	mip->mi_led_modes = MAC_LED_DEFAULT;
8761 
8762 	if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8763 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8764 		return;
8765 	}
8766 
8767 	if (mip->mi_led.mcl_flags != 0) {
8768 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8769 		    "flags to invalid value: 0x%x, ignoring "
8770 		    "capability", mip->mi_transceiver.mct_flags);
8771 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8772 		return;
8773 	}
8774 
8775 	if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8776 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8777 		    "supported modes to invalid value: 0x%x, ignoring "
8778 		    "capability", mip->mi_transceiver.mct_flags);
8779 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8780 		return;
8781 	}
8782 }
8783 
8784 int
8785 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8786 {
8787 	mac_impl_t *mip = (mac_impl_t *)mh;
8788 
8789 	ASSERT(MAC_PERIM_HELD(mh));
8790 
8791 	if (mip->mi_led.mcl_set == NULL)
8792 		return (ENOTSUP);
8793 
8794 	*supported = mip->mi_led.mcl_modes;
8795 	*active = mip->mi_led_modes;
8796 
8797 	return (0);
8798 }
8799 
8800 /*
8801  * Update and multiplex the various LED requests. We only ever send one LED to
8802  * the underlying driver at a time. As such, we end up multiplexing all
8803  * requested states and picking one to send down to the driver.
8804  */
8805 int
8806 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8807 {
8808 	int ret;
8809 	mac_led_mode_t driver;
8810 
8811 	mac_impl_t *mip = (mac_impl_t *)mh;
8812 
8813 	ASSERT(MAC_PERIM_HELD(mh));
8814 
8815 	/*
8816 	 * If we've been passed a desired value of zero, that indicates that
8817 	 * we're basically resetting to the value of zero, which is our default
8818 	 * value.
8819 	 */
8820 	if (desired == 0)
8821 		desired = MAC_LED_DEFAULT;
8822 
8823 	if (mip->mi_led.mcl_set == NULL)
8824 		return (ENOTSUP);
8825 
8826 	/*
8827 	 * Catch both values that we don't know about and those that the driver
8828 	 * doesn't support.
8829 	 */
8830 	if ((desired & ~MAC_LED_ALL) != 0)
8831 		return (EINVAL);
8832 
8833 	if ((desired & ~mip->mi_led.mcl_modes) != 0)
8834 		return (ENOTSUP);
8835 
8836 	/*
8837 	 * If we have the same value, then there is nothing to do.
8838 	 */
8839 	if (desired == mip->mi_led_modes)
8840 		return (0);
8841 
8842 	/*
8843 	 * Based on the desired value, determine what to send to the driver. We
8844 	 * only will send a single bit to the driver at any given time. IDENT
8845 	 * takes priority over OFF or ON. We also let OFF take priority over the
8846 	 * rest.
8847 	 */
8848 	if (desired & MAC_LED_IDENT) {
8849 		driver = MAC_LED_IDENT;
8850 	} else if (desired & MAC_LED_OFF) {
8851 		driver = MAC_LED_OFF;
8852 	} else if (desired & MAC_LED_ON) {
8853 		driver = MAC_LED_ON;
8854 	} else {
8855 		driver = MAC_LED_DEFAULT;
8856 	}
8857 
8858 	if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8859 		mip->mi_led_modes = desired;
8860 	}
8861 
8862 	return (ret);
8863 }
8864 
8865 /*
8866  * Send packets through the Tx ring ('mrh') or through the default
8867  * handler if no ring is specified. Before passing the packet down to
8868  * the MAC provider, emulate any hardware offloads which have been
8869  * requested but are not supported by the provider.
8870  */
8871 mblk_t *
8872 mac_ring_tx(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp)
8873 {
8874 	mac_impl_t *mip = (mac_impl_t *)mh;
8875 
8876 	if (mrh == NULL)
8877 		mrh = mip->mi_default_tx_ring;
8878 
8879 	if (mrh == NULL)
8880 		return (mip->mi_tx(mip->mi_driver, mp));
8881 	else
8882 		return (mac_hwring_tx(mrh, mp));
8883 }
8884 
8885 /*
8886  * This is the final stop before reaching the underlying MAC provider.
8887  * This is also where the bridging hook is inserted. Packets that are
8888  * bridged will return through mac_bridge_tx(), with rh nulled out if
8889  * the bridge chooses to send output on a different link due to
8890  * forwarding.
8891  */
8892 mblk_t *
8893 mac_provider_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp,
8894     mac_client_impl_t *mcip)
8895 {
8896 	/*
8897 	 * If there is a bound Hybrid I/O share, send packets through
8898 	 * the default tx ring. When there's a bound Hybrid I/O share,
8899 	 * the tx rings of this client are mapped in the guest domain
8900 	 * and not accessible from here.
8901 	 */
8902 	if (mcip->mci_state_flags & MCIS_SHARE_BOUND)
8903 		rh = mip->mi_default_tx_ring;
8904 
8905 	if (mip->mi_promisc_list != NULL)
8906 		mac_promisc_dispatch(mip, mp, mcip, B_FALSE);
8907 
8908 	if (mip->mi_bridge_link == NULL)
8909 		return (mac_ring_tx((mac_handle_t)mip, rh, mp));
8910 	else
8911 		return (mac_bridge_tx(mip, rh, mp));
8912 }
8913