1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2020 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 * Copyright 2020 RackTop Systems, Inc. 27 * Copyright 2024 Oxide Computer Company 28 */ 29 30 /* 31 * MAC Services Module 32 * 33 * The GLDv3 framework locking - The MAC layer 34 * -------------------------------------------- 35 * 36 * The MAC layer is central to the GLD framework and can provide the locking 37 * framework needed for itself and for the use of MAC clients. MAC end points 38 * are fairly disjoint and don't share a lot of state. So a coarse grained 39 * multi-threading scheme is to single thread all create/modify/delete or set 40 * type of control operations on a per mac end point while allowing data threads 41 * concurrently. 42 * 43 * Control operations (set) that modify a mac end point are always serialized on 44 * a per mac end point basis, We have at most 1 such thread per mac end point 45 * at a time. 46 * 47 * All other operations that are not serialized are essentially multi-threaded. 48 * For example a control operation (get) like getting statistics which may not 49 * care about reading values atomically or data threads sending or receiving 50 * data. Mostly these type of operations don't modify the control state. Any 51 * state these operations care about are protected using traditional locks. 52 * 53 * The perimeter only serializes serial operations. It does not imply there 54 * aren't any other concurrent operations. However a serialized operation may 55 * sometimes need to make sure it is the only thread. In this case it needs 56 * to use reference counting mechanisms to cv_wait until any current data 57 * threads are done. 58 * 59 * The mac layer itself does not hold any locks across a call to another layer. 60 * The perimeter is however held across a down call to the driver to make the 61 * whole control operation atomic with respect to other control operations. 62 * Also the data path and get type control operations may proceed concurrently. 63 * These operations synchronize with the single serial operation on a given mac 64 * end point using regular locks. The perimeter ensures that conflicting 65 * operations like say a mac_multicast_add and a mac_multicast_remove on the 66 * same mac end point don't interfere with each other and also ensures that the 67 * changes in the mac layer and the call to the underlying driver to say add a 68 * multicast address are done atomically without interference from a thread 69 * trying to delete the same address. 70 * 71 * For example, consider 72 * mac_multicst_add() 73 * { 74 * mac_perimeter_enter(); serialize all control operations 75 * 76 * grab list lock protect against access by data threads 77 * add to list 78 * drop list lock 79 * 80 * call driver's mi_multicst 81 * 82 * mac_perimeter_exit(); 83 * } 84 * 85 * To lessen the number of serialization locks and simplify the lock hierarchy, 86 * we serialize all the control operations on a per mac end point by using a 87 * single serialization lock called the perimeter. We allow recursive entry into 88 * the perimeter to facilitate use of this mechanism by both the mac client and 89 * the MAC layer itself. 90 * 91 * MAC client means an entity that does an operation on a mac handle 92 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 93 * an entity that does an operation on a mac handle obtained from a 94 * mac_register. An entity could be both client and driver but on different 95 * handles eg. aggr. and should only make the corresponding mac interface calls 96 * i.e. mac driver interface or mac client interface as appropriate for that 97 * mac handle. 98 * 99 * General rules. 100 * ------------- 101 * 102 * R1. The lock order of upcall threads is natually opposite to downcall 103 * threads. Hence upcalls must not hold any locks across layers for fear of 104 * recursive lock enter and lock order violation. This applies to all layers. 105 * 106 * R2. The perimeter is just another lock. Since it is held in the down 107 * direction, acquiring the perimeter in an upcall is prohibited as it would 108 * cause a deadlock. This applies to all layers. 109 * 110 * Note that upcalls that need to grab the mac perimeter (for example 111 * mac_notify upcalls) can still achieve that by posting the request to a 112 * thread, which can then grab all the required perimeters and locks in the 113 * right global order. Note that in the above example the mac layer iself 114 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 115 * to the client must do that. Please see the aggr code for an example. 116 * 117 * MAC client rules 118 * ---------------- 119 * 120 * R3. A MAC client may use the MAC provided perimeter facility to serialize 121 * control operations on a per mac end point. It does this by by acquring 122 * and holding the perimeter across a sequence of calls to the mac layer. 123 * This ensures atomicity across the entire block of mac calls. In this 124 * model the MAC client must not hold any client locks across the calls to 125 * the mac layer. This model is the preferred solution. 126 * 127 * R4. However if a MAC client has a lot of global state across all mac end 128 * points the per mac end point serialization may not be sufficient. In this 129 * case the client may choose to use global locks or use its own serialization. 130 * To avoid deadlocks, these client layer locks held across the mac calls 131 * in the control path must never be acquired by the data path for the reason 132 * mentioned below. 133 * 134 * (Assume that a control operation that holds a client lock blocks in the 135 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 136 * data thread that holds this reference count, tries to acquire the same 137 * client lock subsequently it will deadlock). 138 * 139 * A MAC client may follow either the R3 model or the R4 model, but can't 140 * mix both. In the former, the hierarchy is Perim -> client locks, but in 141 * the latter it is client locks -> Perim. 142 * 143 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 144 * context since they may block while trying to acquire the perimeter. 145 * In addition some calls may block waiting for upcall refcnts to come down to 146 * zero. 147 * 148 * R6. MAC clients must make sure that they are single threaded and all threads 149 * from the top (in particular data threads) have finished before calling 150 * mac_client_close. The MAC framework does not track the number of client 151 * threads using the mac client handle. Also mac clients must make sure 152 * they have undone all the control operations before calling mac_client_close. 153 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 154 * mac_unicast_add/mac_multicast_add. 155 * 156 * MAC framework rules 157 * ------------------- 158 * 159 * R7. The mac layer itself must not hold any mac layer locks (except the mac 160 * perimeter) across a call to any other layer from the mac layer. The call to 161 * any other layer could be via mi_* entry points, classifier entry points into 162 * the driver or via upcall pointers into layers above. The mac perimeter may 163 * be acquired or held only in the down direction, for e.g. when calling into 164 * a mi_* driver enty point to provide atomicity of the operation. 165 * 166 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 167 * mac driver interfaces, the MAC layer must provide a cut out for control 168 * interfaces like upcall notifications and start them in a separate thread. 169 * 170 * R9. Note that locking order also implies a plumbing order. For example 171 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 172 * to plumb in any other order must be failed at mac_open time, otherwise it 173 * could lead to deadlocks due to inverse locking order. 174 * 175 * R10. MAC driver interfaces must not block since the driver could call them 176 * in interrupt context. 177 * 178 * R11. Walkers must preferably not hold any locks while calling walker 179 * callbacks. Instead these can operate on reference counts. In simple 180 * callbacks it may be ok to hold a lock and call the callbacks, but this is 181 * harder to maintain in the general case of arbitrary callbacks. 182 * 183 * R12. The MAC layer must protect upcall notification callbacks using reference 184 * counts rather than holding locks across the callbacks. 185 * 186 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 187 * sure that any pointers (such as mac ring pointers) it passes to the driver 188 * remain valid until mac unregister time. Currently the mac layer achieves 189 * this by using generation numbers for rings and freeing the mac rings only 190 * at unregister time. The MAC layer must provide a layer of indirection and 191 * must not expose underlying driver rings or driver data structures/pointers 192 * directly to MAC clients. 193 * 194 * MAC driver rules 195 * ---------------- 196 * 197 * R14. It would be preferable if MAC drivers don't hold any locks across any 198 * mac call. However at a minimum they must not hold any locks across data 199 * upcalls. They must also make sure that all references to mac data structures 200 * are cleaned up and that it is single threaded at mac_unregister time. 201 * 202 * R15. MAC driver interfaces don't block and so the action may be done 203 * asynchronously in a separate thread as for example handling notifications. 204 * The driver must not assume that the action is complete when the call 205 * returns. 206 * 207 * R16. Drivers must maintain a generation number per Rx ring, and pass it 208 * back to mac_rx_ring(); They are expected to increment the generation 209 * number whenever the ring's stop routine is invoked. 210 * See comments in mac_rx_ring(); 211 * 212 * R17 Similarly mi_stop is another synchronization point and the driver must 213 * ensure that all upcalls are done and there won't be any future upcall 214 * before returning from mi_stop. 215 * 216 * R18. The driver may assume that all set/modify control operations via 217 * the mi_* entry points are single threaded on a per mac end point. 218 * 219 * Lock and Perimeter hierarchy scenarios 220 * --------------------------------------- 221 * 222 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 223 * 224 * ft_lock -> fe_lock [mac_flow_lookup] 225 * 226 * mi_rw_lock -> fe_lock [mac_bcast_send] 227 * 228 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 229 * 230 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 231 * 232 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 233 * 234 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 235 * client to driver. In the case of clients that explictly use the mac provided 236 * perimeter mechanism for its serialization, the hierarchy is 237 * Perimeter -> mac layer locks, since the client never holds any locks across 238 * the mac calls. In the case of clients that use its own locks the hierarchy 239 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 240 * calls mac_perim_enter/exit in this case. 241 * 242 * Subflow creation rules 243 * --------------------------- 244 * o In case of a user specified cpulist present on underlying link and flows, 245 * the flows cpulist must be a subset of the underlying link. 246 * o In case of a user specified fanout mode present on link and flow, the 247 * subflow fanout count has to be less than or equal to that of the 248 * underlying link. The cpu-bindings for the subflows will be a subset of 249 * the underlying link. 250 * o In case if no cpulist specified on both underlying link and flow, the 251 * underlying link relies on a MAC tunable to provide out of box fanout. 252 * The subflow will have no cpulist (the subflow will be unbound) 253 * o In case if no cpulist is specified on the underlying link, a subflow can 254 * carry either a user-specified cpulist or fanout count. The cpu-bindings 255 * for the subflow will not adhere to restriction that they need to be subset 256 * of the underlying link. 257 * o In case where the underlying link is carrying either a user specified 258 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 259 * created unbound. 260 * o While creating unbound subflows, bandwidth mode changes attempt to 261 * figure a right fanout count. In such cases the fanout count will override 262 * the unbound cpu-binding behavior. 263 * o In addition to this, while cycling between flow and link properties, we 264 * impose a restriction that if a link property has a subflow with 265 * user-specified attributes, we will not allow changing the link property. 266 * The administrator needs to reset all the user specified properties for the 267 * subflows before attempting a link property change. 268 * Some of the above rules can be overridden by specifying additional command 269 * line options while creating or modifying link or subflow properties. 270 * 271 * Datapath 272 * -------- 273 * 274 * For information on the datapath, the world of soft rings, hardware rings, how 275 * it is structured, and the path of an mblk_t between a driver and a mac 276 * client, see mac_sched.c. 277 */ 278 279 #include <sys/types.h> 280 #include <sys/conf.h> 281 #include <sys/id_space.h> 282 #include <sys/esunddi.h> 283 #include <sys/stat.h> 284 #include <sys/mkdev.h> 285 #include <sys/stream.h> 286 #include <sys/strsun.h> 287 #include <sys/strsubr.h> 288 #include <sys/dlpi.h> 289 #include <sys/list.h> 290 #include <sys/modhash.h> 291 #include <sys/mac_provider.h> 292 #include <sys/mac_client_impl.h> 293 #include <sys/mac_soft_ring.h> 294 #include <sys/mac_stat.h> 295 #include <sys/mac_impl.h> 296 #include <sys/mac.h> 297 #include <sys/dls.h> 298 #include <sys/dld.h> 299 #include <sys/modctl.h> 300 #include <sys/fs/dv_node.h> 301 #include <sys/thread.h> 302 #include <sys/proc.h> 303 #include <sys/callb.h> 304 #include <sys/cpuvar.h> 305 #include <sys/atomic.h> 306 #include <sys/bitmap.h> 307 #include <sys/sdt.h> 308 #include <sys/mac_flow.h> 309 #include <sys/ddi_intr_impl.h> 310 #include <sys/disp.h> 311 #include <sys/sdt.h> 312 #include <sys/vnic.h> 313 #include <sys/vnic_impl.h> 314 #include <sys/vlan.h> 315 #include <inet/ip.h> 316 #include <inet/ip6.h> 317 #include <sys/exacct.h> 318 #include <sys/exacct_impl.h> 319 #include <inet/nd.h> 320 #include <sys/ethernet.h> 321 #include <sys/pool.h> 322 #include <sys/pool_pset.h> 323 #include <sys/cpupart.h> 324 #include <inet/wifi_ioctl.h> 325 #include <net/wpa.h> 326 #include <sys/mac_ether.h> 327 328 #define IMPL_HASHSZ 67 /* prime */ 329 330 kmem_cache_t *i_mac_impl_cachep; 331 mod_hash_t *i_mac_impl_hash; 332 krwlock_t i_mac_impl_lock; 333 uint_t i_mac_impl_count; 334 static kmem_cache_t *mac_ring_cache; 335 static id_space_t *minor_ids; 336 static uint32_t minor_count; 337 static pool_event_cb_t mac_pool_event_reg; 338 339 /* 340 * Logging stuff. Perhaps mac_logging_interval could be broken into 341 * mac_flow_log_interval and mac_link_log_interval if we want to be 342 * able to schedule them differently. 343 */ 344 uint_t mac_logging_interval; 345 boolean_t mac_flow_log_enable; 346 boolean_t mac_link_log_enable; 347 timeout_id_t mac_logging_timer; 348 349 #define MACTYPE_KMODDIR "mac" 350 #define MACTYPE_HASHSZ 67 351 static mod_hash_t *i_mactype_hash; 352 /* 353 * i_mactype_lock synchronizes threads that obtain references to mactype_t 354 * structures through i_mactype_getplugin(). 355 */ 356 static kmutex_t i_mactype_lock; 357 358 /* 359 * mac_tx_percpu_cnt 360 * 361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 365 */ 366 int mac_tx_percpu_cnt; 367 int mac_tx_percpu_cnt_max = 128; 368 369 /* 370 * Call back functions for the bridge module. These are guaranteed to be valid 371 * when holding a reference on a link or when holding mip->mi_bridge_lock and 372 * mi_bridge_link is non-NULL. 373 */ 374 mac_bridge_tx_t mac_bridge_tx_cb; 375 mac_bridge_rx_t mac_bridge_rx_cb; 376 mac_bridge_ref_t mac_bridge_ref_cb; 377 mac_bridge_ls_t mac_bridge_ls_cb; 378 379 static int i_mac_constructor(void *, void *, int); 380 static void i_mac_destructor(void *, void *); 381 static int i_mac_ring_ctor(void *, void *, int); 382 static void i_mac_ring_dtor(void *, void *); 383 static flow_entry_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, 384 mblk_t *); 385 void mac_tx_client_flush(mac_client_impl_t *); 386 void mac_tx_client_block(mac_client_impl_t *); 387 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 388 static int mac_start_group_and_rings(mac_group_t *); 389 static void mac_stop_group_and_rings(mac_group_t *); 390 static void mac_pool_event_cb(pool_event_t, int, void *); 391 392 typedef struct netinfo_s { 393 list_node_t ni_link; 394 void *ni_record; 395 int ni_size; 396 int ni_type; 397 } netinfo_t; 398 399 /* 400 * Module initialization functions. 401 */ 402 403 void 404 mac_init(void) 405 { 406 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 407 boot_max_ncpus); 408 409 /* Upper bound is mac_tx_percpu_cnt_max */ 410 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 411 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 412 413 if (mac_tx_percpu_cnt < 1) { 414 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 415 mac_tx_percpu_cnt = 1; 416 } 417 418 ASSERT(mac_tx_percpu_cnt >= 1); 419 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 420 /* 421 * Make it of the form 2**N - 1 in the range 422 * [0 .. mac_tx_percpu_cnt_max - 1] 423 */ 424 mac_tx_percpu_cnt--; 425 426 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 427 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 428 NULL, NULL, NULL, 0); 429 ASSERT(i_mac_impl_cachep != NULL); 430 431 mac_ring_cache = kmem_cache_create("mac_ring_cache", 432 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 433 NULL, NULL, 0); 434 ASSERT(mac_ring_cache != NULL); 435 436 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 437 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 438 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 439 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 440 441 mac_flow_init(); 442 mac_soft_ring_init(); 443 mac_bcast_init(); 444 mac_client_init(); 445 446 i_mac_impl_count = 0; 447 448 i_mactype_hash = mod_hash_create_extended("mactype_hash", 449 MACTYPE_HASHSZ, 450 mod_hash_null_keydtor, mod_hash_null_valdtor, 451 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 452 453 /* 454 * Allocate an id space to manage minor numbers. The range of the 455 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 456 * leaves half of the 32-bit minors available for driver private use. 457 */ 458 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 459 MAC_PRIVATE_MINOR-1); 460 ASSERT(minor_ids != NULL); 461 minor_count = 0; 462 463 /* Let's default to 20 seconds */ 464 mac_logging_interval = 20; 465 mac_flow_log_enable = B_FALSE; 466 mac_link_log_enable = B_FALSE; 467 mac_logging_timer = NULL; 468 469 /* Register to be notified of noteworthy pools events */ 470 mac_pool_event_reg.pec_func = mac_pool_event_cb; 471 mac_pool_event_reg.pec_arg = NULL; 472 pool_event_cb_register(&mac_pool_event_reg); 473 } 474 475 int 476 mac_fini(void) 477 { 478 479 if (i_mac_impl_count > 0 || minor_count > 0) 480 return (EBUSY); 481 482 pool_event_cb_unregister(&mac_pool_event_reg); 483 484 id_space_destroy(minor_ids); 485 mac_flow_fini(); 486 487 mod_hash_destroy_hash(i_mac_impl_hash); 488 rw_destroy(&i_mac_impl_lock); 489 490 mac_client_fini(); 491 kmem_cache_destroy(mac_ring_cache); 492 493 mod_hash_destroy_hash(i_mactype_hash); 494 mac_soft_ring_finish(); 495 496 497 return (0); 498 } 499 500 /* 501 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 502 * (e.g. softmac) may pass in a NULL ops argument. 503 */ 504 void 505 mac_init_ops(struct dev_ops *ops, const char *name) 506 { 507 major_t major = ddi_name_to_major((char *)name); 508 509 /* 510 * By returning on error below, we are not letting the driver continue 511 * in an undefined context. The mac_register() function will faill if 512 * DN_GLDV3_DRIVER isn't set. 513 */ 514 if (major == DDI_MAJOR_T_NONE) 515 return; 516 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 517 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 518 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 519 if (ops != NULL) 520 dld_init_ops(ops, name); 521 } 522 523 void 524 mac_fini_ops(struct dev_ops *ops) 525 { 526 dld_fini_ops(ops); 527 } 528 529 /*ARGSUSED*/ 530 static int 531 i_mac_constructor(void *buf, void *arg, int kmflag) 532 { 533 mac_impl_t *mip = buf; 534 535 bzero(buf, sizeof (mac_impl_t)); 536 537 mip->mi_linkstate = LINK_STATE_UNKNOWN; 538 539 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 540 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 541 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 542 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 543 544 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 545 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 546 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 547 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 548 549 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 550 551 return (0); 552 } 553 554 /*ARGSUSED*/ 555 static void 556 i_mac_destructor(void *buf, void *arg) 557 { 558 mac_impl_t *mip = buf; 559 mac_cb_info_t *mcbi; 560 561 ASSERT(mip->mi_ref == 0); 562 ASSERT(mip->mi_active == 0); 563 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 564 ASSERT(mip->mi_devpromisc == 0); 565 ASSERT(mip->mi_ksp == NULL); 566 ASSERT(mip->mi_kstat_count == 0); 567 ASSERT(mip->mi_nclients == 0); 568 ASSERT(mip->mi_nactiveclients == 0); 569 ASSERT(mip->mi_single_active_client == NULL); 570 ASSERT(mip->mi_state_flags == 0); 571 ASSERT(mip->mi_factory_addr == NULL); 572 ASSERT(mip->mi_factory_addr_num == 0); 573 ASSERT(mip->mi_default_tx_ring == NULL); 574 575 mcbi = &mip->mi_notify_cb_info; 576 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 577 ASSERT(mip->mi_notify_bits == 0); 578 ASSERT(mip->mi_notify_thread == NULL); 579 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 580 mcbi->mcbi_lockp = NULL; 581 582 mcbi = &mip->mi_promisc_cb_info; 583 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 584 ASSERT(mip->mi_promisc_list == NULL); 585 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 586 mcbi->mcbi_lockp = NULL; 587 588 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 589 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 590 591 rw_destroy(&mip->mi_rw_lock); 592 593 mutex_destroy(&mip->mi_promisc_lock); 594 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 595 mutex_destroy(&mip->mi_notify_lock); 596 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 597 mutex_destroy(&mip->mi_ring_lock); 598 599 ASSERT(mip->mi_bridge_link == NULL); 600 } 601 602 /* ARGSUSED */ 603 static int 604 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 605 { 606 mac_ring_t *ring = (mac_ring_t *)buf; 607 608 bzero(ring, sizeof (mac_ring_t)); 609 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 610 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 611 ring->mr_state = MR_FREE; 612 return (0); 613 } 614 615 /* ARGSUSED */ 616 static void 617 i_mac_ring_dtor(void *buf, void *arg) 618 { 619 mac_ring_t *ring = (mac_ring_t *)buf; 620 621 cv_destroy(&ring->mr_cv); 622 mutex_destroy(&ring->mr_lock); 623 } 624 625 /* 626 * Common functions to do mac callback addition and deletion. Currently this is 627 * used by promisc callbacks and notify callbacks. List addition and deletion 628 * need to take care of list walkers. List walkers in general, can't hold list 629 * locks and make upcall callbacks due to potential lock order and recursive 630 * reentry issues. Instead list walkers increment the list walker count to mark 631 * the presence of a walker thread. Addition can be carefully done to ensure 632 * that the list walker always sees either the old list or the new list. 633 * However the deletion can't be done while the walker is active, instead the 634 * deleting thread simply marks the entry as logically deleted. The last walker 635 * physically deletes and frees up the logically deleted entries when the walk 636 * is complete. 637 */ 638 void 639 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 640 mac_cb_t *mcb_elem) 641 { 642 mac_cb_t *p; 643 mac_cb_t **pp; 644 645 /* Verify it is not already in the list */ 646 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 647 if (p == mcb_elem) 648 break; 649 } 650 VERIFY(p == NULL); 651 652 /* 653 * Add it to the head of the callback list. The membar ensures that 654 * the following list pointer manipulations reach global visibility 655 * in exactly the program order below. 656 */ 657 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 658 659 mcb_elem->mcb_nextp = *mcb_head; 660 membar_producer(); 661 *mcb_head = mcb_elem; 662 } 663 664 /* 665 * Mark the entry as logically deleted. If there aren't any walkers unlink 666 * from the list. In either case return the corresponding status. 667 */ 668 boolean_t 669 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 670 mac_cb_t *mcb_elem) 671 { 672 mac_cb_t *p; 673 mac_cb_t **pp; 674 675 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 676 /* 677 * Search the callback list for the entry to be removed 678 */ 679 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 680 if (p == mcb_elem) 681 break; 682 } 683 VERIFY(p != NULL); 684 685 /* 686 * If there are walkers just mark it as deleted and the last walker 687 * will remove from the list and free it. 688 */ 689 if (mcbi->mcbi_walker_cnt != 0) { 690 p->mcb_flags |= MCB_CONDEMNED; 691 mcbi->mcbi_del_cnt++; 692 return (B_FALSE); 693 } 694 695 ASSERT(mcbi->mcbi_del_cnt == 0); 696 *pp = p->mcb_nextp; 697 p->mcb_nextp = NULL; 698 return (B_TRUE); 699 } 700 701 /* 702 * Wait for all pending callback removals to be completed 703 */ 704 void 705 mac_callback_remove_wait(mac_cb_info_t *mcbi) 706 { 707 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 708 while (mcbi->mcbi_del_cnt != 0) { 709 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 710 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 711 } 712 } 713 714 void 715 mac_callback_barrier(mac_cb_info_t *mcbi) 716 { 717 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 718 ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX); 719 720 if (mcbi->mcbi_walker_cnt == 0) { 721 return; 722 } 723 724 mcbi->mcbi_barrier_cnt++; 725 do { 726 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 727 } while (mcbi->mcbi_walker_cnt > 0); 728 mcbi->mcbi_barrier_cnt--; 729 cv_broadcast(&mcbi->mcbi_cv); 730 } 731 732 void 733 mac_callback_walker_enter(mac_cb_info_t *mcbi) 734 { 735 mutex_enter(mcbi->mcbi_lockp); 736 /* 737 * Incoming walkers should give precedence to timely clean-up of 738 * deleted callback entries and requested barriers. 739 */ 740 while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) { 741 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 742 } 743 mcbi->mcbi_walker_cnt++; 744 mutex_exit(mcbi->mcbi_lockp); 745 } 746 747 /* 748 * The last mac callback walker does the cleanup. Walk the list and unlik 749 * all the logically deleted entries and construct a temporary list of 750 * removed entries. Return the list of removed entries to the caller. 751 */ 752 static mac_cb_t * 753 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 754 { 755 mac_cb_t *p; 756 mac_cb_t **pp; 757 mac_cb_t *rmlist = NULL; /* List of removed elements */ 758 int cnt = 0; 759 760 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 761 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 762 763 pp = mcb_head; 764 while (*pp != NULL) { 765 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 766 p = *pp; 767 *pp = p->mcb_nextp; 768 p->mcb_nextp = rmlist; 769 rmlist = p; 770 cnt++; 771 continue; 772 } 773 pp = &(*pp)->mcb_nextp; 774 } 775 776 ASSERT(mcbi->mcbi_del_cnt == cnt); 777 mcbi->mcbi_del_cnt = 0; 778 return (rmlist); 779 } 780 781 void 782 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp, 783 boolean_t is_promisc) 784 { 785 boolean_t do_wake = B_FALSE; 786 787 mutex_enter(mcbi->mcbi_lockp); 788 789 /* If walkers remain, nothing more can be done for now */ 790 if (--mcbi->mcbi_walker_cnt != 0) { 791 mutex_exit(mcbi->mcbi_lockp); 792 return; 793 } 794 795 if (mcbi->mcbi_del_cnt != 0) { 796 mac_cb_t *rmlist; 797 798 rmlist = mac_callback_walker_cleanup(mcbi, headp); 799 800 if (!is_promisc) { 801 /* The "normal" non-promisc callback clean-up */ 802 mac_callback_free(rmlist); 803 } else { 804 mac_cb_t *mcb, *mcb_next; 805 806 /* 807 * The promisc callbacks are in 2 lists, one off the 808 * 'mip' and another off the 'mcip' threaded by 809 * mpi_mi_link and mpi_mci_link respectively. There 810 * is, however, only a single shared total walker 811 * count, and an entry cannot be physically unlinked if 812 * a walker is active on either list. The last walker 813 * does this cleanup of logically deleted entries. 814 * 815 * With a list of callbacks deleted from above from 816 * mi_promisc_list (headp), remove the corresponding 817 * entry from mci_promisc_list (headp_pair) and free 818 * the structure. 819 */ 820 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 821 mac_promisc_impl_t *mpip; 822 mac_client_impl_t *mcip; 823 824 mcb_next = mcb->mcb_nextp; 825 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 826 mcip = mpip->mpi_mcip; 827 828 ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info, 829 ==, mcbi); 830 ASSERT3P(&mcip->mci_mip->mi_promisc_list, 831 ==, headp); 832 833 VERIFY(mac_callback_remove(mcbi, 834 &mcip->mci_promisc_list, 835 &mpip->mpi_mci_link)); 836 mcb->mcb_flags = 0; 837 mcb->mcb_nextp = NULL; 838 kmem_cache_free(mac_promisc_impl_cache, mpip); 839 } 840 } 841 842 /* 843 * Wake any walker threads that could be waiting in 844 * mac_callback_walker_enter() until deleted items have been 845 * cleaned from the list. 846 */ 847 do_wake = B_TRUE; 848 } 849 850 if (mcbi->mcbi_barrier_cnt != 0) { 851 /* 852 * One or more threads are waiting for all walkers to exit the 853 * callback list. Notify them, now that the list is clear. 854 */ 855 do_wake = B_TRUE; 856 } 857 858 if (do_wake) { 859 cv_broadcast(&mcbi->mcbi_cv); 860 } 861 mutex_exit(mcbi->mcbi_lockp); 862 } 863 864 static boolean_t 865 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 866 { 867 mac_cb_t *mcb; 868 869 /* Verify it is not already in the list */ 870 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 871 if (mcb == mcb_elem) 872 return (B_TRUE); 873 } 874 875 return (B_FALSE); 876 } 877 878 static boolean_t 879 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 880 { 881 boolean_t found; 882 883 mutex_enter(mcbi->mcbi_lockp); 884 found = mac_callback_lookup(mcb_headp, mcb_elem); 885 mutex_exit(mcbi->mcbi_lockp); 886 887 return (found); 888 } 889 890 /* Free the list of removed callbacks */ 891 void 892 mac_callback_free(mac_cb_t *rmlist) 893 { 894 mac_cb_t *mcb; 895 mac_cb_t *mcb_next; 896 897 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 898 mcb_next = mcb->mcb_nextp; 899 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 900 } 901 } 902 903 void 904 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 905 { 906 mac_cb_info_t *mcbi; 907 908 /* 909 * Signal the notify thread even after mi_ref has become zero and 910 * mi_disabled is set. The synchronization with the notify thread 911 * happens in mac_unregister and that implies the driver must make 912 * sure it is single-threaded (with respect to mac calls) and that 913 * all pending mac calls have returned before it calls mac_unregister 914 */ 915 rw_enter(&i_mac_impl_lock, RW_READER); 916 if (mip->mi_state_flags & MIS_DISABLED) 917 goto exit; 918 919 /* 920 * Guard against incorrect notifications. (Running a newer 921 * mac client against an older implementation?) 922 */ 923 if (type >= MAC_NNOTE) 924 goto exit; 925 926 mcbi = &mip->mi_notify_cb_info; 927 mutex_enter(mcbi->mcbi_lockp); 928 mip->mi_notify_bits |= (1 << type); 929 cv_broadcast(&mcbi->mcbi_cv); 930 mutex_exit(mcbi->mcbi_lockp); 931 932 exit: 933 rw_exit(&i_mac_impl_lock); 934 } 935 936 /* 937 * Mac serialization primitives. Please see the block comment at the 938 * top of the file. 939 */ 940 void 941 i_mac_perim_enter(mac_impl_t *mip) 942 { 943 mac_client_impl_t *mcip; 944 945 if (mip->mi_state_flags & MIS_IS_VNIC) { 946 /* 947 * This is a VNIC. Return the lower mac since that is what 948 * we want to serialize on. 949 */ 950 mcip = mac_vnic_lower(mip); 951 mip = mcip->mci_mip; 952 } 953 954 mutex_enter(&mip->mi_perim_lock); 955 if (mip->mi_perim_owner == curthread) { 956 mip->mi_perim_ocnt++; 957 mutex_exit(&mip->mi_perim_lock); 958 return; 959 } 960 961 while (mip->mi_perim_owner != NULL) 962 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 963 964 mip->mi_perim_owner = curthread; 965 ASSERT(mip->mi_perim_ocnt == 0); 966 mip->mi_perim_ocnt++; 967 #ifdef DEBUG 968 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 969 MAC_PERIM_STACK_DEPTH); 970 #endif 971 mutex_exit(&mip->mi_perim_lock); 972 } 973 974 int 975 i_mac_perim_enter_nowait(mac_impl_t *mip) 976 { 977 /* 978 * The vnic is a special case, since the serialization is done based 979 * on the lower mac. If the lower mac is busy, it does not imply the 980 * vnic can't be unregistered. But in the case of other drivers, 981 * a busy perimeter or open mac handles implies that the mac is busy 982 * and can't be unregistered. 983 */ 984 if (mip->mi_state_flags & MIS_IS_VNIC) { 985 i_mac_perim_enter(mip); 986 return (0); 987 } 988 989 mutex_enter(&mip->mi_perim_lock); 990 if (mip->mi_perim_owner != NULL) { 991 mutex_exit(&mip->mi_perim_lock); 992 return (EBUSY); 993 } 994 ASSERT(mip->mi_perim_ocnt == 0); 995 mip->mi_perim_owner = curthread; 996 mip->mi_perim_ocnt++; 997 mutex_exit(&mip->mi_perim_lock); 998 999 return (0); 1000 } 1001 1002 void 1003 i_mac_perim_exit(mac_impl_t *mip) 1004 { 1005 mac_client_impl_t *mcip; 1006 1007 if (mip->mi_state_flags & MIS_IS_VNIC) { 1008 /* 1009 * This is a VNIC. Return the lower mac since that is what 1010 * we want to serialize on. 1011 */ 1012 mcip = mac_vnic_lower(mip); 1013 mip = mcip->mci_mip; 1014 } 1015 1016 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 1017 1018 mutex_enter(&mip->mi_perim_lock); 1019 if (--mip->mi_perim_ocnt == 0) { 1020 mip->mi_perim_owner = NULL; 1021 cv_signal(&mip->mi_perim_cv); 1022 } 1023 mutex_exit(&mip->mi_perim_lock); 1024 } 1025 1026 /* 1027 * Returns whether the current thread holds the mac perimeter. Used in making 1028 * assertions. 1029 */ 1030 boolean_t 1031 mac_perim_held(mac_handle_t mh) 1032 { 1033 mac_impl_t *mip = (mac_impl_t *)mh; 1034 mac_client_impl_t *mcip; 1035 1036 if (mip->mi_state_flags & MIS_IS_VNIC) { 1037 /* 1038 * This is a VNIC. Return the lower mac since that is what 1039 * we want to serialize on. 1040 */ 1041 mcip = mac_vnic_lower(mip); 1042 mip = mcip->mci_mip; 1043 } 1044 return (mip->mi_perim_owner == curthread); 1045 } 1046 1047 /* 1048 * mac client interfaces to enter the mac perimeter of a mac end point, given 1049 * its mac handle, or macname or linkid. 1050 */ 1051 void 1052 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 1053 { 1054 mac_impl_t *mip = (mac_impl_t *)mh; 1055 1056 i_mac_perim_enter(mip); 1057 /* 1058 * The mac_perim_handle_t returned encodes the 'mip' and whether a 1059 * mac_open has been done internally while entering the perimeter. 1060 * This information is used in mac_perim_exit 1061 */ 1062 MAC_ENCODE_MPH(*mphp, mip, 0); 1063 } 1064 1065 int 1066 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 1067 { 1068 int err; 1069 mac_handle_t mh; 1070 1071 if ((err = mac_open(name, &mh)) != 0) 1072 return (err); 1073 1074 mac_perim_enter_by_mh(mh, mphp); 1075 MAC_ENCODE_MPH(*mphp, mh, 1); 1076 return (0); 1077 } 1078 1079 int 1080 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 1081 { 1082 int err; 1083 mac_handle_t mh; 1084 1085 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1086 return (err); 1087 1088 mac_perim_enter_by_mh(mh, mphp); 1089 MAC_ENCODE_MPH(*mphp, mh, 1); 1090 return (0); 1091 } 1092 1093 void 1094 mac_perim_exit(mac_perim_handle_t mph) 1095 { 1096 mac_impl_t *mip; 1097 boolean_t need_close; 1098 1099 MAC_DECODE_MPH(mph, mip, need_close); 1100 i_mac_perim_exit(mip); 1101 if (need_close) 1102 mac_close((mac_handle_t)mip); 1103 } 1104 1105 int 1106 mac_hold(const char *macname, mac_impl_t **pmip) 1107 { 1108 mac_impl_t *mip; 1109 int err; 1110 1111 /* 1112 * Check the device name length to make sure it won't overflow our 1113 * buffer. 1114 */ 1115 if (strlen(macname) >= MAXNAMELEN) 1116 return (EINVAL); 1117 1118 /* 1119 * Look up its entry in the global hash table. 1120 */ 1121 rw_enter(&i_mac_impl_lock, RW_WRITER); 1122 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1123 (mod_hash_val_t *)&mip); 1124 1125 if (err != 0) { 1126 rw_exit(&i_mac_impl_lock); 1127 return (ENOENT); 1128 } 1129 1130 if (mip->mi_state_flags & MIS_DISABLED) { 1131 rw_exit(&i_mac_impl_lock); 1132 return (ENOENT); 1133 } 1134 1135 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1136 rw_exit(&i_mac_impl_lock); 1137 return (EBUSY); 1138 } 1139 1140 mip->mi_ref++; 1141 rw_exit(&i_mac_impl_lock); 1142 1143 *pmip = mip; 1144 return (0); 1145 } 1146 1147 void 1148 mac_rele(mac_impl_t *mip) 1149 { 1150 rw_enter(&i_mac_impl_lock, RW_WRITER); 1151 ASSERT(mip->mi_ref != 0); 1152 if (--mip->mi_ref == 0) { 1153 ASSERT(mip->mi_nactiveclients == 0 && 1154 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1155 } 1156 rw_exit(&i_mac_impl_lock); 1157 } 1158 1159 /* 1160 * Private GLDv3 function to start a MAC instance. 1161 */ 1162 int 1163 mac_start(mac_handle_t mh) 1164 { 1165 mac_impl_t *mip = (mac_impl_t *)mh; 1166 int err = 0; 1167 mac_group_t *defgrp; 1168 1169 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1170 ASSERT(mip->mi_start != NULL); 1171 1172 /* 1173 * Check whether the device is already started. 1174 */ 1175 if (mip->mi_active++ == 0) { 1176 mac_ring_t *ring = NULL; 1177 1178 /* 1179 * Start the device. 1180 */ 1181 err = mip->mi_start(mip->mi_driver); 1182 if (err != 0) { 1183 mip->mi_active--; 1184 return (err); 1185 } 1186 1187 /* 1188 * Start the default tx ring. 1189 */ 1190 if (mip->mi_default_tx_ring != NULL) { 1191 1192 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1193 if (ring->mr_state != MR_INUSE) { 1194 err = mac_start_ring(ring); 1195 if (err != 0) { 1196 mip->mi_active--; 1197 return (err); 1198 } 1199 } 1200 } 1201 1202 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1203 /* 1204 * Start the default group which is responsible 1205 * for receiving broadcast and multicast 1206 * traffic for both primary and non-primary 1207 * MAC clients. 1208 */ 1209 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1210 err = mac_start_group_and_rings(defgrp); 1211 if (err != 0) { 1212 mip->mi_active--; 1213 if ((ring != NULL) && 1214 (ring->mr_state == MR_INUSE)) 1215 mac_stop_ring(ring); 1216 return (err); 1217 } 1218 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1219 } 1220 } 1221 1222 return (err); 1223 } 1224 1225 /* 1226 * Private GLDv3 function to stop a MAC instance. 1227 */ 1228 void 1229 mac_stop(mac_handle_t mh) 1230 { 1231 mac_impl_t *mip = (mac_impl_t *)mh; 1232 mac_group_t *grp; 1233 1234 ASSERT(mip->mi_stop != NULL); 1235 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1236 1237 /* 1238 * Check whether the device is still needed. 1239 */ 1240 ASSERT(mip->mi_active != 0); 1241 if (--mip->mi_active == 0) { 1242 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1243 /* 1244 * There should be no more active clients since the 1245 * MAC is being stopped. Stop the default RX group 1246 * and transition it back to registered state. 1247 * 1248 * When clients are torn down, the groups 1249 * are release via mac_release_rx_group which 1250 * knows the the default group is always in 1251 * started mode since broadcast uses it. So 1252 * we can assert that their are no clients 1253 * (since mac_bcast_add doesn't register itself 1254 * as a client) and group is in SHARED state. 1255 */ 1256 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1257 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1258 mip->mi_nactiveclients == 0); 1259 mac_stop_group_and_rings(grp); 1260 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1261 } 1262 1263 if (mip->mi_default_tx_ring != NULL) { 1264 mac_ring_t *ring; 1265 1266 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1267 if (ring->mr_state == MR_INUSE) { 1268 mac_stop_ring(ring); 1269 ring->mr_flag = 0; 1270 } 1271 } 1272 1273 /* 1274 * Stop the device. 1275 */ 1276 mip->mi_stop(mip->mi_driver); 1277 } 1278 } 1279 1280 int 1281 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1282 { 1283 int err = 0; 1284 1285 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1286 ASSERT(mip->mi_setpromisc != NULL); 1287 1288 if (on) { 1289 /* 1290 * Enable promiscuous mode on the device if not yet enabled. 1291 */ 1292 if (mip->mi_devpromisc++ == 0) { 1293 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1294 if (err != 0) { 1295 mip->mi_devpromisc--; 1296 return (err); 1297 } 1298 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1299 } 1300 } else { 1301 if (mip->mi_devpromisc == 0) 1302 return (EPROTO); 1303 1304 /* 1305 * Disable promiscuous mode on the device if this is the last 1306 * enabling. 1307 */ 1308 if (--mip->mi_devpromisc == 0) { 1309 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1310 if (err != 0) { 1311 mip->mi_devpromisc++; 1312 return (err); 1313 } 1314 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1315 } 1316 } 1317 1318 return (0); 1319 } 1320 1321 /* 1322 * The promiscuity state can change any time. If the caller needs to take 1323 * actions that are atomic with the promiscuity state, then the caller needs 1324 * to bracket the entire sequence with mac_perim_enter/exit 1325 */ 1326 boolean_t 1327 mac_promisc_get(mac_handle_t mh) 1328 { 1329 mac_impl_t *mip = (mac_impl_t *)mh; 1330 1331 /* 1332 * Return the current promiscuity. 1333 */ 1334 return (mip->mi_devpromisc != 0); 1335 } 1336 1337 /* 1338 * Invoked at MAC instance attach time to initialize the list 1339 * of factory MAC addresses supported by a MAC instance. This function 1340 * builds a local cache in the mac_impl_t for the MAC addresses 1341 * supported by the underlying hardware. The MAC clients themselves 1342 * use the mac_addr_factory*() functions to query and reserve 1343 * factory MAC addresses. 1344 */ 1345 void 1346 mac_addr_factory_init(mac_impl_t *mip) 1347 { 1348 mac_capab_multifactaddr_t capab; 1349 uint8_t *addr; 1350 int i; 1351 1352 /* 1353 * First round to see how many factory MAC addresses are available. 1354 */ 1355 bzero(&capab, sizeof (capab)); 1356 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1357 &capab) || (capab.mcm_naddr == 0)) { 1358 /* 1359 * The MAC instance doesn't support multiple factory 1360 * MAC addresses, we're done here. 1361 */ 1362 return; 1363 } 1364 1365 /* 1366 * Allocate the space and get all the factory addresses. 1367 */ 1368 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1369 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1370 1371 mip->mi_factory_addr_num = capab.mcm_naddr; 1372 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1373 sizeof (mac_factory_addr_t), KM_SLEEP); 1374 1375 for (i = 0; i < capab.mcm_naddr; i++) { 1376 bcopy(addr + i * MAXMACADDRLEN, 1377 mip->mi_factory_addr[i].mfa_addr, 1378 mip->mi_type->mt_addr_length); 1379 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1380 } 1381 1382 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1383 } 1384 1385 void 1386 mac_addr_factory_fini(mac_impl_t *mip) 1387 { 1388 if (mip->mi_factory_addr == NULL) { 1389 ASSERT(mip->mi_factory_addr_num == 0); 1390 return; 1391 } 1392 1393 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1394 sizeof (mac_factory_addr_t)); 1395 1396 mip->mi_factory_addr = NULL; 1397 mip->mi_factory_addr_num = 0; 1398 } 1399 1400 /* 1401 * Reserve a factory MAC address. If *slot is set to -1, the function 1402 * attempts to reserve any of the available factory MAC addresses and 1403 * returns the reserved slot id. If no slots are available, the function 1404 * returns ENOSPC. If *slot is not set to -1, the function reserves 1405 * the specified slot if it is available, or returns EBUSY is the slot 1406 * is already used. Returns ENOTSUP if the underlying MAC does not 1407 * support multiple factory addresses. If the slot number is not -1 but 1408 * is invalid, returns EINVAL. 1409 */ 1410 int 1411 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1412 { 1413 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1414 mac_impl_t *mip = mcip->mci_mip; 1415 int i, ret = 0; 1416 1417 i_mac_perim_enter(mip); 1418 /* 1419 * Protect against concurrent readers that may need a self-consistent 1420 * view of the factory addresses 1421 */ 1422 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1423 1424 if (mip->mi_factory_addr_num == 0) { 1425 ret = ENOTSUP; 1426 goto bail; 1427 } 1428 1429 if (*slot != -1) { 1430 /* check the specified slot */ 1431 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1432 ret = EINVAL; 1433 goto bail; 1434 } 1435 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1436 ret = EBUSY; 1437 goto bail; 1438 } 1439 } else { 1440 /* pick the next available slot */ 1441 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1442 if (!mip->mi_factory_addr[i].mfa_in_use) 1443 break; 1444 } 1445 1446 if (i == mip->mi_factory_addr_num) { 1447 ret = ENOSPC; 1448 goto bail; 1449 } 1450 *slot = i+1; 1451 } 1452 1453 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1454 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1455 1456 bail: 1457 rw_exit(&mip->mi_rw_lock); 1458 i_mac_perim_exit(mip); 1459 return (ret); 1460 } 1461 1462 /* 1463 * Release the specified factory MAC address slot. 1464 */ 1465 void 1466 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1467 { 1468 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1469 mac_impl_t *mip = mcip->mci_mip; 1470 1471 i_mac_perim_enter(mip); 1472 /* 1473 * Protect against concurrent readers that may need a self-consistent 1474 * view of the factory addresses 1475 */ 1476 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1477 1478 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1479 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1480 1481 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1482 1483 rw_exit(&mip->mi_rw_lock); 1484 i_mac_perim_exit(mip); 1485 } 1486 1487 /* 1488 * Stores in mac_addr the value of the specified MAC address. Returns 1489 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1490 * The caller must provide a string of at least MAXNAMELEN bytes. 1491 */ 1492 void 1493 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1494 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1495 { 1496 mac_impl_t *mip = (mac_impl_t *)mh; 1497 boolean_t in_use; 1498 1499 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1500 1501 /* 1502 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1503 * and mi_rw_lock 1504 */ 1505 rw_enter(&mip->mi_rw_lock, RW_READER); 1506 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1507 *addr_len = mip->mi_type->mt_addr_length; 1508 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1509 if (in_use && client_name != NULL) { 1510 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1511 client_name, MAXNAMELEN); 1512 } 1513 if (in_use_arg != NULL) 1514 *in_use_arg = in_use; 1515 rw_exit(&mip->mi_rw_lock); 1516 } 1517 1518 /* 1519 * Returns the number of factory MAC addresses (in addition to the 1520 * primary MAC address), 0 if the underlying MAC doesn't support 1521 * that feature. 1522 */ 1523 uint_t 1524 mac_addr_factory_num(mac_handle_t mh) 1525 { 1526 mac_impl_t *mip = (mac_impl_t *)mh; 1527 1528 return (mip->mi_factory_addr_num); 1529 } 1530 1531 1532 void 1533 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1534 { 1535 mac_ring_t *ring; 1536 1537 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1538 ring->mr_flag &= ~flag; 1539 } 1540 1541 /* 1542 * The following mac_hwrings_xxx() functions are private mac client functions 1543 * used by the aggr driver to access and control the underlying HW Rx group 1544 * and rings. In this case, the aggr driver has exclusive control of the 1545 * underlying HW Rx group/rings, it calls the following functions to 1546 * start/stop the HW Rx rings, disable/enable polling, add/remove MAC 1547 * addresses, or set up the Rx callback. 1548 */ 1549 /* ARGSUSED */ 1550 static void 1551 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1552 mblk_t *mp_chain, boolean_t loopback) 1553 { 1554 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1555 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1556 mac_direct_rx_t proc; 1557 void *arg1; 1558 mac_resource_handle_t arg2; 1559 1560 proc = srs_rx->sr_func; 1561 arg1 = srs_rx->sr_arg1; 1562 arg2 = mac_srs->srs_mrh; 1563 1564 proc(arg1, arg2, mp_chain, NULL); 1565 } 1566 1567 /* 1568 * This function is called to get the list of HW rings that are reserved by 1569 * an exclusive mac client. 1570 * 1571 * Return value: the number of HW rings. 1572 */ 1573 int 1574 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1575 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1576 { 1577 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1578 flow_entry_t *flent = mcip->mci_flent; 1579 mac_group_t *grp; 1580 mac_ring_t *ring; 1581 int cnt = 0; 1582 1583 if (rtype == MAC_RING_TYPE_RX) { 1584 grp = flent->fe_rx_ring_group; 1585 } else if (rtype == MAC_RING_TYPE_TX) { 1586 grp = flent->fe_tx_ring_group; 1587 } else { 1588 ASSERT(B_FALSE); 1589 return (-1); 1590 } 1591 1592 /* 1593 * The MAC client did not reserve an Rx group, return directly. 1594 * This is probably because the underlying MAC does not support 1595 * any groups. 1596 */ 1597 if (hwgh != NULL) 1598 *hwgh = NULL; 1599 if (grp == NULL) 1600 return (0); 1601 /* 1602 * This group must be reserved by this MAC client. 1603 */ 1604 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1605 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1606 1607 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1608 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1609 hwrh[cnt] = (mac_ring_handle_t)ring; 1610 } 1611 if (hwgh != NULL) 1612 *hwgh = (mac_group_handle_t)grp; 1613 1614 return (cnt); 1615 } 1616 1617 /* 1618 * Get the HW ring handles of the given group index. If the MAC 1619 * doesn't have a group at this index, or any groups at all, then 0 is 1620 * returned and hwgh is set to NULL. This is a private client API. The 1621 * MAC perimeter must be held when calling this function. 1622 * 1623 * mh: A handle to the MAC that owns the group. 1624 * 1625 * idx: The index of the HW group to be read. 1626 * 1627 * hwgh: If non-NULL, contains a handle to the HW group on return. 1628 * 1629 * hwrh: An array of ring handles pointing to the HW rings in the 1630 * group. The array must be large enough to hold a handle to each ring 1631 * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP. 1632 * 1633 * rtype: Used to determine if we are fetching Rx or Tx rings. 1634 * 1635 * Returns the number of rings in the group. 1636 */ 1637 uint_t 1638 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh, 1639 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1640 { 1641 mac_impl_t *mip = (mac_impl_t *)mh; 1642 mac_group_t *grp; 1643 mac_ring_t *ring; 1644 uint_t cnt = 0; 1645 1646 /* 1647 * The MAC perimeter must be held when accessing the 1648 * mi_{rx,tx}_groups fields. 1649 */ 1650 ASSERT(MAC_PERIM_HELD(mh)); 1651 ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX); 1652 1653 if (rtype == MAC_RING_TYPE_RX) { 1654 grp = mip->mi_rx_groups; 1655 } else { 1656 ASSERT(rtype == MAC_RING_TYPE_TX); 1657 grp = mip->mi_tx_groups; 1658 } 1659 1660 while (grp != NULL && grp->mrg_index != idx) 1661 grp = grp->mrg_next; 1662 1663 /* 1664 * If the MAC doesn't have a group at this index or doesn't 1665 * impelement RINGS capab, then set hwgh to NULL and return 0. 1666 */ 1667 if (hwgh != NULL) 1668 *hwgh = NULL; 1669 1670 if (grp == NULL) 1671 return (0); 1672 1673 ASSERT3U(idx, ==, grp->mrg_index); 1674 1675 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1676 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP); 1677 hwrh[cnt] = (mac_ring_handle_t)ring; 1678 } 1679 1680 /* A group should always have at least one ring. */ 1681 ASSERT3U(cnt, >, 0); 1682 1683 if (hwgh != NULL) 1684 *hwgh = (mac_group_handle_t)grp; 1685 1686 return (cnt); 1687 } 1688 1689 /* 1690 * This function is called to get info about Tx/Rx rings. 1691 * 1692 * Return value: returns uint_t which will have various bits set 1693 * that indicates different properties of the ring. 1694 */ 1695 uint_t 1696 mac_hwring_getinfo(mac_ring_handle_t rh) 1697 { 1698 mac_ring_t *ring = (mac_ring_t *)rh; 1699 mac_ring_info_t *info = &ring->mr_info; 1700 1701 return (info->mri_flags); 1702 } 1703 1704 /* 1705 * Set the passthru callback on the hardware ring. 1706 */ 1707 void 1708 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1, 1709 mac_resource_handle_t arg2) 1710 { 1711 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1712 1713 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1714 1715 hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER; 1716 1717 hwring->mr_pt_fn = fn; 1718 hwring->mr_pt_arg1 = arg1; 1719 hwring->mr_pt_arg2 = arg2; 1720 } 1721 1722 /* 1723 * Clear the passthru callback on the hardware ring. 1724 */ 1725 void 1726 mac_hwring_clear_passthru(mac_ring_handle_t hwrh) 1727 { 1728 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1729 1730 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1731 1732 hwring->mr_classify_type = MAC_NO_CLASSIFIER; 1733 1734 hwring->mr_pt_fn = NULL; 1735 hwring->mr_pt_arg1 = NULL; 1736 hwring->mr_pt_arg2 = NULL; 1737 } 1738 1739 void 1740 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1) 1741 { 1742 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1743 flow_entry_t *flent = mcip->mci_flent; 1744 1745 mutex_enter(&flent->fe_lock); 1746 flent->fe_cb_fn = (flow_fn_t)func; 1747 flent->fe_cb_arg1 = arg1; 1748 flent->fe_cb_arg2 = NULL; 1749 flent->fe_flags &= ~FE_MC_NO_DATAPATH; 1750 mutex_exit(&flent->fe_lock); 1751 } 1752 1753 void 1754 mac_client_clear_flow_cb(mac_client_handle_t mch) 1755 { 1756 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1757 flow_entry_t *flent = mcip->mci_flent; 1758 1759 mutex_enter(&flent->fe_lock); 1760 flent->fe_cb_fn = (flow_fn_t)mac_rx_def; 1761 flent->fe_cb_arg1 = NULL; 1762 flent->fe_cb_arg2 = NULL; 1763 flent->fe_flags |= FE_MC_NO_DATAPATH; 1764 mutex_exit(&flent->fe_lock); 1765 } 1766 1767 /* 1768 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1769 * setup the RX callback of the mac client which exclusively controls 1770 * HW ring. 1771 */ 1772 void 1773 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1774 mac_ring_handle_t pseudo_rh) 1775 { 1776 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1777 mac_ring_t *pseudo_ring; 1778 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1779 1780 if (pseudo_rh != NULL) { 1781 pseudo_ring = (mac_ring_t *)pseudo_rh; 1782 /* Export the ddi handles to pseudo ring */ 1783 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1784 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1785 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1786 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1787 /* 1788 * Save a pointer to pseudo ring in the hw ring. If 1789 * interrupt handle changes, the hw ring will be 1790 * notified of the change (see mac_ring_intr_set()) 1791 * and the appropriate change has to be made to 1792 * the pseudo ring that has exported the ddi handle. 1793 */ 1794 hw_ring->mr_prh = pseudo_rh; 1795 } 1796 1797 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1798 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1799 mac_srs->srs_mrh = prh; 1800 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1801 } 1802 } 1803 1804 void 1805 mac_hwring_teardown(mac_ring_handle_t hwrh) 1806 { 1807 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1808 mac_soft_ring_set_t *mac_srs; 1809 1810 if (hw_ring == NULL) 1811 return; 1812 hw_ring->mr_prh = NULL; 1813 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1814 mac_srs = hw_ring->mr_srs; 1815 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1816 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1817 mac_srs->srs_mrh = NULL; 1818 } 1819 } 1820 1821 int 1822 mac_hwring_disable_intr(mac_ring_handle_t rh) 1823 { 1824 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1825 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1826 1827 return (intr->mi_disable(intr->mi_handle)); 1828 } 1829 1830 int 1831 mac_hwring_enable_intr(mac_ring_handle_t rh) 1832 { 1833 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1834 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1835 1836 return (intr->mi_enable(intr->mi_handle)); 1837 } 1838 1839 /* 1840 * Start the HW ring pointed to by rh. 1841 * 1842 * This is used by special MAC clients that are MAC themselves and 1843 * need to exert control over the underlying HW rings of the NIC. 1844 */ 1845 int 1846 mac_hwring_start(mac_ring_handle_t rh) 1847 { 1848 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1849 int rv = 0; 1850 1851 if (rr_ring->mr_state != MR_INUSE) 1852 rv = mac_start_ring(rr_ring); 1853 1854 return (rv); 1855 } 1856 1857 /* 1858 * Stop the HW ring pointed to by rh. Also see mac_hwring_start(). 1859 */ 1860 void 1861 mac_hwring_stop(mac_ring_handle_t rh) 1862 { 1863 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1864 1865 if (rr_ring->mr_state != MR_FREE) 1866 mac_stop_ring(rr_ring); 1867 } 1868 1869 /* 1870 * Remove the quiesced flag from the HW ring pointed to by rh. 1871 * 1872 * This is used by special MAC clients that are MAC themselves and 1873 * need to exert control over the underlying HW rings of the NIC. 1874 */ 1875 int 1876 mac_hwring_activate(mac_ring_handle_t rh) 1877 { 1878 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1879 1880 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1881 return (0); 1882 } 1883 1884 /* 1885 * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate(). 1886 */ 1887 void 1888 mac_hwring_quiesce(mac_ring_handle_t rh) 1889 { 1890 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1891 1892 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1893 } 1894 1895 mblk_t * 1896 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1897 { 1898 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1899 mac_ring_info_t *info = &rr_ring->mr_info; 1900 1901 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1902 } 1903 1904 /* 1905 * Send packets through a selected tx ring. 1906 */ 1907 mblk_t * 1908 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1909 { 1910 mac_ring_t *ring = (mac_ring_t *)rh; 1911 mac_ring_info_t *info = &ring->mr_info; 1912 1913 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1914 ring->mr_state >= MR_INUSE); 1915 return (info->mri_tx(info->mri_driver, mp)); 1916 } 1917 1918 /* 1919 * Query stats for a particular rx/tx ring 1920 */ 1921 int 1922 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1923 { 1924 mac_ring_t *ring = (mac_ring_t *)rh; 1925 mac_ring_info_t *info = &ring->mr_info; 1926 1927 return (info->mri_stat(info->mri_driver, stat, val)); 1928 } 1929 1930 /* 1931 * Private function that is only used by aggr to send packets through 1932 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1933 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1934 * access to mac_impl_t to send packets through m_tx() entry point. 1935 * It accomplishes this by calling mac_hwring_send_priv() function. 1936 */ 1937 mblk_t * 1938 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1939 { 1940 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1941 mac_impl_t *mip = mcip->mci_mip; 1942 1943 return (mac_provider_tx(mip, rh, mp, mcip)); 1944 } 1945 1946 /* 1947 * Private function that is only used by aggr to update the default transmission 1948 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1949 * temporarily be down, it may need to update the default ring that is used by 1950 * MAC such that it refers to a link that can actively be used to send traffic. 1951 * Note that this is different from the case where the port has been removed 1952 * from the group. In those cases, all of the rings will be torn down because 1953 * the ring will no longer exist. It's important to give aggr a case where the 1954 * rings can still exist such that it may be able to continue to send LACP PDUs 1955 * to potentially restore the link. 1956 */ 1957 void 1958 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1959 { 1960 mac_impl_t *mip = (mac_impl_t *)mh; 1961 mac_ring_t *ring = (mac_ring_t *)rh; 1962 1963 ASSERT(MAC_PERIM_HELD(mh)); 1964 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1965 1966 /* 1967 * We used to condition this assignment on the ring's 1968 * 'mr_state' being one of 'MR_INUSE'. However, there are 1969 * cases where this is called before the ring has any active 1970 * clients, and therefore is not marked as in use. Since the 1971 * sole purpose of this function is for aggr to make sure 1972 * 'mi_default_tx_ring' matches 'lg_tx_ports[0]', its 1973 * imperative that we update its value regardless of ring 1974 * state. Otherwise, we can end up in a state where 1975 * 'mi_default_tx_ring' points to a pseudo ring of a downed 1976 * port, even when 'lg_tx_ports[0]' points to a port that is 1977 * up. 1978 */ 1979 mip->mi_default_tx_ring = rh; 1980 } 1981 1982 int 1983 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1984 { 1985 mac_group_t *group = (mac_group_t *)gh; 1986 1987 return (mac_group_addmac(group, addr)); 1988 } 1989 1990 int 1991 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1992 { 1993 mac_group_t *group = (mac_group_t *)gh; 1994 1995 return (mac_group_remmac(group, addr)); 1996 } 1997 1998 /* 1999 * Program the group's HW VLAN filter if it has such support. 2000 * Otherwise, the group will implicitly accept tagged traffic and 2001 * there is nothing to do. 2002 */ 2003 int 2004 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid) 2005 { 2006 mac_group_t *group = (mac_group_t *)gh; 2007 2008 if (!MAC_GROUP_HW_VLAN(group)) 2009 return (0); 2010 2011 return (mac_group_addvlan(group, vid)); 2012 } 2013 2014 int 2015 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid) 2016 { 2017 mac_group_t *group = (mac_group_t *)gh; 2018 2019 if (!MAC_GROUP_HW_VLAN(group)) 2020 return (0); 2021 2022 return (mac_group_remvlan(group, vid)); 2023 } 2024 2025 /* 2026 * Determine if a MAC has HW VLAN support. This is a private API 2027 * consumed by aggr. In the future it might be nice to have a bitfield 2028 * in mac_capab_rings_t to track which forms of HW filtering are 2029 * supported by the MAC. 2030 */ 2031 boolean_t 2032 mac_has_hw_vlan(mac_handle_t mh) 2033 { 2034 mac_impl_t *mip = (mac_impl_t *)mh; 2035 2036 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups)); 2037 } 2038 2039 /* 2040 * Get the number of Rx HW groups on this MAC. 2041 */ 2042 uint_t 2043 mac_get_num_rx_groups(mac_handle_t mh) 2044 { 2045 mac_impl_t *mip = (mac_impl_t *)mh; 2046 2047 ASSERT(MAC_PERIM_HELD(mh)); 2048 return (mip->mi_rx_group_count); 2049 } 2050 2051 int 2052 mac_set_promisc(mac_handle_t mh, boolean_t value) 2053 { 2054 mac_impl_t *mip = (mac_impl_t *)mh; 2055 2056 ASSERT(MAC_PERIM_HELD(mh)); 2057 return (i_mac_promisc_set(mip, value)); 2058 } 2059 2060 /* 2061 * Set the RX group to be shared/reserved. Note that the group must be 2062 * started/stopped outside of this function. 2063 */ 2064 void 2065 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 2066 { 2067 /* 2068 * If there is no change in the group state, just return. 2069 */ 2070 if (grp->mrg_state == state) 2071 return; 2072 2073 switch (state) { 2074 case MAC_GROUP_STATE_RESERVED: 2075 /* 2076 * Successfully reserved the group. 2077 * 2078 * Given that there is an exclusive client controlling this 2079 * group, we enable the group level polling when available, 2080 * so that SRSs get to turn on/off individual rings they's 2081 * assigned to. 2082 */ 2083 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2084 2085 if (grp->mrg_type == MAC_RING_TYPE_RX && 2086 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 2087 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2088 } 2089 break; 2090 2091 case MAC_GROUP_STATE_SHARED: 2092 /* 2093 * Set all rings of this group to software classified. 2094 * If the group has an overriding interrupt, then re-enable it. 2095 */ 2096 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2097 2098 if (grp->mrg_type == MAC_RING_TYPE_RX && 2099 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 2100 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2101 } 2102 /* The ring is not available for reservations any more */ 2103 break; 2104 2105 case MAC_GROUP_STATE_REGISTERED: 2106 /* Also callable from mac_register, perim is not held */ 2107 break; 2108 2109 default: 2110 ASSERT(B_FALSE); 2111 break; 2112 } 2113 2114 grp->mrg_state = state; 2115 } 2116 2117 /* 2118 * Quiesce future hardware classified packets for the specified Rx ring 2119 */ 2120 static void 2121 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 2122 { 2123 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 2124 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 2125 2126 mutex_enter(&rx_ring->mr_lock); 2127 rx_ring->mr_flag |= ring_flag; 2128 while (rx_ring->mr_refcnt != 0) 2129 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 2130 mutex_exit(&rx_ring->mr_lock); 2131 } 2132 2133 /* 2134 * Please see mac_tx for details about the per cpu locking scheme 2135 */ 2136 static void 2137 mac_tx_lock_all(mac_client_impl_t *mcip) 2138 { 2139 int i; 2140 2141 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2142 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2143 } 2144 2145 static void 2146 mac_tx_unlock_all(mac_client_impl_t *mcip) 2147 { 2148 int i; 2149 2150 for (i = mac_tx_percpu_cnt; i >= 0; i--) 2151 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2152 } 2153 2154 static void 2155 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 2156 { 2157 int i; 2158 2159 for (i = mac_tx_percpu_cnt; i > 0; i--) 2160 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2161 } 2162 2163 static int 2164 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 2165 { 2166 int i; 2167 int refcnt = 0; 2168 2169 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2170 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 2171 2172 return (refcnt); 2173 } 2174 2175 /* 2176 * Stop future Tx packets coming down from the client in preparation for 2177 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 2178 * of rings between clients 2179 */ 2180 void 2181 mac_tx_client_block(mac_client_impl_t *mcip) 2182 { 2183 mac_tx_lock_all(mcip); 2184 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 2185 while (mac_tx_sum_refcnt(mcip) != 0) { 2186 mac_tx_unlock_allbutzero(mcip); 2187 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2188 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2189 mac_tx_lock_all(mcip); 2190 } 2191 mac_tx_unlock_all(mcip); 2192 } 2193 2194 void 2195 mac_tx_client_unblock(mac_client_impl_t *mcip) 2196 { 2197 mac_tx_lock_all(mcip); 2198 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 2199 mac_tx_unlock_all(mcip); 2200 /* 2201 * We may fail to disable flow control for the last MAC_NOTE_TX 2202 * notification because the MAC client is quiesced. Send the 2203 * notification again. 2204 */ 2205 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 2206 } 2207 2208 /* 2209 * Wait for an SRS to quiesce. The SRS worker will signal us when the 2210 * quiesce is done. 2211 */ 2212 static void 2213 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 2214 { 2215 mutex_enter(&srs->srs_lock); 2216 while (!(srs->srs_state & srs_flag)) 2217 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 2218 mutex_exit(&srs->srs_lock); 2219 } 2220 2221 /* 2222 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 2223 * works bottom up by cutting off packet flow from the bottommost point in the 2224 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 2225 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 2226 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 2227 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 2228 * for the SRS and MR flags. In the former case the threads pause waiting for 2229 * a restart, while in the latter case the threads exit. The Tx SRS teardown 2230 * is also mostly similar to the above. 2231 * 2232 * 1. Stop future hardware classified packets at the lowest level in the mac. 2233 * Remove any hardware classification rule (CONDEMNED case) and mark the 2234 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 2235 * from increasing. Upcalls from the driver that come through hardware 2236 * classification will be dropped in mac_rx from now on. Then we wait for 2237 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 2238 * sure there aren't any upcall threads from the driver through hardware 2239 * classification. In the case of SRS teardown we also remove the 2240 * classification rule in the driver. 2241 * 2242 * 2. Stop future software classified packets by marking the flow entry with 2243 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 2244 * increasing. We also remove the flow entry from the table in the latter 2245 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 2246 * that indicates there aren't any active threads using that flow entry. 2247 * 2248 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 2249 * SRS worker thread, and the soft ring threads are quiesced in sequence 2250 * with the SRS worker thread serving as a master controller. This 2251 * mechansim is explained in mac_srs_worker_quiesce(). 2252 * 2253 * The restart mechanism to reactivate the SRS and softrings is explained 2254 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 2255 * restart sequence. 2256 */ 2257 void 2258 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2259 { 2260 flow_entry_t *flent = srs->srs_flent; 2261 uint_t mr_flag, srs_done_flag; 2262 2263 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2264 ASSERT(!(srs->srs_type & SRST_TX)); 2265 2266 if (srs_quiesce_flag == SRS_CONDEMNED) { 2267 mr_flag = MR_CONDEMNED; 2268 srs_done_flag = SRS_CONDEMNED_DONE; 2269 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2270 mac_srs_client_poll_disable(srs->srs_mcip, srs); 2271 } else { 2272 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 2273 mr_flag = MR_QUIESCE; 2274 srs_done_flag = SRS_QUIESCE_DONE; 2275 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2276 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 2277 } 2278 2279 if (srs->srs_ring != NULL) { 2280 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 2281 } else { 2282 /* 2283 * SRS is driven by software classification. In case 2284 * of CONDEMNED, the top level teardown functions will 2285 * deal with flow removal. 2286 */ 2287 if (srs_quiesce_flag != SRS_CONDEMNED) { 2288 FLOW_MARK(flent, FE_QUIESCE); 2289 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2290 } 2291 } 2292 2293 /* 2294 * Signal the SRS to quiesce itself, and then cv_wait for the 2295 * SRS quiesce to complete. The SRS worker thread will wake us 2296 * up when the quiesce is complete 2297 */ 2298 mac_srs_signal(srs, srs_quiesce_flag); 2299 mac_srs_quiesce_wait(srs, srs_done_flag); 2300 } 2301 2302 /* 2303 * Remove an SRS. 2304 */ 2305 void 2306 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 2307 { 2308 flow_entry_t *flent = srs->srs_flent; 2309 int i; 2310 2311 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 2312 /* 2313 * Locate and remove our entry in the fe_rx_srs[] array, and 2314 * adjust the fe_rx_srs array entries and array count by 2315 * moving the last entry into the vacated spot. 2316 */ 2317 mutex_enter(&flent->fe_lock); 2318 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2319 if (flent->fe_rx_srs[i] == srs) 2320 break; 2321 } 2322 2323 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 2324 if (i != flent->fe_rx_srs_cnt - 1) { 2325 flent->fe_rx_srs[i] = 2326 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2327 i = flent->fe_rx_srs_cnt - 1; 2328 } 2329 2330 flent->fe_rx_srs[i] = NULL; 2331 flent->fe_rx_srs_cnt--; 2332 mutex_exit(&flent->fe_lock); 2333 2334 mac_srs_free(srs); 2335 } 2336 2337 static void 2338 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2339 { 2340 mutex_enter(&srs->srs_lock); 2341 srs->srs_state &= ~flag; 2342 mutex_exit(&srs->srs_lock); 2343 } 2344 2345 void 2346 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2347 { 2348 flow_entry_t *flent = srs->srs_flent; 2349 mac_ring_t *mr; 2350 2351 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2352 ASSERT((srs->srs_type & SRST_TX) == 0); 2353 2354 /* 2355 * This handles a change in the number of SRSs between the quiesce and 2356 * and restart operation of a flow. 2357 */ 2358 if (!SRS_QUIESCED(srs)) 2359 return; 2360 2361 /* 2362 * Signal the SRS to restart itself. Wait for the restart to complete 2363 * Note that we only restart the SRS if it is not marked as 2364 * permanently quiesced. 2365 */ 2366 if (!SRS_QUIESCED_PERMANENT(srs)) { 2367 mac_srs_signal(srs, SRS_RESTART); 2368 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2369 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2370 2371 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2372 } 2373 2374 /* Finally clear the flags to let the packets in */ 2375 mr = srs->srs_ring; 2376 if (mr != NULL) { 2377 MAC_RING_UNMARK(mr, MR_QUIESCE); 2378 /* In case the ring was stopped, safely restart it */ 2379 if (mr->mr_state != MR_INUSE) 2380 (void) mac_start_ring(mr); 2381 } else { 2382 FLOW_UNMARK(flent, FE_QUIESCE); 2383 } 2384 } 2385 2386 /* 2387 * Temporary quiesce of a flow and associated Rx SRS. 2388 * Please see block comment above mac_rx_classify_flow_rem. 2389 */ 2390 /* ARGSUSED */ 2391 int 2392 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2393 { 2394 int i; 2395 2396 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2397 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2398 SRS_QUIESCE); 2399 } 2400 return (0); 2401 } 2402 2403 /* 2404 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2405 * Please see block comment above mac_rx_classify_flow_rem 2406 */ 2407 /* ARGSUSED */ 2408 int 2409 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2410 { 2411 int i; 2412 2413 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2414 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2415 2416 return (0); 2417 } 2418 2419 void 2420 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2421 { 2422 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2423 flow_entry_t *flent = mcip->mci_flent; 2424 mac_impl_t *mip = mcip->mci_mip; 2425 mac_soft_ring_set_t *mac_srs; 2426 int i; 2427 2428 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2429 2430 if (flent == NULL) 2431 return; 2432 2433 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2434 mac_srs = flent->fe_rx_srs[i]; 2435 mutex_enter(&mac_srs->srs_lock); 2436 if (on) 2437 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2438 else 2439 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2440 mutex_exit(&mac_srs->srs_lock); 2441 } 2442 } 2443 2444 void 2445 mac_rx_client_quiesce(mac_client_handle_t mch) 2446 { 2447 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2448 mac_impl_t *mip = mcip->mci_mip; 2449 2450 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2451 2452 if (MCIP_DATAPATH_SETUP(mcip)) { 2453 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2454 NULL); 2455 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2456 mac_rx_classify_flow_quiesce, NULL); 2457 } 2458 } 2459 2460 void 2461 mac_rx_client_restart(mac_client_handle_t mch) 2462 { 2463 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2464 mac_impl_t *mip = mcip->mci_mip; 2465 2466 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2467 2468 if (MCIP_DATAPATH_SETUP(mcip)) { 2469 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2470 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2471 mac_rx_classify_flow_restart, NULL); 2472 } 2473 } 2474 2475 /* 2476 * This function only quiesces the Tx SRS and softring worker threads. Callers 2477 * need to make sure that there aren't any mac client threads doing current or 2478 * future transmits in the mac before calling this function. 2479 */ 2480 void 2481 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2482 { 2483 mac_client_impl_t *mcip = srs->srs_mcip; 2484 2485 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2486 2487 ASSERT(srs->srs_type & SRST_TX); 2488 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2489 srs_quiesce_flag == SRS_QUIESCE); 2490 2491 /* 2492 * Signal the SRS to quiesce itself, and then cv_wait for the 2493 * SRS quiesce to complete. The SRS worker thread will wake us 2494 * up when the quiesce is complete 2495 */ 2496 mac_srs_signal(srs, srs_quiesce_flag); 2497 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2498 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2499 } 2500 2501 void 2502 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2503 { 2504 /* 2505 * Resizing the fanout could result in creation of new SRSs. 2506 * They may not necessarily be in the quiesced state in which 2507 * case it need be restarted 2508 */ 2509 if (!SRS_QUIESCED(srs)) 2510 return; 2511 2512 mac_srs_signal(srs, SRS_RESTART); 2513 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2514 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2515 } 2516 2517 /* 2518 * Temporary quiesce of a flow and associated Rx SRS. 2519 * Please see block comment above mac_rx_srs_quiesce 2520 */ 2521 /* ARGSUSED */ 2522 int 2523 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2524 { 2525 /* 2526 * The fe_tx_srs is null for a subflow on an interface that is 2527 * not plumbed 2528 */ 2529 if (flent->fe_tx_srs != NULL) 2530 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2531 return (0); 2532 } 2533 2534 /* ARGSUSED */ 2535 int 2536 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2537 { 2538 /* 2539 * The fe_tx_srs is null for a subflow on an interface that is 2540 * not plumbed 2541 */ 2542 if (flent->fe_tx_srs != NULL) 2543 mac_tx_srs_restart(flent->fe_tx_srs); 2544 return (0); 2545 } 2546 2547 static void 2548 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2549 { 2550 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2551 2552 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2553 2554 mac_tx_client_block(mcip); 2555 if (MCIP_TX_SRS(mcip) != NULL) { 2556 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2557 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2558 mac_tx_flow_quiesce, NULL); 2559 } 2560 } 2561 2562 void 2563 mac_tx_client_quiesce(mac_client_handle_t mch) 2564 { 2565 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2566 } 2567 2568 void 2569 mac_tx_client_condemn(mac_client_handle_t mch) 2570 { 2571 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2572 } 2573 2574 void 2575 mac_tx_client_restart(mac_client_handle_t mch) 2576 { 2577 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2578 2579 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2580 2581 mac_tx_client_unblock(mcip); 2582 if (MCIP_TX_SRS(mcip) != NULL) { 2583 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2584 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2585 mac_tx_flow_restart, NULL); 2586 } 2587 } 2588 2589 void 2590 mac_tx_client_flush(mac_client_impl_t *mcip) 2591 { 2592 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2593 2594 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2595 mac_tx_client_restart((mac_client_handle_t)mcip); 2596 } 2597 2598 void 2599 mac_client_quiesce(mac_client_impl_t *mcip) 2600 { 2601 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2602 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2603 } 2604 2605 void 2606 mac_client_restart(mac_client_impl_t *mcip) 2607 { 2608 mac_rx_client_restart((mac_client_handle_t)mcip); 2609 mac_tx_client_restart((mac_client_handle_t)mcip); 2610 } 2611 2612 /* 2613 * Allocate a minor number. 2614 */ 2615 minor_t 2616 mac_minor_hold(boolean_t sleep) 2617 { 2618 id_t id; 2619 2620 /* 2621 * Grab a value from the arena. 2622 */ 2623 atomic_inc_32(&minor_count); 2624 2625 if (sleep) 2626 return ((uint_t)id_alloc(minor_ids)); 2627 2628 if ((id = id_alloc_nosleep(minor_ids)) == -1) { 2629 atomic_dec_32(&minor_count); 2630 return (0); 2631 } 2632 2633 return ((uint_t)id); 2634 } 2635 2636 /* 2637 * Release a previously allocated minor number. 2638 */ 2639 void 2640 mac_minor_rele(minor_t minor) 2641 { 2642 /* 2643 * Return the value to the arena. 2644 */ 2645 id_free(minor_ids, minor); 2646 atomic_dec_32(&minor_count); 2647 } 2648 2649 uint32_t 2650 mac_no_notification(mac_handle_t mh) 2651 { 2652 mac_impl_t *mip = (mac_impl_t *)mh; 2653 2654 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2655 mip->mi_capab_legacy.ml_unsup_note : 0); 2656 } 2657 2658 /* 2659 * Prevent any new opens of this mac in preparation for unregister 2660 */ 2661 int 2662 i_mac_disable(mac_impl_t *mip) 2663 { 2664 mac_client_impl_t *mcip; 2665 2666 rw_enter(&i_mac_impl_lock, RW_WRITER); 2667 if (mip->mi_state_flags & MIS_DISABLED) { 2668 /* Already disabled, return success */ 2669 rw_exit(&i_mac_impl_lock); 2670 return (0); 2671 } 2672 /* 2673 * See if there are any other references to this mac_t (e.g., VLAN's). 2674 * If so return failure. If all the other checks below pass, then 2675 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2676 * any new VLAN's from being created or new mac client opens of this 2677 * mac end point. 2678 */ 2679 if (mip->mi_ref > 0) { 2680 rw_exit(&i_mac_impl_lock); 2681 return (EBUSY); 2682 } 2683 2684 /* 2685 * mac clients must delete all multicast groups they join before 2686 * closing. bcast groups are reference counted, the last client 2687 * to delete the group will wait till the group is physically 2688 * deleted. Since all clients have closed this mac end point 2689 * mi_bcast_ngrps must be zero at this point 2690 */ 2691 ASSERT(mip->mi_bcast_ngrps == 0); 2692 2693 /* 2694 * Don't let go of this if it has some flows. 2695 * All other code guarantees no flows are added to a disabled 2696 * mac, therefore it is sufficient to check for the flow table 2697 * only here. 2698 */ 2699 mcip = mac_primary_client_handle(mip); 2700 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2701 rw_exit(&i_mac_impl_lock); 2702 return (ENOTEMPTY); 2703 } 2704 2705 mip->mi_state_flags |= MIS_DISABLED; 2706 rw_exit(&i_mac_impl_lock); 2707 return (0); 2708 } 2709 2710 int 2711 mac_disable_nowait(mac_handle_t mh) 2712 { 2713 mac_impl_t *mip = (mac_impl_t *)mh; 2714 int err; 2715 2716 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2717 return (err); 2718 err = i_mac_disable(mip); 2719 i_mac_perim_exit(mip); 2720 return (err); 2721 } 2722 2723 int 2724 mac_disable(mac_handle_t mh) 2725 { 2726 mac_impl_t *mip = (mac_impl_t *)mh; 2727 int err; 2728 2729 i_mac_perim_enter(mip); 2730 err = i_mac_disable(mip); 2731 i_mac_perim_exit(mip); 2732 2733 /* 2734 * Clean up notification thread and wait for it to exit. 2735 */ 2736 if (err == 0) 2737 i_mac_notify_exit(mip); 2738 2739 return (err); 2740 } 2741 2742 /* 2743 * Called when the MAC instance has a non empty flow table, to de-multiplex 2744 * incoming packets to the right flow. 2745 */ 2746 /* ARGSUSED */ 2747 static flow_entry_t * 2748 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2749 { 2750 flow_entry_t *flent = NULL; 2751 uint_t flags = FLOW_INBOUND; 2752 int err; 2753 2754 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2755 if (err == 0) { 2756 mac_client_impl_t *mcip; 2757 2758 /* 2759 * This flent might just be an additional one on the MAC client, 2760 * i.e. for classification purposes (different fdesc), however 2761 * the resources, SRS et. al., are in the mci_flent, so if 2762 * this isn't the mci_flent, we need to get it. 2763 */ 2764 if ((mcip = flent->fe_mcip) != NULL && 2765 mcip->mci_flent != flent) { 2766 FLOW_REFRELE(flent); 2767 flent = mcip->mci_flent; 2768 FLOW_TRY_REFHOLD(flent, err); 2769 if (err != 0) 2770 return (NULL); 2771 } 2772 } 2773 2774 /* flent will be NULL if mac_flow_lookup fails to find a match. */ 2775 return (flent); 2776 } 2777 2778 mblk_t * 2779 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2780 { 2781 mac_impl_t *mip = (mac_impl_t *)mh; 2782 mblk_t *mp_next, *tail, **unclass_nextp; 2783 mblk_t *unclass_list = NULL; 2784 flow_entry_t *prev_flent = NULL; 2785 2786 /* 2787 * We walk the chain and attempt to classify each packet. 2788 * The packets that couldn't be classified will be returned 2789 * back to the caller. 2790 * 2791 * We want to batch together runs of matched packets bound 2792 * for the same flent into the same callback. Unmatched 2793 * packets should not break an ongoing chain. 2794 */ 2795 mp_next = tail = mp_chain; 2796 unclass_nextp = &unclass_list; 2797 while (mp_next != NULL) { 2798 flow_entry_t *flent; 2799 mblk_t *mp = mp_next; 2800 mp_next = mp_next->b_next; 2801 mp->b_next = NULL; 2802 2803 flent = mac_rx_classify(mip, mrh, mp); 2804 if (flent == NULL) { 2805 /* 2806 * Add the current mblk_t to the end of the 2807 * unclassified packet chain at 'unclass_list'. 2808 * Move the current head forward if we have not 2809 * yet made any match. 2810 */ 2811 if (prev_flent == NULL) { 2812 mp_chain = mp_next; 2813 tail = mp_next; 2814 } 2815 *unclass_nextp = mp; 2816 unclass_nextp = &mp->b_next; 2817 continue; 2818 } 2819 2820 if (prev_flent == NULL || flent == prev_flent) { 2821 /* Either the first valid match, or in the same chain */ 2822 if (prev_flent != NULL) 2823 FLOW_REFRELE(prev_flent); 2824 if (mp != tail) 2825 tail->b_next = mp; 2826 } else { 2827 ASSERT3P(prev_flent, !=, NULL); 2828 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 2829 prev_flent->fe_cb_arg2, mp_chain, B_FALSE); 2830 FLOW_REFRELE(prev_flent); 2831 mp_chain = mp; 2832 } 2833 2834 prev_flent = flent; 2835 tail = mp; 2836 } 2837 /* Last chain */ 2838 if (mp_chain != NULL) { 2839 ASSERT3P(prev_flent, !=, NULL); 2840 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 2841 prev_flent->fe_cb_arg2, mp_chain, B_FALSE); 2842 FLOW_REFRELE(prev_flent); 2843 } 2844 return (unclass_list); 2845 } 2846 2847 static int 2848 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2849 { 2850 mac_ring_handle_t ring = arg; 2851 2852 if (flent->fe_tx_srs) 2853 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2854 return (0); 2855 } 2856 2857 void 2858 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2859 { 2860 mac_client_impl_t *cclient; 2861 mac_soft_ring_set_t *mac_srs; 2862 2863 /* 2864 * After grabbing the mi_rw_lock, the list of clients can't change. 2865 * If there are any clients mi_disabled must be B_FALSE and can't 2866 * get set since there are clients. If there aren't any clients we 2867 * don't do anything. In any case the mip has to be valid. The driver 2868 * must make sure that it goes single threaded (with respect to mac 2869 * calls) and wait for all pending mac calls to finish before calling 2870 * mac_unregister. 2871 */ 2872 rw_enter(&i_mac_impl_lock, RW_READER); 2873 if (mip->mi_state_flags & MIS_DISABLED) { 2874 rw_exit(&i_mac_impl_lock); 2875 return; 2876 } 2877 2878 /* 2879 * Get MAC tx srs from walking mac_client_handle list. 2880 */ 2881 rw_enter(&mip->mi_rw_lock, RW_READER); 2882 for (cclient = mip->mi_clients_list; cclient != NULL; 2883 cclient = cclient->mci_client_next) { 2884 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2885 mac_tx_srs_wakeup(mac_srs, ring); 2886 } else { 2887 /* 2888 * Aggr opens underlying ports in exclusive mode 2889 * and registers flow control callbacks using 2890 * mac_tx_client_notify(). When opened in 2891 * exclusive mode, Tx SRS won't be created 2892 * during mac_unicast_add(). 2893 */ 2894 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2895 mac_tx_invoke_callbacks(cclient, 2896 (mac_tx_cookie_t)ring); 2897 } 2898 } 2899 (void) mac_flow_walk(cclient->mci_subflow_tab, 2900 mac_tx_flow_srs_wakeup, ring); 2901 } 2902 rw_exit(&mip->mi_rw_lock); 2903 rw_exit(&i_mac_impl_lock); 2904 } 2905 2906 /* ARGSUSED */ 2907 void 2908 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2909 boolean_t add) 2910 { 2911 mac_impl_t *mip = (mac_impl_t *)mh; 2912 2913 i_mac_perim_enter((mac_impl_t *)mh); 2914 /* 2915 * If no specific refresh function was given then default to the 2916 * driver's m_multicst entry point. 2917 */ 2918 if (refresh == NULL) { 2919 refresh = mip->mi_multicst; 2920 arg = mip->mi_driver; 2921 } 2922 2923 mac_bcast_refresh(mip, refresh, arg, add); 2924 i_mac_perim_exit((mac_impl_t *)mh); 2925 } 2926 2927 void 2928 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2929 { 2930 mac_impl_t *mip = (mac_impl_t *)mh; 2931 2932 /* 2933 * If no specific refresh function was given then default to the 2934 * driver's m_promisc entry point. 2935 */ 2936 if (refresh == NULL) { 2937 refresh = mip->mi_setpromisc; 2938 arg = mip->mi_driver; 2939 } 2940 ASSERT(refresh != NULL); 2941 2942 /* 2943 * Call the refresh function with the current promiscuity. 2944 */ 2945 refresh(arg, (mip->mi_devpromisc != 0)); 2946 } 2947 2948 /* 2949 * The mac client requests that the mac not to change its margin size to 2950 * be less than the specified value. If "current" is B_TRUE, then the client 2951 * requests the mac not to change its margin size to be smaller than the 2952 * current size. Further, return the current margin size value in this case. 2953 * 2954 * We keep every requested size in an ordered list from largest to smallest. 2955 */ 2956 int 2957 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2958 { 2959 mac_impl_t *mip = (mac_impl_t *)mh; 2960 mac_margin_req_t **pp, *p; 2961 int err = 0; 2962 2963 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2964 if (current) 2965 *marginp = mip->mi_margin; 2966 2967 /* 2968 * If the current margin value cannot satisfy the margin requested, 2969 * return ENOTSUP directly. 2970 */ 2971 if (*marginp > mip->mi_margin) { 2972 err = ENOTSUP; 2973 goto done; 2974 } 2975 2976 /* 2977 * Check whether the given margin is already in the list. If so, 2978 * bump the reference count. 2979 */ 2980 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2981 if (p->mmr_margin == *marginp) { 2982 /* 2983 * The margin requested is already in the list, 2984 * so just bump the reference count. 2985 */ 2986 p->mmr_ref++; 2987 goto done; 2988 } 2989 if (p->mmr_margin < *marginp) 2990 break; 2991 } 2992 2993 2994 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2995 p->mmr_margin = *marginp; 2996 p->mmr_ref++; 2997 p->mmr_nextp = *pp; 2998 *pp = p; 2999 3000 done: 3001 rw_exit(&(mip->mi_rw_lock)); 3002 return (err); 3003 } 3004 3005 /* 3006 * The mac client requests to cancel its previous mac_margin_add() request. 3007 * We remove the requested margin size from the list. 3008 */ 3009 int 3010 mac_margin_remove(mac_handle_t mh, uint32_t margin) 3011 { 3012 mac_impl_t *mip = (mac_impl_t *)mh; 3013 mac_margin_req_t **pp, *p; 3014 int err = 0; 3015 3016 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 3017 /* 3018 * Find the entry in the list for the given margin. 3019 */ 3020 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 3021 if (p->mmr_margin == margin) { 3022 if (--p->mmr_ref == 0) 3023 break; 3024 3025 /* 3026 * There is still a reference to this address so 3027 * there's nothing more to do. 3028 */ 3029 goto done; 3030 } 3031 } 3032 3033 /* 3034 * We did not find an entry for the given margin. 3035 */ 3036 if (p == NULL) { 3037 err = ENOENT; 3038 goto done; 3039 } 3040 3041 ASSERT(p->mmr_ref == 0); 3042 3043 /* 3044 * Remove it from the list. 3045 */ 3046 *pp = p->mmr_nextp; 3047 kmem_free(p, sizeof (mac_margin_req_t)); 3048 done: 3049 rw_exit(&(mip->mi_rw_lock)); 3050 return (err); 3051 } 3052 3053 boolean_t 3054 mac_margin_update(mac_handle_t mh, uint32_t margin) 3055 { 3056 mac_impl_t *mip = (mac_impl_t *)mh; 3057 uint32_t margin_needed = 0; 3058 3059 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 3060 3061 if (mip->mi_mmrp != NULL) 3062 margin_needed = mip->mi_mmrp->mmr_margin; 3063 3064 if (margin_needed <= margin) 3065 mip->mi_margin = margin; 3066 3067 rw_exit(&(mip->mi_rw_lock)); 3068 3069 if (margin_needed <= margin) 3070 i_mac_notify(mip, MAC_NOTE_MARGIN); 3071 3072 return (margin_needed <= margin); 3073 } 3074 3075 /* 3076 * MAC clients use this interface to request that a MAC device not change its 3077 * MTU below the specified amount. At this time, that amount must be within the 3078 * range of the device's current minimum and the device's current maximum. eg. a 3079 * client cannot request a 3000 byte MTU when the device's MTU is currently 3080 * 2000. 3081 * 3082 * If "current" is set to B_TRUE, then the request is to simply to reserve the 3083 * current underlying mac's maximum for this mac client and return it in mtup. 3084 */ 3085 int 3086 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 3087 { 3088 mac_impl_t *mip = (mac_impl_t *)mh; 3089 mac_mtu_req_t *prev, *cur; 3090 mac_propval_range_t mpr; 3091 int err; 3092 3093 i_mac_perim_enter(mip); 3094 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3095 3096 if (current == B_TRUE) 3097 *mtup = mip->mi_sdu_max; 3098 mpr.mpr_count = 1; 3099 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 3100 if (err != 0) { 3101 rw_exit(&mip->mi_rw_lock); 3102 i_mac_perim_exit(mip); 3103 return (err); 3104 } 3105 3106 if (*mtup > mip->mi_sdu_max || 3107 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 3108 rw_exit(&mip->mi_rw_lock); 3109 i_mac_perim_exit(mip); 3110 return (ENOTSUP); 3111 } 3112 3113 prev = NULL; 3114 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3115 if (*mtup == cur->mtr_mtu) { 3116 cur->mtr_ref++; 3117 rw_exit(&mip->mi_rw_lock); 3118 i_mac_perim_exit(mip); 3119 return (0); 3120 } 3121 3122 if (*mtup > cur->mtr_mtu) 3123 break; 3124 3125 prev = cur; 3126 } 3127 3128 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 3129 cur->mtr_mtu = *mtup; 3130 cur->mtr_ref = 1; 3131 if (prev != NULL) { 3132 cur->mtr_nextp = prev->mtr_nextp; 3133 prev->mtr_nextp = cur; 3134 } else { 3135 cur->mtr_nextp = mip->mi_mtrp; 3136 mip->mi_mtrp = cur; 3137 } 3138 3139 rw_exit(&mip->mi_rw_lock); 3140 i_mac_perim_exit(mip); 3141 return (0); 3142 } 3143 3144 int 3145 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 3146 { 3147 mac_impl_t *mip = (mac_impl_t *)mh; 3148 mac_mtu_req_t *cur, *prev; 3149 3150 i_mac_perim_enter(mip); 3151 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3152 3153 prev = NULL; 3154 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3155 if (cur->mtr_mtu == mtu) { 3156 ASSERT(cur->mtr_ref > 0); 3157 cur->mtr_ref--; 3158 if (cur->mtr_ref == 0) { 3159 if (prev == NULL) { 3160 mip->mi_mtrp = cur->mtr_nextp; 3161 } else { 3162 prev->mtr_nextp = cur->mtr_nextp; 3163 } 3164 kmem_free(cur, sizeof (mac_mtu_req_t)); 3165 } 3166 rw_exit(&mip->mi_rw_lock); 3167 i_mac_perim_exit(mip); 3168 return (0); 3169 } 3170 3171 prev = cur; 3172 } 3173 3174 rw_exit(&mip->mi_rw_lock); 3175 i_mac_perim_exit(mip); 3176 return (ENOENT); 3177 } 3178 3179 /* 3180 * MAC Type Plugin functions. 3181 */ 3182 3183 mactype_t * 3184 mactype_getplugin(const char *pname) 3185 { 3186 mactype_t *mtype = NULL; 3187 boolean_t tried_modload = B_FALSE; 3188 3189 mutex_enter(&i_mactype_lock); 3190 3191 find_registered_mactype: 3192 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 3193 (mod_hash_val_t *)&mtype) != 0) { 3194 if (!tried_modload) { 3195 /* 3196 * If the plugin has not yet been loaded, then 3197 * attempt to load it now. If modload() succeeds, 3198 * the plugin should have registered using 3199 * mactype_register(), in which case we can go back 3200 * and attempt to find it again. 3201 */ 3202 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 3203 tried_modload = B_TRUE; 3204 goto find_registered_mactype; 3205 } 3206 } 3207 } else { 3208 /* 3209 * Note that there's no danger that the plugin we've loaded 3210 * could be unloaded between the modload() step and the 3211 * reference count bump here, as we're holding 3212 * i_mactype_lock, which mactype_unregister() also holds. 3213 */ 3214 atomic_inc_32(&mtype->mt_ref); 3215 } 3216 3217 mutex_exit(&i_mactype_lock); 3218 return (mtype); 3219 } 3220 3221 mactype_register_t * 3222 mactype_alloc(uint_t mactype_version) 3223 { 3224 mactype_register_t *mtrp; 3225 3226 /* 3227 * Make sure there isn't a version mismatch between the plugin and 3228 * the framework. In the future, if multiple versions are 3229 * supported, this check could become more sophisticated. 3230 */ 3231 if (mactype_version != MACTYPE_VERSION) 3232 return (NULL); 3233 3234 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 3235 mtrp->mtr_version = mactype_version; 3236 return (mtrp); 3237 } 3238 3239 void 3240 mactype_free(mactype_register_t *mtrp) 3241 { 3242 kmem_free(mtrp, sizeof (mactype_register_t)); 3243 } 3244 3245 int 3246 mactype_register(mactype_register_t *mtrp) 3247 { 3248 mactype_t *mtp; 3249 mactype_ops_t *ops = mtrp->mtr_ops; 3250 3251 /* Do some sanity checking before we register this MAC type. */ 3252 if (mtrp->mtr_ident == NULL || ops == NULL) 3253 return (EINVAL); 3254 3255 /* 3256 * Verify that all mandatory callbacks are set in the ops 3257 * vector. 3258 */ 3259 if (ops->mtops_unicst_verify == NULL || 3260 ops->mtops_multicst_verify == NULL || 3261 ops->mtops_sap_verify == NULL || 3262 ops->mtops_header == NULL || 3263 ops->mtops_header_info == NULL) { 3264 return (EINVAL); 3265 } 3266 3267 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 3268 mtp->mt_ident = mtrp->mtr_ident; 3269 mtp->mt_ops = *ops; 3270 mtp->mt_type = mtrp->mtr_mactype; 3271 mtp->mt_nativetype = mtrp->mtr_nativetype; 3272 mtp->mt_addr_length = mtrp->mtr_addrlen; 3273 if (mtrp->mtr_brdcst_addr != NULL) { 3274 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 3275 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 3276 mtrp->mtr_addrlen); 3277 } 3278 3279 mtp->mt_stats = mtrp->mtr_stats; 3280 mtp->mt_statcount = mtrp->mtr_statcount; 3281 3282 mtp->mt_mapping = mtrp->mtr_mapping; 3283 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 3284 3285 if (mod_hash_insert(i_mactype_hash, 3286 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 3287 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3288 kmem_free(mtp, sizeof (*mtp)); 3289 return (EEXIST); 3290 } 3291 return (0); 3292 } 3293 3294 int 3295 mactype_unregister(const char *ident) 3296 { 3297 mactype_t *mtp; 3298 mod_hash_val_t val; 3299 int err; 3300 3301 /* 3302 * Let's not allow MAC drivers to use this plugin while we're 3303 * trying to unregister it. Holding i_mactype_lock also prevents a 3304 * plugin from unregistering while a MAC driver is attempting to 3305 * hold a reference to it in i_mactype_getplugin(). 3306 */ 3307 mutex_enter(&i_mactype_lock); 3308 3309 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 3310 (mod_hash_val_t *)&mtp)) != 0) { 3311 /* A plugin is trying to unregister, but it never registered. */ 3312 err = ENXIO; 3313 goto done; 3314 } 3315 3316 if (mtp->mt_ref != 0) { 3317 err = EBUSY; 3318 goto done; 3319 } 3320 3321 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 3322 ASSERT(err == 0); 3323 if (err != 0) { 3324 /* This should never happen, thus the ASSERT() above. */ 3325 err = EINVAL; 3326 goto done; 3327 } 3328 ASSERT(mtp == (mactype_t *)val); 3329 3330 if (mtp->mt_brdcst_addr != NULL) 3331 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3332 kmem_free(mtp, sizeof (mactype_t)); 3333 done: 3334 mutex_exit(&i_mactype_lock); 3335 return (err); 3336 } 3337 3338 /* 3339 * Checks the size of the value size specified for a property as 3340 * part of a property operation. Returns B_TRUE if the size is 3341 * correct, B_FALSE otherwise. 3342 */ 3343 boolean_t 3344 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 3345 { 3346 uint_t minsize = 0; 3347 3348 if (is_range) 3349 return (valsize >= sizeof (mac_propval_range_t)); 3350 3351 switch (id) { 3352 case MAC_PROP_ZONE: 3353 minsize = sizeof (dld_ioc_zid_t); 3354 break; 3355 case MAC_PROP_AUTOPUSH: 3356 if (valsize != 0) 3357 minsize = sizeof (struct dlautopush); 3358 break; 3359 case MAC_PROP_TAGMODE: 3360 minsize = sizeof (link_tagmode_t); 3361 break; 3362 case MAC_PROP_RESOURCE: 3363 case MAC_PROP_RESOURCE_EFF: 3364 minsize = sizeof (mac_resource_props_t); 3365 break; 3366 case MAC_PROP_DUPLEX: 3367 minsize = sizeof (link_duplex_t); 3368 break; 3369 case MAC_PROP_SPEED: 3370 minsize = sizeof (uint64_t); 3371 break; 3372 case MAC_PROP_STATUS: 3373 minsize = sizeof (link_state_t); 3374 break; 3375 case MAC_PROP_AUTONEG: 3376 case MAC_PROP_EN_AUTONEG: 3377 minsize = sizeof (uint8_t); 3378 break; 3379 case MAC_PROP_MTU: 3380 case MAC_PROP_LLIMIT: 3381 case MAC_PROP_LDECAY: 3382 minsize = sizeof (uint32_t); 3383 break; 3384 case MAC_PROP_FLOWCTRL: 3385 minsize = sizeof (link_flowctrl_t); 3386 break; 3387 case MAC_PROP_ADV_FEC_CAP: 3388 case MAC_PROP_EN_FEC_CAP: 3389 minsize = sizeof (link_fec_t); 3390 break; 3391 case MAC_PROP_ADV_400GFDX_CAP: 3392 case MAC_PROP_EN_400GFDX_CAP: 3393 case MAC_PROP_ADV_200GFDX_CAP: 3394 case MAC_PROP_EN_200GFDX_CAP: 3395 case MAC_PROP_ADV_100GFDX_CAP: 3396 case MAC_PROP_EN_100GFDX_CAP: 3397 case MAC_PROP_ADV_50GFDX_CAP: 3398 case MAC_PROP_EN_50GFDX_CAP: 3399 case MAC_PROP_ADV_40GFDX_CAP: 3400 case MAC_PROP_EN_40GFDX_CAP: 3401 case MAC_PROP_ADV_25GFDX_CAP: 3402 case MAC_PROP_EN_25GFDX_CAP: 3403 case MAC_PROP_ADV_10GFDX_CAP: 3404 case MAC_PROP_EN_10GFDX_CAP: 3405 case MAC_PROP_ADV_5000FDX_CAP: 3406 case MAC_PROP_EN_5000FDX_CAP: 3407 case MAC_PROP_ADV_2500FDX_CAP: 3408 case MAC_PROP_EN_2500FDX_CAP: 3409 case MAC_PROP_ADV_1000HDX_CAP: 3410 case MAC_PROP_EN_1000HDX_CAP: 3411 case MAC_PROP_ADV_100FDX_CAP: 3412 case MAC_PROP_EN_100FDX_CAP: 3413 case MAC_PROP_ADV_100T4_CAP: 3414 case MAC_PROP_EN_100T4_CAP: 3415 case MAC_PROP_ADV_100HDX_CAP: 3416 case MAC_PROP_EN_100HDX_CAP: 3417 case MAC_PROP_ADV_10FDX_CAP: 3418 case MAC_PROP_EN_10FDX_CAP: 3419 case MAC_PROP_ADV_10HDX_CAP: 3420 case MAC_PROP_EN_10HDX_CAP: 3421 minsize = sizeof (uint8_t); 3422 break; 3423 case MAC_PROP_PVID: 3424 minsize = sizeof (uint16_t); 3425 break; 3426 case MAC_PROP_IPTUN_HOPLIMIT: 3427 minsize = sizeof (uint32_t); 3428 break; 3429 case MAC_PROP_IPTUN_ENCAPLIMIT: 3430 minsize = sizeof (uint32_t); 3431 break; 3432 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3433 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3434 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3435 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3436 minsize = sizeof (uint_t); 3437 break; 3438 case MAC_PROP_WL_ESSID: 3439 minsize = sizeof (wl_linkstatus_t); 3440 break; 3441 case MAC_PROP_WL_BSSID: 3442 minsize = sizeof (wl_bssid_t); 3443 break; 3444 case MAC_PROP_WL_BSSTYPE: 3445 minsize = sizeof (wl_bss_type_t); 3446 break; 3447 case MAC_PROP_WL_LINKSTATUS: 3448 minsize = sizeof (wl_linkstatus_t); 3449 break; 3450 case MAC_PROP_WL_DESIRED_RATES: 3451 minsize = sizeof (wl_rates_t); 3452 break; 3453 case MAC_PROP_WL_SUPPORTED_RATES: 3454 minsize = sizeof (wl_rates_t); 3455 break; 3456 case MAC_PROP_WL_AUTH_MODE: 3457 minsize = sizeof (wl_authmode_t); 3458 break; 3459 case MAC_PROP_WL_ENCRYPTION: 3460 minsize = sizeof (wl_encryption_t); 3461 break; 3462 case MAC_PROP_WL_RSSI: 3463 minsize = sizeof (wl_rssi_t); 3464 break; 3465 case MAC_PROP_WL_PHY_CONFIG: 3466 minsize = sizeof (wl_phy_conf_t); 3467 break; 3468 case MAC_PROP_WL_CAPABILITY: 3469 minsize = sizeof (wl_capability_t); 3470 break; 3471 case MAC_PROP_WL_WPA: 3472 minsize = sizeof (wl_wpa_t); 3473 break; 3474 case MAC_PROP_WL_SCANRESULTS: 3475 minsize = sizeof (wl_wpa_ess_t); 3476 break; 3477 case MAC_PROP_WL_POWER_MODE: 3478 minsize = sizeof (wl_ps_mode_t); 3479 break; 3480 case MAC_PROP_WL_RADIO: 3481 minsize = sizeof (wl_radio_t); 3482 break; 3483 case MAC_PROP_WL_ESS_LIST: 3484 minsize = sizeof (wl_ess_list_t); 3485 break; 3486 case MAC_PROP_WL_KEY_TAB: 3487 minsize = sizeof (wl_wep_key_tab_t); 3488 break; 3489 case MAC_PROP_WL_CREATE_IBSS: 3490 minsize = sizeof (wl_create_ibss_t); 3491 break; 3492 case MAC_PROP_WL_SETOPTIE: 3493 minsize = sizeof (wl_wpa_ie_t); 3494 break; 3495 case MAC_PROP_WL_DELKEY: 3496 minsize = sizeof (wl_del_key_t); 3497 break; 3498 case MAC_PROP_WL_KEY: 3499 minsize = sizeof (wl_key_t); 3500 break; 3501 case MAC_PROP_WL_MLME: 3502 minsize = sizeof (wl_mlme_t); 3503 break; 3504 case MAC_PROP_VN_PROMISC_FILTERED: 3505 minsize = sizeof (boolean_t); 3506 break; 3507 case MAC_PROP_MEDIA: 3508 /* 3509 * Our assumption is that each class of device uses an enum and 3510 * that all enums will be the same size so it is OK to use a 3511 * single one. 3512 */ 3513 minsize = sizeof (mac_ether_media_t); 3514 break; 3515 } 3516 3517 return (valsize >= minsize); 3518 } 3519 3520 /* 3521 * mac_set_prop() sets MAC or hardware driver properties: 3522 * 3523 * - MAC-managed properties such as resource properties include maxbw, 3524 * priority, and cpu binding list, as well as the default port VID 3525 * used by bridging. These properties are consumed by the MAC layer 3526 * itself and not passed down to the driver. For resource control 3527 * properties, this function invokes mac_set_resources() which will 3528 * cache the property value in mac_impl_t and may call 3529 * mac_client_set_resource() to update property value of the primary 3530 * mac client, if it exists. 3531 * 3532 * - Properties which act on the hardware and must be passed to the 3533 * driver, such as MTU, through the driver's mc_setprop() entry point. 3534 */ 3535 int 3536 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3537 uint_t valsize) 3538 { 3539 int err = ENOTSUP; 3540 mac_impl_t *mip = (mac_impl_t *)mh; 3541 3542 ASSERT(MAC_PERIM_HELD(mh)); 3543 3544 switch (id) { 3545 case MAC_PROP_RESOURCE: { 3546 mac_resource_props_t *mrp; 3547 3548 /* call mac_set_resources() for MAC properties */ 3549 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3550 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3551 bcopy(val, mrp, sizeof (*mrp)); 3552 err = mac_set_resources(mh, mrp); 3553 kmem_free(mrp, sizeof (*mrp)); 3554 break; 3555 } 3556 3557 case MAC_PROP_PVID: 3558 ASSERT(valsize >= sizeof (uint16_t)); 3559 if (mip->mi_state_flags & MIS_IS_VNIC) 3560 return (EINVAL); 3561 err = mac_set_pvid(mh, *(uint16_t *)val); 3562 break; 3563 3564 case MAC_PROP_MTU: { 3565 uint32_t mtu; 3566 3567 ASSERT(valsize >= sizeof (uint32_t)); 3568 bcopy(val, &mtu, sizeof (mtu)); 3569 err = mac_set_mtu(mh, mtu, NULL); 3570 break; 3571 } 3572 3573 case MAC_PROP_LLIMIT: 3574 case MAC_PROP_LDECAY: { 3575 uint32_t learnval; 3576 3577 if (valsize < sizeof (learnval) || 3578 (mip->mi_state_flags & MIS_IS_VNIC)) 3579 return (EINVAL); 3580 bcopy(val, &learnval, sizeof (learnval)); 3581 if (learnval == 0 && id == MAC_PROP_LDECAY) 3582 return (EINVAL); 3583 if (id == MAC_PROP_LLIMIT) 3584 mip->mi_llimit = learnval; 3585 else 3586 mip->mi_ldecay = learnval; 3587 err = 0; 3588 break; 3589 } 3590 3591 case MAC_PROP_ADV_FEC_CAP: 3592 case MAC_PROP_EN_FEC_CAP: { 3593 link_fec_t fec; 3594 3595 ASSERT(valsize >= sizeof (link_fec_t)); 3596 3597 /* 3598 * fec cannot be zero, and auto must be set exclusively. 3599 */ 3600 bcopy(val, &fec, sizeof (link_fec_t)); 3601 if (fec == 0) 3602 return (EINVAL); 3603 if ((fec & LINK_FEC_AUTO) != 0 && (fec & ~LINK_FEC_AUTO) != 0) 3604 return (EINVAL); 3605 3606 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3607 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3608 name, id, valsize, val); 3609 } 3610 break; 3611 } 3612 3613 default: 3614 /* For other driver properties, call driver's callback */ 3615 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3616 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3617 name, id, valsize, val); 3618 } 3619 } 3620 return (err); 3621 } 3622 3623 /* 3624 * mac_get_prop() gets MAC or device driver properties. 3625 * 3626 * If the property is a driver property, mac_get_prop() calls driver's callback 3627 * entry point to get it. 3628 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3629 * which returns the cached value in mac_impl_t. 3630 */ 3631 int 3632 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3633 uint_t valsize) 3634 { 3635 int err = ENOTSUP; 3636 mac_impl_t *mip = (mac_impl_t *)mh; 3637 uint_t rings; 3638 uint_t vlinks; 3639 3640 bzero(val, valsize); 3641 3642 switch (id) { 3643 case MAC_PROP_RESOURCE: { 3644 mac_resource_props_t *mrp; 3645 3646 /* If mac property, read from cache */ 3647 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3648 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3649 mac_get_resources(mh, mrp); 3650 bcopy(mrp, val, sizeof (*mrp)); 3651 kmem_free(mrp, sizeof (*mrp)); 3652 return (0); 3653 } 3654 case MAC_PROP_RESOURCE_EFF: { 3655 mac_resource_props_t *mrp; 3656 3657 /* If mac effective property, read from client */ 3658 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3659 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3660 mac_get_effective_resources(mh, mrp); 3661 bcopy(mrp, val, sizeof (*mrp)); 3662 kmem_free(mrp, sizeof (*mrp)); 3663 return (0); 3664 } 3665 3666 case MAC_PROP_PVID: 3667 ASSERT(valsize >= sizeof (uint16_t)); 3668 if (mip->mi_state_flags & MIS_IS_VNIC) 3669 return (EINVAL); 3670 *(uint16_t *)val = mac_get_pvid(mh); 3671 return (0); 3672 3673 case MAC_PROP_LLIMIT: 3674 case MAC_PROP_LDECAY: 3675 ASSERT(valsize >= sizeof (uint32_t)); 3676 if (mip->mi_state_flags & MIS_IS_VNIC) 3677 return (EINVAL); 3678 if (id == MAC_PROP_LLIMIT) 3679 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3680 else 3681 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3682 return (0); 3683 3684 case MAC_PROP_MTU: { 3685 uint32_t sdu; 3686 3687 ASSERT(valsize >= sizeof (uint32_t)); 3688 mac_sdu_get2(mh, NULL, &sdu, NULL); 3689 bcopy(&sdu, val, sizeof (sdu)); 3690 3691 return (0); 3692 } 3693 case MAC_PROP_STATUS: { 3694 link_state_t link_state; 3695 3696 if (valsize < sizeof (link_state)) 3697 return (EINVAL); 3698 link_state = mac_link_get(mh); 3699 bcopy(&link_state, val, sizeof (link_state)); 3700 3701 return (0); 3702 } 3703 3704 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3705 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3706 ASSERT(valsize >= sizeof (uint_t)); 3707 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3708 mac_rxavail_get(mh) : mac_txavail_get(mh); 3709 bcopy(&rings, val, sizeof (uint_t)); 3710 return (0); 3711 3712 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3713 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3714 ASSERT(valsize >= sizeof (uint_t)); 3715 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3716 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3717 bcopy(&vlinks, val, sizeof (uint_t)); 3718 return (0); 3719 3720 case MAC_PROP_RXRINGSRANGE: 3721 case MAC_PROP_TXRINGSRANGE: 3722 /* 3723 * The value for these properties are returned through 3724 * the MAC_PROP_RESOURCE property. 3725 */ 3726 return (0); 3727 3728 default: 3729 break; 3730 3731 } 3732 3733 /* If driver property, request from driver */ 3734 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3735 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3736 valsize, val); 3737 } 3738 3739 return (err); 3740 } 3741 3742 /* 3743 * Helper function to initialize the range structure for use in 3744 * mac_get_prop. If the type can be other than uint32, we can 3745 * pass that as an arg. 3746 */ 3747 static void 3748 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3749 { 3750 range->mpr_count = 1; 3751 range->mpr_type = MAC_PROPVAL_UINT32; 3752 range->mpr_range_uint32[0].mpur_min = min; 3753 range->mpr_range_uint32[0].mpur_max = max; 3754 } 3755 3756 /* 3757 * Returns information about the specified property, such as default 3758 * values or permissions. 3759 */ 3760 int 3761 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3762 void *default_val, uint_t default_size, mac_propval_range_t *range, 3763 uint_t *perm) 3764 { 3765 mac_prop_info_state_t state; 3766 mac_impl_t *mip = (mac_impl_t *)mh; 3767 uint_t max; 3768 3769 /* 3770 * A property is read/write by default unless the driver says 3771 * otherwise. 3772 */ 3773 if (perm != NULL) 3774 *perm = MAC_PROP_PERM_RW; 3775 3776 if (default_val != NULL) 3777 bzero(default_val, default_size); 3778 3779 /* 3780 * First, handle framework properties for which we don't need to 3781 * involve the driver. 3782 */ 3783 switch (id) { 3784 case MAC_PROP_RESOURCE: 3785 case MAC_PROP_PVID: 3786 case MAC_PROP_LLIMIT: 3787 case MAC_PROP_LDECAY: 3788 return (0); 3789 3790 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3791 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3792 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3793 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3794 if (perm != NULL) 3795 *perm = MAC_PROP_PERM_READ; 3796 return (0); 3797 3798 case MAC_PROP_RXRINGSRANGE: 3799 case MAC_PROP_TXRINGSRANGE: 3800 /* 3801 * Currently, we support range for RX and TX rings properties. 3802 * When we extend this support to maxbw, cpus and priority, 3803 * we should move this to mac_get_resources. 3804 * There is no default value for RX or TX rings. 3805 */ 3806 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3807 mac_is_vnic_primary(mh)) { 3808 /* 3809 * We don't support setting rings for a VLAN 3810 * data link because it shares its ring with the 3811 * primary MAC client. 3812 */ 3813 if (perm != NULL) 3814 *perm = MAC_PROP_PERM_READ; 3815 if (range != NULL) 3816 range->mpr_count = 0; 3817 } else if (range != NULL) { 3818 if (mip->mi_state_flags & MIS_IS_VNIC) 3819 mh = mac_get_lower_mac_handle(mh); 3820 mip = (mac_impl_t *)mh; 3821 if ((id == MAC_PROP_RXRINGSRANGE && 3822 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3823 (id == MAC_PROP_TXRINGSRANGE && 3824 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3825 if (id == MAC_PROP_RXRINGSRANGE) { 3826 if ((mac_rxhwlnksavail_get(mh) + 3827 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3828 /* 3829 * doesn't support groups or 3830 * rings 3831 */ 3832 range->mpr_count = 0; 3833 } else { 3834 /* 3835 * supports specifying groups, 3836 * but not rings 3837 */ 3838 _mac_set_range(range, 0, 0); 3839 } 3840 } else { 3841 if ((mac_txhwlnksavail_get(mh) + 3842 mac_txhwlnksrsvd_get(mh)) <= 1) { 3843 /* 3844 * doesn't support groups or 3845 * rings 3846 */ 3847 range->mpr_count = 0; 3848 } else { 3849 /* 3850 * supports specifying groups, 3851 * but not rings 3852 */ 3853 _mac_set_range(range, 0, 0); 3854 } 3855 } 3856 } else { 3857 max = id == MAC_PROP_RXRINGSRANGE ? 3858 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3859 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3860 if (max <= 1) { 3861 /* 3862 * doesn't support groups or 3863 * rings 3864 */ 3865 range->mpr_count = 0; 3866 } else { 3867 /* 3868 * -1 because we have to leave out the 3869 * default ring. 3870 */ 3871 _mac_set_range(range, 1, max - 1); 3872 } 3873 } 3874 } 3875 return (0); 3876 3877 case MAC_PROP_STATUS: 3878 case MAC_PROP_MEDIA: 3879 if (perm != NULL) 3880 *perm = MAC_PROP_PERM_READ; 3881 return (0); 3882 } 3883 3884 /* 3885 * Get the property info from the driver if it implements the 3886 * property info entry point. 3887 */ 3888 bzero(&state, sizeof (state)); 3889 3890 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3891 state.pr_default = default_val; 3892 state.pr_default_size = default_size; 3893 3894 /* 3895 * The caller specifies the maximum number of ranges 3896 * it can accomodate using mpr_count. We don't touch 3897 * this value until the driver returns from its 3898 * mc_propinfo() callback, and ensure we don't exceed 3899 * this number of range as the driver defines 3900 * supported range from its mc_propinfo(). 3901 * 3902 * pr_range_cur_count keeps track of how many ranges 3903 * were defined by the driver from its mc_propinfo() 3904 * entry point. 3905 * 3906 * On exit, the user-specified range mpr_count returns 3907 * the number of ranges specified by the driver on 3908 * success, or the number of ranges it wanted to 3909 * define if that number of ranges could not be 3910 * accomodated by the specified range structure. In 3911 * the latter case, the caller will be able to 3912 * allocate a larger range structure, and query the 3913 * property again. 3914 */ 3915 state.pr_range_cur_count = 0; 3916 state.pr_range = range; 3917 3918 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3919 (mac_prop_info_handle_t)&state); 3920 3921 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3922 range->mpr_count = state.pr_range_cur_count; 3923 3924 /* 3925 * The operation could fail if the buffer supplied by 3926 * the user was too small for the range or default 3927 * value of the property. 3928 */ 3929 if (state.pr_errno != 0) 3930 return (state.pr_errno); 3931 3932 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3933 *perm = state.pr_perm; 3934 } 3935 3936 /* 3937 * The MAC layer may want to provide default values or allowed 3938 * ranges for properties if the driver does not provide a 3939 * property info entry point, or that entry point exists, but 3940 * it did not provide a default value or allowed ranges for 3941 * that property. 3942 */ 3943 switch (id) { 3944 case MAC_PROP_MTU: { 3945 uint32_t sdu; 3946 3947 mac_sdu_get2(mh, NULL, &sdu, NULL); 3948 3949 if (range != NULL && !(state.pr_flags & 3950 MAC_PROP_INFO_RANGE)) { 3951 /* MTU range */ 3952 _mac_set_range(range, sdu, sdu); 3953 } 3954 3955 if (default_val != NULL && !(state.pr_flags & 3956 MAC_PROP_INFO_DEFAULT)) { 3957 if (mip->mi_info.mi_media == DL_ETHER) 3958 sdu = ETHERMTU; 3959 /* default MTU value */ 3960 bcopy(&sdu, default_val, sizeof (sdu)); 3961 } 3962 } 3963 } 3964 3965 return (0); 3966 } 3967 3968 int 3969 mac_fastpath_disable(mac_handle_t mh) 3970 { 3971 mac_impl_t *mip = (mac_impl_t *)mh; 3972 3973 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3974 return (0); 3975 3976 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3977 } 3978 3979 void 3980 mac_fastpath_enable(mac_handle_t mh) 3981 { 3982 mac_impl_t *mip = (mac_impl_t *)mh; 3983 3984 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3985 return; 3986 3987 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3988 } 3989 3990 void 3991 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3992 { 3993 uint_t nprops, i; 3994 3995 if (priv_props == NULL) 3996 return; 3997 3998 nprops = 0; 3999 while (priv_props[nprops] != NULL) 4000 nprops++; 4001 if (nprops == 0) 4002 return; 4003 4004 4005 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 4006 4007 for (i = 0; i < nprops; i++) { 4008 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 4009 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 4010 MAXLINKPROPNAME); 4011 } 4012 4013 mip->mi_priv_prop_count = nprops; 4014 } 4015 4016 void 4017 mac_unregister_priv_prop(mac_impl_t *mip) 4018 { 4019 uint_t i; 4020 4021 if (mip->mi_priv_prop_count == 0) { 4022 ASSERT(mip->mi_priv_prop == NULL); 4023 return; 4024 } 4025 4026 for (i = 0; i < mip->mi_priv_prop_count; i++) 4027 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 4028 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 4029 sizeof (char *)); 4030 4031 mip->mi_priv_prop = NULL; 4032 mip->mi_priv_prop_count = 0; 4033 } 4034 4035 /* 4036 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 4037 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 4038 * cases if MAC free's the ring structure after mac_stop_ring(), any 4039 * illegal access to the ring structure coming from the driver will panic 4040 * the system. In order to protect the system from such inadverent access, 4041 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 4042 * When packets are received on free'd up rings, MAC (through the generation 4043 * count mechanism) will drop such packets. 4044 */ 4045 static mac_ring_t * 4046 mac_ring_alloc(mac_impl_t *mip) 4047 { 4048 mac_ring_t *ring; 4049 4050 mutex_enter(&mip->mi_ring_lock); 4051 if (mip->mi_ring_freelist != NULL) { 4052 ring = mip->mi_ring_freelist; 4053 mip->mi_ring_freelist = ring->mr_next; 4054 bzero(ring, sizeof (mac_ring_t)); 4055 mutex_exit(&mip->mi_ring_lock); 4056 } else { 4057 mutex_exit(&mip->mi_ring_lock); 4058 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 4059 } 4060 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 4061 return (ring); 4062 } 4063 4064 static void 4065 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 4066 { 4067 ASSERT(ring->mr_state == MR_FREE); 4068 4069 mutex_enter(&mip->mi_ring_lock); 4070 ring->mr_state = MR_FREE; 4071 ring->mr_flag = 0; 4072 ring->mr_next = mip->mi_ring_freelist; 4073 ring->mr_mip = NULL; 4074 mip->mi_ring_freelist = ring; 4075 mac_ring_stat_delete(ring); 4076 mutex_exit(&mip->mi_ring_lock); 4077 } 4078 4079 static void 4080 mac_ring_freeall(mac_impl_t *mip) 4081 { 4082 mac_ring_t *ring_next; 4083 mutex_enter(&mip->mi_ring_lock); 4084 mac_ring_t *ring = mip->mi_ring_freelist; 4085 while (ring != NULL) { 4086 ring_next = ring->mr_next; 4087 kmem_cache_free(mac_ring_cache, ring); 4088 ring = ring_next; 4089 } 4090 mip->mi_ring_freelist = NULL; 4091 mutex_exit(&mip->mi_ring_lock); 4092 } 4093 4094 int 4095 mac_start_ring(mac_ring_t *ring) 4096 { 4097 int rv = 0; 4098 4099 ASSERT(ring->mr_state == MR_FREE); 4100 4101 if (ring->mr_start != NULL) { 4102 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 4103 if (rv != 0) 4104 return (rv); 4105 } 4106 4107 ring->mr_state = MR_INUSE; 4108 return (rv); 4109 } 4110 4111 void 4112 mac_stop_ring(mac_ring_t *ring) 4113 { 4114 ASSERT(ring->mr_state == MR_INUSE); 4115 4116 if (ring->mr_stop != NULL) 4117 ring->mr_stop(ring->mr_driver); 4118 4119 ring->mr_state = MR_FREE; 4120 4121 /* 4122 * Increment the ring generation number for this ring. 4123 */ 4124 ring->mr_gen_num++; 4125 } 4126 4127 int 4128 mac_start_group(mac_group_t *group) 4129 { 4130 int rv = 0; 4131 4132 if (group->mrg_start != NULL) 4133 rv = group->mrg_start(group->mrg_driver); 4134 4135 return (rv); 4136 } 4137 4138 void 4139 mac_stop_group(mac_group_t *group) 4140 { 4141 if (group->mrg_stop != NULL) 4142 group->mrg_stop(group->mrg_driver); 4143 } 4144 4145 /* 4146 * Called from mac_start() on the default Rx group. Broadcast and multicast 4147 * packets are received only on the default group. Hence the default group 4148 * needs to be up even if the primary client is not up, for the other groups 4149 * to be functional. We do this by calling this function at mac_start time 4150 * itself. However the broadcast packets that are received can't make their 4151 * way beyond mac_rx until a mac client creates a broadcast flow. 4152 */ 4153 static int 4154 mac_start_group_and_rings(mac_group_t *group) 4155 { 4156 mac_ring_t *ring; 4157 int rv = 0; 4158 4159 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 4160 if ((rv = mac_start_group(group)) != 0) 4161 return (rv); 4162 4163 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4164 ASSERT(ring->mr_state == MR_FREE); 4165 4166 if ((rv = mac_start_ring(ring)) != 0) 4167 goto error; 4168 4169 /* 4170 * When aggr_set_port_sdu() is called, it will remove 4171 * the port client's unicast address. This will cause 4172 * MAC to stop the default group's rings on the port 4173 * MAC. After it modifies the SDU, it will then re-add 4174 * the unicast address. At which time, this function is 4175 * called to start the default group's rings. Normally 4176 * this function would set the classify type to 4177 * MAC_SW_CLASSIFIER; but that will break aggr which 4178 * relies on the passthru classify mode being set for 4179 * correct delivery (see mac_rx_common()). To avoid 4180 * that, we check for a passthru callback and set the 4181 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was 4182 * before the rings were stopped. 4183 */ 4184 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ? 4185 MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER; 4186 } 4187 return (0); 4188 4189 error: 4190 mac_stop_group_and_rings(group); 4191 return (rv); 4192 } 4193 4194 /* Called from mac_stop on the default Rx group */ 4195 static void 4196 mac_stop_group_and_rings(mac_group_t *group) 4197 { 4198 mac_ring_t *ring; 4199 4200 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4201 if (ring->mr_state != MR_FREE) { 4202 mac_stop_ring(ring); 4203 ring->mr_flag = 0; 4204 ring->mr_classify_type = MAC_NO_CLASSIFIER; 4205 } 4206 } 4207 mac_stop_group(group); 4208 } 4209 4210 4211 static mac_ring_t * 4212 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 4213 mac_capab_rings_t *cap_rings) 4214 { 4215 mac_ring_t *ring, *rnext; 4216 mac_ring_info_t ring_info; 4217 ddi_intr_handle_t ddi_handle; 4218 4219 ring = mac_ring_alloc(mip); 4220 4221 /* Prepare basic information of ring */ 4222 4223 /* 4224 * Ring index is numbered to be unique across a particular device. 4225 * Ring index computation makes following assumptions: 4226 * - For drivers with static grouping (e.g. ixgbe, bge), 4227 * ring index exchanged with the driver (e.g. during mr_rget) 4228 * is unique only across the group the ring belongs to. 4229 * - Drivers with dynamic grouping (e.g. nxge), start 4230 * with single group (mrg_index = 0). 4231 */ 4232 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 4233 ring->mr_type = group->mrg_type; 4234 ring->mr_gh = (mac_group_handle_t)group; 4235 4236 /* Insert the new ring to the list. */ 4237 ring->mr_next = group->mrg_rings; 4238 group->mrg_rings = ring; 4239 4240 /* Zero to reuse the info data structure */ 4241 bzero(&ring_info, sizeof (ring_info)); 4242 4243 /* Query ring information from driver */ 4244 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 4245 index, &ring_info, (mac_ring_handle_t)ring); 4246 4247 ring->mr_info = ring_info; 4248 4249 /* 4250 * The interrupt handle could be shared among multiple rings. 4251 * Thus if there is a bunch of rings that are sharing an 4252 * interrupt, then only one ring among the bunch will be made 4253 * available for interrupt re-targeting; the rest will have 4254 * ddi_shared flag set to TRUE and would not be available for 4255 * be interrupt re-targeting. 4256 */ 4257 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 4258 rnext = ring->mr_next; 4259 while (rnext != NULL) { 4260 if (rnext->mr_info.mri_intr.mi_ddi_handle == 4261 ddi_handle) { 4262 /* 4263 * If default ring (mr_index == 0) is part 4264 * of a group of rings sharing an 4265 * interrupt, then set ddi_shared flag for 4266 * the default ring and give another ring 4267 * the chance to be re-targeted. 4268 */ 4269 if (rnext->mr_index == 0 && 4270 !rnext->mr_info.mri_intr.mi_ddi_shared) { 4271 rnext->mr_info.mri_intr.mi_ddi_shared = 4272 B_TRUE; 4273 } else { 4274 ring->mr_info.mri_intr.mi_ddi_shared = 4275 B_TRUE; 4276 } 4277 break; 4278 } 4279 rnext = rnext->mr_next; 4280 } 4281 /* 4282 * If rnext is NULL, then no matching ddi_handle was found. 4283 * Rx rings get registered first. So if this is a Tx ring, 4284 * then go through all the Rx rings and see if there is a 4285 * matching ddi handle. 4286 */ 4287 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 4288 mac_compare_ddi_handle(mip->mi_rx_groups, 4289 mip->mi_rx_group_count, ring); 4290 } 4291 } 4292 4293 /* Update ring's status */ 4294 ring->mr_state = MR_FREE; 4295 ring->mr_flag = 0; 4296 4297 /* Update the ring count of the group */ 4298 group->mrg_cur_count++; 4299 4300 /* Create per ring kstats */ 4301 if (ring->mr_stat != NULL) { 4302 ring->mr_mip = mip; 4303 mac_ring_stat_create(ring); 4304 } 4305 4306 return (ring); 4307 } 4308 4309 /* 4310 * Rings are chained together for easy regrouping. 4311 */ 4312 static void 4313 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 4314 mac_capab_rings_t *cap_rings) 4315 { 4316 int index; 4317 4318 /* 4319 * Initialize all ring members of this group. Size of zero will not 4320 * enter the loop, so it's safe for initializing an empty group. 4321 */ 4322 for (index = size - 1; index >= 0; index--) 4323 (void) mac_init_ring(mip, group, index, cap_rings); 4324 } 4325 4326 int 4327 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4328 { 4329 mac_capab_rings_t *cap_rings; 4330 mac_group_t *group; 4331 mac_group_t *groups; 4332 mac_group_info_t group_info; 4333 uint_t group_free = 0; 4334 uint_t ring_left; 4335 mac_ring_t *ring; 4336 int g; 4337 int err = 0; 4338 uint_t grpcnt; 4339 boolean_t pseudo_txgrp = B_FALSE; 4340 4341 switch (rtype) { 4342 case MAC_RING_TYPE_RX: 4343 ASSERT(mip->mi_rx_groups == NULL); 4344 4345 cap_rings = &mip->mi_rx_rings_cap; 4346 cap_rings->mr_type = MAC_RING_TYPE_RX; 4347 break; 4348 case MAC_RING_TYPE_TX: 4349 ASSERT(mip->mi_tx_groups == NULL); 4350 4351 cap_rings = &mip->mi_tx_rings_cap; 4352 cap_rings->mr_type = MAC_RING_TYPE_TX; 4353 break; 4354 default: 4355 ASSERT(B_FALSE); 4356 } 4357 4358 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 4359 return (0); 4360 grpcnt = cap_rings->mr_gnum; 4361 4362 /* 4363 * If we have multiple TX rings, but only one TX group, we can 4364 * create pseudo TX groups (one per TX ring) in the MAC layer, 4365 * except for an aggr. For an aggr currently we maintain only 4366 * one group with all the rings (for all its ports), going 4367 * forwards we might change this. 4368 */ 4369 if (rtype == MAC_RING_TYPE_TX && 4370 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 4371 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 4372 /* 4373 * The -1 here is because we create a default TX group 4374 * with all the rings in it. 4375 */ 4376 grpcnt = cap_rings->mr_rnum - 1; 4377 pseudo_txgrp = B_TRUE; 4378 } 4379 4380 /* 4381 * Allocate a contiguous buffer for all groups. 4382 */ 4383 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 4384 4385 ring_left = cap_rings->mr_rnum; 4386 4387 /* 4388 * Get all ring groups if any, and get their ring members 4389 * if any. 4390 */ 4391 for (g = 0; g < grpcnt; g++) { 4392 group = groups + g; 4393 4394 /* Prepare basic information of the group */ 4395 group->mrg_index = g; 4396 group->mrg_type = rtype; 4397 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4398 group->mrg_mh = (mac_handle_t)mip; 4399 group->mrg_next = group + 1; 4400 4401 /* Zero to reuse the info data structure */ 4402 bzero(&group_info, sizeof (group_info)); 4403 4404 if (pseudo_txgrp) { 4405 /* 4406 * This is a pseudo group that we created, apart 4407 * from setting the state there is nothing to be 4408 * done. 4409 */ 4410 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4411 group_free++; 4412 continue; 4413 } 4414 /* Query group information from driver */ 4415 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4416 (mac_group_handle_t)group); 4417 4418 switch (cap_rings->mr_group_type) { 4419 case MAC_GROUP_TYPE_DYNAMIC: 4420 if (cap_rings->mr_gaddring == NULL || 4421 cap_rings->mr_gremring == NULL) { 4422 DTRACE_PROBE3( 4423 mac__init__rings_no_addremring, 4424 char *, mip->mi_name, 4425 mac_group_add_ring_t, 4426 cap_rings->mr_gaddring, 4427 mac_group_add_ring_t, 4428 cap_rings->mr_gremring); 4429 err = EINVAL; 4430 goto bail; 4431 } 4432 4433 switch (rtype) { 4434 case MAC_RING_TYPE_RX: 4435 /* 4436 * The first RX group must have non-zero 4437 * rings, and the following groups must 4438 * have zero rings. 4439 */ 4440 if (g == 0 && group_info.mgi_count == 0) { 4441 DTRACE_PROBE1( 4442 mac__init__rings__rx__def__zero, 4443 char *, mip->mi_name); 4444 err = EINVAL; 4445 goto bail; 4446 } 4447 if (g > 0 && group_info.mgi_count != 0) { 4448 DTRACE_PROBE3( 4449 mac__init__rings__rx__nonzero, 4450 char *, mip->mi_name, 4451 int, g, int, group_info.mgi_count); 4452 err = EINVAL; 4453 goto bail; 4454 } 4455 break; 4456 case MAC_RING_TYPE_TX: 4457 /* 4458 * All TX ring groups must have zero rings. 4459 */ 4460 if (group_info.mgi_count != 0) { 4461 DTRACE_PROBE3( 4462 mac__init__rings__tx__nonzero, 4463 char *, mip->mi_name, 4464 int, g, int, group_info.mgi_count); 4465 err = EINVAL; 4466 goto bail; 4467 } 4468 break; 4469 } 4470 break; 4471 case MAC_GROUP_TYPE_STATIC: 4472 /* 4473 * Note that an empty group is allowed, e.g., an aggr 4474 * would start with an empty group. 4475 */ 4476 break; 4477 default: 4478 /* unknown group type */ 4479 DTRACE_PROBE2(mac__init__rings__unknown__type, 4480 char *, mip->mi_name, 4481 int, cap_rings->mr_group_type); 4482 err = EINVAL; 4483 goto bail; 4484 } 4485 4486 4487 /* 4488 * The driver must register some form of hardware MAC 4489 * filter in order for Rx groups to support multiple 4490 * MAC addresses. 4491 */ 4492 if (rtype == MAC_RING_TYPE_RX && 4493 (group_info.mgi_addmac == NULL || 4494 group_info.mgi_remmac == NULL)) { 4495 DTRACE_PROBE1(mac__init__rings__no__mac__filter, 4496 char *, mip->mi_name); 4497 err = EINVAL; 4498 goto bail; 4499 } 4500 4501 /* Cache driver-supplied information */ 4502 group->mrg_info = group_info; 4503 4504 /* Update the group's status and group count. */ 4505 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4506 group_free++; 4507 4508 group->mrg_rings = NULL; 4509 group->mrg_cur_count = 0; 4510 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4511 ring_left -= group_info.mgi_count; 4512 4513 /* The current group size should be equal to default value */ 4514 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4515 } 4516 4517 /* Build up a dummy group for free resources as a pool */ 4518 group = groups + grpcnt; 4519 4520 /* Prepare basic information of the group */ 4521 group->mrg_index = -1; 4522 group->mrg_type = rtype; 4523 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4524 group->mrg_mh = (mac_handle_t)mip; 4525 group->mrg_next = NULL; 4526 4527 /* 4528 * If there are ungrouped rings, allocate a continuous buffer for 4529 * remaining resources. 4530 */ 4531 if (ring_left != 0) { 4532 group->mrg_rings = NULL; 4533 group->mrg_cur_count = 0; 4534 mac_init_group(mip, group, ring_left, cap_rings); 4535 4536 /* The current group size should be equal to ring_left */ 4537 ASSERT(group->mrg_cur_count == ring_left); 4538 4539 ring_left = 0; 4540 4541 /* Update this group's status */ 4542 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4543 } else { 4544 group->mrg_rings = NULL; 4545 } 4546 4547 ASSERT(ring_left == 0); 4548 4549 bail: 4550 4551 /* Cache other important information to finalize the initialization */ 4552 switch (rtype) { 4553 case MAC_RING_TYPE_RX: 4554 mip->mi_rx_group_type = cap_rings->mr_group_type; 4555 mip->mi_rx_group_count = cap_rings->mr_gnum; 4556 mip->mi_rx_groups = groups; 4557 mip->mi_rx_donor_grp = groups; 4558 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4559 /* 4560 * The default ring is reserved since it is 4561 * used for sending the broadcast etc. packets. 4562 */ 4563 mip->mi_rxrings_avail = 4564 mip->mi_rx_groups->mrg_cur_count - 1; 4565 mip->mi_rxrings_rsvd = 1; 4566 } 4567 /* 4568 * The default group cannot be reserved. It is used by 4569 * all the clients that do not have an exclusive group. 4570 */ 4571 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4572 mip->mi_rxhwclnt_used = 1; 4573 break; 4574 case MAC_RING_TYPE_TX: 4575 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4576 cap_rings->mr_group_type; 4577 mip->mi_tx_group_count = grpcnt; 4578 mip->mi_tx_group_free = group_free; 4579 mip->mi_tx_groups = groups; 4580 4581 group = groups + grpcnt; 4582 ring = group->mrg_rings; 4583 /* 4584 * The ring can be NULL in the case of aggr. Aggr will 4585 * have an empty Tx group which will get populated 4586 * later when pseudo Tx rings are added after 4587 * mac_register() is done. 4588 */ 4589 if (ring == NULL) { 4590 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4591 /* 4592 * pass the group to aggr so it can add Tx 4593 * rings to the group later. 4594 */ 4595 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4596 (mac_group_handle_t)group); 4597 /* 4598 * Even though there are no rings at this time 4599 * (rings will come later), set the group 4600 * state to registered. 4601 */ 4602 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4603 } else { 4604 /* 4605 * Ring 0 is used as the default one and it could be 4606 * assigned to a client as well. 4607 */ 4608 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4609 ring = ring->mr_next; 4610 ASSERT(ring->mr_index == 0); 4611 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4612 } 4613 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4614 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4615 /* 4616 * The default ring cannot be reserved. 4617 */ 4618 mip->mi_txrings_rsvd = 1; 4619 } 4620 /* 4621 * The default group cannot be reserved. It will be shared 4622 * by clients that do not have an exclusive group. 4623 */ 4624 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4625 mip->mi_txhwclnt_used = 1; 4626 break; 4627 default: 4628 ASSERT(B_FALSE); 4629 } 4630 4631 if (err != 0) 4632 mac_free_rings(mip, rtype); 4633 4634 return (err); 4635 } 4636 4637 /* 4638 * The ddi interrupt handle could be shared amoung rings. If so, compare 4639 * the new ring's ddi handle with the existing ones and set ddi_shared 4640 * flag. 4641 */ 4642 void 4643 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4644 { 4645 mac_group_t *group; 4646 mac_ring_t *ring; 4647 ddi_intr_handle_t ddi_handle; 4648 int g; 4649 4650 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4651 for (g = 0; g < grpcnt; g++) { 4652 group = groups + g; 4653 for (ring = group->mrg_rings; ring != NULL; 4654 ring = ring->mr_next) { 4655 if (ring == cring) 4656 continue; 4657 if (ring->mr_info.mri_intr.mi_ddi_handle == 4658 ddi_handle) { 4659 if (cring->mr_type == MAC_RING_TYPE_RX && 4660 ring->mr_index == 0 && 4661 !ring->mr_info.mri_intr.mi_ddi_shared) { 4662 ring->mr_info.mri_intr.mi_ddi_shared = 4663 B_TRUE; 4664 } else { 4665 cring->mr_info.mri_intr.mi_ddi_shared = 4666 B_TRUE; 4667 } 4668 return; 4669 } 4670 } 4671 } 4672 } 4673 4674 /* 4675 * Called to free all groups of particular type (RX or TX). It's assumed that 4676 * no clients are using these groups. 4677 */ 4678 void 4679 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4680 { 4681 mac_group_t *group, *groups; 4682 uint_t group_count; 4683 4684 switch (rtype) { 4685 case MAC_RING_TYPE_RX: 4686 if (mip->mi_rx_groups == NULL) 4687 return; 4688 4689 groups = mip->mi_rx_groups; 4690 group_count = mip->mi_rx_group_count; 4691 4692 mip->mi_rx_groups = NULL; 4693 mip->mi_rx_donor_grp = NULL; 4694 mip->mi_rx_group_count = 0; 4695 break; 4696 case MAC_RING_TYPE_TX: 4697 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4698 4699 if (mip->mi_tx_groups == NULL) 4700 return; 4701 4702 groups = mip->mi_tx_groups; 4703 group_count = mip->mi_tx_group_count; 4704 4705 mip->mi_tx_groups = NULL; 4706 mip->mi_tx_group_count = 0; 4707 mip->mi_tx_group_free = 0; 4708 mip->mi_default_tx_ring = NULL; 4709 break; 4710 default: 4711 ASSERT(B_FALSE); 4712 } 4713 4714 for (group = groups; group != NULL; group = group->mrg_next) { 4715 mac_ring_t *ring; 4716 4717 if (group->mrg_cur_count == 0) 4718 continue; 4719 4720 ASSERT(group->mrg_rings != NULL); 4721 4722 while ((ring = group->mrg_rings) != NULL) { 4723 group->mrg_rings = ring->mr_next; 4724 mac_ring_free(mip, ring); 4725 } 4726 } 4727 4728 /* Free all the cached rings */ 4729 mac_ring_freeall(mip); 4730 /* Free the block of group data strutures */ 4731 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4732 } 4733 4734 /* 4735 * Associate the VLAN filter to the receive group. 4736 */ 4737 int 4738 mac_group_addvlan(mac_group_t *group, uint16_t vlan) 4739 { 4740 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4741 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL); 4742 4743 if (vlan > VLAN_ID_MAX) 4744 return (EINVAL); 4745 4746 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4747 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan)); 4748 } 4749 4750 /* 4751 * Dissociate the VLAN from the receive group. 4752 */ 4753 int 4754 mac_group_remvlan(mac_group_t *group, uint16_t vlan) 4755 { 4756 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4757 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL); 4758 4759 if (vlan > VLAN_ID_MAX) 4760 return (EINVAL); 4761 4762 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4763 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan)); 4764 } 4765 4766 /* 4767 * Associate a MAC address with a receive group. 4768 * 4769 * The return value of this function should always be checked properly, because 4770 * any type of failure could cause unexpected results. A group can be added 4771 * or removed with a MAC address only after it has been reserved. Ideally, 4772 * a successful reservation always leads to calling mac_group_addmac() to 4773 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4774 * always imply that the group is functioning abnormally. 4775 * 4776 * Currently this function is called everywhere, and it reflects assumptions 4777 * about MAC addresses in the implementation. CR 6735196. 4778 */ 4779 int 4780 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4781 { 4782 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4783 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL); 4784 4785 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4786 } 4787 4788 /* 4789 * Remove the association between MAC address and receive group. 4790 */ 4791 int 4792 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4793 { 4794 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4795 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL); 4796 4797 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4798 } 4799 4800 /* 4801 * This is the entry point for packets transmitted through the bridge 4802 * code. If no bridge is in place, mac_ring_tx() transmits via the tx 4803 * ring. The 'rh' pointer may be NULL to select the default ring. 4804 */ 4805 mblk_t * 4806 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4807 { 4808 mac_handle_t mh; 4809 4810 /* 4811 * Once we take a reference on the bridge link, the bridge 4812 * module itself can't unload, so the callback pointers are 4813 * stable. 4814 */ 4815 mutex_enter(&mip->mi_bridge_lock); 4816 if ((mh = mip->mi_bridge_link) != NULL) 4817 mac_bridge_ref_cb(mh, B_TRUE); 4818 mutex_exit(&mip->mi_bridge_lock); 4819 if (mh == NULL) { 4820 mp = mac_ring_tx((mac_handle_t)mip, rh, mp); 4821 } else { 4822 /* 4823 * The bridge may place this mblk on a provider's Tx 4824 * path, a mac's Rx path, or both. Since we don't have 4825 * enough information at this point, we can't be sure 4826 * that the destination(s) are capable of handling the 4827 * hardware offloads requested by the mblk. We emulate 4828 * them here as it is the safest choice. In the 4829 * future, if bridge performance becomes a priority, 4830 * we can elide the emulation here and leave the 4831 * choice up to bridge. 4832 * 4833 * We don't clear the DB_CKSUMFLAGS here because 4834 * HCK_IPV4_HDRCKSUM (Tx) and HCK_IPV4_HDRCKSUM_OK 4835 * (Rx) still have the same value. If the bridge 4836 * receives a packet from a HCKSUM_IPHDRCKSUM NIC then 4837 * the mac(s) it is forwarded on may calculate the 4838 * checksum again, but incorrectly (because the 4839 * checksum field is not zero). Until the 4840 * HCK_IPV4_HDRCKSUM/HCK_IPV4_HDRCKSUM_OK issue is 4841 * resovled, we leave the flag clearing in bridge 4842 * itself. 4843 */ 4844 if ((DB_CKSUMFLAGS(mp) & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) { 4845 mac_hw_emul(&mp, NULL, NULL, MAC_ALL_EMULS); 4846 } 4847 4848 mp = mac_bridge_tx_cb(mh, rh, mp); 4849 mac_bridge_ref_cb(mh, B_FALSE); 4850 } 4851 4852 return (mp); 4853 } 4854 4855 /* 4856 * Find a ring from its index. 4857 */ 4858 mac_ring_handle_t 4859 mac_find_ring(mac_group_handle_t gh, int index) 4860 { 4861 mac_group_t *group = (mac_group_t *)gh; 4862 mac_ring_t *ring = group->mrg_rings; 4863 4864 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4865 if (ring->mr_index == index) 4866 break; 4867 4868 return ((mac_ring_handle_t)ring); 4869 } 4870 /* 4871 * Add a ring to an existing group. 4872 * 4873 * The ring must be either passed directly (for example if the ring 4874 * movement is initiated by the framework), or specified through a driver 4875 * index (for example when the ring is added by the driver. 4876 * 4877 * The caller needs to call mac_perim_enter() before calling this function. 4878 */ 4879 int 4880 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4881 { 4882 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4883 mac_capab_rings_t *cap_rings; 4884 boolean_t driver_call = (ring == NULL); 4885 mac_group_type_t group_type; 4886 int ret = 0; 4887 flow_entry_t *flent; 4888 4889 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4890 4891 switch (group->mrg_type) { 4892 case MAC_RING_TYPE_RX: 4893 cap_rings = &mip->mi_rx_rings_cap; 4894 group_type = mip->mi_rx_group_type; 4895 break; 4896 case MAC_RING_TYPE_TX: 4897 cap_rings = &mip->mi_tx_rings_cap; 4898 group_type = mip->mi_tx_group_type; 4899 break; 4900 default: 4901 ASSERT(B_FALSE); 4902 } 4903 4904 /* 4905 * There should be no ring with the same ring index in the target 4906 * group. 4907 */ 4908 ASSERT(mac_find_ring((mac_group_handle_t)group, 4909 driver_call ? index : ring->mr_index) == NULL); 4910 4911 if (driver_call) { 4912 /* 4913 * The function is called as a result of a request from 4914 * a driver to add a ring to an existing group, for example 4915 * from the aggregation driver. Allocate a new mac_ring_t 4916 * for that ring. 4917 */ 4918 ring = mac_init_ring(mip, group, index, cap_rings); 4919 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4920 } else { 4921 /* 4922 * The function is called as a result of a MAC layer request 4923 * to add a ring to an existing group. In this case the 4924 * ring is being moved between groups, which requires 4925 * the underlying driver to support dynamic grouping, 4926 * and the mac_ring_t already exists. 4927 */ 4928 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4929 ASSERT(group->mrg_driver == NULL || 4930 cap_rings->mr_gaddring != NULL); 4931 ASSERT(ring->mr_gh == NULL); 4932 } 4933 4934 /* 4935 * At this point the ring should not be in use, and it should be 4936 * of the right for the target group. 4937 */ 4938 ASSERT(ring->mr_state < MR_INUSE); 4939 ASSERT(ring->mr_srs == NULL); 4940 ASSERT(ring->mr_type == group->mrg_type); 4941 4942 if (!driver_call) { 4943 /* 4944 * Add the driver level hardware ring if the process was not 4945 * initiated by the driver, and the target group is not the 4946 * group. 4947 */ 4948 if (group->mrg_driver != NULL) { 4949 cap_rings->mr_gaddring(group->mrg_driver, 4950 ring->mr_driver, ring->mr_type); 4951 } 4952 4953 /* 4954 * Insert the ring ahead existing rings. 4955 */ 4956 ring->mr_next = group->mrg_rings; 4957 group->mrg_rings = ring; 4958 ring->mr_gh = (mac_group_handle_t)group; 4959 group->mrg_cur_count++; 4960 } 4961 4962 /* 4963 * If the group has not been actively used, we're done. 4964 */ 4965 if (group->mrg_index != -1 && 4966 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4967 return (0); 4968 4969 /* 4970 * Start the ring if needed. Failure causes to undo the grouping action. 4971 */ 4972 if (ring->mr_state != MR_INUSE) { 4973 if ((ret = mac_start_ring(ring)) != 0) { 4974 if (!driver_call) { 4975 cap_rings->mr_gremring(group->mrg_driver, 4976 ring->mr_driver, ring->mr_type); 4977 } 4978 group->mrg_cur_count--; 4979 group->mrg_rings = ring->mr_next; 4980 4981 ring->mr_gh = NULL; 4982 4983 if (driver_call) 4984 mac_ring_free(mip, ring); 4985 4986 return (ret); 4987 } 4988 } 4989 4990 /* 4991 * Set up SRS/SR according to the ring type. 4992 */ 4993 switch (ring->mr_type) { 4994 case MAC_RING_TYPE_RX: 4995 /* 4996 * Setup an SRS on top of the new ring if the group is 4997 * reserved for someone's exclusive use. 4998 */ 4999 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 5000 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group); 5001 5002 VERIFY3P(mcip, !=, NULL); 5003 flent = mcip->mci_flent; 5004 VERIFY3S(flent->fe_rx_srs_cnt, >, 0); 5005 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 5006 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 5007 mac_rx_deliver, mcip, NULL, NULL); 5008 } else { 5009 ring->mr_classify_type = MAC_SW_CLASSIFIER; 5010 } 5011 break; 5012 case MAC_RING_TYPE_TX: 5013 { 5014 mac_grp_client_t *mgcp = group->mrg_clients; 5015 mac_client_impl_t *mcip; 5016 mac_soft_ring_set_t *mac_srs; 5017 mac_srs_tx_t *tx; 5018 5019 if (MAC_GROUP_NO_CLIENT(group)) { 5020 if (ring->mr_state == MR_INUSE) 5021 mac_stop_ring(ring); 5022 ring->mr_flag = 0; 5023 break; 5024 } 5025 /* 5026 * If the rings are being moved to a group that has 5027 * clients using it, then add the new rings to the 5028 * clients SRS. 5029 */ 5030 while (mgcp != NULL) { 5031 boolean_t is_aggr; 5032 5033 mcip = mgcp->mgc_client; 5034 flent = mcip->mci_flent; 5035 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 5036 mac_srs = MCIP_TX_SRS(mcip); 5037 tx = &mac_srs->srs_tx; 5038 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5039 /* 5040 * If we are growing from 1 to multiple rings. 5041 */ 5042 if (tx->st_mode == SRS_TX_BW || 5043 tx->st_mode == SRS_TX_SERIALIZE || 5044 tx->st_mode == SRS_TX_DEFAULT) { 5045 mac_ring_t *tx_ring = tx->st_arg2; 5046 5047 tx->st_arg2 = NULL; 5048 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 5049 mac_tx_srs_add_ring(mac_srs, tx_ring); 5050 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5051 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 5052 SRS_TX_BW_FANOUT; 5053 } else { 5054 tx->st_mode = is_aggr ? SRS_TX_AGGR : 5055 SRS_TX_FANOUT; 5056 } 5057 tx->st_func = mac_tx_get_func(tx->st_mode); 5058 } 5059 mac_tx_srs_add_ring(mac_srs, ring); 5060 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 5061 mac_rx_deliver, mcip, NULL, NULL); 5062 mac_tx_client_restart((mac_client_handle_t)mcip); 5063 mgcp = mgcp->mgc_next; 5064 } 5065 break; 5066 } 5067 default: 5068 ASSERT(B_FALSE); 5069 } 5070 /* 5071 * For aggr, the default ring will be NULL to begin with. If it 5072 * is NULL, then pick the first ring that gets added as the 5073 * default ring. Any ring in an aggregation can be removed at 5074 * any time (by the user action of removing a link) and if the 5075 * current default ring gets removed, then a new one gets 5076 * picked (see i_mac_group_rem_ring()). 5077 */ 5078 if (mip->mi_state_flags & MIS_IS_AGGR && 5079 mip->mi_default_tx_ring == NULL && 5080 ring->mr_type == MAC_RING_TYPE_TX) { 5081 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 5082 } 5083 5084 MAC_RING_UNMARK(ring, MR_INCIPIENT); 5085 return (0); 5086 } 5087 5088 /* 5089 * Remove a ring from it's current group. MAC internal function for dynamic 5090 * grouping. 5091 * 5092 * The caller needs to call mac_perim_enter() before calling this function. 5093 */ 5094 void 5095 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 5096 boolean_t driver_call) 5097 { 5098 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 5099 mac_capab_rings_t *cap_rings = NULL; 5100 mac_group_type_t group_type; 5101 5102 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5103 5104 ASSERT(mac_find_ring((mac_group_handle_t)group, 5105 ring->mr_index) == (mac_ring_handle_t)ring); 5106 ASSERT((mac_group_t *)ring->mr_gh == group); 5107 ASSERT(ring->mr_type == group->mrg_type); 5108 5109 if (ring->mr_state == MR_INUSE) 5110 mac_stop_ring(ring); 5111 switch (ring->mr_type) { 5112 case MAC_RING_TYPE_RX: 5113 group_type = mip->mi_rx_group_type; 5114 cap_rings = &mip->mi_rx_rings_cap; 5115 5116 /* 5117 * Only hardware classified packets hold a reference to the 5118 * ring all the way up the Rx path. mac_rx_srs_remove() 5119 * will take care of quiescing the Rx path and removing the 5120 * SRS. The software classified path neither holds a reference 5121 * nor any association with the ring in mac_rx. 5122 */ 5123 if (ring->mr_srs != NULL) { 5124 mac_rx_srs_remove(ring->mr_srs); 5125 ring->mr_srs = NULL; 5126 } 5127 5128 break; 5129 case MAC_RING_TYPE_TX: 5130 { 5131 mac_grp_client_t *mgcp; 5132 mac_client_impl_t *mcip; 5133 mac_soft_ring_set_t *mac_srs; 5134 mac_srs_tx_t *tx; 5135 mac_ring_t *rem_ring; 5136 mac_group_t *defgrp; 5137 uint_t ring_info = 0; 5138 5139 /* 5140 * For TX this function is invoked in three 5141 * cases: 5142 * 5143 * 1) In the case of a failure during the 5144 * initial creation of a group when a share is 5145 * associated with a MAC client. So the SRS is not 5146 * yet setup, and will be setup later after the 5147 * group has been reserved and populated. 5148 * 5149 * 2) From mac_release_tx_group() when freeing 5150 * a TX SRS. 5151 * 5152 * 3) In the case of aggr, when a port gets removed, 5153 * the pseudo Tx rings that it exposed gets removed. 5154 * 5155 * In the first two cases the SRS and its soft 5156 * rings are already quiesced. 5157 */ 5158 if (driver_call) { 5159 mac_client_impl_t *mcip; 5160 mac_soft_ring_set_t *mac_srs; 5161 mac_soft_ring_t *sringp; 5162 mac_srs_tx_t *srs_tx; 5163 5164 if (mip->mi_state_flags & MIS_IS_AGGR && 5165 mip->mi_default_tx_ring == 5166 (mac_ring_handle_t)ring) { 5167 /* pick a new default Tx ring */ 5168 mip->mi_default_tx_ring = 5169 (group->mrg_rings != ring) ? 5170 (mac_ring_handle_t)group->mrg_rings : 5171 (mac_ring_handle_t)(ring->mr_next); 5172 } 5173 /* Presently only aggr case comes here */ 5174 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 5175 break; 5176 5177 mcip = MAC_GROUP_ONLY_CLIENT(group); 5178 ASSERT(mcip != NULL); 5179 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 5180 mac_srs = MCIP_TX_SRS(mcip); 5181 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 5182 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 5183 srs_tx = &mac_srs->srs_tx; 5184 /* 5185 * Wakeup any callers blocked on this 5186 * Tx ring due to flow control. 5187 */ 5188 sringp = srs_tx->st_soft_rings[ring->mr_index]; 5189 ASSERT(sringp != NULL); 5190 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 5191 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5192 mac_tx_srs_del_ring(mac_srs, ring); 5193 mac_tx_client_restart((mac_client_handle_t)mcip); 5194 break; 5195 } 5196 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 5197 group_type = mip->mi_tx_group_type; 5198 cap_rings = &mip->mi_tx_rings_cap; 5199 /* 5200 * See if we need to take it out of the MAC clients using 5201 * this group 5202 */ 5203 if (MAC_GROUP_NO_CLIENT(group)) 5204 break; 5205 mgcp = group->mrg_clients; 5206 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5207 while (mgcp != NULL) { 5208 mcip = mgcp->mgc_client; 5209 mac_srs = MCIP_TX_SRS(mcip); 5210 tx = &mac_srs->srs_tx; 5211 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5212 /* 5213 * If we are here when removing rings from the 5214 * defgroup, mac_reserve_tx_ring would have 5215 * already deleted the ring from the MAC 5216 * clients in the group. 5217 */ 5218 if (group != defgrp) { 5219 mac_tx_invoke_callbacks(mcip, 5220 (mac_tx_cookie_t) 5221 mac_tx_srs_get_soft_ring(mac_srs, ring)); 5222 mac_tx_srs_del_ring(mac_srs, ring); 5223 } 5224 /* 5225 * Additionally, if we are left with only 5226 * one ring in the group after this, we need 5227 * to modify the mode etc. to. (We haven't 5228 * yet taken the ring out, so we check with 2). 5229 */ 5230 if (group->mrg_cur_count == 2) { 5231 if (ring->mr_next == NULL) 5232 rem_ring = group->mrg_rings; 5233 else 5234 rem_ring = ring->mr_next; 5235 mac_tx_invoke_callbacks(mcip, 5236 (mac_tx_cookie_t) 5237 mac_tx_srs_get_soft_ring(mac_srs, 5238 rem_ring)); 5239 mac_tx_srs_del_ring(mac_srs, rem_ring); 5240 if (rem_ring->mr_state != MR_INUSE) { 5241 (void) mac_start_ring(rem_ring); 5242 } 5243 tx->st_arg2 = (void *)rem_ring; 5244 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 5245 ring_info = mac_hwring_getinfo( 5246 (mac_ring_handle_t)rem_ring); 5247 /* 5248 * We are shrinking from multiple 5249 * to 1 ring. 5250 */ 5251 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5252 tx->st_mode = SRS_TX_BW; 5253 } else if (mac_tx_serialize || 5254 (ring_info & MAC_RING_TX_SERIALIZE)) { 5255 tx->st_mode = SRS_TX_SERIALIZE; 5256 } else { 5257 tx->st_mode = SRS_TX_DEFAULT; 5258 } 5259 tx->st_func = mac_tx_get_func(tx->st_mode); 5260 } 5261 mac_tx_client_restart((mac_client_handle_t)mcip); 5262 mgcp = mgcp->mgc_next; 5263 } 5264 break; 5265 } 5266 default: 5267 ASSERT(B_FALSE); 5268 } 5269 5270 /* 5271 * Remove the ring from the group. 5272 */ 5273 if (ring == group->mrg_rings) 5274 group->mrg_rings = ring->mr_next; 5275 else { 5276 mac_ring_t *pre; 5277 5278 pre = group->mrg_rings; 5279 while (pre->mr_next != ring) 5280 pre = pre->mr_next; 5281 pre->mr_next = ring->mr_next; 5282 } 5283 group->mrg_cur_count--; 5284 5285 if (!driver_call) { 5286 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 5287 ASSERT(group->mrg_driver == NULL || 5288 cap_rings->mr_gremring != NULL); 5289 5290 /* 5291 * Remove the driver level hardware ring. 5292 */ 5293 if (group->mrg_driver != NULL) { 5294 cap_rings->mr_gremring(group->mrg_driver, 5295 ring->mr_driver, ring->mr_type); 5296 } 5297 } 5298 5299 ring->mr_gh = NULL; 5300 if (driver_call) 5301 mac_ring_free(mip, ring); 5302 else 5303 ring->mr_flag = 0; 5304 } 5305 5306 /* 5307 * Move a ring to the target group. If needed, remove the ring from the group 5308 * that it currently belongs to. 5309 * 5310 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 5311 */ 5312 static int 5313 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 5314 { 5315 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 5316 int rv; 5317 5318 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5319 ASSERT(d_group != NULL); 5320 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh); 5321 5322 if (s_group == d_group) 5323 return (0); 5324 5325 /* 5326 * Remove it from current group first. 5327 */ 5328 if (s_group != NULL) 5329 i_mac_group_rem_ring(s_group, ring, B_FALSE); 5330 5331 /* 5332 * Add it to the new group. 5333 */ 5334 rv = i_mac_group_add_ring(d_group, ring, 0); 5335 if (rv != 0) { 5336 /* 5337 * Failed to add ring back to source group. If 5338 * that fails, the ring is stuck in limbo, log message. 5339 */ 5340 if (i_mac_group_add_ring(s_group, ring, 0)) { 5341 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 5342 mip->mi_name, (void *)ring); 5343 } 5344 } 5345 5346 return (rv); 5347 } 5348 5349 /* 5350 * Find a MAC address according to its value. 5351 */ 5352 mac_address_t * 5353 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 5354 { 5355 mac_address_t *map; 5356 5357 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5358 5359 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 5360 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 5361 break; 5362 } 5363 5364 return (map); 5365 } 5366 5367 /* 5368 * Check whether the MAC address is shared by multiple clients. 5369 */ 5370 boolean_t 5371 mac_check_macaddr_shared(mac_address_t *map) 5372 { 5373 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 5374 5375 return (map->ma_nusers > 1); 5376 } 5377 5378 /* 5379 * Remove the specified MAC address from the MAC address list and free it. 5380 */ 5381 static void 5382 mac_free_macaddr(mac_address_t *map) 5383 { 5384 mac_impl_t *mip = map->ma_mip; 5385 5386 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5387 VERIFY3P(mip->mi_addresses, !=, NULL); 5388 5389 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5390 VERIFY3P(map, !=, NULL); 5391 VERIFY3S(map->ma_nusers, ==, 0); 5392 VERIFY3P(map->ma_vlans, ==, NULL); 5393 5394 if (map == mip->mi_addresses) { 5395 mip->mi_addresses = map->ma_next; 5396 } else { 5397 mac_address_t *pre; 5398 5399 pre = mip->mi_addresses; 5400 while (pre->ma_next != map) 5401 pre = pre->ma_next; 5402 pre->ma_next = map->ma_next; 5403 } 5404 5405 kmem_free(map, sizeof (mac_address_t)); 5406 } 5407 5408 static mac_vlan_t * 5409 mac_find_vlan(mac_address_t *map, uint16_t vid) 5410 { 5411 mac_vlan_t *mvp; 5412 5413 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) { 5414 if (mvp->mv_vid == vid) 5415 return (mvp); 5416 } 5417 5418 return (NULL); 5419 } 5420 5421 static mac_vlan_t * 5422 mac_add_vlan(mac_address_t *map, uint16_t vid) 5423 { 5424 mac_vlan_t *mvp; 5425 5426 /* 5427 * We should never add the same {addr, VID} tuple more 5428 * than once, but let's be sure. 5429 */ 5430 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) 5431 VERIFY3U(mvp->mv_vid, !=, vid); 5432 5433 /* Add the VLAN to the head of the VLAN list. */ 5434 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP); 5435 mvp->mv_vid = vid; 5436 mvp->mv_next = map->ma_vlans; 5437 map->ma_vlans = mvp; 5438 5439 return (mvp); 5440 } 5441 5442 static void 5443 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp) 5444 { 5445 mac_vlan_t *pre; 5446 5447 if (map->ma_vlans == mvp) { 5448 map->ma_vlans = mvp->mv_next; 5449 } else { 5450 pre = map->ma_vlans; 5451 while (pre->mv_next != mvp) { 5452 pre = pre->mv_next; 5453 5454 /* 5455 * We've reached the end of the list without 5456 * finding mvp. 5457 */ 5458 VERIFY3P(pre, !=, NULL); 5459 } 5460 pre->mv_next = mvp->mv_next; 5461 } 5462 5463 kmem_free(mvp, sizeof (mac_vlan_t)); 5464 } 5465 5466 /* 5467 * Create a new mac_address_t if this is the first use of the address 5468 * or add a VID to an existing address. In either case, the 5469 * mac_address_t acts as a list of {addr, VID} tuples where each tuple 5470 * shares the same addr. If group is non-NULL then attempt to program 5471 * the MAC's HW filters for this group. Otherwise, if group is NULL, 5472 * then the MAC has no rings and there is nothing to program. 5473 */ 5474 int 5475 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr, 5476 uint16_t vid, boolean_t use_hw) 5477 { 5478 mac_address_t *map; 5479 mac_vlan_t *mvp; 5480 int err = 0; 5481 boolean_t allocated_map = B_FALSE; 5482 boolean_t hw_mac = B_FALSE; 5483 boolean_t hw_vlan = B_FALSE; 5484 5485 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5486 5487 map = mac_find_macaddr(mip, addr); 5488 5489 /* 5490 * If this is the first use of this MAC address then allocate 5491 * and initialize a new structure. 5492 */ 5493 if (map == NULL) { 5494 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5495 map->ma_len = mip->mi_type->mt_addr_length; 5496 bcopy(addr, map->ma_addr, map->ma_len); 5497 map->ma_nusers = 0; 5498 map->ma_group = group; 5499 map->ma_mip = mip; 5500 map->ma_untagged = B_FALSE; 5501 5502 /* Add the new MAC address to the head of the address list. */ 5503 map->ma_next = mip->mi_addresses; 5504 mip->mi_addresses = map; 5505 5506 allocated_map = B_TRUE; 5507 } 5508 5509 VERIFY(map->ma_group == NULL || map->ma_group == group); 5510 if (map->ma_group == NULL) 5511 map->ma_group = group; 5512 5513 if (vid == VLAN_ID_NONE) { 5514 map->ma_untagged = B_TRUE; 5515 mvp = NULL; 5516 } else { 5517 mvp = mac_add_vlan(map, vid); 5518 } 5519 5520 /* 5521 * Set the VLAN HW filter if: 5522 * 5523 * o the MAC's VLAN HW filtering is enabled, and 5524 * o the address does not currently rely on promisc mode. 5525 * 5526 * This is called even when the client specifies an untagged 5527 * address (VLAN_ID_NONE) because some MAC providers require 5528 * setting additional bits to accept untagged traffic when 5529 * VLAN HW filtering is enabled. 5530 */ 5531 if (MAC_GROUP_HW_VLAN(group) && 5532 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) { 5533 if ((err = mac_group_addvlan(group, vid)) != 0) 5534 goto bail; 5535 5536 hw_vlan = B_TRUE; 5537 } 5538 5539 VERIFY3S(map->ma_nusers, >=, 0); 5540 map->ma_nusers++; 5541 5542 /* 5543 * If this MAC address already has a HW filter then simply 5544 * increment the counter. 5545 */ 5546 if (map->ma_nusers > 1) 5547 return (0); 5548 5549 /* 5550 * All logic from here on out is executed during initial 5551 * creation only. 5552 */ 5553 VERIFY3S(map->ma_nusers, ==, 1); 5554 5555 /* 5556 * Activate this MAC address by adding it to the reserved group. 5557 */ 5558 if (group != NULL) { 5559 err = mac_group_addmac(group, (const uint8_t *)addr); 5560 5561 /* 5562 * If the driver is out of filters then we can 5563 * continue and use promisc mode. For any other error, 5564 * assume the driver is in a state where we can't 5565 * program the filters or use promisc mode; so we must 5566 * bail. 5567 */ 5568 if (err != 0 && err != ENOSPC) { 5569 map->ma_nusers--; 5570 goto bail; 5571 } 5572 5573 hw_mac = (err == 0); 5574 } 5575 5576 if (hw_mac) { 5577 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5578 return (0); 5579 } 5580 5581 /* 5582 * The MAC address addition failed. If the client requires a 5583 * hardware classified MAC address, fail the operation. This 5584 * feature is only used by sun4v vsw. 5585 */ 5586 if (use_hw && !hw_mac) { 5587 err = ENOSPC; 5588 map->ma_nusers--; 5589 goto bail; 5590 } 5591 5592 /* 5593 * If we reach this point then either the MAC doesn't have 5594 * RINGS capability or we are out of MAC address HW filters. 5595 * In any case we must put the MAC into promiscuous mode. 5596 */ 5597 VERIFY(group == NULL || !hw_mac); 5598 5599 /* 5600 * The one exception is the primary address. A non-RINGS 5601 * driver filters the primary address by default; promisc mode 5602 * is not needed. 5603 */ 5604 if ((group == NULL) && 5605 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5606 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5607 return (0); 5608 } 5609 5610 /* 5611 * Enable promiscuous mode in order to receive traffic to the 5612 * new MAC address. All existing HW filters still send their 5613 * traffic to their respective group/SRSes. But with promisc 5614 * enabled all unknown traffic is delivered to the default 5615 * group where it is SW classified via mac_rx_classify(). 5616 */ 5617 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5618 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5619 return (0); 5620 } 5621 5622 /* 5623 * We failed to set promisc mode and we are about to free 'map'. 5624 */ 5625 map->ma_nusers = 0; 5626 5627 bail: 5628 if (hw_vlan) { 5629 int err2 = mac_group_remvlan(group, vid); 5630 5631 if (err2 != 0) { 5632 cmn_err(CE_WARN, "Failed to remove VLAN %u from group" 5633 " %d on MAC %s: %d.", vid, group->mrg_index, 5634 mip->mi_name, err2); 5635 } 5636 } 5637 5638 if (mvp != NULL) 5639 mac_rem_vlan(map, mvp); 5640 5641 if (allocated_map) 5642 mac_free_macaddr(map); 5643 5644 return (err); 5645 } 5646 5647 int 5648 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid) 5649 { 5650 mac_vlan_t *mvp; 5651 mac_impl_t *mip = map->ma_mip; 5652 mac_group_t *group = map->ma_group; 5653 int err = 0; 5654 5655 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5656 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5657 5658 if (vid == VLAN_ID_NONE) { 5659 map->ma_untagged = B_FALSE; 5660 mvp = NULL; 5661 } else { 5662 mvp = mac_find_vlan(map, vid); 5663 VERIFY3P(mvp, !=, NULL); 5664 } 5665 5666 if (MAC_GROUP_HW_VLAN(group) && 5667 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED && 5668 ((err = mac_group_remvlan(group, vid)) != 0)) 5669 return (err); 5670 5671 if (mvp != NULL) 5672 mac_rem_vlan(map, mvp); 5673 5674 /* 5675 * If it's not the last client using this MAC address, only update 5676 * the MAC clients count. 5677 */ 5678 map->ma_nusers--; 5679 if (map->ma_nusers > 0) 5680 return (0); 5681 5682 VERIFY3S(map->ma_nusers, ==, 0); 5683 5684 /* 5685 * The MAC address is no longer used by any MAC client, so 5686 * remove it from its associated group. Turn off promiscuous 5687 * mode if this is the last address relying on it. 5688 */ 5689 switch (map->ma_type) { 5690 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5691 /* 5692 * Don't free the preset primary address for drivers that 5693 * don't advertise RINGS capability. 5694 */ 5695 if (group == NULL) 5696 return (0); 5697 5698 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) { 5699 if (vid == VLAN_ID_NONE) 5700 map->ma_untagged = B_TRUE; 5701 else 5702 (void) mac_add_vlan(map, vid); 5703 5704 /* 5705 * If we fail to remove the MAC address HW 5706 * filter but then also fail to re-add the 5707 * VLAN HW filter then we are in a busted 5708 * state. We do our best by logging a warning 5709 * and returning the original 'err' that got 5710 * us here. At this point, traffic for this 5711 * address + VLAN combination will be dropped 5712 * until the user reboots the system. In the 5713 * future, it would be nice to have a system 5714 * that can compare the state of expected 5715 * classification according to mac to the 5716 * actual state of the provider, and report 5717 * and fix any inconsistencies. 5718 */ 5719 if (MAC_GROUP_HW_VLAN(group)) { 5720 int err2; 5721 5722 err2 = mac_group_addvlan(group, vid); 5723 if (err2 != 0) { 5724 cmn_err(CE_WARN, "Failed to readd VLAN" 5725 " %u to group %d on MAC %s: %d.", 5726 vid, group->mrg_index, mip->mi_name, 5727 err2); 5728 } 5729 } 5730 5731 map->ma_nusers = 1; 5732 return (err); 5733 } 5734 5735 map->ma_group = NULL; 5736 break; 5737 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5738 err = i_mac_promisc_set(mip, B_FALSE); 5739 break; 5740 default: 5741 panic("Unexpected ma_type 0x%x, file: %s, line %d", 5742 map->ma_type, __FILE__, __LINE__); 5743 } 5744 5745 if (err != 0) { 5746 map->ma_nusers = 1; 5747 return (err); 5748 } 5749 5750 /* 5751 * We created MAC address for the primary one at registration, so we 5752 * won't free it here. mac_fini_macaddr() will take care of it. 5753 */ 5754 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5755 mac_free_macaddr(map); 5756 5757 return (0); 5758 } 5759 5760 /* 5761 * Update an existing MAC address. The caller need to make sure that the new 5762 * value has not been used. 5763 */ 5764 int 5765 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5766 { 5767 mac_impl_t *mip = map->ma_mip; 5768 int err = 0; 5769 5770 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5771 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5772 5773 switch (map->ma_type) { 5774 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5775 /* 5776 * Update the primary address for drivers that are not 5777 * RINGS capable. 5778 */ 5779 if (mip->mi_rx_groups == NULL) { 5780 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5781 mac_addr); 5782 if (err != 0) 5783 return (err); 5784 break; 5785 } 5786 5787 /* 5788 * If this MAC address is not currently in use, 5789 * simply break out and update the value. 5790 */ 5791 if (map->ma_nusers == 0) 5792 break; 5793 5794 /* 5795 * Need to replace the MAC address associated with a group. 5796 */ 5797 err = mac_group_remmac(map->ma_group, map->ma_addr); 5798 if (err != 0) 5799 return (err); 5800 5801 err = mac_group_addmac(map->ma_group, mac_addr); 5802 5803 /* 5804 * Failure hints hardware error. The MAC layer needs to 5805 * have error notification facility to handle this. 5806 * Now, simply try to restore the value. 5807 */ 5808 if (err != 0) 5809 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5810 5811 break; 5812 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5813 /* 5814 * Need to do nothing more if in promiscuous mode. 5815 */ 5816 break; 5817 default: 5818 ASSERT(B_FALSE); 5819 } 5820 5821 /* 5822 * Successfully replaced the MAC address. 5823 */ 5824 if (err == 0) 5825 bcopy(mac_addr, map->ma_addr, map->ma_len); 5826 5827 return (err); 5828 } 5829 5830 /* 5831 * Freshen the MAC address with new value. Its caller must have updated the 5832 * hardware MAC address before calling this function. 5833 * This funcitons is supposed to be used to handle the MAC address change 5834 * notification from underlying drivers. 5835 */ 5836 void 5837 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5838 { 5839 mac_impl_t *mip = map->ma_mip; 5840 5841 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5842 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5843 5844 /* 5845 * Freshen the MAC address with new value. 5846 */ 5847 bcopy(mac_addr, map->ma_addr, map->ma_len); 5848 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5849 5850 /* 5851 * Update all MAC clients that share this MAC address. 5852 */ 5853 mac_unicast_update_clients(mip, map); 5854 } 5855 5856 /* 5857 * Set up the primary MAC address. 5858 */ 5859 void 5860 mac_init_macaddr(mac_impl_t *mip) 5861 { 5862 mac_address_t *map; 5863 5864 /* 5865 * The reference count is initialized to zero, until it's really 5866 * activated. 5867 */ 5868 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5869 map->ma_len = mip->mi_type->mt_addr_length; 5870 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5871 5872 /* 5873 * If driver advertises RINGS capability, it shouldn't have initialized 5874 * its primary MAC address. For other drivers, including VNIC, the 5875 * primary address must work after registration. 5876 */ 5877 if (mip->mi_rx_groups == NULL) 5878 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5879 5880 map->ma_mip = mip; 5881 5882 mip->mi_addresses = map; 5883 } 5884 5885 /* 5886 * Clean up the primary MAC address. Note, only one primary MAC address 5887 * is allowed. All other MAC addresses must have been freed appropriately. 5888 */ 5889 void 5890 mac_fini_macaddr(mac_impl_t *mip) 5891 { 5892 mac_address_t *map = mip->mi_addresses; 5893 5894 if (map == NULL) 5895 return; 5896 5897 /* 5898 * If mi_addresses is initialized, there should be exactly one 5899 * entry left on the list with no users. 5900 */ 5901 VERIFY3S(map->ma_nusers, ==, 0); 5902 VERIFY3P(map->ma_next, ==, NULL); 5903 VERIFY3P(map->ma_vlans, ==, NULL); 5904 5905 kmem_free(map, sizeof (mac_address_t)); 5906 mip->mi_addresses = NULL; 5907 } 5908 5909 /* 5910 * Logging related functions. 5911 * 5912 * Note that Kernel statistics have been extended to maintain fine 5913 * granularity of statistics viz. hardware lane, software lane, fanout 5914 * stats etc. However, extended accounting continues to support only 5915 * aggregate statistics like before. 5916 */ 5917 5918 /* Write the flow description to a netinfo_t record */ 5919 static netinfo_t * 5920 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5921 { 5922 netinfo_t *ninfo; 5923 net_desc_t *ndesc; 5924 flow_desc_t *fdesc; 5925 mac_resource_props_t *mrp; 5926 5927 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5928 if (ninfo == NULL) 5929 return (NULL); 5930 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5931 if (ndesc == NULL) { 5932 kmem_free(ninfo, sizeof (netinfo_t)); 5933 return (NULL); 5934 } 5935 5936 /* 5937 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5938 * Updates to the fe_flow_desc are done under the fe_lock 5939 */ 5940 mutex_enter(&flent->fe_lock); 5941 fdesc = &flent->fe_flow_desc; 5942 mrp = &flent->fe_resource_props; 5943 5944 ndesc->nd_name = flent->fe_flow_name; 5945 ndesc->nd_devname = mcip->mci_name; 5946 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5947 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5948 ndesc->nd_sap = htonl(fdesc->fd_sap); 5949 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5950 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5951 if (ndesc->nd_isv4) { 5952 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5953 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5954 } else { 5955 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5956 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5957 } 5958 ndesc->nd_sport = htons(fdesc->fd_local_port); 5959 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5960 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5961 mutex_exit(&flent->fe_lock); 5962 5963 ninfo->ni_record = ndesc; 5964 ninfo->ni_size = sizeof (net_desc_t); 5965 ninfo->ni_type = EX_NET_FLDESC_REC; 5966 5967 return (ninfo); 5968 } 5969 5970 /* Write the flow statistics to a netinfo_t record */ 5971 static netinfo_t * 5972 mac_write_flow_stats(flow_entry_t *flent) 5973 { 5974 netinfo_t *ninfo; 5975 net_stat_t *nstat; 5976 mac_soft_ring_set_t *mac_srs; 5977 mac_rx_stats_t *mac_rx_stat; 5978 mac_tx_stats_t *mac_tx_stat; 5979 int i; 5980 5981 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5982 if (ninfo == NULL) 5983 return (NULL); 5984 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5985 if (nstat == NULL) { 5986 kmem_free(ninfo, sizeof (netinfo_t)); 5987 return (NULL); 5988 } 5989 5990 nstat->ns_name = flent->fe_flow_name; 5991 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5992 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5993 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5994 5995 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5996 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5997 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5998 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5999 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 6000 } 6001 6002 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 6003 if (mac_srs != NULL) { 6004 mac_tx_stat = &mac_srs->srs_tx.st_stat; 6005 6006 nstat->ns_obytes = mac_tx_stat->mts_obytes; 6007 nstat->ns_opackets = mac_tx_stat->mts_opackets; 6008 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 6009 } 6010 6011 ninfo->ni_record = nstat; 6012 ninfo->ni_size = sizeof (net_stat_t); 6013 ninfo->ni_type = EX_NET_FLSTAT_REC; 6014 6015 return (ninfo); 6016 } 6017 6018 /* Write the link description to a netinfo_t record */ 6019 static netinfo_t * 6020 mac_write_link_desc(mac_client_impl_t *mcip) 6021 { 6022 netinfo_t *ninfo; 6023 net_desc_t *ndesc; 6024 flow_entry_t *flent = mcip->mci_flent; 6025 6026 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 6027 if (ninfo == NULL) 6028 return (NULL); 6029 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 6030 if (ndesc == NULL) { 6031 kmem_free(ninfo, sizeof (netinfo_t)); 6032 return (NULL); 6033 } 6034 6035 ndesc->nd_name = mcip->mci_name; 6036 ndesc->nd_devname = mcip->mci_name; 6037 ndesc->nd_isv4 = B_TRUE; 6038 /* 6039 * Grab the fe_lock to see a self-consistent fe_flow_desc. 6040 * Updates to the fe_flow_desc are done under the fe_lock 6041 * after removing the flent from the flow table. 6042 */ 6043 mutex_enter(&flent->fe_lock); 6044 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 6045 mutex_exit(&flent->fe_lock); 6046 6047 ninfo->ni_record = ndesc; 6048 ninfo->ni_size = sizeof (net_desc_t); 6049 ninfo->ni_type = EX_NET_LNDESC_REC; 6050 6051 return (ninfo); 6052 } 6053 6054 /* Write the link statistics to a netinfo_t record */ 6055 static netinfo_t * 6056 mac_write_link_stats(mac_client_impl_t *mcip) 6057 { 6058 netinfo_t *ninfo; 6059 net_stat_t *nstat; 6060 flow_entry_t *flent; 6061 mac_soft_ring_set_t *mac_srs; 6062 mac_rx_stats_t *mac_rx_stat; 6063 mac_tx_stats_t *mac_tx_stat; 6064 int i; 6065 6066 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 6067 if (ninfo == NULL) 6068 return (NULL); 6069 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 6070 if (nstat == NULL) { 6071 kmem_free(ninfo, sizeof (netinfo_t)); 6072 return (NULL); 6073 } 6074 6075 nstat->ns_name = mcip->mci_name; 6076 flent = mcip->mci_flent; 6077 if (flent != NULL) { 6078 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 6079 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 6080 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 6081 6082 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 6083 mac_rx_stat->mrs_pollbytes + 6084 mac_rx_stat->mrs_lclbytes; 6085 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 6086 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 6087 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 6088 } 6089 } 6090 6091 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 6092 if (mac_srs != NULL) { 6093 mac_tx_stat = &mac_srs->srs_tx.st_stat; 6094 6095 nstat->ns_obytes = mac_tx_stat->mts_obytes; 6096 nstat->ns_opackets = mac_tx_stat->mts_opackets; 6097 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 6098 } 6099 6100 ninfo->ni_record = nstat; 6101 ninfo->ni_size = sizeof (net_stat_t); 6102 ninfo->ni_type = EX_NET_LNSTAT_REC; 6103 6104 return (ninfo); 6105 } 6106 6107 typedef struct i_mac_log_state_s { 6108 boolean_t mi_last; 6109 int mi_fenable; 6110 int mi_lenable; 6111 list_t *mi_list; 6112 } i_mac_log_state_t; 6113 6114 /* 6115 * For a given flow, if the description has not been logged before, do it now. 6116 * If it is a VNIC, then we have collected information about it from the MAC 6117 * table, so skip it. 6118 * 6119 * Called through mac_flow_walk_nolock() 6120 * 6121 * Return 0 if successful. 6122 */ 6123 static int 6124 mac_log_flowinfo(flow_entry_t *flent, void *arg) 6125 { 6126 mac_client_impl_t *mcip = flent->fe_mcip; 6127 i_mac_log_state_t *lstate = arg; 6128 netinfo_t *ninfo; 6129 6130 if (mcip == NULL) 6131 return (0); 6132 6133 /* 6134 * If the name starts with "vnic", and fe_user_generated is true (to 6135 * exclude the mcast and active flow entries created implicitly for 6136 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 6137 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 6138 */ 6139 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 6140 (flent->fe_type & FLOW_USER) != 0) { 6141 return (0); 6142 } 6143 6144 if (!flent->fe_desc_logged) { 6145 /* 6146 * We don't return error because we want to continue the 6147 * walk in case this is the last walk which means we 6148 * need to reset fe_desc_logged in all the flows. 6149 */ 6150 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 6151 return (0); 6152 list_insert_tail(lstate->mi_list, ninfo); 6153 flent->fe_desc_logged = B_TRUE; 6154 } 6155 6156 /* 6157 * Regardless of the error, we want to proceed in case we have to 6158 * reset fe_desc_logged. 6159 */ 6160 ninfo = mac_write_flow_stats(flent); 6161 if (ninfo == NULL) 6162 return (-1); 6163 6164 list_insert_tail(lstate->mi_list, ninfo); 6165 6166 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 6167 flent->fe_desc_logged = B_FALSE; 6168 6169 return (0); 6170 } 6171 6172 /* 6173 * Log the description for each mac client of this mac_impl_t, if it 6174 * hasn't already been done. Additionally, log statistics for the link as 6175 * well. Walk the flow table and log information for each flow as well. 6176 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 6177 * also fe_desc_logged, if flow logging is on) since we want to log the 6178 * description if and when logging is restarted. 6179 * 6180 * Return 0 upon success or -1 upon failure 6181 */ 6182 static int 6183 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 6184 { 6185 mac_client_impl_t *mcip; 6186 netinfo_t *ninfo; 6187 6188 i_mac_perim_enter(mip); 6189 /* 6190 * Only walk the client list for NIC and etherstub 6191 */ 6192 if ((mip->mi_state_flags & MIS_DISABLED) || 6193 ((mip->mi_state_flags & MIS_IS_VNIC) && 6194 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 6195 i_mac_perim_exit(mip); 6196 return (0); 6197 } 6198 6199 for (mcip = mip->mi_clients_list; mcip != NULL; 6200 mcip = mcip->mci_client_next) { 6201 if (!MCIP_DATAPATH_SETUP(mcip)) 6202 continue; 6203 if (lstate->mi_lenable) { 6204 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 6205 ninfo = mac_write_link_desc(mcip); 6206 if (ninfo == NULL) { 6207 /* 6208 * We can't terminate it if this is the last 6209 * walk, else there might be some links with 6210 * mi_desc_logged set to true, which means 6211 * their description won't be logged the next 6212 * time logging is started (similarly for the 6213 * flows within such links). We can continue 6214 * without walking the flow table (i.e. to 6215 * set fe_desc_logged to false) because we 6216 * won't have written any flow stuff for this 6217 * link as we haven't logged the link itself. 6218 */ 6219 i_mac_perim_exit(mip); 6220 if (lstate->mi_last) 6221 return (0); 6222 else 6223 return (-1); 6224 } 6225 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 6226 list_insert_tail(lstate->mi_list, ninfo); 6227 } 6228 } 6229 6230 ninfo = mac_write_link_stats(mcip); 6231 if (ninfo == NULL && !lstate->mi_last) { 6232 i_mac_perim_exit(mip); 6233 return (-1); 6234 } 6235 list_insert_tail(lstate->mi_list, ninfo); 6236 6237 if (lstate->mi_last) 6238 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 6239 6240 if (lstate->mi_fenable) { 6241 if (mcip->mci_subflow_tab != NULL) { 6242 (void) mac_flow_walk_nolock( 6243 mcip->mci_subflow_tab, mac_log_flowinfo, 6244 lstate); 6245 } 6246 } 6247 } 6248 i_mac_perim_exit(mip); 6249 return (0); 6250 } 6251 6252 /* 6253 * modhash walker function to add a mac_impl_t to a list 6254 */ 6255 /*ARGSUSED*/ 6256 static uint_t 6257 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 6258 { 6259 list_t *list = (list_t *)arg; 6260 mac_impl_t *mip = (mac_impl_t *)val; 6261 6262 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 6263 list_insert_tail(list, mip); 6264 mip->mi_ref++; 6265 } 6266 6267 return (MH_WALK_CONTINUE); 6268 } 6269 6270 void 6271 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 6272 { 6273 list_t mac_impl_list; 6274 mac_impl_t *mip; 6275 netinfo_t *ninfo; 6276 6277 /* Create list of mac_impls */ 6278 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 6279 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 6280 mi_node)); 6281 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 6282 rw_exit(&i_mac_impl_lock); 6283 6284 /* Create log entries for each mac_impl */ 6285 for (mip = list_head(&mac_impl_list); mip != NULL; 6286 mip = list_next(&mac_impl_list, mip)) { 6287 if (i_mac_impl_log(mip, lstate) != 0) 6288 continue; 6289 } 6290 6291 /* Remove elements and destroy list of mac_impls */ 6292 rw_enter(&i_mac_impl_lock, RW_WRITER); 6293 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 6294 mip->mi_ref--; 6295 } 6296 rw_exit(&i_mac_impl_lock); 6297 list_destroy(&mac_impl_list); 6298 6299 /* 6300 * Write log entries to files outside of locks, free associated 6301 * structures, and remove entries from the list. 6302 */ 6303 while ((ninfo = list_head(net_log_list)) != NULL) { 6304 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 6305 list_remove(net_log_list, ninfo); 6306 kmem_free(ninfo->ni_record, ninfo->ni_size); 6307 kmem_free(ninfo, sizeof (*ninfo)); 6308 } 6309 list_destroy(net_log_list); 6310 } 6311 6312 /* 6313 * The timer thread that runs every mac_logging_interval seconds and logs 6314 * link and/or flow information. 6315 */ 6316 /* ARGSUSED */ 6317 void 6318 mac_log_linkinfo(void *arg) 6319 { 6320 i_mac_log_state_t lstate; 6321 list_t net_log_list; 6322 6323 list_create(&net_log_list, sizeof (netinfo_t), 6324 offsetof(netinfo_t, ni_link)); 6325 6326 rw_enter(&i_mac_impl_lock, RW_READER); 6327 if (!mac_flow_log_enable && !mac_link_log_enable) { 6328 rw_exit(&i_mac_impl_lock); 6329 return; 6330 } 6331 lstate.mi_fenable = mac_flow_log_enable; 6332 lstate.mi_lenable = mac_link_log_enable; 6333 lstate.mi_last = B_FALSE; 6334 lstate.mi_list = &net_log_list; 6335 6336 /* Write log entries for each mac_impl in the list */ 6337 i_mac_log_info(&net_log_list, &lstate); 6338 6339 if (mac_flow_log_enable || mac_link_log_enable) { 6340 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 6341 SEC_TO_TICK(mac_logging_interval)); 6342 } 6343 } 6344 6345 typedef struct i_mac_fastpath_state_s { 6346 boolean_t mf_disable; 6347 int mf_err; 6348 } i_mac_fastpath_state_t; 6349 6350 /* modhash walker function to enable or disable fastpath */ 6351 /*ARGSUSED*/ 6352 static uint_t 6353 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 6354 void *arg) 6355 { 6356 i_mac_fastpath_state_t *state = arg; 6357 mac_handle_t mh = (mac_handle_t)val; 6358 6359 if (state->mf_disable) 6360 state->mf_err = mac_fastpath_disable(mh); 6361 else 6362 mac_fastpath_enable(mh); 6363 6364 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 6365 } 6366 6367 /* 6368 * Start the logging timer. 6369 */ 6370 int 6371 mac_start_logusage(mac_logtype_t type, uint_t interval) 6372 { 6373 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 6374 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6375 int err; 6376 6377 rw_enter(&i_mac_impl_lock, RW_WRITER); 6378 switch (type) { 6379 case MAC_LOGTYPE_FLOW: 6380 if (mac_flow_log_enable) { 6381 rw_exit(&i_mac_impl_lock); 6382 return (0); 6383 } 6384 /* FALLTHRU */ 6385 case MAC_LOGTYPE_LINK: 6386 if (mac_link_log_enable) { 6387 rw_exit(&i_mac_impl_lock); 6388 return (0); 6389 } 6390 break; 6391 default: 6392 ASSERT(0); 6393 } 6394 6395 /* Disable fastpath */ 6396 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 6397 if ((err = dstate.mf_err) != 0) { 6398 /* Reenable fastpath */ 6399 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6400 rw_exit(&i_mac_impl_lock); 6401 return (err); 6402 } 6403 6404 switch (type) { 6405 case MAC_LOGTYPE_FLOW: 6406 mac_flow_log_enable = B_TRUE; 6407 /* FALLTHRU */ 6408 case MAC_LOGTYPE_LINK: 6409 mac_link_log_enable = B_TRUE; 6410 break; 6411 } 6412 6413 mac_logging_interval = interval; 6414 rw_exit(&i_mac_impl_lock); 6415 mac_log_linkinfo(NULL); 6416 return (0); 6417 } 6418 6419 /* 6420 * Stop the logging timer if both link and flow logging are turned off. 6421 */ 6422 void 6423 mac_stop_logusage(mac_logtype_t type) 6424 { 6425 i_mac_log_state_t lstate; 6426 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6427 list_t net_log_list; 6428 6429 list_create(&net_log_list, sizeof (netinfo_t), 6430 offsetof(netinfo_t, ni_link)); 6431 6432 rw_enter(&i_mac_impl_lock, RW_WRITER); 6433 6434 lstate.mi_fenable = mac_flow_log_enable; 6435 lstate.mi_lenable = mac_link_log_enable; 6436 lstate.mi_list = &net_log_list; 6437 6438 /* Last walk */ 6439 lstate.mi_last = B_TRUE; 6440 6441 switch (type) { 6442 case MAC_LOGTYPE_FLOW: 6443 if (lstate.mi_fenable) { 6444 ASSERT(mac_link_log_enable); 6445 mac_flow_log_enable = B_FALSE; 6446 mac_link_log_enable = B_FALSE; 6447 break; 6448 } 6449 /* FALLTHRU */ 6450 case MAC_LOGTYPE_LINK: 6451 if (!lstate.mi_lenable || mac_flow_log_enable) { 6452 rw_exit(&i_mac_impl_lock); 6453 return; 6454 } 6455 mac_link_log_enable = B_FALSE; 6456 break; 6457 default: 6458 ASSERT(0); 6459 } 6460 6461 /* Reenable fastpath */ 6462 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6463 6464 (void) untimeout(mac_logging_timer); 6465 mac_logging_timer = NULL; 6466 6467 /* Write log entries for each mac_impl in the list */ 6468 i_mac_log_info(&net_log_list, &lstate); 6469 } 6470 6471 /* 6472 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 6473 */ 6474 void 6475 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 6476 { 6477 pri_t pri; 6478 int count; 6479 mac_soft_ring_set_t *mac_srs; 6480 6481 if (flent->fe_rx_srs_cnt <= 0) 6482 return; 6483 6484 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 6485 SRST_FLOW) { 6486 pri = FLOW_PRIORITY(mcip->mci_min_pri, 6487 mcip->mci_max_pri, 6488 flent->fe_resource_props.mrp_priority); 6489 } else { 6490 pri = mcip->mci_max_pri; 6491 } 6492 6493 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 6494 mac_srs = flent->fe_rx_srs[count]; 6495 mac_update_srs_priority(mac_srs, pri); 6496 } 6497 /* 6498 * If we have a Tx SRS, we need to modify all the threads associated 6499 * with it. 6500 */ 6501 if (flent->fe_tx_srs != NULL) 6502 mac_update_srs_priority(flent->fe_tx_srs, pri); 6503 } 6504 6505 /* 6506 * RX and TX rings are reserved according to different semantics depending 6507 * on the requests from the MAC clients and type of rings: 6508 * 6509 * On the Tx side, by default we reserve individual rings, independently from 6510 * the groups. 6511 * 6512 * On the Rx side, the reservation is at the granularity of the group 6513 * of rings, and used for v12n level 1 only. It has a special case for the 6514 * primary client. 6515 * 6516 * If a share is allocated to a MAC client, we allocate a TX group and an 6517 * RX group to the client, and assign TX rings and RX rings to these 6518 * groups according to information gathered from the driver through 6519 * the share capability. 6520 * 6521 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 6522 * to allocate individual rings out of a group and program the hw classifier 6523 * based on IP address or higher level criteria. 6524 */ 6525 6526 /* 6527 * mac_reserve_tx_ring() 6528 * Reserve a unused ring by marking it with MR_INUSE state. 6529 * As reserved, the ring is ready to function. 6530 * 6531 * Notes for Hybrid I/O: 6532 * 6533 * If a specific ring is needed, it is specified through the desired_ring 6534 * argument. Otherwise that argument is set to NULL. 6535 * If the desired ring was previous allocated to another client, this 6536 * function swaps it with a new ring from the group of unassigned rings. 6537 */ 6538 mac_ring_t * 6539 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 6540 { 6541 mac_group_t *group; 6542 mac_grp_client_t *mgcp; 6543 mac_client_impl_t *mcip; 6544 mac_soft_ring_set_t *srs; 6545 6546 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6547 6548 /* 6549 * Find an available ring and start it before changing its status. 6550 * The unassigned rings are at the end of the mi_tx_groups 6551 * array. 6552 */ 6553 group = MAC_DEFAULT_TX_GROUP(mip); 6554 6555 /* Can't take the default ring out of the default group */ 6556 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 6557 6558 if (desired_ring->mr_state == MR_FREE) { 6559 ASSERT(MAC_GROUP_NO_CLIENT(group)); 6560 if (mac_start_ring(desired_ring) != 0) 6561 return (NULL); 6562 return (desired_ring); 6563 } 6564 /* 6565 * There are clients using this ring, so let's move the clients 6566 * away from using this ring. 6567 */ 6568 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6569 mcip = mgcp->mgc_client; 6570 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6571 srs = MCIP_TX_SRS(mcip); 6572 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 6573 mac_tx_invoke_callbacks(mcip, 6574 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 6575 desired_ring)); 6576 mac_tx_srs_del_ring(srs, desired_ring); 6577 mac_tx_client_restart((mac_client_handle_t)mcip); 6578 } 6579 return (desired_ring); 6580 } 6581 6582 /* 6583 * For a non-default group with multiple clients, return the primary client. 6584 */ 6585 static mac_client_impl_t * 6586 mac_get_grp_primary(mac_group_t *grp) 6587 { 6588 mac_grp_client_t *mgcp = grp->mrg_clients; 6589 mac_client_impl_t *mcip; 6590 6591 while (mgcp != NULL) { 6592 mcip = mgcp->mgc_client; 6593 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 6594 return (mcip); 6595 mgcp = mgcp->mgc_next; 6596 } 6597 return (NULL); 6598 } 6599 6600 /* 6601 * Hybrid I/O specifies the ring that should be given to a share. 6602 * If the ring is already used by clients, then we need to release 6603 * the ring back to the default group so that we can give it to 6604 * the share. This means the clients using this ring now get a 6605 * replacement ring. If there aren't any replacement rings, this 6606 * function returns a failure. 6607 */ 6608 static int 6609 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 6610 mac_ring_t *ring, mac_ring_t **rings, int nrings) 6611 { 6612 mac_group_t *group = (mac_group_t *)ring->mr_gh; 6613 mac_resource_props_t *mrp; 6614 mac_client_impl_t *mcip; 6615 mac_group_t *defgrp; 6616 mac_ring_t *tring; 6617 mac_group_t *tgrp; 6618 int i; 6619 int j; 6620 6621 mcip = MAC_GROUP_ONLY_CLIENT(group); 6622 if (mcip == NULL) 6623 mcip = mac_get_grp_primary(group); 6624 ASSERT(mcip != NULL); 6625 ASSERT(mcip->mci_share == 0); 6626 6627 mrp = MCIP_RESOURCE_PROPS(mcip); 6628 if (ring_type == MAC_RING_TYPE_RX) { 6629 defgrp = mip->mi_rx_donor_grp; 6630 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 6631 /* Need to put this mac client in the default group */ 6632 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 6633 return (ENOSPC); 6634 } else { 6635 /* 6636 * Switch this ring with some other ring from 6637 * the default group. 6638 */ 6639 for (tring = defgrp->mrg_rings; tring != NULL; 6640 tring = tring->mr_next) { 6641 if (tring->mr_index == 0) 6642 continue; 6643 for (j = 0; j < nrings; j++) { 6644 if (rings[j] == tring) 6645 break; 6646 } 6647 if (j >= nrings) 6648 break; 6649 } 6650 if (tring == NULL) 6651 return (ENOSPC); 6652 if (mac_group_mov_ring(mip, group, tring) != 0) 6653 return (ENOSPC); 6654 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6655 (void) mac_group_mov_ring(mip, defgrp, tring); 6656 return (ENOSPC); 6657 } 6658 } 6659 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6660 return (0); 6661 } 6662 6663 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6664 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6665 /* 6666 * See if we can get a spare ring to replace the default 6667 * ring. 6668 */ 6669 if (defgrp->mrg_cur_count == 1) { 6670 /* 6671 * Need to get a ring from another client, see if 6672 * there are any clients that can be moved to 6673 * the default group, thereby freeing some rings. 6674 */ 6675 for (i = 0; i < mip->mi_tx_group_count; i++) { 6676 tgrp = &mip->mi_tx_groups[i]; 6677 if (tgrp->mrg_state == 6678 MAC_GROUP_STATE_REGISTERED) { 6679 continue; 6680 } 6681 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6682 if (mcip == NULL) 6683 mcip = mac_get_grp_primary(tgrp); 6684 ASSERT(mcip != NULL); 6685 mrp = MCIP_RESOURCE_PROPS(mcip); 6686 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6687 ASSERT(tgrp->mrg_cur_count == 1); 6688 /* 6689 * If this ring is part of the 6690 * rings asked by the share we cannot 6691 * use it as the default ring. 6692 */ 6693 for (j = 0; j < nrings; j++) { 6694 if (rings[j] == tgrp->mrg_rings) 6695 break; 6696 } 6697 if (j < nrings) 6698 continue; 6699 mac_tx_client_quiesce( 6700 (mac_client_handle_t)mcip); 6701 mac_tx_switch_group(mcip, tgrp, 6702 defgrp); 6703 mac_tx_client_restart( 6704 (mac_client_handle_t)mcip); 6705 break; 6706 } 6707 } 6708 /* 6709 * All the rings are reserved, can't give up the 6710 * default ring. 6711 */ 6712 if (defgrp->mrg_cur_count <= 1) 6713 return (ENOSPC); 6714 } 6715 /* 6716 * Swap the default ring with another. 6717 */ 6718 for (tring = defgrp->mrg_rings; tring != NULL; 6719 tring = tring->mr_next) { 6720 /* 6721 * If this ring is part of the rings asked by the 6722 * share we cannot use it as the default ring. 6723 */ 6724 for (j = 0; j < nrings; j++) { 6725 if (rings[j] == tring) 6726 break; 6727 } 6728 if (j >= nrings) 6729 break; 6730 } 6731 ASSERT(tring != NULL); 6732 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6733 return (0); 6734 } 6735 /* 6736 * The Tx ring is with a group reserved by a MAC client. See if 6737 * we can swap it. 6738 */ 6739 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6740 mcip = MAC_GROUP_ONLY_CLIENT(group); 6741 if (mcip == NULL) 6742 mcip = mac_get_grp_primary(group); 6743 ASSERT(mcip != NULL); 6744 mrp = MCIP_RESOURCE_PROPS(mcip); 6745 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6746 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6747 ASSERT(group->mrg_cur_count == 1); 6748 /* Put this mac client in the default group */ 6749 mac_tx_switch_group(mcip, group, defgrp); 6750 } else { 6751 /* 6752 * Switch this ring with some other ring from 6753 * the default group. 6754 */ 6755 for (tring = defgrp->mrg_rings; tring != NULL; 6756 tring = tring->mr_next) { 6757 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6758 continue; 6759 /* 6760 * If this ring is part of the rings asked by the 6761 * share we cannot use it for swapping. 6762 */ 6763 for (j = 0; j < nrings; j++) { 6764 if (rings[j] == tring) 6765 break; 6766 } 6767 if (j >= nrings) 6768 break; 6769 } 6770 if (tring == NULL) { 6771 mac_tx_client_restart((mac_client_handle_t)mcip); 6772 return (ENOSPC); 6773 } 6774 if (mac_group_mov_ring(mip, group, tring) != 0) { 6775 mac_tx_client_restart((mac_client_handle_t)mcip); 6776 return (ENOSPC); 6777 } 6778 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6779 (void) mac_group_mov_ring(mip, defgrp, tring); 6780 mac_tx_client_restart((mac_client_handle_t)mcip); 6781 return (ENOSPC); 6782 } 6783 } 6784 mac_tx_client_restart((mac_client_handle_t)mcip); 6785 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6786 return (0); 6787 } 6788 6789 /* 6790 * Populate a zero-ring group with rings. If the share is non-NULL, 6791 * the rings are chosen according to that share. 6792 * Invoked after allocating a new RX or TX group through 6793 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6794 * Returns zero on success, an errno otherwise. 6795 */ 6796 int 6797 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6798 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6799 uint32_t ringcnt) 6800 { 6801 mac_ring_t **rings, *ring; 6802 uint_t nrings; 6803 int rv = 0, i = 0, j; 6804 6805 ASSERT((ring_type == MAC_RING_TYPE_RX && 6806 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6807 (ring_type == MAC_RING_TYPE_TX && 6808 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6809 6810 /* 6811 * First find the rings to allocate to the group. 6812 */ 6813 if (share != 0) { 6814 /* get rings through ms_squery() */ 6815 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6816 ASSERT(nrings != 0); 6817 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6818 KM_SLEEP); 6819 mip->mi_share_capab.ms_squery(share, ring_type, 6820 (mac_ring_handle_t *)rings, &nrings); 6821 for (i = 0; i < nrings; i++) { 6822 /* 6823 * If we have given this ring to a non-default 6824 * group, we need to check if we can get this 6825 * ring. 6826 */ 6827 ring = rings[i]; 6828 if (ring->mr_gh != (mac_group_handle_t)src_group || 6829 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6830 if (mac_reclaim_ring_from_grp(mip, ring_type, 6831 ring, rings, nrings) != 0) { 6832 rv = ENOSPC; 6833 goto bail; 6834 } 6835 } 6836 } 6837 } else { 6838 /* 6839 * Pick one ring from default group. 6840 * 6841 * for now pick the second ring which requires the first ring 6842 * at index 0 to stay in the default group, since it is the 6843 * ring which carries the multicast traffic. 6844 * We need a better way for a driver to indicate this, 6845 * for example a per-ring flag. 6846 */ 6847 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6848 KM_SLEEP); 6849 for (ring = src_group->mrg_rings; ring != NULL; 6850 ring = ring->mr_next) { 6851 if (ring_type == MAC_RING_TYPE_RX && 6852 ring->mr_index == 0) { 6853 continue; 6854 } 6855 if (ring_type == MAC_RING_TYPE_TX && 6856 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6857 continue; 6858 } 6859 rings[i++] = ring; 6860 if (i == ringcnt) 6861 break; 6862 } 6863 ASSERT(ring != NULL); 6864 nrings = i; 6865 /* Not enough rings as required */ 6866 if (nrings != ringcnt) { 6867 rv = ENOSPC; 6868 goto bail; 6869 } 6870 } 6871 6872 switch (ring_type) { 6873 case MAC_RING_TYPE_RX: 6874 if (src_group->mrg_cur_count - nrings < 1) { 6875 /* we ran out of rings */ 6876 rv = ENOSPC; 6877 goto bail; 6878 } 6879 6880 /* move receive rings to new group */ 6881 for (i = 0; i < nrings; i++) { 6882 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6883 if (rv != 0) { 6884 /* move rings back on failure */ 6885 for (j = 0; j < i; j++) { 6886 (void) mac_group_mov_ring(mip, 6887 src_group, rings[j]); 6888 } 6889 goto bail; 6890 } 6891 } 6892 break; 6893 6894 case MAC_RING_TYPE_TX: { 6895 mac_ring_t *tmp_ring; 6896 6897 /* move the TX rings to the new group */ 6898 for (i = 0; i < nrings; i++) { 6899 /* get the desired ring */ 6900 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6901 if (tmp_ring == NULL) { 6902 rv = ENOSPC; 6903 goto bail; 6904 } 6905 ASSERT(tmp_ring == rings[i]); 6906 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6907 if (rv != 0) { 6908 /* cleanup on failure */ 6909 for (j = 0; j < i; j++) { 6910 (void) mac_group_mov_ring(mip, 6911 MAC_DEFAULT_TX_GROUP(mip), 6912 rings[j]); 6913 } 6914 goto bail; 6915 } 6916 } 6917 break; 6918 } 6919 } 6920 6921 /* add group to share */ 6922 if (share != 0) 6923 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6924 6925 bail: 6926 /* free temporary array of rings */ 6927 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6928 6929 return (rv); 6930 } 6931 6932 void 6933 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6934 { 6935 mac_grp_client_t *mgcp; 6936 6937 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6938 if (mgcp->mgc_client == mcip) 6939 break; 6940 } 6941 6942 ASSERT(mgcp == NULL); 6943 6944 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6945 mgcp->mgc_client = mcip; 6946 mgcp->mgc_next = grp->mrg_clients; 6947 grp->mrg_clients = mgcp; 6948 } 6949 6950 void 6951 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6952 { 6953 mac_grp_client_t *mgcp, **pprev; 6954 6955 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6956 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6957 if (mgcp->mgc_client == mcip) 6958 break; 6959 } 6960 6961 ASSERT(mgcp != NULL); 6962 6963 *pprev = mgcp->mgc_next; 6964 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6965 } 6966 6967 /* 6968 * Return true if any client on this group explicitly asked for HW 6969 * rings (of type mask) or have a bound share. 6970 */ 6971 static boolean_t 6972 i_mac_clients_hw(mac_group_t *grp, uint32_t mask) 6973 { 6974 mac_grp_client_t *mgcip; 6975 mac_client_impl_t *mcip; 6976 mac_resource_props_t *mrp; 6977 6978 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) { 6979 mcip = mgcip->mgc_client; 6980 mrp = MCIP_RESOURCE_PROPS(mcip); 6981 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0) 6982 return (B_TRUE); 6983 } 6984 6985 return (B_FALSE); 6986 } 6987 6988 /* 6989 * Finds an available group and exclusively reserves it for a client. 6990 * The group is chosen to suit the flow's resource controls (bandwidth and 6991 * fanout requirements) and the address type. 6992 * If the requestor is the pimary MAC then return the group with the 6993 * largest number of rings, otherwise the default ring when available. 6994 */ 6995 mac_group_t * 6996 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6997 { 6998 mac_share_handle_t share = mcip->mci_share; 6999 mac_impl_t *mip = mcip->mci_mip; 7000 mac_group_t *grp = NULL; 7001 int i; 7002 int err = 0; 7003 mac_address_t *map; 7004 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7005 int nrings; 7006 int donor_grp_rcnt; 7007 boolean_t need_exclgrp = B_FALSE; 7008 int need_rings = 0; 7009 mac_group_t *candidate_grp = NULL; 7010 mac_client_impl_t *gclient; 7011 mac_group_t *donorgrp = NULL; 7012 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 7013 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 7014 boolean_t isprimary; 7015 7016 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 7017 7018 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7019 7020 /* 7021 * Check if a group already has this MAC address (case of VLANs) 7022 * unless we are moving this MAC client from one group to another. 7023 */ 7024 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 7025 if (map->ma_group != NULL) 7026 return (map->ma_group); 7027 } 7028 7029 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 7030 return (NULL); 7031 7032 /* 7033 * If this client is requesting exclusive MAC access then 7034 * return NULL to ensure the client uses the default group. 7035 */ 7036 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 7037 return (NULL); 7038 7039 /* For dynamic groups default unspecified to 1 */ 7040 if (rxhw && unspec && 7041 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7042 mrp->mrp_nrxrings = 1; 7043 } 7044 7045 /* 7046 * For static grouping we allow only specifying rings=0 and 7047 * unspecified 7048 */ 7049 if (rxhw && mrp->mrp_nrxrings > 0 && 7050 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 7051 return (NULL); 7052 } 7053 7054 if (rxhw) { 7055 /* 7056 * We have explicitly asked for a group (with nrxrings, 7057 * if unspec). 7058 */ 7059 if (unspec || mrp->mrp_nrxrings > 0) { 7060 need_exclgrp = B_TRUE; 7061 need_rings = mrp->mrp_nrxrings; 7062 } else if (mrp->mrp_nrxrings == 0) { 7063 /* 7064 * We have asked for a software group. 7065 */ 7066 return (NULL); 7067 } 7068 } else if (isprimary && mip->mi_nactiveclients == 1 && 7069 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7070 /* 7071 * If the primary is the only active client on this 7072 * mip and we have not asked for any rings, we give 7073 * it the default group so that the primary gets to 7074 * use all the rings. 7075 */ 7076 return (NULL); 7077 } 7078 7079 /* The group that can donate rings */ 7080 donorgrp = mip->mi_rx_donor_grp; 7081 7082 /* 7083 * The number of rings that the default group can donate. 7084 * We need to leave at least one ring. 7085 */ 7086 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7087 7088 /* 7089 * Try to exclusively reserve a RX group. 7090 * 7091 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 7092 * client), try to reserve the a non-default RX group and give 7093 * it all the rings from the donor group, except the default ring 7094 * 7095 * For flows requiring HW_RING (unicast flow of other clients), try 7096 * to reserve non-default RX group with the specified number of 7097 * rings, if available. 7098 * 7099 * For flows that have not asked for software or hardware ring, 7100 * try to reserve a non-default group with 1 ring, if available. 7101 */ 7102 for (i = 1; i < mip->mi_rx_group_count; i++) { 7103 grp = &mip->mi_rx_groups[i]; 7104 7105 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 7106 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 7107 7108 /* 7109 * Check if this group could be a candidate group for 7110 * eviction if we need a group for this MAC client, 7111 * but there aren't any. A candidate group is one 7112 * that didn't ask for an exclusive group, but got 7113 * one and it has enough rings (combined with what 7114 * the donor group can donate) for the new MAC 7115 * client. 7116 */ 7117 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 7118 /* 7119 * If the donor group is not the default 7120 * group, don't bother looking for a candidate 7121 * group. If we don't have enough rings we 7122 * will check if the primary group can be 7123 * vacated. 7124 */ 7125 if (candidate_grp == NULL && 7126 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 7127 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) && 7128 (unspec || 7129 (grp->mrg_cur_count + donor_grp_rcnt >= 7130 need_rings))) { 7131 candidate_grp = grp; 7132 } 7133 } 7134 continue; 7135 } 7136 /* 7137 * This group could already be SHARED by other multicast 7138 * flows on this client. In that case, the group would 7139 * be shared and has already been started. 7140 */ 7141 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 7142 7143 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 7144 (mac_start_group(grp) != 0)) { 7145 continue; 7146 } 7147 7148 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7149 break; 7150 ASSERT(grp->mrg_cur_count == 0); 7151 7152 /* 7153 * Populate the group. Rings should be taken 7154 * from the donor group. 7155 */ 7156 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 7157 7158 /* 7159 * If the donor group can't donate, let's just walk and 7160 * see if someone can vacate a group, so that we have 7161 * enough rings for this, unless we already have 7162 * identified a candiate group.. 7163 */ 7164 if (nrings <= donor_grp_rcnt) { 7165 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7166 donorgrp, grp, share, nrings); 7167 if (err == 0) { 7168 /* 7169 * For a share i_mac_group_allocate_rings gets 7170 * the rings from the driver, let's populate 7171 * the property for the client now. 7172 */ 7173 if (share != 0) { 7174 mac_client_set_rings( 7175 (mac_client_handle_t)mcip, 7176 grp->mrg_cur_count, -1); 7177 } 7178 if (mac_is_primary_client(mcip) && !rxhw) 7179 mip->mi_rx_donor_grp = grp; 7180 break; 7181 } 7182 } 7183 7184 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7185 mip->mi_name, int, grp->mrg_index, int, err); 7186 7187 /* 7188 * It's a dynamic group but the grouping operation 7189 * failed. 7190 */ 7191 mac_stop_group(grp); 7192 } 7193 7194 /* We didn't find an exclusive group for this MAC client */ 7195 if (i >= mip->mi_rx_group_count) { 7196 7197 if (!need_exclgrp) 7198 return (NULL); 7199 7200 /* 7201 * If we found a candidate group then move the 7202 * existing MAC client from the candidate_group to the 7203 * default group and give the candidate_group to the 7204 * new MAC client. If we didn't find a candidate 7205 * group, then check if the primary is in its own 7206 * group and if it can make way for this MAC client. 7207 */ 7208 if (candidate_grp == NULL && 7209 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 7210 donorgrp->mrg_cur_count >= need_rings) { 7211 candidate_grp = donorgrp; 7212 } 7213 if (candidate_grp != NULL) { 7214 boolean_t prim_grp = B_FALSE; 7215 7216 /* 7217 * Switch the existing MAC client from the 7218 * candidate group to the default group. If 7219 * the candidate group is the donor group, 7220 * then after the switch we need to update the 7221 * donor group too. 7222 */ 7223 grp = candidate_grp; 7224 gclient = grp->mrg_clients->mgc_client; 7225 VERIFY3P(gclient, !=, NULL); 7226 if (grp == mip->mi_rx_donor_grp) 7227 prim_grp = B_TRUE; 7228 if (mac_rx_switch_group(gclient, grp, 7229 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 7230 return (NULL); 7231 } 7232 if (prim_grp) { 7233 mip->mi_rx_donor_grp = 7234 MAC_DEFAULT_RX_GROUP(mip); 7235 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 7236 } 7237 7238 /* 7239 * Now give this group with the required rings 7240 * to this MAC client. 7241 */ 7242 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7243 if (mac_start_group(grp) != 0) 7244 return (NULL); 7245 7246 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7247 return (grp); 7248 7249 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7250 ASSERT(grp->mrg_cur_count == 0); 7251 ASSERT(donor_grp_rcnt >= need_rings); 7252 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7253 donorgrp, grp, share, need_rings); 7254 if (err == 0) { 7255 /* 7256 * For a share i_mac_group_allocate_rings gets 7257 * the rings from the driver, let's populate 7258 * the property for the client now. 7259 */ 7260 if (share != 0) { 7261 mac_client_set_rings( 7262 (mac_client_handle_t)mcip, 7263 grp->mrg_cur_count, -1); 7264 } 7265 DTRACE_PROBE2(rx__group__reserved, 7266 char *, mip->mi_name, int, grp->mrg_index); 7267 return (grp); 7268 } 7269 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7270 mip->mi_name, int, grp->mrg_index, int, err); 7271 mac_stop_group(grp); 7272 } 7273 return (NULL); 7274 } 7275 ASSERT(grp != NULL); 7276 7277 DTRACE_PROBE2(rx__group__reserved, 7278 char *, mip->mi_name, int, grp->mrg_index); 7279 return (grp); 7280 } 7281 7282 /* 7283 * mac_rx_release_group() 7284 * 7285 * Release the group when it has no remaining clients. The group is 7286 * stopped and its shares are removed and all rings are assigned back 7287 * to default group. This should never be called against the default 7288 * group. 7289 */ 7290 void 7291 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 7292 { 7293 mac_impl_t *mip = mcip->mci_mip; 7294 mac_ring_t *ring; 7295 7296 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 7297 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE); 7298 7299 if (mip->mi_rx_donor_grp == group) 7300 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 7301 7302 /* 7303 * This is the case where there are no clients left. Any 7304 * SRS etc on this group have also be quiesced. 7305 */ 7306 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 7307 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 7308 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 7309 /* 7310 * Remove the SRS associated with the HW ring. 7311 * As a result, polling will be disabled. 7312 */ 7313 ring->mr_srs = NULL; 7314 } 7315 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 7316 ring->mr_state == MR_INUSE); 7317 if (ring->mr_state == MR_INUSE) { 7318 mac_stop_ring(ring); 7319 ring->mr_flag = 0; 7320 } 7321 } 7322 7323 /* remove group from share */ 7324 if (mcip->mci_share != 0) { 7325 mip->mi_share_capab.ms_sremove(mcip->mci_share, 7326 group->mrg_driver); 7327 } 7328 7329 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7330 mac_ring_t *ring; 7331 7332 /* 7333 * Rings were dynamically allocated to group. 7334 * Move rings back to default group. 7335 */ 7336 while ((ring = group->mrg_rings) != NULL) { 7337 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 7338 ring); 7339 } 7340 } 7341 mac_stop_group(group); 7342 /* 7343 * Possible improvement: See if we can assign the group just released 7344 * to a another client of the mip 7345 */ 7346 } 7347 7348 /* 7349 * Move the MAC address from fgrp to tgrp. 7350 */ 7351 static int 7352 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 7353 mac_group_t *tgrp) 7354 { 7355 mac_impl_t *mip = mcip->mci_mip; 7356 uint8_t maddr[MAXMACADDRLEN]; 7357 int err = 0; 7358 uint16_t vid; 7359 mac_unicast_impl_t *muip; 7360 boolean_t use_hw; 7361 7362 mac_rx_client_quiesce((mac_client_handle_t)mcip); 7363 VERIFY3P(mcip->mci_unicast, !=, NULL); 7364 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 7365 7366 /* 7367 * Does the client require MAC address hardware classifiction? 7368 */ 7369 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 7370 vid = i_mac_flow_vid(mcip->mci_flent); 7371 7372 /* 7373 * You can never move an address that is shared by multiple 7374 * clients. mac_datapath_setup() ensures that clients sharing 7375 * an address are placed on the default group. This guarantees 7376 * that a non-default group will only ever have one client and 7377 * thus make full use of HW filters. 7378 */ 7379 if (mac_check_macaddr_shared(mcip->mci_unicast)) 7380 return (EINVAL); 7381 7382 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid); 7383 7384 if (err != 0) { 7385 mac_rx_client_restart((mac_client_handle_t)mcip); 7386 return (err); 7387 } 7388 7389 /* 7390 * If this isn't the primary MAC address then the 7391 * mac_address_t has been freed by the last call to 7392 * mac_remove_macaddr_vlan(). In any case, NULL the reference 7393 * to avoid a dangling pointer. 7394 */ 7395 mcip->mci_unicast = NULL; 7396 7397 /* 7398 * We also have to NULL all the mui_map references -- sun4v 7399 * strikes again! 7400 */ 7401 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7402 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7403 muip->mui_map = NULL; 7404 rw_exit(&mcip->mci_rw_lock); 7405 7406 /* 7407 * Program the H/W Classifier first, if this fails we need not 7408 * proceed with the other stuff. 7409 */ 7410 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) { 7411 int err2; 7412 7413 /* Revert back the H/W Classifier */ 7414 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw); 7415 7416 if (err2 != 0) { 7417 cmn_err(CE_WARN, "Failed to revert HW classification" 7418 " on MAC %s, for client %s: %d.", mip->mi_name, 7419 mcip->mci_name, err2); 7420 } 7421 7422 mac_rx_client_restart((mac_client_handle_t)mcip); 7423 return (err); 7424 } 7425 7426 /* 7427 * Get a reference to the new mac_address_t and update the 7428 * client's reference. Then restart the client and add the 7429 * other clients of this MAC addr (if they exsit). 7430 */ 7431 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 7432 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7433 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7434 muip->mui_map = mcip->mci_unicast; 7435 rw_exit(&mcip->mci_rw_lock); 7436 mac_rx_client_restart((mac_client_handle_t)mcip); 7437 return (0); 7438 } 7439 7440 /* 7441 * Switch the MAC client from one group to another. This means we need 7442 * to remove the MAC address from the group, remove the MAC client, 7443 * teardown the SRSs and revert the group state. Then, we add the client 7444 * to the destination group, set the SRSs, and add the MAC address to the 7445 * group. 7446 */ 7447 int 7448 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7449 mac_group_t *tgrp) 7450 { 7451 int err; 7452 mac_group_state_t next_state; 7453 mac_client_impl_t *group_only_mcip; 7454 mac_client_impl_t *gmcip; 7455 mac_impl_t *mip = mcip->mci_mip; 7456 mac_grp_client_t *mgcp; 7457 7458 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group); 7459 7460 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 7461 return (err); 7462 7463 /* 7464 * If the group is marked as reserved and in use by a single 7465 * client, then there is an SRS to teardown. 7466 */ 7467 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 7468 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7469 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 7470 } 7471 7472 /* 7473 * If we are moving the client from a non-default group, then 7474 * we know that any additional clients on this group share the 7475 * same MAC address. Since we moved the MAC address filter, we 7476 * need to move these clients too. 7477 * 7478 * If we are moving the client from the default group and its 7479 * MAC address has VLAN clients, then we must move those 7480 * clients as well. 7481 * 7482 * In both cases the idea is the same: we moved the MAC 7483 * address filter to the tgrp, so we must move all clients 7484 * using that MAC address to tgrp as well. 7485 */ 7486 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 7487 mgcp = fgrp->mrg_clients; 7488 while (mgcp != NULL) { 7489 gmcip = mgcp->mgc_client; 7490 mgcp = mgcp->mgc_next; 7491 mac_group_remove_client(fgrp, gmcip); 7492 mac_group_add_client(tgrp, gmcip); 7493 gmcip->mci_flent->fe_rx_ring_group = tgrp; 7494 } 7495 mac_release_rx_group(mcip, fgrp); 7496 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE); 7497 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 7498 } else { 7499 mac_group_remove_client(fgrp, mcip); 7500 mac_group_add_client(tgrp, mcip); 7501 mcip->mci_flent->fe_rx_ring_group = tgrp; 7502 7503 /* 7504 * If there are other clients (VLANs) sharing this address 7505 * then move them too. 7506 */ 7507 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7508 /* 7509 * We need to move all the clients that are using 7510 * this MAC address. 7511 */ 7512 mgcp = fgrp->mrg_clients; 7513 while (mgcp != NULL) { 7514 gmcip = mgcp->mgc_client; 7515 mgcp = mgcp->mgc_next; 7516 if (mcip->mci_unicast == gmcip->mci_unicast) { 7517 mac_group_remove_client(fgrp, gmcip); 7518 mac_group_add_client(tgrp, gmcip); 7519 gmcip->mci_flent->fe_rx_ring_group = 7520 tgrp; 7521 } 7522 } 7523 } 7524 7525 /* 7526 * The default group still handles multicast and 7527 * broadcast traffic; it won't transition to 7528 * MAC_GROUP_STATE_REGISTERED. 7529 */ 7530 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 7531 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 7532 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 7533 } 7534 7535 next_state = mac_group_next_state(tgrp, &group_only_mcip, 7536 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 7537 mac_set_group_state(tgrp, next_state); 7538 7539 /* 7540 * If the destination group is reserved, then setup the SRSes. 7541 * Otherwise make sure to use SW classification. 7542 */ 7543 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7544 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 7545 mac_fanout_setup(mcip, mcip->mci_flent, 7546 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 7547 NULL); 7548 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 7549 } else { 7550 mac_rx_switch_grp_to_sw(tgrp); 7551 } 7552 7553 return (0); 7554 } 7555 7556 /* 7557 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 7558 * when a share was allocated to the client. 7559 */ 7560 mac_group_t * 7561 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 7562 { 7563 mac_impl_t *mip = mcip->mci_mip; 7564 mac_group_t *grp = NULL; 7565 int rv; 7566 int i; 7567 int err; 7568 mac_group_t *defgrp; 7569 mac_share_handle_t share = mcip->mci_share; 7570 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7571 int nrings; 7572 int defnrings; 7573 boolean_t need_exclgrp = B_FALSE; 7574 int need_rings = 0; 7575 mac_group_t *candidate_grp = NULL; 7576 mac_client_impl_t *gclient; 7577 mac_resource_props_t *gmrp; 7578 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 7579 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 7580 boolean_t isprimary; 7581 7582 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7583 7584 /* 7585 * When we come here for a VLAN on the primary (dladm create-vlan), 7586 * we need to pair it along with the primary (to keep it consistent 7587 * with the RX side). So, we check if the primary is already assigned 7588 * to a group and return the group if so. The other way is also 7589 * true, i.e. the VLAN is already created and now we are plumbing 7590 * the primary. 7591 */ 7592 if (!move && isprimary) { 7593 for (gclient = mip->mi_clients_list; gclient != NULL; 7594 gclient = gclient->mci_client_next) { 7595 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 7596 gclient->mci_flent->fe_tx_ring_group != NULL) { 7597 return (gclient->mci_flent->fe_tx_ring_group); 7598 } 7599 } 7600 } 7601 7602 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 7603 return (NULL); 7604 7605 /* For dynamic groups, default unspec to 1 */ 7606 if (txhw && unspec && 7607 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7608 mrp->mrp_ntxrings = 1; 7609 } 7610 /* 7611 * For static grouping we allow only specifying rings=0 and 7612 * unspecified 7613 */ 7614 if (txhw && mrp->mrp_ntxrings > 0 && 7615 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 7616 return (NULL); 7617 } 7618 7619 if (txhw) { 7620 /* 7621 * We have explicitly asked for a group (with ntxrings, 7622 * if unspec). 7623 */ 7624 if (unspec || mrp->mrp_ntxrings > 0) { 7625 need_exclgrp = B_TRUE; 7626 need_rings = mrp->mrp_ntxrings; 7627 } else if (mrp->mrp_ntxrings == 0) { 7628 /* 7629 * We have asked for a software group. 7630 */ 7631 return (NULL); 7632 } 7633 } 7634 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7635 /* 7636 * The number of rings that the default group can donate. 7637 * We need to leave at least one ring - the default ring - in 7638 * this group. 7639 */ 7640 defnrings = defgrp->mrg_cur_count - 1; 7641 7642 /* 7643 * Primary gets default group unless explicitly told not 7644 * to (i.e. rings > 0). 7645 */ 7646 if (isprimary && !need_exclgrp) 7647 return (NULL); 7648 7649 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 7650 for (i = 0; i < mip->mi_tx_group_count; i++) { 7651 grp = &mip->mi_tx_groups[i]; 7652 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 7653 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 7654 /* 7655 * Select a candidate for replacement if we don't 7656 * get an exclusive group. A candidate group is one 7657 * that didn't ask for an exclusive group, but got 7658 * one and it has enough rings (combined with what 7659 * the default group can donate) for the new MAC 7660 * client. 7661 */ 7662 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7663 candidate_grp == NULL) { 7664 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7665 VERIFY3P(gclient, !=, NULL); 7666 gmrp = MCIP_RESOURCE_PROPS(gclient); 7667 if (gclient->mci_share == 0 && 7668 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7669 (unspec || 7670 (grp->mrg_cur_count + defnrings) >= 7671 need_rings)) { 7672 candidate_grp = grp; 7673 } 7674 } 7675 continue; 7676 } 7677 /* 7678 * If the default can't donate let's just walk and 7679 * see if someone can vacate a group, so that we have 7680 * enough rings for this. 7681 */ 7682 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7683 nrings <= defnrings) { 7684 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7685 rv = mac_start_group(grp); 7686 ASSERT(rv == 0); 7687 } 7688 break; 7689 } 7690 } 7691 7692 /* The default group */ 7693 if (i >= mip->mi_tx_group_count) { 7694 /* 7695 * If we need an exclusive group and have identified a 7696 * candidate group we switch the MAC client from the 7697 * candidate group to the default group and give the 7698 * candidate group to this client. 7699 */ 7700 if (need_exclgrp && candidate_grp != NULL) { 7701 /* 7702 * Switch the MAC client from the candidate 7703 * group to the default group. We know the 7704 * candidate_grp came from a reserved group 7705 * and thus only has one client. 7706 */ 7707 grp = candidate_grp; 7708 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7709 VERIFY3P(gclient, !=, NULL); 7710 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7711 mac_tx_switch_group(gclient, grp, defgrp); 7712 mac_tx_client_restart((mac_client_handle_t)gclient); 7713 7714 /* 7715 * Give the candidate group with the specified number 7716 * of rings to this MAC client. 7717 */ 7718 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7719 rv = mac_start_group(grp); 7720 ASSERT(rv == 0); 7721 7722 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7723 return (grp); 7724 7725 ASSERT(grp->mrg_cur_count == 0); 7726 ASSERT(defgrp->mrg_cur_count > need_rings); 7727 7728 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7729 defgrp, grp, share, need_rings); 7730 if (err == 0) { 7731 /* 7732 * For a share i_mac_group_allocate_rings gets 7733 * the rings from the driver, let's populate 7734 * the property for the client now. 7735 */ 7736 if (share != 0) { 7737 mac_client_set_rings( 7738 (mac_client_handle_t)mcip, -1, 7739 grp->mrg_cur_count); 7740 } 7741 mip->mi_tx_group_free--; 7742 return (grp); 7743 } 7744 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7745 mip->mi_name, int, grp->mrg_index, int, err); 7746 mac_stop_group(grp); 7747 } 7748 return (NULL); 7749 } 7750 /* 7751 * We got an exclusive group, but it is not dynamic. 7752 */ 7753 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7754 mip->mi_tx_group_free--; 7755 return (grp); 7756 } 7757 7758 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7759 share, nrings); 7760 if (rv != 0) { 7761 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7762 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7763 mac_stop_group(grp); 7764 return (NULL); 7765 } 7766 /* 7767 * For a share i_mac_group_allocate_rings gets the rings from the 7768 * driver, let's populate the property for the client now. 7769 */ 7770 if (share != 0) { 7771 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7772 grp->mrg_cur_count); 7773 } 7774 mip->mi_tx_group_free--; 7775 return (grp); 7776 } 7777 7778 void 7779 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7780 { 7781 mac_impl_t *mip = mcip->mci_mip; 7782 mac_share_handle_t share = mcip->mci_share; 7783 mac_ring_t *ring; 7784 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7785 mac_group_t *defgrp; 7786 7787 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7788 if (srs != NULL) { 7789 if (srs->srs_soft_ring_count > 0) { 7790 for (ring = grp->mrg_rings; ring != NULL; 7791 ring = ring->mr_next) { 7792 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7793 mac_tx_invoke_callbacks(mcip, 7794 (mac_tx_cookie_t) 7795 mac_tx_srs_get_soft_ring(srs, ring)); 7796 mac_tx_srs_del_ring(srs, ring); 7797 } 7798 } else { 7799 ASSERT(srs->srs_tx.st_arg2 != NULL); 7800 srs->srs_tx.st_arg2 = NULL; 7801 mac_srs_stat_delete(srs); 7802 } 7803 } 7804 if (share != 0) 7805 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7806 7807 /* move the ring back to the pool */ 7808 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7809 while ((ring = grp->mrg_rings) != NULL) 7810 (void) mac_group_mov_ring(mip, defgrp, ring); 7811 } 7812 mac_stop_group(grp); 7813 mip->mi_tx_group_free++; 7814 } 7815 7816 /* 7817 * Disassociate a MAC client from a group, i.e go through the rings in the 7818 * group and delete all the soft rings tied to them. 7819 */ 7820 static void 7821 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7822 { 7823 mac_client_impl_t *mcip = flent->fe_mcip; 7824 mac_soft_ring_set_t *tx_srs; 7825 mac_srs_tx_t *tx; 7826 mac_ring_t *ring; 7827 7828 tx_srs = flent->fe_tx_srs; 7829 tx = &tx_srs->srs_tx; 7830 7831 /* Single ring case we haven't created any soft rings */ 7832 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7833 tx->st_mode == SRS_TX_DEFAULT) { 7834 tx->st_arg2 = NULL; 7835 mac_srs_stat_delete(tx_srs); 7836 /* Fanout case, where we have to dismantle the soft rings */ 7837 } else { 7838 for (ring = fgrp->mrg_rings; ring != NULL; 7839 ring = ring->mr_next) { 7840 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7841 mac_tx_invoke_callbacks(mcip, 7842 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7843 ring)); 7844 mac_tx_srs_del_ring(tx_srs, ring); 7845 } 7846 ASSERT(tx->st_arg2 == NULL); 7847 } 7848 } 7849 7850 /* 7851 * Switch the MAC client from one group to another. This means we need 7852 * to remove the MAC client, teardown the SRSs and revert the group state. 7853 * Then, we add the client to the destination roup, set the SRSs etc. 7854 */ 7855 void 7856 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7857 mac_group_t *tgrp) 7858 { 7859 mac_client_impl_t *group_only_mcip; 7860 mac_impl_t *mip = mcip->mci_mip; 7861 flow_entry_t *flent = mcip->mci_flent; 7862 mac_group_t *defgrp; 7863 mac_grp_client_t *mgcp; 7864 mac_client_impl_t *gmcip; 7865 flow_entry_t *gflent; 7866 7867 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7868 ASSERT(fgrp == flent->fe_tx_ring_group); 7869 7870 if (fgrp == defgrp) { 7871 /* 7872 * If this is the primary we need to find any VLANs on 7873 * the primary and move them too. 7874 */ 7875 mac_group_remove_client(fgrp, mcip); 7876 mac_tx_dismantle_soft_rings(fgrp, flent); 7877 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7878 mgcp = fgrp->mrg_clients; 7879 while (mgcp != NULL) { 7880 gmcip = mgcp->mgc_client; 7881 mgcp = mgcp->mgc_next; 7882 if (mcip->mci_unicast != gmcip->mci_unicast) 7883 continue; 7884 mac_tx_client_quiesce( 7885 (mac_client_handle_t)gmcip); 7886 7887 gflent = gmcip->mci_flent; 7888 mac_group_remove_client(fgrp, gmcip); 7889 mac_tx_dismantle_soft_rings(fgrp, gflent); 7890 7891 mac_group_add_client(tgrp, gmcip); 7892 gflent->fe_tx_ring_group = tgrp; 7893 /* We could directly set this to SHARED */ 7894 tgrp->mrg_state = mac_group_next_state(tgrp, 7895 &group_only_mcip, defgrp, B_FALSE); 7896 7897 mac_tx_srs_group_setup(gmcip, gflent, 7898 SRST_LINK); 7899 mac_fanout_setup(gmcip, gflent, 7900 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7901 gmcip, NULL, NULL); 7902 7903 mac_tx_client_restart( 7904 (mac_client_handle_t)gmcip); 7905 } 7906 } 7907 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7908 mac_ring_t *ring; 7909 int cnt; 7910 int ringcnt; 7911 7912 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7913 /* 7914 * Additionally, we also need to stop all 7915 * the rings in the default group, except 7916 * the default ring. The reason being 7917 * this group won't be released since it is 7918 * the default group, so the rings won't 7919 * be stopped otherwise. 7920 */ 7921 ringcnt = fgrp->mrg_cur_count; 7922 ring = fgrp->mrg_rings; 7923 for (cnt = 0; cnt < ringcnt; cnt++) { 7924 if (ring->mr_state == MR_INUSE && 7925 ring != 7926 (mac_ring_t *)mip->mi_default_tx_ring) { 7927 mac_stop_ring(ring); 7928 ring->mr_flag = 0; 7929 } 7930 ring = ring->mr_next; 7931 } 7932 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7933 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7934 } else { 7935 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7936 } 7937 } else { 7938 /* 7939 * We could have VLANs sharing the non-default group with 7940 * the primary. 7941 */ 7942 mgcp = fgrp->mrg_clients; 7943 while (mgcp != NULL) { 7944 gmcip = mgcp->mgc_client; 7945 mgcp = mgcp->mgc_next; 7946 if (gmcip == mcip) 7947 continue; 7948 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7949 gflent = gmcip->mci_flent; 7950 7951 mac_group_remove_client(fgrp, gmcip); 7952 mac_tx_dismantle_soft_rings(fgrp, gflent); 7953 7954 mac_group_add_client(tgrp, gmcip); 7955 gflent->fe_tx_ring_group = tgrp; 7956 /* We could directly set this to SHARED */ 7957 tgrp->mrg_state = mac_group_next_state(tgrp, 7958 &group_only_mcip, defgrp, B_FALSE); 7959 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7960 mac_fanout_setup(gmcip, gflent, 7961 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7962 gmcip, NULL, NULL); 7963 7964 mac_tx_client_restart((mac_client_handle_t)gmcip); 7965 } 7966 mac_group_remove_client(fgrp, mcip); 7967 mac_release_tx_group(mcip, fgrp); 7968 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7969 } 7970 7971 /* Add it to the tgroup */ 7972 mac_group_add_client(tgrp, mcip); 7973 flent->fe_tx_ring_group = tgrp; 7974 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7975 defgrp, B_FALSE); 7976 7977 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7978 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7979 mac_rx_deliver, mcip, NULL, NULL); 7980 } 7981 7982 /* 7983 * This is a 1-time control path activity initiated by the client (IP). 7984 * The mac perimeter protects against other simultaneous control activities, 7985 * for example an ioctl that attempts to change the degree of fanout and 7986 * increase or decrease the number of softrings associated with this Tx SRS. 7987 */ 7988 static mac_tx_notify_cb_t * 7989 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7990 mac_tx_notify_t notify, void *arg) 7991 { 7992 mac_cb_info_t *mcbi; 7993 mac_tx_notify_cb_t *mtnfp; 7994 7995 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7996 7997 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7998 mtnfp->mtnf_fn = notify; 7999 mtnfp->mtnf_arg = arg; 8000 mtnfp->mtnf_link.mcb_objp = mtnfp; 8001 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 8002 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 8003 8004 mcbi = &mcip->mci_tx_notify_cb_info; 8005 mutex_enter(mcbi->mcbi_lockp); 8006 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 8007 mutex_exit(mcbi->mcbi_lockp); 8008 return (mtnfp); 8009 } 8010 8011 static void 8012 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 8013 { 8014 mac_cb_info_t *mcbi; 8015 mac_cb_t **cblist; 8016 8017 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 8018 8019 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 8020 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 8021 cmn_err(CE_WARN, 8022 "mac_client_tx_notify_remove: callback not " 8023 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 8024 return; 8025 } 8026 8027 mcbi = &mcip->mci_tx_notify_cb_info; 8028 cblist = &mcip->mci_tx_notify_cb_list; 8029 mutex_enter(mcbi->mcbi_lockp); 8030 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 8031 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 8032 else 8033 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 8034 mutex_exit(mcbi->mcbi_lockp); 8035 } 8036 8037 /* 8038 * mac_client_tx_notify(): 8039 * call to add and remove flow control callback routine. 8040 */ 8041 mac_tx_notify_handle_t 8042 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 8043 void *ptr) 8044 { 8045 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 8046 mac_tx_notify_cb_t *mtnfp = NULL; 8047 8048 i_mac_perim_enter(mcip->mci_mip); 8049 8050 if (callb_func != NULL) { 8051 /* Add a notify callback */ 8052 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 8053 } else { 8054 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 8055 } 8056 i_mac_perim_exit(mcip->mci_mip); 8057 8058 return ((mac_tx_notify_handle_t)mtnfp); 8059 } 8060 8061 void 8062 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 8063 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 8064 { 8065 mac_bridge_tx_cb = txf; 8066 mac_bridge_rx_cb = rxf; 8067 mac_bridge_ref_cb = reff; 8068 mac_bridge_ls_cb = lsf; 8069 } 8070 8071 int 8072 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 8073 { 8074 mac_impl_t *mip = (mac_impl_t *)mh; 8075 int retv; 8076 8077 mutex_enter(&mip->mi_bridge_lock); 8078 if (mip->mi_bridge_link == NULL) { 8079 mip->mi_bridge_link = link; 8080 retv = 0; 8081 } else { 8082 retv = EBUSY; 8083 } 8084 mutex_exit(&mip->mi_bridge_lock); 8085 if (retv == 0) { 8086 mac_poll_state_change(mh, B_FALSE); 8087 mac_capab_update(mh); 8088 } 8089 return (retv); 8090 } 8091 8092 /* 8093 * Disable bridging on the indicated link. 8094 */ 8095 void 8096 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 8097 { 8098 mac_impl_t *mip = (mac_impl_t *)mh; 8099 8100 mutex_enter(&mip->mi_bridge_lock); 8101 ASSERT(mip->mi_bridge_link == link); 8102 mip->mi_bridge_link = NULL; 8103 mutex_exit(&mip->mi_bridge_lock); 8104 mac_poll_state_change(mh, B_TRUE); 8105 mac_capab_update(mh); 8106 } 8107 8108 void 8109 mac_no_active(mac_handle_t mh) 8110 { 8111 mac_impl_t *mip = (mac_impl_t *)mh; 8112 8113 i_mac_perim_enter(mip); 8114 mip->mi_state_flags |= MIS_NO_ACTIVE; 8115 i_mac_perim_exit(mip); 8116 } 8117 8118 /* 8119 * Walk the primary VLAN clients whenever the primary's rings property 8120 * changes and update the mac_resource_props_t for the VLAN's client. 8121 * We need to do this since we don't support setting these properties 8122 * on the primary's VLAN clients, but the VLAN clients have to 8123 * follow the primary w.r.t the rings property. 8124 */ 8125 void 8126 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 8127 { 8128 mac_client_impl_t *vmcip; 8129 mac_resource_props_t *vmrp; 8130 8131 for (vmcip = mip->mi_clients_list; vmcip != NULL; 8132 vmcip = vmcip->mci_client_next) { 8133 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 8134 mac_client_vid((mac_client_handle_t)vmcip) == 8135 VLAN_ID_NONE) { 8136 continue; 8137 } 8138 vmrp = MCIP_RESOURCE_PROPS(vmcip); 8139 8140 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 8141 if (mrp->mrp_mask & MRP_RX_RINGS) 8142 vmrp->mrp_mask |= MRP_RX_RINGS; 8143 else if (vmrp->mrp_mask & MRP_RX_RINGS) 8144 vmrp->mrp_mask &= ~MRP_RX_RINGS; 8145 8146 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 8147 if (mrp->mrp_mask & MRP_TX_RINGS) 8148 vmrp->mrp_mask |= MRP_TX_RINGS; 8149 else if (vmrp->mrp_mask & MRP_TX_RINGS) 8150 vmrp->mrp_mask &= ~MRP_TX_RINGS; 8151 8152 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 8153 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 8154 else 8155 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 8156 8157 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 8158 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 8159 else 8160 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 8161 } 8162 } 8163 8164 /* 8165 * We are adding or removing ring(s) from a group. The source for taking 8166 * rings is the default group. The destination for giving rings back is 8167 * the default group. 8168 */ 8169 int 8170 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 8171 mac_group_t *defgrp) 8172 { 8173 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8174 uint_t modify; 8175 int count; 8176 mac_ring_t *ring; 8177 mac_ring_t *next; 8178 mac_impl_t *mip = mcip->mci_mip; 8179 mac_ring_t **rings; 8180 uint_t ringcnt; 8181 int i = 0; 8182 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 8183 int start; 8184 int end; 8185 mac_group_t *tgrp; 8186 int j; 8187 int rv = 0; 8188 8189 /* 8190 * If we are asked for just a group, we give 1 ring, else 8191 * the specified number of rings. 8192 */ 8193 if (rx_group) { 8194 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 8195 mrp->mrp_nrxrings; 8196 } else { 8197 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 8198 mrp->mrp_ntxrings; 8199 } 8200 8201 /* don't allow modifying rings for a share for now. */ 8202 ASSERT(mcip->mci_share == 0); 8203 8204 if (ringcnt == group->mrg_cur_count) 8205 return (0); 8206 8207 if (group->mrg_cur_count > ringcnt) { 8208 modify = group->mrg_cur_count - ringcnt; 8209 if (rx_group) { 8210 if (mip->mi_rx_donor_grp == group) { 8211 ASSERT(mac_is_primary_client(mcip)); 8212 mip->mi_rx_donor_grp = defgrp; 8213 } else { 8214 defgrp = mip->mi_rx_donor_grp; 8215 } 8216 } 8217 ring = group->mrg_rings; 8218 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 8219 KM_SLEEP); 8220 j = 0; 8221 for (count = 0; count < modify; count++) { 8222 next = ring->mr_next; 8223 rv = mac_group_mov_ring(mip, defgrp, ring); 8224 if (rv != 0) { 8225 /* cleanup on failure */ 8226 for (j = 0; j < count; j++) { 8227 (void) mac_group_mov_ring(mip, group, 8228 rings[j]); 8229 } 8230 break; 8231 } 8232 rings[j++] = ring; 8233 ring = next; 8234 } 8235 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 8236 return (rv); 8237 } 8238 if (ringcnt >= MAX_RINGS_PER_GROUP) 8239 return (EINVAL); 8240 8241 modify = ringcnt - group->mrg_cur_count; 8242 8243 if (rx_group) { 8244 if (group != mip->mi_rx_donor_grp) 8245 defgrp = mip->mi_rx_donor_grp; 8246 else 8247 /* 8248 * This is the donor group with all the remaining 8249 * rings. Default group now gets to be the donor 8250 */ 8251 mip->mi_rx_donor_grp = defgrp; 8252 start = 1; 8253 end = mip->mi_rx_group_count; 8254 } else { 8255 start = 0; 8256 end = mip->mi_tx_group_count - 1; 8257 } 8258 /* 8259 * If the default doesn't have any rings, lets see if we can 8260 * take rings given to an h/w client that doesn't need it. 8261 * For now, we just see if there is any one client that can donate 8262 * all the required rings. 8263 */ 8264 if (defgrp->mrg_cur_count < (modify + 1)) { 8265 for (i = start; i < end; i++) { 8266 if (rx_group) { 8267 tgrp = &mip->mi_rx_groups[i]; 8268 if (tgrp == group || tgrp->mrg_state < 8269 MAC_GROUP_STATE_RESERVED) { 8270 continue; 8271 } 8272 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS)) 8273 continue; 8274 mcip = tgrp->mrg_clients->mgc_client; 8275 VERIFY3P(mcip, !=, NULL); 8276 if ((tgrp->mrg_cur_count + 8277 defgrp->mrg_cur_count) < (modify + 1)) { 8278 continue; 8279 } 8280 if (mac_rx_switch_group(mcip, tgrp, 8281 defgrp) != 0) { 8282 return (ENOSPC); 8283 } 8284 } else { 8285 tgrp = &mip->mi_tx_groups[i]; 8286 if (tgrp == group || tgrp->mrg_state < 8287 MAC_GROUP_STATE_RESERVED) { 8288 continue; 8289 } 8290 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS)) 8291 continue; 8292 mcip = tgrp->mrg_clients->mgc_client; 8293 VERIFY3P(mcip, !=, NULL); 8294 if ((tgrp->mrg_cur_count + 8295 defgrp->mrg_cur_count) < (modify + 1)) { 8296 continue; 8297 } 8298 /* OK, we can switch this to s/w */ 8299 mac_tx_client_quiesce( 8300 (mac_client_handle_t)mcip); 8301 mac_tx_switch_group(mcip, tgrp, defgrp); 8302 mac_tx_client_restart( 8303 (mac_client_handle_t)mcip); 8304 } 8305 } 8306 if (defgrp->mrg_cur_count < (modify + 1)) 8307 return (ENOSPC); 8308 } 8309 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 8310 group, mcip->mci_share, modify)) != 0) { 8311 return (rv); 8312 } 8313 return (0); 8314 } 8315 8316 /* 8317 * Given the poolname in mac_resource_props, find the cpupart 8318 * that is associated with this pool. The cpupart will be used 8319 * later for finding the cpus to be bound to the networking threads. 8320 * 8321 * use_default is set B_TRUE if pools are enabled and pool_default 8322 * is returned. This avoids a 2nd lookup to set the poolname 8323 * for pool-effective. 8324 * 8325 * returns: 8326 * 8327 * NULL - pools are disabled or if the 'cpus' property is set. 8328 * cpupart of pool_default - pools are enabled and the pool 8329 * is not available or poolname is blank 8330 * cpupart of named pool - pools are enabled and the pool 8331 * is available. 8332 */ 8333 cpupart_t * 8334 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 8335 { 8336 pool_t *pool; 8337 cpupart_t *cpupart; 8338 8339 *use_default = B_FALSE; 8340 8341 /* CPUs property is set */ 8342 if (mrp->mrp_mask & MRP_CPUS) 8343 return (NULL); 8344 8345 ASSERT(pool_lock_held()); 8346 8347 /* Pools are disabled, no pset */ 8348 if (pool_state == POOL_DISABLED) 8349 return (NULL); 8350 8351 /* Pools property is set */ 8352 if (mrp->mrp_mask & MRP_POOL) { 8353 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 8354 /* Pool not found */ 8355 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 8356 mrp->mrp_pool); 8357 *use_default = B_TRUE; 8358 pool = pool_default; 8359 } 8360 /* Pools property is not set */ 8361 } else { 8362 *use_default = B_TRUE; 8363 pool = pool_default; 8364 } 8365 8366 /* Find the CPU pset that corresponds to the pool */ 8367 mutex_enter(&cpu_lock); 8368 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 8369 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 8370 pool->pool_pset->pset_id); 8371 } 8372 mutex_exit(&cpu_lock); 8373 8374 return (cpupart); 8375 } 8376 8377 void 8378 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 8379 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 8380 { 8381 ASSERT(pool_lock_held()); 8382 8383 if (cpupart != NULL) { 8384 emrp->mrp_mask |= MRP_POOL; 8385 if (use_default) { 8386 (void) strcpy(emrp->mrp_pool, 8387 "pool_default"); 8388 } else { 8389 ASSERT(strlen(mrp->mrp_pool) != 0); 8390 (void) strcpy(emrp->mrp_pool, 8391 mrp->mrp_pool); 8392 } 8393 } else { 8394 emrp->mrp_mask &= ~MRP_POOL; 8395 bzero(emrp->mrp_pool, MAXPATHLEN); 8396 } 8397 } 8398 8399 struct mac_pool_arg { 8400 char mpa_poolname[MAXPATHLEN]; 8401 pool_event_t mpa_what; 8402 }; 8403 8404 /*ARGSUSED*/ 8405 static uint_t 8406 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 8407 { 8408 struct mac_pool_arg *mpa = arg; 8409 mac_impl_t *mip = (mac_impl_t *)val; 8410 mac_client_impl_t *mcip; 8411 mac_resource_props_t *mrp, *emrp; 8412 boolean_t pool_update = B_FALSE; 8413 boolean_t pool_clear = B_FALSE; 8414 boolean_t use_default = B_FALSE; 8415 cpupart_t *cpupart = NULL; 8416 8417 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 8418 i_mac_perim_enter(mip); 8419 for (mcip = mip->mi_clients_list; mcip != NULL; 8420 mcip = mcip->mci_client_next) { 8421 pool_update = B_FALSE; 8422 pool_clear = B_FALSE; 8423 use_default = B_FALSE; 8424 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 8425 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8426 8427 /* 8428 * When pools are enabled 8429 */ 8430 if ((mpa->mpa_what == POOL_E_ENABLE) && 8431 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8432 mrp->mrp_mask |= MRP_POOL; 8433 pool_update = B_TRUE; 8434 } 8435 8436 /* 8437 * When pools are disabled 8438 */ 8439 if ((mpa->mpa_what == POOL_E_DISABLE) && 8440 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8441 mrp->mrp_mask |= MRP_POOL; 8442 pool_clear = B_TRUE; 8443 } 8444 8445 /* 8446 * Look for links with the pool property set and the poolname 8447 * matching the one which is changing. 8448 */ 8449 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 8450 /* 8451 * The pool associated with the link has changed. 8452 */ 8453 if (mpa->mpa_what == POOL_E_CHANGE) { 8454 mrp->mrp_mask |= MRP_POOL; 8455 pool_update = B_TRUE; 8456 } 8457 } 8458 8459 /* 8460 * This link is associated with pool_default and 8461 * pool_default has changed. 8462 */ 8463 if ((mpa->mpa_what == POOL_E_CHANGE) && 8464 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 8465 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 8466 mrp->mrp_mask |= MRP_POOL; 8467 pool_update = B_TRUE; 8468 } 8469 8470 /* 8471 * Get new list of cpus for the pool, bind network 8472 * threads to new list of cpus and update resources. 8473 */ 8474 if (pool_update) { 8475 if (MCIP_DATAPATH_SETUP(mcip)) { 8476 pool_lock(); 8477 cpupart = mac_pset_find(mrp, &use_default); 8478 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8479 mac_rx_deliver, mcip, NULL, cpupart); 8480 mac_set_pool_effective(use_default, cpupart, 8481 mrp, emrp); 8482 pool_unlock(); 8483 } 8484 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8485 B_FALSE); 8486 } 8487 8488 /* 8489 * Clear the effective pool and bind network threads 8490 * to any available CPU. 8491 */ 8492 if (pool_clear) { 8493 if (MCIP_DATAPATH_SETUP(mcip)) { 8494 emrp->mrp_mask &= ~MRP_POOL; 8495 bzero(emrp->mrp_pool, MAXPATHLEN); 8496 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8497 mac_rx_deliver, mcip, NULL, NULL); 8498 } 8499 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8500 B_FALSE); 8501 } 8502 } 8503 i_mac_perim_exit(mip); 8504 kmem_free(mrp, sizeof (*mrp)); 8505 return (MH_WALK_CONTINUE); 8506 } 8507 8508 static void 8509 mac_pool_update(void *arg) 8510 { 8511 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 8512 kmem_free(arg, sizeof (struct mac_pool_arg)); 8513 } 8514 8515 /* 8516 * Callback function to be executed when a noteworthy pool event 8517 * takes place. 8518 */ 8519 /* ARGSUSED */ 8520 static void 8521 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 8522 { 8523 pool_t *pool; 8524 char *poolname = NULL; 8525 struct mac_pool_arg *mpa; 8526 8527 pool_lock(); 8528 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 8529 8530 switch (what) { 8531 case POOL_E_ENABLE: 8532 case POOL_E_DISABLE: 8533 break; 8534 8535 case POOL_E_CHANGE: 8536 pool = pool_lookup_pool_by_id(id); 8537 if (pool == NULL) { 8538 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8539 pool_unlock(); 8540 return; 8541 } 8542 pool_get_name(pool, &poolname); 8543 (void) strlcpy(mpa->mpa_poolname, poolname, 8544 sizeof (mpa->mpa_poolname)); 8545 break; 8546 8547 default: 8548 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8549 pool_unlock(); 8550 return; 8551 } 8552 pool_unlock(); 8553 8554 mpa->mpa_what = what; 8555 8556 mac_pool_update(mpa); 8557 } 8558 8559 /* 8560 * Set effective rings property. This could be called from datapath_setup/ 8561 * datapath_teardown or set-linkprop. 8562 * If the group is reserved we just go ahead and set the effective rings. 8563 * Additionally, for TX this could mean the default group has lost/gained 8564 * some rings, so if the default group is reserved, we need to adjust the 8565 * effective rings for the default group clients. For RX, if we are working 8566 * with the non-default group, we just need to reset the effective props 8567 * for the default group clients. 8568 */ 8569 void 8570 mac_set_rings_effective(mac_client_impl_t *mcip) 8571 { 8572 mac_impl_t *mip = mcip->mci_mip; 8573 mac_group_t *grp; 8574 mac_group_t *defgrp; 8575 flow_entry_t *flent = mcip->mci_flent; 8576 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 8577 mac_grp_client_t *mgcp; 8578 mac_client_impl_t *gmcip; 8579 8580 grp = flent->fe_rx_ring_group; 8581 if (grp != NULL) { 8582 defgrp = MAC_DEFAULT_RX_GROUP(mip); 8583 /* 8584 * If we have reserved a group, set the effective rings 8585 * to the ring count in the group. 8586 */ 8587 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8588 emrp->mrp_mask |= MRP_RX_RINGS; 8589 emrp->mrp_nrxrings = grp->mrg_cur_count; 8590 } 8591 8592 /* 8593 * We go through the clients in the shared group and 8594 * reset the effective properties. It is possible this 8595 * might have already been done for some client (i.e. 8596 * if some client is being moved to a group that is 8597 * already shared). The case where the default group is 8598 * RESERVED is taken care of above (note in the RX side if 8599 * there is a non-default group, the default group is always 8600 * SHARED). 8601 */ 8602 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8603 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 8604 mgcp = grp->mrg_clients; 8605 else 8606 mgcp = defgrp->mrg_clients; 8607 while (mgcp != NULL) { 8608 gmcip = mgcp->mgc_client; 8609 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8610 if (emrp->mrp_mask & MRP_RX_RINGS) { 8611 emrp->mrp_mask &= ~MRP_RX_RINGS; 8612 emrp->mrp_nrxrings = 0; 8613 } 8614 mgcp = mgcp->mgc_next; 8615 } 8616 } 8617 } 8618 8619 /* Now the TX side */ 8620 grp = flent->fe_tx_ring_group; 8621 if (grp != NULL) { 8622 defgrp = MAC_DEFAULT_TX_GROUP(mip); 8623 8624 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8625 emrp->mrp_mask |= MRP_TX_RINGS; 8626 emrp->mrp_ntxrings = grp->mrg_cur_count; 8627 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8628 mgcp = grp->mrg_clients; 8629 while (mgcp != NULL) { 8630 gmcip = mgcp->mgc_client; 8631 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8632 if (emrp->mrp_mask & MRP_TX_RINGS) { 8633 emrp->mrp_mask &= ~MRP_TX_RINGS; 8634 emrp->mrp_ntxrings = 0; 8635 } 8636 mgcp = mgcp->mgc_next; 8637 } 8638 } 8639 8640 /* 8641 * If the group is not the default group and the default 8642 * group is reserved, the ring count in the default group 8643 * might have changed, update it. 8644 */ 8645 if (grp != defgrp && 8646 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8647 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 8648 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8649 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 8650 } 8651 } 8652 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8653 } 8654 8655 /* 8656 * Check if the primary is in the default group. If so, see if we 8657 * can give it a an exclusive group now that another client is 8658 * being configured. We take the primary out of the default group 8659 * because the multicast/broadcast packets for the all the clients 8660 * will land in the default ring in the default group which means 8661 * any client in the default group, even if it is the only on in 8662 * the group, will lose exclusive access to the rings, hence 8663 * polling. 8664 */ 8665 mac_client_impl_t * 8666 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8667 { 8668 mac_impl_t *mip = mcip->mci_mip; 8669 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8670 flow_entry_t *flent = mcip->mci_flent; 8671 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8672 uint8_t *mac_addr; 8673 mac_group_t *ngrp; 8674 8675 /* 8676 * Check if the primary is in the default group, if not 8677 * or if it is explicitly configured to be in the default 8678 * group OR set the RX rings property, return. 8679 */ 8680 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8681 return (NULL); 8682 8683 /* 8684 * If the new client needs an exclusive group and we 8685 * don't have another for the primary, return. 8686 */ 8687 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8688 return (NULL); 8689 8690 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8691 /* 8692 * We call this when we are setting up the datapath for 8693 * the first non-primary. 8694 */ 8695 ASSERT(mip->mi_nactiveclients == 2); 8696 8697 /* 8698 * OK, now we have the primary that needs to be relocated. 8699 */ 8700 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8701 if (ngrp == NULL) 8702 return (NULL); 8703 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8704 mac_stop_group(ngrp); 8705 return (NULL); 8706 } 8707 return (mcip); 8708 } 8709 8710 void 8711 mac_transceiver_init(mac_impl_t *mip) 8712 { 8713 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8714 &mip->mi_transceiver)) { 8715 /* 8716 * The driver set a flag that we don't know about. In this case, 8717 * we need to warn about that case and ignore this capability. 8718 */ 8719 if (mip->mi_transceiver.mct_flags != 0) { 8720 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8721 "flags to invalid value: 0x%x, ignoring " 8722 "capability", mip->mi_transceiver.mct_flags); 8723 bzero(&mip->mi_transceiver, 8724 sizeof (mac_capab_transceiver_t)); 8725 } 8726 } else { 8727 bzero(&mip->mi_transceiver, 8728 sizeof (mac_capab_transceiver_t)); 8729 } 8730 } 8731 8732 int 8733 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8734 { 8735 mac_impl_t *mip = (mac_impl_t *)mh; 8736 8737 ASSERT(MAC_PERIM_HELD(mh)); 8738 8739 if (mip->mi_transceiver.mct_ntransceivers == 0) 8740 return (ENOTSUP); 8741 8742 *countp = mip->mi_transceiver.mct_ntransceivers; 8743 return (0); 8744 } 8745 8746 int 8747 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8748 boolean_t *usable) 8749 { 8750 int ret; 8751 mac_transceiver_info_t info; 8752 8753 mac_impl_t *mip = (mac_impl_t *)mh; 8754 8755 ASSERT(MAC_PERIM_HELD(mh)); 8756 8757 if (mip->mi_transceiver.mct_info == NULL || 8758 mip->mi_transceiver.mct_ntransceivers == 0) 8759 return (ENOTSUP); 8760 8761 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8762 return (EINVAL); 8763 8764 bzero(&info, sizeof (mac_transceiver_info_t)); 8765 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8766 &info)) != 0) { 8767 return (ret); 8768 } 8769 8770 *present = info.mti_present; 8771 *usable = info.mti_usable; 8772 return (0); 8773 } 8774 8775 int 8776 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8777 size_t nbytes, off_t offset, size_t *nread) 8778 { 8779 int ret; 8780 size_t nr; 8781 mac_impl_t *mip = (mac_impl_t *)mh; 8782 8783 ASSERT(MAC_PERIM_HELD(mh)); 8784 8785 if (mip->mi_transceiver.mct_read == NULL) 8786 return (ENOTSUP); 8787 8788 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8789 return (EINVAL); 8790 8791 /* 8792 * All supported pages today are 256 bytes wide. Make sure offset + 8793 * nbytes never exceeds that. 8794 */ 8795 if (offset < 0 || offset >= 256 || nbytes > 256 || 8796 offset + nbytes > 256) 8797 return (EINVAL); 8798 8799 if (nread == NULL) 8800 nread = &nr; 8801 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8802 nbytes, offset, nread); 8803 if (ret == 0 && *nread > nbytes) { 8804 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8805 "%lu byte sized buffer, possible memory corruption", 8806 *nread, nbytes); 8807 } 8808 8809 return (ret); 8810 } 8811 8812 void 8813 mac_led_init(mac_impl_t *mip) 8814 { 8815 mip->mi_led_modes = MAC_LED_DEFAULT; 8816 8817 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8818 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8819 return; 8820 } 8821 8822 if (mip->mi_led.mcl_flags != 0) { 8823 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8824 "flags to invalid value: 0x%x, ignoring " 8825 "capability", mip->mi_transceiver.mct_flags); 8826 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8827 return; 8828 } 8829 8830 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8831 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8832 "supported modes to invalid value: 0x%x, ignoring " 8833 "capability", mip->mi_transceiver.mct_flags); 8834 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8835 return; 8836 } 8837 } 8838 8839 int 8840 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8841 { 8842 mac_impl_t *mip = (mac_impl_t *)mh; 8843 8844 ASSERT(MAC_PERIM_HELD(mh)); 8845 8846 if (mip->mi_led.mcl_set == NULL) 8847 return (ENOTSUP); 8848 8849 *supported = mip->mi_led.mcl_modes; 8850 *active = mip->mi_led_modes; 8851 8852 return (0); 8853 } 8854 8855 /* 8856 * Update and multiplex the various LED requests. We only ever send one LED to 8857 * the underlying driver at a time. As such, we end up multiplexing all 8858 * requested states and picking one to send down to the driver. 8859 */ 8860 int 8861 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8862 { 8863 int ret; 8864 mac_led_mode_t driver; 8865 8866 mac_impl_t *mip = (mac_impl_t *)mh; 8867 8868 ASSERT(MAC_PERIM_HELD(mh)); 8869 8870 /* 8871 * If we've been passed a desired value of zero, that indicates that 8872 * we're basically resetting to the value of zero, which is our default 8873 * value. 8874 */ 8875 if (desired == 0) 8876 desired = MAC_LED_DEFAULT; 8877 8878 if (mip->mi_led.mcl_set == NULL) 8879 return (ENOTSUP); 8880 8881 /* 8882 * Catch both values that we don't know about and those that the driver 8883 * doesn't support. 8884 */ 8885 if ((desired & ~MAC_LED_ALL) != 0) 8886 return (EINVAL); 8887 8888 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8889 return (ENOTSUP); 8890 8891 /* 8892 * If we have the same value, then there is nothing to do. 8893 */ 8894 if (desired == mip->mi_led_modes) 8895 return (0); 8896 8897 /* 8898 * Based on the desired value, determine what to send to the driver. We 8899 * only will send a single bit to the driver at any given time. IDENT 8900 * takes priority over OFF or ON. We also let OFF take priority over the 8901 * rest. 8902 */ 8903 if (desired & MAC_LED_IDENT) { 8904 driver = MAC_LED_IDENT; 8905 } else if (desired & MAC_LED_OFF) { 8906 driver = MAC_LED_OFF; 8907 } else if (desired & MAC_LED_ON) { 8908 driver = MAC_LED_ON; 8909 } else { 8910 driver = MAC_LED_DEFAULT; 8911 } 8912 8913 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8914 mip->mi_led_modes = desired; 8915 } 8916 8917 return (ret); 8918 } 8919 8920 /* 8921 * Send packets through the Tx ring ('mrh') or through the default 8922 * handler if no ring is specified. Before passing the packet down to 8923 * the MAC provider, emulate any hardware offloads which have been 8924 * requested but are not supported by the provider. 8925 */ 8926 mblk_t * 8927 mac_ring_tx(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp) 8928 { 8929 mac_impl_t *mip = (mac_impl_t *)mh; 8930 8931 if (mrh == NULL) 8932 mrh = mip->mi_default_tx_ring; 8933 8934 if (mrh == NULL) 8935 return (mip->mi_tx(mip->mi_driver, mp)); 8936 else 8937 return (mac_hwring_tx(mrh, mp)); 8938 } 8939 8940 /* 8941 * This is the final stop before reaching the underlying MAC provider. 8942 * This is also where the bridging hook is inserted. Packets that are 8943 * bridged will return through mac_bridge_tx(), with rh nulled out if 8944 * the bridge chooses to send output on a different link due to 8945 * forwarding. 8946 */ 8947 mblk_t * 8948 mac_provider_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp, 8949 mac_client_impl_t *mcip) 8950 { 8951 /* 8952 * If there is a bound Hybrid I/O share, send packets through 8953 * the default tx ring. When there's a bound Hybrid I/O share, 8954 * the tx rings of this client are mapped in the guest domain 8955 * and not accessible from here. 8956 */ 8957 if (mcip->mci_state_flags & MCIS_SHARE_BOUND) 8958 rh = mip->mi_default_tx_ring; 8959 8960 if (mip->mi_promisc_list != NULL) 8961 mac_promisc_dispatch(mip, mp, mcip, B_FALSE); 8962 8963 if (mip->mi_bridge_link == NULL) 8964 return (mac_ring_tx((mac_handle_t)mip, rh, mp)); 8965 else 8966 return (mac_bridge_tx(mip, rh, mp)); 8967 } 8968