xref: /illumos-gate/usr/src/uts/common/io/mac/mac.c (revision 71cf28228984f46288b4de8830951445a1f517ca)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2020 Joyent, Inc.
25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26  * Copyright 2020 RackTop Systems, Inc.
27  */
28 
29 /*
30  * MAC Services Module
31  *
32  * The GLDv3 framework locking -  The MAC layer
33  * --------------------------------------------
34  *
35  * The MAC layer is central to the GLD framework and can provide the locking
36  * framework needed for itself and for the use of MAC clients. MAC end points
37  * are fairly disjoint and don't share a lot of state. So a coarse grained
38  * multi-threading scheme is to single thread all create/modify/delete or set
39  * type of control operations on a per mac end point while allowing data threads
40  * concurrently.
41  *
42  * Control operations (set) that modify a mac end point are always serialized on
43  * a per mac end point basis, We have at most 1 such thread per mac end point
44  * at a time.
45  *
46  * All other operations that are not serialized are essentially multi-threaded.
47  * For example a control operation (get) like getting statistics which may not
48  * care about reading values atomically or data threads sending or receiving
49  * data. Mostly these type of operations don't modify the control state. Any
50  * state these operations care about are protected using traditional locks.
51  *
52  * The perimeter only serializes serial operations. It does not imply there
53  * aren't any other concurrent operations. However a serialized operation may
54  * sometimes need to make sure it is the only thread. In this case it needs
55  * to use reference counting mechanisms to cv_wait until any current data
56  * threads are done.
57  *
58  * The mac layer itself does not hold any locks across a call to another layer.
59  * The perimeter is however held across a down call to the driver to make the
60  * whole control operation atomic with respect to other control operations.
61  * Also the data path and get type control operations may proceed concurrently.
62  * These operations synchronize with the single serial operation on a given mac
63  * end point using regular locks. The perimeter ensures that conflicting
64  * operations like say a mac_multicast_add and a mac_multicast_remove on the
65  * same mac end point don't interfere with each other and also ensures that the
66  * changes in the mac layer and the call to the underlying driver to say add a
67  * multicast address are done atomically without interference from a thread
68  * trying to delete the same address.
69  *
70  * For example, consider
71  * mac_multicst_add()
72  * {
73  *	mac_perimeter_enter();	serialize all control operations
74  *
75  *	grab list lock		protect against access by data threads
76  *	add to list
77  *	drop list lock
78  *
79  *	call driver's mi_multicst
80  *
81  *	mac_perimeter_exit();
82  * }
83  *
84  * To lessen the number of serialization locks and simplify the lock hierarchy,
85  * we serialize all the control operations on a per mac end point by using a
86  * single serialization lock called the perimeter. We allow recursive entry into
87  * the perimeter to facilitate use of this mechanism by both the mac client and
88  * the MAC layer itself.
89  *
90  * MAC client means an entity that does an operation on a mac handle
91  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
92  * an entity that does an operation on a mac handle obtained from a
93  * mac_register. An entity could be both client and driver but on different
94  * handles eg. aggr. and should only make the corresponding mac interface calls
95  * i.e. mac driver interface or mac client interface as appropriate for that
96  * mac handle.
97  *
98  * General rules.
99  * -------------
100  *
101  * R1. The lock order of upcall threads is natually opposite to downcall
102  * threads. Hence upcalls must not hold any locks across layers for fear of
103  * recursive lock enter and lock order violation. This applies to all layers.
104  *
105  * R2. The perimeter is just another lock. Since it is held in the down
106  * direction, acquiring the perimeter in an upcall is prohibited as it would
107  * cause a deadlock. This applies to all layers.
108  *
109  * Note that upcalls that need to grab the mac perimeter (for example
110  * mac_notify upcalls) can still achieve that by posting the request to a
111  * thread, which can then grab all the required perimeters and locks in the
112  * right global order. Note that in the above example the mac layer iself
113  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
114  * to the client must do that. Please see the aggr code for an example.
115  *
116  * MAC client rules
117  * ----------------
118  *
119  * R3. A MAC client may use the MAC provided perimeter facility to serialize
120  * control operations on a per mac end point. It does this by by acquring
121  * and holding the perimeter across a sequence of calls to the mac layer.
122  * This ensures atomicity across the entire block of mac calls. In this
123  * model the MAC client must not hold any client locks across the calls to
124  * the mac layer. This model is the preferred solution.
125  *
126  * R4. However if a MAC client has a lot of global state across all mac end
127  * points the per mac end point serialization may not be sufficient. In this
128  * case the client may choose to use global locks or use its own serialization.
129  * To avoid deadlocks, these client layer locks held across the mac calls
130  * in the control path must never be acquired by the data path for the reason
131  * mentioned below.
132  *
133  * (Assume that a control operation that holds a client lock blocks in the
134  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
135  * data thread that holds this reference count, tries to acquire the same
136  * client lock subsequently it will deadlock).
137  *
138  * A MAC client may follow either the R3 model or the R4 model, but can't
139  * mix both. In the former, the hierarchy is Perim -> client locks, but in
140  * the latter it is client locks -> Perim.
141  *
142  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
143  * context since they may block while trying to acquire the perimeter.
144  * In addition some calls may block waiting for upcall refcnts to come down to
145  * zero.
146  *
147  * R6. MAC clients must make sure that they are single threaded and all threads
148  * from the top (in particular data threads) have finished before calling
149  * mac_client_close. The MAC framework does not track the number of client
150  * threads using the mac client handle. Also mac clients must make sure
151  * they have undone all the control operations before calling mac_client_close.
152  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
153  * mac_unicast_add/mac_multicast_add.
154  *
155  * MAC framework rules
156  * -------------------
157  *
158  * R7. The mac layer itself must not hold any mac layer locks (except the mac
159  * perimeter) across a call to any other layer from the mac layer. The call to
160  * any other layer could be via mi_* entry points, classifier entry points into
161  * the driver or via upcall pointers into layers above. The mac perimeter may
162  * be acquired or held only in the down direction, for e.g. when calling into
163  * a mi_* driver enty point to provide atomicity of the operation.
164  *
165  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
166  * mac driver interfaces, the MAC layer must provide a cut out for control
167  * interfaces like upcall notifications and start them in a separate thread.
168  *
169  * R9. Note that locking order also implies a plumbing order. For example
170  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
171  * to plumb in any other order must be failed at mac_open time, otherwise it
172  * could lead to deadlocks due to inverse locking order.
173  *
174  * R10. MAC driver interfaces must not block since the driver could call them
175  * in interrupt context.
176  *
177  * R11. Walkers must preferably not hold any locks while calling walker
178  * callbacks. Instead these can operate on reference counts. In simple
179  * callbacks it may be ok to hold a lock and call the callbacks, but this is
180  * harder to maintain in the general case of arbitrary callbacks.
181  *
182  * R12. The MAC layer must protect upcall notification callbacks using reference
183  * counts rather than holding locks across the callbacks.
184  *
185  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
186  * sure that any pointers (such as mac ring pointers) it passes to the driver
187  * remain valid until mac unregister time. Currently the mac layer achieves
188  * this by using generation numbers for rings and freeing the mac rings only
189  * at unregister time.  The MAC layer must provide a layer of indirection and
190  * must not expose underlying driver rings or driver data structures/pointers
191  * directly to MAC clients.
192  *
193  * MAC driver rules
194  * ----------------
195  *
196  * R14. It would be preferable if MAC drivers don't hold any locks across any
197  * mac call. However at a minimum they must not hold any locks across data
198  * upcalls. They must also make sure that all references to mac data structures
199  * are cleaned up and that it is single threaded at mac_unregister time.
200  *
201  * R15. MAC driver interfaces don't block and so the action may be done
202  * asynchronously in a separate thread as for example handling notifications.
203  * The driver must not assume that the action is complete when the call
204  * returns.
205  *
206  * R16. Drivers must maintain a generation number per Rx ring, and pass it
207  * back to mac_rx_ring(); They are expected to increment the generation
208  * number whenever the ring's stop routine is invoked.
209  * See comments in mac_rx_ring();
210  *
211  * R17 Similarly mi_stop is another synchronization point and the driver must
212  * ensure that all upcalls are done and there won't be any future upcall
213  * before returning from mi_stop.
214  *
215  * R18. The driver may assume that all set/modify control operations via
216  * the mi_* entry points are single threaded on a per mac end point.
217  *
218  * Lock and Perimeter hierarchy scenarios
219  * ---------------------------------------
220  *
221  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
222  *
223  * ft_lock -> fe_lock [mac_flow_lookup]
224  *
225  * mi_rw_lock -> fe_lock [mac_bcast_send]
226  *
227  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
228  *
229  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
230  *
231  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
232  *
233  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
234  * client to driver. In the case of clients that explictly use the mac provided
235  * perimeter mechanism for its serialization, the hierarchy is
236  * Perimeter -> mac layer locks, since the client never holds any locks across
237  * the mac calls. In the case of clients that use its own locks the hierarchy
238  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
239  * calls mac_perim_enter/exit in this case.
240  *
241  * Subflow creation rules
242  * ---------------------------
243  * o In case of a user specified cpulist present on underlying link and flows,
244  * the flows cpulist must be a subset of the underlying link.
245  * o In case of a user specified fanout mode present on link and flow, the
246  * subflow fanout count has to be less than or equal to that of the
247  * underlying link. The cpu-bindings for the subflows will be a subset of
248  * the underlying link.
249  * o In case if no cpulist specified on both underlying link and flow, the
250  * underlying link relies on a  MAC tunable to provide out of box fanout.
251  * The subflow will have no cpulist (the subflow will be unbound)
252  * o In case if no cpulist is specified on the underlying link, a subflow can
253  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
254  * for the subflow will not adhere to restriction that they need to be subset
255  * of the underlying link.
256  * o In case where the underlying link is carrying either a user specified
257  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
258  * created unbound.
259  * o While creating unbound subflows, bandwidth mode changes attempt to
260  * figure a right fanout count. In such cases the fanout count will override
261  * the unbound cpu-binding behavior.
262  * o In addition to this, while cycling between flow and link properties, we
263  * impose a restriction that if a link property has a subflow with
264  * user-specified attributes, we will not allow changing the link property.
265  * The administrator needs to reset all the user specified properties for the
266  * subflows before attempting a link property change.
267  * Some of the above rules can be overridden by specifying additional command
268  * line options while creating or modifying link or subflow properties.
269  *
270  * Datapath
271  * --------
272  *
273  * For information on the datapath, the world of soft rings, hardware rings, how
274  * it is structured, and the path of an mblk_t between a driver and a mac
275  * client, see mac_sched.c.
276  */
277 
278 #include <sys/types.h>
279 #include <sys/conf.h>
280 #include <sys/id_space.h>
281 #include <sys/esunddi.h>
282 #include <sys/stat.h>
283 #include <sys/mkdev.h>
284 #include <sys/stream.h>
285 #include <sys/strsun.h>
286 #include <sys/strsubr.h>
287 #include <sys/dlpi.h>
288 #include <sys/list.h>
289 #include <sys/modhash.h>
290 #include <sys/mac_provider.h>
291 #include <sys/mac_client_impl.h>
292 #include <sys/mac_soft_ring.h>
293 #include <sys/mac_stat.h>
294 #include <sys/mac_impl.h>
295 #include <sys/mac.h>
296 #include <sys/dls.h>
297 #include <sys/dld.h>
298 #include <sys/modctl.h>
299 #include <sys/fs/dv_node.h>
300 #include <sys/thread.h>
301 #include <sys/proc.h>
302 #include <sys/callb.h>
303 #include <sys/cpuvar.h>
304 #include <sys/atomic.h>
305 #include <sys/bitmap.h>
306 #include <sys/sdt.h>
307 #include <sys/mac_flow.h>
308 #include <sys/ddi_intr_impl.h>
309 #include <sys/disp.h>
310 #include <sys/sdt.h>
311 #include <sys/vnic.h>
312 #include <sys/vnic_impl.h>
313 #include <sys/vlan.h>
314 #include <inet/ip.h>
315 #include <inet/ip6.h>
316 #include <sys/exacct.h>
317 #include <sys/exacct_impl.h>
318 #include <inet/nd.h>
319 #include <sys/ethernet.h>
320 #include <sys/pool.h>
321 #include <sys/pool_pset.h>
322 #include <sys/cpupart.h>
323 #include <inet/wifi_ioctl.h>
324 #include <net/wpa.h>
325 #include <sys/mac_ether.h>
326 
327 #define	IMPL_HASHSZ	67	/* prime */
328 
329 kmem_cache_t		*i_mac_impl_cachep;
330 mod_hash_t		*i_mac_impl_hash;
331 krwlock_t		i_mac_impl_lock;
332 uint_t			i_mac_impl_count;
333 static kmem_cache_t	*mac_ring_cache;
334 static id_space_t	*minor_ids;
335 static uint32_t		minor_count;
336 static pool_event_cb_t	mac_pool_event_reg;
337 
338 /*
339  * Logging stuff. Perhaps mac_logging_interval could be broken into
340  * mac_flow_log_interval and mac_link_log_interval if we want to be
341  * able to schedule them differently.
342  */
343 uint_t			mac_logging_interval;
344 boolean_t		mac_flow_log_enable;
345 boolean_t		mac_link_log_enable;
346 timeout_id_t		mac_logging_timer;
347 
348 #define	MACTYPE_KMODDIR	"mac"
349 #define	MACTYPE_HASHSZ	67
350 static mod_hash_t	*i_mactype_hash;
351 /*
352  * i_mactype_lock synchronizes threads that obtain references to mactype_t
353  * structures through i_mactype_getplugin().
354  */
355 static kmutex_t		i_mactype_lock;
356 
357 /*
358  * mac_tx_percpu_cnt
359  *
360  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
361  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
362  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
363  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
364  */
365 int mac_tx_percpu_cnt;
366 int mac_tx_percpu_cnt_max = 128;
367 
368 /*
369  * Call back functions for the bridge module.  These are guaranteed to be valid
370  * when holding a reference on a link or when holding mip->mi_bridge_lock and
371  * mi_bridge_link is non-NULL.
372  */
373 mac_bridge_tx_t mac_bridge_tx_cb;
374 mac_bridge_rx_t mac_bridge_rx_cb;
375 mac_bridge_ref_t mac_bridge_ref_cb;
376 mac_bridge_ls_t mac_bridge_ls_cb;
377 
378 static int i_mac_constructor(void *, void *, int);
379 static void i_mac_destructor(void *, void *);
380 static int i_mac_ring_ctor(void *, void *, int);
381 static void i_mac_ring_dtor(void *, void *);
382 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
383 void mac_tx_client_flush(mac_client_impl_t *);
384 void mac_tx_client_block(mac_client_impl_t *);
385 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
386 static int mac_start_group_and_rings(mac_group_t *);
387 static void mac_stop_group_and_rings(mac_group_t *);
388 static void mac_pool_event_cb(pool_event_t, int, void *);
389 
390 typedef struct netinfo_s {
391 	list_node_t	ni_link;
392 	void		*ni_record;
393 	int		ni_size;
394 	int		ni_type;
395 } netinfo_t;
396 
397 /*
398  * Module initialization functions.
399  */
400 
401 void
402 mac_init(void)
403 {
404 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
405 	    boot_max_ncpus);
406 
407 	/* Upper bound is mac_tx_percpu_cnt_max */
408 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
409 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
410 
411 	if (mac_tx_percpu_cnt < 1) {
412 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
413 		mac_tx_percpu_cnt = 1;
414 	}
415 
416 	ASSERT(mac_tx_percpu_cnt >= 1);
417 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
418 	/*
419 	 * Make it of the form 2**N - 1 in the range
420 	 * [0 .. mac_tx_percpu_cnt_max - 1]
421 	 */
422 	mac_tx_percpu_cnt--;
423 
424 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
425 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
426 	    NULL, NULL, NULL, 0);
427 	ASSERT(i_mac_impl_cachep != NULL);
428 
429 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
430 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
431 	    NULL, NULL, 0);
432 	ASSERT(mac_ring_cache != NULL);
433 
434 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
435 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
436 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
437 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
438 
439 	mac_flow_init();
440 	mac_soft_ring_init();
441 	mac_bcast_init();
442 	mac_client_init();
443 
444 	i_mac_impl_count = 0;
445 
446 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
447 	    MACTYPE_HASHSZ,
448 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
449 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
450 
451 	/*
452 	 * Allocate an id space to manage minor numbers. The range of the
453 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
454 	 * leaves half of the 32-bit minors available for driver private use.
455 	 */
456 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
457 	    MAC_PRIVATE_MINOR-1);
458 	ASSERT(minor_ids != NULL);
459 	minor_count = 0;
460 
461 	/* Let's default to 20 seconds */
462 	mac_logging_interval = 20;
463 	mac_flow_log_enable = B_FALSE;
464 	mac_link_log_enable = B_FALSE;
465 	mac_logging_timer = NULL;
466 
467 	/* Register to be notified of noteworthy pools events */
468 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
469 	mac_pool_event_reg.pec_arg = NULL;
470 	pool_event_cb_register(&mac_pool_event_reg);
471 }
472 
473 int
474 mac_fini(void)
475 {
476 
477 	if (i_mac_impl_count > 0 || minor_count > 0)
478 		return (EBUSY);
479 
480 	pool_event_cb_unregister(&mac_pool_event_reg);
481 
482 	id_space_destroy(minor_ids);
483 	mac_flow_fini();
484 
485 	mod_hash_destroy_hash(i_mac_impl_hash);
486 	rw_destroy(&i_mac_impl_lock);
487 
488 	mac_client_fini();
489 	kmem_cache_destroy(mac_ring_cache);
490 
491 	mod_hash_destroy_hash(i_mactype_hash);
492 	mac_soft_ring_finish();
493 
494 
495 	return (0);
496 }
497 
498 /*
499  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
500  * (e.g. softmac) may pass in a NULL ops argument.
501  */
502 void
503 mac_init_ops(struct dev_ops *ops, const char *name)
504 {
505 	major_t major = ddi_name_to_major((char *)name);
506 
507 	/*
508 	 * By returning on error below, we are not letting the driver continue
509 	 * in an undefined context.  The mac_register() function will faill if
510 	 * DN_GLDV3_DRIVER isn't set.
511 	 */
512 	if (major == DDI_MAJOR_T_NONE)
513 		return;
514 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
516 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
517 	if (ops != NULL)
518 		dld_init_ops(ops, name);
519 }
520 
521 void
522 mac_fini_ops(struct dev_ops *ops)
523 {
524 	dld_fini_ops(ops);
525 }
526 
527 /*ARGSUSED*/
528 static int
529 i_mac_constructor(void *buf, void *arg, int kmflag)
530 {
531 	mac_impl_t	*mip = buf;
532 
533 	bzero(buf, sizeof (mac_impl_t));
534 
535 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
536 
537 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
538 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
539 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
540 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
541 
542 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
543 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
545 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
546 
547 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
548 
549 	return (0);
550 }
551 
552 /*ARGSUSED*/
553 static void
554 i_mac_destructor(void *buf, void *arg)
555 {
556 	mac_impl_t	*mip = buf;
557 	mac_cb_info_t	*mcbi;
558 
559 	ASSERT(mip->mi_ref == 0);
560 	ASSERT(mip->mi_active == 0);
561 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
562 	ASSERT(mip->mi_devpromisc == 0);
563 	ASSERT(mip->mi_ksp == NULL);
564 	ASSERT(mip->mi_kstat_count == 0);
565 	ASSERT(mip->mi_nclients == 0);
566 	ASSERT(mip->mi_nactiveclients == 0);
567 	ASSERT(mip->mi_single_active_client == NULL);
568 	ASSERT(mip->mi_state_flags == 0);
569 	ASSERT(mip->mi_factory_addr == NULL);
570 	ASSERT(mip->mi_factory_addr_num == 0);
571 	ASSERT(mip->mi_default_tx_ring == NULL);
572 
573 	mcbi = &mip->mi_notify_cb_info;
574 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
575 	ASSERT(mip->mi_notify_bits == 0);
576 	ASSERT(mip->mi_notify_thread == NULL);
577 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
578 	mcbi->mcbi_lockp = NULL;
579 
580 	mcbi = &mip->mi_promisc_cb_info;
581 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
582 	ASSERT(mip->mi_promisc_list == NULL);
583 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
584 	mcbi->mcbi_lockp = NULL;
585 
586 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
587 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
588 
589 	rw_destroy(&mip->mi_rw_lock);
590 
591 	mutex_destroy(&mip->mi_promisc_lock);
592 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
593 	mutex_destroy(&mip->mi_notify_lock);
594 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
595 	mutex_destroy(&mip->mi_ring_lock);
596 
597 	ASSERT(mip->mi_bridge_link == NULL);
598 }
599 
600 /* ARGSUSED */
601 static int
602 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
603 {
604 	mac_ring_t *ring = (mac_ring_t *)buf;
605 
606 	bzero(ring, sizeof (mac_ring_t));
607 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
608 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
609 	ring->mr_state = MR_FREE;
610 	return (0);
611 }
612 
613 /* ARGSUSED */
614 static void
615 i_mac_ring_dtor(void *buf, void *arg)
616 {
617 	mac_ring_t *ring = (mac_ring_t *)buf;
618 
619 	cv_destroy(&ring->mr_cv);
620 	mutex_destroy(&ring->mr_lock);
621 }
622 
623 /*
624  * Common functions to do mac callback addition and deletion. Currently this is
625  * used by promisc callbacks and notify callbacks. List addition and deletion
626  * need to take care of list walkers. List walkers in general, can't hold list
627  * locks and make upcall callbacks due to potential lock order and recursive
628  * reentry issues. Instead list walkers increment the list walker count to mark
629  * the presence of a walker thread. Addition can be carefully done to ensure
630  * that the list walker always sees either the old list or the new list.
631  * However the deletion can't be done while the walker is active, instead the
632  * deleting thread simply marks the entry as logically deleted. The last walker
633  * physically deletes and frees up the logically deleted entries when the walk
634  * is complete.
635  */
636 void
637 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
638     mac_cb_t *mcb_elem)
639 {
640 	mac_cb_t	*p;
641 	mac_cb_t	**pp;
642 
643 	/* Verify it is not already in the list */
644 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
645 		if (p == mcb_elem)
646 			break;
647 	}
648 	VERIFY(p == NULL);
649 
650 	/*
651 	 * Add it to the head of the callback list. The membar ensures that
652 	 * the following list pointer manipulations reach global visibility
653 	 * in exactly the program order below.
654 	 */
655 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
656 
657 	mcb_elem->mcb_nextp = *mcb_head;
658 	membar_producer();
659 	*mcb_head = mcb_elem;
660 }
661 
662 /*
663  * Mark the entry as logically deleted. If there aren't any walkers unlink
664  * from the list. In either case return the corresponding status.
665  */
666 boolean_t
667 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
668     mac_cb_t *mcb_elem)
669 {
670 	mac_cb_t	*p;
671 	mac_cb_t	**pp;
672 
673 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
674 	/*
675 	 * Search the callback list for the entry to be removed
676 	 */
677 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
678 		if (p == mcb_elem)
679 			break;
680 	}
681 	VERIFY(p != NULL);
682 
683 	/*
684 	 * If there are walkers just mark it as deleted and the last walker
685 	 * will remove from the list and free it.
686 	 */
687 	if (mcbi->mcbi_walker_cnt != 0) {
688 		p->mcb_flags |= MCB_CONDEMNED;
689 		mcbi->mcbi_del_cnt++;
690 		return (B_FALSE);
691 	}
692 
693 	ASSERT(mcbi->mcbi_del_cnt == 0);
694 	*pp = p->mcb_nextp;
695 	p->mcb_nextp = NULL;
696 	return (B_TRUE);
697 }
698 
699 /*
700  * Wait for all pending callback removals to be completed
701  */
702 void
703 mac_callback_remove_wait(mac_cb_info_t *mcbi)
704 {
705 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
706 	while (mcbi->mcbi_del_cnt != 0) {
707 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
708 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
709 	}
710 }
711 
712 void
713 mac_callback_barrier(mac_cb_info_t *mcbi)
714 {
715 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
716 	ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX);
717 
718 	if (mcbi->mcbi_walker_cnt == 0) {
719 		return;
720 	}
721 
722 	mcbi->mcbi_barrier_cnt++;
723 	do {
724 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
725 	} while (mcbi->mcbi_walker_cnt > 0);
726 	mcbi->mcbi_barrier_cnt--;
727 	cv_broadcast(&mcbi->mcbi_cv);
728 }
729 
730 void
731 mac_callback_walker_enter(mac_cb_info_t *mcbi)
732 {
733 	mutex_enter(mcbi->mcbi_lockp);
734 	/*
735 	 * Incoming walkers should give precedence to timely clean-up of
736 	 * deleted callback entries and requested barriers.
737 	 */
738 	while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) {
739 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
740 	}
741 	mcbi->mcbi_walker_cnt++;
742 	mutex_exit(mcbi->mcbi_lockp);
743 }
744 
745 /*
746  * The last mac callback walker does the cleanup. Walk the list and unlik
747  * all the logically deleted entries and construct a temporary list of
748  * removed entries. Return the list of removed entries to the caller.
749  */
750 static mac_cb_t *
751 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
752 {
753 	mac_cb_t	*p;
754 	mac_cb_t	**pp;
755 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
756 	int	cnt = 0;
757 
758 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
759 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
760 
761 	pp = mcb_head;
762 	while (*pp != NULL) {
763 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
764 			p = *pp;
765 			*pp = p->mcb_nextp;
766 			p->mcb_nextp = rmlist;
767 			rmlist = p;
768 			cnt++;
769 			continue;
770 		}
771 		pp = &(*pp)->mcb_nextp;
772 	}
773 
774 	ASSERT(mcbi->mcbi_del_cnt == cnt);
775 	mcbi->mcbi_del_cnt = 0;
776 	return (rmlist);
777 }
778 
779 void
780 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp,
781     boolean_t is_promisc)
782 {
783 	boolean_t do_wake = B_FALSE;
784 
785 	mutex_enter(mcbi->mcbi_lockp);
786 
787 	/* If walkers remain, nothing more can be done for now */
788 	if (--mcbi->mcbi_walker_cnt != 0) {
789 		mutex_exit(mcbi->mcbi_lockp);
790 		return;
791 	}
792 
793 	if (mcbi->mcbi_del_cnt != 0) {
794 		mac_cb_t *rmlist;
795 
796 		rmlist = mac_callback_walker_cleanup(mcbi, headp);
797 
798 		if (!is_promisc) {
799 			/* The "normal" non-promisc callback clean-up */
800 			mac_callback_free(rmlist);
801 		} else {
802 			mac_cb_t *mcb, *mcb_next;
803 
804 			/*
805 			 * The promisc callbacks are in 2 lists, one off the
806 			 * 'mip' and another off the 'mcip' threaded by
807 			 * mpi_mi_link and mpi_mci_link respectively.  There
808 			 * is, however, only a single shared total walker
809 			 * count, and an entry cannot be physically unlinked if
810 			 * a walker is active on either list. The last walker
811 			 * does this cleanup of logically deleted entries.
812 			 *
813 			 * With a list of callbacks deleted from above from
814 			 * mi_promisc_list (headp), remove the corresponding
815 			 * entry from mci_promisc_list (headp_pair) and free
816 			 * the structure.
817 			 */
818 			for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
819 				mac_promisc_impl_t *mpip;
820 				mac_client_impl_t *mcip;
821 
822 				mcb_next = mcb->mcb_nextp;
823 				mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
824 				mcip = mpip->mpi_mcip;
825 
826 				ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info,
827 				    ==, mcbi);
828 				ASSERT3P(&mcip->mci_mip->mi_promisc_list,
829 				    ==, headp);
830 
831 				VERIFY(mac_callback_remove(mcbi,
832 				    &mcip->mci_promisc_list,
833 				    &mpip->mpi_mci_link));
834 				mcb->mcb_flags = 0;
835 				mcb->mcb_nextp = NULL;
836 				kmem_cache_free(mac_promisc_impl_cache, mpip);
837 			}
838 		}
839 
840 		/*
841 		 * Wake any walker threads that could be waiting in
842 		 * mac_callback_walker_enter() until deleted items have been
843 		 * cleaned from the list.
844 		 */
845 		do_wake = B_TRUE;
846 	}
847 
848 	if (mcbi->mcbi_barrier_cnt != 0) {
849 		/*
850 		 * One or more threads are waiting for all walkers to exit the
851 		 * callback list.  Notify them, now that the list is clear.
852 		 */
853 		do_wake = B_TRUE;
854 	}
855 
856 	if (do_wake) {
857 		cv_broadcast(&mcbi->mcbi_cv);
858 	}
859 	mutex_exit(mcbi->mcbi_lockp);
860 }
861 
862 static boolean_t
863 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
864 {
865 	mac_cb_t	*mcb;
866 
867 	/* Verify it is not already in the list */
868 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
869 		if (mcb == mcb_elem)
870 			return (B_TRUE);
871 	}
872 
873 	return (B_FALSE);
874 }
875 
876 static boolean_t
877 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
878 {
879 	boolean_t	found;
880 
881 	mutex_enter(mcbi->mcbi_lockp);
882 	found = mac_callback_lookup(mcb_headp, mcb_elem);
883 	mutex_exit(mcbi->mcbi_lockp);
884 
885 	return (found);
886 }
887 
888 /* Free the list of removed callbacks */
889 void
890 mac_callback_free(mac_cb_t *rmlist)
891 {
892 	mac_cb_t	*mcb;
893 	mac_cb_t	*mcb_next;
894 
895 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
896 		mcb_next = mcb->mcb_nextp;
897 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
898 	}
899 }
900 
901 void
902 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
903 {
904 	mac_cb_info_t	*mcbi;
905 
906 	/*
907 	 * Signal the notify thread even after mi_ref has become zero and
908 	 * mi_disabled is set. The synchronization with the notify thread
909 	 * happens in mac_unregister and that implies the driver must make
910 	 * sure it is single-threaded (with respect to mac calls) and that
911 	 * all pending mac calls have returned before it calls mac_unregister
912 	 */
913 	rw_enter(&i_mac_impl_lock, RW_READER);
914 	if (mip->mi_state_flags & MIS_DISABLED)
915 		goto exit;
916 
917 	/*
918 	 * Guard against incorrect notifications.  (Running a newer
919 	 * mac client against an older implementation?)
920 	 */
921 	if (type >= MAC_NNOTE)
922 		goto exit;
923 
924 	mcbi = &mip->mi_notify_cb_info;
925 	mutex_enter(mcbi->mcbi_lockp);
926 	mip->mi_notify_bits |= (1 << type);
927 	cv_broadcast(&mcbi->mcbi_cv);
928 	mutex_exit(mcbi->mcbi_lockp);
929 
930 exit:
931 	rw_exit(&i_mac_impl_lock);
932 }
933 
934 /*
935  * Mac serialization primitives. Please see the block comment at the
936  * top of the file.
937  */
938 void
939 i_mac_perim_enter(mac_impl_t *mip)
940 {
941 	mac_client_impl_t	*mcip;
942 
943 	if (mip->mi_state_flags & MIS_IS_VNIC) {
944 		/*
945 		 * This is a VNIC. Return the lower mac since that is what
946 		 * we want to serialize on.
947 		 */
948 		mcip = mac_vnic_lower(mip);
949 		mip = mcip->mci_mip;
950 	}
951 
952 	mutex_enter(&mip->mi_perim_lock);
953 	if (mip->mi_perim_owner == curthread) {
954 		mip->mi_perim_ocnt++;
955 		mutex_exit(&mip->mi_perim_lock);
956 		return;
957 	}
958 
959 	while (mip->mi_perim_owner != NULL)
960 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
961 
962 	mip->mi_perim_owner = curthread;
963 	ASSERT(mip->mi_perim_ocnt == 0);
964 	mip->mi_perim_ocnt++;
965 #ifdef DEBUG
966 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
967 	    MAC_PERIM_STACK_DEPTH);
968 #endif
969 	mutex_exit(&mip->mi_perim_lock);
970 }
971 
972 int
973 i_mac_perim_enter_nowait(mac_impl_t *mip)
974 {
975 	/*
976 	 * The vnic is a special case, since the serialization is done based
977 	 * on the lower mac. If the lower mac is busy, it does not imply the
978 	 * vnic can't be unregistered. But in the case of other drivers,
979 	 * a busy perimeter or open mac handles implies that the mac is busy
980 	 * and can't be unregistered.
981 	 */
982 	if (mip->mi_state_flags & MIS_IS_VNIC) {
983 		i_mac_perim_enter(mip);
984 		return (0);
985 	}
986 
987 	mutex_enter(&mip->mi_perim_lock);
988 	if (mip->mi_perim_owner != NULL) {
989 		mutex_exit(&mip->mi_perim_lock);
990 		return (EBUSY);
991 	}
992 	ASSERT(mip->mi_perim_ocnt == 0);
993 	mip->mi_perim_owner = curthread;
994 	mip->mi_perim_ocnt++;
995 	mutex_exit(&mip->mi_perim_lock);
996 
997 	return (0);
998 }
999 
1000 void
1001 i_mac_perim_exit(mac_impl_t *mip)
1002 {
1003 	mac_client_impl_t *mcip;
1004 
1005 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1006 		/*
1007 		 * This is a VNIC. Return the lower mac since that is what
1008 		 * we want to serialize on.
1009 		 */
1010 		mcip = mac_vnic_lower(mip);
1011 		mip = mcip->mci_mip;
1012 	}
1013 
1014 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
1015 
1016 	mutex_enter(&mip->mi_perim_lock);
1017 	if (--mip->mi_perim_ocnt == 0) {
1018 		mip->mi_perim_owner = NULL;
1019 		cv_signal(&mip->mi_perim_cv);
1020 	}
1021 	mutex_exit(&mip->mi_perim_lock);
1022 }
1023 
1024 /*
1025  * Returns whether the current thread holds the mac perimeter. Used in making
1026  * assertions.
1027  */
1028 boolean_t
1029 mac_perim_held(mac_handle_t mh)
1030 {
1031 	mac_impl_t	*mip = (mac_impl_t *)mh;
1032 	mac_client_impl_t *mcip;
1033 
1034 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1035 		/*
1036 		 * This is a VNIC. Return the lower mac since that is what
1037 		 * we want to serialize on.
1038 		 */
1039 		mcip = mac_vnic_lower(mip);
1040 		mip = mcip->mci_mip;
1041 	}
1042 	return (mip->mi_perim_owner == curthread);
1043 }
1044 
1045 /*
1046  * mac client interfaces to enter the mac perimeter of a mac end point, given
1047  * its mac handle, or macname or linkid.
1048  */
1049 void
1050 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
1051 {
1052 	mac_impl_t	*mip = (mac_impl_t *)mh;
1053 
1054 	i_mac_perim_enter(mip);
1055 	/*
1056 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
1057 	 * mac_open has been done internally while entering the perimeter.
1058 	 * This information is used in mac_perim_exit
1059 	 */
1060 	MAC_ENCODE_MPH(*mphp, mip, 0);
1061 }
1062 
1063 int
1064 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
1065 {
1066 	int	err;
1067 	mac_handle_t	mh;
1068 
1069 	if ((err = mac_open(name, &mh)) != 0)
1070 		return (err);
1071 
1072 	mac_perim_enter_by_mh(mh, mphp);
1073 	MAC_ENCODE_MPH(*mphp, mh, 1);
1074 	return (0);
1075 }
1076 
1077 int
1078 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
1079 {
1080 	int	err;
1081 	mac_handle_t	mh;
1082 
1083 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1084 		return (err);
1085 
1086 	mac_perim_enter_by_mh(mh, mphp);
1087 	MAC_ENCODE_MPH(*mphp, mh, 1);
1088 	return (0);
1089 }
1090 
1091 void
1092 mac_perim_exit(mac_perim_handle_t mph)
1093 {
1094 	mac_impl_t	*mip;
1095 	boolean_t	need_close;
1096 
1097 	MAC_DECODE_MPH(mph, mip, need_close);
1098 	i_mac_perim_exit(mip);
1099 	if (need_close)
1100 		mac_close((mac_handle_t)mip);
1101 }
1102 
1103 int
1104 mac_hold(const char *macname, mac_impl_t **pmip)
1105 {
1106 	mac_impl_t	*mip;
1107 	int		err;
1108 
1109 	/*
1110 	 * Check the device name length to make sure it won't overflow our
1111 	 * buffer.
1112 	 */
1113 	if (strlen(macname) >= MAXNAMELEN)
1114 		return (EINVAL);
1115 
1116 	/*
1117 	 * Look up its entry in the global hash table.
1118 	 */
1119 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1120 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1121 	    (mod_hash_val_t *)&mip);
1122 
1123 	if (err != 0) {
1124 		rw_exit(&i_mac_impl_lock);
1125 		return (ENOENT);
1126 	}
1127 
1128 	if (mip->mi_state_flags & MIS_DISABLED) {
1129 		rw_exit(&i_mac_impl_lock);
1130 		return (ENOENT);
1131 	}
1132 
1133 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1134 		rw_exit(&i_mac_impl_lock);
1135 		return (EBUSY);
1136 	}
1137 
1138 	mip->mi_ref++;
1139 	rw_exit(&i_mac_impl_lock);
1140 
1141 	*pmip = mip;
1142 	return (0);
1143 }
1144 
1145 void
1146 mac_rele(mac_impl_t *mip)
1147 {
1148 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1149 	ASSERT(mip->mi_ref != 0);
1150 	if (--mip->mi_ref == 0) {
1151 		ASSERT(mip->mi_nactiveclients == 0 &&
1152 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1153 	}
1154 	rw_exit(&i_mac_impl_lock);
1155 }
1156 
1157 /*
1158  * Private GLDv3 function to start a MAC instance.
1159  */
1160 int
1161 mac_start(mac_handle_t mh)
1162 {
1163 	mac_impl_t	*mip = (mac_impl_t *)mh;
1164 	int		err = 0;
1165 	mac_group_t	*defgrp;
1166 
1167 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1168 	ASSERT(mip->mi_start != NULL);
1169 
1170 	/*
1171 	 * Check whether the device is already started.
1172 	 */
1173 	if (mip->mi_active++ == 0) {
1174 		mac_ring_t *ring = NULL;
1175 
1176 		/*
1177 		 * Start the device.
1178 		 */
1179 		err = mip->mi_start(mip->mi_driver);
1180 		if (err != 0) {
1181 			mip->mi_active--;
1182 			return (err);
1183 		}
1184 
1185 		/*
1186 		 * Start the default tx ring.
1187 		 */
1188 		if (mip->mi_default_tx_ring != NULL) {
1189 
1190 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1191 			if (ring->mr_state != MR_INUSE) {
1192 				err = mac_start_ring(ring);
1193 				if (err != 0) {
1194 					mip->mi_active--;
1195 					return (err);
1196 				}
1197 			}
1198 		}
1199 
1200 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1201 			/*
1202 			 * Start the default group which is responsible
1203 			 * for receiving broadcast and multicast
1204 			 * traffic for both primary and non-primary
1205 			 * MAC clients.
1206 			 */
1207 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1208 			err = mac_start_group_and_rings(defgrp);
1209 			if (err != 0) {
1210 				mip->mi_active--;
1211 				if ((ring != NULL) &&
1212 				    (ring->mr_state == MR_INUSE))
1213 					mac_stop_ring(ring);
1214 				return (err);
1215 			}
1216 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1217 		}
1218 	}
1219 
1220 	return (err);
1221 }
1222 
1223 /*
1224  * Private GLDv3 function to stop a MAC instance.
1225  */
1226 void
1227 mac_stop(mac_handle_t mh)
1228 {
1229 	mac_impl_t	*mip = (mac_impl_t *)mh;
1230 	mac_group_t	*grp;
1231 
1232 	ASSERT(mip->mi_stop != NULL);
1233 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1234 
1235 	/*
1236 	 * Check whether the device is still needed.
1237 	 */
1238 	ASSERT(mip->mi_active != 0);
1239 	if (--mip->mi_active == 0) {
1240 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1241 			/*
1242 			 * There should be no more active clients since the
1243 			 * MAC is being stopped. Stop the default RX group
1244 			 * and transition it back to registered state.
1245 			 *
1246 			 * When clients are torn down, the groups
1247 			 * are release via mac_release_rx_group which
1248 			 * knows the the default group is always in
1249 			 * started mode since broadcast uses it. So
1250 			 * we can assert that their are no clients
1251 			 * (since mac_bcast_add doesn't register itself
1252 			 * as a client) and group is in SHARED state.
1253 			 */
1254 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1255 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1256 			    mip->mi_nactiveclients == 0);
1257 			mac_stop_group_and_rings(grp);
1258 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1259 		}
1260 
1261 		if (mip->mi_default_tx_ring != NULL) {
1262 			mac_ring_t *ring;
1263 
1264 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1265 			if (ring->mr_state == MR_INUSE) {
1266 				mac_stop_ring(ring);
1267 				ring->mr_flag = 0;
1268 			}
1269 		}
1270 
1271 		/*
1272 		 * Stop the device.
1273 		 */
1274 		mip->mi_stop(mip->mi_driver);
1275 	}
1276 }
1277 
1278 int
1279 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1280 {
1281 	int		err = 0;
1282 
1283 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1284 	ASSERT(mip->mi_setpromisc != NULL);
1285 
1286 	if (on) {
1287 		/*
1288 		 * Enable promiscuous mode on the device if not yet enabled.
1289 		 */
1290 		if (mip->mi_devpromisc++ == 0) {
1291 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1292 			if (err != 0) {
1293 				mip->mi_devpromisc--;
1294 				return (err);
1295 			}
1296 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1297 		}
1298 	} else {
1299 		if (mip->mi_devpromisc == 0)
1300 			return (EPROTO);
1301 
1302 		/*
1303 		 * Disable promiscuous mode on the device if this is the last
1304 		 * enabling.
1305 		 */
1306 		if (--mip->mi_devpromisc == 0) {
1307 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1308 			if (err != 0) {
1309 				mip->mi_devpromisc++;
1310 				return (err);
1311 			}
1312 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1313 		}
1314 	}
1315 
1316 	return (0);
1317 }
1318 
1319 /*
1320  * The promiscuity state can change any time. If the caller needs to take
1321  * actions that are atomic with the promiscuity state, then the caller needs
1322  * to bracket the entire sequence with mac_perim_enter/exit
1323  */
1324 boolean_t
1325 mac_promisc_get(mac_handle_t mh)
1326 {
1327 	mac_impl_t		*mip = (mac_impl_t *)mh;
1328 
1329 	/*
1330 	 * Return the current promiscuity.
1331 	 */
1332 	return (mip->mi_devpromisc != 0);
1333 }
1334 
1335 /*
1336  * Invoked at MAC instance attach time to initialize the list
1337  * of factory MAC addresses supported by a MAC instance. This function
1338  * builds a local cache in the mac_impl_t for the MAC addresses
1339  * supported by the underlying hardware. The MAC clients themselves
1340  * use the mac_addr_factory*() functions to query and reserve
1341  * factory MAC addresses.
1342  */
1343 void
1344 mac_addr_factory_init(mac_impl_t *mip)
1345 {
1346 	mac_capab_multifactaddr_t capab;
1347 	uint8_t *addr;
1348 	int i;
1349 
1350 	/*
1351 	 * First round to see how many factory MAC addresses are available.
1352 	 */
1353 	bzero(&capab, sizeof (capab));
1354 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1355 	    &capab) || (capab.mcm_naddr == 0)) {
1356 		/*
1357 		 * The MAC instance doesn't support multiple factory
1358 		 * MAC addresses, we're done here.
1359 		 */
1360 		return;
1361 	}
1362 
1363 	/*
1364 	 * Allocate the space and get all the factory addresses.
1365 	 */
1366 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1367 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1368 
1369 	mip->mi_factory_addr_num = capab.mcm_naddr;
1370 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1371 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1372 
1373 	for (i = 0; i < capab.mcm_naddr; i++) {
1374 		bcopy(addr + i * MAXMACADDRLEN,
1375 		    mip->mi_factory_addr[i].mfa_addr,
1376 		    mip->mi_type->mt_addr_length);
1377 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1378 	}
1379 
1380 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1381 }
1382 
1383 void
1384 mac_addr_factory_fini(mac_impl_t *mip)
1385 {
1386 	if (mip->mi_factory_addr == NULL) {
1387 		ASSERT(mip->mi_factory_addr_num == 0);
1388 		return;
1389 	}
1390 
1391 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1392 	    sizeof (mac_factory_addr_t));
1393 
1394 	mip->mi_factory_addr = NULL;
1395 	mip->mi_factory_addr_num = 0;
1396 }
1397 
1398 /*
1399  * Reserve a factory MAC address. If *slot is set to -1, the function
1400  * attempts to reserve any of the available factory MAC addresses and
1401  * returns the reserved slot id. If no slots are available, the function
1402  * returns ENOSPC. If *slot is not set to -1, the function reserves
1403  * the specified slot if it is available, or returns EBUSY is the slot
1404  * is already used. Returns ENOTSUP if the underlying MAC does not
1405  * support multiple factory addresses. If the slot number is not -1 but
1406  * is invalid, returns EINVAL.
1407  */
1408 int
1409 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1410 {
1411 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1412 	mac_impl_t *mip = mcip->mci_mip;
1413 	int i, ret = 0;
1414 
1415 	i_mac_perim_enter(mip);
1416 	/*
1417 	 * Protect against concurrent readers that may need a self-consistent
1418 	 * view of the factory addresses
1419 	 */
1420 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1421 
1422 	if (mip->mi_factory_addr_num == 0) {
1423 		ret = ENOTSUP;
1424 		goto bail;
1425 	}
1426 
1427 	if (*slot != -1) {
1428 		/* check the specified slot */
1429 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1430 			ret = EINVAL;
1431 			goto bail;
1432 		}
1433 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1434 			ret = EBUSY;
1435 			goto bail;
1436 		}
1437 	} else {
1438 		/* pick the next available slot */
1439 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1440 			if (!mip->mi_factory_addr[i].mfa_in_use)
1441 				break;
1442 		}
1443 
1444 		if (i == mip->mi_factory_addr_num) {
1445 			ret = ENOSPC;
1446 			goto bail;
1447 		}
1448 		*slot = i+1;
1449 	}
1450 
1451 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1452 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1453 
1454 bail:
1455 	rw_exit(&mip->mi_rw_lock);
1456 	i_mac_perim_exit(mip);
1457 	return (ret);
1458 }
1459 
1460 /*
1461  * Release the specified factory MAC address slot.
1462  */
1463 void
1464 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1465 {
1466 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1467 	mac_impl_t *mip = mcip->mci_mip;
1468 
1469 	i_mac_perim_enter(mip);
1470 	/*
1471 	 * Protect against concurrent readers that may need a self-consistent
1472 	 * view of the factory addresses
1473 	 */
1474 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1475 
1476 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1477 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1478 
1479 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1480 
1481 	rw_exit(&mip->mi_rw_lock);
1482 	i_mac_perim_exit(mip);
1483 }
1484 
1485 /*
1486  * Stores in mac_addr the value of the specified MAC address. Returns
1487  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1488  * The caller must provide a string of at least MAXNAMELEN bytes.
1489  */
1490 void
1491 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1492     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1493 {
1494 	mac_impl_t *mip = (mac_impl_t *)mh;
1495 	boolean_t in_use;
1496 
1497 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1498 
1499 	/*
1500 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1501 	 * and mi_rw_lock
1502 	 */
1503 	rw_enter(&mip->mi_rw_lock, RW_READER);
1504 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1505 	*addr_len = mip->mi_type->mt_addr_length;
1506 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1507 	if (in_use && client_name != NULL) {
1508 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1509 		    client_name, MAXNAMELEN);
1510 	}
1511 	if (in_use_arg != NULL)
1512 		*in_use_arg = in_use;
1513 	rw_exit(&mip->mi_rw_lock);
1514 }
1515 
1516 /*
1517  * Returns the number of factory MAC addresses (in addition to the
1518  * primary MAC address), 0 if the underlying MAC doesn't support
1519  * that feature.
1520  */
1521 uint_t
1522 mac_addr_factory_num(mac_handle_t mh)
1523 {
1524 	mac_impl_t *mip = (mac_impl_t *)mh;
1525 
1526 	return (mip->mi_factory_addr_num);
1527 }
1528 
1529 
1530 void
1531 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1532 {
1533 	mac_ring_t	*ring;
1534 
1535 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1536 		ring->mr_flag &= ~flag;
1537 }
1538 
1539 /*
1540  * The following mac_hwrings_xxx() functions are private mac client functions
1541  * used by the aggr driver to access and control the underlying HW Rx group
1542  * and rings. In this case, the aggr driver has exclusive control of the
1543  * underlying HW Rx group/rings, it calls the following functions to
1544  * start/stop the HW Rx rings, disable/enable polling, add/remove MAC
1545  * addresses, or set up the Rx callback.
1546  */
1547 /* ARGSUSED */
1548 static void
1549 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1550     mblk_t *mp_chain, boolean_t loopback)
1551 {
1552 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1553 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1554 	mac_direct_rx_t		proc;
1555 	void			*arg1;
1556 	mac_resource_handle_t	arg2;
1557 
1558 	proc = srs_rx->sr_func;
1559 	arg1 = srs_rx->sr_arg1;
1560 	arg2 = mac_srs->srs_mrh;
1561 
1562 	proc(arg1, arg2, mp_chain, NULL);
1563 }
1564 
1565 /*
1566  * This function is called to get the list of HW rings that are reserved by
1567  * an exclusive mac client.
1568  *
1569  * Return value: the number of HW rings.
1570  */
1571 int
1572 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1573     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1574 {
1575 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1576 	flow_entry_t		*flent = mcip->mci_flent;
1577 	mac_group_t		*grp;
1578 	mac_ring_t		*ring;
1579 	int			cnt = 0;
1580 
1581 	if (rtype == MAC_RING_TYPE_RX) {
1582 		grp = flent->fe_rx_ring_group;
1583 	} else if (rtype == MAC_RING_TYPE_TX) {
1584 		grp = flent->fe_tx_ring_group;
1585 	} else {
1586 		ASSERT(B_FALSE);
1587 		return (-1);
1588 	}
1589 
1590 	/*
1591 	 * The MAC client did not reserve an Rx group, return directly.
1592 	 * This is probably because the underlying MAC does not support
1593 	 * any groups.
1594 	 */
1595 	if (hwgh != NULL)
1596 		*hwgh = NULL;
1597 	if (grp == NULL)
1598 		return (0);
1599 	/*
1600 	 * This group must be reserved by this MAC client.
1601 	 */
1602 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1603 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1604 
1605 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1606 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1607 		hwrh[cnt] = (mac_ring_handle_t)ring;
1608 	}
1609 	if (hwgh != NULL)
1610 		*hwgh = (mac_group_handle_t)grp;
1611 
1612 	return (cnt);
1613 }
1614 
1615 /*
1616  * Get the HW ring handles of the given group index. If the MAC
1617  * doesn't have a group at this index, or any groups at all, then 0 is
1618  * returned and hwgh is set to NULL. This is a private client API. The
1619  * MAC perimeter must be held when calling this function.
1620  *
1621  * mh: A handle to the MAC that owns the group.
1622  *
1623  * idx: The index of the HW group to be read.
1624  *
1625  * hwgh: If non-NULL, contains a handle to the HW group on return.
1626  *
1627  * hwrh: An array of ring handles pointing to the HW rings in the
1628  * group. The array must be large enough to hold a handle to each ring
1629  * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP.
1630  *
1631  * rtype: Used to determine if we are fetching Rx or Tx rings.
1632  *
1633  * Returns the number of rings in the group.
1634  */
1635 uint_t
1636 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh,
1637     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1638 {
1639 	mac_impl_t		*mip = (mac_impl_t *)mh;
1640 	mac_group_t		*grp;
1641 	mac_ring_t		*ring;
1642 	uint_t			cnt = 0;
1643 
1644 	/*
1645 	 * The MAC perimeter must be held when accessing the
1646 	 * mi_{rx,tx}_groups fields.
1647 	 */
1648 	ASSERT(MAC_PERIM_HELD(mh));
1649 	ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX);
1650 
1651 	if (rtype == MAC_RING_TYPE_RX) {
1652 		grp = mip->mi_rx_groups;
1653 	} else {
1654 		ASSERT(rtype == MAC_RING_TYPE_TX);
1655 		grp = mip->mi_tx_groups;
1656 	}
1657 
1658 	while (grp != NULL && grp->mrg_index != idx)
1659 		grp = grp->mrg_next;
1660 
1661 	/*
1662 	 * If the MAC doesn't have a group at this index or doesn't
1663 	 * impelement RINGS capab, then set hwgh to NULL and return 0.
1664 	 */
1665 	if (hwgh != NULL)
1666 		*hwgh = NULL;
1667 
1668 	if (grp == NULL)
1669 		return (0);
1670 
1671 	ASSERT3U(idx, ==, grp->mrg_index);
1672 
1673 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1674 		ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP);
1675 		hwrh[cnt] = (mac_ring_handle_t)ring;
1676 	}
1677 
1678 	/* A group should always have at least one ring. */
1679 	ASSERT3U(cnt, >, 0);
1680 
1681 	if (hwgh != NULL)
1682 		*hwgh = (mac_group_handle_t)grp;
1683 
1684 	return (cnt);
1685 }
1686 
1687 /*
1688  * This function is called to get info about Tx/Rx rings.
1689  *
1690  * Return value: returns uint_t which will have various bits set
1691  * that indicates different properties of the ring.
1692  */
1693 uint_t
1694 mac_hwring_getinfo(mac_ring_handle_t rh)
1695 {
1696 	mac_ring_t *ring = (mac_ring_t *)rh;
1697 	mac_ring_info_t *info = &ring->mr_info;
1698 
1699 	return (info->mri_flags);
1700 }
1701 
1702 /*
1703  * Set the passthru callback on the hardware ring.
1704  */
1705 void
1706 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1,
1707     mac_resource_handle_t arg2)
1708 {
1709 	mac_ring_t *hwring = (mac_ring_t *)hwrh;
1710 
1711 	ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1712 
1713 	hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER;
1714 
1715 	hwring->mr_pt_fn = fn;
1716 	hwring->mr_pt_arg1 = arg1;
1717 	hwring->mr_pt_arg2 = arg2;
1718 }
1719 
1720 /*
1721  * Clear the passthru callback on the hardware ring.
1722  */
1723 void
1724 mac_hwring_clear_passthru(mac_ring_handle_t hwrh)
1725 {
1726 	mac_ring_t *hwring = (mac_ring_t *)hwrh;
1727 
1728 	ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1729 
1730 	hwring->mr_classify_type = MAC_NO_CLASSIFIER;
1731 
1732 	hwring->mr_pt_fn = NULL;
1733 	hwring->mr_pt_arg1 = NULL;
1734 	hwring->mr_pt_arg2 = NULL;
1735 }
1736 
1737 void
1738 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1)
1739 {
1740 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1741 	flow_entry_t		*flent = mcip->mci_flent;
1742 
1743 	mutex_enter(&flent->fe_lock);
1744 	flent->fe_cb_fn = (flow_fn_t)func;
1745 	flent->fe_cb_arg1 = arg1;
1746 	flent->fe_cb_arg2 = NULL;
1747 	flent->fe_flags &= ~FE_MC_NO_DATAPATH;
1748 	mutex_exit(&flent->fe_lock);
1749 }
1750 
1751 void
1752 mac_client_clear_flow_cb(mac_client_handle_t mch)
1753 {
1754 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1755 	flow_entry_t		*flent = mcip->mci_flent;
1756 
1757 	mutex_enter(&flent->fe_lock);
1758 	flent->fe_cb_fn = (flow_fn_t)mac_rx_def;
1759 	flent->fe_cb_arg1 = NULL;
1760 	flent->fe_cb_arg2 = NULL;
1761 	flent->fe_flags |= FE_MC_NO_DATAPATH;
1762 	mutex_exit(&flent->fe_lock);
1763 }
1764 
1765 /*
1766  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1767  * setup the RX callback of the mac client which exclusively controls
1768  * HW ring.
1769  */
1770 void
1771 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1772     mac_ring_handle_t pseudo_rh)
1773 {
1774 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1775 	mac_ring_t		*pseudo_ring;
1776 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1777 
1778 	if (pseudo_rh != NULL) {
1779 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1780 		/* Export the ddi handles to pseudo ring */
1781 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1782 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1783 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1784 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1785 		/*
1786 		 * Save a pointer to pseudo ring in the hw ring. If
1787 		 * interrupt handle changes, the hw ring will be
1788 		 * notified of the change (see mac_ring_intr_set())
1789 		 * and the appropriate change has to be made to
1790 		 * the pseudo ring that has exported the ddi handle.
1791 		 */
1792 		hw_ring->mr_prh = pseudo_rh;
1793 	}
1794 
1795 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1796 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1797 		mac_srs->srs_mrh = prh;
1798 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1799 	}
1800 }
1801 
1802 void
1803 mac_hwring_teardown(mac_ring_handle_t hwrh)
1804 {
1805 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1806 	mac_soft_ring_set_t	*mac_srs;
1807 
1808 	if (hw_ring == NULL)
1809 		return;
1810 	hw_ring->mr_prh = NULL;
1811 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1812 		mac_srs = hw_ring->mr_srs;
1813 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1814 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1815 		mac_srs->srs_mrh = NULL;
1816 	}
1817 }
1818 
1819 int
1820 mac_hwring_disable_intr(mac_ring_handle_t rh)
1821 {
1822 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1823 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1824 
1825 	return (intr->mi_disable(intr->mi_handle));
1826 }
1827 
1828 int
1829 mac_hwring_enable_intr(mac_ring_handle_t rh)
1830 {
1831 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1832 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1833 
1834 	return (intr->mi_enable(intr->mi_handle));
1835 }
1836 
1837 /*
1838  * Start the HW ring pointed to by rh.
1839  *
1840  * This is used by special MAC clients that are MAC themselves and
1841  * need to exert control over the underlying HW rings of the NIC.
1842  */
1843 int
1844 mac_hwring_start(mac_ring_handle_t rh)
1845 {
1846 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1847 	int rv = 0;
1848 
1849 	if (rr_ring->mr_state != MR_INUSE)
1850 		rv = mac_start_ring(rr_ring);
1851 
1852 	return (rv);
1853 }
1854 
1855 /*
1856  * Stop the HW ring pointed to by rh. Also see mac_hwring_start().
1857  */
1858 void
1859 mac_hwring_stop(mac_ring_handle_t rh)
1860 {
1861 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1862 
1863 	if (rr_ring->mr_state != MR_FREE)
1864 		mac_stop_ring(rr_ring);
1865 }
1866 
1867 /*
1868  * Remove the quiesced flag from the HW ring pointed to by rh.
1869  *
1870  * This is used by special MAC clients that are MAC themselves and
1871  * need to exert control over the underlying HW rings of the NIC.
1872  */
1873 int
1874 mac_hwring_activate(mac_ring_handle_t rh)
1875 {
1876 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1877 
1878 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1879 	return (0);
1880 }
1881 
1882 /*
1883  * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate().
1884  */
1885 void
1886 mac_hwring_quiesce(mac_ring_handle_t rh)
1887 {
1888 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1889 
1890 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1891 }
1892 
1893 mblk_t *
1894 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1895 {
1896 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1897 	mac_ring_info_t *info = &rr_ring->mr_info;
1898 
1899 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1900 }
1901 
1902 /*
1903  * Send packets through a selected tx ring.
1904  */
1905 mblk_t *
1906 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1907 {
1908 	mac_ring_t *ring = (mac_ring_t *)rh;
1909 	mac_ring_info_t *info = &ring->mr_info;
1910 
1911 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1912 	    ring->mr_state >= MR_INUSE);
1913 	return (info->mri_tx(info->mri_driver, mp));
1914 }
1915 
1916 /*
1917  * Query stats for a particular rx/tx ring
1918  */
1919 int
1920 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1921 {
1922 	mac_ring_t	*ring = (mac_ring_t *)rh;
1923 	mac_ring_info_t *info = &ring->mr_info;
1924 
1925 	return (info->mri_stat(info->mri_driver, stat, val));
1926 }
1927 
1928 /*
1929  * Private function that is only used by aggr to send packets through
1930  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1931  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1932  * access to mac_impl_t to send packets through m_tx() entry point.
1933  * It accomplishes this by calling mac_hwring_send_priv() function.
1934  */
1935 mblk_t *
1936 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1937 {
1938 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1939 	mac_impl_t *mip = mcip->mci_mip;
1940 
1941 	return (mac_provider_tx(mip, rh, mp, mcip));
1942 }
1943 
1944 /*
1945  * Private function that is only used by aggr to update the default transmission
1946  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1947  * temporarily be down, it may need to update the default ring that is used by
1948  * MAC such that it refers to a link that can actively be used to send traffic.
1949  * Note that this is different from the case where the port has been removed
1950  * from the group. In those cases, all of the rings will be torn down because
1951  * the ring will no longer exist. It's important to give aggr a case where the
1952  * rings can still exist such that it may be able to continue to send LACP PDUs
1953  * to potentially restore the link.
1954  */
1955 void
1956 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1957 {
1958 	mac_impl_t *mip = (mac_impl_t *)mh;
1959 	mac_ring_t *ring = (mac_ring_t *)rh;
1960 
1961 	ASSERT(MAC_PERIM_HELD(mh));
1962 	VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1963 
1964 	/*
1965 	 * We used to condition this assignment on the ring's
1966 	 * 'mr_state' being one of 'MR_INUSE'. However, there are
1967 	 * cases where this is called before the ring has any active
1968 	 * clients, and therefore is not marked as in use. Since the
1969 	 * sole purpose of this function is for aggr to make sure
1970 	 * 'mi_default_tx_ring' matches 'lg_tx_ports[0]', its
1971 	 * imperative that we update its value regardless of ring
1972 	 * state. Otherwise, we can end up in a state where
1973 	 * 'mi_default_tx_ring' points to a pseudo ring of a downed
1974 	 * port, even when 'lg_tx_ports[0]' points to a port that is
1975 	 * up.
1976 	 */
1977 	mip->mi_default_tx_ring = rh;
1978 }
1979 
1980 int
1981 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1982 {
1983 	mac_group_t *group = (mac_group_t *)gh;
1984 
1985 	return (mac_group_addmac(group, addr));
1986 }
1987 
1988 int
1989 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1990 {
1991 	mac_group_t *group = (mac_group_t *)gh;
1992 
1993 	return (mac_group_remmac(group, addr));
1994 }
1995 
1996 /*
1997  * Program the group's HW VLAN filter if it has such support.
1998  * Otherwise, the group will implicitly accept tagged traffic and
1999  * there is nothing to do.
2000  */
2001 int
2002 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid)
2003 {
2004 	mac_group_t *group = (mac_group_t *)gh;
2005 
2006 	if (!MAC_GROUP_HW_VLAN(group))
2007 		return (0);
2008 
2009 	return (mac_group_addvlan(group, vid));
2010 }
2011 
2012 int
2013 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid)
2014 {
2015 	mac_group_t *group = (mac_group_t *)gh;
2016 
2017 	if (!MAC_GROUP_HW_VLAN(group))
2018 		return (0);
2019 
2020 	return (mac_group_remvlan(group, vid));
2021 }
2022 
2023 /*
2024  * Determine if a MAC has HW VLAN support. This is a private API
2025  * consumed by aggr. In the future it might be nice to have a bitfield
2026  * in mac_capab_rings_t to track which forms of HW filtering are
2027  * supported by the MAC.
2028  */
2029 boolean_t
2030 mac_has_hw_vlan(mac_handle_t mh)
2031 {
2032 	mac_impl_t *mip = (mac_impl_t *)mh;
2033 
2034 	return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups));
2035 }
2036 
2037 /*
2038  * Get the number of Rx HW groups on this MAC.
2039  */
2040 uint_t
2041 mac_get_num_rx_groups(mac_handle_t mh)
2042 {
2043 	mac_impl_t *mip = (mac_impl_t *)mh;
2044 
2045 	ASSERT(MAC_PERIM_HELD(mh));
2046 	return (mip->mi_rx_group_count);
2047 }
2048 
2049 int
2050 mac_set_promisc(mac_handle_t mh, boolean_t value)
2051 {
2052 	mac_impl_t *mip = (mac_impl_t *)mh;
2053 
2054 	ASSERT(MAC_PERIM_HELD(mh));
2055 	return (i_mac_promisc_set(mip, value));
2056 }
2057 
2058 /*
2059  * Set the RX group to be shared/reserved. Note that the group must be
2060  * started/stopped outside of this function.
2061  */
2062 void
2063 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
2064 {
2065 	/*
2066 	 * If there is no change in the group state, just return.
2067 	 */
2068 	if (grp->mrg_state == state)
2069 		return;
2070 
2071 	switch (state) {
2072 	case MAC_GROUP_STATE_RESERVED:
2073 		/*
2074 		 * Successfully reserved the group.
2075 		 *
2076 		 * Given that there is an exclusive client controlling this
2077 		 * group, we enable the group level polling when available,
2078 		 * so that SRSs get to turn on/off individual rings they's
2079 		 * assigned to.
2080 		 */
2081 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2082 
2083 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
2084 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
2085 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2086 		}
2087 		break;
2088 
2089 	case MAC_GROUP_STATE_SHARED:
2090 		/*
2091 		 * Set all rings of this group to software classified.
2092 		 * If the group has an overriding interrupt, then re-enable it.
2093 		 */
2094 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2095 
2096 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
2097 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
2098 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2099 		}
2100 		/* The ring is not available for reservations any more */
2101 		break;
2102 
2103 	case MAC_GROUP_STATE_REGISTERED:
2104 		/* Also callable from mac_register, perim is not held */
2105 		break;
2106 
2107 	default:
2108 		ASSERT(B_FALSE);
2109 		break;
2110 	}
2111 
2112 	grp->mrg_state = state;
2113 }
2114 
2115 /*
2116  * Quiesce future hardware classified packets for the specified Rx ring
2117  */
2118 static void
2119 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
2120 {
2121 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
2122 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
2123 
2124 	mutex_enter(&rx_ring->mr_lock);
2125 	rx_ring->mr_flag |= ring_flag;
2126 	while (rx_ring->mr_refcnt != 0)
2127 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
2128 	mutex_exit(&rx_ring->mr_lock);
2129 }
2130 
2131 /*
2132  * Please see mac_tx for details about the per cpu locking scheme
2133  */
2134 static void
2135 mac_tx_lock_all(mac_client_impl_t *mcip)
2136 {
2137 	int	i;
2138 
2139 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
2140 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2141 }
2142 
2143 static void
2144 mac_tx_unlock_all(mac_client_impl_t *mcip)
2145 {
2146 	int	i;
2147 
2148 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
2149 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2150 }
2151 
2152 static void
2153 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
2154 {
2155 	int	i;
2156 
2157 	for (i = mac_tx_percpu_cnt; i > 0; i--)
2158 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2159 }
2160 
2161 static int
2162 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
2163 {
2164 	int	i;
2165 	int	refcnt = 0;
2166 
2167 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
2168 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
2169 
2170 	return (refcnt);
2171 }
2172 
2173 /*
2174  * Stop future Tx packets coming down from the client in preparation for
2175  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
2176  * of rings between clients
2177  */
2178 void
2179 mac_tx_client_block(mac_client_impl_t *mcip)
2180 {
2181 	mac_tx_lock_all(mcip);
2182 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
2183 	while (mac_tx_sum_refcnt(mcip) != 0) {
2184 		mac_tx_unlock_allbutzero(mcip);
2185 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2186 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2187 		mac_tx_lock_all(mcip);
2188 	}
2189 	mac_tx_unlock_all(mcip);
2190 }
2191 
2192 void
2193 mac_tx_client_unblock(mac_client_impl_t *mcip)
2194 {
2195 	mac_tx_lock_all(mcip);
2196 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
2197 	mac_tx_unlock_all(mcip);
2198 	/*
2199 	 * We may fail to disable flow control for the last MAC_NOTE_TX
2200 	 * notification because the MAC client is quiesced. Send the
2201 	 * notification again.
2202 	 */
2203 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
2204 }
2205 
2206 /*
2207  * Wait for an SRS to quiesce. The SRS worker will signal us when the
2208  * quiesce is done.
2209  */
2210 static void
2211 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
2212 {
2213 	mutex_enter(&srs->srs_lock);
2214 	while (!(srs->srs_state & srs_flag))
2215 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
2216 	mutex_exit(&srs->srs_lock);
2217 }
2218 
2219 /*
2220  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
2221  * works bottom up by cutting off packet flow from the bottommost point in the
2222  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
2223  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
2224  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
2225  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
2226  * for the SRS and MR flags. In the former case the threads pause waiting for
2227  * a restart, while in the latter case the threads exit. The Tx SRS teardown
2228  * is also mostly similar to the above.
2229  *
2230  * 1. Stop future hardware classified packets at the lowest level in the mac.
2231  *    Remove any hardware classification rule (CONDEMNED case) and mark the
2232  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
2233  *    from increasing. Upcalls from the driver that come through hardware
2234  *    classification will be dropped in mac_rx from now on. Then we wait for
2235  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
2236  *    sure there aren't any upcall threads from the driver through hardware
2237  *    classification. In the case of SRS teardown we also remove the
2238  *    classification rule in the driver.
2239  *
2240  * 2. Stop future software classified packets by marking the flow entry with
2241  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
2242  *    increasing. We also remove the flow entry from the table in the latter
2243  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
2244  *    that indicates there aren't any active threads using that flow entry.
2245  *
2246  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
2247  *    SRS worker thread, and the soft ring threads are quiesced in sequence
2248  *    with the SRS worker thread serving as a master controller. This
2249  *    mechansim is explained in mac_srs_worker_quiesce().
2250  *
2251  * The restart mechanism to reactivate the SRS and softrings is explained
2252  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
2253  * restart sequence.
2254  */
2255 void
2256 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2257 {
2258 	flow_entry_t	*flent = srs->srs_flent;
2259 	uint_t	mr_flag, srs_done_flag;
2260 
2261 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2262 	ASSERT(!(srs->srs_type & SRST_TX));
2263 
2264 	if (srs_quiesce_flag == SRS_CONDEMNED) {
2265 		mr_flag = MR_CONDEMNED;
2266 		srs_done_flag = SRS_CONDEMNED_DONE;
2267 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2268 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
2269 	} else {
2270 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
2271 		mr_flag = MR_QUIESCE;
2272 		srs_done_flag = SRS_QUIESCE_DONE;
2273 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2274 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
2275 	}
2276 
2277 	if (srs->srs_ring != NULL) {
2278 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
2279 	} else {
2280 		/*
2281 		 * SRS is driven by software classification. In case
2282 		 * of CONDEMNED, the top level teardown functions will
2283 		 * deal with flow removal.
2284 		 */
2285 		if (srs_quiesce_flag != SRS_CONDEMNED) {
2286 			FLOW_MARK(flent, FE_QUIESCE);
2287 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2288 		}
2289 	}
2290 
2291 	/*
2292 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2293 	 * SRS quiesce to complete. The SRS worker thread will wake us
2294 	 * up when the quiesce is complete
2295 	 */
2296 	mac_srs_signal(srs, srs_quiesce_flag);
2297 	mac_srs_quiesce_wait(srs, srs_done_flag);
2298 }
2299 
2300 /*
2301  * Remove an SRS.
2302  */
2303 void
2304 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
2305 {
2306 	flow_entry_t *flent = srs->srs_flent;
2307 	int i;
2308 
2309 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
2310 	/*
2311 	 * Locate and remove our entry in the fe_rx_srs[] array, and
2312 	 * adjust the fe_rx_srs array entries and array count by
2313 	 * moving the last entry into the vacated spot.
2314 	 */
2315 	mutex_enter(&flent->fe_lock);
2316 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2317 		if (flent->fe_rx_srs[i] == srs)
2318 			break;
2319 	}
2320 
2321 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
2322 	if (i != flent->fe_rx_srs_cnt - 1) {
2323 		flent->fe_rx_srs[i] =
2324 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2325 		i = flent->fe_rx_srs_cnt - 1;
2326 	}
2327 
2328 	flent->fe_rx_srs[i] = NULL;
2329 	flent->fe_rx_srs_cnt--;
2330 	mutex_exit(&flent->fe_lock);
2331 
2332 	mac_srs_free(srs);
2333 }
2334 
2335 static void
2336 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2337 {
2338 	mutex_enter(&srs->srs_lock);
2339 	srs->srs_state &= ~flag;
2340 	mutex_exit(&srs->srs_lock);
2341 }
2342 
2343 void
2344 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2345 {
2346 	flow_entry_t	*flent = srs->srs_flent;
2347 	mac_ring_t	*mr;
2348 
2349 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2350 	ASSERT((srs->srs_type & SRST_TX) == 0);
2351 
2352 	/*
2353 	 * This handles a change in the number of SRSs between the quiesce and
2354 	 * and restart operation of a flow.
2355 	 */
2356 	if (!SRS_QUIESCED(srs))
2357 		return;
2358 
2359 	/*
2360 	 * Signal the SRS to restart itself. Wait for the restart to complete
2361 	 * Note that we only restart the SRS if it is not marked as
2362 	 * permanently quiesced.
2363 	 */
2364 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2365 		mac_srs_signal(srs, SRS_RESTART);
2366 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2367 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2368 
2369 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2370 	}
2371 
2372 	/* Finally clear the flags to let the packets in */
2373 	mr = srs->srs_ring;
2374 	if (mr != NULL) {
2375 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2376 		/* In case the ring was stopped, safely restart it */
2377 		if (mr->mr_state != MR_INUSE)
2378 			(void) mac_start_ring(mr);
2379 	} else {
2380 		FLOW_UNMARK(flent, FE_QUIESCE);
2381 	}
2382 }
2383 
2384 /*
2385  * Temporary quiesce of a flow and associated Rx SRS.
2386  * Please see block comment above mac_rx_classify_flow_rem.
2387  */
2388 /* ARGSUSED */
2389 int
2390 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2391 {
2392 	int		i;
2393 
2394 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2395 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2396 		    SRS_QUIESCE);
2397 	}
2398 	return (0);
2399 }
2400 
2401 /*
2402  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2403  * Please see block comment above mac_rx_classify_flow_rem
2404  */
2405 /* ARGSUSED */
2406 int
2407 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2408 {
2409 	int		i;
2410 
2411 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2412 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2413 
2414 	return (0);
2415 }
2416 
2417 void
2418 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2419 {
2420 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2421 	flow_entry_t		*flent = mcip->mci_flent;
2422 	mac_impl_t		*mip = mcip->mci_mip;
2423 	mac_soft_ring_set_t	*mac_srs;
2424 	int			i;
2425 
2426 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2427 
2428 	if (flent == NULL)
2429 		return;
2430 
2431 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2432 		mac_srs = flent->fe_rx_srs[i];
2433 		mutex_enter(&mac_srs->srs_lock);
2434 		if (on)
2435 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2436 		else
2437 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2438 		mutex_exit(&mac_srs->srs_lock);
2439 	}
2440 }
2441 
2442 void
2443 mac_rx_client_quiesce(mac_client_handle_t mch)
2444 {
2445 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2446 	mac_impl_t		*mip = mcip->mci_mip;
2447 
2448 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2449 
2450 	if (MCIP_DATAPATH_SETUP(mcip)) {
2451 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2452 		    NULL);
2453 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2454 		    mac_rx_classify_flow_quiesce, NULL);
2455 	}
2456 }
2457 
2458 void
2459 mac_rx_client_restart(mac_client_handle_t mch)
2460 {
2461 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2462 	mac_impl_t		*mip = mcip->mci_mip;
2463 
2464 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2465 
2466 	if (MCIP_DATAPATH_SETUP(mcip)) {
2467 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2468 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2469 		    mac_rx_classify_flow_restart, NULL);
2470 	}
2471 }
2472 
2473 /*
2474  * This function only quiesces the Tx SRS and softring worker threads. Callers
2475  * need to make sure that there aren't any mac client threads doing current or
2476  * future transmits in the mac before calling this function.
2477  */
2478 void
2479 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2480 {
2481 	mac_client_impl_t	*mcip = srs->srs_mcip;
2482 
2483 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2484 
2485 	ASSERT(srs->srs_type & SRST_TX);
2486 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2487 	    srs_quiesce_flag == SRS_QUIESCE);
2488 
2489 	/*
2490 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2491 	 * SRS quiesce to complete. The SRS worker thread will wake us
2492 	 * up when the quiesce is complete
2493 	 */
2494 	mac_srs_signal(srs, srs_quiesce_flag);
2495 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2496 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2497 }
2498 
2499 void
2500 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2501 {
2502 	/*
2503 	 * Resizing the fanout could result in creation of new SRSs.
2504 	 * They may not necessarily be in the quiesced state in which
2505 	 * case it need be restarted
2506 	 */
2507 	if (!SRS_QUIESCED(srs))
2508 		return;
2509 
2510 	mac_srs_signal(srs, SRS_RESTART);
2511 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2512 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2513 }
2514 
2515 /*
2516  * Temporary quiesce of a flow and associated Rx SRS.
2517  * Please see block comment above mac_rx_srs_quiesce
2518  */
2519 /* ARGSUSED */
2520 int
2521 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2522 {
2523 	/*
2524 	 * The fe_tx_srs is null for a subflow on an interface that is
2525 	 * not plumbed
2526 	 */
2527 	if (flent->fe_tx_srs != NULL)
2528 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2529 	return (0);
2530 }
2531 
2532 /* ARGSUSED */
2533 int
2534 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2535 {
2536 	/*
2537 	 * The fe_tx_srs is null for a subflow on an interface that is
2538 	 * not plumbed
2539 	 */
2540 	if (flent->fe_tx_srs != NULL)
2541 		mac_tx_srs_restart(flent->fe_tx_srs);
2542 	return (0);
2543 }
2544 
2545 static void
2546 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2547 {
2548 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2549 
2550 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2551 
2552 	mac_tx_client_block(mcip);
2553 	if (MCIP_TX_SRS(mcip) != NULL) {
2554 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2555 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2556 		    mac_tx_flow_quiesce, NULL);
2557 	}
2558 }
2559 
2560 void
2561 mac_tx_client_quiesce(mac_client_handle_t mch)
2562 {
2563 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2564 }
2565 
2566 void
2567 mac_tx_client_condemn(mac_client_handle_t mch)
2568 {
2569 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2570 }
2571 
2572 void
2573 mac_tx_client_restart(mac_client_handle_t mch)
2574 {
2575 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2576 
2577 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2578 
2579 	mac_tx_client_unblock(mcip);
2580 	if (MCIP_TX_SRS(mcip) != NULL) {
2581 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2582 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2583 		    mac_tx_flow_restart, NULL);
2584 	}
2585 }
2586 
2587 void
2588 mac_tx_client_flush(mac_client_impl_t *mcip)
2589 {
2590 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2591 
2592 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2593 	mac_tx_client_restart((mac_client_handle_t)mcip);
2594 }
2595 
2596 void
2597 mac_client_quiesce(mac_client_impl_t *mcip)
2598 {
2599 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2600 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2601 }
2602 
2603 void
2604 mac_client_restart(mac_client_impl_t *mcip)
2605 {
2606 	mac_rx_client_restart((mac_client_handle_t)mcip);
2607 	mac_tx_client_restart((mac_client_handle_t)mcip);
2608 }
2609 
2610 /*
2611  * Allocate a minor number.
2612  */
2613 minor_t
2614 mac_minor_hold(boolean_t sleep)
2615 {
2616 	id_t id;
2617 
2618 	/*
2619 	 * Grab a value from the arena.
2620 	 */
2621 	atomic_inc_32(&minor_count);
2622 
2623 	if (sleep)
2624 		return ((uint_t)id_alloc(minor_ids));
2625 
2626 	if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2627 		atomic_dec_32(&minor_count);
2628 		return (0);
2629 	}
2630 
2631 	return ((uint_t)id);
2632 }
2633 
2634 /*
2635  * Release a previously allocated minor number.
2636  */
2637 void
2638 mac_minor_rele(minor_t minor)
2639 {
2640 	/*
2641 	 * Return the value to the arena.
2642 	 */
2643 	id_free(minor_ids, minor);
2644 	atomic_dec_32(&minor_count);
2645 }
2646 
2647 uint32_t
2648 mac_no_notification(mac_handle_t mh)
2649 {
2650 	mac_impl_t *mip = (mac_impl_t *)mh;
2651 
2652 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2653 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2654 }
2655 
2656 /*
2657  * Prevent any new opens of this mac in preparation for unregister
2658  */
2659 int
2660 i_mac_disable(mac_impl_t *mip)
2661 {
2662 	mac_client_impl_t	*mcip;
2663 
2664 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2665 	if (mip->mi_state_flags & MIS_DISABLED) {
2666 		/* Already disabled, return success */
2667 		rw_exit(&i_mac_impl_lock);
2668 		return (0);
2669 	}
2670 	/*
2671 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2672 	 * If so return failure. If all the other checks below pass, then
2673 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2674 	 * any new VLAN's from being created or new mac client opens of this
2675 	 * mac end point.
2676 	 */
2677 	if (mip->mi_ref > 0) {
2678 		rw_exit(&i_mac_impl_lock);
2679 		return (EBUSY);
2680 	}
2681 
2682 	/*
2683 	 * mac clients must delete all multicast groups they join before
2684 	 * closing. bcast groups are reference counted, the last client
2685 	 * to delete the group will wait till the group is physically
2686 	 * deleted. Since all clients have closed this mac end point
2687 	 * mi_bcast_ngrps must be zero at this point
2688 	 */
2689 	ASSERT(mip->mi_bcast_ngrps == 0);
2690 
2691 	/*
2692 	 * Don't let go of this if it has some flows.
2693 	 * All other code guarantees no flows are added to a disabled
2694 	 * mac, therefore it is sufficient to check for the flow table
2695 	 * only here.
2696 	 */
2697 	mcip = mac_primary_client_handle(mip);
2698 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2699 		rw_exit(&i_mac_impl_lock);
2700 		return (ENOTEMPTY);
2701 	}
2702 
2703 	mip->mi_state_flags |= MIS_DISABLED;
2704 	rw_exit(&i_mac_impl_lock);
2705 	return (0);
2706 }
2707 
2708 int
2709 mac_disable_nowait(mac_handle_t mh)
2710 {
2711 	mac_impl_t	*mip = (mac_impl_t *)mh;
2712 	int err;
2713 
2714 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2715 		return (err);
2716 	err = i_mac_disable(mip);
2717 	i_mac_perim_exit(mip);
2718 	return (err);
2719 }
2720 
2721 int
2722 mac_disable(mac_handle_t mh)
2723 {
2724 	mac_impl_t	*mip = (mac_impl_t *)mh;
2725 	int err;
2726 
2727 	i_mac_perim_enter(mip);
2728 	err = i_mac_disable(mip);
2729 	i_mac_perim_exit(mip);
2730 
2731 	/*
2732 	 * Clean up notification thread and wait for it to exit.
2733 	 */
2734 	if (err == 0)
2735 		i_mac_notify_exit(mip);
2736 
2737 	return (err);
2738 }
2739 
2740 /*
2741  * Called when the MAC instance has a non empty flow table, to de-multiplex
2742  * incoming packets to the right flow.
2743  */
2744 /* ARGSUSED */
2745 static mblk_t *
2746 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2747 {
2748 	flow_entry_t	*flent = NULL;
2749 	uint_t		flags = FLOW_INBOUND;
2750 	int		err;
2751 
2752 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2753 	if (err != 0) {
2754 		/* no registered receive function */
2755 		return (mp);
2756 	} else {
2757 		mac_client_impl_t	*mcip;
2758 
2759 		/*
2760 		 * This flent might just be an additional one on the MAC client,
2761 		 * i.e. for classification purposes (different fdesc), however
2762 		 * the resources, SRS et. al., are in the mci_flent, so if
2763 		 * this isn't the mci_flent, we need to get it.
2764 		 */
2765 		if ((mcip = flent->fe_mcip) != NULL &&
2766 		    mcip->mci_flent != flent) {
2767 			FLOW_REFRELE(flent);
2768 			flent = mcip->mci_flent;
2769 			FLOW_TRY_REFHOLD(flent, err);
2770 			if (err != 0)
2771 				return (mp);
2772 		}
2773 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2774 		    B_FALSE);
2775 		FLOW_REFRELE(flent);
2776 	}
2777 	return (NULL);
2778 }
2779 
2780 mblk_t *
2781 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2782 {
2783 	mac_impl_t	*mip = (mac_impl_t *)mh;
2784 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2785 
2786 	/*
2787 	 * We walk the chain and attempt to classify each packet.
2788 	 * The packets that couldn't be classified will be returned
2789 	 * back to the caller.
2790 	 */
2791 	bp = mp_chain;
2792 	bpp = &list;
2793 	while (bp != NULL) {
2794 		bp1 = bp;
2795 		bp = bp->b_next;
2796 		bp1->b_next = NULL;
2797 
2798 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2799 			*bpp = bp1;
2800 			bpp = &bp1->b_next;
2801 		}
2802 	}
2803 	return (list);
2804 }
2805 
2806 static int
2807 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2808 {
2809 	mac_ring_handle_t ring = arg;
2810 
2811 	if (flent->fe_tx_srs)
2812 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2813 	return (0);
2814 }
2815 
2816 void
2817 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2818 {
2819 	mac_client_impl_t	*cclient;
2820 	mac_soft_ring_set_t	*mac_srs;
2821 
2822 	/*
2823 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2824 	 * If there are any clients mi_disabled must be B_FALSE and can't
2825 	 * get set since there are clients. If there aren't any clients we
2826 	 * don't do anything. In any case the mip has to be valid. The driver
2827 	 * must make sure that it goes single threaded (with respect to mac
2828 	 * calls) and wait for all pending mac calls to finish before calling
2829 	 * mac_unregister.
2830 	 */
2831 	rw_enter(&i_mac_impl_lock, RW_READER);
2832 	if (mip->mi_state_flags & MIS_DISABLED) {
2833 		rw_exit(&i_mac_impl_lock);
2834 		return;
2835 	}
2836 
2837 	/*
2838 	 * Get MAC tx srs from walking mac_client_handle list.
2839 	 */
2840 	rw_enter(&mip->mi_rw_lock, RW_READER);
2841 	for (cclient = mip->mi_clients_list; cclient != NULL;
2842 	    cclient = cclient->mci_client_next) {
2843 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2844 			mac_tx_srs_wakeup(mac_srs, ring);
2845 		} else {
2846 			/*
2847 			 * Aggr opens underlying ports in exclusive mode
2848 			 * and registers flow control callbacks using
2849 			 * mac_tx_client_notify(). When opened in
2850 			 * exclusive mode, Tx SRS won't be created
2851 			 * during mac_unicast_add().
2852 			 */
2853 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2854 				mac_tx_invoke_callbacks(cclient,
2855 				    (mac_tx_cookie_t)ring);
2856 			}
2857 		}
2858 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2859 		    mac_tx_flow_srs_wakeup, ring);
2860 	}
2861 	rw_exit(&mip->mi_rw_lock);
2862 	rw_exit(&i_mac_impl_lock);
2863 }
2864 
2865 /* ARGSUSED */
2866 void
2867 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2868     boolean_t add)
2869 {
2870 	mac_impl_t *mip = (mac_impl_t *)mh;
2871 
2872 	i_mac_perim_enter((mac_impl_t *)mh);
2873 	/*
2874 	 * If no specific refresh function was given then default to the
2875 	 * driver's m_multicst entry point.
2876 	 */
2877 	if (refresh == NULL) {
2878 		refresh = mip->mi_multicst;
2879 		arg = mip->mi_driver;
2880 	}
2881 
2882 	mac_bcast_refresh(mip, refresh, arg, add);
2883 	i_mac_perim_exit((mac_impl_t *)mh);
2884 }
2885 
2886 void
2887 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2888 {
2889 	mac_impl_t	*mip = (mac_impl_t *)mh;
2890 
2891 	/*
2892 	 * If no specific refresh function was given then default to the
2893 	 * driver's m_promisc entry point.
2894 	 */
2895 	if (refresh == NULL) {
2896 		refresh = mip->mi_setpromisc;
2897 		arg = mip->mi_driver;
2898 	}
2899 	ASSERT(refresh != NULL);
2900 
2901 	/*
2902 	 * Call the refresh function with the current promiscuity.
2903 	 */
2904 	refresh(arg, (mip->mi_devpromisc != 0));
2905 }
2906 
2907 /*
2908  * The mac client requests that the mac not to change its margin size to
2909  * be less than the specified value.  If "current" is B_TRUE, then the client
2910  * requests the mac not to change its margin size to be smaller than the
2911  * current size. Further, return the current margin size value in this case.
2912  *
2913  * We keep every requested size in an ordered list from largest to smallest.
2914  */
2915 int
2916 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2917 {
2918 	mac_impl_t		*mip = (mac_impl_t *)mh;
2919 	mac_margin_req_t	**pp, *p;
2920 	int			err = 0;
2921 
2922 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2923 	if (current)
2924 		*marginp = mip->mi_margin;
2925 
2926 	/*
2927 	 * If the current margin value cannot satisfy the margin requested,
2928 	 * return ENOTSUP directly.
2929 	 */
2930 	if (*marginp > mip->mi_margin) {
2931 		err = ENOTSUP;
2932 		goto done;
2933 	}
2934 
2935 	/*
2936 	 * Check whether the given margin is already in the list. If so,
2937 	 * bump the reference count.
2938 	 */
2939 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2940 		if (p->mmr_margin == *marginp) {
2941 			/*
2942 			 * The margin requested is already in the list,
2943 			 * so just bump the reference count.
2944 			 */
2945 			p->mmr_ref++;
2946 			goto done;
2947 		}
2948 		if (p->mmr_margin < *marginp)
2949 			break;
2950 	}
2951 
2952 
2953 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2954 	p->mmr_margin = *marginp;
2955 	p->mmr_ref++;
2956 	p->mmr_nextp = *pp;
2957 	*pp = p;
2958 
2959 done:
2960 	rw_exit(&(mip->mi_rw_lock));
2961 	return (err);
2962 }
2963 
2964 /*
2965  * The mac client requests to cancel its previous mac_margin_add() request.
2966  * We remove the requested margin size from the list.
2967  */
2968 int
2969 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2970 {
2971 	mac_impl_t		*mip = (mac_impl_t *)mh;
2972 	mac_margin_req_t	**pp, *p;
2973 	int			err = 0;
2974 
2975 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2976 	/*
2977 	 * Find the entry in the list for the given margin.
2978 	 */
2979 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2980 		if (p->mmr_margin == margin) {
2981 			if (--p->mmr_ref == 0)
2982 				break;
2983 
2984 			/*
2985 			 * There is still a reference to this address so
2986 			 * there's nothing more to do.
2987 			 */
2988 			goto done;
2989 		}
2990 	}
2991 
2992 	/*
2993 	 * We did not find an entry for the given margin.
2994 	 */
2995 	if (p == NULL) {
2996 		err = ENOENT;
2997 		goto done;
2998 	}
2999 
3000 	ASSERT(p->mmr_ref == 0);
3001 
3002 	/*
3003 	 * Remove it from the list.
3004 	 */
3005 	*pp = p->mmr_nextp;
3006 	kmem_free(p, sizeof (mac_margin_req_t));
3007 done:
3008 	rw_exit(&(mip->mi_rw_lock));
3009 	return (err);
3010 }
3011 
3012 boolean_t
3013 mac_margin_update(mac_handle_t mh, uint32_t margin)
3014 {
3015 	mac_impl_t	*mip = (mac_impl_t *)mh;
3016 	uint32_t	margin_needed = 0;
3017 
3018 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
3019 
3020 	if (mip->mi_mmrp != NULL)
3021 		margin_needed = mip->mi_mmrp->mmr_margin;
3022 
3023 	if (margin_needed <= margin)
3024 		mip->mi_margin = margin;
3025 
3026 	rw_exit(&(mip->mi_rw_lock));
3027 
3028 	if (margin_needed <= margin)
3029 		i_mac_notify(mip, MAC_NOTE_MARGIN);
3030 
3031 	return (margin_needed <= margin);
3032 }
3033 
3034 /*
3035  * MAC clients use this interface to request that a MAC device not change its
3036  * MTU below the specified amount. At this time, that amount must be within the
3037  * range of the device's current minimum and the device's current maximum. eg. a
3038  * client cannot request a 3000 byte MTU when the device's MTU is currently
3039  * 2000.
3040  *
3041  * If "current" is set to B_TRUE, then the request is to simply to reserve the
3042  * current underlying mac's maximum for this mac client and return it in mtup.
3043  */
3044 int
3045 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
3046 {
3047 	mac_impl_t		*mip = (mac_impl_t *)mh;
3048 	mac_mtu_req_t		*prev, *cur;
3049 	mac_propval_range_t	mpr;
3050 	int			err;
3051 
3052 	i_mac_perim_enter(mip);
3053 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3054 
3055 	if (current == B_TRUE)
3056 		*mtup = mip->mi_sdu_max;
3057 	mpr.mpr_count = 1;
3058 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
3059 	if (err != 0) {
3060 		rw_exit(&mip->mi_rw_lock);
3061 		i_mac_perim_exit(mip);
3062 		return (err);
3063 	}
3064 
3065 	if (*mtup > mip->mi_sdu_max ||
3066 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
3067 		rw_exit(&mip->mi_rw_lock);
3068 		i_mac_perim_exit(mip);
3069 		return (ENOTSUP);
3070 	}
3071 
3072 	prev = NULL;
3073 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3074 		if (*mtup == cur->mtr_mtu) {
3075 			cur->mtr_ref++;
3076 			rw_exit(&mip->mi_rw_lock);
3077 			i_mac_perim_exit(mip);
3078 			return (0);
3079 		}
3080 
3081 		if (*mtup > cur->mtr_mtu)
3082 			break;
3083 
3084 		prev = cur;
3085 	}
3086 
3087 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
3088 	cur->mtr_mtu = *mtup;
3089 	cur->mtr_ref = 1;
3090 	if (prev != NULL) {
3091 		cur->mtr_nextp = prev->mtr_nextp;
3092 		prev->mtr_nextp = cur;
3093 	} else {
3094 		cur->mtr_nextp = mip->mi_mtrp;
3095 		mip->mi_mtrp = cur;
3096 	}
3097 
3098 	rw_exit(&mip->mi_rw_lock);
3099 	i_mac_perim_exit(mip);
3100 	return (0);
3101 }
3102 
3103 int
3104 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
3105 {
3106 	mac_impl_t *mip = (mac_impl_t *)mh;
3107 	mac_mtu_req_t *cur, *prev;
3108 
3109 	i_mac_perim_enter(mip);
3110 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3111 
3112 	prev = NULL;
3113 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3114 		if (cur->mtr_mtu == mtu) {
3115 			ASSERT(cur->mtr_ref > 0);
3116 			cur->mtr_ref--;
3117 			if (cur->mtr_ref == 0) {
3118 				if (prev == NULL) {
3119 					mip->mi_mtrp = cur->mtr_nextp;
3120 				} else {
3121 					prev->mtr_nextp = cur->mtr_nextp;
3122 				}
3123 				kmem_free(cur, sizeof (mac_mtu_req_t));
3124 			}
3125 			rw_exit(&mip->mi_rw_lock);
3126 			i_mac_perim_exit(mip);
3127 			return (0);
3128 		}
3129 
3130 		prev = cur;
3131 	}
3132 
3133 	rw_exit(&mip->mi_rw_lock);
3134 	i_mac_perim_exit(mip);
3135 	return (ENOENT);
3136 }
3137 
3138 /*
3139  * MAC Type Plugin functions.
3140  */
3141 
3142 mactype_t *
3143 mactype_getplugin(const char *pname)
3144 {
3145 	mactype_t	*mtype = NULL;
3146 	boolean_t	tried_modload = B_FALSE;
3147 
3148 	mutex_enter(&i_mactype_lock);
3149 
3150 find_registered_mactype:
3151 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
3152 	    (mod_hash_val_t *)&mtype) != 0) {
3153 		if (!tried_modload) {
3154 			/*
3155 			 * If the plugin has not yet been loaded, then
3156 			 * attempt to load it now.  If modload() succeeds,
3157 			 * the plugin should have registered using
3158 			 * mactype_register(), in which case we can go back
3159 			 * and attempt to find it again.
3160 			 */
3161 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
3162 				tried_modload = B_TRUE;
3163 				goto find_registered_mactype;
3164 			}
3165 		}
3166 	} else {
3167 		/*
3168 		 * Note that there's no danger that the plugin we've loaded
3169 		 * could be unloaded between the modload() step and the
3170 		 * reference count bump here, as we're holding
3171 		 * i_mactype_lock, which mactype_unregister() also holds.
3172 		 */
3173 		atomic_inc_32(&mtype->mt_ref);
3174 	}
3175 
3176 	mutex_exit(&i_mactype_lock);
3177 	return (mtype);
3178 }
3179 
3180 mactype_register_t *
3181 mactype_alloc(uint_t mactype_version)
3182 {
3183 	mactype_register_t *mtrp;
3184 
3185 	/*
3186 	 * Make sure there isn't a version mismatch between the plugin and
3187 	 * the framework.  In the future, if multiple versions are
3188 	 * supported, this check could become more sophisticated.
3189 	 */
3190 	if (mactype_version != MACTYPE_VERSION)
3191 		return (NULL);
3192 
3193 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
3194 	mtrp->mtr_version = mactype_version;
3195 	return (mtrp);
3196 }
3197 
3198 void
3199 mactype_free(mactype_register_t *mtrp)
3200 {
3201 	kmem_free(mtrp, sizeof (mactype_register_t));
3202 }
3203 
3204 int
3205 mactype_register(mactype_register_t *mtrp)
3206 {
3207 	mactype_t	*mtp;
3208 	mactype_ops_t	*ops = mtrp->mtr_ops;
3209 
3210 	/* Do some sanity checking before we register this MAC type. */
3211 	if (mtrp->mtr_ident == NULL || ops == NULL)
3212 		return (EINVAL);
3213 
3214 	/*
3215 	 * Verify that all mandatory callbacks are set in the ops
3216 	 * vector.
3217 	 */
3218 	if (ops->mtops_unicst_verify == NULL ||
3219 	    ops->mtops_multicst_verify == NULL ||
3220 	    ops->mtops_sap_verify == NULL ||
3221 	    ops->mtops_header == NULL ||
3222 	    ops->mtops_header_info == NULL) {
3223 		return (EINVAL);
3224 	}
3225 
3226 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
3227 	mtp->mt_ident = mtrp->mtr_ident;
3228 	mtp->mt_ops = *ops;
3229 	mtp->mt_type = mtrp->mtr_mactype;
3230 	mtp->mt_nativetype = mtrp->mtr_nativetype;
3231 	mtp->mt_addr_length = mtrp->mtr_addrlen;
3232 	if (mtrp->mtr_brdcst_addr != NULL) {
3233 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
3234 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
3235 		    mtrp->mtr_addrlen);
3236 	}
3237 
3238 	mtp->mt_stats = mtrp->mtr_stats;
3239 	mtp->mt_statcount = mtrp->mtr_statcount;
3240 
3241 	mtp->mt_mapping = mtrp->mtr_mapping;
3242 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
3243 
3244 	if (mod_hash_insert(i_mactype_hash,
3245 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
3246 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3247 		kmem_free(mtp, sizeof (*mtp));
3248 		return (EEXIST);
3249 	}
3250 	return (0);
3251 }
3252 
3253 int
3254 mactype_unregister(const char *ident)
3255 {
3256 	mactype_t	*mtp;
3257 	mod_hash_val_t	val;
3258 	int		err;
3259 
3260 	/*
3261 	 * Let's not allow MAC drivers to use this plugin while we're
3262 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
3263 	 * plugin from unregistering while a MAC driver is attempting to
3264 	 * hold a reference to it in i_mactype_getplugin().
3265 	 */
3266 	mutex_enter(&i_mactype_lock);
3267 
3268 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
3269 	    (mod_hash_val_t *)&mtp)) != 0) {
3270 		/* A plugin is trying to unregister, but it never registered. */
3271 		err = ENXIO;
3272 		goto done;
3273 	}
3274 
3275 	if (mtp->mt_ref != 0) {
3276 		err = EBUSY;
3277 		goto done;
3278 	}
3279 
3280 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
3281 	ASSERT(err == 0);
3282 	if (err != 0) {
3283 		/* This should never happen, thus the ASSERT() above. */
3284 		err = EINVAL;
3285 		goto done;
3286 	}
3287 	ASSERT(mtp == (mactype_t *)val);
3288 
3289 	if (mtp->mt_brdcst_addr != NULL)
3290 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3291 	kmem_free(mtp, sizeof (mactype_t));
3292 done:
3293 	mutex_exit(&i_mactype_lock);
3294 	return (err);
3295 }
3296 
3297 /*
3298  * Checks the size of the value size specified for a property as
3299  * part of a property operation. Returns B_TRUE if the size is
3300  * correct, B_FALSE otherwise.
3301  */
3302 boolean_t
3303 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
3304 {
3305 	uint_t minsize = 0;
3306 
3307 	if (is_range)
3308 		return (valsize >= sizeof (mac_propval_range_t));
3309 
3310 	switch (id) {
3311 	case MAC_PROP_ZONE:
3312 		minsize = sizeof (dld_ioc_zid_t);
3313 		break;
3314 	case MAC_PROP_AUTOPUSH:
3315 		if (valsize != 0)
3316 			minsize = sizeof (struct dlautopush);
3317 		break;
3318 	case MAC_PROP_TAGMODE:
3319 		minsize = sizeof (link_tagmode_t);
3320 		break;
3321 	case MAC_PROP_RESOURCE:
3322 	case MAC_PROP_RESOURCE_EFF:
3323 		minsize = sizeof (mac_resource_props_t);
3324 		break;
3325 	case MAC_PROP_DUPLEX:
3326 		minsize = sizeof (link_duplex_t);
3327 		break;
3328 	case MAC_PROP_SPEED:
3329 		minsize = sizeof (uint64_t);
3330 		break;
3331 	case MAC_PROP_STATUS:
3332 		minsize = sizeof (link_state_t);
3333 		break;
3334 	case MAC_PROP_AUTONEG:
3335 	case MAC_PROP_EN_AUTONEG:
3336 		minsize = sizeof (uint8_t);
3337 		break;
3338 	case MAC_PROP_MTU:
3339 	case MAC_PROP_LLIMIT:
3340 	case MAC_PROP_LDECAY:
3341 		minsize = sizeof (uint32_t);
3342 		break;
3343 	case MAC_PROP_FLOWCTRL:
3344 		minsize = sizeof (link_flowctrl_t);
3345 		break;
3346 	case MAC_PROP_ADV_FEC_CAP:
3347 	case MAC_PROP_EN_FEC_CAP:
3348 		minsize = sizeof (link_fec_t);
3349 		break;
3350 	case MAC_PROP_ADV_400GFDX_CAP:
3351 	case MAC_PROP_EN_400GFDX_CAP:
3352 	case MAC_PROP_ADV_200GFDX_CAP:
3353 	case MAC_PROP_EN_200GFDX_CAP:
3354 	case MAC_PROP_ADV_100GFDX_CAP:
3355 	case MAC_PROP_EN_100GFDX_CAP:
3356 	case MAC_PROP_ADV_50GFDX_CAP:
3357 	case MAC_PROP_EN_50GFDX_CAP:
3358 	case MAC_PROP_ADV_40GFDX_CAP:
3359 	case MAC_PROP_EN_40GFDX_CAP:
3360 	case MAC_PROP_ADV_25GFDX_CAP:
3361 	case MAC_PROP_EN_25GFDX_CAP:
3362 	case MAC_PROP_ADV_10GFDX_CAP:
3363 	case MAC_PROP_EN_10GFDX_CAP:
3364 	case MAC_PROP_ADV_5000FDX_CAP:
3365 	case MAC_PROP_EN_5000FDX_CAP:
3366 	case MAC_PROP_ADV_2500FDX_CAP:
3367 	case MAC_PROP_EN_2500FDX_CAP:
3368 	case MAC_PROP_ADV_1000HDX_CAP:
3369 	case MAC_PROP_EN_1000HDX_CAP:
3370 	case MAC_PROP_ADV_100FDX_CAP:
3371 	case MAC_PROP_EN_100FDX_CAP:
3372 	case MAC_PROP_ADV_100T4_CAP:
3373 	case MAC_PROP_EN_100T4_CAP:
3374 	case MAC_PROP_ADV_100HDX_CAP:
3375 	case MAC_PROP_EN_100HDX_CAP:
3376 	case MAC_PROP_ADV_10FDX_CAP:
3377 	case MAC_PROP_EN_10FDX_CAP:
3378 	case MAC_PROP_ADV_10HDX_CAP:
3379 	case MAC_PROP_EN_10HDX_CAP:
3380 		minsize = sizeof (uint8_t);
3381 		break;
3382 	case MAC_PROP_PVID:
3383 		minsize = sizeof (uint16_t);
3384 		break;
3385 	case MAC_PROP_IPTUN_HOPLIMIT:
3386 		minsize = sizeof (uint32_t);
3387 		break;
3388 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3389 		minsize = sizeof (uint32_t);
3390 		break;
3391 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3392 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3393 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3394 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3395 		minsize = sizeof (uint_t);
3396 		break;
3397 	case MAC_PROP_WL_ESSID:
3398 		minsize = sizeof (wl_linkstatus_t);
3399 		break;
3400 	case MAC_PROP_WL_BSSID:
3401 		minsize = sizeof (wl_bssid_t);
3402 		break;
3403 	case MAC_PROP_WL_BSSTYPE:
3404 		minsize = sizeof (wl_bss_type_t);
3405 		break;
3406 	case MAC_PROP_WL_LINKSTATUS:
3407 		minsize = sizeof (wl_linkstatus_t);
3408 		break;
3409 	case MAC_PROP_WL_DESIRED_RATES:
3410 		minsize = sizeof (wl_rates_t);
3411 		break;
3412 	case MAC_PROP_WL_SUPPORTED_RATES:
3413 		minsize = sizeof (wl_rates_t);
3414 		break;
3415 	case MAC_PROP_WL_AUTH_MODE:
3416 		minsize = sizeof (wl_authmode_t);
3417 		break;
3418 	case MAC_PROP_WL_ENCRYPTION:
3419 		minsize = sizeof (wl_encryption_t);
3420 		break;
3421 	case MAC_PROP_WL_RSSI:
3422 		minsize = sizeof (wl_rssi_t);
3423 		break;
3424 	case MAC_PROP_WL_PHY_CONFIG:
3425 		minsize = sizeof (wl_phy_conf_t);
3426 		break;
3427 	case MAC_PROP_WL_CAPABILITY:
3428 		minsize = sizeof (wl_capability_t);
3429 		break;
3430 	case MAC_PROP_WL_WPA:
3431 		minsize = sizeof (wl_wpa_t);
3432 		break;
3433 	case MAC_PROP_WL_SCANRESULTS:
3434 		minsize = sizeof (wl_wpa_ess_t);
3435 		break;
3436 	case MAC_PROP_WL_POWER_MODE:
3437 		minsize = sizeof (wl_ps_mode_t);
3438 		break;
3439 	case MAC_PROP_WL_RADIO:
3440 		minsize = sizeof (wl_radio_t);
3441 		break;
3442 	case MAC_PROP_WL_ESS_LIST:
3443 		minsize = sizeof (wl_ess_list_t);
3444 		break;
3445 	case MAC_PROP_WL_KEY_TAB:
3446 		minsize = sizeof (wl_wep_key_tab_t);
3447 		break;
3448 	case MAC_PROP_WL_CREATE_IBSS:
3449 		minsize = sizeof (wl_create_ibss_t);
3450 		break;
3451 	case MAC_PROP_WL_SETOPTIE:
3452 		minsize = sizeof (wl_wpa_ie_t);
3453 		break;
3454 	case MAC_PROP_WL_DELKEY:
3455 		minsize = sizeof (wl_del_key_t);
3456 		break;
3457 	case MAC_PROP_WL_KEY:
3458 		minsize = sizeof (wl_key_t);
3459 		break;
3460 	case MAC_PROP_WL_MLME:
3461 		minsize = sizeof (wl_mlme_t);
3462 		break;
3463 	case MAC_PROP_VN_PROMISC_FILTERED:
3464 		minsize = sizeof (boolean_t);
3465 		break;
3466 	case MAC_PROP_MEDIA:
3467 		/*
3468 		 * Our assumption is that each class of device uses an enum and
3469 		 * that all enums will be the same size so it is OK to use a
3470 		 * single one.
3471 		 */
3472 		minsize = sizeof (mac_ether_media_t);
3473 		break;
3474 	}
3475 
3476 	return (valsize >= minsize);
3477 }
3478 
3479 /*
3480  * mac_set_prop() sets MAC or hardware driver properties:
3481  *
3482  * - MAC-managed properties such as resource properties include maxbw,
3483  *   priority, and cpu binding list, as well as the default port VID
3484  *   used by bridging. These properties are consumed by the MAC layer
3485  *   itself and not passed down to the driver. For resource control
3486  *   properties, this function invokes mac_set_resources() which will
3487  *   cache the property value in mac_impl_t and may call
3488  *   mac_client_set_resource() to update property value of the primary
3489  *   mac client, if it exists.
3490  *
3491  * - Properties which act on the hardware and must be passed to the
3492  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3493  */
3494 int
3495 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3496     uint_t valsize)
3497 {
3498 	int err = ENOTSUP;
3499 	mac_impl_t *mip = (mac_impl_t *)mh;
3500 
3501 	ASSERT(MAC_PERIM_HELD(mh));
3502 
3503 	switch (id) {
3504 	case MAC_PROP_RESOURCE: {
3505 		mac_resource_props_t *mrp;
3506 
3507 		/* call mac_set_resources() for MAC properties */
3508 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3509 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3510 		bcopy(val, mrp, sizeof (*mrp));
3511 		err = mac_set_resources(mh, mrp);
3512 		kmem_free(mrp, sizeof (*mrp));
3513 		break;
3514 	}
3515 
3516 	case MAC_PROP_PVID:
3517 		ASSERT(valsize >= sizeof (uint16_t));
3518 		if (mip->mi_state_flags & MIS_IS_VNIC)
3519 			return (EINVAL);
3520 		err = mac_set_pvid(mh, *(uint16_t *)val);
3521 		break;
3522 
3523 	case MAC_PROP_MTU: {
3524 		uint32_t mtu;
3525 
3526 		ASSERT(valsize >= sizeof (uint32_t));
3527 		bcopy(val, &mtu, sizeof (mtu));
3528 		err = mac_set_mtu(mh, mtu, NULL);
3529 		break;
3530 	}
3531 
3532 	case MAC_PROP_LLIMIT:
3533 	case MAC_PROP_LDECAY: {
3534 		uint32_t learnval;
3535 
3536 		if (valsize < sizeof (learnval) ||
3537 		    (mip->mi_state_flags & MIS_IS_VNIC))
3538 			return (EINVAL);
3539 		bcopy(val, &learnval, sizeof (learnval));
3540 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3541 			return (EINVAL);
3542 		if (id == MAC_PROP_LLIMIT)
3543 			mip->mi_llimit = learnval;
3544 		else
3545 			mip->mi_ldecay = learnval;
3546 		err = 0;
3547 		break;
3548 	}
3549 
3550 	case MAC_PROP_ADV_FEC_CAP:
3551 	case MAC_PROP_EN_FEC_CAP: {
3552 		link_fec_t fec;
3553 
3554 		ASSERT(valsize >= sizeof (link_fec_t));
3555 
3556 		/*
3557 		 * fec cannot be zero, and auto must be set exclusively.
3558 		 */
3559 		bcopy(val, &fec, sizeof (link_fec_t));
3560 		if (fec == 0)
3561 			return (EINVAL);
3562 		if ((fec & LINK_FEC_AUTO) != 0 && (fec & ~LINK_FEC_AUTO) != 0)
3563 			return (EINVAL);
3564 
3565 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3566 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3567 			    name, id, valsize, val);
3568 		}
3569 		break;
3570 	}
3571 
3572 	default:
3573 		/* For other driver properties, call driver's callback */
3574 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3575 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3576 			    name, id, valsize, val);
3577 		}
3578 	}
3579 	return (err);
3580 }
3581 
3582 /*
3583  * mac_get_prop() gets MAC or device driver properties.
3584  *
3585  * If the property is a driver property, mac_get_prop() calls driver's callback
3586  * entry point to get it.
3587  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3588  * which returns the cached value in mac_impl_t.
3589  */
3590 int
3591 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3592     uint_t valsize)
3593 {
3594 	int err = ENOTSUP;
3595 	mac_impl_t *mip = (mac_impl_t *)mh;
3596 	uint_t	rings;
3597 	uint_t	vlinks;
3598 
3599 	bzero(val, valsize);
3600 
3601 	switch (id) {
3602 	case MAC_PROP_RESOURCE: {
3603 		mac_resource_props_t *mrp;
3604 
3605 		/* If mac property, read from cache */
3606 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3607 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3608 		mac_get_resources(mh, mrp);
3609 		bcopy(mrp, val, sizeof (*mrp));
3610 		kmem_free(mrp, sizeof (*mrp));
3611 		return (0);
3612 	}
3613 	case MAC_PROP_RESOURCE_EFF: {
3614 		mac_resource_props_t *mrp;
3615 
3616 		/* If mac effective property, read from client */
3617 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3618 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3619 		mac_get_effective_resources(mh, mrp);
3620 		bcopy(mrp, val, sizeof (*mrp));
3621 		kmem_free(mrp, sizeof (*mrp));
3622 		return (0);
3623 	}
3624 
3625 	case MAC_PROP_PVID:
3626 		ASSERT(valsize >= sizeof (uint16_t));
3627 		if (mip->mi_state_flags & MIS_IS_VNIC)
3628 			return (EINVAL);
3629 		*(uint16_t *)val = mac_get_pvid(mh);
3630 		return (0);
3631 
3632 	case MAC_PROP_LLIMIT:
3633 	case MAC_PROP_LDECAY:
3634 		ASSERT(valsize >= sizeof (uint32_t));
3635 		if (mip->mi_state_flags & MIS_IS_VNIC)
3636 			return (EINVAL);
3637 		if (id == MAC_PROP_LLIMIT)
3638 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3639 		else
3640 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3641 		return (0);
3642 
3643 	case MAC_PROP_MTU: {
3644 		uint32_t sdu;
3645 
3646 		ASSERT(valsize >= sizeof (uint32_t));
3647 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3648 		bcopy(&sdu, val, sizeof (sdu));
3649 
3650 		return (0);
3651 	}
3652 	case MAC_PROP_STATUS: {
3653 		link_state_t link_state;
3654 
3655 		if (valsize < sizeof (link_state))
3656 			return (EINVAL);
3657 		link_state = mac_link_get(mh);
3658 		bcopy(&link_state, val, sizeof (link_state));
3659 
3660 		return (0);
3661 	}
3662 
3663 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3664 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3665 		ASSERT(valsize >= sizeof (uint_t));
3666 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3667 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3668 		bcopy(&rings, val, sizeof (uint_t));
3669 		return (0);
3670 
3671 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3672 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3673 		ASSERT(valsize >= sizeof (uint_t));
3674 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3675 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3676 		bcopy(&vlinks, val, sizeof (uint_t));
3677 		return (0);
3678 
3679 	case MAC_PROP_RXRINGSRANGE:
3680 	case MAC_PROP_TXRINGSRANGE:
3681 		/*
3682 		 * The value for these properties are returned through
3683 		 * the MAC_PROP_RESOURCE property.
3684 		 */
3685 		return (0);
3686 
3687 	default:
3688 		break;
3689 
3690 	}
3691 
3692 	/* If driver property, request from driver */
3693 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3694 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3695 		    valsize, val);
3696 	}
3697 
3698 	return (err);
3699 }
3700 
3701 /*
3702  * Helper function to initialize the range structure for use in
3703  * mac_get_prop. If the type can be other than uint32, we can
3704  * pass that as an arg.
3705  */
3706 static void
3707 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3708 {
3709 	range->mpr_count = 1;
3710 	range->mpr_type = MAC_PROPVAL_UINT32;
3711 	range->mpr_range_uint32[0].mpur_min = min;
3712 	range->mpr_range_uint32[0].mpur_max = max;
3713 }
3714 
3715 /*
3716  * Returns information about the specified property, such as default
3717  * values or permissions.
3718  */
3719 int
3720 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3721     void *default_val, uint_t default_size, mac_propval_range_t *range,
3722     uint_t *perm)
3723 {
3724 	mac_prop_info_state_t state;
3725 	mac_impl_t *mip = (mac_impl_t *)mh;
3726 	uint_t	max;
3727 
3728 	/*
3729 	 * A property is read/write by default unless the driver says
3730 	 * otherwise.
3731 	 */
3732 	if (perm != NULL)
3733 		*perm = MAC_PROP_PERM_RW;
3734 
3735 	if (default_val != NULL)
3736 		bzero(default_val, default_size);
3737 
3738 	/*
3739 	 * First, handle framework properties for which we don't need to
3740 	 * involve the driver.
3741 	 */
3742 	switch (id) {
3743 	case MAC_PROP_RESOURCE:
3744 	case MAC_PROP_PVID:
3745 	case MAC_PROP_LLIMIT:
3746 	case MAC_PROP_LDECAY:
3747 		return (0);
3748 
3749 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3750 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3751 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3752 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3753 		if (perm != NULL)
3754 			*perm = MAC_PROP_PERM_READ;
3755 		return (0);
3756 
3757 	case MAC_PROP_RXRINGSRANGE:
3758 	case MAC_PROP_TXRINGSRANGE:
3759 		/*
3760 		 * Currently, we support range for RX and TX rings properties.
3761 		 * When we extend this support to maxbw, cpus and priority,
3762 		 * we should move this to mac_get_resources.
3763 		 * There is no default value for RX or TX rings.
3764 		 */
3765 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3766 		    mac_is_vnic_primary(mh)) {
3767 			/*
3768 			 * We don't support setting rings for a VLAN
3769 			 * data link because it shares its ring with the
3770 			 * primary MAC client.
3771 			 */
3772 			if (perm != NULL)
3773 				*perm = MAC_PROP_PERM_READ;
3774 			if (range != NULL)
3775 				range->mpr_count = 0;
3776 		} else if (range != NULL) {
3777 			if (mip->mi_state_flags & MIS_IS_VNIC)
3778 				mh = mac_get_lower_mac_handle(mh);
3779 			mip = (mac_impl_t *)mh;
3780 			if ((id == MAC_PROP_RXRINGSRANGE &&
3781 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3782 			    (id == MAC_PROP_TXRINGSRANGE &&
3783 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3784 				if (id == MAC_PROP_RXRINGSRANGE) {
3785 					if ((mac_rxhwlnksavail_get(mh) +
3786 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3787 						/*
3788 						 * doesn't support groups or
3789 						 * rings
3790 						 */
3791 						range->mpr_count = 0;
3792 					} else {
3793 						/*
3794 						 * supports specifying groups,
3795 						 * but not rings
3796 						 */
3797 						_mac_set_range(range, 0, 0);
3798 					}
3799 				} else {
3800 					if ((mac_txhwlnksavail_get(mh) +
3801 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3802 						/*
3803 						 * doesn't support groups or
3804 						 * rings
3805 						 */
3806 						range->mpr_count = 0;
3807 					} else {
3808 						/*
3809 						 * supports specifying groups,
3810 						 * but not rings
3811 						 */
3812 						_mac_set_range(range, 0, 0);
3813 					}
3814 				}
3815 			} else {
3816 				max = id == MAC_PROP_RXRINGSRANGE ?
3817 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3818 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3819 				if (max <= 1) {
3820 					/*
3821 					 * doesn't support groups or
3822 					 * rings
3823 					 */
3824 					range->mpr_count = 0;
3825 				} else  {
3826 					/*
3827 					 * -1 because we have to leave out the
3828 					 * default ring.
3829 					 */
3830 					_mac_set_range(range, 1, max - 1);
3831 				}
3832 			}
3833 		}
3834 		return (0);
3835 
3836 	case MAC_PROP_STATUS:
3837 	case MAC_PROP_MEDIA:
3838 		if (perm != NULL)
3839 			*perm = MAC_PROP_PERM_READ;
3840 		return (0);
3841 	}
3842 
3843 	/*
3844 	 * Get the property info from the driver if it implements the
3845 	 * property info entry point.
3846 	 */
3847 	bzero(&state, sizeof (state));
3848 
3849 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3850 		state.pr_default = default_val;
3851 		state.pr_default_size = default_size;
3852 
3853 		/*
3854 		 * The caller specifies the maximum number of ranges
3855 		 * it can accomodate using mpr_count. We don't touch
3856 		 * this value until the driver returns from its
3857 		 * mc_propinfo() callback, and ensure we don't exceed
3858 		 * this number of range as the driver defines
3859 		 * supported range from its mc_propinfo().
3860 		 *
3861 		 * pr_range_cur_count keeps track of how many ranges
3862 		 * were defined by the driver from its mc_propinfo()
3863 		 * entry point.
3864 		 *
3865 		 * On exit, the user-specified range mpr_count returns
3866 		 * the number of ranges specified by the driver on
3867 		 * success, or the number of ranges it wanted to
3868 		 * define if that number of ranges could not be
3869 		 * accomodated by the specified range structure.  In
3870 		 * the latter case, the caller will be able to
3871 		 * allocate a larger range structure, and query the
3872 		 * property again.
3873 		 */
3874 		state.pr_range_cur_count = 0;
3875 		state.pr_range = range;
3876 
3877 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3878 		    (mac_prop_info_handle_t)&state);
3879 
3880 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3881 			range->mpr_count = state.pr_range_cur_count;
3882 
3883 		/*
3884 		 * The operation could fail if the buffer supplied by
3885 		 * the user was too small for the range or default
3886 		 * value of the property.
3887 		 */
3888 		if (state.pr_errno != 0)
3889 			return (state.pr_errno);
3890 
3891 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3892 			*perm = state.pr_perm;
3893 	}
3894 
3895 	/*
3896 	 * The MAC layer may want to provide default values or allowed
3897 	 * ranges for properties if the driver does not provide a
3898 	 * property info entry point, or that entry point exists, but
3899 	 * it did not provide a default value or allowed ranges for
3900 	 * that property.
3901 	 */
3902 	switch (id) {
3903 	case MAC_PROP_MTU: {
3904 		uint32_t sdu;
3905 
3906 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3907 
3908 		if (range != NULL && !(state.pr_flags &
3909 		    MAC_PROP_INFO_RANGE)) {
3910 			/* MTU range */
3911 			_mac_set_range(range, sdu, sdu);
3912 		}
3913 
3914 		if (default_val != NULL && !(state.pr_flags &
3915 		    MAC_PROP_INFO_DEFAULT)) {
3916 			if (mip->mi_info.mi_media == DL_ETHER)
3917 				sdu = ETHERMTU;
3918 			/* default MTU value */
3919 			bcopy(&sdu, default_val, sizeof (sdu));
3920 		}
3921 	}
3922 	}
3923 
3924 	return (0);
3925 }
3926 
3927 int
3928 mac_fastpath_disable(mac_handle_t mh)
3929 {
3930 	mac_impl_t	*mip = (mac_impl_t *)mh;
3931 
3932 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3933 		return (0);
3934 
3935 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3936 }
3937 
3938 void
3939 mac_fastpath_enable(mac_handle_t mh)
3940 {
3941 	mac_impl_t	*mip = (mac_impl_t *)mh;
3942 
3943 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3944 		return;
3945 
3946 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3947 }
3948 
3949 void
3950 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3951 {
3952 	uint_t nprops, i;
3953 
3954 	if (priv_props == NULL)
3955 		return;
3956 
3957 	nprops = 0;
3958 	while (priv_props[nprops] != NULL)
3959 		nprops++;
3960 	if (nprops == 0)
3961 		return;
3962 
3963 
3964 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3965 
3966 	for (i = 0; i < nprops; i++) {
3967 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3968 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3969 		    MAXLINKPROPNAME);
3970 	}
3971 
3972 	mip->mi_priv_prop_count = nprops;
3973 }
3974 
3975 void
3976 mac_unregister_priv_prop(mac_impl_t *mip)
3977 {
3978 	uint_t i;
3979 
3980 	if (mip->mi_priv_prop_count == 0) {
3981 		ASSERT(mip->mi_priv_prop == NULL);
3982 		return;
3983 	}
3984 
3985 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3986 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3987 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3988 	    sizeof (char *));
3989 
3990 	mip->mi_priv_prop = NULL;
3991 	mip->mi_priv_prop_count = 0;
3992 }
3993 
3994 /*
3995  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3996  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3997  * cases if MAC free's the ring structure after mac_stop_ring(), any
3998  * illegal access to the ring structure coming from the driver will panic
3999  * the system. In order to protect the system from such inadverent access,
4000  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
4001  * When packets are received on free'd up rings, MAC (through the generation
4002  * count mechanism) will drop such packets.
4003  */
4004 static mac_ring_t *
4005 mac_ring_alloc(mac_impl_t *mip)
4006 {
4007 	mac_ring_t *ring;
4008 
4009 	mutex_enter(&mip->mi_ring_lock);
4010 	if (mip->mi_ring_freelist != NULL) {
4011 		ring = mip->mi_ring_freelist;
4012 		mip->mi_ring_freelist = ring->mr_next;
4013 		bzero(ring, sizeof (mac_ring_t));
4014 		mutex_exit(&mip->mi_ring_lock);
4015 	} else {
4016 		mutex_exit(&mip->mi_ring_lock);
4017 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
4018 	}
4019 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
4020 	return (ring);
4021 }
4022 
4023 static void
4024 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
4025 {
4026 	ASSERT(ring->mr_state == MR_FREE);
4027 
4028 	mutex_enter(&mip->mi_ring_lock);
4029 	ring->mr_state = MR_FREE;
4030 	ring->mr_flag = 0;
4031 	ring->mr_next = mip->mi_ring_freelist;
4032 	ring->mr_mip = NULL;
4033 	mip->mi_ring_freelist = ring;
4034 	mac_ring_stat_delete(ring);
4035 	mutex_exit(&mip->mi_ring_lock);
4036 }
4037 
4038 static void
4039 mac_ring_freeall(mac_impl_t *mip)
4040 {
4041 	mac_ring_t *ring_next;
4042 	mutex_enter(&mip->mi_ring_lock);
4043 	mac_ring_t *ring = mip->mi_ring_freelist;
4044 	while (ring != NULL) {
4045 		ring_next = ring->mr_next;
4046 		kmem_cache_free(mac_ring_cache, ring);
4047 		ring = ring_next;
4048 	}
4049 	mip->mi_ring_freelist = NULL;
4050 	mutex_exit(&mip->mi_ring_lock);
4051 }
4052 
4053 int
4054 mac_start_ring(mac_ring_t *ring)
4055 {
4056 	int rv = 0;
4057 
4058 	ASSERT(ring->mr_state == MR_FREE);
4059 
4060 	if (ring->mr_start != NULL) {
4061 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
4062 		if (rv != 0)
4063 			return (rv);
4064 	}
4065 
4066 	ring->mr_state = MR_INUSE;
4067 	return (rv);
4068 }
4069 
4070 void
4071 mac_stop_ring(mac_ring_t *ring)
4072 {
4073 	ASSERT(ring->mr_state == MR_INUSE);
4074 
4075 	if (ring->mr_stop != NULL)
4076 		ring->mr_stop(ring->mr_driver);
4077 
4078 	ring->mr_state = MR_FREE;
4079 
4080 	/*
4081 	 * Increment the ring generation number for this ring.
4082 	 */
4083 	ring->mr_gen_num++;
4084 }
4085 
4086 int
4087 mac_start_group(mac_group_t *group)
4088 {
4089 	int rv = 0;
4090 
4091 	if (group->mrg_start != NULL)
4092 		rv = group->mrg_start(group->mrg_driver);
4093 
4094 	return (rv);
4095 }
4096 
4097 void
4098 mac_stop_group(mac_group_t *group)
4099 {
4100 	if (group->mrg_stop != NULL)
4101 		group->mrg_stop(group->mrg_driver);
4102 }
4103 
4104 /*
4105  * Called from mac_start() on the default Rx group. Broadcast and multicast
4106  * packets are received only on the default group. Hence the default group
4107  * needs to be up even if the primary client is not up, for the other groups
4108  * to be functional. We do this by calling this function at mac_start time
4109  * itself. However the broadcast packets that are received can't make their
4110  * way beyond mac_rx until a mac client creates a broadcast flow.
4111  */
4112 static int
4113 mac_start_group_and_rings(mac_group_t *group)
4114 {
4115 	mac_ring_t	*ring;
4116 	int		rv = 0;
4117 
4118 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
4119 	if ((rv = mac_start_group(group)) != 0)
4120 		return (rv);
4121 
4122 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4123 		ASSERT(ring->mr_state == MR_FREE);
4124 
4125 		if ((rv = mac_start_ring(ring)) != 0)
4126 			goto error;
4127 
4128 		/*
4129 		 * When aggr_set_port_sdu() is called, it will remove
4130 		 * the port client's unicast address. This will cause
4131 		 * MAC to stop the default group's rings on the port
4132 		 * MAC. After it modifies the SDU, it will then re-add
4133 		 * the unicast address. At which time, this function is
4134 		 * called to start the default group's rings. Normally
4135 		 * this function would set the classify type to
4136 		 * MAC_SW_CLASSIFIER; but that will break aggr which
4137 		 * relies on the passthru classify mode being set for
4138 		 * correct delivery (see mac_rx_common()). To avoid
4139 		 * that, we check for a passthru callback and set the
4140 		 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was
4141 		 * before the rings were stopped.
4142 		 */
4143 		ring->mr_classify_type = (ring->mr_pt_fn != NULL) ?
4144 		    MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER;
4145 	}
4146 	return (0);
4147 
4148 error:
4149 	mac_stop_group_and_rings(group);
4150 	return (rv);
4151 }
4152 
4153 /* Called from mac_stop on the default Rx group */
4154 static void
4155 mac_stop_group_and_rings(mac_group_t *group)
4156 {
4157 	mac_ring_t	*ring;
4158 
4159 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4160 		if (ring->mr_state != MR_FREE) {
4161 			mac_stop_ring(ring);
4162 			ring->mr_flag = 0;
4163 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
4164 		}
4165 	}
4166 	mac_stop_group(group);
4167 }
4168 
4169 
4170 static mac_ring_t *
4171 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
4172     mac_capab_rings_t *cap_rings)
4173 {
4174 	mac_ring_t *ring, *rnext;
4175 	mac_ring_info_t ring_info;
4176 	ddi_intr_handle_t ddi_handle;
4177 
4178 	ring = mac_ring_alloc(mip);
4179 
4180 	/* Prepare basic information of ring */
4181 
4182 	/*
4183 	 * Ring index is numbered to be unique across a particular device.
4184 	 * Ring index computation makes following assumptions:
4185 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
4186 	 *	ring index exchanged with the driver (e.g. during mr_rget)
4187 	 *	is unique only across the group the ring belongs to.
4188 	 *	- Drivers with dynamic grouping (e.g. nxge), start
4189 	 *	with single group (mrg_index = 0).
4190 	 */
4191 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
4192 	ring->mr_type = group->mrg_type;
4193 	ring->mr_gh = (mac_group_handle_t)group;
4194 
4195 	/* Insert the new ring to the list. */
4196 	ring->mr_next = group->mrg_rings;
4197 	group->mrg_rings = ring;
4198 
4199 	/* Zero to reuse the info data structure */
4200 	bzero(&ring_info, sizeof (ring_info));
4201 
4202 	/* Query ring information from driver */
4203 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
4204 	    index, &ring_info, (mac_ring_handle_t)ring);
4205 
4206 	ring->mr_info = ring_info;
4207 
4208 	/*
4209 	 * The interrupt handle could be shared among multiple rings.
4210 	 * Thus if there is a bunch of rings that are sharing an
4211 	 * interrupt, then only one ring among the bunch will be made
4212 	 * available for interrupt re-targeting; the rest will have
4213 	 * ddi_shared flag set to TRUE and would not be available for
4214 	 * be interrupt re-targeting.
4215 	 */
4216 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
4217 		rnext = ring->mr_next;
4218 		while (rnext != NULL) {
4219 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
4220 			    ddi_handle) {
4221 				/*
4222 				 * If default ring (mr_index == 0) is part
4223 				 * of a group of rings sharing an
4224 				 * interrupt, then set ddi_shared flag for
4225 				 * the default ring and give another ring
4226 				 * the chance to be re-targeted.
4227 				 */
4228 				if (rnext->mr_index == 0 &&
4229 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
4230 					rnext->mr_info.mri_intr.mi_ddi_shared =
4231 					    B_TRUE;
4232 				} else {
4233 					ring->mr_info.mri_intr.mi_ddi_shared =
4234 					    B_TRUE;
4235 				}
4236 				break;
4237 			}
4238 			rnext = rnext->mr_next;
4239 		}
4240 		/*
4241 		 * If rnext is NULL, then no matching ddi_handle was found.
4242 		 * Rx rings get registered first. So if this is a Tx ring,
4243 		 * then go through all the Rx rings and see if there is a
4244 		 * matching ddi handle.
4245 		 */
4246 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
4247 			mac_compare_ddi_handle(mip->mi_rx_groups,
4248 			    mip->mi_rx_group_count, ring);
4249 		}
4250 	}
4251 
4252 	/* Update ring's status */
4253 	ring->mr_state = MR_FREE;
4254 	ring->mr_flag = 0;
4255 
4256 	/* Update the ring count of the group */
4257 	group->mrg_cur_count++;
4258 
4259 	/* Create per ring kstats */
4260 	if (ring->mr_stat != NULL) {
4261 		ring->mr_mip = mip;
4262 		mac_ring_stat_create(ring);
4263 	}
4264 
4265 	return (ring);
4266 }
4267 
4268 /*
4269  * Rings are chained together for easy regrouping.
4270  */
4271 static void
4272 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
4273     mac_capab_rings_t *cap_rings)
4274 {
4275 	int index;
4276 
4277 	/*
4278 	 * Initialize all ring members of this group. Size of zero will not
4279 	 * enter the loop, so it's safe for initializing an empty group.
4280 	 */
4281 	for (index = size - 1; index >= 0; index--)
4282 		(void) mac_init_ring(mip, group, index, cap_rings);
4283 }
4284 
4285 int
4286 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4287 {
4288 	mac_capab_rings_t	*cap_rings;
4289 	mac_group_t		*group;
4290 	mac_group_t		*groups;
4291 	mac_group_info_t	group_info;
4292 	uint_t			group_free = 0;
4293 	uint_t			ring_left;
4294 	mac_ring_t		*ring;
4295 	int			g;
4296 	int			err = 0;
4297 	uint_t			grpcnt;
4298 	boolean_t		pseudo_txgrp = B_FALSE;
4299 
4300 	switch (rtype) {
4301 	case MAC_RING_TYPE_RX:
4302 		ASSERT(mip->mi_rx_groups == NULL);
4303 
4304 		cap_rings = &mip->mi_rx_rings_cap;
4305 		cap_rings->mr_type = MAC_RING_TYPE_RX;
4306 		break;
4307 	case MAC_RING_TYPE_TX:
4308 		ASSERT(mip->mi_tx_groups == NULL);
4309 
4310 		cap_rings = &mip->mi_tx_rings_cap;
4311 		cap_rings->mr_type = MAC_RING_TYPE_TX;
4312 		break;
4313 	default:
4314 		ASSERT(B_FALSE);
4315 	}
4316 
4317 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
4318 		return (0);
4319 	grpcnt = cap_rings->mr_gnum;
4320 
4321 	/*
4322 	 * If we have multiple TX rings, but only one TX group, we can
4323 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
4324 	 * except for an aggr. For an aggr currently we maintain only
4325 	 * one group with all the rings (for all its ports), going
4326 	 * forwards we might change this.
4327 	 */
4328 	if (rtype == MAC_RING_TYPE_TX &&
4329 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
4330 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
4331 		/*
4332 		 * The -1 here is because we create a default TX group
4333 		 * with all the rings in it.
4334 		 */
4335 		grpcnt = cap_rings->mr_rnum - 1;
4336 		pseudo_txgrp = B_TRUE;
4337 	}
4338 
4339 	/*
4340 	 * Allocate a contiguous buffer for all groups.
4341 	 */
4342 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
4343 
4344 	ring_left = cap_rings->mr_rnum;
4345 
4346 	/*
4347 	 * Get all ring groups if any, and get their ring members
4348 	 * if any.
4349 	 */
4350 	for (g = 0; g < grpcnt; g++) {
4351 		group = groups + g;
4352 
4353 		/* Prepare basic information of the group */
4354 		group->mrg_index = g;
4355 		group->mrg_type = rtype;
4356 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
4357 		group->mrg_mh = (mac_handle_t)mip;
4358 		group->mrg_next = group + 1;
4359 
4360 		/* Zero to reuse the info data structure */
4361 		bzero(&group_info, sizeof (group_info));
4362 
4363 		if (pseudo_txgrp) {
4364 			/*
4365 			 * This is a pseudo group that we created, apart
4366 			 * from setting the state there is nothing to be
4367 			 * done.
4368 			 */
4369 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4370 			group_free++;
4371 			continue;
4372 		}
4373 		/* Query group information from driver */
4374 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4375 		    (mac_group_handle_t)group);
4376 
4377 		switch (cap_rings->mr_group_type) {
4378 		case MAC_GROUP_TYPE_DYNAMIC:
4379 			if (cap_rings->mr_gaddring == NULL ||
4380 			    cap_rings->mr_gremring == NULL) {
4381 				DTRACE_PROBE3(
4382 				    mac__init__rings_no_addremring,
4383 				    char *, mip->mi_name,
4384 				    mac_group_add_ring_t,
4385 				    cap_rings->mr_gaddring,
4386 				    mac_group_add_ring_t,
4387 				    cap_rings->mr_gremring);
4388 				err = EINVAL;
4389 				goto bail;
4390 			}
4391 
4392 			switch (rtype) {
4393 			case MAC_RING_TYPE_RX:
4394 				/*
4395 				 * The first RX group must have non-zero
4396 				 * rings, and the following groups must
4397 				 * have zero rings.
4398 				 */
4399 				if (g == 0 && group_info.mgi_count == 0) {
4400 					DTRACE_PROBE1(
4401 					    mac__init__rings__rx__def__zero,
4402 					    char *, mip->mi_name);
4403 					err = EINVAL;
4404 					goto bail;
4405 				}
4406 				if (g > 0 && group_info.mgi_count != 0) {
4407 					DTRACE_PROBE3(
4408 					    mac__init__rings__rx__nonzero,
4409 					    char *, mip->mi_name,
4410 					    int, g, int, group_info.mgi_count);
4411 					err = EINVAL;
4412 					goto bail;
4413 				}
4414 				break;
4415 			case MAC_RING_TYPE_TX:
4416 				/*
4417 				 * All TX ring groups must have zero rings.
4418 				 */
4419 				if (group_info.mgi_count != 0) {
4420 					DTRACE_PROBE3(
4421 					    mac__init__rings__tx__nonzero,
4422 					    char *, mip->mi_name,
4423 					    int, g, int, group_info.mgi_count);
4424 					err = EINVAL;
4425 					goto bail;
4426 				}
4427 				break;
4428 			}
4429 			break;
4430 		case MAC_GROUP_TYPE_STATIC:
4431 			/*
4432 			 * Note that an empty group is allowed, e.g., an aggr
4433 			 * would start with an empty group.
4434 			 */
4435 			break;
4436 		default:
4437 			/* unknown group type */
4438 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4439 			    char *, mip->mi_name,
4440 			    int, cap_rings->mr_group_type);
4441 			err = EINVAL;
4442 			goto bail;
4443 		}
4444 
4445 
4446 		/*
4447 		 * The driver must register some form of hardware MAC
4448 		 * filter in order for Rx groups to support multiple
4449 		 * MAC addresses.
4450 		 */
4451 		if (rtype == MAC_RING_TYPE_RX &&
4452 		    (group_info.mgi_addmac == NULL ||
4453 		    group_info.mgi_remmac == NULL)) {
4454 			DTRACE_PROBE1(mac__init__rings__no__mac__filter,
4455 			    char *, mip->mi_name);
4456 			err = EINVAL;
4457 			goto bail;
4458 		}
4459 
4460 		/* Cache driver-supplied information */
4461 		group->mrg_info = group_info;
4462 
4463 		/* Update the group's status and group count. */
4464 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4465 		group_free++;
4466 
4467 		group->mrg_rings = NULL;
4468 		group->mrg_cur_count = 0;
4469 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4470 		ring_left -= group_info.mgi_count;
4471 
4472 		/* The current group size should be equal to default value */
4473 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4474 	}
4475 
4476 	/* Build up a dummy group for free resources as a pool */
4477 	group = groups + grpcnt;
4478 
4479 	/* Prepare basic information of the group */
4480 	group->mrg_index = -1;
4481 	group->mrg_type = rtype;
4482 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4483 	group->mrg_mh = (mac_handle_t)mip;
4484 	group->mrg_next = NULL;
4485 
4486 	/*
4487 	 * If there are ungrouped rings, allocate a continuous buffer for
4488 	 * remaining resources.
4489 	 */
4490 	if (ring_left != 0) {
4491 		group->mrg_rings = NULL;
4492 		group->mrg_cur_count = 0;
4493 		mac_init_group(mip, group, ring_left, cap_rings);
4494 
4495 		/* The current group size should be equal to ring_left */
4496 		ASSERT(group->mrg_cur_count == ring_left);
4497 
4498 		ring_left = 0;
4499 
4500 		/* Update this group's status */
4501 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4502 	} else {
4503 		group->mrg_rings = NULL;
4504 	}
4505 
4506 	ASSERT(ring_left == 0);
4507 
4508 bail:
4509 
4510 	/* Cache other important information to finalize the initialization */
4511 	switch (rtype) {
4512 	case MAC_RING_TYPE_RX:
4513 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4514 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4515 		mip->mi_rx_groups = groups;
4516 		mip->mi_rx_donor_grp = groups;
4517 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4518 			/*
4519 			 * The default ring is reserved since it is
4520 			 * used for sending the broadcast etc. packets.
4521 			 */
4522 			mip->mi_rxrings_avail =
4523 			    mip->mi_rx_groups->mrg_cur_count - 1;
4524 			mip->mi_rxrings_rsvd = 1;
4525 		}
4526 		/*
4527 		 * The default group cannot be reserved. It is used by
4528 		 * all the clients that do not have an exclusive group.
4529 		 */
4530 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4531 		mip->mi_rxhwclnt_used = 1;
4532 		break;
4533 	case MAC_RING_TYPE_TX:
4534 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4535 		    cap_rings->mr_group_type;
4536 		mip->mi_tx_group_count = grpcnt;
4537 		mip->mi_tx_group_free = group_free;
4538 		mip->mi_tx_groups = groups;
4539 
4540 		group = groups + grpcnt;
4541 		ring = group->mrg_rings;
4542 		/*
4543 		 * The ring can be NULL in the case of aggr. Aggr will
4544 		 * have an empty Tx group which will get populated
4545 		 * later when pseudo Tx rings are added after
4546 		 * mac_register() is done.
4547 		 */
4548 		if (ring == NULL) {
4549 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4550 			/*
4551 			 * pass the group to aggr so it can add Tx
4552 			 * rings to the group later.
4553 			 */
4554 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4555 			    (mac_group_handle_t)group);
4556 			/*
4557 			 * Even though there are no rings at this time
4558 			 * (rings will come later), set the group
4559 			 * state to registered.
4560 			 */
4561 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4562 		} else {
4563 			/*
4564 			 * Ring 0 is used as the default one and it could be
4565 			 * assigned to a client as well.
4566 			 */
4567 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4568 				ring = ring->mr_next;
4569 			ASSERT(ring->mr_index == 0);
4570 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4571 		}
4572 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4573 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4574 			/*
4575 			 * The default ring cannot be reserved.
4576 			 */
4577 			mip->mi_txrings_rsvd = 1;
4578 		}
4579 		/*
4580 		 * The default group cannot be reserved. It will be shared
4581 		 * by clients that do not have an exclusive group.
4582 		 */
4583 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4584 		mip->mi_txhwclnt_used = 1;
4585 		break;
4586 	default:
4587 		ASSERT(B_FALSE);
4588 	}
4589 
4590 	if (err != 0)
4591 		mac_free_rings(mip, rtype);
4592 
4593 	return (err);
4594 }
4595 
4596 /*
4597  * The ddi interrupt handle could be shared amoung rings. If so, compare
4598  * the new ring's ddi handle with the existing ones and set ddi_shared
4599  * flag.
4600  */
4601 void
4602 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4603 {
4604 	mac_group_t *group;
4605 	mac_ring_t *ring;
4606 	ddi_intr_handle_t ddi_handle;
4607 	int g;
4608 
4609 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4610 	for (g = 0; g < grpcnt; g++) {
4611 		group = groups + g;
4612 		for (ring = group->mrg_rings; ring != NULL;
4613 		    ring = ring->mr_next) {
4614 			if (ring == cring)
4615 				continue;
4616 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4617 			    ddi_handle) {
4618 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4619 				    ring->mr_index == 0 &&
4620 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4621 					ring->mr_info.mri_intr.mi_ddi_shared =
4622 					    B_TRUE;
4623 				} else {
4624 					cring->mr_info.mri_intr.mi_ddi_shared =
4625 					    B_TRUE;
4626 				}
4627 				return;
4628 			}
4629 		}
4630 	}
4631 }
4632 
4633 /*
4634  * Called to free all groups of particular type (RX or TX). It's assumed that
4635  * no clients are using these groups.
4636  */
4637 void
4638 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4639 {
4640 	mac_group_t *group, *groups;
4641 	uint_t group_count;
4642 
4643 	switch (rtype) {
4644 	case MAC_RING_TYPE_RX:
4645 		if (mip->mi_rx_groups == NULL)
4646 			return;
4647 
4648 		groups = mip->mi_rx_groups;
4649 		group_count = mip->mi_rx_group_count;
4650 
4651 		mip->mi_rx_groups = NULL;
4652 		mip->mi_rx_donor_grp = NULL;
4653 		mip->mi_rx_group_count = 0;
4654 		break;
4655 	case MAC_RING_TYPE_TX:
4656 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4657 
4658 		if (mip->mi_tx_groups == NULL)
4659 			return;
4660 
4661 		groups = mip->mi_tx_groups;
4662 		group_count = mip->mi_tx_group_count;
4663 
4664 		mip->mi_tx_groups = NULL;
4665 		mip->mi_tx_group_count = 0;
4666 		mip->mi_tx_group_free = 0;
4667 		mip->mi_default_tx_ring = NULL;
4668 		break;
4669 	default:
4670 		ASSERT(B_FALSE);
4671 	}
4672 
4673 	for (group = groups; group != NULL; group = group->mrg_next) {
4674 		mac_ring_t *ring;
4675 
4676 		if (group->mrg_cur_count == 0)
4677 			continue;
4678 
4679 		ASSERT(group->mrg_rings != NULL);
4680 
4681 		while ((ring = group->mrg_rings) != NULL) {
4682 			group->mrg_rings = ring->mr_next;
4683 			mac_ring_free(mip, ring);
4684 		}
4685 	}
4686 
4687 	/* Free all the cached rings */
4688 	mac_ring_freeall(mip);
4689 	/* Free the block of group data strutures */
4690 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4691 }
4692 
4693 /*
4694  * Associate the VLAN filter to the receive group.
4695  */
4696 int
4697 mac_group_addvlan(mac_group_t *group, uint16_t vlan)
4698 {
4699 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4700 	VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL);
4701 
4702 	if (vlan > VLAN_ID_MAX)
4703 		return (EINVAL);
4704 
4705 	vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4706 	return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan));
4707 }
4708 
4709 /*
4710  * Dissociate the VLAN from the receive group.
4711  */
4712 int
4713 mac_group_remvlan(mac_group_t *group, uint16_t vlan)
4714 {
4715 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4716 	VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL);
4717 
4718 	if (vlan > VLAN_ID_MAX)
4719 		return (EINVAL);
4720 
4721 	vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4722 	return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan));
4723 }
4724 
4725 /*
4726  * Associate a MAC address with a receive group.
4727  *
4728  * The return value of this function should always be checked properly, because
4729  * any type of failure could cause unexpected results. A group can be added
4730  * or removed with a MAC address only after it has been reserved. Ideally,
4731  * a successful reservation always leads to calling mac_group_addmac() to
4732  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4733  * always imply that the group is functioning abnormally.
4734  *
4735  * Currently this function is called everywhere, and it reflects assumptions
4736  * about MAC addresses in the implementation. CR 6735196.
4737  */
4738 int
4739 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4740 {
4741 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4742 	VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL);
4743 
4744 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4745 }
4746 
4747 /*
4748  * Remove the association between MAC address and receive group.
4749  */
4750 int
4751 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4752 {
4753 	VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4754 	VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL);
4755 
4756 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4757 }
4758 
4759 /*
4760  * This is the entry point for packets transmitted through the bridge
4761  * code. If no bridge is in place, mac_ring_tx() transmits via the tx
4762  * ring. The 'rh' pointer may be NULL to select the default ring.
4763  */
4764 mblk_t *
4765 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4766 {
4767 	mac_handle_t mh;
4768 
4769 	/*
4770 	 * Once we take a reference on the bridge link, the bridge
4771 	 * module itself can't unload, so the callback pointers are
4772 	 * stable.
4773 	 */
4774 	mutex_enter(&mip->mi_bridge_lock);
4775 	if ((mh = mip->mi_bridge_link) != NULL)
4776 		mac_bridge_ref_cb(mh, B_TRUE);
4777 	mutex_exit(&mip->mi_bridge_lock);
4778 	if (mh == NULL) {
4779 		mp = mac_ring_tx((mac_handle_t)mip, rh, mp);
4780 	} else {
4781 		/*
4782 		 * The bridge may place this mblk on a provider's Tx
4783 		 * path, a mac's Rx path, or both. Since we don't have
4784 		 * enough information at this point, we can't be sure
4785 		 * that the destination(s) are capable of handling the
4786 		 * hardware offloads requested by the mblk. We emulate
4787 		 * them here as it is the safest choice. In the
4788 		 * future, if bridge performance becomes a priority,
4789 		 * we can elide the emulation here and leave the
4790 		 * choice up to bridge.
4791 		 *
4792 		 * We don't clear the DB_CKSUMFLAGS here because
4793 		 * HCK_IPV4_HDRCKSUM (Tx) and HCK_IPV4_HDRCKSUM_OK
4794 		 * (Rx) still have the same value. If the bridge
4795 		 * receives a packet from a HCKSUM_IPHDRCKSUM NIC then
4796 		 * the mac(s) it is forwarded on may calculate the
4797 		 * checksum again, but incorrectly (because the
4798 		 * checksum field is not zero). Until the
4799 		 * HCK_IPV4_HDRCKSUM/HCK_IPV4_HDRCKSUM_OK issue is
4800 		 * resovled, we leave the flag clearing in bridge
4801 		 * itself.
4802 		 */
4803 		if ((DB_CKSUMFLAGS(mp) & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) {
4804 			mac_hw_emul(&mp, NULL, NULL, MAC_ALL_EMULS);
4805 		}
4806 
4807 		mp = mac_bridge_tx_cb(mh, rh, mp);
4808 		mac_bridge_ref_cb(mh, B_FALSE);
4809 	}
4810 
4811 	return (mp);
4812 }
4813 
4814 /*
4815  * Find a ring from its index.
4816  */
4817 mac_ring_handle_t
4818 mac_find_ring(mac_group_handle_t gh, int index)
4819 {
4820 	mac_group_t *group = (mac_group_t *)gh;
4821 	mac_ring_t *ring = group->mrg_rings;
4822 
4823 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4824 		if (ring->mr_index == index)
4825 			break;
4826 
4827 	return ((mac_ring_handle_t)ring);
4828 }
4829 /*
4830  * Add a ring to an existing group.
4831  *
4832  * The ring must be either passed directly (for example if the ring
4833  * movement is initiated by the framework), or specified through a driver
4834  * index (for example when the ring is added by the driver.
4835  *
4836  * The caller needs to call mac_perim_enter() before calling this function.
4837  */
4838 int
4839 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4840 {
4841 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4842 	mac_capab_rings_t *cap_rings;
4843 	boolean_t driver_call = (ring == NULL);
4844 	mac_group_type_t group_type;
4845 	int ret = 0;
4846 	flow_entry_t *flent;
4847 
4848 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4849 
4850 	switch (group->mrg_type) {
4851 	case MAC_RING_TYPE_RX:
4852 		cap_rings = &mip->mi_rx_rings_cap;
4853 		group_type = mip->mi_rx_group_type;
4854 		break;
4855 	case MAC_RING_TYPE_TX:
4856 		cap_rings = &mip->mi_tx_rings_cap;
4857 		group_type = mip->mi_tx_group_type;
4858 		break;
4859 	default:
4860 		ASSERT(B_FALSE);
4861 	}
4862 
4863 	/*
4864 	 * There should be no ring with the same ring index in the target
4865 	 * group.
4866 	 */
4867 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4868 	    driver_call ? index : ring->mr_index) == NULL);
4869 
4870 	if (driver_call) {
4871 		/*
4872 		 * The function is called as a result of a request from
4873 		 * a driver to add a ring to an existing group, for example
4874 		 * from the aggregation driver. Allocate a new mac_ring_t
4875 		 * for that ring.
4876 		 */
4877 		ring = mac_init_ring(mip, group, index, cap_rings);
4878 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4879 	} else {
4880 		/*
4881 		 * The function is called as a result of a MAC layer request
4882 		 * to add a ring to an existing group. In this case the
4883 		 * ring is being moved between groups, which requires
4884 		 * the underlying driver to support dynamic grouping,
4885 		 * and the mac_ring_t already exists.
4886 		 */
4887 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4888 		ASSERT(group->mrg_driver == NULL ||
4889 		    cap_rings->mr_gaddring != NULL);
4890 		ASSERT(ring->mr_gh == NULL);
4891 	}
4892 
4893 	/*
4894 	 * At this point the ring should not be in use, and it should be
4895 	 * of the right for the target group.
4896 	 */
4897 	ASSERT(ring->mr_state < MR_INUSE);
4898 	ASSERT(ring->mr_srs == NULL);
4899 	ASSERT(ring->mr_type == group->mrg_type);
4900 
4901 	if (!driver_call) {
4902 		/*
4903 		 * Add the driver level hardware ring if the process was not
4904 		 * initiated by the driver, and the target group is not the
4905 		 * group.
4906 		 */
4907 		if (group->mrg_driver != NULL) {
4908 			cap_rings->mr_gaddring(group->mrg_driver,
4909 			    ring->mr_driver, ring->mr_type);
4910 		}
4911 
4912 		/*
4913 		 * Insert the ring ahead existing rings.
4914 		 */
4915 		ring->mr_next = group->mrg_rings;
4916 		group->mrg_rings = ring;
4917 		ring->mr_gh = (mac_group_handle_t)group;
4918 		group->mrg_cur_count++;
4919 	}
4920 
4921 	/*
4922 	 * If the group has not been actively used, we're done.
4923 	 */
4924 	if (group->mrg_index != -1 &&
4925 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4926 		return (0);
4927 
4928 	/*
4929 	 * Start the ring if needed. Failure causes to undo the grouping action.
4930 	 */
4931 	if (ring->mr_state != MR_INUSE) {
4932 		if ((ret = mac_start_ring(ring)) != 0) {
4933 			if (!driver_call) {
4934 				cap_rings->mr_gremring(group->mrg_driver,
4935 				    ring->mr_driver, ring->mr_type);
4936 			}
4937 			group->mrg_cur_count--;
4938 			group->mrg_rings = ring->mr_next;
4939 
4940 			ring->mr_gh = NULL;
4941 
4942 			if (driver_call)
4943 				mac_ring_free(mip, ring);
4944 
4945 			return (ret);
4946 		}
4947 	}
4948 
4949 	/*
4950 	 * Set up SRS/SR according to the ring type.
4951 	 */
4952 	switch (ring->mr_type) {
4953 	case MAC_RING_TYPE_RX:
4954 		/*
4955 		 * Setup an SRS on top of the new ring if the group is
4956 		 * reserved for someone's exclusive use.
4957 		 */
4958 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4959 			mac_client_impl_t *mcip =  MAC_GROUP_ONLY_CLIENT(group);
4960 
4961 			VERIFY3P(mcip, !=, NULL);
4962 			flent = mcip->mci_flent;
4963 			VERIFY3S(flent->fe_rx_srs_cnt, >, 0);
4964 			mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4965 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4966 			    mac_rx_deliver, mcip, NULL, NULL);
4967 		} else {
4968 			ring->mr_classify_type = MAC_SW_CLASSIFIER;
4969 		}
4970 		break;
4971 	case MAC_RING_TYPE_TX:
4972 	{
4973 		mac_grp_client_t	*mgcp = group->mrg_clients;
4974 		mac_client_impl_t	*mcip;
4975 		mac_soft_ring_set_t	*mac_srs;
4976 		mac_srs_tx_t		*tx;
4977 
4978 		if (MAC_GROUP_NO_CLIENT(group)) {
4979 			if (ring->mr_state == MR_INUSE)
4980 				mac_stop_ring(ring);
4981 			ring->mr_flag = 0;
4982 			break;
4983 		}
4984 		/*
4985 		 * If the rings are being moved to a group that has
4986 		 * clients using it, then add the new rings to the
4987 		 * clients SRS.
4988 		 */
4989 		while (mgcp != NULL) {
4990 			boolean_t	is_aggr;
4991 
4992 			mcip = mgcp->mgc_client;
4993 			flent = mcip->mci_flent;
4994 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4995 			mac_srs = MCIP_TX_SRS(mcip);
4996 			tx = &mac_srs->srs_tx;
4997 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4998 			/*
4999 			 * If we are  growing from 1 to multiple rings.
5000 			 */
5001 			if (tx->st_mode == SRS_TX_BW ||
5002 			    tx->st_mode == SRS_TX_SERIALIZE ||
5003 			    tx->st_mode == SRS_TX_DEFAULT) {
5004 				mac_ring_t	*tx_ring = tx->st_arg2;
5005 
5006 				tx->st_arg2 = NULL;
5007 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
5008 				mac_tx_srs_add_ring(mac_srs, tx_ring);
5009 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
5010 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
5011 					    SRS_TX_BW_FANOUT;
5012 				} else {
5013 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
5014 					    SRS_TX_FANOUT;
5015 				}
5016 				tx->st_func = mac_tx_get_func(tx->st_mode);
5017 			}
5018 			mac_tx_srs_add_ring(mac_srs, ring);
5019 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
5020 			    mac_rx_deliver, mcip, NULL, NULL);
5021 			mac_tx_client_restart((mac_client_handle_t)mcip);
5022 			mgcp = mgcp->mgc_next;
5023 		}
5024 		break;
5025 	}
5026 	default:
5027 		ASSERT(B_FALSE);
5028 	}
5029 	/*
5030 	 * For aggr, the default ring will be NULL to begin with. If it
5031 	 * is NULL, then pick the first ring that gets added as the
5032 	 * default ring. Any ring in an aggregation can be removed at
5033 	 * any time (by the user action of removing a link) and if the
5034 	 * current default ring gets removed, then a new one gets
5035 	 * picked (see i_mac_group_rem_ring()).
5036 	 */
5037 	if (mip->mi_state_flags & MIS_IS_AGGR &&
5038 	    mip->mi_default_tx_ring == NULL &&
5039 	    ring->mr_type == MAC_RING_TYPE_TX) {
5040 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
5041 	}
5042 
5043 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
5044 	return (0);
5045 }
5046 
5047 /*
5048  * Remove a ring from it's current group. MAC internal function for dynamic
5049  * grouping.
5050  *
5051  * The caller needs to call mac_perim_enter() before calling this function.
5052  */
5053 void
5054 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
5055     boolean_t driver_call)
5056 {
5057 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
5058 	mac_capab_rings_t *cap_rings = NULL;
5059 	mac_group_type_t group_type;
5060 
5061 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5062 
5063 	ASSERT(mac_find_ring((mac_group_handle_t)group,
5064 	    ring->mr_index) == (mac_ring_handle_t)ring);
5065 	ASSERT((mac_group_t *)ring->mr_gh == group);
5066 	ASSERT(ring->mr_type == group->mrg_type);
5067 
5068 	if (ring->mr_state == MR_INUSE)
5069 		mac_stop_ring(ring);
5070 	switch (ring->mr_type) {
5071 	case MAC_RING_TYPE_RX:
5072 		group_type = mip->mi_rx_group_type;
5073 		cap_rings = &mip->mi_rx_rings_cap;
5074 
5075 		/*
5076 		 * Only hardware classified packets hold a reference to the
5077 		 * ring all the way up the Rx path. mac_rx_srs_remove()
5078 		 * will take care of quiescing the Rx path and removing the
5079 		 * SRS. The software classified path neither holds a reference
5080 		 * nor any association with the ring in mac_rx.
5081 		 */
5082 		if (ring->mr_srs != NULL) {
5083 			mac_rx_srs_remove(ring->mr_srs);
5084 			ring->mr_srs = NULL;
5085 		}
5086 
5087 		break;
5088 	case MAC_RING_TYPE_TX:
5089 	{
5090 		mac_grp_client_t	*mgcp;
5091 		mac_client_impl_t	*mcip;
5092 		mac_soft_ring_set_t	*mac_srs;
5093 		mac_srs_tx_t		*tx;
5094 		mac_ring_t		*rem_ring;
5095 		mac_group_t		*defgrp;
5096 		uint_t			ring_info = 0;
5097 
5098 		/*
5099 		 * For TX this function is invoked in three
5100 		 * cases:
5101 		 *
5102 		 * 1) In the case of a failure during the
5103 		 * initial creation of a group when a share is
5104 		 * associated with a MAC client. So the SRS is not
5105 		 * yet setup, and will be setup later after the
5106 		 * group has been reserved and populated.
5107 		 *
5108 		 * 2) From mac_release_tx_group() when freeing
5109 		 * a TX SRS.
5110 		 *
5111 		 * 3) In the case of aggr, when a port gets removed,
5112 		 * the pseudo Tx rings that it exposed gets removed.
5113 		 *
5114 		 * In the first two cases the SRS and its soft
5115 		 * rings are already quiesced.
5116 		 */
5117 		if (driver_call) {
5118 			mac_client_impl_t *mcip;
5119 			mac_soft_ring_set_t *mac_srs;
5120 			mac_soft_ring_t *sringp;
5121 			mac_srs_tx_t *srs_tx;
5122 
5123 			if (mip->mi_state_flags & MIS_IS_AGGR &&
5124 			    mip->mi_default_tx_ring ==
5125 			    (mac_ring_handle_t)ring) {
5126 				/* pick a new default Tx ring */
5127 				mip->mi_default_tx_ring =
5128 				    (group->mrg_rings != ring) ?
5129 				    (mac_ring_handle_t)group->mrg_rings :
5130 				    (mac_ring_handle_t)(ring->mr_next);
5131 			}
5132 			/* Presently only aggr case comes here */
5133 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
5134 				break;
5135 
5136 			mcip = MAC_GROUP_ONLY_CLIENT(group);
5137 			ASSERT(mcip != NULL);
5138 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
5139 			mac_srs = MCIP_TX_SRS(mcip);
5140 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
5141 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
5142 			srs_tx = &mac_srs->srs_tx;
5143 			/*
5144 			 * Wakeup any callers blocked on this
5145 			 * Tx ring due to flow control.
5146 			 */
5147 			sringp = srs_tx->st_soft_rings[ring->mr_index];
5148 			ASSERT(sringp != NULL);
5149 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
5150 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
5151 			mac_tx_srs_del_ring(mac_srs, ring);
5152 			mac_tx_client_restart((mac_client_handle_t)mcip);
5153 			break;
5154 		}
5155 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
5156 		group_type = mip->mi_tx_group_type;
5157 		cap_rings = &mip->mi_tx_rings_cap;
5158 		/*
5159 		 * See if we need to take it out of the MAC clients using
5160 		 * this group
5161 		 */
5162 		if (MAC_GROUP_NO_CLIENT(group))
5163 			break;
5164 		mgcp = group->mrg_clients;
5165 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
5166 		while (mgcp != NULL) {
5167 			mcip = mgcp->mgc_client;
5168 			mac_srs = MCIP_TX_SRS(mcip);
5169 			tx = &mac_srs->srs_tx;
5170 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
5171 			/*
5172 			 * If we are here when removing rings from the
5173 			 * defgroup, mac_reserve_tx_ring would have
5174 			 * already deleted the ring from the MAC
5175 			 * clients in the group.
5176 			 */
5177 			if (group != defgrp) {
5178 				mac_tx_invoke_callbacks(mcip,
5179 				    (mac_tx_cookie_t)
5180 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
5181 				mac_tx_srs_del_ring(mac_srs, ring);
5182 			}
5183 			/*
5184 			 * Additionally, if  we are left with only
5185 			 * one ring in the group after this, we need
5186 			 * to modify the mode etc. to. (We haven't
5187 			 * yet taken the ring out, so we check with 2).
5188 			 */
5189 			if (group->mrg_cur_count == 2) {
5190 				if (ring->mr_next == NULL)
5191 					rem_ring = group->mrg_rings;
5192 				else
5193 					rem_ring = ring->mr_next;
5194 				mac_tx_invoke_callbacks(mcip,
5195 				    (mac_tx_cookie_t)
5196 				    mac_tx_srs_get_soft_ring(mac_srs,
5197 				    rem_ring));
5198 				mac_tx_srs_del_ring(mac_srs, rem_ring);
5199 				if (rem_ring->mr_state != MR_INUSE) {
5200 					(void) mac_start_ring(rem_ring);
5201 				}
5202 				tx->st_arg2 = (void *)rem_ring;
5203 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
5204 				ring_info = mac_hwring_getinfo(
5205 				    (mac_ring_handle_t)rem_ring);
5206 				/*
5207 				 * We are  shrinking from multiple
5208 				 * to 1 ring.
5209 				 */
5210 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
5211 					tx->st_mode = SRS_TX_BW;
5212 				} else if (mac_tx_serialize ||
5213 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
5214 					tx->st_mode = SRS_TX_SERIALIZE;
5215 				} else {
5216 					tx->st_mode = SRS_TX_DEFAULT;
5217 				}
5218 				tx->st_func = mac_tx_get_func(tx->st_mode);
5219 			}
5220 			mac_tx_client_restart((mac_client_handle_t)mcip);
5221 			mgcp = mgcp->mgc_next;
5222 		}
5223 		break;
5224 	}
5225 	default:
5226 		ASSERT(B_FALSE);
5227 	}
5228 
5229 	/*
5230 	 * Remove the ring from the group.
5231 	 */
5232 	if (ring == group->mrg_rings)
5233 		group->mrg_rings = ring->mr_next;
5234 	else {
5235 		mac_ring_t *pre;
5236 
5237 		pre = group->mrg_rings;
5238 		while (pre->mr_next != ring)
5239 			pre = pre->mr_next;
5240 		pre->mr_next = ring->mr_next;
5241 	}
5242 	group->mrg_cur_count--;
5243 
5244 	if (!driver_call) {
5245 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
5246 		ASSERT(group->mrg_driver == NULL ||
5247 		    cap_rings->mr_gremring != NULL);
5248 
5249 		/*
5250 		 * Remove the driver level hardware ring.
5251 		 */
5252 		if (group->mrg_driver != NULL) {
5253 			cap_rings->mr_gremring(group->mrg_driver,
5254 			    ring->mr_driver, ring->mr_type);
5255 		}
5256 	}
5257 
5258 	ring->mr_gh = NULL;
5259 	if (driver_call)
5260 		mac_ring_free(mip, ring);
5261 	else
5262 		ring->mr_flag = 0;
5263 }
5264 
5265 /*
5266  * Move a ring to the target group. If needed, remove the ring from the group
5267  * that it currently belongs to.
5268  *
5269  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
5270  */
5271 static int
5272 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
5273 {
5274 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
5275 	int rv;
5276 
5277 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5278 	ASSERT(d_group != NULL);
5279 	ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
5280 
5281 	if (s_group == d_group)
5282 		return (0);
5283 
5284 	/*
5285 	 * Remove it from current group first.
5286 	 */
5287 	if (s_group != NULL)
5288 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
5289 
5290 	/*
5291 	 * Add it to the new group.
5292 	 */
5293 	rv = i_mac_group_add_ring(d_group, ring, 0);
5294 	if (rv != 0) {
5295 		/*
5296 		 * Failed to add ring back to source group. If
5297 		 * that fails, the ring is stuck in limbo, log message.
5298 		 */
5299 		if (i_mac_group_add_ring(s_group, ring, 0)) {
5300 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
5301 			    mip->mi_name, (void *)ring);
5302 		}
5303 	}
5304 
5305 	return (rv);
5306 }
5307 
5308 /*
5309  * Find a MAC address according to its value.
5310  */
5311 mac_address_t *
5312 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
5313 {
5314 	mac_address_t *map;
5315 
5316 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5317 
5318 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
5319 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
5320 			break;
5321 	}
5322 
5323 	return (map);
5324 }
5325 
5326 /*
5327  * Check whether the MAC address is shared by multiple clients.
5328  */
5329 boolean_t
5330 mac_check_macaddr_shared(mac_address_t *map)
5331 {
5332 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
5333 
5334 	return (map->ma_nusers > 1);
5335 }
5336 
5337 /*
5338  * Remove the specified MAC address from the MAC address list and free it.
5339  */
5340 static void
5341 mac_free_macaddr(mac_address_t *map)
5342 {
5343 	mac_impl_t *mip = map->ma_mip;
5344 
5345 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5346 	VERIFY3P(mip->mi_addresses, !=, NULL);
5347 
5348 	VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5349 	VERIFY3P(map, !=, NULL);
5350 	VERIFY3S(map->ma_nusers, ==, 0);
5351 	VERIFY3P(map->ma_vlans, ==, NULL);
5352 
5353 	if (map == mip->mi_addresses) {
5354 		mip->mi_addresses = map->ma_next;
5355 	} else {
5356 		mac_address_t *pre;
5357 
5358 		pre = mip->mi_addresses;
5359 		while (pre->ma_next != map)
5360 			pre = pre->ma_next;
5361 		pre->ma_next = map->ma_next;
5362 	}
5363 
5364 	kmem_free(map, sizeof (mac_address_t));
5365 }
5366 
5367 static mac_vlan_t *
5368 mac_find_vlan(mac_address_t *map, uint16_t vid)
5369 {
5370 	mac_vlan_t *mvp;
5371 
5372 	for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) {
5373 		if (mvp->mv_vid == vid)
5374 			return (mvp);
5375 	}
5376 
5377 	return (NULL);
5378 }
5379 
5380 static mac_vlan_t *
5381 mac_add_vlan(mac_address_t *map, uint16_t vid)
5382 {
5383 	mac_vlan_t *mvp;
5384 
5385 	/*
5386 	 * We should never add the same {addr, VID} tuple more
5387 	 * than once, but let's be sure.
5388 	 */
5389 	for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next)
5390 		VERIFY3U(mvp->mv_vid, !=, vid);
5391 
5392 	/* Add the VLAN to the head of the VLAN list. */
5393 	mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP);
5394 	mvp->mv_vid = vid;
5395 	mvp->mv_next = map->ma_vlans;
5396 	map->ma_vlans = mvp;
5397 
5398 	return (mvp);
5399 }
5400 
5401 static void
5402 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp)
5403 {
5404 	mac_vlan_t *pre;
5405 
5406 	if (map->ma_vlans == mvp) {
5407 		map->ma_vlans = mvp->mv_next;
5408 	} else {
5409 		pre = map->ma_vlans;
5410 		while (pre->mv_next != mvp) {
5411 			pre = pre->mv_next;
5412 
5413 			/*
5414 			 * We've reached the end of the list without
5415 			 * finding mvp.
5416 			 */
5417 			VERIFY3P(pre, !=, NULL);
5418 		}
5419 		pre->mv_next = mvp->mv_next;
5420 	}
5421 
5422 	kmem_free(mvp, sizeof (mac_vlan_t));
5423 }
5424 
5425 /*
5426  * Create a new mac_address_t if this is the first use of the address
5427  * or add a VID to an existing address. In either case, the
5428  * mac_address_t acts as a list of {addr, VID} tuples where each tuple
5429  * shares the same addr. If group is non-NULL then attempt to program
5430  * the MAC's HW filters for this group. Otherwise, if group is NULL,
5431  * then the MAC has no rings and there is nothing to program.
5432  */
5433 int
5434 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr,
5435     uint16_t vid, boolean_t use_hw)
5436 {
5437 	mac_address_t	*map;
5438 	mac_vlan_t	*mvp;
5439 	int		err = 0;
5440 	boolean_t	allocated_map = B_FALSE;
5441 	boolean_t	hw_mac = B_FALSE;
5442 	boolean_t	hw_vlan = B_FALSE;
5443 
5444 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5445 
5446 	map = mac_find_macaddr(mip, addr);
5447 
5448 	/*
5449 	 * If this is the first use of this MAC address then allocate
5450 	 * and initialize a new structure.
5451 	 */
5452 	if (map == NULL) {
5453 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5454 		map->ma_len = mip->mi_type->mt_addr_length;
5455 		bcopy(addr, map->ma_addr, map->ma_len);
5456 		map->ma_nusers = 0;
5457 		map->ma_group = group;
5458 		map->ma_mip = mip;
5459 		map->ma_untagged = B_FALSE;
5460 
5461 		/* Add the new MAC address to the head of the address list. */
5462 		map->ma_next = mip->mi_addresses;
5463 		mip->mi_addresses = map;
5464 
5465 		allocated_map = B_TRUE;
5466 	}
5467 
5468 	VERIFY(map->ma_group == NULL || map->ma_group == group);
5469 	if (map->ma_group == NULL)
5470 		map->ma_group = group;
5471 
5472 	if (vid == VLAN_ID_NONE) {
5473 		map->ma_untagged = B_TRUE;
5474 		mvp = NULL;
5475 	} else {
5476 		mvp = mac_add_vlan(map, vid);
5477 	}
5478 
5479 	/*
5480 	 * Set the VLAN HW filter if:
5481 	 *
5482 	 * o the MAC's VLAN HW filtering is enabled, and
5483 	 * o the address does not currently rely on promisc mode.
5484 	 *
5485 	 * This is called even when the client specifies an untagged
5486 	 * address (VLAN_ID_NONE) because some MAC providers require
5487 	 * setting additional bits to accept untagged traffic when
5488 	 * VLAN HW filtering is enabled.
5489 	 */
5490 	if (MAC_GROUP_HW_VLAN(group) &&
5491 	    map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) {
5492 		if ((err = mac_group_addvlan(group, vid)) != 0)
5493 			goto bail;
5494 
5495 		hw_vlan = B_TRUE;
5496 	}
5497 
5498 	VERIFY3S(map->ma_nusers, >=, 0);
5499 	map->ma_nusers++;
5500 
5501 	/*
5502 	 * If this MAC address already has a HW filter then simply
5503 	 * increment the counter.
5504 	 */
5505 	if (map->ma_nusers > 1)
5506 		return (0);
5507 
5508 	/*
5509 	 * All logic from here on out is executed during initial
5510 	 * creation only.
5511 	 */
5512 	VERIFY3S(map->ma_nusers, ==, 1);
5513 
5514 	/*
5515 	 * Activate this MAC address by adding it to the reserved group.
5516 	 */
5517 	if (group != NULL) {
5518 		err = mac_group_addmac(group, (const uint8_t *)addr);
5519 
5520 		/*
5521 		 * If the driver is out of filters then we can
5522 		 * continue and use promisc mode. For any other error,
5523 		 * assume the driver is in a state where we can't
5524 		 * program the filters or use promisc mode; so we must
5525 		 * bail.
5526 		 */
5527 		if (err != 0 && err != ENOSPC) {
5528 			map->ma_nusers--;
5529 			goto bail;
5530 		}
5531 
5532 		hw_mac = (err == 0);
5533 	}
5534 
5535 	if (hw_mac) {
5536 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5537 		return (0);
5538 	}
5539 
5540 	/*
5541 	 * The MAC address addition failed. If the client requires a
5542 	 * hardware classified MAC address, fail the operation. This
5543 	 * feature is only used by sun4v vsw.
5544 	 */
5545 	if (use_hw && !hw_mac) {
5546 		err = ENOSPC;
5547 		map->ma_nusers--;
5548 		goto bail;
5549 	}
5550 
5551 	/*
5552 	 * If we reach this point then either the MAC doesn't have
5553 	 * RINGS capability or we are out of MAC address HW filters.
5554 	 * In any case we must put the MAC into promiscuous mode.
5555 	 */
5556 	VERIFY(group == NULL || !hw_mac);
5557 
5558 	/*
5559 	 * The one exception is the primary address. A non-RINGS
5560 	 * driver filters the primary address by default; promisc mode
5561 	 * is not needed.
5562 	 */
5563 	if ((group == NULL) &&
5564 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5565 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5566 		return (0);
5567 	}
5568 
5569 	/*
5570 	 * Enable promiscuous mode in order to receive traffic to the
5571 	 * new MAC address. All existing HW filters still send their
5572 	 * traffic to their respective group/SRSes. But with promisc
5573 	 * enabled all unknown traffic is delivered to the default
5574 	 * group where it is SW classified via mac_rx_classify().
5575 	 */
5576 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5577 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5578 		return (0);
5579 	}
5580 
5581 	/*
5582 	 * We failed to set promisc mode and we are about to free 'map'.
5583 	 */
5584 	map->ma_nusers = 0;
5585 
5586 bail:
5587 	if (hw_vlan) {
5588 		int err2 = mac_group_remvlan(group, vid);
5589 
5590 		if (err2 != 0) {
5591 			cmn_err(CE_WARN, "Failed to remove VLAN %u from group"
5592 			    " %d on MAC %s: %d.", vid, group->mrg_index,
5593 			    mip->mi_name, err2);
5594 		}
5595 	}
5596 
5597 	if (mvp != NULL)
5598 		mac_rem_vlan(map, mvp);
5599 
5600 	if (allocated_map)
5601 		mac_free_macaddr(map);
5602 
5603 	return (err);
5604 }
5605 
5606 int
5607 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid)
5608 {
5609 	mac_vlan_t	*mvp;
5610 	mac_impl_t	*mip = map->ma_mip;
5611 	mac_group_t	*group = map->ma_group;
5612 	int		err = 0;
5613 
5614 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5615 	VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5616 
5617 	if (vid == VLAN_ID_NONE) {
5618 		map->ma_untagged = B_FALSE;
5619 		mvp = NULL;
5620 	} else {
5621 		mvp = mac_find_vlan(map, vid);
5622 		VERIFY3P(mvp, !=, NULL);
5623 	}
5624 
5625 	if (MAC_GROUP_HW_VLAN(group) &&
5626 	    map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED &&
5627 	    ((err = mac_group_remvlan(group, vid)) != 0))
5628 		return (err);
5629 
5630 	if (mvp != NULL)
5631 		mac_rem_vlan(map, mvp);
5632 
5633 	/*
5634 	 * If it's not the last client using this MAC address, only update
5635 	 * the MAC clients count.
5636 	 */
5637 	map->ma_nusers--;
5638 	if (map->ma_nusers > 0)
5639 		return (0);
5640 
5641 	VERIFY3S(map->ma_nusers, ==, 0);
5642 
5643 	/*
5644 	 * The MAC address is no longer used by any MAC client, so
5645 	 * remove it from its associated group. Turn off promiscuous
5646 	 * mode if this is the last address relying on it.
5647 	 */
5648 	switch (map->ma_type) {
5649 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5650 		/*
5651 		 * Don't free the preset primary address for drivers that
5652 		 * don't advertise RINGS capability.
5653 		 */
5654 		if (group == NULL)
5655 			return (0);
5656 
5657 		if ((err = mac_group_remmac(group, map->ma_addr)) != 0) {
5658 			if (vid == VLAN_ID_NONE)
5659 				map->ma_untagged = B_TRUE;
5660 			else
5661 				(void) mac_add_vlan(map, vid);
5662 
5663 			/*
5664 			 * If we fail to remove the MAC address HW
5665 			 * filter but then also fail to re-add the
5666 			 * VLAN HW filter then we are in a busted
5667 			 * state. We do our best by logging a warning
5668 			 * and returning the original 'err' that got
5669 			 * us here. At this point, traffic for this
5670 			 * address + VLAN combination will be dropped
5671 			 * until the user reboots the system. In the
5672 			 * future, it would be nice to have a system
5673 			 * that can compare the state of expected
5674 			 * classification according to mac to the
5675 			 * actual state of the provider, and report
5676 			 * and fix any inconsistencies.
5677 			 */
5678 			if (MAC_GROUP_HW_VLAN(group)) {
5679 				int err2;
5680 
5681 				err2 = mac_group_addvlan(group, vid);
5682 				if (err2 != 0) {
5683 					cmn_err(CE_WARN, "Failed to readd VLAN"
5684 					    " %u to group %d on MAC %s: %d.",
5685 					    vid, group->mrg_index, mip->mi_name,
5686 					    err2);
5687 				}
5688 			}
5689 
5690 			map->ma_nusers = 1;
5691 			return (err);
5692 		}
5693 
5694 		map->ma_group = NULL;
5695 		break;
5696 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5697 		err = i_mac_promisc_set(mip, B_FALSE);
5698 		break;
5699 	default:
5700 		panic("Unexpected ma_type 0x%x, file: %s, line %d",
5701 		    map->ma_type, __FILE__, __LINE__);
5702 	}
5703 
5704 	if (err != 0) {
5705 		map->ma_nusers = 1;
5706 		return (err);
5707 	}
5708 
5709 	/*
5710 	 * We created MAC address for the primary one at registration, so we
5711 	 * won't free it here. mac_fini_macaddr() will take care of it.
5712 	 */
5713 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5714 		mac_free_macaddr(map);
5715 
5716 	return (0);
5717 }
5718 
5719 /*
5720  * Update an existing MAC address. The caller need to make sure that the new
5721  * value has not been used.
5722  */
5723 int
5724 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5725 {
5726 	mac_impl_t *mip = map->ma_mip;
5727 	int err = 0;
5728 
5729 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5730 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5731 
5732 	switch (map->ma_type) {
5733 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5734 		/*
5735 		 * Update the primary address for drivers that are not
5736 		 * RINGS capable.
5737 		 */
5738 		if (mip->mi_rx_groups == NULL) {
5739 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5740 			    mac_addr);
5741 			if (err != 0)
5742 				return (err);
5743 			break;
5744 		}
5745 
5746 		/*
5747 		 * If this MAC address is not currently in use,
5748 		 * simply break out and update the value.
5749 		 */
5750 		if (map->ma_nusers == 0)
5751 			break;
5752 
5753 		/*
5754 		 * Need to replace the MAC address associated with a group.
5755 		 */
5756 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5757 		if (err != 0)
5758 			return (err);
5759 
5760 		err = mac_group_addmac(map->ma_group, mac_addr);
5761 
5762 		/*
5763 		 * Failure hints hardware error. The MAC layer needs to
5764 		 * have error notification facility to handle this.
5765 		 * Now, simply try to restore the value.
5766 		 */
5767 		if (err != 0)
5768 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5769 
5770 		break;
5771 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5772 		/*
5773 		 * Need to do nothing more if in promiscuous mode.
5774 		 */
5775 		break;
5776 	default:
5777 		ASSERT(B_FALSE);
5778 	}
5779 
5780 	/*
5781 	 * Successfully replaced the MAC address.
5782 	 */
5783 	if (err == 0)
5784 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5785 
5786 	return (err);
5787 }
5788 
5789 /*
5790  * Freshen the MAC address with new value. Its caller must have updated the
5791  * hardware MAC address before calling this function.
5792  * This funcitons is supposed to be used to handle the MAC address change
5793  * notification from underlying drivers.
5794  */
5795 void
5796 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5797 {
5798 	mac_impl_t *mip = map->ma_mip;
5799 
5800 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5801 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5802 
5803 	/*
5804 	 * Freshen the MAC address with new value.
5805 	 */
5806 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5807 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5808 
5809 	/*
5810 	 * Update all MAC clients that share this MAC address.
5811 	 */
5812 	mac_unicast_update_clients(mip, map);
5813 }
5814 
5815 /*
5816  * Set up the primary MAC address.
5817  */
5818 void
5819 mac_init_macaddr(mac_impl_t *mip)
5820 {
5821 	mac_address_t *map;
5822 
5823 	/*
5824 	 * The reference count is initialized to zero, until it's really
5825 	 * activated.
5826 	 */
5827 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5828 	map->ma_len = mip->mi_type->mt_addr_length;
5829 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5830 
5831 	/*
5832 	 * If driver advertises RINGS capability, it shouldn't have initialized
5833 	 * its primary MAC address. For other drivers, including VNIC, the
5834 	 * primary address must work after registration.
5835 	 */
5836 	if (mip->mi_rx_groups == NULL)
5837 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5838 
5839 	map->ma_mip = mip;
5840 
5841 	mip->mi_addresses = map;
5842 }
5843 
5844 /*
5845  * Clean up the primary MAC address. Note, only one primary MAC address
5846  * is allowed. All other MAC addresses must have been freed appropriately.
5847  */
5848 void
5849 mac_fini_macaddr(mac_impl_t *mip)
5850 {
5851 	mac_address_t *map = mip->mi_addresses;
5852 
5853 	if (map == NULL)
5854 		return;
5855 
5856 	/*
5857 	 * If mi_addresses is initialized, there should be exactly one
5858 	 * entry left on the list with no users.
5859 	 */
5860 	VERIFY3S(map->ma_nusers, ==, 0);
5861 	VERIFY3P(map->ma_next, ==, NULL);
5862 	VERIFY3P(map->ma_vlans, ==, NULL);
5863 
5864 	kmem_free(map, sizeof (mac_address_t));
5865 	mip->mi_addresses = NULL;
5866 }
5867 
5868 /*
5869  * Logging related functions.
5870  *
5871  * Note that Kernel statistics have been extended to maintain fine
5872  * granularity of statistics viz. hardware lane, software lane, fanout
5873  * stats etc. However, extended accounting continues to support only
5874  * aggregate statistics like before.
5875  */
5876 
5877 /* Write the flow description to a netinfo_t record */
5878 static netinfo_t *
5879 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5880 {
5881 	netinfo_t		*ninfo;
5882 	net_desc_t		*ndesc;
5883 	flow_desc_t		*fdesc;
5884 	mac_resource_props_t	*mrp;
5885 
5886 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5887 	if (ninfo == NULL)
5888 		return (NULL);
5889 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5890 	if (ndesc == NULL) {
5891 		kmem_free(ninfo, sizeof (netinfo_t));
5892 		return (NULL);
5893 	}
5894 
5895 	/*
5896 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5897 	 * Updates to the fe_flow_desc are done under the fe_lock
5898 	 */
5899 	mutex_enter(&flent->fe_lock);
5900 	fdesc = &flent->fe_flow_desc;
5901 	mrp = &flent->fe_resource_props;
5902 
5903 	ndesc->nd_name = flent->fe_flow_name;
5904 	ndesc->nd_devname = mcip->mci_name;
5905 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5906 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5907 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5908 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5909 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5910 	if (ndesc->nd_isv4) {
5911 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5912 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5913 	} else {
5914 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5915 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5916 	}
5917 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5918 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5919 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5920 	mutex_exit(&flent->fe_lock);
5921 
5922 	ninfo->ni_record = ndesc;
5923 	ninfo->ni_size = sizeof (net_desc_t);
5924 	ninfo->ni_type = EX_NET_FLDESC_REC;
5925 
5926 	return (ninfo);
5927 }
5928 
5929 /* Write the flow statistics to a netinfo_t record */
5930 static netinfo_t *
5931 mac_write_flow_stats(flow_entry_t *flent)
5932 {
5933 	netinfo_t		*ninfo;
5934 	net_stat_t		*nstat;
5935 	mac_soft_ring_set_t	*mac_srs;
5936 	mac_rx_stats_t		*mac_rx_stat;
5937 	mac_tx_stats_t		*mac_tx_stat;
5938 	int			i;
5939 
5940 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5941 	if (ninfo == NULL)
5942 		return (NULL);
5943 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5944 	if (nstat == NULL) {
5945 		kmem_free(ninfo, sizeof (netinfo_t));
5946 		return (NULL);
5947 	}
5948 
5949 	nstat->ns_name = flent->fe_flow_name;
5950 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5951 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5952 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5953 
5954 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5955 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5956 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5957 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5958 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5959 	}
5960 
5961 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5962 	if (mac_srs != NULL) {
5963 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5964 
5965 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5966 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5967 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5968 	}
5969 
5970 	ninfo->ni_record = nstat;
5971 	ninfo->ni_size = sizeof (net_stat_t);
5972 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5973 
5974 	return (ninfo);
5975 }
5976 
5977 /* Write the link description to a netinfo_t record */
5978 static netinfo_t *
5979 mac_write_link_desc(mac_client_impl_t *mcip)
5980 {
5981 	netinfo_t		*ninfo;
5982 	net_desc_t		*ndesc;
5983 	flow_entry_t		*flent = mcip->mci_flent;
5984 
5985 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5986 	if (ninfo == NULL)
5987 		return (NULL);
5988 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5989 	if (ndesc == NULL) {
5990 		kmem_free(ninfo, sizeof (netinfo_t));
5991 		return (NULL);
5992 	}
5993 
5994 	ndesc->nd_name = mcip->mci_name;
5995 	ndesc->nd_devname = mcip->mci_name;
5996 	ndesc->nd_isv4 = B_TRUE;
5997 	/*
5998 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5999 	 * Updates to the fe_flow_desc are done under the fe_lock
6000 	 * after removing the flent from the flow table.
6001 	 */
6002 	mutex_enter(&flent->fe_lock);
6003 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
6004 	mutex_exit(&flent->fe_lock);
6005 
6006 	ninfo->ni_record = ndesc;
6007 	ninfo->ni_size = sizeof (net_desc_t);
6008 	ninfo->ni_type = EX_NET_LNDESC_REC;
6009 
6010 	return (ninfo);
6011 }
6012 
6013 /* Write the link statistics to a netinfo_t record */
6014 static netinfo_t *
6015 mac_write_link_stats(mac_client_impl_t *mcip)
6016 {
6017 	netinfo_t		*ninfo;
6018 	net_stat_t		*nstat;
6019 	flow_entry_t		*flent;
6020 	mac_soft_ring_set_t	*mac_srs;
6021 	mac_rx_stats_t		*mac_rx_stat;
6022 	mac_tx_stats_t		*mac_tx_stat;
6023 	int			i;
6024 
6025 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
6026 	if (ninfo == NULL)
6027 		return (NULL);
6028 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
6029 	if (nstat == NULL) {
6030 		kmem_free(ninfo, sizeof (netinfo_t));
6031 		return (NULL);
6032 	}
6033 
6034 	nstat->ns_name = mcip->mci_name;
6035 	flent = mcip->mci_flent;
6036 	if (flent != NULL)  {
6037 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
6038 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
6039 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
6040 
6041 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
6042 			    mac_rx_stat->mrs_pollbytes +
6043 			    mac_rx_stat->mrs_lclbytes;
6044 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
6045 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
6046 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
6047 		}
6048 	}
6049 
6050 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
6051 	if (mac_srs != NULL) {
6052 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
6053 
6054 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
6055 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
6056 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
6057 	}
6058 
6059 	ninfo->ni_record = nstat;
6060 	ninfo->ni_size = sizeof (net_stat_t);
6061 	ninfo->ni_type = EX_NET_LNSTAT_REC;
6062 
6063 	return (ninfo);
6064 }
6065 
6066 typedef struct i_mac_log_state_s {
6067 	boolean_t	mi_last;
6068 	int		mi_fenable;
6069 	int		mi_lenable;
6070 	list_t		*mi_list;
6071 } i_mac_log_state_t;
6072 
6073 /*
6074  * For a given flow, if the description has not been logged before, do it now.
6075  * If it is a VNIC, then we have collected information about it from the MAC
6076  * table, so skip it.
6077  *
6078  * Called through mac_flow_walk_nolock()
6079  *
6080  * Return 0 if successful.
6081  */
6082 static int
6083 mac_log_flowinfo(flow_entry_t *flent, void *arg)
6084 {
6085 	mac_client_impl_t	*mcip = flent->fe_mcip;
6086 	i_mac_log_state_t	*lstate = arg;
6087 	netinfo_t		*ninfo;
6088 
6089 	if (mcip == NULL)
6090 		return (0);
6091 
6092 	/*
6093 	 * If the name starts with "vnic", and fe_user_generated is true (to
6094 	 * exclude the mcast and active flow entries created implicitly for
6095 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
6096 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
6097 	 */
6098 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
6099 	    (flent->fe_type & FLOW_USER) != 0) {
6100 		return (0);
6101 	}
6102 
6103 	if (!flent->fe_desc_logged) {
6104 		/*
6105 		 * We don't return error because we want to continue the
6106 		 * walk in case this is the last walk which means we
6107 		 * need to reset fe_desc_logged in all the flows.
6108 		 */
6109 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
6110 			return (0);
6111 		list_insert_tail(lstate->mi_list, ninfo);
6112 		flent->fe_desc_logged = B_TRUE;
6113 	}
6114 
6115 	/*
6116 	 * Regardless of the error, we want to proceed in case we have to
6117 	 * reset fe_desc_logged.
6118 	 */
6119 	ninfo = mac_write_flow_stats(flent);
6120 	if (ninfo == NULL)
6121 		return (-1);
6122 
6123 	list_insert_tail(lstate->mi_list, ninfo);
6124 
6125 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
6126 		flent->fe_desc_logged = B_FALSE;
6127 
6128 	return (0);
6129 }
6130 
6131 /*
6132  * Log the description for each mac client of this mac_impl_t, if it
6133  * hasn't already been done. Additionally, log statistics for the link as
6134  * well. Walk the flow table and log information for each flow as well.
6135  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
6136  * also fe_desc_logged, if flow logging is on) since we want to log the
6137  * description if and when logging is restarted.
6138  *
6139  * Return 0 upon success or -1 upon failure
6140  */
6141 static int
6142 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
6143 {
6144 	mac_client_impl_t	*mcip;
6145 	netinfo_t		*ninfo;
6146 
6147 	i_mac_perim_enter(mip);
6148 	/*
6149 	 * Only walk the client list for NIC and etherstub
6150 	 */
6151 	if ((mip->mi_state_flags & MIS_DISABLED) ||
6152 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
6153 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
6154 		i_mac_perim_exit(mip);
6155 		return (0);
6156 	}
6157 
6158 	for (mcip = mip->mi_clients_list; mcip != NULL;
6159 	    mcip = mcip->mci_client_next) {
6160 		if (!MCIP_DATAPATH_SETUP(mcip))
6161 			continue;
6162 		if (lstate->mi_lenable) {
6163 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
6164 				ninfo = mac_write_link_desc(mcip);
6165 				if (ninfo == NULL) {
6166 				/*
6167 				 * We can't terminate it if this is the last
6168 				 * walk, else there might be some links with
6169 				 * mi_desc_logged set to true, which means
6170 				 * their description won't be logged the next
6171 				 * time logging is started (similarly for the
6172 				 * flows within such links). We can continue
6173 				 * without walking the flow table (i.e. to
6174 				 * set fe_desc_logged to false) because we
6175 				 * won't have written any flow stuff for this
6176 				 * link as we haven't logged the link itself.
6177 				 */
6178 					i_mac_perim_exit(mip);
6179 					if (lstate->mi_last)
6180 						return (0);
6181 					else
6182 						return (-1);
6183 				}
6184 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
6185 				list_insert_tail(lstate->mi_list, ninfo);
6186 			}
6187 		}
6188 
6189 		ninfo = mac_write_link_stats(mcip);
6190 		if (ninfo == NULL && !lstate->mi_last) {
6191 			i_mac_perim_exit(mip);
6192 			return (-1);
6193 		}
6194 		list_insert_tail(lstate->mi_list, ninfo);
6195 
6196 		if (lstate->mi_last)
6197 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
6198 
6199 		if (lstate->mi_fenable) {
6200 			if (mcip->mci_subflow_tab != NULL) {
6201 				(void) mac_flow_walk_nolock(
6202 				    mcip->mci_subflow_tab, mac_log_flowinfo,
6203 				    lstate);
6204 			}
6205 		}
6206 	}
6207 	i_mac_perim_exit(mip);
6208 	return (0);
6209 }
6210 
6211 /*
6212  * modhash walker function to add a mac_impl_t to a list
6213  */
6214 /*ARGSUSED*/
6215 static uint_t
6216 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
6217 {
6218 	list_t			*list = (list_t *)arg;
6219 	mac_impl_t		*mip = (mac_impl_t *)val;
6220 
6221 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
6222 		list_insert_tail(list, mip);
6223 		mip->mi_ref++;
6224 	}
6225 
6226 	return (MH_WALK_CONTINUE);
6227 }
6228 
6229 void
6230 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
6231 {
6232 	list_t			mac_impl_list;
6233 	mac_impl_t		*mip;
6234 	netinfo_t		*ninfo;
6235 
6236 	/* Create list of mac_impls */
6237 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
6238 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
6239 	    mi_node));
6240 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
6241 	rw_exit(&i_mac_impl_lock);
6242 
6243 	/* Create log entries for each mac_impl */
6244 	for (mip = list_head(&mac_impl_list); mip != NULL;
6245 	    mip = list_next(&mac_impl_list, mip)) {
6246 		if (i_mac_impl_log(mip, lstate) != 0)
6247 			continue;
6248 	}
6249 
6250 	/* Remove elements and destroy list of mac_impls */
6251 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6252 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
6253 		mip->mi_ref--;
6254 	}
6255 	rw_exit(&i_mac_impl_lock);
6256 	list_destroy(&mac_impl_list);
6257 
6258 	/*
6259 	 * Write log entries to files outside of locks, free associated
6260 	 * structures, and remove entries from the list.
6261 	 */
6262 	while ((ninfo = list_head(net_log_list)) != NULL) {
6263 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
6264 		list_remove(net_log_list, ninfo);
6265 		kmem_free(ninfo->ni_record, ninfo->ni_size);
6266 		kmem_free(ninfo, sizeof (*ninfo));
6267 	}
6268 	list_destroy(net_log_list);
6269 }
6270 
6271 /*
6272  * The timer thread that runs every mac_logging_interval seconds and logs
6273  * link and/or flow information.
6274  */
6275 /* ARGSUSED */
6276 void
6277 mac_log_linkinfo(void *arg)
6278 {
6279 	i_mac_log_state_t	lstate;
6280 	list_t			net_log_list;
6281 
6282 	list_create(&net_log_list, sizeof (netinfo_t),
6283 	    offsetof(netinfo_t, ni_link));
6284 
6285 	rw_enter(&i_mac_impl_lock, RW_READER);
6286 	if (!mac_flow_log_enable && !mac_link_log_enable) {
6287 		rw_exit(&i_mac_impl_lock);
6288 		return;
6289 	}
6290 	lstate.mi_fenable = mac_flow_log_enable;
6291 	lstate.mi_lenable = mac_link_log_enable;
6292 	lstate.mi_last = B_FALSE;
6293 	lstate.mi_list = &net_log_list;
6294 
6295 	/* Write log entries for each mac_impl in the list */
6296 	i_mac_log_info(&net_log_list, &lstate);
6297 
6298 	if (mac_flow_log_enable || mac_link_log_enable) {
6299 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
6300 		    SEC_TO_TICK(mac_logging_interval));
6301 	}
6302 }
6303 
6304 typedef struct i_mac_fastpath_state_s {
6305 	boolean_t	mf_disable;
6306 	int		mf_err;
6307 } i_mac_fastpath_state_t;
6308 
6309 /* modhash walker function to enable or disable fastpath */
6310 /*ARGSUSED*/
6311 static uint_t
6312 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
6313     void *arg)
6314 {
6315 	i_mac_fastpath_state_t	*state = arg;
6316 	mac_handle_t		mh = (mac_handle_t)val;
6317 
6318 	if (state->mf_disable)
6319 		state->mf_err = mac_fastpath_disable(mh);
6320 	else
6321 		mac_fastpath_enable(mh);
6322 
6323 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
6324 }
6325 
6326 /*
6327  * Start the logging timer.
6328  */
6329 int
6330 mac_start_logusage(mac_logtype_t type, uint_t interval)
6331 {
6332 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
6333 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
6334 	int			err;
6335 
6336 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6337 	switch (type) {
6338 	case MAC_LOGTYPE_FLOW:
6339 		if (mac_flow_log_enable) {
6340 			rw_exit(&i_mac_impl_lock);
6341 			return (0);
6342 		}
6343 		/* FALLTHRU */
6344 	case MAC_LOGTYPE_LINK:
6345 		if (mac_link_log_enable) {
6346 			rw_exit(&i_mac_impl_lock);
6347 			return (0);
6348 		}
6349 		break;
6350 	default:
6351 		ASSERT(0);
6352 	}
6353 
6354 	/* Disable fastpath */
6355 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
6356 	if ((err = dstate.mf_err) != 0) {
6357 		/* Reenable fastpath  */
6358 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6359 		rw_exit(&i_mac_impl_lock);
6360 		return (err);
6361 	}
6362 
6363 	switch (type) {
6364 	case MAC_LOGTYPE_FLOW:
6365 		mac_flow_log_enable = B_TRUE;
6366 		/* FALLTHRU */
6367 	case MAC_LOGTYPE_LINK:
6368 		mac_link_log_enable = B_TRUE;
6369 		break;
6370 	}
6371 
6372 	mac_logging_interval = interval;
6373 	rw_exit(&i_mac_impl_lock);
6374 	mac_log_linkinfo(NULL);
6375 	return (0);
6376 }
6377 
6378 /*
6379  * Stop the logging timer if both link and flow logging are turned off.
6380  */
6381 void
6382 mac_stop_logusage(mac_logtype_t type)
6383 {
6384 	i_mac_log_state_t	lstate;
6385 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
6386 	list_t			net_log_list;
6387 
6388 	list_create(&net_log_list, sizeof (netinfo_t),
6389 	    offsetof(netinfo_t, ni_link));
6390 
6391 	rw_enter(&i_mac_impl_lock, RW_WRITER);
6392 
6393 	lstate.mi_fenable = mac_flow_log_enable;
6394 	lstate.mi_lenable = mac_link_log_enable;
6395 	lstate.mi_list = &net_log_list;
6396 
6397 	/* Last walk */
6398 	lstate.mi_last = B_TRUE;
6399 
6400 	switch (type) {
6401 	case MAC_LOGTYPE_FLOW:
6402 		if (lstate.mi_fenable) {
6403 			ASSERT(mac_link_log_enable);
6404 			mac_flow_log_enable = B_FALSE;
6405 			mac_link_log_enable = B_FALSE;
6406 			break;
6407 		}
6408 		/* FALLTHRU */
6409 	case MAC_LOGTYPE_LINK:
6410 		if (!lstate.mi_lenable || mac_flow_log_enable) {
6411 			rw_exit(&i_mac_impl_lock);
6412 			return;
6413 		}
6414 		mac_link_log_enable = B_FALSE;
6415 		break;
6416 	default:
6417 		ASSERT(0);
6418 	}
6419 
6420 	/* Reenable fastpath */
6421 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6422 
6423 	(void) untimeout(mac_logging_timer);
6424 	mac_logging_timer = NULL;
6425 
6426 	/* Write log entries for each mac_impl in the list */
6427 	i_mac_log_info(&net_log_list, &lstate);
6428 }
6429 
6430 /*
6431  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
6432  */
6433 void
6434 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
6435 {
6436 	pri_t			pri;
6437 	int			count;
6438 	mac_soft_ring_set_t	*mac_srs;
6439 
6440 	if (flent->fe_rx_srs_cnt <= 0)
6441 		return;
6442 
6443 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
6444 	    SRST_FLOW) {
6445 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
6446 		    mcip->mci_max_pri,
6447 		    flent->fe_resource_props.mrp_priority);
6448 	} else {
6449 		pri = mcip->mci_max_pri;
6450 	}
6451 
6452 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
6453 		mac_srs = flent->fe_rx_srs[count];
6454 		mac_update_srs_priority(mac_srs, pri);
6455 	}
6456 	/*
6457 	 * If we have a Tx SRS, we need to modify all the threads associated
6458 	 * with it.
6459 	 */
6460 	if (flent->fe_tx_srs != NULL)
6461 		mac_update_srs_priority(flent->fe_tx_srs, pri);
6462 }
6463 
6464 /*
6465  * RX and TX rings are reserved according to different semantics depending
6466  * on the requests from the MAC clients and type of rings:
6467  *
6468  * On the Tx side, by default we reserve individual rings, independently from
6469  * the groups.
6470  *
6471  * On the Rx side, the reservation is at the granularity of the group
6472  * of rings, and used for v12n level 1 only. It has a special case for the
6473  * primary client.
6474  *
6475  * If a share is allocated to a MAC client, we allocate a TX group and an
6476  * RX group to the client, and assign TX rings and RX rings to these
6477  * groups according to information gathered from the driver through
6478  * the share capability.
6479  *
6480  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
6481  * to allocate individual rings out of a group and program the hw classifier
6482  * based on IP address or higher level criteria.
6483  */
6484 
6485 /*
6486  * mac_reserve_tx_ring()
6487  * Reserve a unused ring by marking it with MR_INUSE state.
6488  * As reserved, the ring is ready to function.
6489  *
6490  * Notes for Hybrid I/O:
6491  *
6492  * If a specific ring is needed, it is specified through the desired_ring
6493  * argument. Otherwise that argument is set to NULL.
6494  * If the desired ring was previous allocated to another client, this
6495  * function swaps it with a new ring from the group of unassigned rings.
6496  */
6497 mac_ring_t *
6498 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
6499 {
6500 	mac_group_t		*group;
6501 	mac_grp_client_t	*mgcp;
6502 	mac_client_impl_t	*mcip;
6503 	mac_soft_ring_set_t	*srs;
6504 
6505 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6506 
6507 	/*
6508 	 * Find an available ring and start it before changing its status.
6509 	 * The unassigned rings are at the end of the mi_tx_groups
6510 	 * array.
6511 	 */
6512 	group = MAC_DEFAULT_TX_GROUP(mip);
6513 
6514 	/* Can't take the default ring out of the default group */
6515 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
6516 
6517 	if (desired_ring->mr_state == MR_FREE) {
6518 		ASSERT(MAC_GROUP_NO_CLIENT(group));
6519 		if (mac_start_ring(desired_ring) != 0)
6520 			return (NULL);
6521 		return (desired_ring);
6522 	}
6523 	/*
6524 	 * There are clients using this ring, so let's move the clients
6525 	 * away from using this ring.
6526 	 */
6527 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6528 		mcip = mgcp->mgc_client;
6529 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
6530 		srs = MCIP_TX_SRS(mcip);
6531 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
6532 		mac_tx_invoke_callbacks(mcip,
6533 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
6534 		    desired_ring));
6535 		mac_tx_srs_del_ring(srs, desired_ring);
6536 		mac_tx_client_restart((mac_client_handle_t)mcip);
6537 	}
6538 	return (desired_ring);
6539 }
6540 
6541 /*
6542  * For a non-default group with multiple clients, return the primary client.
6543  */
6544 static mac_client_impl_t *
6545 mac_get_grp_primary(mac_group_t *grp)
6546 {
6547 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6548 	mac_client_impl_t	*mcip;
6549 
6550 	while (mgcp != NULL) {
6551 		mcip = mgcp->mgc_client;
6552 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
6553 			return (mcip);
6554 		mgcp = mgcp->mgc_next;
6555 	}
6556 	return (NULL);
6557 }
6558 
6559 /*
6560  * Hybrid I/O specifies the ring that should be given to a share.
6561  * If the ring is already used by clients, then we need to release
6562  * the ring back to the default group so that we can give it to
6563  * the share. This means the clients using this ring now get a
6564  * replacement ring. If there aren't any replacement rings, this
6565  * function returns a failure.
6566  */
6567 static int
6568 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
6569     mac_ring_t *ring, mac_ring_t **rings, int nrings)
6570 {
6571 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
6572 	mac_resource_props_t	*mrp;
6573 	mac_client_impl_t	*mcip;
6574 	mac_group_t		*defgrp;
6575 	mac_ring_t		*tring;
6576 	mac_group_t		*tgrp;
6577 	int			i;
6578 	int			j;
6579 
6580 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6581 	if (mcip == NULL)
6582 		mcip = mac_get_grp_primary(group);
6583 	ASSERT(mcip != NULL);
6584 	ASSERT(mcip->mci_share == 0);
6585 
6586 	mrp = MCIP_RESOURCE_PROPS(mcip);
6587 	if (ring_type == MAC_RING_TYPE_RX) {
6588 		defgrp = mip->mi_rx_donor_grp;
6589 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
6590 			/* Need to put this mac client in the default group */
6591 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
6592 				return (ENOSPC);
6593 		} else {
6594 			/*
6595 			 * Switch this ring with some other ring from
6596 			 * the default group.
6597 			 */
6598 			for (tring = defgrp->mrg_rings; tring != NULL;
6599 			    tring = tring->mr_next) {
6600 				if (tring->mr_index == 0)
6601 					continue;
6602 				for (j = 0; j < nrings; j++) {
6603 					if (rings[j] == tring)
6604 						break;
6605 				}
6606 				if (j >= nrings)
6607 					break;
6608 			}
6609 			if (tring == NULL)
6610 				return (ENOSPC);
6611 			if (mac_group_mov_ring(mip, group, tring) != 0)
6612 				return (ENOSPC);
6613 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6614 				(void) mac_group_mov_ring(mip, defgrp, tring);
6615 				return (ENOSPC);
6616 			}
6617 		}
6618 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6619 		return (0);
6620 	}
6621 
6622 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6623 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6624 		/*
6625 		 * See if we can get a spare ring to replace the default
6626 		 * ring.
6627 		 */
6628 		if (defgrp->mrg_cur_count == 1) {
6629 			/*
6630 			 * Need to get a ring from another client, see if
6631 			 * there are any clients that can be moved to
6632 			 * the default group, thereby freeing some rings.
6633 			 */
6634 			for (i = 0; i < mip->mi_tx_group_count; i++) {
6635 				tgrp = &mip->mi_tx_groups[i];
6636 				if (tgrp->mrg_state ==
6637 				    MAC_GROUP_STATE_REGISTERED) {
6638 					continue;
6639 				}
6640 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6641 				if (mcip == NULL)
6642 					mcip = mac_get_grp_primary(tgrp);
6643 				ASSERT(mcip != NULL);
6644 				mrp = MCIP_RESOURCE_PROPS(mcip);
6645 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6646 					ASSERT(tgrp->mrg_cur_count == 1);
6647 					/*
6648 					 * If this ring is part of the
6649 					 * rings asked by the share we cannot
6650 					 * use it as the default ring.
6651 					 */
6652 					for (j = 0; j < nrings; j++) {
6653 						if (rings[j] == tgrp->mrg_rings)
6654 							break;
6655 					}
6656 					if (j < nrings)
6657 						continue;
6658 					mac_tx_client_quiesce(
6659 					    (mac_client_handle_t)mcip);
6660 					mac_tx_switch_group(mcip, tgrp,
6661 					    defgrp);
6662 					mac_tx_client_restart(
6663 					    (mac_client_handle_t)mcip);
6664 					break;
6665 				}
6666 			}
6667 			/*
6668 			 * All the rings are reserved, can't give up the
6669 			 * default ring.
6670 			 */
6671 			if (defgrp->mrg_cur_count <= 1)
6672 				return (ENOSPC);
6673 		}
6674 		/*
6675 		 * Swap the default ring with another.
6676 		 */
6677 		for (tring = defgrp->mrg_rings; tring != NULL;
6678 		    tring = tring->mr_next) {
6679 			/*
6680 			 * If this ring is part of the rings asked by the
6681 			 * share we cannot use it as the default ring.
6682 			 */
6683 			for (j = 0; j < nrings; j++) {
6684 				if (rings[j] == tring)
6685 					break;
6686 			}
6687 			if (j >= nrings)
6688 				break;
6689 		}
6690 		ASSERT(tring != NULL);
6691 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6692 		return (0);
6693 	}
6694 	/*
6695 	 * The Tx ring is with a group reserved by a MAC client. See if
6696 	 * we can swap it.
6697 	 */
6698 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6699 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6700 	if (mcip == NULL)
6701 		mcip = mac_get_grp_primary(group);
6702 	ASSERT(mcip !=  NULL);
6703 	mrp = MCIP_RESOURCE_PROPS(mcip);
6704 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6705 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6706 		ASSERT(group->mrg_cur_count == 1);
6707 		/* Put this mac client in the default group */
6708 		mac_tx_switch_group(mcip, group, defgrp);
6709 	} else {
6710 		/*
6711 		 * Switch this ring with some other ring from
6712 		 * the default group.
6713 		 */
6714 		for (tring = defgrp->mrg_rings; tring != NULL;
6715 		    tring = tring->mr_next) {
6716 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6717 				continue;
6718 			/*
6719 			 * If this ring is part of the rings asked by the
6720 			 * share we cannot use it for swapping.
6721 			 */
6722 			for (j = 0; j < nrings; j++) {
6723 				if (rings[j] == tring)
6724 					break;
6725 			}
6726 			if (j >= nrings)
6727 				break;
6728 		}
6729 		if (tring == NULL) {
6730 			mac_tx_client_restart((mac_client_handle_t)mcip);
6731 			return (ENOSPC);
6732 		}
6733 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6734 			mac_tx_client_restart((mac_client_handle_t)mcip);
6735 			return (ENOSPC);
6736 		}
6737 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6738 			(void) mac_group_mov_ring(mip, defgrp, tring);
6739 			mac_tx_client_restart((mac_client_handle_t)mcip);
6740 			return (ENOSPC);
6741 		}
6742 	}
6743 	mac_tx_client_restart((mac_client_handle_t)mcip);
6744 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6745 	return (0);
6746 }
6747 
6748 /*
6749  * Populate a zero-ring group with rings. If the share is non-NULL,
6750  * the rings are chosen according to that share.
6751  * Invoked after allocating a new RX or TX group through
6752  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6753  * Returns zero on success, an errno otherwise.
6754  */
6755 int
6756 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6757     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6758     uint32_t ringcnt)
6759 {
6760 	mac_ring_t **rings, *ring;
6761 	uint_t nrings;
6762 	int rv = 0, i = 0, j;
6763 
6764 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6765 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6766 	    (ring_type == MAC_RING_TYPE_TX &&
6767 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6768 
6769 	/*
6770 	 * First find the rings to allocate to the group.
6771 	 */
6772 	if (share != 0) {
6773 		/* get rings through ms_squery() */
6774 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6775 		ASSERT(nrings != 0);
6776 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6777 		    KM_SLEEP);
6778 		mip->mi_share_capab.ms_squery(share, ring_type,
6779 		    (mac_ring_handle_t *)rings, &nrings);
6780 		for (i = 0; i < nrings; i++) {
6781 			/*
6782 			 * If we have given this ring to a non-default
6783 			 * group, we need to check if we can get this
6784 			 * ring.
6785 			 */
6786 			ring = rings[i];
6787 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6788 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6789 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6790 				    ring, rings, nrings) != 0) {
6791 					rv = ENOSPC;
6792 					goto bail;
6793 				}
6794 			}
6795 		}
6796 	} else {
6797 		/*
6798 		 * Pick one ring from default group.
6799 		 *
6800 		 * for now pick the second ring which requires the first ring
6801 		 * at index 0 to stay in the default group, since it is the
6802 		 * ring which carries the multicast traffic.
6803 		 * We need a better way for a driver to indicate this,
6804 		 * for example a per-ring flag.
6805 		 */
6806 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6807 		    KM_SLEEP);
6808 		for (ring = src_group->mrg_rings; ring != NULL;
6809 		    ring = ring->mr_next) {
6810 			if (ring_type == MAC_RING_TYPE_RX &&
6811 			    ring->mr_index == 0) {
6812 				continue;
6813 			}
6814 			if (ring_type == MAC_RING_TYPE_TX &&
6815 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6816 				continue;
6817 			}
6818 			rings[i++] = ring;
6819 			if (i == ringcnt)
6820 				break;
6821 		}
6822 		ASSERT(ring != NULL);
6823 		nrings = i;
6824 		/* Not enough rings as required */
6825 		if (nrings != ringcnt) {
6826 			rv = ENOSPC;
6827 			goto bail;
6828 		}
6829 	}
6830 
6831 	switch (ring_type) {
6832 	case MAC_RING_TYPE_RX:
6833 		if (src_group->mrg_cur_count - nrings < 1) {
6834 			/* we ran out of rings */
6835 			rv = ENOSPC;
6836 			goto bail;
6837 		}
6838 
6839 		/* move receive rings to new group */
6840 		for (i = 0; i < nrings; i++) {
6841 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6842 			if (rv != 0) {
6843 				/* move rings back on failure */
6844 				for (j = 0; j < i; j++) {
6845 					(void) mac_group_mov_ring(mip,
6846 					    src_group, rings[j]);
6847 				}
6848 				goto bail;
6849 			}
6850 		}
6851 		break;
6852 
6853 	case MAC_RING_TYPE_TX: {
6854 		mac_ring_t *tmp_ring;
6855 
6856 		/* move the TX rings to the new group */
6857 		for (i = 0; i < nrings; i++) {
6858 			/* get the desired ring */
6859 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6860 			if (tmp_ring == NULL) {
6861 				rv = ENOSPC;
6862 				goto bail;
6863 			}
6864 			ASSERT(tmp_ring == rings[i]);
6865 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6866 			if (rv != 0) {
6867 				/* cleanup on failure */
6868 				for (j = 0; j < i; j++) {
6869 					(void) mac_group_mov_ring(mip,
6870 					    MAC_DEFAULT_TX_GROUP(mip),
6871 					    rings[j]);
6872 				}
6873 				goto bail;
6874 			}
6875 		}
6876 		break;
6877 	}
6878 	}
6879 
6880 	/* add group to share */
6881 	if (share != 0)
6882 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6883 
6884 bail:
6885 	/* free temporary array of rings */
6886 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6887 
6888 	return (rv);
6889 }
6890 
6891 void
6892 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6893 {
6894 	mac_grp_client_t *mgcp;
6895 
6896 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6897 		if (mgcp->mgc_client == mcip)
6898 			break;
6899 	}
6900 
6901 	ASSERT(mgcp == NULL);
6902 
6903 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6904 	mgcp->mgc_client = mcip;
6905 	mgcp->mgc_next = grp->mrg_clients;
6906 	grp->mrg_clients = mgcp;
6907 }
6908 
6909 void
6910 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6911 {
6912 	mac_grp_client_t *mgcp, **pprev;
6913 
6914 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6915 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6916 		if (mgcp->mgc_client == mcip)
6917 			break;
6918 	}
6919 
6920 	ASSERT(mgcp != NULL);
6921 
6922 	*pprev = mgcp->mgc_next;
6923 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6924 }
6925 
6926 /*
6927  * Return true if any client on this group explicitly asked for HW
6928  * rings (of type mask) or have a bound share.
6929  */
6930 static boolean_t
6931 i_mac_clients_hw(mac_group_t *grp, uint32_t mask)
6932 {
6933 	mac_grp_client_t	*mgcip;
6934 	mac_client_impl_t	*mcip;
6935 	mac_resource_props_t	*mrp;
6936 
6937 	for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) {
6938 		mcip = mgcip->mgc_client;
6939 		mrp = MCIP_RESOURCE_PROPS(mcip);
6940 		if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0)
6941 			return (B_TRUE);
6942 	}
6943 
6944 	return (B_FALSE);
6945 }
6946 
6947 /*
6948  * Finds an available group and exclusively reserves it for a client.
6949  * The group is chosen to suit the flow's resource controls (bandwidth and
6950  * fanout requirements) and the address type.
6951  * If the requestor is the pimary MAC then return the group with the
6952  * largest number of rings, otherwise the default ring when available.
6953  */
6954 mac_group_t *
6955 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6956 {
6957 	mac_share_handle_t	share = mcip->mci_share;
6958 	mac_impl_t		*mip = mcip->mci_mip;
6959 	mac_group_t		*grp = NULL;
6960 	int			i;
6961 	int			err = 0;
6962 	mac_address_t		*map;
6963 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6964 	int			nrings;
6965 	int			donor_grp_rcnt;
6966 	boolean_t		need_exclgrp = B_FALSE;
6967 	int			need_rings = 0;
6968 	mac_group_t		*candidate_grp = NULL;
6969 	mac_client_impl_t	*gclient;
6970 	mac_group_t		*donorgrp = NULL;
6971 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6972 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6973 	boolean_t		isprimary;
6974 
6975 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6976 
6977 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6978 
6979 	/*
6980 	 * Check if a group already has this MAC address (case of VLANs)
6981 	 * unless we are moving this MAC client from one group to another.
6982 	 */
6983 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6984 		if (map->ma_group != NULL)
6985 			return (map->ma_group);
6986 	}
6987 
6988 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6989 		return (NULL);
6990 
6991 	/*
6992 	 * If this client is requesting exclusive MAC access then
6993 	 * return NULL to ensure the client uses the default group.
6994 	 */
6995 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6996 		return (NULL);
6997 
6998 	/* For dynamic groups default unspecified to 1 */
6999 	if (rxhw && unspec &&
7000 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7001 		mrp->mrp_nrxrings = 1;
7002 	}
7003 
7004 	/*
7005 	 * For static grouping we allow only specifying rings=0 and
7006 	 * unspecified
7007 	 */
7008 	if (rxhw && mrp->mrp_nrxrings > 0 &&
7009 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
7010 		return (NULL);
7011 	}
7012 
7013 	if (rxhw) {
7014 		/*
7015 		 * We have explicitly asked for a group (with nrxrings,
7016 		 * if unspec).
7017 		 */
7018 		if (unspec || mrp->mrp_nrxrings > 0) {
7019 			need_exclgrp = B_TRUE;
7020 			need_rings = mrp->mrp_nrxrings;
7021 		} else if (mrp->mrp_nrxrings == 0) {
7022 			/*
7023 			 * We have asked for a software group.
7024 			 */
7025 			return (NULL);
7026 		}
7027 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
7028 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7029 		/*
7030 		 * If the primary is the only active client on this
7031 		 * mip and we have not asked for any rings, we give
7032 		 * it the default group so that the primary gets to
7033 		 * use all the rings.
7034 		 */
7035 		return (NULL);
7036 	}
7037 
7038 	/* The group that can donate rings */
7039 	donorgrp = mip->mi_rx_donor_grp;
7040 
7041 	/*
7042 	 * The number of rings that the default group can donate.
7043 	 * We need to leave at least one ring.
7044 	 */
7045 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7046 
7047 	/*
7048 	 * Try to exclusively reserve a RX group.
7049 	 *
7050 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
7051 	 * client), try to reserve the a non-default RX group and give
7052 	 * it all the rings from the donor group, except the default ring
7053 	 *
7054 	 * For flows requiring HW_RING (unicast flow of other clients), try
7055 	 * to reserve non-default RX group with the specified number of
7056 	 * rings, if available.
7057 	 *
7058 	 * For flows that have not asked for software or hardware ring,
7059 	 * try to reserve a non-default group with 1 ring, if available.
7060 	 */
7061 	for (i = 1; i < mip->mi_rx_group_count; i++) {
7062 		grp = &mip->mi_rx_groups[i];
7063 
7064 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
7065 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
7066 
7067 		/*
7068 		 * Check if this group could be a candidate group for
7069 		 * eviction if we need a group for this MAC client,
7070 		 * but there aren't any. A candidate group is one
7071 		 * that didn't ask for an exclusive group, but got
7072 		 * one and it has enough rings (combined with what
7073 		 * the donor group can donate) for the new MAC
7074 		 * client.
7075 		 */
7076 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
7077 			/*
7078 			 * If the donor group is not the default
7079 			 * group, don't bother looking for a candidate
7080 			 * group. If we don't have enough rings we
7081 			 * will check if the primary group can be
7082 			 * vacated.
7083 			 */
7084 			if (candidate_grp == NULL &&
7085 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
7086 				if (!i_mac_clients_hw(grp, MRP_RX_RINGS) &&
7087 				    (unspec ||
7088 				    (grp->mrg_cur_count + donor_grp_rcnt >=
7089 				    need_rings))) {
7090 					candidate_grp = grp;
7091 				}
7092 			}
7093 			continue;
7094 		}
7095 		/*
7096 		 * This group could already be SHARED by other multicast
7097 		 * flows on this client. In that case, the group would
7098 		 * be shared and has already been started.
7099 		 */
7100 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
7101 
7102 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
7103 		    (mac_start_group(grp) != 0)) {
7104 			continue;
7105 		}
7106 
7107 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7108 			break;
7109 		ASSERT(grp->mrg_cur_count == 0);
7110 
7111 		/*
7112 		 * Populate the group. Rings should be taken
7113 		 * from the donor group.
7114 		 */
7115 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
7116 
7117 		/*
7118 		 * If the donor group can't donate, let's just walk and
7119 		 * see if someone can vacate a group, so that we have
7120 		 * enough rings for this, unless we already have
7121 		 * identified a candiate group..
7122 		 */
7123 		if (nrings <= donor_grp_rcnt) {
7124 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7125 			    donorgrp, grp, share, nrings);
7126 			if (err == 0) {
7127 				/*
7128 				 * For a share i_mac_group_allocate_rings gets
7129 				 * the rings from the driver, let's populate
7130 				 * the property for the client now.
7131 				 */
7132 				if (share != 0) {
7133 					mac_client_set_rings(
7134 					    (mac_client_handle_t)mcip,
7135 					    grp->mrg_cur_count, -1);
7136 				}
7137 				if (mac_is_primary_client(mcip) && !rxhw)
7138 					mip->mi_rx_donor_grp = grp;
7139 				break;
7140 			}
7141 		}
7142 
7143 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7144 		    mip->mi_name, int, grp->mrg_index, int, err);
7145 
7146 		/*
7147 		 * It's a dynamic group but the grouping operation
7148 		 * failed.
7149 		 */
7150 		mac_stop_group(grp);
7151 	}
7152 
7153 	/* We didn't find an exclusive group for this MAC client */
7154 	if (i >= mip->mi_rx_group_count) {
7155 
7156 		if (!need_exclgrp)
7157 			return (NULL);
7158 
7159 		/*
7160 		 * If we found a candidate group then move the
7161 		 * existing MAC client from the candidate_group to the
7162 		 * default group and give the candidate_group to the
7163 		 * new MAC client. If we didn't find a candidate
7164 		 * group, then check if the primary is in its own
7165 		 * group and if it can make way for this MAC client.
7166 		 */
7167 		if (candidate_grp == NULL &&
7168 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
7169 		    donorgrp->mrg_cur_count >= need_rings) {
7170 			candidate_grp = donorgrp;
7171 		}
7172 		if (candidate_grp != NULL) {
7173 			boolean_t	prim_grp = B_FALSE;
7174 
7175 			/*
7176 			 * Switch the existing MAC client from the
7177 			 * candidate group to the default group. If
7178 			 * the candidate group is the donor group,
7179 			 * then after the switch we need to update the
7180 			 * donor group too.
7181 			 */
7182 			grp = candidate_grp;
7183 			gclient = grp->mrg_clients->mgc_client;
7184 			VERIFY3P(gclient, !=, NULL);
7185 			if (grp == mip->mi_rx_donor_grp)
7186 				prim_grp = B_TRUE;
7187 			if (mac_rx_switch_group(gclient, grp,
7188 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
7189 				return (NULL);
7190 			}
7191 			if (prim_grp) {
7192 				mip->mi_rx_donor_grp =
7193 				    MAC_DEFAULT_RX_GROUP(mip);
7194 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
7195 			}
7196 
7197 			/*
7198 			 * Now give this group with the required rings
7199 			 * to this MAC client.
7200 			 */
7201 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7202 			if (mac_start_group(grp) != 0)
7203 				return (NULL);
7204 
7205 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7206 				return (grp);
7207 
7208 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7209 			ASSERT(grp->mrg_cur_count == 0);
7210 			ASSERT(donor_grp_rcnt >= need_rings);
7211 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7212 			    donorgrp, grp, share, need_rings);
7213 			if (err == 0) {
7214 				/*
7215 				 * For a share i_mac_group_allocate_rings gets
7216 				 * the rings from the driver, let's populate
7217 				 * the property for the client now.
7218 				 */
7219 				if (share != 0) {
7220 					mac_client_set_rings(
7221 					    (mac_client_handle_t)mcip,
7222 					    grp->mrg_cur_count, -1);
7223 				}
7224 				DTRACE_PROBE2(rx__group__reserved,
7225 				    char *, mip->mi_name, int, grp->mrg_index);
7226 				return (grp);
7227 			}
7228 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7229 			    mip->mi_name, int, grp->mrg_index, int, err);
7230 			mac_stop_group(grp);
7231 		}
7232 		return (NULL);
7233 	}
7234 	ASSERT(grp != NULL);
7235 
7236 	DTRACE_PROBE2(rx__group__reserved,
7237 	    char *, mip->mi_name, int, grp->mrg_index);
7238 	return (grp);
7239 }
7240 
7241 /*
7242  * mac_rx_release_group()
7243  *
7244  * Release the group when it has no remaining clients. The group is
7245  * stopped and its shares are removed and all rings are assigned back
7246  * to default group. This should never be called against the default
7247  * group.
7248  */
7249 void
7250 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
7251 {
7252 	mac_impl_t		*mip = mcip->mci_mip;
7253 	mac_ring_t		*ring;
7254 
7255 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
7256 	ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE);
7257 
7258 	if (mip->mi_rx_donor_grp == group)
7259 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
7260 
7261 	/*
7262 	 * This is the case where there are no clients left. Any
7263 	 * SRS etc on this group have also be quiesced.
7264 	 */
7265 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
7266 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
7267 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
7268 			/*
7269 			 * Remove the SRS associated with the HW ring.
7270 			 * As a result, polling will be disabled.
7271 			 */
7272 			ring->mr_srs = NULL;
7273 		}
7274 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
7275 		    ring->mr_state == MR_INUSE);
7276 		if (ring->mr_state == MR_INUSE) {
7277 			mac_stop_ring(ring);
7278 			ring->mr_flag = 0;
7279 		}
7280 	}
7281 
7282 	/* remove group from share */
7283 	if (mcip->mci_share != 0) {
7284 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
7285 		    group->mrg_driver);
7286 	}
7287 
7288 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7289 		mac_ring_t *ring;
7290 
7291 		/*
7292 		 * Rings were dynamically allocated to group.
7293 		 * Move rings back to default group.
7294 		 */
7295 		while ((ring = group->mrg_rings) != NULL) {
7296 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
7297 			    ring);
7298 		}
7299 	}
7300 	mac_stop_group(group);
7301 	/*
7302 	 * Possible improvement: See if we can assign the group just released
7303 	 * to a another client of the mip
7304 	 */
7305 }
7306 
7307 /*
7308  * Move the MAC address from fgrp to tgrp.
7309  */
7310 static int
7311 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
7312     mac_group_t *tgrp)
7313 {
7314 	mac_impl_t		*mip = mcip->mci_mip;
7315 	uint8_t			maddr[MAXMACADDRLEN];
7316 	int			err = 0;
7317 	uint16_t		vid;
7318 	mac_unicast_impl_t	*muip;
7319 	boolean_t		use_hw;
7320 
7321 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
7322 	VERIFY3P(mcip->mci_unicast, !=, NULL);
7323 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
7324 
7325 	/*
7326 	 * Does the client require MAC address hardware classifiction?
7327 	 */
7328 	use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
7329 	vid = i_mac_flow_vid(mcip->mci_flent);
7330 
7331 	/*
7332 	 * You can never move an address that is shared by multiple
7333 	 * clients. mac_datapath_setup() ensures that clients sharing
7334 	 * an address are placed on the default group. This guarantees
7335 	 * that a non-default group will only ever have one client and
7336 	 * thus make full use of HW filters.
7337 	 */
7338 	if (mac_check_macaddr_shared(mcip->mci_unicast))
7339 		return (EINVAL);
7340 
7341 	err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid);
7342 
7343 	if (err != 0) {
7344 		mac_rx_client_restart((mac_client_handle_t)mcip);
7345 		return (err);
7346 	}
7347 
7348 	/*
7349 	 * If this isn't the primary MAC address then the
7350 	 * mac_address_t has been freed by the last call to
7351 	 * mac_remove_macaddr_vlan(). In any case, NULL the reference
7352 	 * to avoid a dangling pointer.
7353 	 */
7354 	mcip->mci_unicast = NULL;
7355 
7356 	/*
7357 	 * We also have to NULL all the mui_map references -- sun4v
7358 	 * strikes again!
7359 	 */
7360 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7361 	for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7362 		muip->mui_map = NULL;
7363 	rw_exit(&mcip->mci_rw_lock);
7364 
7365 	/*
7366 	 * Program the H/W Classifier first, if this fails we need not
7367 	 * proceed with the other stuff.
7368 	 */
7369 	if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) {
7370 		int err2;
7371 
7372 		/* Revert back the H/W Classifier */
7373 		err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw);
7374 
7375 		if (err2 != 0) {
7376 			cmn_err(CE_WARN, "Failed to revert HW classification"
7377 			    " on MAC %s, for client %s: %d.", mip->mi_name,
7378 			    mcip->mci_name, err2);
7379 		}
7380 
7381 		mac_rx_client_restart((mac_client_handle_t)mcip);
7382 		return (err);
7383 	}
7384 
7385 	/*
7386 	 * Get a reference to the new mac_address_t and update the
7387 	 * client's reference. Then restart the client and add the
7388 	 * other clients of this MAC addr (if they exsit).
7389 	 */
7390 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
7391 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7392 	for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7393 		muip->mui_map = mcip->mci_unicast;
7394 	rw_exit(&mcip->mci_rw_lock);
7395 	mac_rx_client_restart((mac_client_handle_t)mcip);
7396 	return (0);
7397 }
7398 
7399 /*
7400  * Switch the MAC client from one group to another. This means we need
7401  * to remove the MAC address from the group, remove the MAC client,
7402  * teardown the SRSs and revert the group state. Then, we add the client
7403  * to the destination group, set the SRSs, and add the MAC address to the
7404  * group.
7405  */
7406 int
7407 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7408     mac_group_t *tgrp)
7409 {
7410 	int			err;
7411 	mac_group_state_t	next_state;
7412 	mac_client_impl_t	*group_only_mcip;
7413 	mac_client_impl_t	*gmcip;
7414 	mac_impl_t		*mip = mcip->mci_mip;
7415 	mac_grp_client_t	*mgcp;
7416 
7417 	VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group);
7418 
7419 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
7420 		return (err);
7421 
7422 	/*
7423 	 * If the group is marked as reserved and in use by a single
7424 	 * client, then there is an SRS to teardown.
7425 	 */
7426 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7427 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7428 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
7429 	}
7430 
7431 	/*
7432 	 * If we are moving the client from a non-default group, then
7433 	 * we know that any additional clients on this group share the
7434 	 * same MAC address. Since we moved the MAC address filter, we
7435 	 * need to move these clients too.
7436 	 *
7437 	 * If we are moving the client from the default group and its
7438 	 * MAC address has VLAN clients, then we must move those
7439 	 * clients as well.
7440 	 *
7441 	 * In both cases the idea is the same: we moved the MAC
7442 	 * address filter to the tgrp, so we must move all clients
7443 	 * using that MAC address to tgrp as well.
7444 	 */
7445 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
7446 		mgcp = fgrp->mrg_clients;
7447 		while (mgcp != NULL) {
7448 			gmcip = mgcp->mgc_client;
7449 			mgcp = mgcp->mgc_next;
7450 			mac_group_remove_client(fgrp, gmcip);
7451 			mac_group_add_client(tgrp, gmcip);
7452 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
7453 		}
7454 		mac_release_rx_group(mcip, fgrp);
7455 		VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE);
7456 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
7457 	} else {
7458 		mac_group_remove_client(fgrp, mcip);
7459 		mac_group_add_client(tgrp, mcip);
7460 		mcip->mci_flent->fe_rx_ring_group = tgrp;
7461 
7462 		/*
7463 		 * If there are other clients (VLANs) sharing this address
7464 		 * then move them too.
7465 		 */
7466 		if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7467 			/*
7468 			 * We need to move all the clients that are using
7469 			 * this MAC address.
7470 			 */
7471 			mgcp = fgrp->mrg_clients;
7472 			while (mgcp != NULL) {
7473 				gmcip = mgcp->mgc_client;
7474 				mgcp = mgcp->mgc_next;
7475 				if (mcip->mci_unicast == gmcip->mci_unicast) {
7476 					mac_group_remove_client(fgrp, gmcip);
7477 					mac_group_add_client(tgrp, gmcip);
7478 					gmcip->mci_flent->fe_rx_ring_group =
7479 					    tgrp;
7480 				}
7481 			}
7482 		}
7483 
7484 		/*
7485 		 * The default group still handles multicast and
7486 		 * broadcast traffic; it won't transition to
7487 		 * MAC_GROUP_STATE_REGISTERED.
7488 		 */
7489 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
7490 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
7491 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
7492 	}
7493 
7494 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
7495 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
7496 	mac_set_group_state(tgrp, next_state);
7497 
7498 	/*
7499 	 * If the destination group is reserved, then setup the SRSes.
7500 	 * Otherwise make sure to use SW classification.
7501 	 */
7502 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7503 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
7504 		mac_fanout_setup(mcip, mcip->mci_flent,
7505 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
7506 		    NULL);
7507 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
7508 	} else {
7509 		mac_rx_switch_grp_to_sw(tgrp);
7510 	}
7511 
7512 	return (0);
7513 }
7514 
7515 /*
7516  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
7517  * when a share was allocated to the client.
7518  */
7519 mac_group_t *
7520 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
7521 {
7522 	mac_impl_t		*mip = mcip->mci_mip;
7523 	mac_group_t		*grp = NULL;
7524 	int			rv;
7525 	int			i;
7526 	int			err;
7527 	mac_group_t		*defgrp;
7528 	mac_share_handle_t	share = mcip->mci_share;
7529 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7530 	int			nrings;
7531 	int			defnrings;
7532 	boolean_t		need_exclgrp = B_FALSE;
7533 	int			need_rings = 0;
7534 	mac_group_t		*candidate_grp = NULL;
7535 	mac_client_impl_t	*gclient;
7536 	mac_resource_props_t	*gmrp;
7537 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
7538 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
7539 	boolean_t		isprimary;
7540 
7541 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7542 
7543 	/*
7544 	 * When we come here for a VLAN on the primary (dladm create-vlan),
7545 	 * we need to pair it along with the primary (to keep it consistent
7546 	 * with the RX side). So, we check if the primary is already assigned
7547 	 * to a group and return the group if so. The other way is also
7548 	 * true, i.e. the VLAN is already created and now we are plumbing
7549 	 * the primary.
7550 	 */
7551 	if (!move && isprimary) {
7552 		for (gclient = mip->mi_clients_list; gclient != NULL;
7553 		    gclient = gclient->mci_client_next) {
7554 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
7555 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
7556 				return (gclient->mci_flent->fe_tx_ring_group);
7557 			}
7558 		}
7559 	}
7560 
7561 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
7562 		return (NULL);
7563 
7564 	/* For dynamic groups, default unspec to 1 */
7565 	if (txhw && unspec &&
7566 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7567 		mrp->mrp_ntxrings = 1;
7568 	}
7569 	/*
7570 	 * For static grouping we allow only specifying rings=0 and
7571 	 * unspecified
7572 	 */
7573 	if (txhw && mrp->mrp_ntxrings > 0 &&
7574 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
7575 		return (NULL);
7576 	}
7577 
7578 	if (txhw) {
7579 		/*
7580 		 * We have explicitly asked for a group (with ntxrings,
7581 		 * if unspec).
7582 		 */
7583 		if (unspec || mrp->mrp_ntxrings > 0) {
7584 			need_exclgrp = B_TRUE;
7585 			need_rings = mrp->mrp_ntxrings;
7586 		} else if (mrp->mrp_ntxrings == 0) {
7587 			/*
7588 			 * We have asked for a software group.
7589 			 */
7590 			return (NULL);
7591 		}
7592 	}
7593 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7594 	/*
7595 	 * The number of rings that the default group can donate.
7596 	 * We need to leave at least one ring - the default ring - in
7597 	 * this group.
7598 	 */
7599 	defnrings = defgrp->mrg_cur_count - 1;
7600 
7601 	/*
7602 	 * Primary gets default group unless explicitly told not
7603 	 * to  (i.e. rings > 0).
7604 	 */
7605 	if (isprimary && !need_exclgrp)
7606 		return (NULL);
7607 
7608 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
7609 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
7610 		grp = &mip->mi_tx_groups[i];
7611 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
7612 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
7613 			/*
7614 			 * Select a candidate for replacement if we don't
7615 			 * get an exclusive group. A candidate group is one
7616 			 * that didn't ask for an exclusive group, but got
7617 			 * one and it has enough rings (combined with what
7618 			 * the default group can donate) for the new MAC
7619 			 * client.
7620 			 */
7621 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7622 			    candidate_grp == NULL) {
7623 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
7624 				VERIFY3P(gclient, !=, NULL);
7625 				gmrp = MCIP_RESOURCE_PROPS(gclient);
7626 				if (gclient->mci_share == 0 &&
7627 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7628 				    (unspec ||
7629 				    (grp->mrg_cur_count + defnrings) >=
7630 				    need_rings)) {
7631 					candidate_grp = grp;
7632 				}
7633 			}
7634 			continue;
7635 		}
7636 		/*
7637 		 * If the default can't donate let's just walk and
7638 		 * see if someone can vacate a group, so that we have
7639 		 * enough rings for this.
7640 		 */
7641 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7642 		    nrings <= defnrings) {
7643 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7644 				rv = mac_start_group(grp);
7645 				ASSERT(rv == 0);
7646 			}
7647 			break;
7648 		}
7649 	}
7650 
7651 	/* The default group */
7652 	if (i >= mip->mi_tx_group_count) {
7653 		/*
7654 		 * If we need an exclusive group and have identified a
7655 		 * candidate group we switch the MAC client from the
7656 		 * candidate group to the default group and give the
7657 		 * candidate group to this client.
7658 		 */
7659 		if (need_exclgrp && candidate_grp != NULL) {
7660 			/*
7661 			 * Switch the MAC client from the candidate
7662 			 * group to the default group. We know the
7663 			 * candidate_grp came from a reserved group
7664 			 * and thus only has one client.
7665 			 */
7666 			grp = candidate_grp;
7667 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
7668 			VERIFY3P(gclient, !=, NULL);
7669 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7670 			mac_tx_switch_group(gclient, grp, defgrp);
7671 			mac_tx_client_restart((mac_client_handle_t)gclient);
7672 
7673 			/*
7674 			 * Give the candidate group with the specified number
7675 			 * of rings to this MAC client.
7676 			 */
7677 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7678 			rv = mac_start_group(grp);
7679 			ASSERT(rv == 0);
7680 
7681 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7682 				return (grp);
7683 
7684 			ASSERT(grp->mrg_cur_count == 0);
7685 			ASSERT(defgrp->mrg_cur_count > need_rings);
7686 
7687 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7688 			    defgrp, grp, share, need_rings);
7689 			if (err == 0) {
7690 				/*
7691 				 * For a share i_mac_group_allocate_rings gets
7692 				 * the rings from the driver, let's populate
7693 				 * the property for the client now.
7694 				 */
7695 				if (share != 0) {
7696 					mac_client_set_rings(
7697 					    (mac_client_handle_t)mcip, -1,
7698 					    grp->mrg_cur_count);
7699 				}
7700 				mip->mi_tx_group_free--;
7701 				return (grp);
7702 			}
7703 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7704 			    mip->mi_name, int, grp->mrg_index, int, err);
7705 			mac_stop_group(grp);
7706 		}
7707 		return (NULL);
7708 	}
7709 	/*
7710 	 * We got an exclusive group, but it is not dynamic.
7711 	 */
7712 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7713 		mip->mi_tx_group_free--;
7714 		return (grp);
7715 	}
7716 
7717 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7718 	    share, nrings);
7719 	if (rv != 0) {
7720 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7721 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7722 		mac_stop_group(grp);
7723 		return (NULL);
7724 	}
7725 	/*
7726 	 * For a share i_mac_group_allocate_rings gets the rings from the
7727 	 * driver, let's populate the property for the client now.
7728 	 */
7729 	if (share != 0) {
7730 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7731 		    grp->mrg_cur_count);
7732 	}
7733 	mip->mi_tx_group_free--;
7734 	return (grp);
7735 }
7736 
7737 void
7738 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7739 {
7740 	mac_impl_t		*mip = mcip->mci_mip;
7741 	mac_share_handle_t	share = mcip->mci_share;
7742 	mac_ring_t		*ring;
7743 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7744 	mac_group_t		*defgrp;
7745 
7746 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7747 	if (srs != NULL) {
7748 		if (srs->srs_soft_ring_count > 0) {
7749 			for (ring = grp->mrg_rings; ring != NULL;
7750 			    ring = ring->mr_next) {
7751 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7752 				mac_tx_invoke_callbacks(mcip,
7753 				    (mac_tx_cookie_t)
7754 				    mac_tx_srs_get_soft_ring(srs, ring));
7755 				mac_tx_srs_del_ring(srs, ring);
7756 			}
7757 		} else {
7758 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7759 			srs->srs_tx.st_arg2 = NULL;
7760 			mac_srs_stat_delete(srs);
7761 		}
7762 	}
7763 	if (share != 0)
7764 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7765 
7766 	/* move the ring back to the pool */
7767 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7768 		while ((ring = grp->mrg_rings) != NULL)
7769 			(void) mac_group_mov_ring(mip, defgrp, ring);
7770 	}
7771 	mac_stop_group(grp);
7772 	mip->mi_tx_group_free++;
7773 }
7774 
7775 /*
7776  * Disassociate a MAC client from a group, i.e go through the rings in the
7777  * group and delete all the soft rings tied to them.
7778  */
7779 static void
7780 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7781 {
7782 	mac_client_impl_t	*mcip = flent->fe_mcip;
7783 	mac_soft_ring_set_t	*tx_srs;
7784 	mac_srs_tx_t		*tx;
7785 	mac_ring_t		*ring;
7786 
7787 	tx_srs = flent->fe_tx_srs;
7788 	tx = &tx_srs->srs_tx;
7789 
7790 	/* Single ring case we haven't created any soft rings */
7791 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7792 	    tx->st_mode == SRS_TX_DEFAULT) {
7793 		tx->st_arg2 = NULL;
7794 		mac_srs_stat_delete(tx_srs);
7795 	/* Fanout case, where we have to dismantle the soft rings */
7796 	} else {
7797 		for (ring = fgrp->mrg_rings; ring != NULL;
7798 		    ring = ring->mr_next) {
7799 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7800 			mac_tx_invoke_callbacks(mcip,
7801 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7802 			    ring));
7803 			mac_tx_srs_del_ring(tx_srs, ring);
7804 		}
7805 		ASSERT(tx->st_arg2 == NULL);
7806 	}
7807 }
7808 
7809 /*
7810  * Switch the MAC client from one group to another. This means we need
7811  * to remove the MAC client, teardown the SRSs and revert the group state.
7812  * Then, we add the client to the destination roup, set the SRSs etc.
7813  */
7814 void
7815 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7816     mac_group_t *tgrp)
7817 {
7818 	mac_client_impl_t	*group_only_mcip;
7819 	mac_impl_t		*mip = mcip->mci_mip;
7820 	flow_entry_t		*flent = mcip->mci_flent;
7821 	mac_group_t		*defgrp;
7822 	mac_grp_client_t	*mgcp;
7823 	mac_client_impl_t	*gmcip;
7824 	flow_entry_t		*gflent;
7825 
7826 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7827 	ASSERT(fgrp == flent->fe_tx_ring_group);
7828 
7829 	if (fgrp == defgrp) {
7830 		/*
7831 		 * If this is the primary we need to find any VLANs on
7832 		 * the primary and move them too.
7833 		 */
7834 		mac_group_remove_client(fgrp, mcip);
7835 		mac_tx_dismantle_soft_rings(fgrp, flent);
7836 		if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7837 			mgcp = fgrp->mrg_clients;
7838 			while (mgcp != NULL) {
7839 				gmcip = mgcp->mgc_client;
7840 				mgcp = mgcp->mgc_next;
7841 				if (mcip->mci_unicast != gmcip->mci_unicast)
7842 					continue;
7843 				mac_tx_client_quiesce(
7844 				    (mac_client_handle_t)gmcip);
7845 
7846 				gflent = gmcip->mci_flent;
7847 				mac_group_remove_client(fgrp, gmcip);
7848 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7849 
7850 				mac_group_add_client(tgrp, gmcip);
7851 				gflent->fe_tx_ring_group = tgrp;
7852 				/* We could directly set this to SHARED */
7853 				tgrp->mrg_state = mac_group_next_state(tgrp,
7854 				    &group_only_mcip, defgrp, B_FALSE);
7855 
7856 				mac_tx_srs_group_setup(gmcip, gflent,
7857 				    SRST_LINK);
7858 				mac_fanout_setup(gmcip, gflent,
7859 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7860 				    gmcip, NULL, NULL);
7861 
7862 				mac_tx_client_restart(
7863 				    (mac_client_handle_t)gmcip);
7864 			}
7865 		}
7866 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7867 			mac_ring_t	*ring;
7868 			int		cnt;
7869 			int		ringcnt;
7870 
7871 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7872 			/*
7873 			 * Additionally, we also need to stop all
7874 			 * the rings in the default group, except
7875 			 * the default ring. The reason being
7876 			 * this group won't be released since it is
7877 			 * the default group, so the rings won't
7878 			 * be stopped otherwise.
7879 			 */
7880 			ringcnt = fgrp->mrg_cur_count;
7881 			ring = fgrp->mrg_rings;
7882 			for (cnt = 0; cnt < ringcnt; cnt++) {
7883 				if (ring->mr_state == MR_INUSE &&
7884 				    ring !=
7885 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7886 					mac_stop_ring(ring);
7887 					ring->mr_flag = 0;
7888 				}
7889 				ring = ring->mr_next;
7890 			}
7891 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7892 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7893 		} else {
7894 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7895 		}
7896 	} else {
7897 		/*
7898 		 * We could have VLANs sharing the non-default group with
7899 		 * the primary.
7900 		 */
7901 		mgcp = fgrp->mrg_clients;
7902 		while (mgcp != NULL) {
7903 			gmcip = mgcp->mgc_client;
7904 			mgcp = mgcp->mgc_next;
7905 			if (gmcip == mcip)
7906 				continue;
7907 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7908 			gflent = gmcip->mci_flent;
7909 
7910 			mac_group_remove_client(fgrp, gmcip);
7911 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7912 
7913 			mac_group_add_client(tgrp, gmcip);
7914 			gflent->fe_tx_ring_group = tgrp;
7915 			/* We could directly set this to SHARED */
7916 			tgrp->mrg_state = mac_group_next_state(tgrp,
7917 			    &group_only_mcip, defgrp, B_FALSE);
7918 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7919 			mac_fanout_setup(gmcip, gflent,
7920 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7921 			    gmcip, NULL, NULL);
7922 
7923 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7924 		}
7925 		mac_group_remove_client(fgrp, mcip);
7926 		mac_release_tx_group(mcip, fgrp);
7927 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7928 	}
7929 
7930 	/* Add it to the tgroup */
7931 	mac_group_add_client(tgrp, mcip);
7932 	flent->fe_tx_ring_group = tgrp;
7933 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7934 	    defgrp, B_FALSE);
7935 
7936 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7937 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7938 	    mac_rx_deliver, mcip, NULL, NULL);
7939 }
7940 
7941 /*
7942  * This is a 1-time control path activity initiated by the client (IP).
7943  * The mac perimeter protects against other simultaneous control activities,
7944  * for example an ioctl that attempts to change the degree of fanout and
7945  * increase or decrease the number of softrings associated with this Tx SRS.
7946  */
7947 static mac_tx_notify_cb_t *
7948 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7949     mac_tx_notify_t notify, void *arg)
7950 {
7951 	mac_cb_info_t *mcbi;
7952 	mac_tx_notify_cb_t *mtnfp;
7953 
7954 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7955 
7956 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7957 	mtnfp->mtnf_fn = notify;
7958 	mtnfp->mtnf_arg = arg;
7959 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7960 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7961 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7962 
7963 	mcbi = &mcip->mci_tx_notify_cb_info;
7964 	mutex_enter(mcbi->mcbi_lockp);
7965 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7966 	mutex_exit(mcbi->mcbi_lockp);
7967 	return (mtnfp);
7968 }
7969 
7970 static void
7971 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7972 {
7973 	mac_cb_info_t	*mcbi;
7974 	mac_cb_t	**cblist;
7975 
7976 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7977 
7978 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7979 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7980 		cmn_err(CE_WARN,
7981 		    "mac_client_tx_notify_remove: callback not "
7982 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7983 		return;
7984 	}
7985 
7986 	mcbi = &mcip->mci_tx_notify_cb_info;
7987 	cblist = &mcip->mci_tx_notify_cb_list;
7988 	mutex_enter(mcbi->mcbi_lockp);
7989 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7990 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7991 	else
7992 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7993 	mutex_exit(mcbi->mcbi_lockp);
7994 }
7995 
7996 /*
7997  * mac_client_tx_notify():
7998  * call to add and remove flow control callback routine.
7999  */
8000 mac_tx_notify_handle_t
8001 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
8002     void *ptr)
8003 {
8004 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
8005 	mac_tx_notify_cb_t	*mtnfp = NULL;
8006 
8007 	i_mac_perim_enter(mcip->mci_mip);
8008 
8009 	if (callb_func != NULL) {
8010 		/* Add a notify callback */
8011 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
8012 	} else {
8013 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
8014 	}
8015 	i_mac_perim_exit(mcip->mci_mip);
8016 
8017 	return ((mac_tx_notify_handle_t)mtnfp);
8018 }
8019 
8020 void
8021 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
8022     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
8023 {
8024 	mac_bridge_tx_cb = txf;
8025 	mac_bridge_rx_cb = rxf;
8026 	mac_bridge_ref_cb = reff;
8027 	mac_bridge_ls_cb = lsf;
8028 }
8029 
8030 int
8031 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
8032 {
8033 	mac_impl_t *mip = (mac_impl_t *)mh;
8034 	int retv;
8035 
8036 	mutex_enter(&mip->mi_bridge_lock);
8037 	if (mip->mi_bridge_link == NULL) {
8038 		mip->mi_bridge_link = link;
8039 		retv = 0;
8040 	} else {
8041 		retv = EBUSY;
8042 	}
8043 	mutex_exit(&mip->mi_bridge_lock);
8044 	if (retv == 0) {
8045 		mac_poll_state_change(mh, B_FALSE);
8046 		mac_capab_update(mh);
8047 	}
8048 	return (retv);
8049 }
8050 
8051 /*
8052  * Disable bridging on the indicated link.
8053  */
8054 void
8055 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
8056 {
8057 	mac_impl_t *mip = (mac_impl_t *)mh;
8058 
8059 	mutex_enter(&mip->mi_bridge_lock);
8060 	ASSERT(mip->mi_bridge_link == link);
8061 	mip->mi_bridge_link = NULL;
8062 	mutex_exit(&mip->mi_bridge_lock);
8063 	mac_poll_state_change(mh, B_TRUE);
8064 	mac_capab_update(mh);
8065 }
8066 
8067 void
8068 mac_no_active(mac_handle_t mh)
8069 {
8070 	mac_impl_t *mip = (mac_impl_t *)mh;
8071 
8072 	i_mac_perim_enter(mip);
8073 	mip->mi_state_flags |= MIS_NO_ACTIVE;
8074 	i_mac_perim_exit(mip);
8075 }
8076 
8077 /*
8078  * Walk the primary VLAN clients whenever the primary's rings property
8079  * changes and update the mac_resource_props_t for the VLAN's client.
8080  * We need to do this since we don't support setting these properties
8081  * on the primary's VLAN clients, but the VLAN clients have to
8082  * follow the primary w.r.t the rings property.
8083  */
8084 void
8085 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
8086 {
8087 	mac_client_impl_t	*vmcip;
8088 	mac_resource_props_t	*vmrp;
8089 
8090 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
8091 	    vmcip = vmcip->mci_client_next) {
8092 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
8093 		    mac_client_vid((mac_client_handle_t)vmcip) ==
8094 		    VLAN_ID_NONE) {
8095 			continue;
8096 		}
8097 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
8098 
8099 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
8100 		if (mrp->mrp_mask & MRP_RX_RINGS)
8101 			vmrp->mrp_mask |= MRP_RX_RINGS;
8102 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
8103 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
8104 
8105 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
8106 		if (mrp->mrp_mask & MRP_TX_RINGS)
8107 			vmrp->mrp_mask |= MRP_TX_RINGS;
8108 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
8109 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
8110 
8111 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
8112 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
8113 		else
8114 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
8115 
8116 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
8117 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
8118 		else
8119 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
8120 	}
8121 }
8122 
8123 /*
8124  * We are adding or removing ring(s) from a group. The source for taking
8125  * rings is the default group. The destination for giving rings back is
8126  * the default group.
8127  */
8128 int
8129 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
8130     mac_group_t *defgrp)
8131 {
8132 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8133 	uint_t			modify;
8134 	int			count;
8135 	mac_ring_t		*ring;
8136 	mac_ring_t		*next;
8137 	mac_impl_t		*mip = mcip->mci_mip;
8138 	mac_ring_t		**rings;
8139 	uint_t			ringcnt;
8140 	int			i = 0;
8141 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
8142 	int			start;
8143 	int			end;
8144 	mac_group_t		*tgrp;
8145 	int			j;
8146 	int			rv = 0;
8147 
8148 	/*
8149 	 * If we are asked for just a group, we give 1 ring, else
8150 	 * the specified number of rings.
8151 	 */
8152 	if (rx_group) {
8153 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
8154 		    mrp->mrp_nrxrings;
8155 	} else {
8156 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
8157 		    mrp->mrp_ntxrings;
8158 	}
8159 
8160 	/* don't allow modifying rings for a share for now. */
8161 	ASSERT(mcip->mci_share == 0);
8162 
8163 	if (ringcnt == group->mrg_cur_count)
8164 		return (0);
8165 
8166 	if (group->mrg_cur_count > ringcnt) {
8167 		modify = group->mrg_cur_count - ringcnt;
8168 		if (rx_group) {
8169 			if (mip->mi_rx_donor_grp == group) {
8170 				ASSERT(mac_is_primary_client(mcip));
8171 				mip->mi_rx_donor_grp = defgrp;
8172 			} else {
8173 				defgrp = mip->mi_rx_donor_grp;
8174 			}
8175 		}
8176 		ring = group->mrg_rings;
8177 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
8178 		    KM_SLEEP);
8179 		j = 0;
8180 		for (count = 0; count < modify; count++) {
8181 			next = ring->mr_next;
8182 			rv = mac_group_mov_ring(mip, defgrp, ring);
8183 			if (rv != 0) {
8184 				/* cleanup on failure */
8185 				for (j = 0; j < count; j++) {
8186 					(void) mac_group_mov_ring(mip, group,
8187 					    rings[j]);
8188 				}
8189 				break;
8190 			}
8191 			rings[j++] = ring;
8192 			ring = next;
8193 		}
8194 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
8195 		return (rv);
8196 	}
8197 	if (ringcnt >= MAX_RINGS_PER_GROUP)
8198 		return (EINVAL);
8199 
8200 	modify = ringcnt - group->mrg_cur_count;
8201 
8202 	if (rx_group) {
8203 		if (group != mip->mi_rx_donor_grp)
8204 			defgrp = mip->mi_rx_donor_grp;
8205 		else
8206 			/*
8207 			 * This is the donor group with all the remaining
8208 			 * rings. Default group now gets to be the donor
8209 			 */
8210 			mip->mi_rx_donor_grp = defgrp;
8211 		start = 1;
8212 		end = mip->mi_rx_group_count;
8213 	} else {
8214 		start = 0;
8215 		end = mip->mi_tx_group_count - 1;
8216 	}
8217 	/*
8218 	 * If the default doesn't have any rings, lets see if we can
8219 	 * take rings given to an h/w client that doesn't need it.
8220 	 * For now, we just see if there is  any one client that can donate
8221 	 * all the required rings.
8222 	 */
8223 	if (defgrp->mrg_cur_count < (modify + 1)) {
8224 		for (i = start; i < end; i++) {
8225 			if (rx_group) {
8226 				tgrp = &mip->mi_rx_groups[i];
8227 				if (tgrp == group || tgrp->mrg_state <
8228 				    MAC_GROUP_STATE_RESERVED) {
8229 					continue;
8230 				}
8231 				if (i_mac_clients_hw(tgrp, MRP_RX_RINGS))
8232 					continue;
8233 				mcip = tgrp->mrg_clients->mgc_client;
8234 				VERIFY3P(mcip, !=, NULL);
8235 				if ((tgrp->mrg_cur_count +
8236 				    defgrp->mrg_cur_count) < (modify + 1)) {
8237 					continue;
8238 				}
8239 				if (mac_rx_switch_group(mcip, tgrp,
8240 				    defgrp) != 0) {
8241 					return (ENOSPC);
8242 				}
8243 			} else {
8244 				tgrp = &mip->mi_tx_groups[i];
8245 				if (tgrp == group || tgrp->mrg_state <
8246 				    MAC_GROUP_STATE_RESERVED) {
8247 					continue;
8248 				}
8249 				if (i_mac_clients_hw(tgrp, MRP_TX_RINGS))
8250 					continue;
8251 				mcip = tgrp->mrg_clients->mgc_client;
8252 				VERIFY3P(mcip, !=, NULL);
8253 				if ((tgrp->mrg_cur_count +
8254 				    defgrp->mrg_cur_count) < (modify + 1)) {
8255 					continue;
8256 				}
8257 				/* OK, we can switch this to s/w */
8258 				mac_tx_client_quiesce(
8259 				    (mac_client_handle_t)mcip);
8260 				mac_tx_switch_group(mcip, tgrp, defgrp);
8261 				mac_tx_client_restart(
8262 				    (mac_client_handle_t)mcip);
8263 			}
8264 		}
8265 		if (defgrp->mrg_cur_count < (modify + 1))
8266 			return (ENOSPC);
8267 	}
8268 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
8269 	    group, mcip->mci_share, modify)) != 0) {
8270 		return (rv);
8271 	}
8272 	return (0);
8273 }
8274 
8275 /*
8276  * Given the poolname in mac_resource_props, find the cpupart
8277  * that is associated with this pool.  The cpupart will be used
8278  * later for finding the cpus to be bound to the networking threads.
8279  *
8280  * use_default is set B_TRUE if pools are enabled and pool_default
8281  * is returned.  This avoids a 2nd lookup to set the poolname
8282  * for pool-effective.
8283  *
8284  * returns:
8285  *
8286  *    NULL -   pools are disabled or if the 'cpus' property is set.
8287  *    cpupart of pool_default  - pools are enabled and the pool
8288  *             is not available or poolname is blank
8289  *    cpupart of named pool    - pools are enabled and the pool
8290  *             is available.
8291  */
8292 cpupart_t *
8293 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
8294 {
8295 	pool_t		*pool;
8296 	cpupart_t	*cpupart;
8297 
8298 	*use_default = B_FALSE;
8299 
8300 	/* CPUs property is set */
8301 	if (mrp->mrp_mask & MRP_CPUS)
8302 		return (NULL);
8303 
8304 	ASSERT(pool_lock_held());
8305 
8306 	/* Pools are disabled, no pset */
8307 	if (pool_state == POOL_DISABLED)
8308 		return (NULL);
8309 
8310 	/* Pools property is set */
8311 	if (mrp->mrp_mask & MRP_POOL) {
8312 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
8313 			/* Pool not found */
8314 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
8315 			    mrp->mrp_pool);
8316 			*use_default = B_TRUE;
8317 			pool = pool_default;
8318 		}
8319 	/* Pools property is not set */
8320 	} else {
8321 		*use_default = B_TRUE;
8322 		pool = pool_default;
8323 	}
8324 
8325 	/* Find the CPU pset that corresponds to the pool */
8326 	mutex_enter(&cpu_lock);
8327 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
8328 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
8329 		    pool->pool_pset->pset_id);
8330 	}
8331 	mutex_exit(&cpu_lock);
8332 
8333 	return (cpupart);
8334 }
8335 
8336 void
8337 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
8338     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
8339 {
8340 	ASSERT(pool_lock_held());
8341 
8342 	if (cpupart != NULL) {
8343 		emrp->mrp_mask |= MRP_POOL;
8344 		if (use_default) {
8345 			(void) strcpy(emrp->mrp_pool,
8346 			    "pool_default");
8347 		} else {
8348 			ASSERT(strlen(mrp->mrp_pool) != 0);
8349 			(void) strcpy(emrp->mrp_pool,
8350 			    mrp->mrp_pool);
8351 		}
8352 	} else {
8353 		emrp->mrp_mask &= ~MRP_POOL;
8354 		bzero(emrp->mrp_pool, MAXPATHLEN);
8355 	}
8356 }
8357 
8358 struct mac_pool_arg {
8359 	char		mpa_poolname[MAXPATHLEN];
8360 	pool_event_t	mpa_what;
8361 };
8362 
8363 /*ARGSUSED*/
8364 static uint_t
8365 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
8366 {
8367 	struct mac_pool_arg	*mpa = arg;
8368 	mac_impl_t		*mip = (mac_impl_t *)val;
8369 	mac_client_impl_t	*mcip;
8370 	mac_resource_props_t	*mrp, *emrp;
8371 	boolean_t		pool_update = B_FALSE;
8372 	boolean_t		pool_clear = B_FALSE;
8373 	boolean_t		use_default = B_FALSE;
8374 	cpupart_t		*cpupart = NULL;
8375 
8376 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
8377 	i_mac_perim_enter(mip);
8378 	for (mcip = mip->mi_clients_list; mcip != NULL;
8379 	    mcip = mcip->mci_client_next) {
8380 		pool_update = B_FALSE;
8381 		pool_clear = B_FALSE;
8382 		use_default = B_FALSE;
8383 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
8384 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
8385 
8386 		/*
8387 		 * When pools are enabled
8388 		 */
8389 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
8390 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8391 			mrp->mrp_mask |= MRP_POOL;
8392 			pool_update = B_TRUE;
8393 		}
8394 
8395 		/*
8396 		 * When pools are disabled
8397 		 */
8398 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
8399 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8400 			mrp->mrp_mask |= MRP_POOL;
8401 			pool_clear = B_TRUE;
8402 		}
8403 
8404 		/*
8405 		 * Look for links with the pool property set and the poolname
8406 		 * matching the one which is changing.
8407 		 */
8408 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
8409 			/*
8410 			 * The pool associated with the link has changed.
8411 			 */
8412 			if (mpa->mpa_what == POOL_E_CHANGE) {
8413 				mrp->mrp_mask |= MRP_POOL;
8414 				pool_update = B_TRUE;
8415 			}
8416 		}
8417 
8418 		/*
8419 		 * This link is associated with pool_default and
8420 		 * pool_default has changed.
8421 		 */
8422 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
8423 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
8424 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
8425 			mrp->mrp_mask |= MRP_POOL;
8426 			pool_update = B_TRUE;
8427 		}
8428 
8429 		/*
8430 		 * Get new list of cpus for the pool, bind network
8431 		 * threads to new list of cpus and update resources.
8432 		 */
8433 		if (pool_update) {
8434 			if (MCIP_DATAPATH_SETUP(mcip)) {
8435 				pool_lock();
8436 				cpupart = mac_pset_find(mrp, &use_default);
8437 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8438 				    mac_rx_deliver, mcip, NULL, cpupart);
8439 				mac_set_pool_effective(use_default, cpupart,
8440 				    mrp, emrp);
8441 				pool_unlock();
8442 			}
8443 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8444 			    B_FALSE);
8445 		}
8446 
8447 		/*
8448 		 * Clear the effective pool and bind network threads
8449 		 * to any available CPU.
8450 		 */
8451 		if (pool_clear) {
8452 			if (MCIP_DATAPATH_SETUP(mcip)) {
8453 				emrp->mrp_mask &= ~MRP_POOL;
8454 				bzero(emrp->mrp_pool, MAXPATHLEN);
8455 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8456 				    mac_rx_deliver, mcip, NULL, NULL);
8457 			}
8458 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8459 			    B_FALSE);
8460 		}
8461 	}
8462 	i_mac_perim_exit(mip);
8463 	kmem_free(mrp, sizeof (*mrp));
8464 	return (MH_WALK_CONTINUE);
8465 }
8466 
8467 static void
8468 mac_pool_update(void *arg)
8469 {
8470 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
8471 	kmem_free(arg, sizeof (struct mac_pool_arg));
8472 }
8473 
8474 /*
8475  * Callback function to be executed when a noteworthy pool event
8476  * takes place.
8477  */
8478 /* ARGSUSED */
8479 static void
8480 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
8481 {
8482 	pool_t			*pool;
8483 	char			*poolname = NULL;
8484 	struct mac_pool_arg	*mpa;
8485 
8486 	pool_lock();
8487 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
8488 
8489 	switch (what) {
8490 	case POOL_E_ENABLE:
8491 	case POOL_E_DISABLE:
8492 		break;
8493 
8494 	case POOL_E_CHANGE:
8495 		pool = pool_lookup_pool_by_id(id);
8496 		if (pool == NULL) {
8497 			kmem_free(mpa, sizeof (struct mac_pool_arg));
8498 			pool_unlock();
8499 			return;
8500 		}
8501 		pool_get_name(pool, &poolname);
8502 		(void) strlcpy(mpa->mpa_poolname, poolname,
8503 		    sizeof (mpa->mpa_poolname));
8504 		break;
8505 
8506 	default:
8507 		kmem_free(mpa, sizeof (struct mac_pool_arg));
8508 		pool_unlock();
8509 		return;
8510 	}
8511 	pool_unlock();
8512 
8513 	mpa->mpa_what = what;
8514 
8515 	mac_pool_update(mpa);
8516 }
8517 
8518 /*
8519  * Set effective rings property. This could be called from datapath_setup/
8520  * datapath_teardown or set-linkprop.
8521  * If the group is reserved we just go ahead and set the effective rings.
8522  * Additionally, for TX this could mean the default group has lost/gained
8523  * some rings, so if the default group is reserved, we need to adjust the
8524  * effective rings for the default group clients. For RX, if we are working
8525  * with the non-default group, we just need to reset the effective props
8526  * for the default group clients.
8527  */
8528 void
8529 mac_set_rings_effective(mac_client_impl_t *mcip)
8530 {
8531 	mac_impl_t		*mip = mcip->mci_mip;
8532 	mac_group_t		*grp;
8533 	mac_group_t		*defgrp;
8534 	flow_entry_t		*flent = mcip->mci_flent;
8535 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
8536 	mac_grp_client_t	*mgcp;
8537 	mac_client_impl_t	*gmcip;
8538 
8539 	grp = flent->fe_rx_ring_group;
8540 	if (grp != NULL) {
8541 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
8542 		/*
8543 		 * If we have reserved a group, set the effective rings
8544 		 * to the ring count in the group.
8545 		 */
8546 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8547 			emrp->mrp_mask |= MRP_RX_RINGS;
8548 			emrp->mrp_nrxrings = grp->mrg_cur_count;
8549 		}
8550 
8551 		/*
8552 		 * We go through the clients in the shared group and
8553 		 * reset the effective properties. It is possible this
8554 		 * might have already been done for some client (i.e.
8555 		 * if some client is being moved to a group that is
8556 		 * already shared). The case where the default group is
8557 		 * RESERVED is taken care of above (note in the RX side if
8558 		 * there is a non-default group, the default group is always
8559 		 * SHARED).
8560 		 */
8561 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8562 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
8563 				mgcp = grp->mrg_clients;
8564 			else
8565 				mgcp = defgrp->mrg_clients;
8566 			while (mgcp != NULL) {
8567 				gmcip = mgcp->mgc_client;
8568 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8569 				if (emrp->mrp_mask & MRP_RX_RINGS) {
8570 					emrp->mrp_mask &= ~MRP_RX_RINGS;
8571 					emrp->mrp_nrxrings = 0;
8572 				}
8573 				mgcp = mgcp->mgc_next;
8574 			}
8575 		}
8576 	}
8577 
8578 	/* Now the TX side */
8579 	grp = flent->fe_tx_ring_group;
8580 	if (grp != NULL) {
8581 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
8582 
8583 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8584 			emrp->mrp_mask |= MRP_TX_RINGS;
8585 			emrp->mrp_ntxrings = grp->mrg_cur_count;
8586 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8587 			mgcp = grp->mrg_clients;
8588 			while (mgcp != NULL) {
8589 				gmcip = mgcp->mgc_client;
8590 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8591 				if (emrp->mrp_mask & MRP_TX_RINGS) {
8592 					emrp->mrp_mask &= ~MRP_TX_RINGS;
8593 					emrp->mrp_ntxrings = 0;
8594 				}
8595 				mgcp = mgcp->mgc_next;
8596 			}
8597 		}
8598 
8599 		/*
8600 		 * If the group is not the default group and the default
8601 		 * group is reserved, the ring count in the default group
8602 		 * might have changed, update it.
8603 		 */
8604 		if (grp != defgrp &&
8605 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8606 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
8607 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8608 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
8609 		}
8610 	}
8611 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
8612 }
8613 
8614 /*
8615  * Check if the primary is in the default group. If so, see if we
8616  * can give it a an exclusive group now that another client is
8617  * being configured. We take the primary out of the default group
8618  * because the multicast/broadcast packets for the all the clients
8619  * will land in the default ring in the default group which means
8620  * any client in the default group, even if it is the only on in
8621  * the group, will lose exclusive access to the rings, hence
8622  * polling.
8623  */
8624 mac_client_impl_t *
8625 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8626 {
8627 	mac_impl_t		*mip = mcip->mci_mip;
8628 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
8629 	flow_entry_t		*flent = mcip->mci_flent;
8630 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8631 	uint8_t			*mac_addr;
8632 	mac_group_t		*ngrp;
8633 
8634 	/*
8635 	 * Check if the primary is in the default group, if not
8636 	 * or if it is explicitly configured to be in the default
8637 	 * group OR set the RX rings property, return.
8638 	 */
8639 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8640 		return (NULL);
8641 
8642 	/*
8643 	 * If the new client needs an exclusive group and we
8644 	 * don't have another for the primary, return.
8645 	 */
8646 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
8647 		return (NULL);
8648 
8649 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
8650 	/*
8651 	 * We call this when we are setting up the datapath for
8652 	 * the first non-primary.
8653 	 */
8654 	ASSERT(mip->mi_nactiveclients == 2);
8655 
8656 	/*
8657 	 * OK, now we have the primary that needs to be relocated.
8658 	 */
8659 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8660 	if (ngrp == NULL)
8661 		return (NULL);
8662 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8663 		mac_stop_group(ngrp);
8664 		return (NULL);
8665 	}
8666 	return (mcip);
8667 }
8668 
8669 void
8670 mac_transceiver_init(mac_impl_t *mip)
8671 {
8672 	if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8673 	    &mip->mi_transceiver)) {
8674 		/*
8675 		 * The driver set a flag that we don't know about. In this case,
8676 		 * we need to warn about that case and ignore this capability.
8677 		 */
8678 		if (mip->mi_transceiver.mct_flags != 0) {
8679 			dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8680 			    "flags to invalid value: 0x%x, ignoring "
8681 			    "capability", mip->mi_transceiver.mct_flags);
8682 			bzero(&mip->mi_transceiver,
8683 			    sizeof (mac_capab_transceiver_t));
8684 		}
8685 	} else {
8686 			bzero(&mip->mi_transceiver,
8687 			    sizeof (mac_capab_transceiver_t));
8688 	}
8689 }
8690 
8691 int
8692 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8693 {
8694 	mac_impl_t *mip = (mac_impl_t *)mh;
8695 
8696 	ASSERT(MAC_PERIM_HELD(mh));
8697 
8698 	if (mip->mi_transceiver.mct_ntransceivers == 0)
8699 		return (ENOTSUP);
8700 
8701 	*countp = mip->mi_transceiver.mct_ntransceivers;
8702 	return (0);
8703 }
8704 
8705 int
8706 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8707     boolean_t *usable)
8708 {
8709 	int ret;
8710 	mac_transceiver_info_t info;
8711 
8712 	mac_impl_t *mip = (mac_impl_t *)mh;
8713 
8714 	ASSERT(MAC_PERIM_HELD(mh));
8715 
8716 	if (mip->mi_transceiver.mct_info == NULL ||
8717 	    mip->mi_transceiver.mct_ntransceivers == 0)
8718 		return (ENOTSUP);
8719 
8720 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8721 		return (EINVAL);
8722 
8723 	bzero(&info, sizeof (mac_transceiver_info_t));
8724 	if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8725 	    &info)) != 0) {
8726 		return (ret);
8727 	}
8728 
8729 	*present = info.mti_present;
8730 	*usable = info.mti_usable;
8731 	return (0);
8732 }
8733 
8734 int
8735 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8736     size_t nbytes, off_t offset, size_t *nread)
8737 {
8738 	int ret;
8739 	size_t nr;
8740 	mac_impl_t *mip = (mac_impl_t *)mh;
8741 
8742 	ASSERT(MAC_PERIM_HELD(mh));
8743 
8744 	if (mip->mi_transceiver.mct_read == NULL)
8745 		return (ENOTSUP);
8746 
8747 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8748 		return (EINVAL);
8749 
8750 	/*
8751 	 * All supported pages today are 256 bytes wide. Make sure offset +
8752 	 * nbytes never exceeds that.
8753 	 */
8754 	if (offset < 0 || offset >= 256 || nbytes > 256 ||
8755 	    offset + nbytes > 256)
8756 		return (EINVAL);
8757 
8758 	if (nread == NULL)
8759 		nread = &nr;
8760 	ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8761 	    nbytes, offset, nread);
8762 	if (ret == 0 && *nread > nbytes) {
8763 		dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8764 		    "%lu byte sized buffer, possible memory corruption",
8765 		    *nread, nbytes);
8766 	}
8767 
8768 	return (ret);
8769 }
8770 
8771 void
8772 mac_led_init(mac_impl_t *mip)
8773 {
8774 	mip->mi_led_modes = MAC_LED_DEFAULT;
8775 
8776 	if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8777 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8778 		return;
8779 	}
8780 
8781 	if (mip->mi_led.mcl_flags != 0) {
8782 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8783 		    "flags to invalid value: 0x%x, ignoring "
8784 		    "capability", mip->mi_transceiver.mct_flags);
8785 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8786 		return;
8787 	}
8788 
8789 	if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8790 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8791 		    "supported modes to invalid value: 0x%x, ignoring "
8792 		    "capability", mip->mi_transceiver.mct_flags);
8793 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8794 		return;
8795 	}
8796 }
8797 
8798 int
8799 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8800 {
8801 	mac_impl_t *mip = (mac_impl_t *)mh;
8802 
8803 	ASSERT(MAC_PERIM_HELD(mh));
8804 
8805 	if (mip->mi_led.mcl_set == NULL)
8806 		return (ENOTSUP);
8807 
8808 	*supported = mip->mi_led.mcl_modes;
8809 	*active = mip->mi_led_modes;
8810 
8811 	return (0);
8812 }
8813 
8814 /*
8815  * Update and multiplex the various LED requests. We only ever send one LED to
8816  * the underlying driver at a time. As such, we end up multiplexing all
8817  * requested states and picking one to send down to the driver.
8818  */
8819 int
8820 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8821 {
8822 	int ret;
8823 	mac_led_mode_t driver;
8824 
8825 	mac_impl_t *mip = (mac_impl_t *)mh;
8826 
8827 	ASSERT(MAC_PERIM_HELD(mh));
8828 
8829 	/*
8830 	 * If we've been passed a desired value of zero, that indicates that
8831 	 * we're basically resetting to the value of zero, which is our default
8832 	 * value.
8833 	 */
8834 	if (desired == 0)
8835 		desired = MAC_LED_DEFAULT;
8836 
8837 	if (mip->mi_led.mcl_set == NULL)
8838 		return (ENOTSUP);
8839 
8840 	/*
8841 	 * Catch both values that we don't know about and those that the driver
8842 	 * doesn't support.
8843 	 */
8844 	if ((desired & ~MAC_LED_ALL) != 0)
8845 		return (EINVAL);
8846 
8847 	if ((desired & ~mip->mi_led.mcl_modes) != 0)
8848 		return (ENOTSUP);
8849 
8850 	/*
8851 	 * If we have the same value, then there is nothing to do.
8852 	 */
8853 	if (desired == mip->mi_led_modes)
8854 		return (0);
8855 
8856 	/*
8857 	 * Based on the desired value, determine what to send to the driver. We
8858 	 * only will send a single bit to the driver at any given time. IDENT
8859 	 * takes priority over OFF or ON. We also let OFF take priority over the
8860 	 * rest.
8861 	 */
8862 	if (desired & MAC_LED_IDENT) {
8863 		driver = MAC_LED_IDENT;
8864 	} else if (desired & MAC_LED_OFF) {
8865 		driver = MAC_LED_OFF;
8866 	} else if (desired & MAC_LED_ON) {
8867 		driver = MAC_LED_ON;
8868 	} else {
8869 		driver = MAC_LED_DEFAULT;
8870 	}
8871 
8872 	if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8873 		mip->mi_led_modes = desired;
8874 	}
8875 
8876 	return (ret);
8877 }
8878 
8879 /*
8880  * Send packets through the Tx ring ('mrh') or through the default
8881  * handler if no ring is specified. Before passing the packet down to
8882  * the MAC provider, emulate any hardware offloads which have been
8883  * requested but are not supported by the provider.
8884  */
8885 mblk_t *
8886 mac_ring_tx(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp)
8887 {
8888 	mac_impl_t *mip = (mac_impl_t *)mh;
8889 
8890 	if (mrh == NULL)
8891 		mrh = mip->mi_default_tx_ring;
8892 
8893 	if (mrh == NULL)
8894 		return (mip->mi_tx(mip->mi_driver, mp));
8895 	else
8896 		return (mac_hwring_tx(mrh, mp));
8897 }
8898 
8899 /*
8900  * This is the final stop before reaching the underlying MAC provider.
8901  * This is also where the bridging hook is inserted. Packets that are
8902  * bridged will return through mac_bridge_tx(), with rh nulled out if
8903  * the bridge chooses to send output on a different link due to
8904  * forwarding.
8905  */
8906 mblk_t *
8907 mac_provider_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp,
8908     mac_client_impl_t *mcip)
8909 {
8910 	/*
8911 	 * If there is a bound Hybrid I/O share, send packets through
8912 	 * the default tx ring. When there's a bound Hybrid I/O share,
8913 	 * the tx rings of this client are mapped in the guest domain
8914 	 * and not accessible from here.
8915 	 */
8916 	if (mcip->mci_state_flags & MCIS_SHARE_BOUND)
8917 		rh = mip->mi_default_tx_ring;
8918 
8919 	if (mip->mi_promisc_list != NULL)
8920 		mac_promisc_dispatch(mip, mp, mcip, B_FALSE);
8921 
8922 	if (mip->mi_bridge_link == NULL)
8923 		return (mac_ring_tx((mac_handle_t)mip, rh, mp));
8924 	else
8925 		return (mac_bridge_tx(mip, rh, mp));
8926 }
8927