xref: /illumos-gate/usr/src/uts/common/io/mac/mac.c (revision 52244c0958bdf281ca42932b449f644b4decfdc2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014, Joyent, Inc.  All rights reserved.
25  */
26 
27 /*
28  * MAC Services Module
29  *
30  * The GLDv3 framework locking -  The MAC layer
31  * --------------------------------------------
32  *
33  * The MAC layer is central to the GLD framework and can provide the locking
34  * framework needed for itself and for the use of MAC clients. MAC end points
35  * are fairly disjoint and don't share a lot of state. So a coarse grained
36  * multi-threading scheme is to single thread all create/modify/delete or set
37  * type of control operations on a per mac end point while allowing data threads
38  * concurrently.
39  *
40  * Control operations (set) that modify a mac end point are always serialized on
41  * a per mac end point basis, We have at most 1 such thread per mac end point
42  * at a time.
43  *
44  * All other operations that are not serialized are essentially multi-threaded.
45  * For example a control operation (get) like getting statistics which may not
46  * care about reading values atomically or data threads sending or receiving
47  * data. Mostly these type of operations don't modify the control state. Any
48  * state these operations care about are protected using traditional locks.
49  *
50  * The perimeter only serializes serial operations. It does not imply there
51  * aren't any other concurrent operations. However a serialized operation may
52  * sometimes need to make sure it is the only thread. In this case it needs
53  * to use reference counting mechanisms to cv_wait until any current data
54  * threads are done.
55  *
56  * The mac layer itself does not hold any locks across a call to another layer.
57  * The perimeter is however held across a down call to the driver to make the
58  * whole control operation atomic with respect to other control operations.
59  * Also the data path and get type control operations may proceed concurrently.
60  * These operations synchronize with the single serial operation on a given mac
61  * end point using regular locks. The perimeter ensures that conflicting
62  * operations like say a mac_multicast_add and a mac_multicast_remove on the
63  * same mac end point don't interfere with each other and also ensures that the
64  * changes in the mac layer and the call to the underlying driver to say add a
65  * multicast address are done atomically without interference from a thread
66  * trying to delete the same address.
67  *
68  * For example, consider
69  * mac_multicst_add()
70  * {
71  *	mac_perimeter_enter();	serialize all control operations
72  *
73  *	grab list lock		protect against access by data threads
74  *	add to list
75  *	drop list lock
76  *
77  *	call driver's mi_multicst
78  *
79  *	mac_perimeter_exit();
80  * }
81  *
82  * To lessen the number of serialization locks and simplify the lock hierarchy,
83  * we serialize all the control operations on a per mac end point by using a
84  * single serialization lock called the perimeter. We allow recursive entry into
85  * the perimeter to facilitate use of this mechanism by both the mac client and
86  * the MAC layer itself.
87  *
88  * MAC client means an entity that does an operation on a mac handle
89  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
90  * an entity that does an operation on a mac handle obtained from a
91  * mac_register. An entity could be both client and driver but on different
92  * handles eg. aggr. and should only make the corresponding mac interface calls
93  * i.e. mac driver interface or mac client interface as appropriate for that
94  * mac handle.
95  *
96  * General rules.
97  * -------------
98  *
99  * R1. The lock order of upcall threads is natually opposite to downcall
100  * threads. Hence upcalls must not hold any locks across layers for fear of
101  * recursive lock enter and lock order violation. This applies to all layers.
102  *
103  * R2. The perimeter is just another lock. Since it is held in the down
104  * direction, acquiring the perimeter in an upcall is prohibited as it would
105  * cause a deadlock. This applies to all layers.
106  *
107  * Note that upcalls that need to grab the mac perimeter (for example
108  * mac_notify upcalls) can still achieve that by posting the request to a
109  * thread, which can then grab all the required perimeters and locks in the
110  * right global order. Note that in the above example the mac layer iself
111  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
112  * to the client must do that. Please see the aggr code for an example.
113  *
114  * MAC client rules
115  * ----------------
116  *
117  * R3. A MAC client may use the MAC provided perimeter facility to serialize
118  * control operations on a per mac end point. It does this by by acquring
119  * and holding the perimeter across a sequence of calls to the mac layer.
120  * This ensures atomicity across the entire block of mac calls. In this
121  * model the MAC client must not hold any client locks across the calls to
122  * the mac layer. This model is the preferred solution.
123  *
124  * R4. However if a MAC client has a lot of global state across all mac end
125  * points the per mac end point serialization may not be sufficient. In this
126  * case the client may choose to use global locks or use its own serialization.
127  * To avoid deadlocks, these client layer locks held across the mac calls
128  * in the control path must never be acquired by the data path for the reason
129  * mentioned below.
130  *
131  * (Assume that a control operation that holds a client lock blocks in the
132  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
133  * data thread that holds this reference count, tries to acquire the same
134  * client lock subsequently it will deadlock).
135  *
136  * A MAC client may follow either the R3 model or the R4 model, but can't
137  * mix both. In the former, the hierarchy is Perim -> client locks, but in
138  * the latter it is client locks -> Perim.
139  *
140  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
141  * context since they may block while trying to acquire the perimeter.
142  * In addition some calls may block waiting for upcall refcnts to come down to
143  * zero.
144  *
145  * R6. MAC clients must make sure that they are single threaded and all threads
146  * from the top (in particular data threads) have finished before calling
147  * mac_client_close. The MAC framework does not track the number of client
148  * threads using the mac client handle. Also mac clients must make sure
149  * they have undone all the control operations before calling mac_client_close.
150  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
151  * mac_unicast_add/mac_multicast_add.
152  *
153  * MAC framework rules
154  * -------------------
155  *
156  * R7. The mac layer itself must not hold any mac layer locks (except the mac
157  * perimeter) across a call to any other layer from the mac layer. The call to
158  * any other layer could be via mi_* entry points, classifier entry points into
159  * the driver or via upcall pointers into layers above. The mac perimeter may
160  * be acquired or held only in the down direction, for e.g. when calling into
161  * a mi_* driver enty point to provide atomicity of the operation.
162  *
163  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
164  * mac driver interfaces, the MAC layer must provide a cut out for control
165  * interfaces like upcall notifications and start them in a separate thread.
166  *
167  * R9. Note that locking order also implies a plumbing order. For example
168  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
169  * to plumb in any other order must be failed at mac_open time, otherwise it
170  * could lead to deadlocks due to inverse locking order.
171  *
172  * R10. MAC driver interfaces must not block since the driver could call them
173  * in interrupt context.
174  *
175  * R11. Walkers must preferably not hold any locks while calling walker
176  * callbacks. Instead these can operate on reference counts. In simple
177  * callbacks it may be ok to hold a lock and call the callbacks, but this is
178  * harder to maintain in the general case of arbitrary callbacks.
179  *
180  * R12. The MAC layer must protect upcall notification callbacks using reference
181  * counts rather than holding locks across the callbacks.
182  *
183  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
184  * sure that any pointers (such as mac ring pointers) it passes to the driver
185  * remain valid until mac unregister time. Currently the mac layer achieves
186  * this by using generation numbers for rings and freeing the mac rings only
187  * at unregister time.  The MAC layer must provide a layer of indirection and
188  * must not expose underlying driver rings or driver data structures/pointers
189  * directly to MAC clients.
190  *
191  * MAC driver rules
192  * ----------------
193  *
194  * R14. It would be preferable if MAC drivers don't hold any locks across any
195  * mac call. However at a minimum they must not hold any locks across data
196  * upcalls. They must also make sure that all references to mac data structures
197  * are cleaned up and that it is single threaded at mac_unregister time.
198  *
199  * R15. MAC driver interfaces don't block and so the action may be done
200  * asynchronously in a separate thread as for example handling notifications.
201  * The driver must not assume that the action is complete when the call
202  * returns.
203  *
204  * R16. Drivers must maintain a generation number per Rx ring, and pass it
205  * back to mac_rx_ring(); They are expected to increment the generation
206  * number whenever the ring's stop routine is invoked.
207  * See comments in mac_rx_ring();
208  *
209  * R17 Similarly mi_stop is another synchronization point and the driver must
210  * ensure that all upcalls are done and there won't be any future upcall
211  * before returning from mi_stop.
212  *
213  * R18. The driver may assume that all set/modify control operations via
214  * the mi_* entry points are single threaded on a per mac end point.
215  *
216  * Lock and Perimeter hierarchy scenarios
217  * ---------------------------------------
218  *
219  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
220  *
221  * ft_lock -> fe_lock [mac_flow_lookup]
222  *
223  * mi_rw_lock -> fe_lock [mac_bcast_send]
224  *
225  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
226  *
227  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
228  *
229  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
230  *
231  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
232  * client to driver. In the case of clients that explictly use the mac provided
233  * perimeter mechanism for its serialization, the hierarchy is
234  * Perimeter -> mac layer locks, since the client never holds any locks across
235  * the mac calls. In the case of clients that use its own locks the hierarchy
236  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
237  * calls mac_perim_enter/exit in this case.
238  *
239  * Subflow creation rules
240  * ---------------------------
241  * o In case of a user specified cpulist present on underlying link and flows,
242  * the flows cpulist must be a subset of the underlying link.
243  * o In case of a user specified fanout mode present on link and flow, the
244  * subflow fanout count has to be less than or equal to that of the
245  * underlying link. The cpu-bindings for the subflows will be a subset of
246  * the underlying link.
247  * o In case if no cpulist specified on both underlying link and flow, the
248  * underlying link relies on a  MAC tunable to provide out of box fanout.
249  * The subflow will have no cpulist (the subflow will be unbound)
250  * o In case if no cpulist is specified on the underlying link, a subflow can
251  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
252  * for the subflow will not adhere to restriction that they need to be subset
253  * of the underlying link.
254  * o In case where the underlying link is carrying either a user specified
255  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
256  * created unbound.
257  * o While creating unbound subflows, bandwidth mode changes attempt to
258  * figure a right fanout count. In such cases the fanout count will override
259  * the unbound cpu-binding behavior.
260  * o In addition to this, while cycling between flow and link properties, we
261  * impose a restriction that if a link property has a subflow with
262  * user-specified attributes, we will not allow changing the link property.
263  * The administrator needs to reset all the user specified properties for the
264  * subflows before attempting a link property change.
265  * Some of the above rules can be overridden by specifying additional command
266  * line options while creating or modifying link or subflow properties.
267  */
268 
269 #include <sys/types.h>
270 #include <sys/conf.h>
271 #include <sys/id_space.h>
272 #include <sys/esunddi.h>
273 #include <sys/stat.h>
274 #include <sys/mkdev.h>
275 #include <sys/stream.h>
276 #include <sys/strsun.h>
277 #include <sys/strsubr.h>
278 #include <sys/dlpi.h>
279 #include <sys/list.h>
280 #include <sys/modhash.h>
281 #include <sys/mac_provider.h>
282 #include <sys/mac_client_impl.h>
283 #include <sys/mac_soft_ring.h>
284 #include <sys/mac_stat.h>
285 #include <sys/mac_impl.h>
286 #include <sys/mac.h>
287 #include <sys/dls.h>
288 #include <sys/dld.h>
289 #include <sys/modctl.h>
290 #include <sys/fs/dv_node.h>
291 #include <sys/thread.h>
292 #include <sys/proc.h>
293 #include <sys/callb.h>
294 #include <sys/cpuvar.h>
295 #include <sys/atomic.h>
296 #include <sys/bitmap.h>
297 #include <sys/sdt.h>
298 #include <sys/mac_flow.h>
299 #include <sys/ddi_intr_impl.h>
300 #include <sys/disp.h>
301 #include <sys/sdt.h>
302 #include <sys/vnic.h>
303 #include <sys/vnic_impl.h>
304 #include <sys/vlan.h>
305 #include <inet/ip.h>
306 #include <inet/ip6.h>
307 #include <sys/exacct.h>
308 #include <sys/exacct_impl.h>
309 #include <inet/nd.h>
310 #include <sys/ethernet.h>
311 #include <sys/pool.h>
312 #include <sys/pool_pset.h>
313 #include <sys/cpupart.h>
314 #include <inet/wifi_ioctl.h>
315 #include <net/wpa.h>
316 
317 #define	IMPL_HASHSZ	67	/* prime */
318 
319 kmem_cache_t		*i_mac_impl_cachep;
320 mod_hash_t		*i_mac_impl_hash;
321 krwlock_t		i_mac_impl_lock;
322 uint_t			i_mac_impl_count;
323 static kmem_cache_t	*mac_ring_cache;
324 static id_space_t	*minor_ids;
325 static uint32_t		minor_count;
326 static pool_event_cb_t	mac_pool_event_reg;
327 
328 /*
329  * Logging stuff. Perhaps mac_logging_interval could be broken into
330  * mac_flow_log_interval and mac_link_log_interval if we want to be
331  * able to schedule them differently.
332  */
333 uint_t			mac_logging_interval;
334 boolean_t		mac_flow_log_enable;
335 boolean_t		mac_link_log_enable;
336 timeout_id_t		mac_logging_timer;
337 
338 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
339 int mac_dbg = 0;
340 
341 #define	MACTYPE_KMODDIR	"mac"
342 #define	MACTYPE_HASHSZ	67
343 static mod_hash_t	*i_mactype_hash;
344 /*
345  * i_mactype_lock synchronizes threads that obtain references to mactype_t
346  * structures through i_mactype_getplugin().
347  */
348 static kmutex_t		i_mactype_lock;
349 
350 /*
351  * mac_tx_percpu_cnt
352  *
353  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
354  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
355  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
356  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
357  */
358 int mac_tx_percpu_cnt;
359 int mac_tx_percpu_cnt_max = 128;
360 
361 /*
362  * Call back functions for the bridge module.  These are guaranteed to be valid
363  * when holding a reference on a link or when holding mip->mi_bridge_lock and
364  * mi_bridge_link is non-NULL.
365  */
366 mac_bridge_tx_t mac_bridge_tx_cb;
367 mac_bridge_rx_t mac_bridge_rx_cb;
368 mac_bridge_ref_t mac_bridge_ref_cb;
369 mac_bridge_ls_t mac_bridge_ls_cb;
370 
371 static int i_mac_constructor(void *, void *, int);
372 static void i_mac_destructor(void *, void *);
373 static int i_mac_ring_ctor(void *, void *, int);
374 static void i_mac_ring_dtor(void *, void *);
375 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
376 void mac_tx_client_flush(mac_client_impl_t *);
377 void mac_tx_client_block(mac_client_impl_t *);
378 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
379 static int mac_start_group_and_rings(mac_group_t *);
380 static void mac_stop_group_and_rings(mac_group_t *);
381 static void mac_pool_event_cb(pool_event_t, int, void *);
382 
383 typedef struct netinfo_s {
384 	list_node_t	ni_link;
385 	void		*ni_record;
386 	int		ni_size;
387 	int		ni_type;
388 } netinfo_t;
389 
390 /*
391  * Module initialization functions.
392  */
393 
394 void
395 mac_init(void)
396 {
397 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
398 	    boot_max_ncpus);
399 
400 	/* Upper bound is mac_tx_percpu_cnt_max */
401 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
402 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
403 
404 	if (mac_tx_percpu_cnt < 1) {
405 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
406 		mac_tx_percpu_cnt = 1;
407 	}
408 
409 	ASSERT(mac_tx_percpu_cnt >= 1);
410 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
411 	/*
412 	 * Make it of the form 2**N - 1 in the range
413 	 * [0 .. mac_tx_percpu_cnt_max - 1]
414 	 */
415 	mac_tx_percpu_cnt--;
416 
417 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
418 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
419 	    NULL, NULL, NULL, 0);
420 	ASSERT(i_mac_impl_cachep != NULL);
421 
422 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
423 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
424 	    NULL, NULL, 0);
425 	ASSERT(mac_ring_cache != NULL);
426 
427 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
428 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
429 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
430 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
431 
432 	mac_flow_init();
433 	mac_soft_ring_init();
434 	mac_bcast_init();
435 	mac_client_init();
436 
437 	i_mac_impl_count = 0;
438 
439 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
440 	    MACTYPE_HASHSZ,
441 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
442 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
443 
444 	/*
445 	 * Allocate an id space to manage minor numbers. The range of the
446 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
447 	 * leaves half of the 32-bit minors available for driver private use.
448 	 */
449 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
450 	    MAC_PRIVATE_MINOR-1);
451 	ASSERT(minor_ids != NULL);
452 	minor_count = 0;
453 
454 	/* Let's default to 20 seconds */
455 	mac_logging_interval = 20;
456 	mac_flow_log_enable = B_FALSE;
457 	mac_link_log_enable = B_FALSE;
458 	mac_logging_timer = 0;
459 
460 	/* Register to be notified of noteworthy pools events */
461 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
462 	mac_pool_event_reg.pec_arg = NULL;
463 	pool_event_cb_register(&mac_pool_event_reg);
464 }
465 
466 int
467 mac_fini(void)
468 {
469 
470 	if (i_mac_impl_count > 0 || minor_count > 0)
471 		return (EBUSY);
472 
473 	pool_event_cb_unregister(&mac_pool_event_reg);
474 
475 	id_space_destroy(minor_ids);
476 	mac_flow_fini();
477 
478 	mod_hash_destroy_hash(i_mac_impl_hash);
479 	rw_destroy(&i_mac_impl_lock);
480 
481 	mac_client_fini();
482 	kmem_cache_destroy(mac_ring_cache);
483 
484 	mod_hash_destroy_hash(i_mactype_hash);
485 	mac_soft_ring_finish();
486 
487 
488 	return (0);
489 }
490 
491 /*
492  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
493  * (e.g. softmac) may pass in a NULL ops argument.
494  */
495 void
496 mac_init_ops(struct dev_ops *ops, const char *name)
497 {
498 	major_t major = ddi_name_to_major((char *)name);
499 
500 	/*
501 	 * By returning on error below, we are not letting the driver continue
502 	 * in an undefined context.  The mac_register() function will faill if
503 	 * DN_GLDV3_DRIVER isn't set.
504 	 */
505 	if (major == DDI_MAJOR_T_NONE)
506 		return;
507 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
508 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
509 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
510 	if (ops != NULL)
511 		dld_init_ops(ops, name);
512 }
513 
514 void
515 mac_fini_ops(struct dev_ops *ops)
516 {
517 	dld_fini_ops(ops);
518 }
519 
520 /*ARGSUSED*/
521 static int
522 i_mac_constructor(void *buf, void *arg, int kmflag)
523 {
524 	mac_impl_t	*mip = buf;
525 
526 	bzero(buf, sizeof (mac_impl_t));
527 
528 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
529 
530 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
531 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
532 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
533 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
534 
535 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
536 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
537 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
538 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
539 
540 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
541 
542 	return (0);
543 }
544 
545 /*ARGSUSED*/
546 static void
547 i_mac_destructor(void *buf, void *arg)
548 {
549 	mac_impl_t	*mip = buf;
550 	mac_cb_info_t	*mcbi;
551 
552 	ASSERT(mip->mi_ref == 0);
553 	ASSERT(mip->mi_active == 0);
554 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
555 	ASSERT(mip->mi_devpromisc == 0);
556 	ASSERT(mip->mi_ksp == NULL);
557 	ASSERT(mip->mi_kstat_count == 0);
558 	ASSERT(mip->mi_nclients == 0);
559 	ASSERT(mip->mi_nactiveclients == 0);
560 	ASSERT(mip->mi_single_active_client == NULL);
561 	ASSERT(mip->mi_state_flags == 0);
562 	ASSERT(mip->mi_factory_addr == NULL);
563 	ASSERT(mip->mi_factory_addr_num == 0);
564 	ASSERT(mip->mi_default_tx_ring == NULL);
565 
566 	mcbi = &mip->mi_notify_cb_info;
567 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
568 	ASSERT(mip->mi_notify_bits == 0);
569 	ASSERT(mip->mi_notify_thread == NULL);
570 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
571 	mcbi->mcbi_lockp = NULL;
572 
573 	mcbi = &mip->mi_promisc_cb_info;
574 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
575 	ASSERT(mip->mi_promisc_list == NULL);
576 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
577 	mcbi->mcbi_lockp = NULL;
578 
579 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
580 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
581 
582 	rw_destroy(&mip->mi_rw_lock);
583 
584 	mutex_destroy(&mip->mi_promisc_lock);
585 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
586 	mutex_destroy(&mip->mi_notify_lock);
587 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
588 	mutex_destroy(&mip->mi_ring_lock);
589 
590 	ASSERT(mip->mi_bridge_link == NULL);
591 }
592 
593 /* ARGSUSED */
594 static int
595 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
596 {
597 	mac_ring_t *ring = (mac_ring_t *)buf;
598 
599 	bzero(ring, sizeof (mac_ring_t));
600 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
601 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
602 	ring->mr_state = MR_FREE;
603 	return (0);
604 }
605 
606 /* ARGSUSED */
607 static void
608 i_mac_ring_dtor(void *buf, void *arg)
609 {
610 	mac_ring_t *ring = (mac_ring_t *)buf;
611 
612 	cv_destroy(&ring->mr_cv);
613 	mutex_destroy(&ring->mr_lock);
614 }
615 
616 /*
617  * Common functions to do mac callback addition and deletion. Currently this is
618  * used by promisc callbacks and notify callbacks. List addition and deletion
619  * need to take care of list walkers. List walkers in general, can't hold list
620  * locks and make upcall callbacks due to potential lock order and recursive
621  * reentry issues. Instead list walkers increment the list walker count to mark
622  * the presence of a walker thread. Addition can be carefully done to ensure
623  * that the list walker always sees either the old list or the new list.
624  * However the deletion can't be done while the walker is active, instead the
625  * deleting thread simply marks the entry as logically deleted. The last walker
626  * physically deletes and frees up the logically deleted entries when the walk
627  * is complete.
628  */
629 void
630 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
631     mac_cb_t *mcb_elem)
632 {
633 	mac_cb_t	*p;
634 	mac_cb_t	**pp;
635 
636 	/* Verify it is not already in the list */
637 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
638 		if (p == mcb_elem)
639 			break;
640 	}
641 	VERIFY(p == NULL);
642 
643 	/*
644 	 * Add it to the head of the callback list. The membar ensures that
645 	 * the following list pointer manipulations reach global visibility
646 	 * in exactly the program order below.
647 	 */
648 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
649 
650 	mcb_elem->mcb_nextp = *mcb_head;
651 	membar_producer();
652 	*mcb_head = mcb_elem;
653 }
654 
655 /*
656  * Mark the entry as logically deleted. If there aren't any walkers unlink
657  * from the list. In either case return the corresponding status.
658  */
659 boolean_t
660 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
661     mac_cb_t *mcb_elem)
662 {
663 	mac_cb_t	*p;
664 	mac_cb_t	**pp;
665 
666 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
667 	/*
668 	 * Search the callback list for the entry to be removed
669 	 */
670 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
671 		if (p == mcb_elem)
672 			break;
673 	}
674 	VERIFY(p != NULL);
675 
676 	/*
677 	 * If there are walkers just mark it as deleted and the last walker
678 	 * will remove from the list and free it.
679 	 */
680 	if (mcbi->mcbi_walker_cnt != 0) {
681 		p->mcb_flags |= MCB_CONDEMNED;
682 		mcbi->mcbi_del_cnt++;
683 		return (B_FALSE);
684 	}
685 
686 	ASSERT(mcbi->mcbi_del_cnt == 0);
687 	*pp = p->mcb_nextp;
688 	p->mcb_nextp = NULL;
689 	return (B_TRUE);
690 }
691 
692 /*
693  * Wait for all pending callback removals to be completed
694  */
695 void
696 mac_callback_remove_wait(mac_cb_info_t *mcbi)
697 {
698 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
699 	while (mcbi->mcbi_del_cnt != 0) {
700 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
701 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
702 	}
703 }
704 
705 /*
706  * The last mac callback walker does the cleanup. Walk the list and unlik
707  * all the logically deleted entries and construct a temporary list of
708  * removed entries. Return the list of removed entries to the caller.
709  */
710 mac_cb_t *
711 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
712 {
713 	mac_cb_t	*p;
714 	mac_cb_t	**pp;
715 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
716 	int	cnt = 0;
717 
718 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
719 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
720 
721 	pp = mcb_head;
722 	while (*pp != NULL) {
723 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
724 			p = *pp;
725 			*pp = p->mcb_nextp;
726 			p->mcb_nextp = rmlist;
727 			rmlist = p;
728 			cnt++;
729 			continue;
730 		}
731 		pp = &(*pp)->mcb_nextp;
732 	}
733 
734 	ASSERT(mcbi->mcbi_del_cnt == cnt);
735 	mcbi->mcbi_del_cnt = 0;
736 	return (rmlist);
737 }
738 
739 boolean_t
740 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
741 {
742 	mac_cb_t	*mcb;
743 
744 	/* Verify it is not already in the list */
745 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
746 		if (mcb == mcb_elem)
747 			return (B_TRUE);
748 	}
749 
750 	return (B_FALSE);
751 }
752 
753 boolean_t
754 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
755 {
756 	boolean_t	found;
757 
758 	mutex_enter(mcbi->mcbi_lockp);
759 	found = mac_callback_lookup(mcb_headp, mcb_elem);
760 	mutex_exit(mcbi->mcbi_lockp);
761 
762 	return (found);
763 }
764 
765 /* Free the list of removed callbacks */
766 void
767 mac_callback_free(mac_cb_t *rmlist)
768 {
769 	mac_cb_t	*mcb;
770 	mac_cb_t	*mcb_next;
771 
772 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
773 		mcb_next = mcb->mcb_nextp;
774 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
775 	}
776 }
777 
778 /*
779  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
780  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
781  * is only a single shared total walker count, and an entry can't be physically
782  * unlinked if a walker is active on either list. The last walker does this
783  * cleanup of logically deleted entries.
784  */
785 void
786 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
787 {
788 	mac_cb_t	*rmlist;
789 	mac_cb_t	*mcb;
790 	mac_cb_t	*mcb_next;
791 	mac_promisc_impl_t	*mpip;
792 
793 	/*
794 	 * Construct a temporary list of deleted callbacks by walking the
795 	 * the mi_promisc_list. Then for each entry in the temporary list,
796 	 * remove it from the mci_promisc_list and free the entry.
797 	 */
798 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
799 	    &mip->mi_promisc_list);
800 
801 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
802 		mcb_next = mcb->mcb_nextp;
803 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
804 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
805 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
806 		mcb->mcb_flags = 0;
807 		mcb->mcb_nextp = NULL;
808 		kmem_cache_free(mac_promisc_impl_cache, mpip);
809 	}
810 }
811 
812 void
813 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
814 {
815 	mac_cb_info_t	*mcbi;
816 
817 	/*
818 	 * Signal the notify thread even after mi_ref has become zero and
819 	 * mi_disabled is set. The synchronization with the notify thread
820 	 * happens in mac_unregister and that implies the driver must make
821 	 * sure it is single-threaded (with respect to mac calls) and that
822 	 * all pending mac calls have returned before it calls mac_unregister
823 	 */
824 	rw_enter(&i_mac_impl_lock, RW_READER);
825 	if (mip->mi_state_flags & MIS_DISABLED)
826 		goto exit;
827 
828 	/*
829 	 * Guard against incorrect notifications.  (Running a newer
830 	 * mac client against an older implementation?)
831 	 */
832 	if (type >= MAC_NNOTE)
833 		goto exit;
834 
835 	mcbi = &mip->mi_notify_cb_info;
836 	mutex_enter(mcbi->mcbi_lockp);
837 	mip->mi_notify_bits |= (1 << type);
838 	cv_broadcast(&mcbi->mcbi_cv);
839 	mutex_exit(mcbi->mcbi_lockp);
840 
841 exit:
842 	rw_exit(&i_mac_impl_lock);
843 }
844 
845 /*
846  * Mac serialization primitives. Please see the block comment at the
847  * top of the file.
848  */
849 void
850 i_mac_perim_enter(mac_impl_t *mip)
851 {
852 	mac_client_impl_t	*mcip;
853 
854 	if (mip->mi_state_flags & MIS_IS_VNIC) {
855 		/*
856 		 * This is a VNIC. Return the lower mac since that is what
857 		 * we want to serialize on.
858 		 */
859 		mcip = mac_vnic_lower(mip);
860 		mip = mcip->mci_mip;
861 	}
862 
863 	mutex_enter(&mip->mi_perim_lock);
864 	if (mip->mi_perim_owner == curthread) {
865 		mip->mi_perim_ocnt++;
866 		mutex_exit(&mip->mi_perim_lock);
867 		return;
868 	}
869 
870 	while (mip->mi_perim_owner != NULL)
871 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
872 
873 	mip->mi_perim_owner = curthread;
874 	ASSERT(mip->mi_perim_ocnt == 0);
875 	mip->mi_perim_ocnt++;
876 #ifdef DEBUG
877 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
878 	    MAC_PERIM_STACK_DEPTH);
879 #endif
880 	mutex_exit(&mip->mi_perim_lock);
881 }
882 
883 int
884 i_mac_perim_enter_nowait(mac_impl_t *mip)
885 {
886 	/*
887 	 * The vnic is a special case, since the serialization is done based
888 	 * on the lower mac. If the lower mac is busy, it does not imply the
889 	 * vnic can't be unregistered. But in the case of other drivers,
890 	 * a busy perimeter or open mac handles implies that the mac is busy
891 	 * and can't be unregistered.
892 	 */
893 	if (mip->mi_state_flags & MIS_IS_VNIC) {
894 		i_mac_perim_enter(mip);
895 		return (0);
896 	}
897 
898 	mutex_enter(&mip->mi_perim_lock);
899 	if (mip->mi_perim_owner != NULL) {
900 		mutex_exit(&mip->mi_perim_lock);
901 		return (EBUSY);
902 	}
903 	ASSERT(mip->mi_perim_ocnt == 0);
904 	mip->mi_perim_owner = curthread;
905 	mip->mi_perim_ocnt++;
906 	mutex_exit(&mip->mi_perim_lock);
907 
908 	return (0);
909 }
910 
911 void
912 i_mac_perim_exit(mac_impl_t *mip)
913 {
914 	mac_client_impl_t *mcip;
915 
916 	if (mip->mi_state_flags & MIS_IS_VNIC) {
917 		/*
918 		 * This is a VNIC. Return the lower mac since that is what
919 		 * we want to serialize on.
920 		 */
921 		mcip = mac_vnic_lower(mip);
922 		mip = mcip->mci_mip;
923 	}
924 
925 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
926 
927 	mutex_enter(&mip->mi_perim_lock);
928 	if (--mip->mi_perim_ocnt == 0) {
929 		mip->mi_perim_owner = NULL;
930 		cv_signal(&mip->mi_perim_cv);
931 	}
932 	mutex_exit(&mip->mi_perim_lock);
933 }
934 
935 /*
936  * Returns whether the current thread holds the mac perimeter. Used in making
937  * assertions.
938  */
939 boolean_t
940 mac_perim_held(mac_handle_t mh)
941 {
942 	mac_impl_t	*mip = (mac_impl_t *)mh;
943 	mac_client_impl_t *mcip;
944 
945 	if (mip->mi_state_flags & MIS_IS_VNIC) {
946 		/*
947 		 * This is a VNIC. Return the lower mac since that is what
948 		 * we want to serialize on.
949 		 */
950 		mcip = mac_vnic_lower(mip);
951 		mip = mcip->mci_mip;
952 	}
953 	return (mip->mi_perim_owner == curthread);
954 }
955 
956 /*
957  * mac client interfaces to enter the mac perimeter of a mac end point, given
958  * its mac handle, or macname or linkid.
959  */
960 void
961 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
962 {
963 	mac_impl_t	*mip = (mac_impl_t *)mh;
964 
965 	i_mac_perim_enter(mip);
966 	/*
967 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
968 	 * mac_open has been done internally while entering the perimeter.
969 	 * This information is used in mac_perim_exit
970 	 */
971 	MAC_ENCODE_MPH(*mphp, mip, 0);
972 }
973 
974 int
975 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
976 {
977 	int	err;
978 	mac_handle_t	mh;
979 
980 	if ((err = mac_open(name, &mh)) != 0)
981 		return (err);
982 
983 	mac_perim_enter_by_mh(mh, mphp);
984 	MAC_ENCODE_MPH(*mphp, mh, 1);
985 	return (0);
986 }
987 
988 int
989 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
990 {
991 	int	err;
992 	mac_handle_t	mh;
993 
994 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
995 		return (err);
996 
997 	mac_perim_enter_by_mh(mh, mphp);
998 	MAC_ENCODE_MPH(*mphp, mh, 1);
999 	return (0);
1000 }
1001 
1002 void
1003 mac_perim_exit(mac_perim_handle_t mph)
1004 {
1005 	mac_impl_t	*mip;
1006 	boolean_t	need_close;
1007 
1008 	MAC_DECODE_MPH(mph, mip, need_close);
1009 	i_mac_perim_exit(mip);
1010 	if (need_close)
1011 		mac_close((mac_handle_t)mip);
1012 }
1013 
1014 int
1015 mac_hold(const char *macname, mac_impl_t **pmip)
1016 {
1017 	mac_impl_t	*mip;
1018 	int		err;
1019 
1020 	/*
1021 	 * Check the device name length to make sure it won't overflow our
1022 	 * buffer.
1023 	 */
1024 	if (strlen(macname) >= MAXNAMELEN)
1025 		return (EINVAL);
1026 
1027 	/*
1028 	 * Look up its entry in the global hash table.
1029 	 */
1030 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1031 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1032 	    (mod_hash_val_t *)&mip);
1033 
1034 	if (err != 0) {
1035 		rw_exit(&i_mac_impl_lock);
1036 		return (ENOENT);
1037 	}
1038 
1039 	if (mip->mi_state_flags & MIS_DISABLED) {
1040 		rw_exit(&i_mac_impl_lock);
1041 		return (ENOENT);
1042 	}
1043 
1044 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1045 		rw_exit(&i_mac_impl_lock);
1046 		return (EBUSY);
1047 	}
1048 
1049 	mip->mi_ref++;
1050 	rw_exit(&i_mac_impl_lock);
1051 
1052 	*pmip = mip;
1053 	return (0);
1054 }
1055 
1056 void
1057 mac_rele(mac_impl_t *mip)
1058 {
1059 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1060 	ASSERT(mip->mi_ref != 0);
1061 	if (--mip->mi_ref == 0) {
1062 		ASSERT(mip->mi_nactiveclients == 0 &&
1063 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1064 	}
1065 	rw_exit(&i_mac_impl_lock);
1066 }
1067 
1068 /*
1069  * Private GLDv3 function to start a MAC instance.
1070  */
1071 int
1072 mac_start(mac_handle_t mh)
1073 {
1074 	mac_impl_t	*mip = (mac_impl_t *)mh;
1075 	int		err = 0;
1076 	mac_group_t	*defgrp;
1077 
1078 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1079 	ASSERT(mip->mi_start != NULL);
1080 
1081 	/*
1082 	 * Check whether the device is already started.
1083 	 */
1084 	if (mip->mi_active++ == 0) {
1085 		mac_ring_t *ring = NULL;
1086 
1087 		/*
1088 		 * Start the device.
1089 		 */
1090 		err = mip->mi_start(mip->mi_driver);
1091 		if (err != 0) {
1092 			mip->mi_active--;
1093 			return (err);
1094 		}
1095 
1096 		/*
1097 		 * Start the default tx ring.
1098 		 */
1099 		if (mip->mi_default_tx_ring != NULL) {
1100 
1101 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1102 			if (ring->mr_state != MR_INUSE) {
1103 				err = mac_start_ring(ring);
1104 				if (err != 0) {
1105 					mip->mi_active--;
1106 					return (err);
1107 				}
1108 			}
1109 		}
1110 
1111 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1112 			/*
1113 			 * Start the default ring, since it will be needed
1114 			 * to receive broadcast and multicast traffic for
1115 			 * both primary and non-primary MAC clients.
1116 			 */
1117 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1118 			err = mac_start_group_and_rings(defgrp);
1119 			if (err != 0) {
1120 				mip->mi_active--;
1121 				if ((ring != NULL) &&
1122 				    (ring->mr_state == MR_INUSE))
1123 					mac_stop_ring(ring);
1124 				return (err);
1125 			}
1126 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1127 		}
1128 	}
1129 
1130 	return (err);
1131 }
1132 
1133 /*
1134  * Private GLDv3 function to stop a MAC instance.
1135  */
1136 void
1137 mac_stop(mac_handle_t mh)
1138 {
1139 	mac_impl_t	*mip = (mac_impl_t *)mh;
1140 	mac_group_t	*grp;
1141 
1142 	ASSERT(mip->mi_stop != NULL);
1143 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1144 
1145 	/*
1146 	 * Check whether the device is still needed.
1147 	 */
1148 	ASSERT(mip->mi_active != 0);
1149 	if (--mip->mi_active == 0) {
1150 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1151 			/*
1152 			 * There should be no more active clients since the
1153 			 * MAC is being stopped. Stop the default RX group
1154 			 * and transition it back to registered state.
1155 			 *
1156 			 * When clients are torn down, the groups
1157 			 * are release via mac_release_rx_group which
1158 			 * knows the the default group is always in
1159 			 * started mode since broadcast uses it. So
1160 			 * we can assert that their are no clients
1161 			 * (since mac_bcast_add doesn't register itself
1162 			 * as a client) and group is in SHARED state.
1163 			 */
1164 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1165 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1166 			    mip->mi_nactiveclients == 0);
1167 			mac_stop_group_and_rings(grp);
1168 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1169 		}
1170 
1171 		if (mip->mi_default_tx_ring != NULL) {
1172 			mac_ring_t *ring;
1173 
1174 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1175 			if (ring->mr_state == MR_INUSE) {
1176 				mac_stop_ring(ring);
1177 				ring->mr_flag = 0;
1178 			}
1179 		}
1180 
1181 		/*
1182 		 * Stop the device.
1183 		 */
1184 		mip->mi_stop(mip->mi_driver);
1185 	}
1186 }
1187 
1188 int
1189 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1190 {
1191 	int		err = 0;
1192 
1193 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1194 	ASSERT(mip->mi_setpromisc != NULL);
1195 
1196 	if (on) {
1197 		/*
1198 		 * Enable promiscuous mode on the device if not yet enabled.
1199 		 */
1200 		if (mip->mi_devpromisc++ == 0) {
1201 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1202 			if (err != 0) {
1203 				mip->mi_devpromisc--;
1204 				return (err);
1205 			}
1206 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1207 		}
1208 	} else {
1209 		if (mip->mi_devpromisc == 0)
1210 			return (EPROTO);
1211 
1212 		/*
1213 		 * Disable promiscuous mode on the device if this is the last
1214 		 * enabling.
1215 		 */
1216 		if (--mip->mi_devpromisc == 0) {
1217 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1218 			if (err != 0) {
1219 				mip->mi_devpromisc++;
1220 				return (err);
1221 			}
1222 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1223 		}
1224 	}
1225 
1226 	return (0);
1227 }
1228 
1229 /*
1230  * The promiscuity state can change any time. If the caller needs to take
1231  * actions that are atomic with the promiscuity state, then the caller needs
1232  * to bracket the entire sequence with mac_perim_enter/exit
1233  */
1234 boolean_t
1235 mac_promisc_get(mac_handle_t mh)
1236 {
1237 	mac_impl_t		*mip = (mac_impl_t *)mh;
1238 
1239 	/*
1240 	 * Return the current promiscuity.
1241 	 */
1242 	return (mip->mi_devpromisc != 0);
1243 }
1244 
1245 /*
1246  * Invoked at MAC instance attach time to initialize the list
1247  * of factory MAC addresses supported by a MAC instance. This function
1248  * builds a local cache in the mac_impl_t for the MAC addresses
1249  * supported by the underlying hardware. The MAC clients themselves
1250  * use the mac_addr_factory*() functions to query and reserve
1251  * factory MAC addresses.
1252  */
1253 void
1254 mac_addr_factory_init(mac_impl_t *mip)
1255 {
1256 	mac_capab_multifactaddr_t capab;
1257 	uint8_t *addr;
1258 	int i;
1259 
1260 	/*
1261 	 * First round to see how many factory MAC addresses are available.
1262 	 */
1263 	bzero(&capab, sizeof (capab));
1264 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1265 	    &capab) || (capab.mcm_naddr == 0)) {
1266 		/*
1267 		 * The MAC instance doesn't support multiple factory
1268 		 * MAC addresses, we're done here.
1269 		 */
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * Allocate the space and get all the factory addresses.
1275 	 */
1276 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1277 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1278 
1279 	mip->mi_factory_addr_num = capab.mcm_naddr;
1280 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1281 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1282 
1283 	for (i = 0; i < capab.mcm_naddr; i++) {
1284 		bcopy(addr + i * MAXMACADDRLEN,
1285 		    mip->mi_factory_addr[i].mfa_addr,
1286 		    mip->mi_type->mt_addr_length);
1287 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1288 	}
1289 
1290 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1291 }
1292 
1293 void
1294 mac_addr_factory_fini(mac_impl_t *mip)
1295 {
1296 	if (mip->mi_factory_addr == NULL) {
1297 		ASSERT(mip->mi_factory_addr_num == 0);
1298 		return;
1299 	}
1300 
1301 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1302 	    sizeof (mac_factory_addr_t));
1303 
1304 	mip->mi_factory_addr = NULL;
1305 	mip->mi_factory_addr_num = 0;
1306 }
1307 
1308 /*
1309  * Reserve a factory MAC address. If *slot is set to -1, the function
1310  * attempts to reserve any of the available factory MAC addresses and
1311  * returns the reserved slot id. If no slots are available, the function
1312  * returns ENOSPC. If *slot is not set to -1, the function reserves
1313  * the specified slot if it is available, or returns EBUSY is the slot
1314  * is already used. Returns ENOTSUP if the underlying MAC does not
1315  * support multiple factory addresses. If the slot number is not -1 but
1316  * is invalid, returns EINVAL.
1317  */
1318 int
1319 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1320 {
1321 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1322 	mac_impl_t *mip = mcip->mci_mip;
1323 	int i, ret = 0;
1324 
1325 	i_mac_perim_enter(mip);
1326 	/*
1327 	 * Protect against concurrent readers that may need a self-consistent
1328 	 * view of the factory addresses
1329 	 */
1330 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1331 
1332 	if (mip->mi_factory_addr_num == 0) {
1333 		ret = ENOTSUP;
1334 		goto bail;
1335 	}
1336 
1337 	if (*slot != -1) {
1338 		/* check the specified slot */
1339 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1340 			ret = EINVAL;
1341 			goto bail;
1342 		}
1343 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1344 			ret = EBUSY;
1345 			goto bail;
1346 		}
1347 	} else {
1348 		/* pick the next available slot */
1349 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1350 			if (!mip->mi_factory_addr[i].mfa_in_use)
1351 				break;
1352 		}
1353 
1354 		if (i == mip->mi_factory_addr_num) {
1355 			ret = ENOSPC;
1356 			goto bail;
1357 		}
1358 		*slot = i+1;
1359 	}
1360 
1361 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1362 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1363 
1364 bail:
1365 	rw_exit(&mip->mi_rw_lock);
1366 	i_mac_perim_exit(mip);
1367 	return (ret);
1368 }
1369 
1370 /*
1371  * Release the specified factory MAC address slot.
1372  */
1373 void
1374 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1375 {
1376 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1377 	mac_impl_t *mip = mcip->mci_mip;
1378 
1379 	i_mac_perim_enter(mip);
1380 	/*
1381 	 * Protect against concurrent readers that may need a self-consistent
1382 	 * view of the factory addresses
1383 	 */
1384 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1385 
1386 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1387 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1388 
1389 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1390 
1391 	rw_exit(&mip->mi_rw_lock);
1392 	i_mac_perim_exit(mip);
1393 }
1394 
1395 /*
1396  * Stores in mac_addr the value of the specified MAC address. Returns
1397  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1398  * The caller must provide a string of at least MAXNAMELEN bytes.
1399  */
1400 void
1401 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1402     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1403 {
1404 	mac_impl_t *mip = (mac_impl_t *)mh;
1405 	boolean_t in_use;
1406 
1407 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1408 
1409 	/*
1410 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1411 	 * and mi_rw_lock
1412 	 */
1413 	rw_enter(&mip->mi_rw_lock, RW_READER);
1414 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1415 	*addr_len = mip->mi_type->mt_addr_length;
1416 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1417 	if (in_use && client_name != NULL) {
1418 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1419 		    client_name, MAXNAMELEN);
1420 	}
1421 	if (in_use_arg != NULL)
1422 		*in_use_arg = in_use;
1423 	rw_exit(&mip->mi_rw_lock);
1424 }
1425 
1426 /*
1427  * Returns the number of factory MAC addresses (in addition to the
1428  * primary MAC address), 0 if the underlying MAC doesn't support
1429  * that feature.
1430  */
1431 uint_t
1432 mac_addr_factory_num(mac_handle_t mh)
1433 {
1434 	mac_impl_t *mip = (mac_impl_t *)mh;
1435 
1436 	return (mip->mi_factory_addr_num);
1437 }
1438 
1439 
1440 void
1441 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1442 {
1443 	mac_ring_t	*ring;
1444 
1445 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1446 		ring->mr_flag &= ~flag;
1447 }
1448 
1449 /*
1450  * The following mac_hwrings_xxx() functions are private mac client functions
1451  * used by the aggr driver to access and control the underlying HW Rx group
1452  * and rings. In this case, the aggr driver has exclusive control of the
1453  * underlying HW Rx group/rings, it calls the following functions to
1454  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1455  * addresses, or set up the Rx callback.
1456  */
1457 /* ARGSUSED */
1458 static void
1459 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1460     mblk_t *mp_chain, boolean_t loopback)
1461 {
1462 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1463 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1464 	mac_direct_rx_t		proc;
1465 	void			*arg1;
1466 	mac_resource_handle_t	arg2;
1467 
1468 	proc = srs_rx->sr_func;
1469 	arg1 = srs_rx->sr_arg1;
1470 	arg2 = mac_srs->srs_mrh;
1471 
1472 	proc(arg1, arg2, mp_chain, NULL);
1473 }
1474 
1475 /*
1476  * This function is called to get the list of HW rings that are reserved by
1477  * an exclusive mac client.
1478  *
1479  * Return value: the number of HW rings.
1480  */
1481 int
1482 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1483     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1484 {
1485 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1486 	flow_entry_t		*flent = mcip->mci_flent;
1487 	mac_group_t		*grp;
1488 	mac_ring_t		*ring;
1489 	int			cnt = 0;
1490 
1491 	if (rtype == MAC_RING_TYPE_RX) {
1492 		grp = flent->fe_rx_ring_group;
1493 	} else if (rtype == MAC_RING_TYPE_TX) {
1494 		grp = flent->fe_tx_ring_group;
1495 	} else {
1496 		ASSERT(B_FALSE);
1497 		return (-1);
1498 	}
1499 	/*
1500 	 * The mac client did not reserve any RX group, return directly.
1501 	 * This is probably because the underlying MAC does not support
1502 	 * any groups.
1503 	 */
1504 	if (hwgh != NULL)
1505 		*hwgh = NULL;
1506 	if (grp == NULL)
1507 		return (0);
1508 	/*
1509 	 * This group must be reserved by this mac client.
1510 	 */
1511 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1512 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1513 
1514 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1515 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1516 		hwrh[cnt] = (mac_ring_handle_t)ring;
1517 	}
1518 	if (hwgh != NULL)
1519 		*hwgh = (mac_group_handle_t)grp;
1520 
1521 	return (cnt);
1522 }
1523 
1524 /*
1525  * This function is called to get info about Tx/Rx rings.
1526  *
1527  * Return value: returns uint_t which will have various bits set
1528  * that indicates different properties of the ring.
1529  */
1530 uint_t
1531 mac_hwring_getinfo(mac_ring_handle_t rh)
1532 {
1533 	mac_ring_t *ring = (mac_ring_t *)rh;
1534 	mac_ring_info_t *info = &ring->mr_info;
1535 
1536 	return (info->mri_flags);
1537 }
1538 
1539 /*
1540  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1541  * setup the RX callback of the mac client which exclusively controls
1542  * HW ring.
1543  */
1544 void
1545 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1546     mac_ring_handle_t pseudo_rh)
1547 {
1548 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1549 	mac_ring_t		*pseudo_ring;
1550 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1551 
1552 	if (pseudo_rh != NULL) {
1553 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1554 		/* Export the ddi handles to pseudo ring */
1555 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1556 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1557 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1558 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1559 		/*
1560 		 * Save a pointer to pseudo ring in the hw ring. If
1561 		 * interrupt handle changes, the hw ring will be
1562 		 * notified of the change (see mac_ring_intr_set())
1563 		 * and the appropriate change has to be made to
1564 		 * the pseudo ring that has exported the ddi handle.
1565 		 */
1566 		hw_ring->mr_prh = pseudo_rh;
1567 	}
1568 
1569 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1570 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1571 		mac_srs->srs_mrh = prh;
1572 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1573 	}
1574 }
1575 
1576 void
1577 mac_hwring_teardown(mac_ring_handle_t hwrh)
1578 {
1579 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1580 	mac_soft_ring_set_t	*mac_srs;
1581 
1582 	if (hw_ring == NULL)
1583 		return;
1584 	hw_ring->mr_prh = NULL;
1585 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1586 		mac_srs = hw_ring->mr_srs;
1587 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1588 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1589 		mac_srs->srs_mrh = NULL;
1590 	}
1591 }
1592 
1593 int
1594 mac_hwring_disable_intr(mac_ring_handle_t rh)
1595 {
1596 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1597 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1598 
1599 	return (intr->mi_disable(intr->mi_handle));
1600 }
1601 
1602 int
1603 mac_hwring_enable_intr(mac_ring_handle_t rh)
1604 {
1605 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1606 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1607 
1608 	return (intr->mi_enable(intr->mi_handle));
1609 }
1610 
1611 int
1612 mac_hwring_start(mac_ring_handle_t rh)
1613 {
1614 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1615 
1616 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1617 	return (0);
1618 }
1619 
1620 void
1621 mac_hwring_stop(mac_ring_handle_t rh)
1622 {
1623 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1624 
1625 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1626 }
1627 
1628 mblk_t *
1629 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1630 {
1631 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1632 	mac_ring_info_t *info = &rr_ring->mr_info;
1633 
1634 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1635 }
1636 
1637 /*
1638  * Send packets through a selected tx ring.
1639  */
1640 mblk_t *
1641 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1642 {
1643 	mac_ring_t *ring = (mac_ring_t *)rh;
1644 	mac_ring_info_t *info = &ring->mr_info;
1645 
1646 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1647 	    ring->mr_state >= MR_INUSE);
1648 	return (info->mri_tx(info->mri_driver, mp));
1649 }
1650 
1651 /*
1652  * Query stats for a particular rx/tx ring
1653  */
1654 int
1655 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1656 {
1657 	mac_ring_t	*ring = (mac_ring_t *)rh;
1658 	mac_ring_info_t *info = &ring->mr_info;
1659 
1660 	return (info->mri_stat(info->mri_driver, stat, val));
1661 }
1662 
1663 /*
1664  * Private function that is only used by aggr to send packets through
1665  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1666  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1667  * access to mac_impl_t to send packets through m_tx() entry point.
1668  * It accomplishes this by calling mac_hwring_send_priv() function.
1669  */
1670 mblk_t *
1671 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1672 {
1673 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1674 	mac_impl_t *mip = mcip->mci_mip;
1675 
1676 	MAC_TX(mip, rh, mp, mcip);
1677 	return (mp);
1678 }
1679 
1680 int
1681 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1682 {
1683 	mac_group_t *group = (mac_group_t *)gh;
1684 
1685 	return (mac_group_addmac(group, addr));
1686 }
1687 
1688 int
1689 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1690 {
1691 	mac_group_t *group = (mac_group_t *)gh;
1692 
1693 	return (mac_group_remmac(group, addr));
1694 }
1695 
1696 /*
1697  * Set the RX group to be shared/reserved. Note that the group must be
1698  * started/stopped outside of this function.
1699  */
1700 void
1701 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1702 {
1703 	/*
1704 	 * If there is no change in the group state, just return.
1705 	 */
1706 	if (grp->mrg_state == state)
1707 		return;
1708 
1709 	switch (state) {
1710 	case MAC_GROUP_STATE_RESERVED:
1711 		/*
1712 		 * Successfully reserved the group.
1713 		 *
1714 		 * Given that there is an exclusive client controlling this
1715 		 * group, we enable the group level polling when available,
1716 		 * so that SRSs get to turn on/off individual rings they's
1717 		 * assigned to.
1718 		 */
1719 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1720 
1721 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1722 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1723 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1724 		}
1725 		break;
1726 
1727 	case MAC_GROUP_STATE_SHARED:
1728 		/*
1729 		 * Set all rings of this group to software classified.
1730 		 * If the group has an overriding interrupt, then re-enable it.
1731 		 */
1732 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1733 
1734 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1735 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1736 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1737 		}
1738 		/* The ring is not available for reservations any more */
1739 		break;
1740 
1741 	case MAC_GROUP_STATE_REGISTERED:
1742 		/* Also callable from mac_register, perim is not held */
1743 		break;
1744 
1745 	default:
1746 		ASSERT(B_FALSE);
1747 		break;
1748 	}
1749 
1750 	grp->mrg_state = state;
1751 }
1752 
1753 /*
1754  * Quiesce future hardware classified packets for the specified Rx ring
1755  */
1756 static void
1757 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1758 {
1759 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1760 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1761 
1762 	mutex_enter(&rx_ring->mr_lock);
1763 	rx_ring->mr_flag |= ring_flag;
1764 	while (rx_ring->mr_refcnt != 0)
1765 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1766 	mutex_exit(&rx_ring->mr_lock);
1767 }
1768 
1769 /*
1770  * Please see mac_tx for details about the per cpu locking scheme
1771  */
1772 static void
1773 mac_tx_lock_all(mac_client_impl_t *mcip)
1774 {
1775 	int	i;
1776 
1777 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1778 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1779 }
1780 
1781 static void
1782 mac_tx_unlock_all(mac_client_impl_t *mcip)
1783 {
1784 	int	i;
1785 
1786 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1787 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1788 }
1789 
1790 static void
1791 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1792 {
1793 	int	i;
1794 
1795 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1796 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1797 }
1798 
1799 static int
1800 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1801 {
1802 	int	i;
1803 	int	refcnt = 0;
1804 
1805 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1806 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1807 
1808 	return (refcnt);
1809 }
1810 
1811 /*
1812  * Stop future Tx packets coming down from the client in preparation for
1813  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1814  * of rings between clients
1815  */
1816 void
1817 mac_tx_client_block(mac_client_impl_t *mcip)
1818 {
1819 	mac_tx_lock_all(mcip);
1820 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1821 	while (mac_tx_sum_refcnt(mcip) != 0) {
1822 		mac_tx_unlock_allbutzero(mcip);
1823 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1824 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1825 		mac_tx_lock_all(mcip);
1826 	}
1827 	mac_tx_unlock_all(mcip);
1828 }
1829 
1830 void
1831 mac_tx_client_unblock(mac_client_impl_t *mcip)
1832 {
1833 	mac_tx_lock_all(mcip);
1834 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1835 	mac_tx_unlock_all(mcip);
1836 	/*
1837 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1838 	 * notification because the MAC client is quiesced. Send the
1839 	 * notification again.
1840 	 */
1841 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1842 }
1843 
1844 /*
1845  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1846  * quiesce is done.
1847  */
1848 static void
1849 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1850 {
1851 	mutex_enter(&srs->srs_lock);
1852 	while (!(srs->srs_state & srs_flag))
1853 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1854 	mutex_exit(&srs->srs_lock);
1855 }
1856 
1857 /*
1858  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1859  * works bottom up by cutting off packet flow from the bottommost point in the
1860  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1861  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1862  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1863  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1864  * for the SRS and MR flags. In the former case the threads pause waiting for
1865  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1866  * is also mostly similar to the above.
1867  *
1868  * 1. Stop future hardware classified packets at the lowest level in the mac.
1869  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1870  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1871  *    from increasing. Upcalls from the driver that come through hardware
1872  *    classification will be dropped in mac_rx from now on. Then we wait for
1873  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1874  *    sure there aren't any upcall threads from the driver through hardware
1875  *    classification. In the case of SRS teardown we also remove the
1876  *    classification rule in the driver.
1877  *
1878  * 2. Stop future software classified packets by marking the flow entry with
1879  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1880  *    increasing. We also remove the flow entry from the table in the latter
1881  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1882  *    that indicates there aren't any active threads using that flow entry.
1883  *
1884  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1885  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1886  *    with the SRS worker thread serving as a master controller. This
1887  *    mechansim is explained in mac_srs_worker_quiesce().
1888  *
1889  * The restart mechanism to reactivate the SRS and softrings is explained
1890  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1891  * restart sequence.
1892  */
1893 void
1894 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1895 {
1896 	flow_entry_t	*flent = srs->srs_flent;
1897 	uint_t	mr_flag, srs_done_flag;
1898 
1899 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1900 	ASSERT(!(srs->srs_type & SRST_TX));
1901 
1902 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1903 		mr_flag = MR_CONDEMNED;
1904 		srs_done_flag = SRS_CONDEMNED_DONE;
1905 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1906 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1907 	} else {
1908 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1909 		mr_flag = MR_QUIESCE;
1910 		srs_done_flag = SRS_QUIESCE_DONE;
1911 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1912 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1913 	}
1914 
1915 	if (srs->srs_ring != NULL) {
1916 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1917 	} else {
1918 		/*
1919 		 * SRS is driven by software classification. In case
1920 		 * of CONDEMNED, the top level teardown functions will
1921 		 * deal with flow removal.
1922 		 */
1923 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1924 			FLOW_MARK(flent, FE_QUIESCE);
1925 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1926 		}
1927 	}
1928 
1929 	/*
1930 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1931 	 * SRS quiesce to complete. The SRS worker thread will wake us
1932 	 * up when the quiesce is complete
1933 	 */
1934 	mac_srs_signal(srs, srs_quiesce_flag);
1935 	mac_srs_quiesce_wait(srs, srs_done_flag);
1936 }
1937 
1938 /*
1939  * Remove an SRS.
1940  */
1941 void
1942 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1943 {
1944 	flow_entry_t *flent = srs->srs_flent;
1945 	int i;
1946 
1947 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1948 	/*
1949 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1950 	 * adjust the fe_rx_srs array entries and array count by
1951 	 * moving the last entry into the vacated spot.
1952 	 */
1953 	mutex_enter(&flent->fe_lock);
1954 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1955 		if (flent->fe_rx_srs[i] == srs)
1956 			break;
1957 	}
1958 
1959 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1960 	if (i != flent->fe_rx_srs_cnt - 1) {
1961 		flent->fe_rx_srs[i] =
1962 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1963 		i = flent->fe_rx_srs_cnt - 1;
1964 	}
1965 
1966 	flent->fe_rx_srs[i] = NULL;
1967 	flent->fe_rx_srs_cnt--;
1968 	mutex_exit(&flent->fe_lock);
1969 
1970 	mac_srs_free(srs);
1971 }
1972 
1973 static void
1974 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1975 {
1976 	mutex_enter(&srs->srs_lock);
1977 	srs->srs_state &= ~flag;
1978 	mutex_exit(&srs->srs_lock);
1979 }
1980 
1981 void
1982 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1983 {
1984 	flow_entry_t	*flent = srs->srs_flent;
1985 	mac_ring_t	*mr;
1986 
1987 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1988 	ASSERT((srs->srs_type & SRST_TX) == 0);
1989 
1990 	/*
1991 	 * This handles a change in the number of SRSs between the quiesce and
1992 	 * and restart operation of a flow.
1993 	 */
1994 	if (!SRS_QUIESCED(srs))
1995 		return;
1996 
1997 	/*
1998 	 * Signal the SRS to restart itself. Wait for the restart to complete
1999 	 * Note that we only restart the SRS if it is not marked as
2000 	 * permanently quiesced.
2001 	 */
2002 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2003 		mac_srs_signal(srs, SRS_RESTART);
2004 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2005 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2006 
2007 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2008 	}
2009 
2010 	/* Finally clear the flags to let the packets in */
2011 	mr = srs->srs_ring;
2012 	if (mr != NULL) {
2013 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2014 		/* In case the ring was stopped, safely restart it */
2015 		if (mr->mr_state != MR_INUSE)
2016 			(void) mac_start_ring(mr);
2017 	} else {
2018 		FLOW_UNMARK(flent, FE_QUIESCE);
2019 	}
2020 }
2021 
2022 /*
2023  * Temporary quiesce of a flow and associated Rx SRS.
2024  * Please see block comment above mac_rx_classify_flow_rem.
2025  */
2026 /* ARGSUSED */
2027 int
2028 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2029 {
2030 	int		i;
2031 
2032 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2033 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2034 		    SRS_QUIESCE);
2035 	}
2036 	return (0);
2037 }
2038 
2039 /*
2040  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2041  * Please see block comment above mac_rx_classify_flow_rem
2042  */
2043 /* ARGSUSED */
2044 int
2045 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2046 {
2047 	int		i;
2048 
2049 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2050 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2051 
2052 	return (0);
2053 }
2054 
2055 void
2056 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2057 {
2058 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2059 	flow_entry_t		*flent = mcip->mci_flent;
2060 	mac_impl_t		*mip = mcip->mci_mip;
2061 	mac_soft_ring_set_t	*mac_srs;
2062 	int			i;
2063 
2064 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2065 
2066 	if (flent == NULL)
2067 		return;
2068 
2069 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2070 		mac_srs = flent->fe_rx_srs[i];
2071 		mutex_enter(&mac_srs->srs_lock);
2072 		if (on)
2073 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2074 		else
2075 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2076 		mutex_exit(&mac_srs->srs_lock);
2077 	}
2078 }
2079 
2080 void
2081 mac_rx_client_quiesce(mac_client_handle_t mch)
2082 {
2083 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2084 	mac_impl_t		*mip = mcip->mci_mip;
2085 
2086 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2087 
2088 	if (MCIP_DATAPATH_SETUP(mcip)) {
2089 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2090 		    NULL);
2091 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2092 		    mac_rx_classify_flow_quiesce, NULL);
2093 	}
2094 }
2095 
2096 void
2097 mac_rx_client_restart(mac_client_handle_t mch)
2098 {
2099 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2100 	mac_impl_t		*mip = mcip->mci_mip;
2101 
2102 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2103 
2104 	if (MCIP_DATAPATH_SETUP(mcip)) {
2105 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2106 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2107 		    mac_rx_classify_flow_restart, NULL);
2108 	}
2109 }
2110 
2111 /*
2112  * This function only quiesces the Tx SRS and softring worker threads. Callers
2113  * need to make sure that there aren't any mac client threads doing current or
2114  * future transmits in the mac before calling this function.
2115  */
2116 void
2117 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2118 {
2119 	mac_client_impl_t	*mcip = srs->srs_mcip;
2120 
2121 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2122 
2123 	ASSERT(srs->srs_type & SRST_TX);
2124 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2125 	    srs_quiesce_flag == SRS_QUIESCE);
2126 
2127 	/*
2128 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2129 	 * SRS quiesce to complete. The SRS worker thread will wake us
2130 	 * up when the quiesce is complete
2131 	 */
2132 	mac_srs_signal(srs, srs_quiesce_flag);
2133 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2134 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2135 }
2136 
2137 void
2138 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2139 {
2140 	/*
2141 	 * Resizing the fanout could result in creation of new SRSs.
2142 	 * They may not necessarily be in the quiesced state in which
2143 	 * case it need be restarted
2144 	 */
2145 	if (!SRS_QUIESCED(srs))
2146 		return;
2147 
2148 	mac_srs_signal(srs, SRS_RESTART);
2149 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2150 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2151 }
2152 
2153 /*
2154  * Temporary quiesce of a flow and associated Rx SRS.
2155  * Please see block comment above mac_rx_srs_quiesce
2156  */
2157 /* ARGSUSED */
2158 int
2159 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2160 {
2161 	/*
2162 	 * The fe_tx_srs is null for a subflow on an interface that is
2163 	 * not plumbed
2164 	 */
2165 	if (flent->fe_tx_srs != NULL)
2166 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2167 	return (0);
2168 }
2169 
2170 /* ARGSUSED */
2171 int
2172 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2173 {
2174 	/*
2175 	 * The fe_tx_srs is null for a subflow on an interface that is
2176 	 * not plumbed
2177 	 */
2178 	if (flent->fe_tx_srs != NULL)
2179 		mac_tx_srs_restart(flent->fe_tx_srs);
2180 	return (0);
2181 }
2182 
2183 static void
2184 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2185 {
2186 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2187 
2188 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2189 
2190 	mac_tx_client_block(mcip);
2191 	if (MCIP_TX_SRS(mcip) != NULL) {
2192 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2193 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2194 		    mac_tx_flow_quiesce, NULL);
2195 	}
2196 }
2197 
2198 void
2199 mac_tx_client_quiesce(mac_client_handle_t mch)
2200 {
2201 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2202 }
2203 
2204 void
2205 mac_tx_client_condemn(mac_client_handle_t mch)
2206 {
2207 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2208 }
2209 
2210 void
2211 mac_tx_client_restart(mac_client_handle_t mch)
2212 {
2213 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2214 
2215 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2216 
2217 	mac_tx_client_unblock(mcip);
2218 	if (MCIP_TX_SRS(mcip) != NULL) {
2219 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2220 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2221 		    mac_tx_flow_restart, NULL);
2222 	}
2223 }
2224 
2225 void
2226 mac_tx_client_flush(mac_client_impl_t *mcip)
2227 {
2228 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2229 
2230 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2231 	mac_tx_client_restart((mac_client_handle_t)mcip);
2232 }
2233 
2234 void
2235 mac_client_quiesce(mac_client_impl_t *mcip)
2236 {
2237 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2238 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2239 }
2240 
2241 void
2242 mac_client_restart(mac_client_impl_t *mcip)
2243 {
2244 	mac_rx_client_restart((mac_client_handle_t)mcip);
2245 	mac_tx_client_restart((mac_client_handle_t)mcip);
2246 }
2247 
2248 /*
2249  * Allocate a minor number.
2250  */
2251 minor_t
2252 mac_minor_hold(boolean_t sleep)
2253 {
2254 	minor_t	minor;
2255 
2256 	/*
2257 	 * Grab a value from the arena.
2258 	 */
2259 	atomic_inc_32(&minor_count);
2260 
2261 	if (sleep)
2262 		minor = (uint_t)id_alloc(minor_ids);
2263 	else
2264 		minor = (uint_t)id_alloc_nosleep(minor_ids);
2265 
2266 	if (minor == 0) {
2267 		atomic_dec_32(&minor_count);
2268 		return (0);
2269 	}
2270 
2271 	return (minor);
2272 }
2273 
2274 /*
2275  * Release a previously allocated minor number.
2276  */
2277 void
2278 mac_minor_rele(minor_t minor)
2279 {
2280 	/*
2281 	 * Return the value to the arena.
2282 	 */
2283 	id_free(minor_ids, minor);
2284 	atomic_dec_32(&minor_count);
2285 }
2286 
2287 uint32_t
2288 mac_no_notification(mac_handle_t mh)
2289 {
2290 	mac_impl_t *mip = (mac_impl_t *)mh;
2291 
2292 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2293 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2294 }
2295 
2296 /*
2297  * Prevent any new opens of this mac in preparation for unregister
2298  */
2299 int
2300 i_mac_disable(mac_impl_t *mip)
2301 {
2302 	mac_client_impl_t	*mcip;
2303 
2304 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2305 	if (mip->mi_state_flags & MIS_DISABLED) {
2306 		/* Already disabled, return success */
2307 		rw_exit(&i_mac_impl_lock);
2308 		return (0);
2309 	}
2310 	/*
2311 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2312 	 * If so return failure. If all the other checks below pass, then
2313 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2314 	 * any new VLAN's from being created or new mac client opens of this
2315 	 * mac end point.
2316 	 */
2317 	if (mip->mi_ref > 0) {
2318 		rw_exit(&i_mac_impl_lock);
2319 		return (EBUSY);
2320 	}
2321 
2322 	/*
2323 	 * mac clients must delete all multicast groups they join before
2324 	 * closing. bcast groups are reference counted, the last client
2325 	 * to delete the group will wait till the group is physically
2326 	 * deleted. Since all clients have closed this mac end point
2327 	 * mi_bcast_ngrps must be zero at this point
2328 	 */
2329 	ASSERT(mip->mi_bcast_ngrps == 0);
2330 
2331 	/*
2332 	 * Don't let go of this if it has some flows.
2333 	 * All other code guarantees no flows are added to a disabled
2334 	 * mac, therefore it is sufficient to check for the flow table
2335 	 * only here.
2336 	 */
2337 	mcip = mac_primary_client_handle(mip);
2338 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2339 		rw_exit(&i_mac_impl_lock);
2340 		return (ENOTEMPTY);
2341 	}
2342 
2343 	mip->mi_state_flags |= MIS_DISABLED;
2344 	rw_exit(&i_mac_impl_lock);
2345 	return (0);
2346 }
2347 
2348 int
2349 mac_disable_nowait(mac_handle_t mh)
2350 {
2351 	mac_impl_t	*mip = (mac_impl_t *)mh;
2352 	int err;
2353 
2354 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2355 		return (err);
2356 	err = i_mac_disable(mip);
2357 	i_mac_perim_exit(mip);
2358 	return (err);
2359 }
2360 
2361 int
2362 mac_disable(mac_handle_t mh)
2363 {
2364 	mac_impl_t	*mip = (mac_impl_t *)mh;
2365 	int err;
2366 
2367 	i_mac_perim_enter(mip);
2368 	err = i_mac_disable(mip);
2369 	i_mac_perim_exit(mip);
2370 
2371 	/*
2372 	 * Clean up notification thread and wait for it to exit.
2373 	 */
2374 	if (err == 0)
2375 		i_mac_notify_exit(mip);
2376 
2377 	return (err);
2378 }
2379 
2380 /*
2381  * Called when the MAC instance has a non empty flow table, to de-multiplex
2382  * incoming packets to the right flow.
2383  * The MAC's rw lock is assumed held as a READER.
2384  */
2385 /* ARGSUSED */
2386 static mblk_t *
2387 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2388 {
2389 	flow_entry_t	*flent = NULL;
2390 	uint_t		flags = FLOW_INBOUND;
2391 	int		err;
2392 
2393 	/*
2394 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2395 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2396 	 * passed to the non-VLAN aggregation flows.
2397 	 *
2398 	 * Note that there is possibly a race between this and
2399 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2400 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2401 	 * VLAN packets will be then filtered out by the mac module.
2402 	 */
2403 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2404 		flags |= FLOW_IGNORE_VLAN;
2405 
2406 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2407 	if (err != 0) {
2408 		/* no registered receive function */
2409 		return (mp);
2410 	} else {
2411 		mac_client_impl_t	*mcip;
2412 
2413 		/*
2414 		 * This flent might just be an additional one on the MAC client,
2415 		 * i.e. for classification purposes (different fdesc), however
2416 		 * the resources, SRS et. al., are in the mci_flent, so if
2417 		 * this isn't the mci_flent, we need to get it.
2418 		 */
2419 		if ((mcip = flent->fe_mcip) != NULL &&
2420 		    mcip->mci_flent != flent) {
2421 			FLOW_REFRELE(flent);
2422 			flent = mcip->mci_flent;
2423 			FLOW_TRY_REFHOLD(flent, err);
2424 			if (err != 0)
2425 				return (mp);
2426 		}
2427 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2428 		    B_FALSE);
2429 		FLOW_REFRELE(flent);
2430 	}
2431 	return (NULL);
2432 }
2433 
2434 mblk_t *
2435 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2436 {
2437 	mac_impl_t	*mip = (mac_impl_t *)mh;
2438 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2439 
2440 	/*
2441 	 * We walk the chain and attempt to classify each packet.
2442 	 * The packets that couldn't be classified will be returned
2443 	 * back to the caller.
2444 	 */
2445 	bp = mp_chain;
2446 	bpp = &list;
2447 	while (bp != NULL) {
2448 		bp1 = bp;
2449 		bp = bp->b_next;
2450 		bp1->b_next = NULL;
2451 
2452 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2453 			*bpp = bp1;
2454 			bpp = &bp1->b_next;
2455 		}
2456 	}
2457 	return (list);
2458 }
2459 
2460 static int
2461 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2462 {
2463 	mac_ring_handle_t ring = arg;
2464 
2465 	if (flent->fe_tx_srs)
2466 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2467 	return (0);
2468 }
2469 
2470 void
2471 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2472 {
2473 	mac_client_impl_t	*cclient;
2474 	mac_soft_ring_set_t	*mac_srs;
2475 
2476 	/*
2477 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2478 	 * If there are any clients mi_disabled must be B_FALSE and can't
2479 	 * get set since there are clients. If there aren't any clients we
2480 	 * don't do anything. In any case the mip has to be valid. The driver
2481 	 * must make sure that it goes single threaded (with respect to mac
2482 	 * calls) and wait for all pending mac calls to finish before calling
2483 	 * mac_unregister.
2484 	 */
2485 	rw_enter(&i_mac_impl_lock, RW_READER);
2486 	if (mip->mi_state_flags & MIS_DISABLED) {
2487 		rw_exit(&i_mac_impl_lock);
2488 		return;
2489 	}
2490 
2491 	/*
2492 	 * Get MAC tx srs from walking mac_client_handle list.
2493 	 */
2494 	rw_enter(&mip->mi_rw_lock, RW_READER);
2495 	for (cclient = mip->mi_clients_list; cclient != NULL;
2496 	    cclient = cclient->mci_client_next) {
2497 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2498 			mac_tx_srs_wakeup(mac_srs, ring);
2499 		} else {
2500 			/*
2501 			 * Aggr opens underlying ports in exclusive mode
2502 			 * and registers flow control callbacks using
2503 			 * mac_tx_client_notify(). When opened in
2504 			 * exclusive mode, Tx SRS won't be created
2505 			 * during mac_unicast_add().
2506 			 */
2507 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2508 				mac_tx_invoke_callbacks(cclient,
2509 				    (mac_tx_cookie_t)ring);
2510 			}
2511 		}
2512 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2513 		    mac_tx_flow_srs_wakeup, ring);
2514 	}
2515 	rw_exit(&mip->mi_rw_lock);
2516 	rw_exit(&i_mac_impl_lock);
2517 }
2518 
2519 /* ARGSUSED */
2520 void
2521 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2522     boolean_t add)
2523 {
2524 	mac_impl_t *mip = (mac_impl_t *)mh;
2525 
2526 	i_mac_perim_enter((mac_impl_t *)mh);
2527 	/*
2528 	 * If no specific refresh function was given then default to the
2529 	 * driver's m_multicst entry point.
2530 	 */
2531 	if (refresh == NULL) {
2532 		refresh = mip->mi_multicst;
2533 		arg = mip->mi_driver;
2534 	}
2535 
2536 	mac_bcast_refresh(mip, refresh, arg, add);
2537 	i_mac_perim_exit((mac_impl_t *)mh);
2538 }
2539 
2540 void
2541 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2542 {
2543 	mac_impl_t	*mip = (mac_impl_t *)mh;
2544 
2545 	/*
2546 	 * If no specific refresh function was given then default to the
2547 	 * driver's m_promisc entry point.
2548 	 */
2549 	if (refresh == NULL) {
2550 		refresh = mip->mi_setpromisc;
2551 		arg = mip->mi_driver;
2552 	}
2553 	ASSERT(refresh != NULL);
2554 
2555 	/*
2556 	 * Call the refresh function with the current promiscuity.
2557 	 */
2558 	refresh(arg, (mip->mi_devpromisc != 0));
2559 }
2560 
2561 /*
2562  * The mac client requests that the mac not to change its margin size to
2563  * be less than the specified value.  If "current" is B_TRUE, then the client
2564  * requests the mac not to change its margin size to be smaller than the
2565  * current size. Further, return the current margin size value in this case.
2566  *
2567  * We keep every requested size in an ordered list from largest to smallest.
2568  */
2569 int
2570 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2571 {
2572 	mac_impl_t		*mip = (mac_impl_t *)mh;
2573 	mac_margin_req_t	**pp, *p;
2574 	int			err = 0;
2575 
2576 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2577 	if (current)
2578 		*marginp = mip->mi_margin;
2579 
2580 	/*
2581 	 * If the current margin value cannot satisfy the margin requested,
2582 	 * return ENOTSUP directly.
2583 	 */
2584 	if (*marginp > mip->mi_margin) {
2585 		err = ENOTSUP;
2586 		goto done;
2587 	}
2588 
2589 	/*
2590 	 * Check whether the given margin is already in the list. If so,
2591 	 * bump the reference count.
2592 	 */
2593 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2594 		if (p->mmr_margin == *marginp) {
2595 			/*
2596 			 * The margin requested is already in the list,
2597 			 * so just bump the reference count.
2598 			 */
2599 			p->mmr_ref++;
2600 			goto done;
2601 		}
2602 		if (p->mmr_margin < *marginp)
2603 			break;
2604 	}
2605 
2606 
2607 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2608 	p->mmr_margin = *marginp;
2609 	p->mmr_ref++;
2610 	p->mmr_nextp = *pp;
2611 	*pp = p;
2612 
2613 done:
2614 	rw_exit(&(mip->mi_rw_lock));
2615 	return (err);
2616 }
2617 
2618 /*
2619  * The mac client requests to cancel its previous mac_margin_add() request.
2620  * We remove the requested margin size from the list.
2621  */
2622 int
2623 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2624 {
2625 	mac_impl_t		*mip = (mac_impl_t *)mh;
2626 	mac_margin_req_t	**pp, *p;
2627 	int			err = 0;
2628 
2629 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2630 	/*
2631 	 * Find the entry in the list for the given margin.
2632 	 */
2633 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2634 		if (p->mmr_margin == margin) {
2635 			if (--p->mmr_ref == 0)
2636 				break;
2637 
2638 			/*
2639 			 * There is still a reference to this address so
2640 			 * there's nothing more to do.
2641 			 */
2642 			goto done;
2643 		}
2644 	}
2645 
2646 	/*
2647 	 * We did not find an entry for the given margin.
2648 	 */
2649 	if (p == NULL) {
2650 		err = ENOENT;
2651 		goto done;
2652 	}
2653 
2654 	ASSERT(p->mmr_ref == 0);
2655 
2656 	/*
2657 	 * Remove it from the list.
2658 	 */
2659 	*pp = p->mmr_nextp;
2660 	kmem_free(p, sizeof (mac_margin_req_t));
2661 done:
2662 	rw_exit(&(mip->mi_rw_lock));
2663 	return (err);
2664 }
2665 
2666 boolean_t
2667 mac_margin_update(mac_handle_t mh, uint32_t margin)
2668 {
2669 	mac_impl_t	*mip = (mac_impl_t *)mh;
2670 	uint32_t	margin_needed = 0;
2671 
2672 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2673 
2674 	if (mip->mi_mmrp != NULL)
2675 		margin_needed = mip->mi_mmrp->mmr_margin;
2676 
2677 	if (margin_needed <= margin)
2678 		mip->mi_margin = margin;
2679 
2680 	rw_exit(&(mip->mi_rw_lock));
2681 
2682 	if (margin_needed <= margin)
2683 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2684 
2685 	return (margin_needed <= margin);
2686 }
2687 
2688 /*
2689  * MAC clients use this interface to request that a MAC device not change its
2690  * MTU below the specified amount. At this time, that amount must be within the
2691  * range of the device's current minimum and the device's current maximum. eg. a
2692  * client cannot request a 3000 byte MTU when the device's MTU is currently
2693  * 2000.
2694  *
2695  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2696  * current underlying mac's maximum for this mac client and return it in mtup.
2697  */
2698 int
2699 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2700 {
2701 	mac_impl_t		*mip = (mac_impl_t *)mh;
2702 	mac_mtu_req_t		*prev, *cur;
2703 	mac_propval_range_t	mpr;
2704 	int			err;
2705 
2706 	i_mac_perim_enter(mip);
2707 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2708 
2709 	if (current == B_TRUE)
2710 		*mtup = mip->mi_sdu_max;
2711 	mpr.mpr_count = 1;
2712 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2713 	if (err != 0) {
2714 		rw_exit(&mip->mi_rw_lock);
2715 		i_mac_perim_exit(mip);
2716 		return (err);
2717 	}
2718 
2719 	if (*mtup > mip->mi_sdu_max ||
2720 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2721 		rw_exit(&mip->mi_rw_lock);
2722 		i_mac_perim_exit(mip);
2723 		return (ENOTSUP);
2724 	}
2725 
2726 	prev = NULL;
2727 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2728 		if (*mtup == cur->mtr_mtu) {
2729 			cur->mtr_ref++;
2730 			rw_exit(&mip->mi_rw_lock);
2731 			i_mac_perim_exit(mip);
2732 			return (0);
2733 		}
2734 
2735 		if (*mtup > cur->mtr_mtu)
2736 			break;
2737 
2738 		prev = cur;
2739 	}
2740 
2741 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2742 	cur->mtr_mtu = *mtup;
2743 	cur->mtr_ref = 1;
2744 	if (prev != NULL) {
2745 		cur->mtr_nextp = prev->mtr_nextp;
2746 		prev->mtr_nextp = cur;
2747 	} else {
2748 		cur->mtr_nextp = mip->mi_mtrp;
2749 		mip->mi_mtrp = cur;
2750 	}
2751 
2752 	rw_exit(&mip->mi_rw_lock);
2753 	i_mac_perim_exit(mip);
2754 	return (0);
2755 }
2756 
2757 int
2758 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2759 {
2760 	mac_impl_t *mip = (mac_impl_t *)mh;
2761 	mac_mtu_req_t *cur, *prev;
2762 
2763 	i_mac_perim_enter(mip);
2764 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2765 
2766 	prev = NULL;
2767 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2768 		if (cur->mtr_mtu == mtu) {
2769 			ASSERT(cur->mtr_ref > 0);
2770 			cur->mtr_ref--;
2771 			if (cur->mtr_ref == 0) {
2772 				if (prev == NULL) {
2773 					mip->mi_mtrp = cur->mtr_nextp;
2774 				} else {
2775 					prev->mtr_nextp = cur->mtr_nextp;
2776 				}
2777 				kmem_free(cur, sizeof (mac_mtu_req_t));
2778 			}
2779 			rw_exit(&mip->mi_rw_lock);
2780 			i_mac_perim_exit(mip);
2781 			return (0);
2782 		}
2783 
2784 		prev = cur;
2785 	}
2786 
2787 	rw_exit(&mip->mi_rw_lock);
2788 	i_mac_perim_exit(mip);
2789 	return (ENOENT);
2790 }
2791 
2792 /*
2793  * MAC Type Plugin functions.
2794  */
2795 
2796 mactype_t *
2797 mactype_getplugin(const char *pname)
2798 {
2799 	mactype_t	*mtype = NULL;
2800 	boolean_t	tried_modload = B_FALSE;
2801 
2802 	mutex_enter(&i_mactype_lock);
2803 
2804 find_registered_mactype:
2805 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2806 	    (mod_hash_val_t *)&mtype) != 0) {
2807 		if (!tried_modload) {
2808 			/*
2809 			 * If the plugin has not yet been loaded, then
2810 			 * attempt to load it now.  If modload() succeeds,
2811 			 * the plugin should have registered using
2812 			 * mactype_register(), in which case we can go back
2813 			 * and attempt to find it again.
2814 			 */
2815 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2816 				tried_modload = B_TRUE;
2817 				goto find_registered_mactype;
2818 			}
2819 		}
2820 	} else {
2821 		/*
2822 		 * Note that there's no danger that the plugin we've loaded
2823 		 * could be unloaded between the modload() step and the
2824 		 * reference count bump here, as we're holding
2825 		 * i_mactype_lock, which mactype_unregister() also holds.
2826 		 */
2827 		atomic_inc_32(&mtype->mt_ref);
2828 	}
2829 
2830 	mutex_exit(&i_mactype_lock);
2831 	return (mtype);
2832 }
2833 
2834 mactype_register_t *
2835 mactype_alloc(uint_t mactype_version)
2836 {
2837 	mactype_register_t *mtrp;
2838 
2839 	/*
2840 	 * Make sure there isn't a version mismatch between the plugin and
2841 	 * the framework.  In the future, if multiple versions are
2842 	 * supported, this check could become more sophisticated.
2843 	 */
2844 	if (mactype_version != MACTYPE_VERSION)
2845 		return (NULL);
2846 
2847 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2848 	mtrp->mtr_version = mactype_version;
2849 	return (mtrp);
2850 }
2851 
2852 void
2853 mactype_free(mactype_register_t *mtrp)
2854 {
2855 	kmem_free(mtrp, sizeof (mactype_register_t));
2856 }
2857 
2858 int
2859 mactype_register(mactype_register_t *mtrp)
2860 {
2861 	mactype_t	*mtp;
2862 	mactype_ops_t	*ops = mtrp->mtr_ops;
2863 
2864 	/* Do some sanity checking before we register this MAC type. */
2865 	if (mtrp->mtr_ident == NULL || ops == NULL)
2866 		return (EINVAL);
2867 
2868 	/*
2869 	 * Verify that all mandatory callbacks are set in the ops
2870 	 * vector.
2871 	 */
2872 	if (ops->mtops_unicst_verify == NULL ||
2873 	    ops->mtops_multicst_verify == NULL ||
2874 	    ops->mtops_sap_verify == NULL ||
2875 	    ops->mtops_header == NULL ||
2876 	    ops->mtops_header_info == NULL) {
2877 		return (EINVAL);
2878 	}
2879 
2880 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2881 	mtp->mt_ident = mtrp->mtr_ident;
2882 	mtp->mt_ops = *ops;
2883 	mtp->mt_type = mtrp->mtr_mactype;
2884 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2885 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2886 	if (mtrp->mtr_brdcst_addr != NULL) {
2887 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2888 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2889 		    mtrp->mtr_addrlen);
2890 	}
2891 
2892 	mtp->mt_stats = mtrp->mtr_stats;
2893 	mtp->mt_statcount = mtrp->mtr_statcount;
2894 
2895 	mtp->mt_mapping = mtrp->mtr_mapping;
2896 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2897 
2898 	if (mod_hash_insert(i_mactype_hash,
2899 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2900 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2901 		kmem_free(mtp, sizeof (*mtp));
2902 		return (EEXIST);
2903 	}
2904 	return (0);
2905 }
2906 
2907 int
2908 mactype_unregister(const char *ident)
2909 {
2910 	mactype_t	*mtp;
2911 	mod_hash_val_t	val;
2912 	int 		err;
2913 
2914 	/*
2915 	 * Let's not allow MAC drivers to use this plugin while we're
2916 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2917 	 * plugin from unregistering while a MAC driver is attempting to
2918 	 * hold a reference to it in i_mactype_getplugin().
2919 	 */
2920 	mutex_enter(&i_mactype_lock);
2921 
2922 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2923 	    (mod_hash_val_t *)&mtp)) != 0) {
2924 		/* A plugin is trying to unregister, but it never registered. */
2925 		err = ENXIO;
2926 		goto done;
2927 	}
2928 
2929 	if (mtp->mt_ref != 0) {
2930 		err = EBUSY;
2931 		goto done;
2932 	}
2933 
2934 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2935 	ASSERT(err == 0);
2936 	if (err != 0) {
2937 		/* This should never happen, thus the ASSERT() above. */
2938 		err = EINVAL;
2939 		goto done;
2940 	}
2941 	ASSERT(mtp == (mactype_t *)val);
2942 
2943 	if (mtp->mt_brdcst_addr != NULL)
2944 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2945 	kmem_free(mtp, sizeof (mactype_t));
2946 done:
2947 	mutex_exit(&i_mactype_lock);
2948 	return (err);
2949 }
2950 
2951 /*
2952  * Checks the size of the value size specified for a property as
2953  * part of a property operation. Returns B_TRUE if the size is
2954  * correct, B_FALSE otherwise.
2955  */
2956 boolean_t
2957 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2958 {
2959 	uint_t minsize = 0;
2960 
2961 	if (is_range)
2962 		return (valsize >= sizeof (mac_propval_range_t));
2963 
2964 	switch (id) {
2965 	case MAC_PROP_ZONE:
2966 		minsize = sizeof (dld_ioc_zid_t);
2967 		break;
2968 	case MAC_PROP_AUTOPUSH:
2969 		if (valsize != 0)
2970 			minsize = sizeof (struct dlautopush);
2971 		break;
2972 	case MAC_PROP_TAGMODE:
2973 		minsize = sizeof (link_tagmode_t);
2974 		break;
2975 	case MAC_PROP_RESOURCE:
2976 	case MAC_PROP_RESOURCE_EFF:
2977 		minsize = sizeof (mac_resource_props_t);
2978 		break;
2979 	case MAC_PROP_DUPLEX:
2980 		minsize = sizeof (link_duplex_t);
2981 		break;
2982 	case MAC_PROP_SPEED:
2983 		minsize = sizeof (uint64_t);
2984 		break;
2985 	case MAC_PROP_STATUS:
2986 		minsize = sizeof (link_state_t);
2987 		break;
2988 	case MAC_PROP_AUTONEG:
2989 	case MAC_PROP_EN_AUTONEG:
2990 		minsize = sizeof (uint8_t);
2991 		break;
2992 	case MAC_PROP_MTU:
2993 	case MAC_PROP_LLIMIT:
2994 	case MAC_PROP_LDECAY:
2995 		minsize = sizeof (uint32_t);
2996 		break;
2997 	case MAC_PROP_FLOWCTRL:
2998 		minsize = sizeof (link_flowctrl_t);
2999 		break;
3000 	case MAC_PROP_ADV_10GFDX_CAP:
3001 	case MAC_PROP_EN_10GFDX_CAP:
3002 	case MAC_PROP_ADV_1000HDX_CAP:
3003 	case MAC_PROP_EN_1000HDX_CAP:
3004 	case MAC_PROP_ADV_100FDX_CAP:
3005 	case MAC_PROP_EN_100FDX_CAP:
3006 	case MAC_PROP_ADV_100HDX_CAP:
3007 	case MAC_PROP_EN_100HDX_CAP:
3008 	case MAC_PROP_ADV_10FDX_CAP:
3009 	case MAC_PROP_EN_10FDX_CAP:
3010 	case MAC_PROP_ADV_10HDX_CAP:
3011 	case MAC_PROP_EN_10HDX_CAP:
3012 	case MAC_PROP_ADV_100T4_CAP:
3013 	case MAC_PROP_EN_100T4_CAP:
3014 		minsize = sizeof (uint8_t);
3015 		break;
3016 	case MAC_PROP_PVID:
3017 		minsize = sizeof (uint16_t);
3018 		break;
3019 	case MAC_PROP_IPTUN_HOPLIMIT:
3020 		minsize = sizeof (uint32_t);
3021 		break;
3022 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3023 		minsize = sizeof (uint32_t);
3024 		break;
3025 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3026 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3027 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3028 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3029 		minsize = sizeof (uint_t);
3030 		break;
3031 	case MAC_PROP_WL_ESSID:
3032 		minsize = sizeof (wl_linkstatus_t);
3033 		break;
3034 	case MAC_PROP_WL_BSSID:
3035 		minsize = sizeof (wl_bssid_t);
3036 		break;
3037 	case MAC_PROP_WL_BSSTYPE:
3038 		minsize = sizeof (wl_bss_type_t);
3039 		break;
3040 	case MAC_PROP_WL_LINKSTATUS:
3041 		minsize = sizeof (wl_linkstatus_t);
3042 		break;
3043 	case MAC_PROP_WL_DESIRED_RATES:
3044 		minsize = sizeof (wl_rates_t);
3045 		break;
3046 	case MAC_PROP_WL_SUPPORTED_RATES:
3047 		minsize = sizeof (wl_rates_t);
3048 		break;
3049 	case MAC_PROP_WL_AUTH_MODE:
3050 		minsize = sizeof (wl_authmode_t);
3051 		break;
3052 	case MAC_PROP_WL_ENCRYPTION:
3053 		minsize = sizeof (wl_encryption_t);
3054 		break;
3055 	case MAC_PROP_WL_RSSI:
3056 		minsize = sizeof (wl_rssi_t);
3057 		break;
3058 	case MAC_PROP_WL_PHY_CONFIG:
3059 		minsize = sizeof (wl_phy_conf_t);
3060 		break;
3061 	case MAC_PROP_WL_CAPABILITY:
3062 		minsize = sizeof (wl_capability_t);
3063 		break;
3064 	case MAC_PROP_WL_WPA:
3065 		minsize = sizeof (wl_wpa_t);
3066 		break;
3067 	case MAC_PROP_WL_SCANRESULTS:
3068 		minsize = sizeof (wl_wpa_ess_t);
3069 		break;
3070 	case MAC_PROP_WL_POWER_MODE:
3071 		minsize = sizeof (wl_ps_mode_t);
3072 		break;
3073 	case MAC_PROP_WL_RADIO:
3074 		minsize = sizeof (wl_radio_t);
3075 		break;
3076 	case MAC_PROP_WL_ESS_LIST:
3077 		minsize = sizeof (wl_ess_list_t);
3078 		break;
3079 	case MAC_PROP_WL_KEY_TAB:
3080 		minsize = sizeof (wl_wep_key_tab_t);
3081 		break;
3082 	case MAC_PROP_WL_CREATE_IBSS:
3083 		minsize = sizeof (wl_create_ibss_t);
3084 		break;
3085 	case MAC_PROP_WL_SETOPTIE:
3086 		minsize = sizeof (wl_wpa_ie_t);
3087 		break;
3088 	case MAC_PROP_WL_DELKEY:
3089 		minsize = sizeof (wl_del_key_t);
3090 		break;
3091 	case MAC_PROP_WL_KEY:
3092 		minsize = sizeof (wl_key_t);
3093 		break;
3094 	case MAC_PROP_WL_MLME:
3095 		minsize = sizeof (wl_mlme_t);
3096 		break;
3097 	}
3098 
3099 	return (valsize >= minsize);
3100 }
3101 
3102 /*
3103  * mac_set_prop() sets MAC or hardware driver properties:
3104  *
3105  * - MAC-managed properties such as resource properties include maxbw,
3106  *   priority, and cpu binding list, as well as the default port VID
3107  *   used by bridging. These properties are consumed by the MAC layer
3108  *   itself and not passed down to the driver. For resource control
3109  *   properties, this function invokes mac_set_resources() which will
3110  *   cache the property value in mac_impl_t and may call
3111  *   mac_client_set_resource() to update property value of the primary
3112  *   mac client, if it exists.
3113  *
3114  * - Properties which act on the hardware and must be passed to the
3115  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3116  */
3117 int
3118 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3119     uint_t valsize)
3120 {
3121 	int err = ENOTSUP;
3122 	mac_impl_t *mip = (mac_impl_t *)mh;
3123 
3124 	ASSERT(MAC_PERIM_HELD(mh));
3125 
3126 	switch (id) {
3127 	case MAC_PROP_RESOURCE: {
3128 		mac_resource_props_t *mrp;
3129 
3130 		/* call mac_set_resources() for MAC properties */
3131 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3132 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3133 		bcopy(val, mrp, sizeof (*mrp));
3134 		err = mac_set_resources(mh, mrp);
3135 		kmem_free(mrp, sizeof (*mrp));
3136 		break;
3137 	}
3138 
3139 	case MAC_PROP_PVID:
3140 		ASSERT(valsize >= sizeof (uint16_t));
3141 		if (mip->mi_state_flags & MIS_IS_VNIC)
3142 			return (EINVAL);
3143 		err = mac_set_pvid(mh, *(uint16_t *)val);
3144 		break;
3145 
3146 	case MAC_PROP_MTU: {
3147 		uint32_t mtu;
3148 
3149 		ASSERT(valsize >= sizeof (uint32_t));
3150 		bcopy(val, &mtu, sizeof (mtu));
3151 		err = mac_set_mtu(mh, mtu, NULL);
3152 		break;
3153 	}
3154 
3155 	case MAC_PROP_LLIMIT:
3156 	case MAC_PROP_LDECAY: {
3157 		uint32_t learnval;
3158 
3159 		if (valsize < sizeof (learnval) ||
3160 		    (mip->mi_state_flags & MIS_IS_VNIC))
3161 			return (EINVAL);
3162 		bcopy(val, &learnval, sizeof (learnval));
3163 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3164 			return (EINVAL);
3165 		if (id == MAC_PROP_LLIMIT)
3166 			mip->mi_llimit = learnval;
3167 		else
3168 			mip->mi_ldecay = learnval;
3169 		err = 0;
3170 		break;
3171 	}
3172 
3173 	default:
3174 		/* For other driver properties, call driver's callback */
3175 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3176 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3177 			    name, id, valsize, val);
3178 		}
3179 	}
3180 	return (err);
3181 }
3182 
3183 /*
3184  * mac_get_prop() gets MAC or device driver properties.
3185  *
3186  * If the property is a driver property, mac_get_prop() calls driver's callback
3187  * entry point to get it.
3188  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3189  * which returns the cached value in mac_impl_t.
3190  */
3191 int
3192 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3193     uint_t valsize)
3194 {
3195 	int err = ENOTSUP;
3196 	mac_impl_t *mip = (mac_impl_t *)mh;
3197 	uint_t	rings;
3198 	uint_t	vlinks;
3199 
3200 	bzero(val, valsize);
3201 
3202 	switch (id) {
3203 	case MAC_PROP_RESOURCE: {
3204 		mac_resource_props_t *mrp;
3205 
3206 		/* If mac property, read from cache */
3207 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3208 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3209 		mac_get_resources(mh, mrp);
3210 		bcopy(mrp, val, sizeof (*mrp));
3211 		kmem_free(mrp, sizeof (*mrp));
3212 		return (0);
3213 	}
3214 	case MAC_PROP_RESOURCE_EFF: {
3215 		mac_resource_props_t *mrp;
3216 
3217 		/* If mac effective property, read from client */
3218 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3219 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3220 		mac_get_effective_resources(mh, mrp);
3221 		bcopy(mrp, val, sizeof (*mrp));
3222 		kmem_free(mrp, sizeof (*mrp));
3223 		return (0);
3224 	}
3225 
3226 	case MAC_PROP_PVID:
3227 		ASSERT(valsize >= sizeof (uint16_t));
3228 		if (mip->mi_state_flags & MIS_IS_VNIC)
3229 			return (EINVAL);
3230 		*(uint16_t *)val = mac_get_pvid(mh);
3231 		return (0);
3232 
3233 	case MAC_PROP_LLIMIT:
3234 	case MAC_PROP_LDECAY:
3235 		ASSERT(valsize >= sizeof (uint32_t));
3236 		if (mip->mi_state_flags & MIS_IS_VNIC)
3237 			return (EINVAL);
3238 		if (id == MAC_PROP_LLIMIT)
3239 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3240 		else
3241 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3242 		return (0);
3243 
3244 	case MAC_PROP_MTU: {
3245 		uint32_t sdu;
3246 
3247 		ASSERT(valsize >= sizeof (uint32_t));
3248 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3249 		bcopy(&sdu, val, sizeof (sdu));
3250 
3251 		return (0);
3252 	}
3253 	case MAC_PROP_STATUS: {
3254 		link_state_t link_state;
3255 
3256 		if (valsize < sizeof (link_state))
3257 			return (EINVAL);
3258 		link_state = mac_link_get(mh);
3259 		bcopy(&link_state, val, sizeof (link_state));
3260 
3261 		return (0);
3262 	}
3263 
3264 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3265 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3266 		ASSERT(valsize >= sizeof (uint_t));
3267 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3268 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3269 		bcopy(&rings, val, sizeof (uint_t));
3270 		return (0);
3271 
3272 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3273 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3274 		ASSERT(valsize >= sizeof (uint_t));
3275 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3276 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3277 		bcopy(&vlinks, val, sizeof (uint_t));
3278 		return (0);
3279 
3280 	case MAC_PROP_RXRINGSRANGE:
3281 	case MAC_PROP_TXRINGSRANGE:
3282 		/*
3283 		 * The value for these properties are returned through
3284 		 * the MAC_PROP_RESOURCE property.
3285 		 */
3286 		return (0);
3287 
3288 	default:
3289 		break;
3290 
3291 	}
3292 
3293 	/* If driver property, request from driver */
3294 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3295 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3296 		    valsize, val);
3297 	}
3298 
3299 	return (err);
3300 }
3301 
3302 /*
3303  * Helper function to initialize the range structure for use in
3304  * mac_get_prop. If the type can be other than uint32, we can
3305  * pass that as an arg.
3306  */
3307 static void
3308 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3309 {
3310 	range->mpr_count = 1;
3311 	range->mpr_type = MAC_PROPVAL_UINT32;
3312 	range->mpr_range_uint32[0].mpur_min = min;
3313 	range->mpr_range_uint32[0].mpur_max = max;
3314 }
3315 
3316 /*
3317  * Returns information about the specified property, such as default
3318  * values or permissions.
3319  */
3320 int
3321 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3322     void *default_val, uint_t default_size, mac_propval_range_t *range,
3323     uint_t *perm)
3324 {
3325 	mac_prop_info_state_t state;
3326 	mac_impl_t *mip = (mac_impl_t *)mh;
3327 	uint_t	max;
3328 
3329 	/*
3330 	 * A property is read/write by default unless the driver says
3331 	 * otherwise.
3332 	 */
3333 	if (perm != NULL)
3334 		*perm = MAC_PROP_PERM_RW;
3335 
3336 	if (default_val != NULL)
3337 		bzero(default_val, default_size);
3338 
3339 	/*
3340 	 * First, handle framework properties for which we don't need to
3341 	 * involve the driver.
3342 	 */
3343 	switch (id) {
3344 	case MAC_PROP_RESOURCE:
3345 	case MAC_PROP_PVID:
3346 	case MAC_PROP_LLIMIT:
3347 	case MAC_PROP_LDECAY:
3348 		return (0);
3349 
3350 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3351 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3352 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3353 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3354 		if (perm != NULL)
3355 			*perm = MAC_PROP_PERM_READ;
3356 		return (0);
3357 
3358 	case MAC_PROP_RXRINGSRANGE:
3359 	case MAC_PROP_TXRINGSRANGE:
3360 		/*
3361 		 * Currently, we support range for RX and TX rings properties.
3362 		 * When we extend this support to maxbw, cpus and priority,
3363 		 * we should move this to mac_get_resources.
3364 		 * There is no default value for RX or TX rings.
3365 		 */
3366 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3367 		    mac_is_vnic_primary(mh)) {
3368 			/*
3369 			 * We don't support setting rings for a VLAN
3370 			 * data link because it shares its ring with the
3371 			 * primary MAC client.
3372 			 */
3373 			if (perm != NULL)
3374 				*perm = MAC_PROP_PERM_READ;
3375 			if (range != NULL)
3376 				range->mpr_count = 0;
3377 		} else if (range != NULL) {
3378 			if (mip->mi_state_flags & MIS_IS_VNIC)
3379 				mh = mac_get_lower_mac_handle(mh);
3380 			mip = (mac_impl_t *)mh;
3381 			if ((id == MAC_PROP_RXRINGSRANGE &&
3382 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3383 			    (id == MAC_PROP_TXRINGSRANGE &&
3384 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3385 				if (id == MAC_PROP_RXRINGSRANGE) {
3386 					if ((mac_rxhwlnksavail_get(mh) +
3387 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3388 						/*
3389 						 * doesn't support groups or
3390 						 * rings
3391 						 */
3392 						range->mpr_count = 0;
3393 					} else {
3394 						/*
3395 						 * supports specifying groups,
3396 						 * but not rings
3397 						 */
3398 						_mac_set_range(range, 0, 0);
3399 					}
3400 				} else {
3401 					if ((mac_txhwlnksavail_get(mh) +
3402 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3403 						/*
3404 						 * doesn't support groups or
3405 						 * rings
3406 						 */
3407 						range->mpr_count = 0;
3408 					} else {
3409 						/*
3410 						 * supports specifying groups,
3411 						 * but not rings
3412 						 */
3413 						_mac_set_range(range, 0, 0);
3414 					}
3415 				}
3416 			} else {
3417 				max = id == MAC_PROP_RXRINGSRANGE ?
3418 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3419 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3420 				if (max <= 1) {
3421 					/*
3422 					 * doesn't support groups or
3423 					 * rings
3424 					 */
3425 					range->mpr_count = 0;
3426 				} else  {
3427 					/*
3428 					 * -1 because we have to leave out the
3429 					 * default ring.
3430 					 */
3431 					_mac_set_range(range, 1, max - 1);
3432 				}
3433 			}
3434 		}
3435 		return (0);
3436 
3437 	case MAC_PROP_STATUS:
3438 		if (perm != NULL)
3439 			*perm = MAC_PROP_PERM_READ;
3440 		return (0);
3441 	}
3442 
3443 	/*
3444 	 * Get the property info from the driver if it implements the
3445 	 * property info entry point.
3446 	 */
3447 	bzero(&state, sizeof (state));
3448 
3449 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3450 		state.pr_default = default_val;
3451 		state.pr_default_size = default_size;
3452 
3453 		/*
3454 		 * The caller specifies the maximum number of ranges
3455 		 * it can accomodate using mpr_count. We don't touch
3456 		 * this value until the driver returns from its
3457 		 * mc_propinfo() callback, and ensure we don't exceed
3458 		 * this number of range as the driver defines
3459 		 * supported range from its mc_propinfo().
3460 		 *
3461 		 * pr_range_cur_count keeps track of how many ranges
3462 		 * were defined by the driver from its mc_propinfo()
3463 		 * entry point.
3464 		 *
3465 		 * On exit, the user-specified range mpr_count returns
3466 		 * the number of ranges specified by the driver on
3467 		 * success, or the number of ranges it wanted to
3468 		 * define if that number of ranges could not be
3469 		 * accomodated by the specified range structure.  In
3470 		 * the latter case, the caller will be able to
3471 		 * allocate a larger range structure, and query the
3472 		 * property again.
3473 		 */
3474 		state.pr_range_cur_count = 0;
3475 		state.pr_range = range;
3476 
3477 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3478 		    (mac_prop_info_handle_t)&state);
3479 
3480 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3481 			range->mpr_count = state.pr_range_cur_count;
3482 
3483 		/*
3484 		 * The operation could fail if the buffer supplied by
3485 		 * the user was too small for the range or default
3486 		 * value of the property.
3487 		 */
3488 		if (state.pr_errno != 0)
3489 			return (state.pr_errno);
3490 
3491 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3492 			*perm = state.pr_perm;
3493 	}
3494 
3495 	/*
3496 	 * The MAC layer may want to provide default values or allowed
3497 	 * ranges for properties if the driver does not provide a
3498 	 * property info entry point, or that entry point exists, but
3499 	 * it did not provide a default value or allowed ranges for
3500 	 * that property.
3501 	 */
3502 	switch (id) {
3503 	case MAC_PROP_MTU: {
3504 		uint32_t sdu;
3505 
3506 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3507 
3508 		if (range != NULL && !(state.pr_flags &
3509 		    MAC_PROP_INFO_RANGE)) {
3510 			/* MTU range */
3511 			_mac_set_range(range, sdu, sdu);
3512 		}
3513 
3514 		if (default_val != NULL && !(state.pr_flags &
3515 		    MAC_PROP_INFO_DEFAULT)) {
3516 			if (mip->mi_info.mi_media == DL_ETHER)
3517 				sdu = ETHERMTU;
3518 			/* default MTU value */
3519 			bcopy(&sdu, default_val, sizeof (sdu));
3520 		}
3521 	}
3522 	}
3523 
3524 	return (0);
3525 }
3526 
3527 int
3528 mac_fastpath_disable(mac_handle_t mh)
3529 {
3530 	mac_impl_t	*mip = (mac_impl_t *)mh;
3531 
3532 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3533 		return (0);
3534 
3535 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3536 }
3537 
3538 void
3539 mac_fastpath_enable(mac_handle_t mh)
3540 {
3541 	mac_impl_t	*mip = (mac_impl_t *)mh;
3542 
3543 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3544 		return;
3545 
3546 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3547 }
3548 
3549 void
3550 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3551 {
3552 	uint_t nprops, i;
3553 
3554 	if (priv_props == NULL)
3555 		return;
3556 
3557 	nprops = 0;
3558 	while (priv_props[nprops] != NULL)
3559 		nprops++;
3560 	if (nprops == 0)
3561 		return;
3562 
3563 
3564 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3565 
3566 	for (i = 0; i < nprops; i++) {
3567 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3568 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3569 		    MAXLINKPROPNAME);
3570 	}
3571 
3572 	mip->mi_priv_prop_count = nprops;
3573 }
3574 
3575 void
3576 mac_unregister_priv_prop(mac_impl_t *mip)
3577 {
3578 	uint_t i;
3579 
3580 	if (mip->mi_priv_prop_count == 0) {
3581 		ASSERT(mip->mi_priv_prop == NULL);
3582 		return;
3583 	}
3584 
3585 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3586 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3587 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3588 	    sizeof (char *));
3589 
3590 	mip->mi_priv_prop = NULL;
3591 	mip->mi_priv_prop_count = 0;
3592 }
3593 
3594 /*
3595  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3596  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3597  * cases if MAC free's the ring structure after mac_stop_ring(), any
3598  * illegal access to the ring structure coming from the driver will panic
3599  * the system. In order to protect the system from such inadverent access,
3600  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3601  * When packets are received on free'd up rings, MAC (through the generation
3602  * count mechanism) will drop such packets.
3603  */
3604 static mac_ring_t *
3605 mac_ring_alloc(mac_impl_t *mip)
3606 {
3607 	mac_ring_t *ring;
3608 
3609 	mutex_enter(&mip->mi_ring_lock);
3610 	if (mip->mi_ring_freelist != NULL) {
3611 		ring = mip->mi_ring_freelist;
3612 		mip->mi_ring_freelist = ring->mr_next;
3613 		bzero(ring, sizeof (mac_ring_t));
3614 		mutex_exit(&mip->mi_ring_lock);
3615 	} else {
3616 		mutex_exit(&mip->mi_ring_lock);
3617 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3618 	}
3619 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3620 	return (ring);
3621 }
3622 
3623 static void
3624 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3625 {
3626 	ASSERT(ring->mr_state == MR_FREE);
3627 
3628 	mutex_enter(&mip->mi_ring_lock);
3629 	ring->mr_state = MR_FREE;
3630 	ring->mr_flag = 0;
3631 	ring->mr_next = mip->mi_ring_freelist;
3632 	ring->mr_mip = NULL;
3633 	mip->mi_ring_freelist = ring;
3634 	mac_ring_stat_delete(ring);
3635 	mutex_exit(&mip->mi_ring_lock);
3636 }
3637 
3638 static void
3639 mac_ring_freeall(mac_impl_t *mip)
3640 {
3641 	mac_ring_t *ring_next;
3642 	mutex_enter(&mip->mi_ring_lock);
3643 	mac_ring_t *ring = mip->mi_ring_freelist;
3644 	while (ring != NULL) {
3645 		ring_next = ring->mr_next;
3646 		kmem_cache_free(mac_ring_cache, ring);
3647 		ring = ring_next;
3648 	}
3649 	mip->mi_ring_freelist = NULL;
3650 	mutex_exit(&mip->mi_ring_lock);
3651 }
3652 
3653 int
3654 mac_start_ring(mac_ring_t *ring)
3655 {
3656 	int rv = 0;
3657 
3658 	ASSERT(ring->mr_state == MR_FREE);
3659 
3660 	if (ring->mr_start != NULL) {
3661 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3662 		if (rv != 0)
3663 			return (rv);
3664 	}
3665 
3666 	ring->mr_state = MR_INUSE;
3667 	return (rv);
3668 }
3669 
3670 void
3671 mac_stop_ring(mac_ring_t *ring)
3672 {
3673 	ASSERT(ring->mr_state == MR_INUSE);
3674 
3675 	if (ring->mr_stop != NULL)
3676 		ring->mr_stop(ring->mr_driver);
3677 
3678 	ring->mr_state = MR_FREE;
3679 
3680 	/*
3681 	 * Increment the ring generation number for this ring.
3682 	 */
3683 	ring->mr_gen_num++;
3684 }
3685 
3686 int
3687 mac_start_group(mac_group_t *group)
3688 {
3689 	int rv = 0;
3690 
3691 	if (group->mrg_start != NULL)
3692 		rv = group->mrg_start(group->mrg_driver);
3693 
3694 	return (rv);
3695 }
3696 
3697 void
3698 mac_stop_group(mac_group_t *group)
3699 {
3700 	if (group->mrg_stop != NULL)
3701 		group->mrg_stop(group->mrg_driver);
3702 }
3703 
3704 /*
3705  * Called from mac_start() on the default Rx group. Broadcast and multicast
3706  * packets are received only on the default group. Hence the default group
3707  * needs to be up even if the primary client is not up, for the other groups
3708  * to be functional. We do this by calling this function at mac_start time
3709  * itself. However the broadcast packets that are received can't make their
3710  * way beyond mac_rx until a mac client creates a broadcast flow.
3711  */
3712 static int
3713 mac_start_group_and_rings(mac_group_t *group)
3714 {
3715 	mac_ring_t	*ring;
3716 	int		rv = 0;
3717 
3718 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3719 	if ((rv = mac_start_group(group)) != 0)
3720 		return (rv);
3721 
3722 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3723 		ASSERT(ring->mr_state == MR_FREE);
3724 		if ((rv = mac_start_ring(ring)) != 0)
3725 			goto error;
3726 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
3727 	}
3728 	return (0);
3729 
3730 error:
3731 	mac_stop_group_and_rings(group);
3732 	return (rv);
3733 }
3734 
3735 /* Called from mac_stop on the default Rx group */
3736 static void
3737 mac_stop_group_and_rings(mac_group_t *group)
3738 {
3739 	mac_ring_t	*ring;
3740 
3741 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3742 		if (ring->mr_state != MR_FREE) {
3743 			mac_stop_ring(ring);
3744 			ring->mr_flag = 0;
3745 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3746 		}
3747 	}
3748 	mac_stop_group(group);
3749 }
3750 
3751 
3752 static mac_ring_t *
3753 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3754     mac_capab_rings_t *cap_rings)
3755 {
3756 	mac_ring_t *ring, *rnext;
3757 	mac_ring_info_t ring_info;
3758 	ddi_intr_handle_t ddi_handle;
3759 
3760 	ring = mac_ring_alloc(mip);
3761 
3762 	/* Prepare basic information of ring */
3763 
3764 	/*
3765 	 * Ring index is numbered to be unique across a particular device.
3766 	 * Ring index computation makes following assumptions:
3767 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
3768 	 *	ring index exchanged with the driver (e.g. during mr_rget)
3769 	 *	is unique only across the group the ring belongs to.
3770 	 *	- Drivers with dynamic grouping (e.g. nxge), start
3771 	 *	with single group (mrg_index = 0).
3772 	 */
3773 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3774 	ring->mr_type = group->mrg_type;
3775 	ring->mr_gh = (mac_group_handle_t)group;
3776 
3777 	/* Insert the new ring to the list. */
3778 	ring->mr_next = group->mrg_rings;
3779 	group->mrg_rings = ring;
3780 
3781 	/* Zero to reuse the info data structure */
3782 	bzero(&ring_info, sizeof (ring_info));
3783 
3784 	/* Query ring information from driver */
3785 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3786 	    index, &ring_info, (mac_ring_handle_t)ring);
3787 
3788 	ring->mr_info = ring_info;
3789 
3790 	/*
3791 	 * The interrupt handle could be shared among multiple rings.
3792 	 * Thus if there is a bunch of rings that are sharing an
3793 	 * interrupt, then only one ring among the bunch will be made
3794 	 * available for interrupt re-targeting; the rest will have
3795 	 * ddi_shared flag set to TRUE and would not be available for
3796 	 * be interrupt re-targeting.
3797 	 */
3798 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3799 		rnext = ring->mr_next;
3800 		while (rnext != NULL) {
3801 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3802 			    ddi_handle) {
3803 				/*
3804 				 * If default ring (mr_index == 0) is part
3805 				 * of a group of rings sharing an
3806 				 * interrupt, then set ddi_shared flag for
3807 				 * the default ring and give another ring
3808 				 * the chance to be re-targeted.
3809 				 */
3810 				if (rnext->mr_index == 0 &&
3811 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
3812 					rnext->mr_info.mri_intr.mi_ddi_shared =
3813 					    B_TRUE;
3814 				} else {
3815 					ring->mr_info.mri_intr.mi_ddi_shared =
3816 					    B_TRUE;
3817 				}
3818 				break;
3819 			}
3820 			rnext = rnext->mr_next;
3821 		}
3822 		/*
3823 		 * If rnext is NULL, then no matching ddi_handle was found.
3824 		 * Rx rings get registered first. So if this is a Tx ring,
3825 		 * then go through all the Rx rings and see if there is a
3826 		 * matching ddi handle.
3827 		 */
3828 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3829 			mac_compare_ddi_handle(mip->mi_rx_groups,
3830 			    mip->mi_rx_group_count, ring);
3831 		}
3832 	}
3833 
3834 	/* Update ring's status */
3835 	ring->mr_state = MR_FREE;
3836 	ring->mr_flag = 0;
3837 
3838 	/* Update the ring count of the group */
3839 	group->mrg_cur_count++;
3840 
3841 	/* Create per ring kstats */
3842 	if (ring->mr_stat != NULL) {
3843 		ring->mr_mip = mip;
3844 		mac_ring_stat_create(ring);
3845 	}
3846 
3847 	return (ring);
3848 }
3849 
3850 /*
3851  * Rings are chained together for easy regrouping.
3852  */
3853 static void
3854 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3855     mac_capab_rings_t *cap_rings)
3856 {
3857 	int index;
3858 
3859 	/*
3860 	 * Initialize all ring members of this group. Size of zero will not
3861 	 * enter the loop, so it's safe for initializing an empty group.
3862 	 */
3863 	for (index = size - 1; index >= 0; index--)
3864 		(void) mac_init_ring(mip, group, index, cap_rings);
3865 }
3866 
3867 int
3868 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3869 {
3870 	mac_capab_rings_t	*cap_rings;
3871 	mac_group_t		*group;
3872 	mac_group_t		*groups;
3873 	mac_group_info_t	group_info;
3874 	uint_t			group_free = 0;
3875 	uint_t			ring_left;
3876 	mac_ring_t		*ring;
3877 	int			g;
3878 	int			err = 0;
3879 	uint_t			grpcnt;
3880 	boolean_t		pseudo_txgrp = B_FALSE;
3881 
3882 	switch (rtype) {
3883 	case MAC_RING_TYPE_RX:
3884 		ASSERT(mip->mi_rx_groups == NULL);
3885 
3886 		cap_rings = &mip->mi_rx_rings_cap;
3887 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3888 		break;
3889 	case MAC_RING_TYPE_TX:
3890 		ASSERT(mip->mi_tx_groups == NULL);
3891 
3892 		cap_rings = &mip->mi_tx_rings_cap;
3893 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3894 		break;
3895 	default:
3896 		ASSERT(B_FALSE);
3897 	}
3898 
3899 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3900 		return (0);
3901 	grpcnt = cap_rings->mr_gnum;
3902 
3903 	/*
3904 	 * If we have multiple TX rings, but only one TX group, we can
3905 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
3906 	 * except for an aggr. For an aggr currently we maintain only
3907 	 * one group with all the rings (for all its ports), going
3908 	 * forwards we might change this.
3909 	 */
3910 	if (rtype == MAC_RING_TYPE_TX &&
3911 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3912 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3913 		/*
3914 		 * The -1 here is because we create a default TX group
3915 		 * with all the rings in it.
3916 		 */
3917 		grpcnt = cap_rings->mr_rnum - 1;
3918 		pseudo_txgrp = B_TRUE;
3919 	}
3920 
3921 	/*
3922 	 * Allocate a contiguous buffer for all groups.
3923 	 */
3924 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3925 
3926 	ring_left = cap_rings->mr_rnum;
3927 
3928 	/*
3929 	 * Get all ring groups if any, and get their ring members
3930 	 * if any.
3931 	 */
3932 	for (g = 0; g < grpcnt; g++) {
3933 		group = groups + g;
3934 
3935 		/* Prepare basic information of the group */
3936 		group->mrg_index = g;
3937 		group->mrg_type = rtype;
3938 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3939 		group->mrg_mh = (mac_handle_t)mip;
3940 		group->mrg_next = group + 1;
3941 
3942 		/* Zero to reuse the info data structure */
3943 		bzero(&group_info, sizeof (group_info));
3944 
3945 		if (pseudo_txgrp) {
3946 			/*
3947 			 * This is a pseudo group that we created, apart
3948 			 * from setting the state there is nothing to be
3949 			 * done.
3950 			 */
3951 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
3952 			group_free++;
3953 			continue;
3954 		}
3955 		/* Query group information from driver */
3956 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3957 		    (mac_group_handle_t)group);
3958 
3959 		switch (cap_rings->mr_group_type) {
3960 		case MAC_GROUP_TYPE_DYNAMIC:
3961 			if (cap_rings->mr_gaddring == NULL ||
3962 			    cap_rings->mr_gremring == NULL) {
3963 				DTRACE_PROBE3(
3964 				    mac__init__rings_no_addremring,
3965 				    char *, mip->mi_name,
3966 				    mac_group_add_ring_t,
3967 				    cap_rings->mr_gaddring,
3968 				    mac_group_add_ring_t,
3969 				    cap_rings->mr_gremring);
3970 				err = EINVAL;
3971 				goto bail;
3972 			}
3973 
3974 			switch (rtype) {
3975 			case MAC_RING_TYPE_RX:
3976 				/*
3977 				 * The first RX group must have non-zero
3978 				 * rings, and the following groups must
3979 				 * have zero rings.
3980 				 */
3981 				if (g == 0 && group_info.mgi_count == 0) {
3982 					DTRACE_PROBE1(
3983 					    mac__init__rings__rx__def__zero,
3984 					    char *, mip->mi_name);
3985 					err = EINVAL;
3986 					goto bail;
3987 				}
3988 				if (g > 0 && group_info.mgi_count != 0) {
3989 					DTRACE_PROBE3(
3990 					    mac__init__rings__rx__nonzero,
3991 					    char *, mip->mi_name,
3992 					    int, g, int, group_info.mgi_count);
3993 					err = EINVAL;
3994 					goto bail;
3995 				}
3996 				break;
3997 			case MAC_RING_TYPE_TX:
3998 				/*
3999 				 * All TX ring groups must have zero rings.
4000 				 */
4001 				if (group_info.mgi_count != 0) {
4002 					DTRACE_PROBE3(
4003 					    mac__init__rings__tx__nonzero,
4004 					    char *, mip->mi_name,
4005 					    int, g, int, group_info.mgi_count);
4006 					err = EINVAL;
4007 					goto bail;
4008 				}
4009 				break;
4010 			}
4011 			break;
4012 		case MAC_GROUP_TYPE_STATIC:
4013 			/*
4014 			 * Note that an empty group is allowed, e.g., an aggr
4015 			 * would start with an empty group.
4016 			 */
4017 			break;
4018 		default:
4019 			/* unknown group type */
4020 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4021 			    char *, mip->mi_name,
4022 			    int, cap_rings->mr_group_type);
4023 			err = EINVAL;
4024 			goto bail;
4025 		}
4026 
4027 
4028 		/*
4029 		 * Driver must register group->mgi_addmac/remmac() for rx groups
4030 		 * to support multiple MAC addresses.
4031 		 */
4032 		if (rtype == MAC_RING_TYPE_RX) {
4033 			if ((group_info.mgi_addmac == NULL) ||
4034 			    (group_info.mgi_addmac == NULL)) {
4035 				goto bail;
4036 			}
4037 		}
4038 
4039 		/* Cache driver-supplied information */
4040 		group->mrg_info = group_info;
4041 
4042 		/* Update the group's status and group count. */
4043 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4044 		group_free++;
4045 
4046 		group->mrg_rings = NULL;
4047 		group->mrg_cur_count = 0;
4048 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4049 		ring_left -= group_info.mgi_count;
4050 
4051 		/* The current group size should be equal to default value */
4052 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4053 	}
4054 
4055 	/* Build up a dummy group for free resources as a pool */
4056 	group = groups + grpcnt;
4057 
4058 	/* Prepare basic information of the group */
4059 	group->mrg_index = -1;
4060 	group->mrg_type = rtype;
4061 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4062 	group->mrg_mh = (mac_handle_t)mip;
4063 	group->mrg_next = NULL;
4064 
4065 	/*
4066 	 * If there are ungrouped rings, allocate a continuous buffer for
4067 	 * remaining resources.
4068 	 */
4069 	if (ring_left != 0) {
4070 		group->mrg_rings = NULL;
4071 		group->mrg_cur_count = 0;
4072 		mac_init_group(mip, group, ring_left, cap_rings);
4073 
4074 		/* The current group size should be equal to ring_left */
4075 		ASSERT(group->mrg_cur_count == ring_left);
4076 
4077 		ring_left = 0;
4078 
4079 		/* Update this group's status */
4080 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4081 	} else
4082 		group->mrg_rings = NULL;
4083 
4084 	ASSERT(ring_left == 0);
4085 
4086 bail:
4087 
4088 	/* Cache other important information to finalize the initialization */
4089 	switch (rtype) {
4090 	case MAC_RING_TYPE_RX:
4091 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4092 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4093 		mip->mi_rx_groups = groups;
4094 		mip->mi_rx_donor_grp = groups;
4095 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4096 			/*
4097 			 * The default ring is reserved since it is
4098 			 * used for sending the broadcast etc. packets.
4099 			 */
4100 			mip->mi_rxrings_avail =
4101 			    mip->mi_rx_groups->mrg_cur_count - 1;
4102 			mip->mi_rxrings_rsvd = 1;
4103 		}
4104 		/*
4105 		 * The default group cannot be reserved. It is used by
4106 		 * all the clients that do not have an exclusive group.
4107 		 */
4108 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4109 		mip->mi_rxhwclnt_used = 1;
4110 		break;
4111 	case MAC_RING_TYPE_TX:
4112 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4113 		    cap_rings->mr_group_type;
4114 		mip->mi_tx_group_count = grpcnt;
4115 		mip->mi_tx_group_free = group_free;
4116 		mip->mi_tx_groups = groups;
4117 
4118 		group = groups + grpcnt;
4119 		ring = group->mrg_rings;
4120 		/*
4121 		 * The ring can be NULL in the case of aggr. Aggr will
4122 		 * have an empty Tx group which will get populated
4123 		 * later when pseudo Tx rings are added after
4124 		 * mac_register() is done.
4125 		 */
4126 		if (ring == NULL) {
4127 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4128 			/*
4129 			 * pass the group to aggr so it can add Tx
4130 			 * rings to the group later.
4131 			 */
4132 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4133 			    (mac_group_handle_t)group);
4134 			/*
4135 			 * Even though there are no rings at this time
4136 			 * (rings will come later), set the group
4137 			 * state to registered.
4138 			 */
4139 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4140 		} else {
4141 			/*
4142 			 * Ring 0 is used as the default one and it could be
4143 			 * assigned to a client as well.
4144 			 */
4145 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4146 				ring = ring->mr_next;
4147 			ASSERT(ring->mr_index == 0);
4148 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4149 		}
4150 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
4151 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4152 			/*
4153 			 * The default ring cannot be reserved.
4154 			 */
4155 			mip->mi_txrings_rsvd = 1;
4156 		/*
4157 		 * The default group cannot be reserved. It will be shared
4158 		 * by clients that do not have an exclusive group.
4159 		 */
4160 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4161 		mip->mi_txhwclnt_used = 1;
4162 		break;
4163 	default:
4164 		ASSERT(B_FALSE);
4165 	}
4166 
4167 	if (err != 0)
4168 		mac_free_rings(mip, rtype);
4169 
4170 	return (err);
4171 }
4172 
4173 /*
4174  * The ddi interrupt handle could be shared amoung rings. If so, compare
4175  * the new ring's ddi handle with the existing ones and set ddi_shared
4176  * flag.
4177  */
4178 void
4179 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4180 {
4181 	mac_group_t *group;
4182 	mac_ring_t *ring;
4183 	ddi_intr_handle_t ddi_handle;
4184 	int g;
4185 
4186 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4187 	for (g = 0; g < grpcnt; g++) {
4188 		group = groups + g;
4189 		for (ring = group->mrg_rings; ring != NULL;
4190 		    ring = ring->mr_next) {
4191 			if (ring == cring)
4192 				continue;
4193 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4194 			    ddi_handle) {
4195 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4196 				    ring->mr_index == 0 &&
4197 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4198 					ring->mr_info.mri_intr.mi_ddi_shared =
4199 					    B_TRUE;
4200 				} else {
4201 					cring->mr_info.mri_intr.mi_ddi_shared =
4202 					    B_TRUE;
4203 				}
4204 				return;
4205 			}
4206 		}
4207 	}
4208 }
4209 
4210 /*
4211  * Called to free all groups of particular type (RX or TX). It's assumed that
4212  * no clients are using these groups.
4213  */
4214 void
4215 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4216 {
4217 	mac_group_t *group, *groups;
4218 	uint_t group_count;
4219 
4220 	switch (rtype) {
4221 	case MAC_RING_TYPE_RX:
4222 		if (mip->mi_rx_groups == NULL)
4223 			return;
4224 
4225 		groups = mip->mi_rx_groups;
4226 		group_count = mip->mi_rx_group_count;
4227 
4228 		mip->mi_rx_groups = NULL;
4229 		mip->mi_rx_donor_grp = NULL;
4230 		mip->mi_rx_group_count = 0;
4231 		break;
4232 	case MAC_RING_TYPE_TX:
4233 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4234 
4235 		if (mip->mi_tx_groups == NULL)
4236 			return;
4237 
4238 		groups = mip->mi_tx_groups;
4239 		group_count = mip->mi_tx_group_count;
4240 
4241 		mip->mi_tx_groups = NULL;
4242 		mip->mi_tx_group_count = 0;
4243 		mip->mi_tx_group_free = 0;
4244 		mip->mi_default_tx_ring = NULL;
4245 		break;
4246 	default:
4247 		ASSERT(B_FALSE);
4248 	}
4249 
4250 	for (group = groups; group != NULL; group = group->mrg_next) {
4251 		mac_ring_t *ring;
4252 
4253 		if (group->mrg_cur_count == 0)
4254 			continue;
4255 
4256 		ASSERT(group->mrg_rings != NULL);
4257 
4258 		while ((ring = group->mrg_rings) != NULL) {
4259 			group->mrg_rings = ring->mr_next;
4260 			mac_ring_free(mip, ring);
4261 		}
4262 	}
4263 
4264 	/* Free all the cached rings */
4265 	mac_ring_freeall(mip);
4266 	/* Free the block of group data strutures */
4267 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4268 }
4269 
4270 /*
4271  * Associate a MAC address with a receive group.
4272  *
4273  * The return value of this function should always be checked properly, because
4274  * any type of failure could cause unexpected results. A group can be added
4275  * or removed with a MAC address only after it has been reserved. Ideally,
4276  * a successful reservation always leads to calling mac_group_addmac() to
4277  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4278  * always imply that the group is functioning abnormally.
4279  *
4280  * Currently this function is called everywhere, and it reflects assumptions
4281  * about MAC addresses in the implementation. CR 6735196.
4282  */
4283 int
4284 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4285 {
4286 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4287 	ASSERT(group->mrg_info.mgi_addmac != NULL);
4288 
4289 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4290 }
4291 
4292 /*
4293  * Remove the association between MAC address and receive group.
4294  */
4295 int
4296 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4297 {
4298 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4299 	ASSERT(group->mrg_info.mgi_remmac != NULL);
4300 
4301 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4302 }
4303 
4304 /*
4305  * This is the entry point for packets transmitted through the bridging code.
4306  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4307  * pointer may be NULL to select the default ring.
4308  */
4309 mblk_t *
4310 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4311 {
4312 	mac_handle_t mh;
4313 
4314 	/*
4315 	 * Once we take a reference on the bridge link, the bridge
4316 	 * module itself can't unload, so the callback pointers are
4317 	 * stable.
4318 	 */
4319 	mutex_enter(&mip->mi_bridge_lock);
4320 	if ((mh = mip->mi_bridge_link) != NULL)
4321 		mac_bridge_ref_cb(mh, B_TRUE);
4322 	mutex_exit(&mip->mi_bridge_lock);
4323 	if (mh == NULL) {
4324 		MAC_RING_TX(mip, rh, mp, mp);
4325 	} else {
4326 		mp = mac_bridge_tx_cb(mh, rh, mp);
4327 		mac_bridge_ref_cb(mh, B_FALSE);
4328 	}
4329 
4330 	return (mp);
4331 }
4332 
4333 /*
4334  * Find a ring from its index.
4335  */
4336 mac_ring_handle_t
4337 mac_find_ring(mac_group_handle_t gh, int index)
4338 {
4339 	mac_group_t *group = (mac_group_t *)gh;
4340 	mac_ring_t *ring = group->mrg_rings;
4341 
4342 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4343 		if (ring->mr_index == index)
4344 			break;
4345 
4346 	return ((mac_ring_handle_t)ring);
4347 }
4348 /*
4349  * Add a ring to an existing group.
4350  *
4351  * The ring must be either passed directly (for example if the ring
4352  * movement is initiated by the framework), or specified through a driver
4353  * index (for example when the ring is added by the driver.
4354  *
4355  * The caller needs to call mac_perim_enter() before calling this function.
4356  */
4357 int
4358 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4359 {
4360 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4361 	mac_capab_rings_t *cap_rings;
4362 	boolean_t driver_call = (ring == NULL);
4363 	mac_group_type_t group_type;
4364 	int ret = 0;
4365 	flow_entry_t *flent;
4366 
4367 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4368 
4369 	switch (group->mrg_type) {
4370 	case MAC_RING_TYPE_RX:
4371 		cap_rings = &mip->mi_rx_rings_cap;
4372 		group_type = mip->mi_rx_group_type;
4373 		break;
4374 	case MAC_RING_TYPE_TX:
4375 		cap_rings = &mip->mi_tx_rings_cap;
4376 		group_type = mip->mi_tx_group_type;
4377 		break;
4378 	default:
4379 		ASSERT(B_FALSE);
4380 	}
4381 
4382 	/*
4383 	 * There should be no ring with the same ring index in the target
4384 	 * group.
4385 	 */
4386 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4387 	    driver_call ? index : ring->mr_index) == NULL);
4388 
4389 	if (driver_call) {
4390 		/*
4391 		 * The function is called as a result of a request from
4392 		 * a driver to add a ring to an existing group, for example
4393 		 * from the aggregation driver. Allocate a new mac_ring_t
4394 		 * for that ring.
4395 		 */
4396 		ring = mac_init_ring(mip, group, index, cap_rings);
4397 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4398 	} else {
4399 		/*
4400 		 * The function is called as a result of a MAC layer request
4401 		 * to add a ring to an existing group. In this case the
4402 		 * ring is being moved between groups, which requires
4403 		 * the underlying driver to support dynamic grouping,
4404 		 * and the mac_ring_t already exists.
4405 		 */
4406 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4407 		ASSERT(group->mrg_driver == NULL ||
4408 		    cap_rings->mr_gaddring != NULL);
4409 		ASSERT(ring->mr_gh == NULL);
4410 	}
4411 
4412 	/*
4413 	 * At this point the ring should not be in use, and it should be
4414 	 * of the right for the target group.
4415 	 */
4416 	ASSERT(ring->mr_state < MR_INUSE);
4417 	ASSERT(ring->mr_srs == NULL);
4418 	ASSERT(ring->mr_type == group->mrg_type);
4419 
4420 	if (!driver_call) {
4421 		/*
4422 		 * Add the driver level hardware ring if the process was not
4423 		 * initiated by the driver, and the target group is not the
4424 		 * group.
4425 		 */
4426 		if (group->mrg_driver != NULL) {
4427 			cap_rings->mr_gaddring(group->mrg_driver,
4428 			    ring->mr_driver, ring->mr_type);
4429 		}
4430 
4431 		/*
4432 		 * Insert the ring ahead existing rings.
4433 		 */
4434 		ring->mr_next = group->mrg_rings;
4435 		group->mrg_rings = ring;
4436 		ring->mr_gh = (mac_group_handle_t)group;
4437 		group->mrg_cur_count++;
4438 	}
4439 
4440 	/*
4441 	 * If the group has not been actively used, we're done.
4442 	 */
4443 	if (group->mrg_index != -1 &&
4444 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4445 		return (0);
4446 
4447 	/*
4448 	 * Start the ring if needed. Failure causes to undo the grouping action.
4449 	 */
4450 	if (ring->mr_state != MR_INUSE) {
4451 		if ((ret = mac_start_ring(ring)) != 0) {
4452 			if (!driver_call) {
4453 				cap_rings->mr_gremring(group->mrg_driver,
4454 				    ring->mr_driver, ring->mr_type);
4455 			}
4456 			group->mrg_cur_count--;
4457 			group->mrg_rings = ring->mr_next;
4458 
4459 			ring->mr_gh = NULL;
4460 
4461 			if (driver_call)
4462 				mac_ring_free(mip, ring);
4463 
4464 			return (ret);
4465 		}
4466 	}
4467 
4468 	/*
4469 	 * Set up SRS/SR according to the ring type.
4470 	 */
4471 	switch (ring->mr_type) {
4472 	case MAC_RING_TYPE_RX:
4473 		/*
4474 		 * Setup SRS on top of the new ring if the group is
4475 		 * reserved for someones exclusive use.
4476 		 */
4477 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4478 			mac_client_impl_t *mcip;
4479 
4480 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4481 			/*
4482 			 * Even though this group is reserved we migth still
4483 			 * have multiple clients, i.e a VLAN shares the
4484 			 * group with the primary mac client.
4485 			 */
4486 			if (mcip != NULL) {
4487 				flent = mcip->mci_flent;
4488 				ASSERT(flent->fe_rx_srs_cnt > 0);
4489 				mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4490 				mac_fanout_setup(mcip, flent,
4491 				    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4492 				    mcip, NULL, NULL);
4493 			} else {
4494 				ring->mr_classify_type = MAC_SW_CLASSIFIER;
4495 			}
4496 		}
4497 		break;
4498 	case MAC_RING_TYPE_TX:
4499 	{
4500 		mac_grp_client_t	*mgcp = group->mrg_clients;
4501 		mac_client_impl_t	*mcip;
4502 		mac_soft_ring_set_t	*mac_srs;
4503 		mac_srs_tx_t		*tx;
4504 
4505 		if (MAC_GROUP_NO_CLIENT(group)) {
4506 			if (ring->mr_state == MR_INUSE)
4507 				mac_stop_ring(ring);
4508 			ring->mr_flag = 0;
4509 			break;
4510 		}
4511 		/*
4512 		 * If the rings are being moved to a group that has
4513 		 * clients using it, then add the new rings to the
4514 		 * clients SRS.
4515 		 */
4516 		while (mgcp != NULL) {
4517 			boolean_t	is_aggr;
4518 
4519 			mcip = mgcp->mgc_client;
4520 			flent = mcip->mci_flent;
4521 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4522 			mac_srs = MCIP_TX_SRS(mcip);
4523 			tx = &mac_srs->srs_tx;
4524 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4525 			/*
4526 			 * If we are  growing from 1 to multiple rings.
4527 			 */
4528 			if (tx->st_mode == SRS_TX_BW ||
4529 			    tx->st_mode == SRS_TX_SERIALIZE ||
4530 			    tx->st_mode == SRS_TX_DEFAULT) {
4531 				mac_ring_t	*tx_ring = tx->st_arg2;
4532 
4533 				tx->st_arg2 = NULL;
4534 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4535 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4536 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4537 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4538 					    SRS_TX_BW_FANOUT;
4539 				} else {
4540 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
4541 					    SRS_TX_FANOUT;
4542 				}
4543 				tx->st_func = mac_tx_get_func(tx->st_mode);
4544 			}
4545 			mac_tx_srs_add_ring(mac_srs, ring);
4546 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4547 			    mac_rx_deliver, mcip, NULL, NULL);
4548 			mac_tx_client_restart((mac_client_handle_t)mcip);
4549 			mgcp = mgcp->mgc_next;
4550 		}
4551 		break;
4552 	}
4553 	default:
4554 		ASSERT(B_FALSE);
4555 	}
4556 	/*
4557 	 * For aggr, the default ring will be NULL to begin with. If it
4558 	 * is NULL, then pick the first ring that gets added as the
4559 	 * default ring. Any ring in an aggregation can be removed at
4560 	 * any time (by the user action of removing a link) and if the
4561 	 * current default ring gets removed, then a new one gets
4562 	 * picked (see i_mac_group_rem_ring()).
4563 	 */
4564 	if (mip->mi_state_flags & MIS_IS_AGGR &&
4565 	    mip->mi_default_tx_ring == NULL &&
4566 	    ring->mr_type == MAC_RING_TYPE_TX) {
4567 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4568 	}
4569 
4570 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
4571 	return (0);
4572 }
4573 
4574 /*
4575  * Remove a ring from it's current group. MAC internal function for dynamic
4576  * grouping.
4577  *
4578  * The caller needs to call mac_perim_enter() before calling this function.
4579  */
4580 void
4581 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4582     boolean_t driver_call)
4583 {
4584 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4585 	mac_capab_rings_t *cap_rings = NULL;
4586 	mac_group_type_t group_type;
4587 
4588 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4589 
4590 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4591 	    ring->mr_index) == (mac_ring_handle_t)ring);
4592 	ASSERT((mac_group_t *)ring->mr_gh == group);
4593 	ASSERT(ring->mr_type == group->mrg_type);
4594 
4595 	if (ring->mr_state == MR_INUSE)
4596 		mac_stop_ring(ring);
4597 	switch (ring->mr_type) {
4598 	case MAC_RING_TYPE_RX:
4599 		group_type = mip->mi_rx_group_type;
4600 		cap_rings = &mip->mi_rx_rings_cap;
4601 
4602 		/*
4603 		 * Only hardware classified packets hold a reference to the
4604 		 * ring all the way up the Rx path. mac_rx_srs_remove()
4605 		 * will take care of quiescing the Rx path and removing the
4606 		 * SRS. The software classified path neither holds a reference
4607 		 * nor any association with the ring in mac_rx.
4608 		 */
4609 		if (ring->mr_srs != NULL) {
4610 			mac_rx_srs_remove(ring->mr_srs);
4611 			ring->mr_srs = NULL;
4612 		}
4613 
4614 		break;
4615 	case MAC_RING_TYPE_TX:
4616 	{
4617 		mac_grp_client_t	*mgcp;
4618 		mac_client_impl_t	*mcip;
4619 		mac_soft_ring_set_t	*mac_srs;
4620 		mac_srs_tx_t		*tx;
4621 		mac_ring_t		*rem_ring;
4622 		mac_group_t		*defgrp;
4623 		uint_t			ring_info = 0;
4624 
4625 		/*
4626 		 * For TX this function is invoked in three
4627 		 * cases:
4628 		 *
4629 		 * 1) In the case of a failure during the
4630 		 * initial creation of a group when a share is
4631 		 * associated with a MAC client. So the SRS is not
4632 		 * yet setup, and will be setup later after the
4633 		 * group has been reserved and populated.
4634 		 *
4635 		 * 2) From mac_release_tx_group() when freeing
4636 		 * a TX SRS.
4637 		 *
4638 		 * 3) In the case of aggr, when a port gets removed,
4639 		 * the pseudo Tx rings that it exposed gets removed.
4640 		 *
4641 		 * In the first two cases the SRS and its soft
4642 		 * rings are already quiesced.
4643 		 */
4644 		if (driver_call) {
4645 			mac_client_impl_t *mcip;
4646 			mac_soft_ring_set_t *mac_srs;
4647 			mac_soft_ring_t *sringp;
4648 			mac_srs_tx_t *srs_tx;
4649 
4650 			if (mip->mi_state_flags & MIS_IS_AGGR &&
4651 			    mip->mi_default_tx_ring ==
4652 			    (mac_ring_handle_t)ring) {
4653 				/* pick a new default Tx ring */
4654 				mip->mi_default_tx_ring =
4655 				    (group->mrg_rings != ring) ?
4656 				    (mac_ring_handle_t)group->mrg_rings :
4657 				    (mac_ring_handle_t)(ring->mr_next);
4658 			}
4659 			/* Presently only aggr case comes here */
4660 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4661 				break;
4662 
4663 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4664 			ASSERT(mcip != NULL);
4665 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4666 			mac_srs = MCIP_TX_SRS(mcip);
4667 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4668 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4669 			srs_tx = &mac_srs->srs_tx;
4670 			/*
4671 			 * Wakeup any callers blocked on this
4672 			 * Tx ring due to flow control.
4673 			 */
4674 			sringp = srs_tx->st_soft_rings[ring->mr_index];
4675 			ASSERT(sringp != NULL);
4676 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4677 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4678 			mac_tx_srs_del_ring(mac_srs, ring);
4679 			mac_tx_client_restart((mac_client_handle_t)mcip);
4680 			break;
4681 		}
4682 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4683 		group_type = mip->mi_tx_group_type;
4684 		cap_rings = &mip->mi_tx_rings_cap;
4685 		/*
4686 		 * See if we need to take it out of the MAC clients using
4687 		 * this group
4688 		 */
4689 		if (MAC_GROUP_NO_CLIENT(group))
4690 			break;
4691 		mgcp = group->mrg_clients;
4692 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
4693 		while (mgcp != NULL) {
4694 			mcip = mgcp->mgc_client;
4695 			mac_srs = MCIP_TX_SRS(mcip);
4696 			tx = &mac_srs->srs_tx;
4697 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4698 			/*
4699 			 * If we are here when removing rings from the
4700 			 * defgroup, mac_reserve_tx_ring would have
4701 			 * already deleted the ring from the MAC
4702 			 * clients in the group.
4703 			 */
4704 			if (group != defgrp) {
4705 				mac_tx_invoke_callbacks(mcip,
4706 				    (mac_tx_cookie_t)
4707 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
4708 				mac_tx_srs_del_ring(mac_srs, ring);
4709 			}
4710 			/*
4711 			 * Additionally, if  we are left with only
4712 			 * one ring in the group after this, we need
4713 			 * to modify the mode etc. to. (We haven't
4714 			 * yet taken the ring out, so we check with 2).
4715 			 */
4716 			if (group->mrg_cur_count == 2) {
4717 				if (ring->mr_next == NULL)
4718 					rem_ring = group->mrg_rings;
4719 				else
4720 					rem_ring = ring->mr_next;
4721 				mac_tx_invoke_callbacks(mcip,
4722 				    (mac_tx_cookie_t)
4723 				    mac_tx_srs_get_soft_ring(mac_srs,
4724 				    rem_ring));
4725 				mac_tx_srs_del_ring(mac_srs, rem_ring);
4726 				if (rem_ring->mr_state != MR_INUSE) {
4727 					(void) mac_start_ring(rem_ring);
4728 				}
4729 				tx->st_arg2 = (void *)rem_ring;
4730 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4731 				ring_info = mac_hwring_getinfo(
4732 				    (mac_ring_handle_t)rem_ring);
4733 				/*
4734 				 * We are  shrinking from multiple
4735 				 * to 1 ring.
4736 				 */
4737 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4738 					tx->st_mode = SRS_TX_BW;
4739 				} else if (mac_tx_serialize ||
4740 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
4741 					tx->st_mode = SRS_TX_SERIALIZE;
4742 				} else {
4743 					tx->st_mode = SRS_TX_DEFAULT;
4744 				}
4745 				tx->st_func = mac_tx_get_func(tx->st_mode);
4746 			}
4747 			mac_tx_client_restart((mac_client_handle_t)mcip);
4748 			mgcp = mgcp->mgc_next;
4749 		}
4750 		break;
4751 	}
4752 	default:
4753 		ASSERT(B_FALSE);
4754 	}
4755 
4756 	/*
4757 	 * Remove the ring from the group.
4758 	 */
4759 	if (ring == group->mrg_rings)
4760 		group->mrg_rings = ring->mr_next;
4761 	else {
4762 		mac_ring_t *pre;
4763 
4764 		pre = group->mrg_rings;
4765 		while (pre->mr_next != ring)
4766 			pre = pre->mr_next;
4767 		pre->mr_next = ring->mr_next;
4768 	}
4769 	group->mrg_cur_count--;
4770 
4771 	if (!driver_call) {
4772 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4773 		ASSERT(group->mrg_driver == NULL ||
4774 		    cap_rings->mr_gremring != NULL);
4775 
4776 		/*
4777 		 * Remove the driver level hardware ring.
4778 		 */
4779 		if (group->mrg_driver != NULL) {
4780 			cap_rings->mr_gremring(group->mrg_driver,
4781 			    ring->mr_driver, ring->mr_type);
4782 		}
4783 	}
4784 
4785 	ring->mr_gh = NULL;
4786 	if (driver_call)
4787 		mac_ring_free(mip, ring);
4788 	else
4789 		ring->mr_flag = 0;
4790 }
4791 
4792 /*
4793  * Move a ring to the target group. If needed, remove the ring from the group
4794  * that it currently belongs to.
4795  *
4796  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4797  */
4798 static int
4799 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4800 {
4801 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4802 	int rv;
4803 
4804 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4805 	ASSERT(d_group != NULL);
4806 	ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4807 
4808 	if (s_group == d_group)
4809 		return (0);
4810 
4811 	/*
4812 	 * Remove it from current group first.
4813 	 */
4814 	if (s_group != NULL)
4815 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
4816 
4817 	/*
4818 	 * Add it to the new group.
4819 	 */
4820 	rv = i_mac_group_add_ring(d_group, ring, 0);
4821 	if (rv != 0) {
4822 		/*
4823 		 * Failed to add ring back to source group. If
4824 		 * that fails, the ring is stuck in limbo, log message.
4825 		 */
4826 		if (i_mac_group_add_ring(s_group, ring, 0)) {
4827 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4828 			    mip->mi_name, (void *)ring);
4829 		}
4830 	}
4831 
4832 	return (rv);
4833 }
4834 
4835 /*
4836  * Find a MAC address according to its value.
4837  */
4838 mac_address_t *
4839 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4840 {
4841 	mac_address_t *map;
4842 
4843 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4844 
4845 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4846 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4847 			break;
4848 	}
4849 
4850 	return (map);
4851 }
4852 
4853 /*
4854  * Check whether the MAC address is shared by multiple clients.
4855  */
4856 boolean_t
4857 mac_check_macaddr_shared(mac_address_t *map)
4858 {
4859 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4860 
4861 	return (map->ma_nusers > 1);
4862 }
4863 
4864 /*
4865  * Remove the specified MAC address from the MAC address list and free it.
4866  */
4867 static void
4868 mac_free_macaddr(mac_address_t *map)
4869 {
4870 	mac_impl_t *mip = map->ma_mip;
4871 
4872 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4873 	ASSERT(mip->mi_addresses != NULL);
4874 
4875 	map = mac_find_macaddr(mip, map->ma_addr);
4876 
4877 	ASSERT(map != NULL);
4878 	ASSERT(map->ma_nusers == 0);
4879 
4880 	if (map == mip->mi_addresses) {
4881 		mip->mi_addresses = map->ma_next;
4882 	} else {
4883 		mac_address_t *pre;
4884 
4885 		pre = mip->mi_addresses;
4886 		while (pre->ma_next != map)
4887 			pre = pre->ma_next;
4888 		pre->ma_next = map->ma_next;
4889 	}
4890 
4891 	kmem_free(map, sizeof (mac_address_t));
4892 }
4893 
4894 /*
4895  * Add a MAC address reference for a client. If the desired MAC address
4896  * exists, add a reference to it. Otherwise, add the new address by adding
4897  * it to a reserved group or setting promiscuous mode. Won't try different
4898  * group is the group is non-NULL, so the caller must explictly share
4899  * default group when needed.
4900  *
4901  * Note, the primary MAC address is initialized at registration time, so
4902  * to add it to default group only need to activate it if its reference
4903  * count is still zero. Also, some drivers may not have advertised RINGS
4904  * capability.
4905  */
4906 int
4907 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4908     boolean_t use_hw)
4909 {
4910 	mac_address_t *map;
4911 	int err = 0;
4912 	boolean_t allocated_map = B_FALSE;
4913 
4914 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4915 
4916 	map = mac_find_macaddr(mip, mac_addr);
4917 
4918 	/*
4919 	 * If the new MAC address has not been added. Allocate a new one
4920 	 * and set it up.
4921 	 */
4922 	if (map == NULL) {
4923 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4924 		map->ma_len = mip->mi_type->mt_addr_length;
4925 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4926 		map->ma_nusers = 0;
4927 		map->ma_group = group;
4928 		map->ma_mip = mip;
4929 
4930 		/* add the new MAC address to the head of the address list */
4931 		map->ma_next = mip->mi_addresses;
4932 		mip->mi_addresses = map;
4933 
4934 		allocated_map = B_TRUE;
4935 	}
4936 
4937 	ASSERT(map->ma_group == NULL || map->ma_group == group);
4938 	if (map->ma_group == NULL)
4939 		map->ma_group = group;
4940 
4941 	/*
4942 	 * If the MAC address is already in use, simply account for the
4943 	 * new client.
4944 	 */
4945 	if (map->ma_nusers++ > 0)
4946 		return (0);
4947 
4948 	/*
4949 	 * Activate this MAC address by adding it to the reserved group.
4950 	 */
4951 	if (group != NULL) {
4952 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
4953 		if (err == 0) {
4954 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4955 			return (0);
4956 		}
4957 	}
4958 
4959 	/*
4960 	 * The MAC address addition failed. If the client requires a
4961 	 * hardware classified MAC address, fail the operation.
4962 	 */
4963 	if (use_hw) {
4964 		err = ENOSPC;
4965 		goto bail;
4966 	}
4967 
4968 	/*
4969 	 * Try promiscuous mode.
4970 	 *
4971 	 * For drivers that don't advertise RINGS capability, do
4972 	 * nothing for the primary address.
4973 	 */
4974 	if ((group == NULL) &&
4975 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
4976 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4977 		return (0);
4978 	}
4979 
4980 	/*
4981 	 * Enable promiscuous mode in order to receive traffic
4982 	 * to the new MAC address.
4983 	 */
4984 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
4985 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
4986 		return (0);
4987 	}
4988 
4989 	/*
4990 	 * Free the MAC address that could not be added. Don't free
4991 	 * a pre-existing address, it could have been the entry
4992 	 * for the primary MAC address which was pre-allocated by
4993 	 * mac_init_macaddr(), and which must remain on the list.
4994 	 */
4995 bail:
4996 	map->ma_nusers--;
4997 	if (allocated_map)
4998 		mac_free_macaddr(map);
4999 	return (err);
5000 }
5001 
5002 /*
5003  * Remove a reference to a MAC address. This may cause to remove the MAC
5004  * address from an associated group or to turn off promiscuous mode.
5005  * The caller needs to handle the failure properly.
5006  */
5007 int
5008 mac_remove_macaddr(mac_address_t *map)
5009 {
5010 	mac_impl_t *mip = map->ma_mip;
5011 	int err = 0;
5012 
5013 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5014 
5015 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5016 
5017 	/*
5018 	 * If it's not the last client using this MAC address, only update
5019 	 * the MAC clients count.
5020 	 */
5021 	if (--map->ma_nusers > 0)
5022 		return (0);
5023 
5024 	/*
5025 	 * The MAC address is no longer used by any MAC client, so remove
5026 	 * it from its associated group, or turn off promiscuous mode
5027 	 * if it was enabled for the MAC address.
5028 	 */
5029 	switch (map->ma_type) {
5030 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5031 		/*
5032 		 * Don't free the preset primary address for drivers that
5033 		 * don't advertise RINGS capability.
5034 		 */
5035 		if (map->ma_group == NULL)
5036 			return (0);
5037 
5038 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5039 		if (err == 0)
5040 			map->ma_group = NULL;
5041 		break;
5042 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5043 		err = i_mac_promisc_set(mip, B_FALSE);
5044 		break;
5045 	default:
5046 		ASSERT(B_FALSE);
5047 	}
5048 
5049 	if (err != 0)
5050 		return (err);
5051 
5052 	/*
5053 	 * We created MAC address for the primary one at registration, so we
5054 	 * won't free it here. mac_fini_macaddr() will take care of it.
5055 	 */
5056 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5057 		mac_free_macaddr(map);
5058 
5059 	return (0);
5060 }
5061 
5062 /*
5063  * Update an existing MAC address. The caller need to make sure that the new
5064  * value has not been used.
5065  */
5066 int
5067 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5068 {
5069 	mac_impl_t *mip = map->ma_mip;
5070 	int err = 0;
5071 
5072 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5073 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5074 
5075 	switch (map->ma_type) {
5076 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5077 		/*
5078 		 * Update the primary address for drivers that are not
5079 		 * RINGS capable.
5080 		 */
5081 		if (mip->mi_rx_groups == NULL) {
5082 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5083 			    mac_addr);
5084 			if (err != 0)
5085 				return (err);
5086 			break;
5087 		}
5088 
5089 		/*
5090 		 * If this MAC address is not currently in use,
5091 		 * simply break out and update the value.
5092 		 */
5093 		if (map->ma_nusers == 0)
5094 			break;
5095 
5096 		/*
5097 		 * Need to replace the MAC address associated with a group.
5098 		 */
5099 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5100 		if (err != 0)
5101 			return (err);
5102 
5103 		err = mac_group_addmac(map->ma_group, mac_addr);
5104 
5105 		/*
5106 		 * Failure hints hardware error. The MAC layer needs to
5107 		 * have error notification facility to handle this.
5108 		 * Now, simply try to restore the value.
5109 		 */
5110 		if (err != 0)
5111 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5112 
5113 		break;
5114 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5115 		/*
5116 		 * Need to do nothing more if in promiscuous mode.
5117 		 */
5118 		break;
5119 	default:
5120 		ASSERT(B_FALSE);
5121 	}
5122 
5123 	/*
5124 	 * Successfully replaced the MAC address.
5125 	 */
5126 	if (err == 0)
5127 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5128 
5129 	return (err);
5130 }
5131 
5132 /*
5133  * Freshen the MAC address with new value. Its caller must have updated the
5134  * hardware MAC address before calling this function.
5135  * This funcitons is supposed to be used to handle the MAC address change
5136  * notification from underlying drivers.
5137  */
5138 void
5139 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5140 {
5141 	mac_impl_t *mip = map->ma_mip;
5142 
5143 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5144 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5145 
5146 	/*
5147 	 * Freshen the MAC address with new value.
5148 	 */
5149 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5150 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5151 
5152 	/*
5153 	 * Update all MAC clients that share this MAC address.
5154 	 */
5155 	mac_unicast_update_clients(mip, map);
5156 }
5157 
5158 /*
5159  * Set up the primary MAC address.
5160  */
5161 void
5162 mac_init_macaddr(mac_impl_t *mip)
5163 {
5164 	mac_address_t *map;
5165 
5166 	/*
5167 	 * The reference count is initialized to zero, until it's really
5168 	 * activated.
5169 	 */
5170 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5171 	map->ma_len = mip->mi_type->mt_addr_length;
5172 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5173 
5174 	/*
5175 	 * If driver advertises RINGS capability, it shouldn't have initialized
5176 	 * its primary MAC address. For other drivers, including VNIC, the
5177 	 * primary address must work after registration.
5178 	 */
5179 	if (mip->mi_rx_groups == NULL)
5180 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5181 
5182 	map->ma_mip = mip;
5183 
5184 	mip->mi_addresses = map;
5185 }
5186 
5187 /*
5188  * Clean up the primary MAC address. Note, only one primary MAC address
5189  * is allowed. All other MAC addresses must have been freed appropriately.
5190  */
5191 void
5192 mac_fini_macaddr(mac_impl_t *mip)
5193 {
5194 	mac_address_t *map = mip->mi_addresses;
5195 
5196 	if (map == NULL)
5197 		return;
5198 
5199 	/*
5200 	 * If mi_addresses is initialized, there should be exactly one
5201 	 * entry left on the list with no users.
5202 	 */
5203 	ASSERT(map->ma_nusers == 0);
5204 	ASSERT(map->ma_next == NULL);
5205 
5206 	kmem_free(map, sizeof (mac_address_t));
5207 	mip->mi_addresses = NULL;
5208 }
5209 
5210 /*
5211  * Logging related functions.
5212  *
5213  * Note that Kernel statistics have been extended to maintain fine
5214  * granularity of statistics viz. hardware lane, software lane, fanout
5215  * stats etc. However, extended accounting continues to support only
5216  * aggregate statistics like before.
5217  */
5218 
5219 /* Write the flow description to a netinfo_t record */
5220 static netinfo_t *
5221 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5222 {
5223 	netinfo_t		*ninfo;
5224 	net_desc_t		*ndesc;
5225 	flow_desc_t		*fdesc;
5226 	mac_resource_props_t	*mrp;
5227 
5228 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5229 	if (ninfo == NULL)
5230 		return (NULL);
5231 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5232 	if (ndesc == NULL) {
5233 		kmem_free(ninfo, sizeof (netinfo_t));
5234 		return (NULL);
5235 	}
5236 
5237 	/*
5238 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5239 	 * Updates to the fe_flow_desc are done under the fe_lock
5240 	 */
5241 	mutex_enter(&flent->fe_lock);
5242 	fdesc = &flent->fe_flow_desc;
5243 	mrp = &flent->fe_resource_props;
5244 
5245 	ndesc->nd_name = flent->fe_flow_name;
5246 	ndesc->nd_devname = mcip->mci_name;
5247 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5248 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5249 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5250 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5251 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5252 	if (ndesc->nd_isv4) {
5253 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5254 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5255 	} else {
5256 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5257 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5258 	}
5259 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5260 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5261 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5262 	mutex_exit(&flent->fe_lock);
5263 
5264 	ninfo->ni_record = ndesc;
5265 	ninfo->ni_size = sizeof (net_desc_t);
5266 	ninfo->ni_type = EX_NET_FLDESC_REC;
5267 
5268 	return (ninfo);
5269 }
5270 
5271 /* Write the flow statistics to a netinfo_t record */
5272 static netinfo_t *
5273 mac_write_flow_stats(flow_entry_t *flent)
5274 {
5275 	netinfo_t		*ninfo;
5276 	net_stat_t		*nstat;
5277 	mac_soft_ring_set_t	*mac_srs;
5278 	mac_rx_stats_t		*mac_rx_stat;
5279 	mac_tx_stats_t		*mac_tx_stat;
5280 	int			i;
5281 
5282 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5283 	if (ninfo == NULL)
5284 		return (NULL);
5285 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5286 	if (nstat == NULL) {
5287 		kmem_free(ninfo, sizeof (netinfo_t));
5288 		return (NULL);
5289 	}
5290 
5291 	nstat->ns_name = flent->fe_flow_name;
5292 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5293 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5294 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5295 
5296 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5297 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5298 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5299 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5300 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5301 	}
5302 
5303 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5304 	if (mac_srs != NULL) {
5305 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5306 
5307 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5308 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5309 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5310 	}
5311 
5312 	ninfo->ni_record = nstat;
5313 	ninfo->ni_size = sizeof (net_stat_t);
5314 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5315 
5316 	return (ninfo);
5317 }
5318 
5319 /* Write the link description to a netinfo_t record */
5320 static netinfo_t *
5321 mac_write_link_desc(mac_client_impl_t *mcip)
5322 {
5323 	netinfo_t		*ninfo;
5324 	net_desc_t		*ndesc;
5325 	flow_entry_t		*flent = mcip->mci_flent;
5326 
5327 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5328 	if (ninfo == NULL)
5329 		return (NULL);
5330 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5331 	if (ndesc == NULL) {
5332 		kmem_free(ninfo, sizeof (netinfo_t));
5333 		return (NULL);
5334 	}
5335 
5336 	ndesc->nd_name = mcip->mci_name;
5337 	ndesc->nd_devname = mcip->mci_name;
5338 	ndesc->nd_isv4 = B_TRUE;
5339 	/*
5340 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5341 	 * Updates to the fe_flow_desc are done under the fe_lock
5342 	 * after removing the flent from the flow table.
5343 	 */
5344 	mutex_enter(&flent->fe_lock);
5345 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5346 	mutex_exit(&flent->fe_lock);
5347 
5348 	ninfo->ni_record = ndesc;
5349 	ninfo->ni_size = sizeof (net_desc_t);
5350 	ninfo->ni_type = EX_NET_LNDESC_REC;
5351 
5352 	return (ninfo);
5353 }
5354 
5355 /* Write the link statistics to a netinfo_t record */
5356 static netinfo_t *
5357 mac_write_link_stats(mac_client_impl_t *mcip)
5358 {
5359 	netinfo_t		*ninfo;
5360 	net_stat_t		*nstat;
5361 	flow_entry_t		*flent;
5362 	mac_soft_ring_set_t	*mac_srs;
5363 	mac_rx_stats_t		*mac_rx_stat;
5364 	mac_tx_stats_t		*mac_tx_stat;
5365 	int			i;
5366 
5367 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5368 	if (ninfo == NULL)
5369 		return (NULL);
5370 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5371 	if (nstat == NULL) {
5372 		kmem_free(ninfo, sizeof (netinfo_t));
5373 		return (NULL);
5374 	}
5375 
5376 	nstat->ns_name = mcip->mci_name;
5377 	flent = mcip->mci_flent;
5378 	if (flent != NULL)  {
5379 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5380 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5381 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5382 
5383 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5384 			    mac_rx_stat->mrs_pollbytes +
5385 			    mac_rx_stat->mrs_lclbytes;
5386 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5387 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5388 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5389 		}
5390 	}
5391 
5392 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5393 	if (mac_srs != NULL) {
5394 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5395 
5396 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5397 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5398 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5399 	}
5400 
5401 	ninfo->ni_record = nstat;
5402 	ninfo->ni_size = sizeof (net_stat_t);
5403 	ninfo->ni_type = EX_NET_LNSTAT_REC;
5404 
5405 	return (ninfo);
5406 }
5407 
5408 typedef struct i_mac_log_state_s {
5409 	boolean_t	mi_last;
5410 	int		mi_fenable;
5411 	int		mi_lenable;
5412 	list_t		*mi_list;
5413 } i_mac_log_state_t;
5414 
5415 /*
5416  * For a given flow, if the description has not been logged before, do it now.
5417  * If it is a VNIC, then we have collected information about it from the MAC
5418  * table, so skip it.
5419  *
5420  * Called through mac_flow_walk_nolock()
5421  *
5422  * Return 0 if successful.
5423  */
5424 static int
5425 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5426 {
5427 	mac_client_impl_t	*mcip = flent->fe_mcip;
5428 	i_mac_log_state_t	*lstate = arg;
5429 	netinfo_t		*ninfo;
5430 
5431 	if (mcip == NULL)
5432 		return (0);
5433 
5434 	/*
5435 	 * If the name starts with "vnic", and fe_user_generated is true (to
5436 	 * exclude the mcast and active flow entries created implicitly for
5437 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5438 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5439 	 */
5440 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5441 	    (flent->fe_type & FLOW_USER) != 0) {
5442 		return (0);
5443 	}
5444 
5445 	if (!flent->fe_desc_logged) {
5446 		/*
5447 		 * We don't return error because we want to continue the
5448 		 * walk in case this is the last walk which means we
5449 		 * need to reset fe_desc_logged in all the flows.
5450 		 */
5451 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5452 			return (0);
5453 		list_insert_tail(lstate->mi_list, ninfo);
5454 		flent->fe_desc_logged = B_TRUE;
5455 	}
5456 
5457 	/*
5458 	 * Regardless of the error, we want to proceed in case we have to
5459 	 * reset fe_desc_logged.
5460 	 */
5461 	ninfo = mac_write_flow_stats(flent);
5462 	if (ninfo == NULL)
5463 		return (-1);
5464 
5465 	list_insert_tail(lstate->mi_list, ninfo);
5466 
5467 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5468 		flent->fe_desc_logged = B_FALSE;
5469 
5470 	return (0);
5471 }
5472 
5473 /*
5474  * Log the description for each mac client of this mac_impl_t, if it
5475  * hasn't already been done. Additionally, log statistics for the link as
5476  * well. Walk the flow table and log information for each flow as well.
5477  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5478  * also fe_desc_logged, if flow logging is on) since we want to log the
5479  * description if and when logging is restarted.
5480  *
5481  * Return 0 upon success or -1 upon failure
5482  */
5483 static int
5484 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5485 {
5486 	mac_client_impl_t	*mcip;
5487 	netinfo_t		*ninfo;
5488 
5489 	i_mac_perim_enter(mip);
5490 	/*
5491 	 * Only walk the client list for NIC and etherstub
5492 	 */
5493 	if ((mip->mi_state_flags & MIS_DISABLED) ||
5494 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
5495 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5496 		i_mac_perim_exit(mip);
5497 		return (0);
5498 	}
5499 
5500 	for (mcip = mip->mi_clients_list; mcip != NULL;
5501 	    mcip = mcip->mci_client_next) {
5502 		if (!MCIP_DATAPATH_SETUP(mcip))
5503 			continue;
5504 		if (lstate->mi_lenable) {
5505 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5506 				ninfo = mac_write_link_desc(mcip);
5507 				if (ninfo == NULL) {
5508 				/*
5509 				 * We can't terminate it if this is the last
5510 				 * walk, else there might be some links with
5511 				 * mi_desc_logged set to true, which means
5512 				 * their description won't be logged the next
5513 				 * time logging is started (similarly for the
5514 				 * flows within such links). We can continue
5515 				 * without walking the flow table (i.e. to
5516 				 * set fe_desc_logged to false) because we
5517 				 * won't have written any flow stuff for this
5518 				 * link as we haven't logged the link itself.
5519 				 */
5520 					i_mac_perim_exit(mip);
5521 					if (lstate->mi_last)
5522 						return (0);
5523 					else
5524 						return (-1);
5525 				}
5526 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5527 				list_insert_tail(lstate->mi_list, ninfo);
5528 			}
5529 		}
5530 
5531 		ninfo = mac_write_link_stats(mcip);
5532 		if (ninfo == NULL && !lstate->mi_last) {
5533 			i_mac_perim_exit(mip);
5534 			return (-1);
5535 		}
5536 		list_insert_tail(lstate->mi_list, ninfo);
5537 
5538 		if (lstate->mi_last)
5539 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5540 
5541 		if (lstate->mi_fenable) {
5542 			if (mcip->mci_subflow_tab != NULL) {
5543 				(void) mac_flow_walk_nolock(
5544 				    mcip->mci_subflow_tab, mac_log_flowinfo,
5545 				    lstate);
5546 			}
5547 		}
5548 	}
5549 	i_mac_perim_exit(mip);
5550 	return (0);
5551 }
5552 
5553 /*
5554  * modhash walker function to add a mac_impl_t to a list
5555  */
5556 /*ARGSUSED*/
5557 static uint_t
5558 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5559 {
5560 	list_t			*list = (list_t *)arg;
5561 	mac_impl_t		*mip = (mac_impl_t *)val;
5562 
5563 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5564 		list_insert_tail(list, mip);
5565 		mip->mi_ref++;
5566 	}
5567 
5568 	return (MH_WALK_CONTINUE);
5569 }
5570 
5571 void
5572 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5573 {
5574 	list_t			mac_impl_list;
5575 	mac_impl_t		*mip;
5576 	netinfo_t		*ninfo;
5577 
5578 	/* Create list of mac_impls */
5579 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5580 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5581 	    mi_node));
5582 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5583 	rw_exit(&i_mac_impl_lock);
5584 
5585 	/* Create log entries for each mac_impl */
5586 	for (mip = list_head(&mac_impl_list); mip != NULL;
5587 	    mip = list_next(&mac_impl_list, mip)) {
5588 		if (i_mac_impl_log(mip, lstate) != 0)
5589 			continue;
5590 	}
5591 
5592 	/* Remove elements and destroy list of mac_impls */
5593 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5594 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5595 		mip->mi_ref--;
5596 	}
5597 	rw_exit(&i_mac_impl_lock);
5598 	list_destroy(&mac_impl_list);
5599 
5600 	/*
5601 	 * Write log entries to files outside of locks, free associated
5602 	 * structures, and remove entries from the list.
5603 	 */
5604 	while ((ninfo = list_head(net_log_list)) != NULL) {
5605 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5606 		list_remove(net_log_list, ninfo);
5607 		kmem_free(ninfo->ni_record, ninfo->ni_size);
5608 		kmem_free(ninfo, sizeof (*ninfo));
5609 	}
5610 	list_destroy(net_log_list);
5611 }
5612 
5613 /*
5614  * The timer thread that runs every mac_logging_interval seconds and logs
5615  * link and/or flow information.
5616  */
5617 /* ARGSUSED */
5618 void
5619 mac_log_linkinfo(void *arg)
5620 {
5621 	i_mac_log_state_t	lstate;
5622 	list_t			net_log_list;
5623 
5624 	list_create(&net_log_list, sizeof (netinfo_t),
5625 	    offsetof(netinfo_t, ni_link));
5626 
5627 	rw_enter(&i_mac_impl_lock, RW_READER);
5628 	if (!mac_flow_log_enable && !mac_link_log_enable) {
5629 		rw_exit(&i_mac_impl_lock);
5630 		return;
5631 	}
5632 	lstate.mi_fenable = mac_flow_log_enable;
5633 	lstate.mi_lenable = mac_link_log_enable;
5634 	lstate.mi_last = B_FALSE;
5635 	lstate.mi_list = &net_log_list;
5636 
5637 	/* Write log entries for each mac_impl in the list */
5638 	i_mac_log_info(&net_log_list, &lstate);
5639 
5640 	if (mac_flow_log_enable || mac_link_log_enable) {
5641 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5642 		    SEC_TO_TICK(mac_logging_interval));
5643 	}
5644 }
5645 
5646 typedef struct i_mac_fastpath_state_s {
5647 	boolean_t	mf_disable;
5648 	int		mf_err;
5649 } i_mac_fastpath_state_t;
5650 
5651 /* modhash walker function to enable or disable fastpath */
5652 /*ARGSUSED*/
5653 static uint_t
5654 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5655     void *arg)
5656 {
5657 	i_mac_fastpath_state_t	*state = arg;
5658 	mac_handle_t		mh = (mac_handle_t)val;
5659 
5660 	if (state->mf_disable)
5661 		state->mf_err = mac_fastpath_disable(mh);
5662 	else
5663 		mac_fastpath_enable(mh);
5664 
5665 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5666 }
5667 
5668 /*
5669  * Start the logging timer.
5670  */
5671 int
5672 mac_start_logusage(mac_logtype_t type, uint_t interval)
5673 {
5674 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
5675 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5676 	int			err;
5677 
5678 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5679 	switch (type) {
5680 	case MAC_LOGTYPE_FLOW:
5681 		if (mac_flow_log_enable) {
5682 			rw_exit(&i_mac_impl_lock);
5683 			return (0);
5684 		}
5685 		/* FALLTHRU */
5686 	case MAC_LOGTYPE_LINK:
5687 		if (mac_link_log_enable) {
5688 			rw_exit(&i_mac_impl_lock);
5689 			return (0);
5690 		}
5691 		break;
5692 	default:
5693 		ASSERT(0);
5694 	}
5695 
5696 	/* Disable fastpath */
5697 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5698 	if ((err = dstate.mf_err) != 0) {
5699 		/* Reenable fastpath  */
5700 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5701 		rw_exit(&i_mac_impl_lock);
5702 		return (err);
5703 	}
5704 
5705 	switch (type) {
5706 	case MAC_LOGTYPE_FLOW:
5707 		mac_flow_log_enable = B_TRUE;
5708 		/* FALLTHRU */
5709 	case MAC_LOGTYPE_LINK:
5710 		mac_link_log_enable = B_TRUE;
5711 		break;
5712 	}
5713 
5714 	mac_logging_interval = interval;
5715 	rw_exit(&i_mac_impl_lock);
5716 	mac_log_linkinfo(NULL);
5717 	return (0);
5718 }
5719 
5720 /*
5721  * Stop the logging timer if both link and flow logging are turned off.
5722  */
5723 void
5724 mac_stop_logusage(mac_logtype_t type)
5725 {
5726 	i_mac_log_state_t	lstate;
5727 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5728 	list_t			net_log_list;
5729 
5730 	list_create(&net_log_list, sizeof (netinfo_t),
5731 	    offsetof(netinfo_t, ni_link));
5732 
5733 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5734 
5735 	lstate.mi_fenable = mac_flow_log_enable;
5736 	lstate.mi_lenable = mac_link_log_enable;
5737 	lstate.mi_list = &net_log_list;
5738 
5739 	/* Last walk */
5740 	lstate.mi_last = B_TRUE;
5741 
5742 	switch (type) {
5743 	case MAC_LOGTYPE_FLOW:
5744 		if (lstate.mi_fenable) {
5745 			ASSERT(mac_link_log_enable);
5746 			mac_flow_log_enable = B_FALSE;
5747 			mac_link_log_enable = B_FALSE;
5748 			break;
5749 		}
5750 		/* FALLTHRU */
5751 	case MAC_LOGTYPE_LINK:
5752 		if (!lstate.mi_lenable || mac_flow_log_enable) {
5753 			rw_exit(&i_mac_impl_lock);
5754 			return;
5755 		}
5756 		mac_link_log_enable = B_FALSE;
5757 		break;
5758 	default:
5759 		ASSERT(0);
5760 	}
5761 
5762 	/* Reenable fastpath */
5763 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5764 
5765 	(void) untimeout(mac_logging_timer);
5766 	mac_logging_timer = 0;
5767 
5768 	/* Write log entries for each mac_impl in the list */
5769 	i_mac_log_info(&net_log_list, &lstate);
5770 }
5771 
5772 /*
5773  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5774  */
5775 void
5776 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5777 {
5778 	pri_t			pri;
5779 	int			count;
5780 	mac_soft_ring_set_t	*mac_srs;
5781 
5782 	if (flent->fe_rx_srs_cnt <= 0)
5783 		return;
5784 
5785 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5786 	    SRST_FLOW) {
5787 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
5788 		    mcip->mci_max_pri,
5789 		    flent->fe_resource_props.mrp_priority);
5790 	} else {
5791 		pri = mcip->mci_max_pri;
5792 	}
5793 
5794 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5795 		mac_srs = flent->fe_rx_srs[count];
5796 		mac_update_srs_priority(mac_srs, pri);
5797 	}
5798 	/*
5799 	 * If we have a Tx SRS, we need to modify all the threads associated
5800 	 * with it.
5801 	 */
5802 	if (flent->fe_tx_srs != NULL)
5803 		mac_update_srs_priority(flent->fe_tx_srs, pri);
5804 }
5805 
5806 /*
5807  * RX and TX rings are reserved according to different semantics depending
5808  * on the requests from the MAC clients and type of rings:
5809  *
5810  * On the Tx side, by default we reserve individual rings, independently from
5811  * the groups.
5812  *
5813  * On the Rx side, the reservation is at the granularity of the group
5814  * of rings, and used for v12n level 1 only. It has a special case for the
5815  * primary client.
5816  *
5817  * If a share is allocated to a MAC client, we allocate a TX group and an
5818  * RX group to the client, and assign TX rings and RX rings to these
5819  * groups according to information gathered from the driver through
5820  * the share capability.
5821  *
5822  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5823  * to allocate individual rings out of a group and program the hw classifier
5824  * based on IP address or higher level criteria.
5825  */
5826 
5827 /*
5828  * mac_reserve_tx_ring()
5829  * Reserve a unused ring by marking it with MR_INUSE state.
5830  * As reserved, the ring is ready to function.
5831  *
5832  * Notes for Hybrid I/O:
5833  *
5834  * If a specific ring is needed, it is specified through the desired_ring
5835  * argument. Otherwise that argument is set to NULL.
5836  * If the desired ring was previous allocated to another client, this
5837  * function swaps it with a new ring from the group of unassigned rings.
5838  */
5839 mac_ring_t *
5840 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5841 {
5842 	mac_group_t		*group;
5843 	mac_grp_client_t	*mgcp;
5844 	mac_client_impl_t	*mcip;
5845 	mac_soft_ring_set_t	*srs;
5846 
5847 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5848 
5849 	/*
5850 	 * Find an available ring and start it before changing its status.
5851 	 * The unassigned rings are at the end of the mi_tx_groups
5852 	 * array.
5853 	 */
5854 	group = MAC_DEFAULT_TX_GROUP(mip);
5855 
5856 	/* Can't take the default ring out of the default group */
5857 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5858 
5859 	if (desired_ring->mr_state == MR_FREE) {
5860 		ASSERT(MAC_GROUP_NO_CLIENT(group));
5861 		if (mac_start_ring(desired_ring) != 0)
5862 			return (NULL);
5863 		return (desired_ring);
5864 	}
5865 	/*
5866 	 * There are clients using this ring, so let's move the clients
5867 	 * away from using this ring.
5868 	 */
5869 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5870 		mcip = mgcp->mgc_client;
5871 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
5872 		srs = MCIP_TX_SRS(mcip);
5873 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5874 		mac_tx_invoke_callbacks(mcip,
5875 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5876 		    desired_ring));
5877 		mac_tx_srs_del_ring(srs, desired_ring);
5878 		mac_tx_client_restart((mac_client_handle_t)mcip);
5879 	}
5880 	return (desired_ring);
5881 }
5882 
5883 /*
5884  * For a reserved group with multiple clients, return the primary client.
5885  */
5886 static mac_client_impl_t *
5887 mac_get_grp_primary(mac_group_t *grp)
5888 {
5889 	mac_grp_client_t	*mgcp = grp->mrg_clients;
5890 	mac_client_impl_t	*mcip;
5891 
5892 	while (mgcp != NULL) {
5893 		mcip = mgcp->mgc_client;
5894 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5895 			return (mcip);
5896 		mgcp = mgcp->mgc_next;
5897 	}
5898 	return (NULL);
5899 }
5900 
5901 /*
5902  * Hybrid I/O specifies the ring that should be given to a share.
5903  * If the ring is already used by clients, then we need to release
5904  * the ring back to the default group so that we can give it to
5905  * the share. This means the clients using this ring now get a
5906  * replacement ring. If there aren't any replacement rings, this
5907  * function returns a failure.
5908  */
5909 static int
5910 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5911     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5912 {
5913 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
5914 	mac_resource_props_t	*mrp;
5915 	mac_client_impl_t	*mcip;
5916 	mac_group_t		*defgrp;
5917 	mac_ring_t		*tring;
5918 	mac_group_t		*tgrp;
5919 	int			i;
5920 	int			j;
5921 
5922 	mcip = MAC_GROUP_ONLY_CLIENT(group);
5923 	if (mcip == NULL)
5924 		mcip = mac_get_grp_primary(group);
5925 	ASSERT(mcip != NULL);
5926 	ASSERT(mcip->mci_share == NULL);
5927 
5928 	mrp = MCIP_RESOURCE_PROPS(mcip);
5929 	if (ring_type == MAC_RING_TYPE_RX) {
5930 		defgrp = mip->mi_rx_donor_grp;
5931 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5932 			/* Need to put this mac client in the default group */
5933 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5934 				return (ENOSPC);
5935 		} else {
5936 			/*
5937 			 * Switch this ring with some other ring from
5938 			 * the default group.
5939 			 */
5940 			for (tring = defgrp->mrg_rings; tring != NULL;
5941 			    tring = tring->mr_next) {
5942 				if (tring->mr_index == 0)
5943 					continue;
5944 				for (j = 0; j < nrings; j++) {
5945 					if (rings[j] == tring)
5946 						break;
5947 				}
5948 				if (j >= nrings)
5949 					break;
5950 			}
5951 			if (tring == NULL)
5952 				return (ENOSPC);
5953 			if (mac_group_mov_ring(mip, group, tring) != 0)
5954 				return (ENOSPC);
5955 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
5956 				(void) mac_group_mov_ring(mip, defgrp, tring);
5957 				return (ENOSPC);
5958 			}
5959 		}
5960 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
5961 		return (0);
5962 	}
5963 
5964 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
5965 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
5966 		/*
5967 		 * See if we can get a spare ring to replace the default
5968 		 * ring.
5969 		 */
5970 		if (defgrp->mrg_cur_count == 1) {
5971 			/*
5972 			 * Need to get a ring from another client, see if
5973 			 * there are any clients that can be moved to
5974 			 * the default group, thereby freeing some rings.
5975 			 */
5976 			for (i = 0; i < mip->mi_tx_group_count; i++) {
5977 				tgrp = &mip->mi_tx_groups[i];
5978 				if (tgrp->mrg_state ==
5979 				    MAC_GROUP_STATE_REGISTERED) {
5980 					continue;
5981 				}
5982 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
5983 				if (mcip == NULL)
5984 					mcip = mac_get_grp_primary(tgrp);
5985 				ASSERT(mcip != NULL);
5986 				mrp = MCIP_RESOURCE_PROPS(mcip);
5987 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
5988 					ASSERT(tgrp->mrg_cur_count == 1);
5989 					/*
5990 					 * If this ring is part of the
5991 					 * rings asked by the share we cannot
5992 					 * use it as the default ring.
5993 					 */
5994 					for (j = 0; j < nrings; j++) {
5995 						if (rings[j] == tgrp->mrg_rings)
5996 							break;
5997 					}
5998 					if (j < nrings)
5999 						continue;
6000 					mac_tx_client_quiesce(
6001 					    (mac_client_handle_t)mcip);
6002 					mac_tx_switch_group(mcip, tgrp,
6003 					    defgrp);
6004 					mac_tx_client_restart(
6005 					    (mac_client_handle_t)mcip);
6006 					break;
6007 				}
6008 			}
6009 			/*
6010 			 * All the rings are reserved, can't give up the
6011 			 * default ring.
6012 			 */
6013 			if (defgrp->mrg_cur_count <= 1)
6014 				return (ENOSPC);
6015 		}
6016 		/*
6017 		 * Swap the default ring with another.
6018 		 */
6019 		for (tring = defgrp->mrg_rings; tring != NULL;
6020 		    tring = tring->mr_next) {
6021 			/*
6022 			 * If this ring is part of the rings asked by the
6023 			 * share we cannot use it as the default ring.
6024 			 */
6025 			for (j = 0; j < nrings; j++) {
6026 				if (rings[j] == tring)
6027 					break;
6028 			}
6029 			if (j >= nrings)
6030 				break;
6031 		}
6032 		ASSERT(tring != NULL);
6033 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6034 		return (0);
6035 	}
6036 	/*
6037 	 * The Tx ring is with a group reserved by a MAC client. See if
6038 	 * we can swap it.
6039 	 */
6040 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6041 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6042 	if (mcip == NULL)
6043 		mcip = mac_get_grp_primary(group);
6044 	ASSERT(mcip !=  NULL);
6045 	mrp = MCIP_RESOURCE_PROPS(mcip);
6046 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6047 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6048 		ASSERT(group->mrg_cur_count == 1);
6049 		/* Put this mac client in the default group */
6050 		mac_tx_switch_group(mcip, group, defgrp);
6051 	} else {
6052 		/*
6053 		 * Switch this ring with some other ring from
6054 		 * the default group.
6055 		 */
6056 		for (tring = defgrp->mrg_rings; tring != NULL;
6057 		    tring = tring->mr_next) {
6058 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6059 				continue;
6060 			/*
6061 			 * If this ring is part of the rings asked by the
6062 			 * share we cannot use it for swapping.
6063 			 */
6064 			for (j = 0; j < nrings; j++) {
6065 				if (rings[j] == tring)
6066 					break;
6067 			}
6068 			if (j >= nrings)
6069 				break;
6070 		}
6071 		if (tring == NULL) {
6072 			mac_tx_client_restart((mac_client_handle_t)mcip);
6073 			return (ENOSPC);
6074 		}
6075 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6076 			mac_tx_client_restart((mac_client_handle_t)mcip);
6077 			return (ENOSPC);
6078 		}
6079 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6080 			(void) mac_group_mov_ring(mip, defgrp, tring);
6081 			mac_tx_client_restart((mac_client_handle_t)mcip);
6082 			return (ENOSPC);
6083 		}
6084 	}
6085 	mac_tx_client_restart((mac_client_handle_t)mcip);
6086 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6087 	return (0);
6088 }
6089 
6090 /*
6091  * Populate a zero-ring group with rings. If the share is non-NULL,
6092  * the rings are chosen according to that share.
6093  * Invoked after allocating a new RX or TX group through
6094  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6095  * Returns zero on success, an errno otherwise.
6096  */
6097 int
6098 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6099     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6100     uint32_t ringcnt)
6101 {
6102 	mac_ring_t **rings, *ring;
6103 	uint_t nrings;
6104 	int rv = 0, i = 0, j;
6105 
6106 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6107 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6108 	    (ring_type == MAC_RING_TYPE_TX &&
6109 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6110 
6111 	/*
6112 	 * First find the rings to allocate to the group.
6113 	 */
6114 	if (share != NULL) {
6115 		/* get rings through ms_squery() */
6116 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6117 		ASSERT(nrings != 0);
6118 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6119 		    KM_SLEEP);
6120 		mip->mi_share_capab.ms_squery(share, ring_type,
6121 		    (mac_ring_handle_t *)rings, &nrings);
6122 		for (i = 0; i < nrings; i++) {
6123 			/*
6124 			 * If we have given this ring to a non-default
6125 			 * group, we need to check if we can get this
6126 			 * ring.
6127 			 */
6128 			ring = rings[i];
6129 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6130 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6131 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6132 				    ring, rings, nrings) != 0) {
6133 					rv = ENOSPC;
6134 					goto bail;
6135 				}
6136 			}
6137 		}
6138 	} else {
6139 		/*
6140 		 * Pick one ring from default group.
6141 		 *
6142 		 * for now pick the second ring which requires the first ring
6143 		 * at index 0 to stay in the default group, since it is the
6144 		 * ring which carries the multicast traffic.
6145 		 * We need a better way for a driver to indicate this,
6146 		 * for example a per-ring flag.
6147 		 */
6148 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6149 		    KM_SLEEP);
6150 		for (ring = src_group->mrg_rings; ring != NULL;
6151 		    ring = ring->mr_next) {
6152 			if (ring_type == MAC_RING_TYPE_RX &&
6153 			    ring->mr_index == 0) {
6154 				continue;
6155 			}
6156 			if (ring_type == MAC_RING_TYPE_TX &&
6157 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6158 				continue;
6159 			}
6160 			rings[i++] = ring;
6161 			if (i == ringcnt)
6162 				break;
6163 		}
6164 		ASSERT(ring != NULL);
6165 		nrings = i;
6166 		/* Not enough rings as required */
6167 		if (nrings != ringcnt) {
6168 			rv = ENOSPC;
6169 			goto bail;
6170 		}
6171 	}
6172 
6173 	switch (ring_type) {
6174 	case MAC_RING_TYPE_RX:
6175 		if (src_group->mrg_cur_count - nrings < 1) {
6176 			/* we ran out of rings */
6177 			rv = ENOSPC;
6178 			goto bail;
6179 		}
6180 
6181 		/* move receive rings to new group */
6182 		for (i = 0; i < nrings; i++) {
6183 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6184 			if (rv != 0) {
6185 				/* move rings back on failure */
6186 				for (j = 0; j < i; j++) {
6187 					(void) mac_group_mov_ring(mip,
6188 					    src_group, rings[j]);
6189 				}
6190 				goto bail;
6191 			}
6192 		}
6193 		break;
6194 
6195 	case MAC_RING_TYPE_TX: {
6196 		mac_ring_t *tmp_ring;
6197 
6198 		/* move the TX rings to the new group */
6199 		for (i = 0; i < nrings; i++) {
6200 			/* get the desired ring */
6201 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6202 			if (tmp_ring == NULL) {
6203 				rv = ENOSPC;
6204 				goto bail;
6205 			}
6206 			ASSERT(tmp_ring == rings[i]);
6207 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6208 			if (rv != 0) {
6209 				/* cleanup on failure */
6210 				for (j = 0; j < i; j++) {
6211 					(void) mac_group_mov_ring(mip,
6212 					    MAC_DEFAULT_TX_GROUP(mip),
6213 					    rings[j]);
6214 				}
6215 				goto bail;
6216 			}
6217 		}
6218 		break;
6219 	}
6220 	}
6221 
6222 	/* add group to share */
6223 	if (share != NULL)
6224 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6225 
6226 bail:
6227 	/* free temporary array of rings */
6228 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6229 
6230 	return (rv);
6231 }
6232 
6233 void
6234 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6235 {
6236 	mac_grp_client_t *mgcp;
6237 
6238 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6239 		if (mgcp->mgc_client == mcip)
6240 			break;
6241 	}
6242 
6243 	VERIFY(mgcp == NULL);
6244 
6245 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6246 	mgcp->mgc_client = mcip;
6247 	mgcp->mgc_next = grp->mrg_clients;
6248 	grp->mrg_clients = mgcp;
6249 
6250 }
6251 
6252 void
6253 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6254 {
6255 	mac_grp_client_t *mgcp, **pprev;
6256 
6257 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6258 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6259 		if (mgcp->mgc_client == mcip)
6260 			break;
6261 	}
6262 
6263 	ASSERT(mgcp != NULL);
6264 
6265 	*pprev = mgcp->mgc_next;
6266 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6267 }
6268 
6269 /*
6270  * mac_reserve_rx_group()
6271  *
6272  * Finds an available group and exclusively reserves it for a client.
6273  * The group is chosen to suit the flow's resource controls (bandwidth and
6274  * fanout requirements) and the address type.
6275  * If the requestor is the pimary MAC then return the group with the
6276  * largest number of rings, otherwise the default ring when available.
6277  */
6278 mac_group_t *
6279 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6280 {
6281 	mac_share_handle_t	share = mcip->mci_share;
6282 	mac_impl_t		*mip = mcip->mci_mip;
6283 	mac_group_t		*grp = NULL;
6284 	int			i;
6285 	int			err = 0;
6286 	mac_address_t		*map;
6287 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6288 	int			nrings;
6289 	int			donor_grp_rcnt;
6290 	boolean_t		need_exclgrp = B_FALSE;
6291 	int			need_rings = 0;
6292 	mac_group_t		*candidate_grp = NULL;
6293 	mac_client_impl_t	*gclient;
6294 	mac_resource_props_t	*gmrp;
6295 	mac_group_t		*donorgrp = NULL;
6296 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6297 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6298 	boolean_t		isprimary;
6299 
6300 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6301 
6302 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6303 
6304 	/*
6305 	 * Check if a group already has this mac address (case of VLANs)
6306 	 * unless we are moving this MAC client from one group to another.
6307 	 */
6308 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6309 		if (map->ma_group != NULL)
6310 			return (map->ma_group);
6311 	}
6312 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6313 		return (NULL);
6314 	/*
6315 	 * If exclusive open, return NULL which will enable the
6316 	 * caller to use the default group.
6317 	 */
6318 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6319 		return (NULL);
6320 
6321 	/* For dynamic groups default unspecified to 1 */
6322 	if (rxhw && unspec &&
6323 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6324 		mrp->mrp_nrxrings = 1;
6325 	}
6326 	/*
6327 	 * For static grouping we allow only specifying rings=0 and
6328 	 * unspecified
6329 	 */
6330 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6331 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6332 		return (NULL);
6333 	}
6334 	if (rxhw) {
6335 		/*
6336 		 * We have explicitly asked for a group (with nrxrings,
6337 		 * if unspec).
6338 		 */
6339 		if (unspec || mrp->mrp_nrxrings > 0) {
6340 			need_exclgrp = B_TRUE;
6341 			need_rings = mrp->mrp_nrxrings;
6342 		} else if (mrp->mrp_nrxrings == 0) {
6343 			/*
6344 			 * We have asked for a software group.
6345 			 */
6346 			return (NULL);
6347 		}
6348 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
6349 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6350 		/*
6351 		 * If the primary is the only active client on this
6352 		 * mip and we have not asked for any rings, we give
6353 		 * it the default group so that the primary gets to
6354 		 * use all the rings.
6355 		 */
6356 		return (NULL);
6357 	}
6358 
6359 	/* The group that can donate rings */
6360 	donorgrp = mip->mi_rx_donor_grp;
6361 
6362 	/*
6363 	 * The number of rings that the default group can donate.
6364 	 * We need to leave at least one ring.
6365 	 */
6366 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6367 
6368 	/*
6369 	 * Try to exclusively reserve a RX group.
6370 	 *
6371 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6372 	 * client), try to reserve the a non-default RX group and give
6373 	 * it all the rings from the donor group, except the default ring
6374 	 *
6375 	 * For flows requiring HW_RING (unicast flow of other clients), try
6376 	 * to reserve non-default RX group with the specified number of
6377 	 * rings, if available.
6378 	 *
6379 	 * For flows that have not asked for software or hardware ring,
6380 	 * try to reserve a non-default group with 1 ring, if available.
6381 	 */
6382 	for (i = 1; i < mip->mi_rx_group_count; i++) {
6383 		grp = &mip->mi_rx_groups[i];
6384 
6385 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6386 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6387 
6388 		/*
6389 		 * Check if this group could be a candidate group for
6390 		 * eviction if we need a group for this MAC client,
6391 		 * but there aren't any. A candidate group is one
6392 		 * that didn't ask for an exclusive group, but got
6393 		 * one and it has enough rings (combined with what
6394 		 * the donor group can donate) for the new MAC
6395 		 * client
6396 		 */
6397 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6398 			/*
6399 			 * If the primary/donor group is not the default
6400 			 * group, don't bother looking for a candidate group.
6401 			 * If we don't have enough rings we will check
6402 			 * if the primary group can be vacated.
6403 			 */
6404 			if (candidate_grp == NULL &&
6405 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6406 				ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6407 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6408 				if (gclient == NULL)
6409 					gclient = mac_get_grp_primary(grp);
6410 				ASSERT(gclient != NULL);
6411 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6412 				if (gclient->mci_share == NULL &&
6413 				    (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6414 				    (unspec ||
6415 				    (grp->mrg_cur_count + donor_grp_rcnt >=
6416 				    need_rings))) {
6417 					candidate_grp = grp;
6418 				}
6419 			}
6420 			continue;
6421 		}
6422 		/*
6423 		 * This group could already be SHARED by other multicast
6424 		 * flows on this client. In that case, the group would
6425 		 * be shared and has already been started.
6426 		 */
6427 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6428 
6429 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6430 		    (mac_start_group(grp) != 0)) {
6431 			continue;
6432 		}
6433 
6434 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6435 			break;
6436 		ASSERT(grp->mrg_cur_count == 0);
6437 
6438 		/*
6439 		 * Populate the group. Rings should be taken
6440 		 * from the donor group.
6441 		 */
6442 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6443 
6444 		/*
6445 		 * If the donor group can't donate, let's just walk and
6446 		 * see if someone can vacate a group, so that we have
6447 		 * enough rings for this, unless we already have
6448 		 * identified a candiate group..
6449 		 */
6450 		if (nrings <= donor_grp_rcnt) {
6451 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6452 			    donorgrp, grp, share, nrings);
6453 			if (err == 0) {
6454 				/*
6455 				 * For a share i_mac_group_allocate_rings gets
6456 				 * the rings from the driver, let's populate
6457 				 * the property for the client now.
6458 				 */
6459 				if (share != NULL) {
6460 					mac_client_set_rings(
6461 					    (mac_client_handle_t)mcip,
6462 					    grp->mrg_cur_count, -1);
6463 				}
6464 				if (mac_is_primary_client(mcip) && !rxhw)
6465 					mip->mi_rx_donor_grp = grp;
6466 				break;
6467 			}
6468 		}
6469 
6470 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6471 		    mip->mi_name, int, grp->mrg_index, int, err);
6472 
6473 		/*
6474 		 * It's a dynamic group but the grouping operation
6475 		 * failed.
6476 		 */
6477 		mac_stop_group(grp);
6478 	}
6479 	/* We didn't find an exclusive group for this MAC client */
6480 	if (i >= mip->mi_rx_group_count) {
6481 
6482 		if (!need_exclgrp)
6483 			return (NULL);
6484 
6485 		/*
6486 		 * If we found a candidate group then we switch the
6487 		 * MAC client from the candidate_group to the default
6488 		 * group and give the group to this MAC client. If
6489 		 * we didn't find a candidate_group, check if the
6490 		 * primary is in its own group and if it can make way
6491 		 * for this MAC client.
6492 		 */
6493 		if (candidate_grp == NULL &&
6494 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6495 		    donorgrp->mrg_cur_count >= need_rings) {
6496 			candidate_grp = donorgrp;
6497 		}
6498 		if (candidate_grp != NULL) {
6499 			boolean_t	prim_grp = B_FALSE;
6500 
6501 			/*
6502 			 * Switch the MAC client from the candidate group
6503 			 * to the default group.. If this group was the
6504 			 * donor group, then after the switch we need
6505 			 * to update the donor group too.
6506 			 */
6507 			grp = candidate_grp;
6508 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6509 			if (gclient == NULL)
6510 				gclient = mac_get_grp_primary(grp);
6511 			if (grp == mip->mi_rx_donor_grp)
6512 				prim_grp = B_TRUE;
6513 			if (mac_rx_switch_group(gclient, grp,
6514 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6515 				return (NULL);
6516 			}
6517 			if (prim_grp) {
6518 				mip->mi_rx_donor_grp =
6519 				    MAC_DEFAULT_RX_GROUP(mip);
6520 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6521 			}
6522 
6523 
6524 			/*
6525 			 * Now give this group with the required rings
6526 			 * to this MAC client.
6527 			 */
6528 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6529 			if (mac_start_group(grp) != 0)
6530 				return (NULL);
6531 
6532 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6533 				return (grp);
6534 
6535 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6536 			ASSERT(grp->mrg_cur_count == 0);
6537 			ASSERT(donor_grp_rcnt >= need_rings);
6538 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6539 			    donorgrp, grp, share, need_rings);
6540 			if (err == 0) {
6541 				/*
6542 				 * For a share i_mac_group_allocate_rings gets
6543 				 * the rings from the driver, let's populate
6544 				 * the property for the client now.
6545 				 */
6546 				if (share != NULL) {
6547 					mac_client_set_rings(
6548 					    (mac_client_handle_t)mcip,
6549 					    grp->mrg_cur_count, -1);
6550 				}
6551 				DTRACE_PROBE2(rx__group__reserved,
6552 				    char *, mip->mi_name, int, grp->mrg_index);
6553 				return (grp);
6554 			}
6555 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6556 			    mip->mi_name, int, grp->mrg_index, int, err);
6557 			mac_stop_group(grp);
6558 		}
6559 		return (NULL);
6560 	}
6561 	ASSERT(grp != NULL);
6562 
6563 	DTRACE_PROBE2(rx__group__reserved,
6564 	    char *, mip->mi_name, int, grp->mrg_index);
6565 	return (grp);
6566 }
6567 
6568 /*
6569  * mac_rx_release_group()
6570  *
6571  * This is called when there are no clients left for the group.
6572  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6573  * and if it is a non default group, the shares are removed and
6574  * all rings are assigned back to default group.
6575  */
6576 void
6577 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6578 {
6579 	mac_impl_t		*mip = mcip->mci_mip;
6580 	mac_ring_t		*ring;
6581 
6582 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6583 
6584 	if (mip->mi_rx_donor_grp == group)
6585 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6586 
6587 	/*
6588 	 * This is the case where there are no clients left. Any
6589 	 * SRS etc on this group have also be quiesced.
6590 	 */
6591 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6592 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6593 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6594 			/*
6595 			 * Remove the SRS associated with the HW ring.
6596 			 * As a result, polling will be disabled.
6597 			 */
6598 			ring->mr_srs = NULL;
6599 		}
6600 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6601 		    ring->mr_state == MR_INUSE);
6602 		if (ring->mr_state == MR_INUSE) {
6603 			mac_stop_ring(ring);
6604 			ring->mr_flag = 0;
6605 		}
6606 	}
6607 
6608 	/* remove group from share */
6609 	if (mcip->mci_share != NULL) {
6610 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
6611 		    group->mrg_driver);
6612 	}
6613 
6614 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6615 		mac_ring_t *ring;
6616 
6617 		/*
6618 		 * Rings were dynamically allocated to group.
6619 		 * Move rings back to default group.
6620 		 */
6621 		while ((ring = group->mrg_rings) != NULL) {
6622 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6623 			    ring);
6624 		}
6625 	}
6626 	mac_stop_group(group);
6627 	/*
6628 	 * Possible improvement: See if we can assign the group just released
6629 	 * to a another client of the mip
6630 	 */
6631 }
6632 
6633 /*
6634  * When we move the primary's mac address between groups, we need to also
6635  * take all the clients sharing the same mac address along with it (VLANs)
6636  * We remove the mac address for such clients from the group after quiescing
6637  * them. When we add the mac address we restart the client. Note that
6638  * the primary's mac address is removed from the group after all the
6639  * other clients sharing the address are removed. Similarly, the primary's
6640  * mac address is added before all the other client's mac address are
6641  * added. While grp is the group where the clients reside, tgrp is
6642  * the group where the addresses have to be added.
6643  */
6644 static void
6645 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6646     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6647 {
6648 	mac_impl_t		*mip = mcip->mci_mip;
6649 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6650 	mac_client_impl_t	*gmcip;
6651 	boolean_t		prim;
6652 
6653 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6654 
6655 	/*
6656 	 * If the clients are in a non-default group, we just have to
6657 	 * walk the group's client list. If it is in the default group
6658 	 * (which will be shared by other clients as well, we need to
6659 	 * check if the unicast address matches mcip's unicast.
6660 	 */
6661 	while (mgcp != NULL) {
6662 		gmcip = mgcp->mgc_client;
6663 		if (gmcip != mcip &&
6664 		    (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6665 		    mcip->mci_unicast == gmcip->mci_unicast)) {
6666 			if (!add) {
6667 				mac_rx_client_quiesce(
6668 				    (mac_client_handle_t)gmcip);
6669 				(void) mac_remove_macaddr(mcip->mci_unicast);
6670 			} else {
6671 				(void) mac_add_macaddr(mip, tgrp, maddr, prim);
6672 				mac_rx_client_restart(
6673 				    (mac_client_handle_t)gmcip);
6674 			}
6675 		}
6676 		mgcp = mgcp->mgc_next;
6677 	}
6678 }
6679 
6680 
6681 /*
6682  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6683  * we need to take any VLANs etc. together too.
6684  */
6685 static int
6686 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6687     mac_group_t *tgrp)
6688 {
6689 	mac_impl_t		*mip = mcip->mci_mip;
6690 	uint8_t			maddr[MAXMACADDRLEN];
6691 	int			err = 0;
6692 	boolean_t		prim;
6693 	boolean_t		multiclnt = B_FALSE;
6694 
6695 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
6696 	ASSERT(mcip->mci_unicast != NULL);
6697 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6698 
6699 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6700 	if (mcip->mci_unicast->ma_nusers > 1) {
6701 		mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6702 		multiclnt = B_TRUE;
6703 	}
6704 	ASSERT(mcip->mci_unicast->ma_nusers == 1);
6705 	err = mac_remove_macaddr(mcip->mci_unicast);
6706 	if (err != 0) {
6707 		mac_rx_client_restart((mac_client_handle_t)mcip);
6708 		if (multiclnt) {
6709 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6710 			    B_TRUE);
6711 		}
6712 		return (err);
6713 	}
6714 	/*
6715 	 * Program the H/W Classifier first, if this fails we need
6716 	 * not proceed with the other stuff.
6717 	 */
6718 	if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6719 		/* Revert back the H/W Classifier */
6720 		if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6721 			/*
6722 			 * This should not fail now since it worked earlier,
6723 			 * should we panic?
6724 			 */
6725 			cmn_err(CE_WARN,
6726 			    "mac_rx_switch_group: switching %p back"
6727 			    " to group %p failed!!", (void *)mcip,
6728 			    (void *)fgrp);
6729 		}
6730 		mac_rx_client_restart((mac_client_handle_t)mcip);
6731 		if (multiclnt) {
6732 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6733 			    B_TRUE);
6734 		}
6735 		return (err);
6736 	}
6737 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6738 	mac_rx_client_restart((mac_client_handle_t)mcip);
6739 	if (multiclnt)
6740 		mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6741 	return (err);
6742 }
6743 
6744 /*
6745  * Switch the MAC client from one group to another. This means we need
6746  * to remove the MAC address from the group, remove the MAC client,
6747  * teardown the SRSs and revert the group state. Then, we add the client
6748  * to the destination group, set the SRSs, and add the MAC address to the
6749  * group.
6750  */
6751 int
6752 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6753     mac_group_t *tgrp)
6754 {
6755 	int			err;
6756 	mac_group_state_t	next_state;
6757 	mac_client_impl_t	*group_only_mcip;
6758 	mac_client_impl_t	*gmcip;
6759 	mac_impl_t		*mip = mcip->mci_mip;
6760 	mac_grp_client_t	*mgcp;
6761 
6762 	ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6763 
6764 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6765 		return (err);
6766 
6767 	/*
6768 	 * The group might be reserved, but SRSs may not be set up, e.g.
6769 	 * primary and its vlans using a reserved group.
6770 	 */
6771 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6772 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6773 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6774 	}
6775 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6776 		mgcp = fgrp->mrg_clients;
6777 		while (mgcp != NULL) {
6778 			gmcip = mgcp->mgc_client;
6779 			mgcp = mgcp->mgc_next;
6780 			mac_group_remove_client(fgrp, gmcip);
6781 			mac_group_add_client(tgrp, gmcip);
6782 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
6783 		}
6784 		mac_release_rx_group(mcip, fgrp);
6785 		ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6786 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6787 	} else {
6788 		mac_group_remove_client(fgrp, mcip);
6789 		mac_group_add_client(tgrp, mcip);
6790 		mcip->mci_flent->fe_rx_ring_group = tgrp;
6791 		/*
6792 		 * If there are other clients (VLANs) sharing this address
6793 		 * we should be here only for the primary.
6794 		 */
6795 		if (mcip->mci_unicast->ma_nusers > 1) {
6796 			/*
6797 			 * We need to move all the clients that are using
6798 			 * this h/w address.
6799 			 */
6800 			mgcp = fgrp->mrg_clients;
6801 			while (mgcp != NULL) {
6802 				gmcip = mgcp->mgc_client;
6803 				mgcp = mgcp->mgc_next;
6804 				if (mcip->mci_unicast == gmcip->mci_unicast) {
6805 					mac_group_remove_client(fgrp, gmcip);
6806 					mac_group_add_client(tgrp, gmcip);
6807 					gmcip->mci_flent->fe_rx_ring_group =
6808 					    tgrp;
6809 				}
6810 			}
6811 		}
6812 		/*
6813 		 * The default group will still take the multicast,
6814 		 * broadcast traffic etc., so it won't go to
6815 		 * MAC_GROUP_STATE_REGISTERED.
6816 		 */
6817 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6818 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6819 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6820 	}
6821 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
6822 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6823 	mac_set_group_state(tgrp, next_state);
6824 	/*
6825 	 * If the destination group is reserved, setup the SRSs etc.
6826 	 */
6827 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6828 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6829 		mac_fanout_setup(mcip, mcip->mci_flent,
6830 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6831 		    NULL);
6832 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6833 	} else {
6834 		mac_rx_switch_grp_to_sw(tgrp);
6835 	}
6836 	return (0);
6837 }
6838 
6839 /*
6840  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6841  * when a share was allocated to the client.
6842  */
6843 mac_group_t *
6844 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6845 {
6846 	mac_impl_t		*mip = mcip->mci_mip;
6847 	mac_group_t		*grp = NULL;
6848 	int			rv;
6849 	int			i;
6850 	int			err;
6851 	mac_group_t		*defgrp;
6852 	mac_share_handle_t	share = mcip->mci_share;
6853 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6854 	int			nrings;
6855 	int			defnrings;
6856 	boolean_t		need_exclgrp = B_FALSE;
6857 	int			need_rings = 0;
6858 	mac_group_t		*candidate_grp = NULL;
6859 	mac_client_impl_t	*gclient;
6860 	mac_resource_props_t	*gmrp;
6861 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
6862 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6863 	boolean_t		isprimary;
6864 
6865 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6866 	/*
6867 	 * When we come here for a VLAN on the primary (dladm create-vlan),
6868 	 * we need to pair it along with the primary (to keep it consistent
6869 	 * with the RX side). So, we check if the primary is already assigned
6870 	 * to a group and return the group if so. The other way is also
6871 	 * true, i.e. the VLAN is already created and now we are plumbing
6872 	 * the primary.
6873 	 */
6874 	if (!move && isprimary) {
6875 		for (gclient = mip->mi_clients_list; gclient != NULL;
6876 		    gclient = gclient->mci_client_next) {
6877 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6878 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
6879 				return (gclient->mci_flent->fe_tx_ring_group);
6880 			}
6881 		}
6882 	}
6883 
6884 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6885 		return (NULL);
6886 
6887 	/* For dynamic groups, default unspec to 1 */
6888 	if (txhw && unspec &&
6889 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6890 		mrp->mrp_ntxrings = 1;
6891 	}
6892 	/*
6893 	 * For static grouping we allow only specifying rings=0 and
6894 	 * unspecified
6895 	 */
6896 	if (txhw && mrp->mrp_ntxrings > 0 &&
6897 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6898 		return (NULL);
6899 	}
6900 
6901 	if (txhw) {
6902 		/*
6903 		 * We have explicitly asked for a group (with ntxrings,
6904 		 * if unspec).
6905 		 */
6906 		if (unspec || mrp->mrp_ntxrings > 0) {
6907 			need_exclgrp = B_TRUE;
6908 			need_rings = mrp->mrp_ntxrings;
6909 		} else if (mrp->mrp_ntxrings == 0) {
6910 			/*
6911 			 * We have asked for a software group.
6912 			 */
6913 			return (NULL);
6914 		}
6915 	}
6916 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6917 	/*
6918 	 * The number of rings that the default group can donate.
6919 	 * We need to leave at least one ring - the default ring - in
6920 	 * this group.
6921 	 */
6922 	defnrings = defgrp->mrg_cur_count - 1;
6923 
6924 	/*
6925 	 * Primary gets default group unless explicitly told not
6926 	 * to  (i.e. rings > 0).
6927 	 */
6928 	if (isprimary && !need_exclgrp)
6929 		return (NULL);
6930 
6931 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6932 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
6933 		grp = &mip->mi_tx_groups[i];
6934 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6935 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6936 			/*
6937 			 * Select a candidate for replacement if we don't
6938 			 * get an exclusive group. A candidate group is one
6939 			 * that didn't ask for an exclusive group, but got
6940 			 * one and it has enough rings (combined with what
6941 			 * the default group can donate) for the new MAC
6942 			 * client.
6943 			 */
6944 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6945 			    candidate_grp == NULL) {
6946 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6947 				if (gclient == NULL)
6948 					gclient = mac_get_grp_primary(grp);
6949 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6950 				if (gclient->mci_share == NULL &&
6951 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
6952 				    (unspec ||
6953 				    (grp->mrg_cur_count + defnrings) >=
6954 				    need_rings)) {
6955 					candidate_grp = grp;
6956 				}
6957 			}
6958 			continue;
6959 		}
6960 		/*
6961 		 * If the default can't donate let's just walk and
6962 		 * see if someone can vacate a group, so that we have
6963 		 * enough rings for this.
6964 		 */
6965 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
6966 		    nrings <= defnrings) {
6967 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
6968 				rv = mac_start_group(grp);
6969 				ASSERT(rv == 0);
6970 			}
6971 			break;
6972 		}
6973 	}
6974 
6975 	/* The default group */
6976 	if (i >= mip->mi_tx_group_count) {
6977 		/*
6978 		 * If we need an exclusive group and have identified a
6979 		 * candidate group we switch the MAC client from the
6980 		 * candidate group to the default group and give the
6981 		 * candidate group to this client.
6982 		 */
6983 		if (need_exclgrp && candidate_grp != NULL) {
6984 			/*
6985 			 * Switch the MAC client from the candidate group
6986 			 * to the default group.
6987 			 */
6988 			grp = candidate_grp;
6989 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6990 			if (gclient == NULL)
6991 				gclient = mac_get_grp_primary(grp);
6992 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
6993 			mac_tx_switch_group(gclient, grp, defgrp);
6994 			mac_tx_client_restart((mac_client_handle_t)gclient);
6995 
6996 			/*
6997 			 * Give the candidate group with the specified number
6998 			 * of rings to this MAC client.
6999 			 */
7000 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7001 			rv = mac_start_group(grp);
7002 			ASSERT(rv == 0);
7003 
7004 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7005 				return (grp);
7006 
7007 			ASSERT(grp->mrg_cur_count == 0);
7008 			ASSERT(defgrp->mrg_cur_count > need_rings);
7009 
7010 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7011 			    defgrp, grp, share, need_rings);
7012 			if (err == 0) {
7013 				/*
7014 				 * For a share i_mac_group_allocate_rings gets
7015 				 * the rings from the driver, let's populate
7016 				 * the property for the client now.
7017 				 */
7018 				if (share != NULL) {
7019 					mac_client_set_rings(
7020 					    (mac_client_handle_t)mcip, -1,
7021 					    grp->mrg_cur_count);
7022 				}
7023 				mip->mi_tx_group_free--;
7024 				return (grp);
7025 			}
7026 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7027 			    mip->mi_name, int, grp->mrg_index, int, err);
7028 			mac_stop_group(grp);
7029 		}
7030 		return (NULL);
7031 	}
7032 	/*
7033 	 * We got an exclusive group, but it is not dynamic.
7034 	 */
7035 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7036 		mip->mi_tx_group_free--;
7037 		return (grp);
7038 	}
7039 
7040 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7041 	    share, nrings);
7042 	if (rv != 0) {
7043 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7044 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7045 		mac_stop_group(grp);
7046 		return (NULL);
7047 	}
7048 	/*
7049 	 * For a share i_mac_group_allocate_rings gets the rings from the
7050 	 * driver, let's populate the property for the client now.
7051 	 */
7052 	if (share != NULL) {
7053 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7054 		    grp->mrg_cur_count);
7055 	}
7056 	mip->mi_tx_group_free--;
7057 	return (grp);
7058 }
7059 
7060 void
7061 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7062 {
7063 	mac_impl_t		*mip = mcip->mci_mip;
7064 	mac_share_handle_t	share = mcip->mci_share;
7065 	mac_ring_t		*ring;
7066 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7067 	mac_group_t		*defgrp;
7068 
7069 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7070 	if (srs != NULL) {
7071 		if (srs->srs_soft_ring_count > 0) {
7072 			for (ring = grp->mrg_rings; ring != NULL;
7073 			    ring = ring->mr_next) {
7074 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7075 				mac_tx_invoke_callbacks(mcip,
7076 				    (mac_tx_cookie_t)
7077 				    mac_tx_srs_get_soft_ring(srs, ring));
7078 				mac_tx_srs_del_ring(srs, ring);
7079 			}
7080 		} else {
7081 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7082 			srs->srs_tx.st_arg2 = NULL;
7083 			mac_srs_stat_delete(srs);
7084 		}
7085 	}
7086 	if (share != NULL)
7087 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7088 
7089 	/* move the ring back to the pool */
7090 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7091 		while ((ring = grp->mrg_rings) != NULL)
7092 			(void) mac_group_mov_ring(mip, defgrp, ring);
7093 	}
7094 	mac_stop_group(grp);
7095 	mip->mi_tx_group_free++;
7096 }
7097 
7098 /*
7099  * Disassociate a MAC client from a group, i.e go through the rings in the
7100  * group and delete all the soft rings tied to them.
7101  */
7102 static void
7103 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7104 {
7105 	mac_client_impl_t	*mcip = flent->fe_mcip;
7106 	mac_soft_ring_set_t	*tx_srs;
7107 	mac_srs_tx_t		*tx;
7108 	mac_ring_t		*ring;
7109 
7110 	tx_srs = flent->fe_tx_srs;
7111 	tx = &tx_srs->srs_tx;
7112 
7113 	/* Single ring case we haven't created any soft rings */
7114 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7115 	    tx->st_mode == SRS_TX_DEFAULT) {
7116 		tx->st_arg2 = NULL;
7117 		mac_srs_stat_delete(tx_srs);
7118 	/* Fanout case, where we have to dismantle the soft rings */
7119 	} else {
7120 		for (ring = fgrp->mrg_rings; ring != NULL;
7121 		    ring = ring->mr_next) {
7122 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7123 			mac_tx_invoke_callbacks(mcip,
7124 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7125 			    ring));
7126 			mac_tx_srs_del_ring(tx_srs, ring);
7127 		}
7128 		ASSERT(tx->st_arg2 == NULL);
7129 	}
7130 }
7131 
7132 /*
7133  * Switch the MAC client from one group to another. This means we need
7134  * to remove the MAC client, teardown the SRSs and revert the group state.
7135  * Then, we add the client to the destination roup, set the SRSs etc.
7136  */
7137 void
7138 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7139     mac_group_t *tgrp)
7140 {
7141 	mac_client_impl_t	*group_only_mcip;
7142 	mac_impl_t		*mip = mcip->mci_mip;
7143 	flow_entry_t		*flent = mcip->mci_flent;
7144 	mac_group_t		*defgrp;
7145 	mac_grp_client_t	*mgcp;
7146 	mac_client_impl_t	*gmcip;
7147 	flow_entry_t		*gflent;
7148 
7149 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7150 	ASSERT(fgrp == flent->fe_tx_ring_group);
7151 
7152 	if (fgrp == defgrp) {
7153 		/*
7154 		 * If this is the primary we need to find any VLANs on
7155 		 * the primary and move them too.
7156 		 */
7157 		mac_group_remove_client(fgrp, mcip);
7158 		mac_tx_dismantle_soft_rings(fgrp, flent);
7159 		if (mcip->mci_unicast->ma_nusers > 1) {
7160 			mgcp = fgrp->mrg_clients;
7161 			while (mgcp != NULL) {
7162 				gmcip = mgcp->mgc_client;
7163 				mgcp = mgcp->mgc_next;
7164 				if (mcip->mci_unicast != gmcip->mci_unicast)
7165 					continue;
7166 				mac_tx_client_quiesce(
7167 				    (mac_client_handle_t)gmcip);
7168 
7169 				gflent = gmcip->mci_flent;
7170 				mac_group_remove_client(fgrp, gmcip);
7171 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7172 
7173 				mac_group_add_client(tgrp, gmcip);
7174 				gflent->fe_tx_ring_group = tgrp;
7175 				/* We could directly set this to SHARED */
7176 				tgrp->mrg_state = mac_group_next_state(tgrp,
7177 				    &group_only_mcip, defgrp, B_FALSE);
7178 
7179 				mac_tx_srs_group_setup(gmcip, gflent,
7180 				    SRST_LINK);
7181 				mac_fanout_setup(gmcip, gflent,
7182 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7183 				    gmcip, NULL, NULL);
7184 
7185 				mac_tx_client_restart(
7186 				    (mac_client_handle_t)gmcip);
7187 			}
7188 		}
7189 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7190 			mac_ring_t	*ring;
7191 			int		cnt;
7192 			int		ringcnt;
7193 
7194 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7195 			/*
7196 			 * Additionally, we also need to stop all
7197 			 * the rings in the default group, except
7198 			 * the default ring. The reason being
7199 			 * this group won't be released since it is
7200 			 * the default group, so the rings won't
7201 			 * be stopped otherwise.
7202 			 */
7203 			ringcnt = fgrp->mrg_cur_count;
7204 			ring = fgrp->mrg_rings;
7205 			for (cnt = 0; cnt < ringcnt; cnt++) {
7206 				if (ring->mr_state == MR_INUSE &&
7207 				    ring !=
7208 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7209 					mac_stop_ring(ring);
7210 					ring->mr_flag = 0;
7211 				}
7212 				ring = ring->mr_next;
7213 			}
7214 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7215 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7216 		} else {
7217 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7218 		}
7219 	} else {
7220 		/*
7221 		 * We could have VLANs sharing the non-default group with
7222 		 * the primary.
7223 		 */
7224 		mgcp = fgrp->mrg_clients;
7225 		while (mgcp != NULL) {
7226 			gmcip = mgcp->mgc_client;
7227 			mgcp = mgcp->mgc_next;
7228 			if (gmcip == mcip)
7229 				continue;
7230 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7231 			gflent = gmcip->mci_flent;
7232 
7233 			mac_group_remove_client(fgrp, gmcip);
7234 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7235 
7236 			mac_group_add_client(tgrp, gmcip);
7237 			gflent->fe_tx_ring_group = tgrp;
7238 			/* We could directly set this to SHARED */
7239 			tgrp->mrg_state = mac_group_next_state(tgrp,
7240 			    &group_only_mcip, defgrp, B_FALSE);
7241 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7242 			mac_fanout_setup(gmcip, gflent,
7243 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7244 			    gmcip, NULL, NULL);
7245 
7246 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7247 		}
7248 		mac_group_remove_client(fgrp, mcip);
7249 		mac_release_tx_group(mcip, fgrp);
7250 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7251 	}
7252 
7253 	/* Add it to the tgroup */
7254 	mac_group_add_client(tgrp, mcip);
7255 	flent->fe_tx_ring_group = tgrp;
7256 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7257 	    defgrp, B_FALSE);
7258 
7259 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7260 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7261 	    mac_rx_deliver, mcip, NULL, NULL);
7262 }
7263 
7264 /*
7265  * This is a 1-time control path activity initiated by the client (IP).
7266  * The mac perimeter protects against other simultaneous control activities,
7267  * for example an ioctl that attempts to change the degree of fanout and
7268  * increase or decrease the number of softrings associated with this Tx SRS.
7269  */
7270 static mac_tx_notify_cb_t *
7271 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7272     mac_tx_notify_t notify, void *arg)
7273 {
7274 	mac_cb_info_t *mcbi;
7275 	mac_tx_notify_cb_t *mtnfp;
7276 
7277 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7278 
7279 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7280 	mtnfp->mtnf_fn = notify;
7281 	mtnfp->mtnf_arg = arg;
7282 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7283 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7284 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7285 
7286 	mcbi = &mcip->mci_tx_notify_cb_info;
7287 	mutex_enter(mcbi->mcbi_lockp);
7288 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7289 	mutex_exit(mcbi->mcbi_lockp);
7290 	return (mtnfp);
7291 }
7292 
7293 static void
7294 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7295 {
7296 	mac_cb_info_t	*mcbi;
7297 	mac_cb_t	**cblist;
7298 
7299 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7300 
7301 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7302 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7303 		cmn_err(CE_WARN,
7304 		    "mac_client_tx_notify_remove: callback not "
7305 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7306 		return;
7307 	}
7308 
7309 	mcbi = &mcip->mci_tx_notify_cb_info;
7310 	cblist = &mcip->mci_tx_notify_cb_list;
7311 	mutex_enter(mcbi->mcbi_lockp);
7312 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7313 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7314 	else
7315 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7316 	mutex_exit(mcbi->mcbi_lockp);
7317 }
7318 
7319 /*
7320  * mac_client_tx_notify():
7321  * call to add and remove flow control callback routine.
7322  */
7323 mac_tx_notify_handle_t
7324 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7325     void *ptr)
7326 {
7327 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7328 	mac_tx_notify_cb_t	*mtnfp = NULL;
7329 
7330 	i_mac_perim_enter(mcip->mci_mip);
7331 
7332 	if (callb_func != NULL) {
7333 		/* Add a notify callback */
7334 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7335 	} else {
7336 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7337 	}
7338 	i_mac_perim_exit(mcip->mci_mip);
7339 
7340 	return ((mac_tx_notify_handle_t)mtnfp);
7341 }
7342 
7343 void
7344 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7345     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7346 {
7347 	mac_bridge_tx_cb = txf;
7348 	mac_bridge_rx_cb = rxf;
7349 	mac_bridge_ref_cb = reff;
7350 	mac_bridge_ls_cb = lsf;
7351 }
7352 
7353 int
7354 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7355 {
7356 	mac_impl_t *mip = (mac_impl_t *)mh;
7357 	int retv;
7358 
7359 	mutex_enter(&mip->mi_bridge_lock);
7360 	if (mip->mi_bridge_link == NULL) {
7361 		mip->mi_bridge_link = link;
7362 		retv = 0;
7363 	} else {
7364 		retv = EBUSY;
7365 	}
7366 	mutex_exit(&mip->mi_bridge_lock);
7367 	if (retv == 0) {
7368 		mac_poll_state_change(mh, B_FALSE);
7369 		mac_capab_update(mh);
7370 	}
7371 	return (retv);
7372 }
7373 
7374 /*
7375  * Disable bridging on the indicated link.
7376  */
7377 void
7378 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7379 {
7380 	mac_impl_t *mip = (mac_impl_t *)mh;
7381 
7382 	mutex_enter(&mip->mi_bridge_lock);
7383 	ASSERT(mip->mi_bridge_link == link);
7384 	mip->mi_bridge_link = NULL;
7385 	mutex_exit(&mip->mi_bridge_lock);
7386 	mac_poll_state_change(mh, B_TRUE);
7387 	mac_capab_update(mh);
7388 }
7389 
7390 void
7391 mac_no_active(mac_handle_t mh)
7392 {
7393 	mac_impl_t *mip = (mac_impl_t *)mh;
7394 
7395 	i_mac_perim_enter(mip);
7396 	mip->mi_state_flags |= MIS_NO_ACTIVE;
7397 	i_mac_perim_exit(mip);
7398 }
7399 
7400 /*
7401  * Walk the primary VLAN clients whenever the primary's rings property
7402  * changes and update the mac_resource_props_t for the VLAN's client.
7403  * We need to do this since we don't support setting these properties
7404  * on the primary's VLAN clients, but the VLAN clients have to
7405  * follow the primary w.r.t the rings property;
7406  */
7407 void
7408 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7409 {
7410 	mac_client_impl_t	*vmcip;
7411 	mac_resource_props_t	*vmrp;
7412 
7413 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
7414 	    vmcip = vmcip->mci_client_next) {
7415 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7416 		    mac_client_vid((mac_client_handle_t)vmcip) ==
7417 		    VLAN_ID_NONE) {
7418 			continue;
7419 		}
7420 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
7421 
7422 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7423 		if (mrp->mrp_mask & MRP_RX_RINGS)
7424 			vmrp->mrp_mask |= MRP_RX_RINGS;
7425 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
7426 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
7427 
7428 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7429 		if (mrp->mrp_mask & MRP_TX_RINGS)
7430 			vmrp->mrp_mask |= MRP_TX_RINGS;
7431 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
7432 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
7433 
7434 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7435 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7436 		else
7437 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7438 
7439 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7440 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7441 		else
7442 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7443 	}
7444 }
7445 
7446 /*
7447  * We are adding or removing ring(s) from a group. The source for taking
7448  * rings is the default group. The destination for giving rings back is
7449  * the default group.
7450  */
7451 int
7452 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7453     mac_group_t *defgrp)
7454 {
7455 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7456 	uint_t			modify;
7457 	int			count;
7458 	mac_ring_t		*ring;
7459 	mac_ring_t		*next;
7460 	mac_impl_t		*mip = mcip->mci_mip;
7461 	mac_ring_t		**rings;
7462 	uint_t			ringcnt;
7463 	int			i = 0;
7464 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7465 	int			start;
7466 	int			end;
7467 	mac_group_t		*tgrp;
7468 	int			j;
7469 	int			rv = 0;
7470 
7471 	/*
7472 	 * If we are asked for just a group, we give 1 ring, else
7473 	 * the specified number of rings.
7474 	 */
7475 	if (rx_group) {
7476 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7477 		    mrp->mrp_nrxrings;
7478 	} else {
7479 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7480 		    mrp->mrp_ntxrings;
7481 	}
7482 
7483 	/* don't allow modifying rings for a share for now. */
7484 	ASSERT(mcip->mci_share == NULL);
7485 
7486 	if (ringcnt == group->mrg_cur_count)
7487 		return (0);
7488 
7489 	if (group->mrg_cur_count > ringcnt) {
7490 		modify = group->mrg_cur_count - ringcnt;
7491 		if (rx_group) {
7492 			if (mip->mi_rx_donor_grp == group) {
7493 				ASSERT(mac_is_primary_client(mcip));
7494 				mip->mi_rx_donor_grp = defgrp;
7495 			} else {
7496 				defgrp = mip->mi_rx_donor_grp;
7497 			}
7498 		}
7499 		ring = group->mrg_rings;
7500 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7501 		    KM_SLEEP);
7502 		j = 0;
7503 		for (count = 0; count < modify; count++) {
7504 			next = ring->mr_next;
7505 			rv = mac_group_mov_ring(mip, defgrp, ring);
7506 			if (rv != 0) {
7507 				/* cleanup on failure */
7508 				for (j = 0; j < count; j++) {
7509 					(void) mac_group_mov_ring(mip, group,
7510 					    rings[j]);
7511 				}
7512 				break;
7513 			}
7514 			rings[j++] = ring;
7515 			ring = next;
7516 		}
7517 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7518 		return (rv);
7519 	}
7520 	if (ringcnt >= MAX_RINGS_PER_GROUP)
7521 		return (EINVAL);
7522 
7523 	modify = ringcnt - group->mrg_cur_count;
7524 
7525 	if (rx_group) {
7526 		if (group != mip->mi_rx_donor_grp)
7527 			defgrp = mip->mi_rx_donor_grp;
7528 		else
7529 			/*
7530 			 * This is the donor group with all the remaining
7531 			 * rings. Default group now gets to be the donor
7532 			 */
7533 			mip->mi_rx_donor_grp = defgrp;
7534 		start = 1;
7535 		end = mip->mi_rx_group_count;
7536 	} else {
7537 		start = 0;
7538 		end = mip->mi_tx_group_count - 1;
7539 	}
7540 	/*
7541 	 * If the default doesn't have any rings, lets see if we can
7542 	 * take rings given to an h/w client that doesn't need it.
7543 	 * For now, we just see if there is  any one client that can donate
7544 	 * all the required rings.
7545 	 */
7546 	if (defgrp->mrg_cur_count < (modify + 1)) {
7547 		for (i = start; i < end; i++) {
7548 			if (rx_group) {
7549 				tgrp = &mip->mi_rx_groups[i];
7550 				if (tgrp == group || tgrp->mrg_state <
7551 				    MAC_GROUP_STATE_RESERVED) {
7552 					continue;
7553 				}
7554 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7555 				if (mcip == NULL)
7556 					mcip = mac_get_grp_primary(tgrp);
7557 				ASSERT(mcip != NULL);
7558 				mrp = MCIP_RESOURCE_PROPS(mcip);
7559 				if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7560 					continue;
7561 				if ((tgrp->mrg_cur_count +
7562 				    defgrp->mrg_cur_count) < (modify + 1)) {
7563 					continue;
7564 				}
7565 				if (mac_rx_switch_group(mcip, tgrp,
7566 				    defgrp) != 0) {
7567 					return (ENOSPC);
7568 				}
7569 			} else {
7570 				tgrp = &mip->mi_tx_groups[i];
7571 				if (tgrp == group || tgrp->mrg_state <
7572 				    MAC_GROUP_STATE_RESERVED) {
7573 					continue;
7574 				}
7575 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7576 				if (mcip == NULL)
7577 					mcip = mac_get_grp_primary(tgrp);
7578 				mrp = MCIP_RESOURCE_PROPS(mcip);
7579 				if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7580 					continue;
7581 				if ((tgrp->mrg_cur_count +
7582 				    defgrp->mrg_cur_count) < (modify + 1)) {
7583 					continue;
7584 				}
7585 				/* OK, we can switch this to s/w */
7586 				mac_tx_client_quiesce(
7587 				    (mac_client_handle_t)mcip);
7588 				mac_tx_switch_group(mcip, tgrp, defgrp);
7589 				mac_tx_client_restart(
7590 				    (mac_client_handle_t)mcip);
7591 			}
7592 		}
7593 		if (defgrp->mrg_cur_count < (modify + 1))
7594 			return (ENOSPC);
7595 	}
7596 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7597 	    group, mcip->mci_share, modify)) != 0) {
7598 		return (rv);
7599 	}
7600 	return (0);
7601 }
7602 
7603 /*
7604  * Given the poolname in mac_resource_props, find the cpupart
7605  * that is associated with this pool.  The cpupart will be used
7606  * later for finding the cpus to be bound to the networking threads.
7607  *
7608  * use_default is set B_TRUE if pools are enabled and pool_default
7609  * is returned.  This avoids a 2nd lookup to set the poolname
7610  * for pool-effective.
7611  *
7612  * returns:
7613  *
7614  *    NULL -   pools are disabled or if the 'cpus' property is set.
7615  *    cpupart of pool_default  - pools are enabled and the pool
7616  *             is not available or poolname is blank
7617  *    cpupart of named pool    - pools are enabled and the pool
7618  *             is available.
7619  */
7620 cpupart_t *
7621 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7622 {
7623 	pool_t		*pool;
7624 	cpupart_t	*cpupart;
7625 
7626 	*use_default = B_FALSE;
7627 
7628 	/* CPUs property is set */
7629 	if (mrp->mrp_mask & MRP_CPUS)
7630 		return (NULL);
7631 
7632 	ASSERT(pool_lock_held());
7633 
7634 	/* Pools are disabled, no pset */
7635 	if (pool_state == POOL_DISABLED)
7636 		return (NULL);
7637 
7638 	/* Pools property is set */
7639 	if (mrp->mrp_mask & MRP_POOL) {
7640 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7641 			/* Pool not found */
7642 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7643 			    mrp->mrp_pool);
7644 			*use_default = B_TRUE;
7645 			pool = pool_default;
7646 		}
7647 	/* Pools property is not set */
7648 	} else {
7649 		*use_default = B_TRUE;
7650 		pool = pool_default;
7651 	}
7652 
7653 	/* Find the CPU pset that corresponds to the pool */
7654 	mutex_enter(&cpu_lock);
7655 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7656 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7657 		    pool->pool_pset->pset_id);
7658 	}
7659 	mutex_exit(&cpu_lock);
7660 
7661 	return (cpupart);
7662 }
7663 
7664 void
7665 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7666     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7667 {
7668 	ASSERT(pool_lock_held());
7669 
7670 	if (cpupart != NULL) {
7671 		emrp->mrp_mask |= MRP_POOL;
7672 		if (use_default) {
7673 			(void) strcpy(emrp->mrp_pool,
7674 			    "pool_default");
7675 		} else {
7676 			ASSERT(strlen(mrp->mrp_pool) != 0);
7677 			(void) strcpy(emrp->mrp_pool,
7678 			    mrp->mrp_pool);
7679 		}
7680 	} else {
7681 		emrp->mrp_mask &= ~MRP_POOL;
7682 		bzero(emrp->mrp_pool, MAXPATHLEN);
7683 	}
7684 }
7685 
7686 struct mac_pool_arg {
7687 	char		mpa_poolname[MAXPATHLEN];
7688 	pool_event_t	mpa_what;
7689 };
7690 
7691 /*ARGSUSED*/
7692 static uint_t
7693 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7694 {
7695 	struct mac_pool_arg	*mpa = arg;
7696 	mac_impl_t		*mip = (mac_impl_t *)val;
7697 	mac_client_impl_t	*mcip;
7698 	mac_resource_props_t	*mrp, *emrp;
7699 	boolean_t		pool_update = B_FALSE;
7700 	boolean_t		pool_clear = B_FALSE;
7701 	boolean_t		use_default = B_FALSE;
7702 	cpupart_t		*cpupart = NULL;
7703 
7704 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7705 	i_mac_perim_enter(mip);
7706 	for (mcip = mip->mi_clients_list; mcip != NULL;
7707 	    mcip = mcip->mci_client_next) {
7708 		pool_update = B_FALSE;
7709 		pool_clear = B_FALSE;
7710 		use_default = B_FALSE;
7711 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7712 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
7713 
7714 		/*
7715 		 * When pools are enabled
7716 		 */
7717 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
7718 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7719 			mrp->mrp_mask |= MRP_POOL;
7720 			pool_update = B_TRUE;
7721 		}
7722 
7723 		/*
7724 		 * When pools are disabled
7725 		 */
7726 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
7727 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7728 			mrp->mrp_mask |= MRP_POOL;
7729 			pool_clear = B_TRUE;
7730 		}
7731 
7732 		/*
7733 		 * Look for links with the pool property set and the poolname
7734 		 * matching the one which is changing.
7735 		 */
7736 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7737 			/*
7738 			 * The pool associated with the link has changed.
7739 			 */
7740 			if (mpa->mpa_what == POOL_E_CHANGE) {
7741 				mrp->mrp_mask |= MRP_POOL;
7742 				pool_update = B_TRUE;
7743 			}
7744 		}
7745 
7746 		/*
7747 		 * This link is associated with pool_default and
7748 		 * pool_default has changed.
7749 		 */
7750 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
7751 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7752 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7753 			mrp->mrp_mask |= MRP_POOL;
7754 			pool_update = B_TRUE;
7755 		}
7756 
7757 		/*
7758 		 * Get new list of cpus for the pool, bind network
7759 		 * threads to new list of cpus and update resources.
7760 		 */
7761 		if (pool_update) {
7762 			if (MCIP_DATAPATH_SETUP(mcip)) {
7763 				pool_lock();
7764 				cpupart = mac_pset_find(mrp, &use_default);
7765 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7766 				    mac_rx_deliver, mcip, NULL, cpupart);
7767 				mac_set_pool_effective(use_default, cpupart,
7768 				    mrp, emrp);
7769 				pool_unlock();
7770 			}
7771 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7772 			    B_FALSE);
7773 		}
7774 
7775 		/*
7776 		 * Clear the effective pool and bind network threads
7777 		 * to any available CPU.
7778 		 */
7779 		if (pool_clear) {
7780 			if (MCIP_DATAPATH_SETUP(mcip)) {
7781 				emrp->mrp_mask &= ~MRP_POOL;
7782 				bzero(emrp->mrp_pool, MAXPATHLEN);
7783 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7784 				    mac_rx_deliver, mcip, NULL, NULL);
7785 			}
7786 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7787 			    B_FALSE);
7788 		}
7789 	}
7790 	i_mac_perim_exit(mip);
7791 	kmem_free(mrp, sizeof (*mrp));
7792 	return (MH_WALK_CONTINUE);
7793 }
7794 
7795 static void
7796 mac_pool_update(void *arg)
7797 {
7798 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7799 	kmem_free(arg, sizeof (struct mac_pool_arg));
7800 }
7801 
7802 /*
7803  * Callback function to be executed when a noteworthy pool event
7804  * takes place.
7805  */
7806 /* ARGSUSED */
7807 static void
7808 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7809 {
7810 	pool_t			*pool;
7811 	char			*poolname = NULL;
7812 	struct mac_pool_arg	*mpa;
7813 
7814 	pool_lock();
7815 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7816 
7817 	switch (what) {
7818 	case POOL_E_ENABLE:
7819 	case POOL_E_DISABLE:
7820 		break;
7821 
7822 	case POOL_E_CHANGE:
7823 		pool = pool_lookup_pool_by_id(id);
7824 		if (pool == NULL) {
7825 			kmem_free(mpa, sizeof (struct mac_pool_arg));
7826 			pool_unlock();
7827 			return;
7828 		}
7829 		pool_get_name(pool, &poolname);
7830 		(void) strlcpy(mpa->mpa_poolname, poolname,
7831 		    sizeof (mpa->mpa_poolname));
7832 		break;
7833 
7834 	default:
7835 		kmem_free(mpa, sizeof (struct mac_pool_arg));
7836 		pool_unlock();
7837 		return;
7838 	}
7839 	pool_unlock();
7840 
7841 	mpa->mpa_what = what;
7842 
7843 	mac_pool_update(mpa);
7844 }
7845 
7846 /*
7847  * Set effective rings property. This could be called from datapath_setup/
7848  * datapath_teardown or set-linkprop.
7849  * If the group is reserved we just go ahead and set the effective rings.
7850  * Additionally, for TX this could mean the default  group has lost/gained
7851  * some rings, so if the default group is reserved, we need to adjust the
7852  * effective rings for the default group clients. For RX, if we are working
7853  * with the non-default group, we just need * to reset the effective props
7854  * for the default group clients.
7855  */
7856 void
7857 mac_set_rings_effective(mac_client_impl_t *mcip)
7858 {
7859 	mac_impl_t		*mip = mcip->mci_mip;
7860 	mac_group_t		*grp;
7861 	mac_group_t		*defgrp;
7862 	flow_entry_t		*flent = mcip->mci_flent;
7863 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
7864 	mac_grp_client_t	*mgcp;
7865 	mac_client_impl_t	*gmcip;
7866 
7867 	grp = flent->fe_rx_ring_group;
7868 	if (grp != NULL) {
7869 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
7870 		/*
7871 		 * If we have reserved a group, set the effective rings
7872 		 * to the ring count in the group.
7873 		 */
7874 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7875 			emrp->mrp_mask |= MRP_RX_RINGS;
7876 			emrp->mrp_nrxrings = grp->mrg_cur_count;
7877 		}
7878 
7879 		/*
7880 		 * We go through the clients in the shared group and
7881 		 * reset the effective properties. It is possible this
7882 		 * might have already been done for some client (i.e.
7883 		 * if some client is being moved to a group that is
7884 		 * already shared). The case where the default group is
7885 		 * RESERVED is taken care of above (note in the RX side if
7886 		 * there is a non-default group, the default group is always
7887 		 * SHARED).
7888 		 */
7889 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7890 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7891 				mgcp = grp->mrg_clients;
7892 			else
7893 				mgcp = defgrp->mrg_clients;
7894 			while (mgcp != NULL) {
7895 				gmcip = mgcp->mgc_client;
7896 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7897 				if (emrp->mrp_mask & MRP_RX_RINGS) {
7898 					emrp->mrp_mask &= ~MRP_RX_RINGS;
7899 					emrp->mrp_nrxrings = 0;
7900 				}
7901 				mgcp = mgcp->mgc_next;
7902 			}
7903 		}
7904 	}
7905 
7906 	/* Now the TX side */
7907 	grp = flent->fe_tx_ring_group;
7908 	if (grp != NULL) {
7909 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
7910 
7911 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7912 			emrp->mrp_mask |= MRP_TX_RINGS;
7913 			emrp->mrp_ntxrings = grp->mrg_cur_count;
7914 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7915 			mgcp = grp->mrg_clients;
7916 			while (mgcp != NULL) {
7917 				gmcip = mgcp->mgc_client;
7918 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7919 				if (emrp->mrp_mask & MRP_TX_RINGS) {
7920 					emrp->mrp_mask &= ~MRP_TX_RINGS;
7921 					emrp->mrp_ntxrings = 0;
7922 				}
7923 				mgcp = mgcp->mgc_next;
7924 			}
7925 		}
7926 
7927 		/*
7928 		 * If the group is not the default group and the default
7929 		 * group is reserved, the ring count in the default group
7930 		 * might have changed, update it.
7931 		 */
7932 		if (grp != defgrp &&
7933 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7934 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7935 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7936 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7937 		}
7938 	}
7939 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
7940 }
7941 
7942 /*
7943  * Check if the primary is in the default group. If so, see if we
7944  * can give it a an exclusive group now that another client is
7945  * being configured. We take the primary out of the default group
7946  * because the multicast/broadcast packets for the all the clients
7947  * will land in the default ring in the default group which means
7948  * any client in the default group, even if it is the only on in
7949  * the group, will lose exclusive access to the rings, hence
7950  * polling.
7951  */
7952 mac_client_impl_t *
7953 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
7954 {
7955 	mac_impl_t		*mip = mcip->mci_mip;
7956 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
7957 	flow_entry_t		*flent = mcip->mci_flent;
7958 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7959 	uint8_t			*mac_addr;
7960 	mac_group_t		*ngrp;
7961 
7962 	/*
7963 	 * Check if the primary is in the default group, if not
7964 	 * or if it is explicitly configured to be in the default
7965 	 * group OR set the RX rings property, return.
7966 	 */
7967 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
7968 		return (NULL);
7969 
7970 	/*
7971 	 * If the new client needs an exclusive group and we
7972 	 * don't have another for the primary, return.
7973 	 */
7974 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
7975 		return (NULL);
7976 
7977 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
7978 	/*
7979 	 * We call this when we are setting up the datapath for
7980 	 * the first non-primary.
7981 	 */
7982 	ASSERT(mip->mi_nactiveclients == 2);
7983 	/*
7984 	 * OK, now we have the primary that needs to be relocated.
7985 	 */
7986 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
7987 	if (ngrp == NULL)
7988 		return (NULL);
7989 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
7990 		mac_stop_group(ngrp);
7991 		return (NULL);
7992 	}
7993 	return (mcip);
7994 }
7995