xref: /illumos-gate/usr/src/uts/common/io/mac/mac.c (revision 4d95620bc3105916e69c40cff8e2e3d55bd6c4ae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26  */
27 
28 /*
29  * MAC Services Module
30  *
31  * The GLDv3 framework locking -  The MAC layer
32  * --------------------------------------------
33  *
34  * The MAC layer is central to the GLD framework and can provide the locking
35  * framework needed for itself and for the use of MAC clients. MAC end points
36  * are fairly disjoint and don't share a lot of state. So a coarse grained
37  * multi-threading scheme is to single thread all create/modify/delete or set
38  * type of control operations on a per mac end point while allowing data threads
39  * concurrently.
40  *
41  * Control operations (set) that modify a mac end point are always serialized on
42  * a per mac end point basis, We have at most 1 such thread per mac end point
43  * at a time.
44  *
45  * All other operations that are not serialized are essentially multi-threaded.
46  * For example a control operation (get) like getting statistics which may not
47  * care about reading values atomically or data threads sending or receiving
48  * data. Mostly these type of operations don't modify the control state. Any
49  * state these operations care about are protected using traditional locks.
50  *
51  * The perimeter only serializes serial operations. It does not imply there
52  * aren't any other concurrent operations. However a serialized operation may
53  * sometimes need to make sure it is the only thread. In this case it needs
54  * to use reference counting mechanisms to cv_wait until any current data
55  * threads are done.
56  *
57  * The mac layer itself does not hold any locks across a call to another layer.
58  * The perimeter is however held across a down call to the driver to make the
59  * whole control operation atomic with respect to other control operations.
60  * Also the data path and get type control operations may proceed concurrently.
61  * These operations synchronize with the single serial operation on a given mac
62  * end point using regular locks. The perimeter ensures that conflicting
63  * operations like say a mac_multicast_add and a mac_multicast_remove on the
64  * same mac end point don't interfere with each other and also ensures that the
65  * changes in the mac layer and the call to the underlying driver to say add a
66  * multicast address are done atomically without interference from a thread
67  * trying to delete the same address.
68  *
69  * For example, consider
70  * mac_multicst_add()
71  * {
72  *	mac_perimeter_enter();	serialize all control operations
73  *
74  *	grab list lock		protect against access by data threads
75  *	add to list
76  *	drop list lock
77  *
78  *	call driver's mi_multicst
79  *
80  *	mac_perimeter_exit();
81  * }
82  *
83  * To lessen the number of serialization locks and simplify the lock hierarchy,
84  * we serialize all the control operations on a per mac end point by using a
85  * single serialization lock called the perimeter. We allow recursive entry into
86  * the perimeter to facilitate use of this mechanism by both the mac client and
87  * the MAC layer itself.
88  *
89  * MAC client means an entity that does an operation on a mac handle
90  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
91  * an entity that does an operation on a mac handle obtained from a
92  * mac_register. An entity could be both client and driver but on different
93  * handles eg. aggr. and should only make the corresponding mac interface calls
94  * i.e. mac driver interface or mac client interface as appropriate for that
95  * mac handle.
96  *
97  * General rules.
98  * -------------
99  *
100  * R1. The lock order of upcall threads is natually opposite to downcall
101  * threads. Hence upcalls must not hold any locks across layers for fear of
102  * recursive lock enter and lock order violation. This applies to all layers.
103  *
104  * R2. The perimeter is just another lock. Since it is held in the down
105  * direction, acquiring the perimeter in an upcall is prohibited as it would
106  * cause a deadlock. This applies to all layers.
107  *
108  * Note that upcalls that need to grab the mac perimeter (for example
109  * mac_notify upcalls) can still achieve that by posting the request to a
110  * thread, which can then grab all the required perimeters and locks in the
111  * right global order. Note that in the above example the mac layer iself
112  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
113  * to the client must do that. Please see the aggr code for an example.
114  *
115  * MAC client rules
116  * ----------------
117  *
118  * R3. A MAC client may use the MAC provided perimeter facility to serialize
119  * control operations on a per mac end point. It does this by by acquring
120  * and holding the perimeter across a sequence of calls to the mac layer.
121  * This ensures atomicity across the entire block of mac calls. In this
122  * model the MAC client must not hold any client locks across the calls to
123  * the mac layer. This model is the preferred solution.
124  *
125  * R4. However if a MAC client has a lot of global state across all mac end
126  * points the per mac end point serialization may not be sufficient. In this
127  * case the client may choose to use global locks or use its own serialization.
128  * To avoid deadlocks, these client layer locks held across the mac calls
129  * in the control path must never be acquired by the data path for the reason
130  * mentioned below.
131  *
132  * (Assume that a control operation that holds a client lock blocks in the
133  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
134  * data thread that holds this reference count, tries to acquire the same
135  * client lock subsequently it will deadlock).
136  *
137  * A MAC client may follow either the R3 model or the R4 model, but can't
138  * mix both. In the former, the hierarchy is Perim -> client locks, but in
139  * the latter it is client locks -> Perim.
140  *
141  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
142  * context since they may block while trying to acquire the perimeter.
143  * In addition some calls may block waiting for upcall refcnts to come down to
144  * zero.
145  *
146  * R6. MAC clients must make sure that they are single threaded and all threads
147  * from the top (in particular data threads) have finished before calling
148  * mac_client_close. The MAC framework does not track the number of client
149  * threads using the mac client handle. Also mac clients must make sure
150  * they have undone all the control operations before calling mac_client_close.
151  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
152  * mac_unicast_add/mac_multicast_add.
153  *
154  * MAC framework rules
155  * -------------------
156  *
157  * R7. The mac layer itself must not hold any mac layer locks (except the mac
158  * perimeter) across a call to any other layer from the mac layer. The call to
159  * any other layer could be via mi_* entry points, classifier entry points into
160  * the driver or via upcall pointers into layers above. The mac perimeter may
161  * be acquired or held only in the down direction, for e.g. when calling into
162  * a mi_* driver enty point to provide atomicity of the operation.
163  *
164  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
165  * mac driver interfaces, the MAC layer must provide a cut out for control
166  * interfaces like upcall notifications and start them in a separate thread.
167  *
168  * R9. Note that locking order also implies a plumbing order. For example
169  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
170  * to plumb in any other order must be failed at mac_open time, otherwise it
171  * could lead to deadlocks due to inverse locking order.
172  *
173  * R10. MAC driver interfaces must not block since the driver could call them
174  * in interrupt context.
175  *
176  * R11. Walkers must preferably not hold any locks while calling walker
177  * callbacks. Instead these can operate on reference counts. In simple
178  * callbacks it may be ok to hold a lock and call the callbacks, but this is
179  * harder to maintain in the general case of arbitrary callbacks.
180  *
181  * R12. The MAC layer must protect upcall notification callbacks using reference
182  * counts rather than holding locks across the callbacks.
183  *
184  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
185  * sure that any pointers (such as mac ring pointers) it passes to the driver
186  * remain valid until mac unregister time. Currently the mac layer achieves
187  * this by using generation numbers for rings and freeing the mac rings only
188  * at unregister time.  The MAC layer must provide a layer of indirection and
189  * must not expose underlying driver rings or driver data structures/pointers
190  * directly to MAC clients.
191  *
192  * MAC driver rules
193  * ----------------
194  *
195  * R14. It would be preferable if MAC drivers don't hold any locks across any
196  * mac call. However at a minimum they must not hold any locks across data
197  * upcalls. They must also make sure that all references to mac data structures
198  * are cleaned up and that it is single threaded at mac_unregister time.
199  *
200  * R15. MAC driver interfaces don't block and so the action may be done
201  * asynchronously in a separate thread as for example handling notifications.
202  * The driver must not assume that the action is complete when the call
203  * returns.
204  *
205  * R16. Drivers must maintain a generation number per Rx ring, and pass it
206  * back to mac_rx_ring(); They are expected to increment the generation
207  * number whenever the ring's stop routine is invoked.
208  * See comments in mac_rx_ring();
209  *
210  * R17 Similarly mi_stop is another synchronization point and the driver must
211  * ensure that all upcalls are done and there won't be any future upcall
212  * before returning from mi_stop.
213  *
214  * R18. The driver may assume that all set/modify control operations via
215  * the mi_* entry points are single threaded on a per mac end point.
216  *
217  * Lock and Perimeter hierarchy scenarios
218  * ---------------------------------------
219  *
220  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
221  *
222  * ft_lock -> fe_lock [mac_flow_lookup]
223  *
224  * mi_rw_lock -> fe_lock [mac_bcast_send]
225  *
226  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
227  *
228  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
229  *
230  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
231  *
232  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
233  * client to driver. In the case of clients that explictly use the mac provided
234  * perimeter mechanism for its serialization, the hierarchy is
235  * Perimeter -> mac layer locks, since the client never holds any locks across
236  * the mac calls. In the case of clients that use its own locks the hierarchy
237  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
238  * calls mac_perim_enter/exit in this case.
239  *
240  * Subflow creation rules
241  * ---------------------------
242  * o In case of a user specified cpulist present on underlying link and flows,
243  * the flows cpulist must be a subset of the underlying link.
244  * o In case of a user specified fanout mode present on link and flow, the
245  * subflow fanout count has to be less than or equal to that of the
246  * underlying link. The cpu-bindings for the subflows will be a subset of
247  * the underlying link.
248  * o In case if no cpulist specified on both underlying link and flow, the
249  * underlying link relies on a  MAC tunable to provide out of box fanout.
250  * The subflow will have no cpulist (the subflow will be unbound)
251  * o In case if no cpulist is specified on the underlying link, a subflow can
252  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
253  * for the subflow will not adhere to restriction that they need to be subset
254  * of the underlying link.
255  * o In case where the underlying link is carrying either a user specified
256  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
257  * created unbound.
258  * o While creating unbound subflows, bandwidth mode changes attempt to
259  * figure a right fanout count. In such cases the fanout count will override
260  * the unbound cpu-binding behavior.
261  * o In addition to this, while cycling between flow and link properties, we
262  * impose a restriction that if a link property has a subflow with
263  * user-specified attributes, we will not allow changing the link property.
264  * The administrator needs to reset all the user specified properties for the
265  * subflows before attempting a link property change.
266  * Some of the above rules can be overridden by specifying additional command
267  * line options while creating or modifying link or subflow properties.
268  *
269  * Datapath
270  * --------
271  *
272  * For information on the datapath, the world of soft rings, hardware rings, how
273  * it is structured, and the path of an mblk_t between a driver and a mac
274  * client, see mac_sched.c.
275  */
276 
277 #include <sys/types.h>
278 #include <sys/conf.h>
279 #include <sys/id_space.h>
280 #include <sys/esunddi.h>
281 #include <sys/stat.h>
282 #include <sys/mkdev.h>
283 #include <sys/stream.h>
284 #include <sys/strsun.h>
285 #include <sys/strsubr.h>
286 #include <sys/dlpi.h>
287 #include <sys/list.h>
288 #include <sys/modhash.h>
289 #include <sys/mac_provider.h>
290 #include <sys/mac_client_impl.h>
291 #include <sys/mac_soft_ring.h>
292 #include <sys/mac_stat.h>
293 #include <sys/mac_impl.h>
294 #include <sys/mac.h>
295 #include <sys/dls.h>
296 #include <sys/dld.h>
297 #include <sys/modctl.h>
298 #include <sys/fs/dv_node.h>
299 #include <sys/thread.h>
300 #include <sys/proc.h>
301 #include <sys/callb.h>
302 #include <sys/cpuvar.h>
303 #include <sys/atomic.h>
304 #include <sys/bitmap.h>
305 #include <sys/sdt.h>
306 #include <sys/mac_flow.h>
307 #include <sys/ddi_intr_impl.h>
308 #include <sys/disp.h>
309 #include <sys/sdt.h>
310 #include <sys/vnic.h>
311 #include <sys/vnic_impl.h>
312 #include <sys/vlan.h>
313 #include <inet/ip.h>
314 #include <inet/ip6.h>
315 #include <sys/exacct.h>
316 #include <sys/exacct_impl.h>
317 #include <inet/nd.h>
318 #include <sys/ethernet.h>
319 #include <sys/pool.h>
320 #include <sys/pool_pset.h>
321 #include <sys/cpupart.h>
322 #include <inet/wifi_ioctl.h>
323 #include <net/wpa.h>
324 
325 #define	IMPL_HASHSZ	67	/* prime */
326 
327 kmem_cache_t		*i_mac_impl_cachep;
328 mod_hash_t		*i_mac_impl_hash;
329 krwlock_t		i_mac_impl_lock;
330 uint_t			i_mac_impl_count;
331 static kmem_cache_t	*mac_ring_cache;
332 static id_space_t	*minor_ids;
333 static uint32_t		minor_count;
334 static pool_event_cb_t	mac_pool_event_reg;
335 
336 /*
337  * Logging stuff. Perhaps mac_logging_interval could be broken into
338  * mac_flow_log_interval and mac_link_log_interval if we want to be
339  * able to schedule them differently.
340  */
341 uint_t			mac_logging_interval;
342 boolean_t		mac_flow_log_enable;
343 boolean_t		mac_link_log_enable;
344 timeout_id_t		mac_logging_timer;
345 
346 #define	MACTYPE_KMODDIR	"mac"
347 #define	MACTYPE_HASHSZ	67
348 static mod_hash_t	*i_mactype_hash;
349 /*
350  * i_mactype_lock synchronizes threads that obtain references to mactype_t
351  * structures through i_mactype_getplugin().
352  */
353 static kmutex_t		i_mactype_lock;
354 
355 /*
356  * mac_tx_percpu_cnt
357  *
358  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
359  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
360  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
361  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
362  */
363 int mac_tx_percpu_cnt;
364 int mac_tx_percpu_cnt_max = 128;
365 
366 /*
367  * Call back functions for the bridge module.  These are guaranteed to be valid
368  * when holding a reference on a link or when holding mip->mi_bridge_lock and
369  * mi_bridge_link is non-NULL.
370  */
371 mac_bridge_tx_t mac_bridge_tx_cb;
372 mac_bridge_rx_t mac_bridge_rx_cb;
373 mac_bridge_ref_t mac_bridge_ref_cb;
374 mac_bridge_ls_t mac_bridge_ls_cb;
375 
376 static int i_mac_constructor(void *, void *, int);
377 static void i_mac_destructor(void *, void *);
378 static int i_mac_ring_ctor(void *, void *, int);
379 static void i_mac_ring_dtor(void *, void *);
380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
381 void mac_tx_client_flush(mac_client_impl_t *);
382 void mac_tx_client_block(mac_client_impl_t *);
383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
384 static int mac_start_group_and_rings(mac_group_t *);
385 static void mac_stop_group_and_rings(mac_group_t *);
386 static void mac_pool_event_cb(pool_event_t, int, void *);
387 
388 typedef struct netinfo_s {
389 	list_node_t	ni_link;
390 	void		*ni_record;
391 	int		ni_size;
392 	int		ni_type;
393 } netinfo_t;
394 
395 /*
396  * Module initialization functions.
397  */
398 
399 void
400 mac_init(void)
401 {
402 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
403 	    boot_max_ncpus);
404 
405 	/* Upper bound is mac_tx_percpu_cnt_max */
406 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
407 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
408 
409 	if (mac_tx_percpu_cnt < 1) {
410 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
411 		mac_tx_percpu_cnt = 1;
412 	}
413 
414 	ASSERT(mac_tx_percpu_cnt >= 1);
415 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
416 	/*
417 	 * Make it of the form 2**N - 1 in the range
418 	 * [0 .. mac_tx_percpu_cnt_max - 1]
419 	 */
420 	mac_tx_percpu_cnt--;
421 
422 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
423 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
424 	    NULL, NULL, NULL, 0);
425 	ASSERT(i_mac_impl_cachep != NULL);
426 
427 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
428 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
429 	    NULL, NULL, 0);
430 	ASSERT(mac_ring_cache != NULL);
431 
432 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
433 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
434 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
435 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
436 
437 	mac_flow_init();
438 	mac_soft_ring_init();
439 	mac_bcast_init();
440 	mac_client_init();
441 
442 	i_mac_impl_count = 0;
443 
444 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
445 	    MACTYPE_HASHSZ,
446 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
447 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
448 
449 	/*
450 	 * Allocate an id space to manage minor numbers. The range of the
451 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
452 	 * leaves half of the 32-bit minors available for driver private use.
453 	 */
454 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
455 	    MAC_PRIVATE_MINOR-1);
456 	ASSERT(minor_ids != NULL);
457 	minor_count = 0;
458 
459 	/* Let's default to 20 seconds */
460 	mac_logging_interval = 20;
461 	mac_flow_log_enable = B_FALSE;
462 	mac_link_log_enable = B_FALSE;
463 	mac_logging_timer = 0;
464 
465 	/* Register to be notified of noteworthy pools events */
466 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
467 	mac_pool_event_reg.pec_arg = NULL;
468 	pool_event_cb_register(&mac_pool_event_reg);
469 }
470 
471 int
472 mac_fini(void)
473 {
474 
475 	if (i_mac_impl_count > 0 || minor_count > 0)
476 		return (EBUSY);
477 
478 	pool_event_cb_unregister(&mac_pool_event_reg);
479 
480 	id_space_destroy(minor_ids);
481 	mac_flow_fini();
482 
483 	mod_hash_destroy_hash(i_mac_impl_hash);
484 	rw_destroy(&i_mac_impl_lock);
485 
486 	mac_client_fini();
487 	kmem_cache_destroy(mac_ring_cache);
488 
489 	mod_hash_destroy_hash(i_mactype_hash);
490 	mac_soft_ring_finish();
491 
492 
493 	return (0);
494 }
495 
496 /*
497  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
498  * (e.g. softmac) may pass in a NULL ops argument.
499  */
500 void
501 mac_init_ops(struct dev_ops *ops, const char *name)
502 {
503 	major_t major = ddi_name_to_major((char *)name);
504 
505 	/*
506 	 * By returning on error below, we are not letting the driver continue
507 	 * in an undefined context.  The mac_register() function will faill if
508 	 * DN_GLDV3_DRIVER isn't set.
509 	 */
510 	if (major == DDI_MAJOR_T_NONE)
511 		return;
512 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
513 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
514 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 	if (ops != NULL)
516 		dld_init_ops(ops, name);
517 }
518 
519 void
520 mac_fini_ops(struct dev_ops *ops)
521 {
522 	dld_fini_ops(ops);
523 }
524 
525 /*ARGSUSED*/
526 static int
527 i_mac_constructor(void *buf, void *arg, int kmflag)
528 {
529 	mac_impl_t	*mip = buf;
530 
531 	bzero(buf, sizeof (mac_impl_t));
532 
533 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
534 
535 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
536 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
537 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
538 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
539 
540 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
541 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
542 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
543 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544 
545 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
546 
547 	return (0);
548 }
549 
550 /*ARGSUSED*/
551 static void
552 i_mac_destructor(void *buf, void *arg)
553 {
554 	mac_impl_t	*mip = buf;
555 	mac_cb_info_t	*mcbi;
556 
557 	ASSERT(mip->mi_ref == 0);
558 	ASSERT(mip->mi_active == 0);
559 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
560 	ASSERT(mip->mi_devpromisc == 0);
561 	ASSERT(mip->mi_ksp == NULL);
562 	ASSERT(mip->mi_kstat_count == 0);
563 	ASSERT(mip->mi_nclients == 0);
564 	ASSERT(mip->mi_nactiveclients == 0);
565 	ASSERT(mip->mi_single_active_client == NULL);
566 	ASSERT(mip->mi_state_flags == 0);
567 	ASSERT(mip->mi_factory_addr == NULL);
568 	ASSERT(mip->mi_factory_addr_num == 0);
569 	ASSERT(mip->mi_default_tx_ring == NULL);
570 
571 	mcbi = &mip->mi_notify_cb_info;
572 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
573 	ASSERT(mip->mi_notify_bits == 0);
574 	ASSERT(mip->mi_notify_thread == NULL);
575 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
576 	mcbi->mcbi_lockp = NULL;
577 
578 	mcbi = &mip->mi_promisc_cb_info;
579 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
580 	ASSERT(mip->mi_promisc_list == NULL);
581 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
582 	mcbi->mcbi_lockp = NULL;
583 
584 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
585 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
586 
587 	rw_destroy(&mip->mi_rw_lock);
588 
589 	mutex_destroy(&mip->mi_promisc_lock);
590 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
591 	mutex_destroy(&mip->mi_notify_lock);
592 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
593 	mutex_destroy(&mip->mi_ring_lock);
594 
595 	ASSERT(mip->mi_bridge_link == NULL);
596 }
597 
598 /* ARGSUSED */
599 static int
600 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
601 {
602 	mac_ring_t *ring = (mac_ring_t *)buf;
603 
604 	bzero(ring, sizeof (mac_ring_t));
605 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
606 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
607 	ring->mr_state = MR_FREE;
608 	return (0);
609 }
610 
611 /* ARGSUSED */
612 static void
613 i_mac_ring_dtor(void *buf, void *arg)
614 {
615 	mac_ring_t *ring = (mac_ring_t *)buf;
616 
617 	cv_destroy(&ring->mr_cv);
618 	mutex_destroy(&ring->mr_lock);
619 }
620 
621 /*
622  * Common functions to do mac callback addition and deletion. Currently this is
623  * used by promisc callbacks and notify callbacks. List addition and deletion
624  * need to take care of list walkers. List walkers in general, can't hold list
625  * locks and make upcall callbacks due to potential lock order and recursive
626  * reentry issues. Instead list walkers increment the list walker count to mark
627  * the presence of a walker thread. Addition can be carefully done to ensure
628  * that the list walker always sees either the old list or the new list.
629  * However the deletion can't be done while the walker is active, instead the
630  * deleting thread simply marks the entry as logically deleted. The last walker
631  * physically deletes and frees up the logically deleted entries when the walk
632  * is complete.
633  */
634 void
635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
636     mac_cb_t *mcb_elem)
637 {
638 	mac_cb_t	*p;
639 	mac_cb_t	**pp;
640 
641 	/* Verify it is not already in the list */
642 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
643 		if (p == mcb_elem)
644 			break;
645 	}
646 	VERIFY(p == NULL);
647 
648 	/*
649 	 * Add it to the head of the callback list. The membar ensures that
650 	 * the following list pointer manipulations reach global visibility
651 	 * in exactly the program order below.
652 	 */
653 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
654 
655 	mcb_elem->mcb_nextp = *mcb_head;
656 	membar_producer();
657 	*mcb_head = mcb_elem;
658 }
659 
660 /*
661  * Mark the entry as logically deleted. If there aren't any walkers unlink
662  * from the list. In either case return the corresponding status.
663  */
664 boolean_t
665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
666     mac_cb_t *mcb_elem)
667 {
668 	mac_cb_t	*p;
669 	mac_cb_t	**pp;
670 
671 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
672 	/*
673 	 * Search the callback list for the entry to be removed
674 	 */
675 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
676 		if (p == mcb_elem)
677 			break;
678 	}
679 	VERIFY(p != NULL);
680 
681 	/*
682 	 * If there are walkers just mark it as deleted and the last walker
683 	 * will remove from the list and free it.
684 	 */
685 	if (mcbi->mcbi_walker_cnt != 0) {
686 		p->mcb_flags |= MCB_CONDEMNED;
687 		mcbi->mcbi_del_cnt++;
688 		return (B_FALSE);
689 	}
690 
691 	ASSERT(mcbi->mcbi_del_cnt == 0);
692 	*pp = p->mcb_nextp;
693 	p->mcb_nextp = NULL;
694 	return (B_TRUE);
695 }
696 
697 /*
698  * Wait for all pending callback removals to be completed
699  */
700 void
701 mac_callback_remove_wait(mac_cb_info_t *mcbi)
702 {
703 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
704 	while (mcbi->mcbi_del_cnt != 0) {
705 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
706 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
707 	}
708 }
709 
710 /*
711  * The last mac callback walker does the cleanup. Walk the list and unlik
712  * all the logically deleted entries and construct a temporary list of
713  * removed entries. Return the list of removed entries to the caller.
714  */
715 mac_cb_t *
716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
717 {
718 	mac_cb_t	*p;
719 	mac_cb_t	**pp;
720 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
721 	int	cnt = 0;
722 
723 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
724 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
725 
726 	pp = mcb_head;
727 	while (*pp != NULL) {
728 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
729 			p = *pp;
730 			*pp = p->mcb_nextp;
731 			p->mcb_nextp = rmlist;
732 			rmlist = p;
733 			cnt++;
734 			continue;
735 		}
736 		pp = &(*pp)->mcb_nextp;
737 	}
738 
739 	ASSERT(mcbi->mcbi_del_cnt == cnt);
740 	mcbi->mcbi_del_cnt = 0;
741 	return (rmlist);
742 }
743 
744 boolean_t
745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
746 {
747 	mac_cb_t	*mcb;
748 
749 	/* Verify it is not already in the list */
750 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
751 		if (mcb == mcb_elem)
752 			return (B_TRUE);
753 	}
754 
755 	return (B_FALSE);
756 }
757 
758 boolean_t
759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
760 {
761 	boolean_t	found;
762 
763 	mutex_enter(mcbi->mcbi_lockp);
764 	found = mac_callback_lookup(mcb_headp, mcb_elem);
765 	mutex_exit(mcbi->mcbi_lockp);
766 
767 	return (found);
768 }
769 
770 /* Free the list of removed callbacks */
771 void
772 mac_callback_free(mac_cb_t *rmlist)
773 {
774 	mac_cb_t	*mcb;
775 	mac_cb_t	*mcb_next;
776 
777 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
778 		mcb_next = mcb->mcb_nextp;
779 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
780 	}
781 }
782 
783 /*
784  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
785  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
786  * is only a single shared total walker count, and an entry can't be physically
787  * unlinked if a walker is active on either list. The last walker does this
788  * cleanup of logically deleted entries.
789  */
790 void
791 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
792 {
793 	mac_cb_t	*rmlist;
794 	mac_cb_t	*mcb;
795 	mac_cb_t	*mcb_next;
796 	mac_promisc_impl_t	*mpip;
797 
798 	/*
799 	 * Construct a temporary list of deleted callbacks by walking the
800 	 * the mi_promisc_list. Then for each entry in the temporary list,
801 	 * remove it from the mci_promisc_list and free the entry.
802 	 */
803 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
804 	    &mip->mi_promisc_list);
805 
806 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
807 		mcb_next = mcb->mcb_nextp;
808 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
809 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
810 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
811 		mcb->mcb_flags = 0;
812 		mcb->mcb_nextp = NULL;
813 		kmem_cache_free(mac_promisc_impl_cache, mpip);
814 	}
815 }
816 
817 void
818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
819 {
820 	mac_cb_info_t	*mcbi;
821 
822 	/*
823 	 * Signal the notify thread even after mi_ref has become zero and
824 	 * mi_disabled is set. The synchronization with the notify thread
825 	 * happens in mac_unregister and that implies the driver must make
826 	 * sure it is single-threaded (with respect to mac calls) and that
827 	 * all pending mac calls have returned before it calls mac_unregister
828 	 */
829 	rw_enter(&i_mac_impl_lock, RW_READER);
830 	if (mip->mi_state_flags & MIS_DISABLED)
831 		goto exit;
832 
833 	/*
834 	 * Guard against incorrect notifications.  (Running a newer
835 	 * mac client against an older implementation?)
836 	 */
837 	if (type >= MAC_NNOTE)
838 		goto exit;
839 
840 	mcbi = &mip->mi_notify_cb_info;
841 	mutex_enter(mcbi->mcbi_lockp);
842 	mip->mi_notify_bits |= (1 << type);
843 	cv_broadcast(&mcbi->mcbi_cv);
844 	mutex_exit(mcbi->mcbi_lockp);
845 
846 exit:
847 	rw_exit(&i_mac_impl_lock);
848 }
849 
850 /*
851  * Mac serialization primitives. Please see the block comment at the
852  * top of the file.
853  */
854 void
855 i_mac_perim_enter(mac_impl_t *mip)
856 {
857 	mac_client_impl_t	*mcip;
858 
859 	if (mip->mi_state_flags & MIS_IS_VNIC) {
860 		/*
861 		 * This is a VNIC. Return the lower mac since that is what
862 		 * we want to serialize on.
863 		 */
864 		mcip = mac_vnic_lower(mip);
865 		mip = mcip->mci_mip;
866 	}
867 
868 	mutex_enter(&mip->mi_perim_lock);
869 	if (mip->mi_perim_owner == curthread) {
870 		mip->mi_perim_ocnt++;
871 		mutex_exit(&mip->mi_perim_lock);
872 		return;
873 	}
874 
875 	while (mip->mi_perim_owner != NULL)
876 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
877 
878 	mip->mi_perim_owner = curthread;
879 	ASSERT(mip->mi_perim_ocnt == 0);
880 	mip->mi_perim_ocnt++;
881 #ifdef DEBUG
882 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
883 	    MAC_PERIM_STACK_DEPTH);
884 #endif
885 	mutex_exit(&mip->mi_perim_lock);
886 }
887 
888 int
889 i_mac_perim_enter_nowait(mac_impl_t *mip)
890 {
891 	/*
892 	 * The vnic is a special case, since the serialization is done based
893 	 * on the lower mac. If the lower mac is busy, it does not imply the
894 	 * vnic can't be unregistered. But in the case of other drivers,
895 	 * a busy perimeter or open mac handles implies that the mac is busy
896 	 * and can't be unregistered.
897 	 */
898 	if (mip->mi_state_flags & MIS_IS_VNIC) {
899 		i_mac_perim_enter(mip);
900 		return (0);
901 	}
902 
903 	mutex_enter(&mip->mi_perim_lock);
904 	if (mip->mi_perim_owner != NULL) {
905 		mutex_exit(&mip->mi_perim_lock);
906 		return (EBUSY);
907 	}
908 	ASSERT(mip->mi_perim_ocnt == 0);
909 	mip->mi_perim_owner = curthread;
910 	mip->mi_perim_ocnt++;
911 	mutex_exit(&mip->mi_perim_lock);
912 
913 	return (0);
914 }
915 
916 void
917 i_mac_perim_exit(mac_impl_t *mip)
918 {
919 	mac_client_impl_t *mcip;
920 
921 	if (mip->mi_state_flags & MIS_IS_VNIC) {
922 		/*
923 		 * This is a VNIC. Return the lower mac since that is what
924 		 * we want to serialize on.
925 		 */
926 		mcip = mac_vnic_lower(mip);
927 		mip = mcip->mci_mip;
928 	}
929 
930 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
931 
932 	mutex_enter(&mip->mi_perim_lock);
933 	if (--mip->mi_perim_ocnt == 0) {
934 		mip->mi_perim_owner = NULL;
935 		cv_signal(&mip->mi_perim_cv);
936 	}
937 	mutex_exit(&mip->mi_perim_lock);
938 }
939 
940 /*
941  * Returns whether the current thread holds the mac perimeter. Used in making
942  * assertions.
943  */
944 boolean_t
945 mac_perim_held(mac_handle_t mh)
946 {
947 	mac_impl_t	*mip = (mac_impl_t *)mh;
948 	mac_client_impl_t *mcip;
949 
950 	if (mip->mi_state_flags & MIS_IS_VNIC) {
951 		/*
952 		 * This is a VNIC. Return the lower mac since that is what
953 		 * we want to serialize on.
954 		 */
955 		mcip = mac_vnic_lower(mip);
956 		mip = mcip->mci_mip;
957 	}
958 	return (mip->mi_perim_owner == curthread);
959 }
960 
961 /*
962  * mac client interfaces to enter the mac perimeter of a mac end point, given
963  * its mac handle, or macname or linkid.
964  */
965 void
966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
967 {
968 	mac_impl_t	*mip = (mac_impl_t *)mh;
969 
970 	i_mac_perim_enter(mip);
971 	/*
972 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
973 	 * mac_open has been done internally while entering the perimeter.
974 	 * This information is used in mac_perim_exit
975 	 */
976 	MAC_ENCODE_MPH(*mphp, mip, 0);
977 }
978 
979 int
980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
981 {
982 	int	err;
983 	mac_handle_t	mh;
984 
985 	if ((err = mac_open(name, &mh)) != 0)
986 		return (err);
987 
988 	mac_perim_enter_by_mh(mh, mphp);
989 	MAC_ENCODE_MPH(*mphp, mh, 1);
990 	return (0);
991 }
992 
993 int
994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
995 {
996 	int	err;
997 	mac_handle_t	mh;
998 
999 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1000 		return (err);
1001 
1002 	mac_perim_enter_by_mh(mh, mphp);
1003 	MAC_ENCODE_MPH(*mphp, mh, 1);
1004 	return (0);
1005 }
1006 
1007 void
1008 mac_perim_exit(mac_perim_handle_t mph)
1009 {
1010 	mac_impl_t	*mip;
1011 	boolean_t	need_close;
1012 
1013 	MAC_DECODE_MPH(mph, mip, need_close);
1014 	i_mac_perim_exit(mip);
1015 	if (need_close)
1016 		mac_close((mac_handle_t)mip);
1017 }
1018 
1019 int
1020 mac_hold(const char *macname, mac_impl_t **pmip)
1021 {
1022 	mac_impl_t	*mip;
1023 	int		err;
1024 
1025 	/*
1026 	 * Check the device name length to make sure it won't overflow our
1027 	 * buffer.
1028 	 */
1029 	if (strlen(macname) >= MAXNAMELEN)
1030 		return (EINVAL);
1031 
1032 	/*
1033 	 * Look up its entry in the global hash table.
1034 	 */
1035 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1036 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1037 	    (mod_hash_val_t *)&mip);
1038 
1039 	if (err != 0) {
1040 		rw_exit(&i_mac_impl_lock);
1041 		return (ENOENT);
1042 	}
1043 
1044 	if (mip->mi_state_flags & MIS_DISABLED) {
1045 		rw_exit(&i_mac_impl_lock);
1046 		return (ENOENT);
1047 	}
1048 
1049 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1050 		rw_exit(&i_mac_impl_lock);
1051 		return (EBUSY);
1052 	}
1053 
1054 	mip->mi_ref++;
1055 	rw_exit(&i_mac_impl_lock);
1056 
1057 	*pmip = mip;
1058 	return (0);
1059 }
1060 
1061 void
1062 mac_rele(mac_impl_t *mip)
1063 {
1064 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1065 	ASSERT(mip->mi_ref != 0);
1066 	if (--mip->mi_ref == 0) {
1067 		ASSERT(mip->mi_nactiveclients == 0 &&
1068 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1069 	}
1070 	rw_exit(&i_mac_impl_lock);
1071 }
1072 
1073 /*
1074  * Private GLDv3 function to start a MAC instance.
1075  */
1076 int
1077 mac_start(mac_handle_t mh)
1078 {
1079 	mac_impl_t	*mip = (mac_impl_t *)mh;
1080 	int		err = 0;
1081 	mac_group_t	*defgrp;
1082 
1083 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1084 	ASSERT(mip->mi_start != NULL);
1085 
1086 	/*
1087 	 * Check whether the device is already started.
1088 	 */
1089 	if (mip->mi_active++ == 0) {
1090 		mac_ring_t *ring = NULL;
1091 
1092 		/*
1093 		 * Start the device.
1094 		 */
1095 		err = mip->mi_start(mip->mi_driver);
1096 		if (err != 0) {
1097 			mip->mi_active--;
1098 			return (err);
1099 		}
1100 
1101 		/*
1102 		 * Start the default tx ring.
1103 		 */
1104 		if (mip->mi_default_tx_ring != NULL) {
1105 
1106 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1107 			if (ring->mr_state != MR_INUSE) {
1108 				err = mac_start_ring(ring);
1109 				if (err != 0) {
1110 					mip->mi_active--;
1111 					return (err);
1112 				}
1113 			}
1114 		}
1115 
1116 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1117 			/*
1118 			 * Start the default ring, since it will be needed
1119 			 * to receive broadcast and multicast traffic for
1120 			 * both primary and non-primary MAC clients.
1121 			 */
1122 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1123 			err = mac_start_group_and_rings(defgrp);
1124 			if (err != 0) {
1125 				mip->mi_active--;
1126 				if ((ring != NULL) &&
1127 				    (ring->mr_state == MR_INUSE))
1128 					mac_stop_ring(ring);
1129 				return (err);
1130 			}
1131 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1132 		}
1133 	}
1134 
1135 	return (err);
1136 }
1137 
1138 /*
1139  * Private GLDv3 function to stop a MAC instance.
1140  */
1141 void
1142 mac_stop(mac_handle_t mh)
1143 {
1144 	mac_impl_t	*mip = (mac_impl_t *)mh;
1145 	mac_group_t	*grp;
1146 
1147 	ASSERT(mip->mi_stop != NULL);
1148 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1149 
1150 	/*
1151 	 * Check whether the device is still needed.
1152 	 */
1153 	ASSERT(mip->mi_active != 0);
1154 	if (--mip->mi_active == 0) {
1155 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1156 			/*
1157 			 * There should be no more active clients since the
1158 			 * MAC is being stopped. Stop the default RX group
1159 			 * and transition it back to registered state.
1160 			 *
1161 			 * When clients are torn down, the groups
1162 			 * are release via mac_release_rx_group which
1163 			 * knows the the default group is always in
1164 			 * started mode since broadcast uses it. So
1165 			 * we can assert that their are no clients
1166 			 * (since mac_bcast_add doesn't register itself
1167 			 * as a client) and group is in SHARED state.
1168 			 */
1169 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1170 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1171 			    mip->mi_nactiveclients == 0);
1172 			mac_stop_group_and_rings(grp);
1173 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1174 		}
1175 
1176 		if (mip->mi_default_tx_ring != NULL) {
1177 			mac_ring_t *ring;
1178 
1179 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1180 			if (ring->mr_state == MR_INUSE) {
1181 				mac_stop_ring(ring);
1182 				ring->mr_flag = 0;
1183 			}
1184 		}
1185 
1186 		/*
1187 		 * Stop the device.
1188 		 */
1189 		mip->mi_stop(mip->mi_driver);
1190 	}
1191 }
1192 
1193 int
1194 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1195 {
1196 	int		err = 0;
1197 
1198 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1199 	ASSERT(mip->mi_setpromisc != NULL);
1200 
1201 	if (on) {
1202 		/*
1203 		 * Enable promiscuous mode on the device if not yet enabled.
1204 		 */
1205 		if (mip->mi_devpromisc++ == 0) {
1206 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1207 			if (err != 0) {
1208 				mip->mi_devpromisc--;
1209 				return (err);
1210 			}
1211 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1212 		}
1213 	} else {
1214 		if (mip->mi_devpromisc == 0)
1215 			return (EPROTO);
1216 
1217 		/*
1218 		 * Disable promiscuous mode on the device if this is the last
1219 		 * enabling.
1220 		 */
1221 		if (--mip->mi_devpromisc == 0) {
1222 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1223 			if (err != 0) {
1224 				mip->mi_devpromisc++;
1225 				return (err);
1226 			}
1227 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1228 		}
1229 	}
1230 
1231 	return (0);
1232 }
1233 
1234 /*
1235  * The promiscuity state can change any time. If the caller needs to take
1236  * actions that are atomic with the promiscuity state, then the caller needs
1237  * to bracket the entire sequence with mac_perim_enter/exit
1238  */
1239 boolean_t
1240 mac_promisc_get(mac_handle_t mh)
1241 {
1242 	mac_impl_t		*mip = (mac_impl_t *)mh;
1243 
1244 	/*
1245 	 * Return the current promiscuity.
1246 	 */
1247 	return (mip->mi_devpromisc != 0);
1248 }
1249 
1250 /*
1251  * Invoked at MAC instance attach time to initialize the list
1252  * of factory MAC addresses supported by a MAC instance. This function
1253  * builds a local cache in the mac_impl_t for the MAC addresses
1254  * supported by the underlying hardware. The MAC clients themselves
1255  * use the mac_addr_factory*() functions to query and reserve
1256  * factory MAC addresses.
1257  */
1258 void
1259 mac_addr_factory_init(mac_impl_t *mip)
1260 {
1261 	mac_capab_multifactaddr_t capab;
1262 	uint8_t *addr;
1263 	int i;
1264 
1265 	/*
1266 	 * First round to see how many factory MAC addresses are available.
1267 	 */
1268 	bzero(&capab, sizeof (capab));
1269 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1270 	    &capab) || (capab.mcm_naddr == 0)) {
1271 		/*
1272 		 * The MAC instance doesn't support multiple factory
1273 		 * MAC addresses, we're done here.
1274 		 */
1275 		return;
1276 	}
1277 
1278 	/*
1279 	 * Allocate the space and get all the factory addresses.
1280 	 */
1281 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1282 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1283 
1284 	mip->mi_factory_addr_num = capab.mcm_naddr;
1285 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1286 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1287 
1288 	for (i = 0; i < capab.mcm_naddr; i++) {
1289 		bcopy(addr + i * MAXMACADDRLEN,
1290 		    mip->mi_factory_addr[i].mfa_addr,
1291 		    mip->mi_type->mt_addr_length);
1292 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1293 	}
1294 
1295 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1296 }
1297 
1298 void
1299 mac_addr_factory_fini(mac_impl_t *mip)
1300 {
1301 	if (mip->mi_factory_addr == NULL) {
1302 		ASSERT(mip->mi_factory_addr_num == 0);
1303 		return;
1304 	}
1305 
1306 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1307 	    sizeof (mac_factory_addr_t));
1308 
1309 	mip->mi_factory_addr = NULL;
1310 	mip->mi_factory_addr_num = 0;
1311 }
1312 
1313 /*
1314  * Reserve a factory MAC address. If *slot is set to -1, the function
1315  * attempts to reserve any of the available factory MAC addresses and
1316  * returns the reserved slot id. If no slots are available, the function
1317  * returns ENOSPC. If *slot is not set to -1, the function reserves
1318  * the specified slot if it is available, or returns EBUSY is the slot
1319  * is already used. Returns ENOTSUP if the underlying MAC does not
1320  * support multiple factory addresses. If the slot number is not -1 but
1321  * is invalid, returns EINVAL.
1322  */
1323 int
1324 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1325 {
1326 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1327 	mac_impl_t *mip = mcip->mci_mip;
1328 	int i, ret = 0;
1329 
1330 	i_mac_perim_enter(mip);
1331 	/*
1332 	 * Protect against concurrent readers that may need a self-consistent
1333 	 * view of the factory addresses
1334 	 */
1335 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1336 
1337 	if (mip->mi_factory_addr_num == 0) {
1338 		ret = ENOTSUP;
1339 		goto bail;
1340 	}
1341 
1342 	if (*slot != -1) {
1343 		/* check the specified slot */
1344 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1345 			ret = EINVAL;
1346 			goto bail;
1347 		}
1348 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1349 			ret = EBUSY;
1350 			goto bail;
1351 		}
1352 	} else {
1353 		/* pick the next available slot */
1354 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1355 			if (!mip->mi_factory_addr[i].mfa_in_use)
1356 				break;
1357 		}
1358 
1359 		if (i == mip->mi_factory_addr_num) {
1360 			ret = ENOSPC;
1361 			goto bail;
1362 		}
1363 		*slot = i+1;
1364 	}
1365 
1366 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1367 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1368 
1369 bail:
1370 	rw_exit(&mip->mi_rw_lock);
1371 	i_mac_perim_exit(mip);
1372 	return (ret);
1373 }
1374 
1375 /*
1376  * Release the specified factory MAC address slot.
1377  */
1378 void
1379 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1380 {
1381 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1382 	mac_impl_t *mip = mcip->mci_mip;
1383 
1384 	i_mac_perim_enter(mip);
1385 	/*
1386 	 * Protect against concurrent readers that may need a self-consistent
1387 	 * view of the factory addresses
1388 	 */
1389 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1390 
1391 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1392 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1393 
1394 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1395 
1396 	rw_exit(&mip->mi_rw_lock);
1397 	i_mac_perim_exit(mip);
1398 }
1399 
1400 /*
1401  * Stores in mac_addr the value of the specified MAC address. Returns
1402  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1403  * The caller must provide a string of at least MAXNAMELEN bytes.
1404  */
1405 void
1406 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1407     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1408 {
1409 	mac_impl_t *mip = (mac_impl_t *)mh;
1410 	boolean_t in_use;
1411 
1412 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1413 
1414 	/*
1415 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1416 	 * and mi_rw_lock
1417 	 */
1418 	rw_enter(&mip->mi_rw_lock, RW_READER);
1419 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1420 	*addr_len = mip->mi_type->mt_addr_length;
1421 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1422 	if (in_use && client_name != NULL) {
1423 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1424 		    client_name, MAXNAMELEN);
1425 	}
1426 	if (in_use_arg != NULL)
1427 		*in_use_arg = in_use;
1428 	rw_exit(&mip->mi_rw_lock);
1429 }
1430 
1431 /*
1432  * Returns the number of factory MAC addresses (in addition to the
1433  * primary MAC address), 0 if the underlying MAC doesn't support
1434  * that feature.
1435  */
1436 uint_t
1437 mac_addr_factory_num(mac_handle_t mh)
1438 {
1439 	mac_impl_t *mip = (mac_impl_t *)mh;
1440 
1441 	return (mip->mi_factory_addr_num);
1442 }
1443 
1444 
1445 void
1446 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1447 {
1448 	mac_ring_t	*ring;
1449 
1450 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1451 		ring->mr_flag &= ~flag;
1452 }
1453 
1454 /*
1455  * The following mac_hwrings_xxx() functions are private mac client functions
1456  * used by the aggr driver to access and control the underlying HW Rx group
1457  * and rings. In this case, the aggr driver has exclusive control of the
1458  * underlying HW Rx group/rings, it calls the following functions to
1459  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1460  * addresses, or set up the Rx callback.
1461  */
1462 /* ARGSUSED */
1463 static void
1464 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1465     mblk_t *mp_chain, boolean_t loopback)
1466 {
1467 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1468 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1469 	mac_direct_rx_t		proc;
1470 	void			*arg1;
1471 	mac_resource_handle_t	arg2;
1472 
1473 	proc = srs_rx->sr_func;
1474 	arg1 = srs_rx->sr_arg1;
1475 	arg2 = mac_srs->srs_mrh;
1476 
1477 	proc(arg1, arg2, mp_chain, NULL);
1478 }
1479 
1480 /*
1481  * This function is called to get the list of HW rings that are reserved by
1482  * an exclusive mac client.
1483  *
1484  * Return value: the number of HW rings.
1485  */
1486 int
1487 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1488     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1489 {
1490 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1491 	flow_entry_t		*flent = mcip->mci_flent;
1492 	mac_group_t		*grp;
1493 	mac_ring_t		*ring;
1494 	int			cnt = 0;
1495 
1496 	if (rtype == MAC_RING_TYPE_RX) {
1497 		grp = flent->fe_rx_ring_group;
1498 	} else if (rtype == MAC_RING_TYPE_TX) {
1499 		grp = flent->fe_tx_ring_group;
1500 	} else {
1501 		ASSERT(B_FALSE);
1502 		return (-1);
1503 	}
1504 	/*
1505 	 * The mac client did not reserve any RX group, return directly.
1506 	 * This is probably because the underlying MAC does not support
1507 	 * any groups.
1508 	 */
1509 	if (hwgh != NULL)
1510 		*hwgh = NULL;
1511 	if (grp == NULL)
1512 		return (0);
1513 	/*
1514 	 * This group must be reserved by this mac client.
1515 	 */
1516 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1517 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1518 
1519 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1520 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1521 		hwrh[cnt] = (mac_ring_handle_t)ring;
1522 	}
1523 	if (hwgh != NULL)
1524 		*hwgh = (mac_group_handle_t)grp;
1525 
1526 	return (cnt);
1527 }
1528 
1529 /*
1530  * This function is called to get info about Tx/Rx rings.
1531  *
1532  * Return value: returns uint_t which will have various bits set
1533  * that indicates different properties of the ring.
1534  */
1535 uint_t
1536 mac_hwring_getinfo(mac_ring_handle_t rh)
1537 {
1538 	mac_ring_t *ring = (mac_ring_t *)rh;
1539 	mac_ring_info_t *info = &ring->mr_info;
1540 
1541 	return (info->mri_flags);
1542 }
1543 
1544 /*
1545  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1546  * setup the RX callback of the mac client which exclusively controls
1547  * HW ring.
1548  */
1549 void
1550 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1551     mac_ring_handle_t pseudo_rh)
1552 {
1553 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1554 	mac_ring_t		*pseudo_ring;
1555 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1556 
1557 	if (pseudo_rh != NULL) {
1558 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1559 		/* Export the ddi handles to pseudo ring */
1560 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1561 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1562 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1563 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1564 		/*
1565 		 * Save a pointer to pseudo ring in the hw ring. If
1566 		 * interrupt handle changes, the hw ring will be
1567 		 * notified of the change (see mac_ring_intr_set())
1568 		 * and the appropriate change has to be made to
1569 		 * the pseudo ring that has exported the ddi handle.
1570 		 */
1571 		hw_ring->mr_prh = pseudo_rh;
1572 	}
1573 
1574 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1575 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1576 		mac_srs->srs_mrh = prh;
1577 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1578 	}
1579 }
1580 
1581 void
1582 mac_hwring_teardown(mac_ring_handle_t hwrh)
1583 {
1584 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1585 	mac_soft_ring_set_t	*mac_srs;
1586 
1587 	if (hw_ring == NULL)
1588 		return;
1589 	hw_ring->mr_prh = NULL;
1590 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1591 		mac_srs = hw_ring->mr_srs;
1592 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1593 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1594 		mac_srs->srs_mrh = NULL;
1595 	}
1596 }
1597 
1598 int
1599 mac_hwring_disable_intr(mac_ring_handle_t rh)
1600 {
1601 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1602 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1603 
1604 	return (intr->mi_disable(intr->mi_handle));
1605 }
1606 
1607 int
1608 mac_hwring_enable_intr(mac_ring_handle_t rh)
1609 {
1610 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1611 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1612 
1613 	return (intr->mi_enable(intr->mi_handle));
1614 }
1615 
1616 int
1617 mac_hwring_start(mac_ring_handle_t rh)
1618 {
1619 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1620 
1621 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1622 	return (0);
1623 }
1624 
1625 void
1626 mac_hwring_stop(mac_ring_handle_t rh)
1627 {
1628 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1629 
1630 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1631 }
1632 
1633 mblk_t *
1634 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1635 {
1636 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1637 	mac_ring_info_t *info = &rr_ring->mr_info;
1638 
1639 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1640 }
1641 
1642 /*
1643  * Send packets through a selected tx ring.
1644  */
1645 mblk_t *
1646 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1647 {
1648 	mac_ring_t *ring = (mac_ring_t *)rh;
1649 	mac_ring_info_t *info = &ring->mr_info;
1650 
1651 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1652 	    ring->mr_state >= MR_INUSE);
1653 	return (info->mri_tx(info->mri_driver, mp));
1654 }
1655 
1656 /*
1657  * Query stats for a particular rx/tx ring
1658  */
1659 int
1660 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1661 {
1662 	mac_ring_t	*ring = (mac_ring_t *)rh;
1663 	mac_ring_info_t *info = &ring->mr_info;
1664 
1665 	return (info->mri_stat(info->mri_driver, stat, val));
1666 }
1667 
1668 /*
1669  * Private function that is only used by aggr to send packets through
1670  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1671  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1672  * access to mac_impl_t to send packets through m_tx() entry point.
1673  * It accomplishes this by calling mac_hwring_send_priv() function.
1674  */
1675 mblk_t *
1676 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1677 {
1678 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1679 	mac_impl_t *mip = mcip->mci_mip;
1680 
1681 	MAC_TX(mip, rh, mp, mcip);
1682 	return (mp);
1683 }
1684 
1685 /*
1686  * Private function that is only used by aggr to update the default transmission
1687  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1688  * temporarily be down, it may need to update the default ring that is used by
1689  * MAC such that it refers to a link that can actively be used to send traffic.
1690  * Note that this is different from the case where the port has been removed
1691  * from the group. In those cases, all of the rings will be torn down because
1692  * the ring will no longer exist. It's important to give aggr a case where the
1693  * rings can still exist such that it may be able to continue to send LACP PDUs
1694  * to potentially restore the link.
1695  *
1696  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1697  * This is to help out aggr which doesn't really know the internal state that
1698  * MAC does about the rings and can't know that it's not quite ready for use
1699  * yet.
1700  */
1701 void
1702 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1703 {
1704 	mac_impl_t *mip = (mac_impl_t *)mh;
1705 	mac_ring_t *ring = (mac_ring_t *)rh;
1706 
1707 	ASSERT(MAC_PERIM_HELD(mh));
1708 	VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1709 
1710 	if (ring->mr_state != MR_INUSE)
1711 		return;
1712 
1713 	mip->mi_default_tx_ring = rh;
1714 }
1715 
1716 int
1717 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1718 {
1719 	mac_group_t *group = (mac_group_t *)gh;
1720 
1721 	return (mac_group_addmac(group, addr));
1722 }
1723 
1724 int
1725 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1726 {
1727 	mac_group_t *group = (mac_group_t *)gh;
1728 
1729 	return (mac_group_remmac(group, addr));
1730 }
1731 
1732 /*
1733  * Set the RX group to be shared/reserved. Note that the group must be
1734  * started/stopped outside of this function.
1735  */
1736 void
1737 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1738 {
1739 	/*
1740 	 * If there is no change in the group state, just return.
1741 	 */
1742 	if (grp->mrg_state == state)
1743 		return;
1744 
1745 	switch (state) {
1746 	case MAC_GROUP_STATE_RESERVED:
1747 		/*
1748 		 * Successfully reserved the group.
1749 		 *
1750 		 * Given that there is an exclusive client controlling this
1751 		 * group, we enable the group level polling when available,
1752 		 * so that SRSs get to turn on/off individual rings they's
1753 		 * assigned to.
1754 		 */
1755 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1756 
1757 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1758 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1759 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1760 		}
1761 		break;
1762 
1763 	case MAC_GROUP_STATE_SHARED:
1764 		/*
1765 		 * Set all rings of this group to software classified.
1766 		 * If the group has an overriding interrupt, then re-enable it.
1767 		 */
1768 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1769 
1770 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1771 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1772 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1773 		}
1774 		/* The ring is not available for reservations any more */
1775 		break;
1776 
1777 	case MAC_GROUP_STATE_REGISTERED:
1778 		/* Also callable from mac_register, perim is not held */
1779 		break;
1780 
1781 	default:
1782 		ASSERT(B_FALSE);
1783 		break;
1784 	}
1785 
1786 	grp->mrg_state = state;
1787 }
1788 
1789 /*
1790  * Quiesce future hardware classified packets for the specified Rx ring
1791  */
1792 static void
1793 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1794 {
1795 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1796 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1797 
1798 	mutex_enter(&rx_ring->mr_lock);
1799 	rx_ring->mr_flag |= ring_flag;
1800 	while (rx_ring->mr_refcnt != 0)
1801 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1802 	mutex_exit(&rx_ring->mr_lock);
1803 }
1804 
1805 /*
1806  * Please see mac_tx for details about the per cpu locking scheme
1807  */
1808 static void
1809 mac_tx_lock_all(mac_client_impl_t *mcip)
1810 {
1811 	int	i;
1812 
1813 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1814 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1815 }
1816 
1817 static void
1818 mac_tx_unlock_all(mac_client_impl_t *mcip)
1819 {
1820 	int	i;
1821 
1822 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1823 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1824 }
1825 
1826 static void
1827 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1828 {
1829 	int	i;
1830 
1831 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1832 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1833 }
1834 
1835 static int
1836 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1837 {
1838 	int	i;
1839 	int	refcnt = 0;
1840 
1841 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1842 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1843 
1844 	return (refcnt);
1845 }
1846 
1847 /*
1848  * Stop future Tx packets coming down from the client in preparation for
1849  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1850  * of rings between clients
1851  */
1852 void
1853 mac_tx_client_block(mac_client_impl_t *mcip)
1854 {
1855 	mac_tx_lock_all(mcip);
1856 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1857 	while (mac_tx_sum_refcnt(mcip) != 0) {
1858 		mac_tx_unlock_allbutzero(mcip);
1859 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1860 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1861 		mac_tx_lock_all(mcip);
1862 	}
1863 	mac_tx_unlock_all(mcip);
1864 }
1865 
1866 void
1867 mac_tx_client_unblock(mac_client_impl_t *mcip)
1868 {
1869 	mac_tx_lock_all(mcip);
1870 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1871 	mac_tx_unlock_all(mcip);
1872 	/*
1873 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1874 	 * notification because the MAC client is quiesced. Send the
1875 	 * notification again.
1876 	 */
1877 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1878 }
1879 
1880 /*
1881  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1882  * quiesce is done.
1883  */
1884 static void
1885 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1886 {
1887 	mutex_enter(&srs->srs_lock);
1888 	while (!(srs->srs_state & srs_flag))
1889 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1890 	mutex_exit(&srs->srs_lock);
1891 }
1892 
1893 /*
1894  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1895  * works bottom up by cutting off packet flow from the bottommost point in the
1896  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1897  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1898  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1899  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1900  * for the SRS and MR flags. In the former case the threads pause waiting for
1901  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1902  * is also mostly similar to the above.
1903  *
1904  * 1. Stop future hardware classified packets at the lowest level in the mac.
1905  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1906  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1907  *    from increasing. Upcalls from the driver that come through hardware
1908  *    classification will be dropped in mac_rx from now on. Then we wait for
1909  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1910  *    sure there aren't any upcall threads from the driver through hardware
1911  *    classification. In the case of SRS teardown we also remove the
1912  *    classification rule in the driver.
1913  *
1914  * 2. Stop future software classified packets by marking the flow entry with
1915  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1916  *    increasing. We also remove the flow entry from the table in the latter
1917  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1918  *    that indicates there aren't any active threads using that flow entry.
1919  *
1920  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1921  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1922  *    with the SRS worker thread serving as a master controller. This
1923  *    mechansim is explained in mac_srs_worker_quiesce().
1924  *
1925  * The restart mechanism to reactivate the SRS and softrings is explained
1926  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1927  * restart sequence.
1928  */
1929 void
1930 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1931 {
1932 	flow_entry_t	*flent = srs->srs_flent;
1933 	uint_t	mr_flag, srs_done_flag;
1934 
1935 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1936 	ASSERT(!(srs->srs_type & SRST_TX));
1937 
1938 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1939 		mr_flag = MR_CONDEMNED;
1940 		srs_done_flag = SRS_CONDEMNED_DONE;
1941 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1942 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1943 	} else {
1944 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1945 		mr_flag = MR_QUIESCE;
1946 		srs_done_flag = SRS_QUIESCE_DONE;
1947 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1948 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1949 	}
1950 
1951 	if (srs->srs_ring != NULL) {
1952 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1953 	} else {
1954 		/*
1955 		 * SRS is driven by software classification. In case
1956 		 * of CONDEMNED, the top level teardown functions will
1957 		 * deal with flow removal.
1958 		 */
1959 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1960 			FLOW_MARK(flent, FE_QUIESCE);
1961 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1967 	 * SRS quiesce to complete. The SRS worker thread will wake us
1968 	 * up when the quiesce is complete
1969 	 */
1970 	mac_srs_signal(srs, srs_quiesce_flag);
1971 	mac_srs_quiesce_wait(srs, srs_done_flag);
1972 }
1973 
1974 /*
1975  * Remove an SRS.
1976  */
1977 void
1978 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1979 {
1980 	flow_entry_t *flent = srs->srs_flent;
1981 	int i;
1982 
1983 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1984 	/*
1985 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1986 	 * adjust the fe_rx_srs array entries and array count by
1987 	 * moving the last entry into the vacated spot.
1988 	 */
1989 	mutex_enter(&flent->fe_lock);
1990 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1991 		if (flent->fe_rx_srs[i] == srs)
1992 			break;
1993 	}
1994 
1995 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1996 	if (i != flent->fe_rx_srs_cnt - 1) {
1997 		flent->fe_rx_srs[i] =
1998 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1999 		i = flent->fe_rx_srs_cnt - 1;
2000 	}
2001 
2002 	flent->fe_rx_srs[i] = NULL;
2003 	flent->fe_rx_srs_cnt--;
2004 	mutex_exit(&flent->fe_lock);
2005 
2006 	mac_srs_free(srs);
2007 }
2008 
2009 static void
2010 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2011 {
2012 	mutex_enter(&srs->srs_lock);
2013 	srs->srs_state &= ~flag;
2014 	mutex_exit(&srs->srs_lock);
2015 }
2016 
2017 void
2018 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2019 {
2020 	flow_entry_t	*flent = srs->srs_flent;
2021 	mac_ring_t	*mr;
2022 
2023 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2024 	ASSERT((srs->srs_type & SRST_TX) == 0);
2025 
2026 	/*
2027 	 * This handles a change in the number of SRSs between the quiesce and
2028 	 * and restart operation of a flow.
2029 	 */
2030 	if (!SRS_QUIESCED(srs))
2031 		return;
2032 
2033 	/*
2034 	 * Signal the SRS to restart itself. Wait for the restart to complete
2035 	 * Note that we only restart the SRS if it is not marked as
2036 	 * permanently quiesced.
2037 	 */
2038 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2039 		mac_srs_signal(srs, SRS_RESTART);
2040 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2041 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2042 
2043 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2044 	}
2045 
2046 	/* Finally clear the flags to let the packets in */
2047 	mr = srs->srs_ring;
2048 	if (mr != NULL) {
2049 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2050 		/* In case the ring was stopped, safely restart it */
2051 		if (mr->mr_state != MR_INUSE)
2052 			(void) mac_start_ring(mr);
2053 	} else {
2054 		FLOW_UNMARK(flent, FE_QUIESCE);
2055 	}
2056 }
2057 
2058 /*
2059  * Temporary quiesce of a flow and associated Rx SRS.
2060  * Please see block comment above mac_rx_classify_flow_rem.
2061  */
2062 /* ARGSUSED */
2063 int
2064 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2065 {
2066 	int		i;
2067 
2068 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2069 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2070 		    SRS_QUIESCE);
2071 	}
2072 	return (0);
2073 }
2074 
2075 /*
2076  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2077  * Please see block comment above mac_rx_classify_flow_rem
2078  */
2079 /* ARGSUSED */
2080 int
2081 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2082 {
2083 	int		i;
2084 
2085 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2086 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2087 
2088 	return (0);
2089 }
2090 
2091 void
2092 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2093 {
2094 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2095 	flow_entry_t		*flent = mcip->mci_flent;
2096 	mac_impl_t		*mip = mcip->mci_mip;
2097 	mac_soft_ring_set_t	*mac_srs;
2098 	int			i;
2099 
2100 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2101 
2102 	if (flent == NULL)
2103 		return;
2104 
2105 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2106 		mac_srs = flent->fe_rx_srs[i];
2107 		mutex_enter(&mac_srs->srs_lock);
2108 		if (on)
2109 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2110 		else
2111 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2112 		mutex_exit(&mac_srs->srs_lock);
2113 	}
2114 }
2115 
2116 void
2117 mac_rx_client_quiesce(mac_client_handle_t mch)
2118 {
2119 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2120 	mac_impl_t		*mip = mcip->mci_mip;
2121 
2122 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2123 
2124 	if (MCIP_DATAPATH_SETUP(mcip)) {
2125 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2126 		    NULL);
2127 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2128 		    mac_rx_classify_flow_quiesce, NULL);
2129 	}
2130 }
2131 
2132 void
2133 mac_rx_client_restart(mac_client_handle_t mch)
2134 {
2135 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2136 	mac_impl_t		*mip = mcip->mci_mip;
2137 
2138 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2139 
2140 	if (MCIP_DATAPATH_SETUP(mcip)) {
2141 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2142 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2143 		    mac_rx_classify_flow_restart, NULL);
2144 	}
2145 }
2146 
2147 /*
2148  * This function only quiesces the Tx SRS and softring worker threads. Callers
2149  * need to make sure that there aren't any mac client threads doing current or
2150  * future transmits in the mac before calling this function.
2151  */
2152 void
2153 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2154 {
2155 	mac_client_impl_t	*mcip = srs->srs_mcip;
2156 
2157 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2158 
2159 	ASSERT(srs->srs_type & SRST_TX);
2160 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2161 	    srs_quiesce_flag == SRS_QUIESCE);
2162 
2163 	/*
2164 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2165 	 * SRS quiesce to complete. The SRS worker thread will wake us
2166 	 * up when the quiesce is complete
2167 	 */
2168 	mac_srs_signal(srs, srs_quiesce_flag);
2169 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2170 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2171 }
2172 
2173 void
2174 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2175 {
2176 	/*
2177 	 * Resizing the fanout could result in creation of new SRSs.
2178 	 * They may not necessarily be in the quiesced state in which
2179 	 * case it need be restarted
2180 	 */
2181 	if (!SRS_QUIESCED(srs))
2182 		return;
2183 
2184 	mac_srs_signal(srs, SRS_RESTART);
2185 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2186 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2187 }
2188 
2189 /*
2190  * Temporary quiesce of a flow and associated Rx SRS.
2191  * Please see block comment above mac_rx_srs_quiesce
2192  */
2193 /* ARGSUSED */
2194 int
2195 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2196 {
2197 	/*
2198 	 * The fe_tx_srs is null for a subflow on an interface that is
2199 	 * not plumbed
2200 	 */
2201 	if (flent->fe_tx_srs != NULL)
2202 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2203 	return (0);
2204 }
2205 
2206 /* ARGSUSED */
2207 int
2208 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2209 {
2210 	/*
2211 	 * The fe_tx_srs is null for a subflow on an interface that is
2212 	 * not plumbed
2213 	 */
2214 	if (flent->fe_tx_srs != NULL)
2215 		mac_tx_srs_restart(flent->fe_tx_srs);
2216 	return (0);
2217 }
2218 
2219 static void
2220 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2221 {
2222 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2223 
2224 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2225 
2226 	mac_tx_client_block(mcip);
2227 	if (MCIP_TX_SRS(mcip) != NULL) {
2228 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2229 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2230 		    mac_tx_flow_quiesce, NULL);
2231 	}
2232 }
2233 
2234 void
2235 mac_tx_client_quiesce(mac_client_handle_t mch)
2236 {
2237 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2238 }
2239 
2240 void
2241 mac_tx_client_condemn(mac_client_handle_t mch)
2242 {
2243 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2244 }
2245 
2246 void
2247 mac_tx_client_restart(mac_client_handle_t mch)
2248 {
2249 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2250 
2251 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2252 
2253 	mac_tx_client_unblock(mcip);
2254 	if (MCIP_TX_SRS(mcip) != NULL) {
2255 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2256 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2257 		    mac_tx_flow_restart, NULL);
2258 	}
2259 }
2260 
2261 void
2262 mac_tx_client_flush(mac_client_impl_t *mcip)
2263 {
2264 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2265 
2266 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2267 	mac_tx_client_restart((mac_client_handle_t)mcip);
2268 }
2269 
2270 void
2271 mac_client_quiesce(mac_client_impl_t *mcip)
2272 {
2273 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2274 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2275 }
2276 
2277 void
2278 mac_client_restart(mac_client_impl_t *mcip)
2279 {
2280 	mac_rx_client_restart((mac_client_handle_t)mcip);
2281 	mac_tx_client_restart((mac_client_handle_t)mcip);
2282 }
2283 
2284 /*
2285  * Allocate a minor number.
2286  */
2287 minor_t
2288 mac_minor_hold(boolean_t sleep)
2289 {
2290 	id_t id;
2291 
2292 	/*
2293 	 * Grab a value from the arena.
2294 	 */
2295 	atomic_inc_32(&minor_count);
2296 
2297 	if (sleep)
2298 		return ((uint_t)id_alloc(minor_ids));
2299 
2300 	if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2301 		atomic_dec_32(&minor_count);
2302 		return (0);
2303 	}
2304 
2305 	return ((uint_t)id);
2306 }
2307 
2308 /*
2309  * Release a previously allocated minor number.
2310  */
2311 void
2312 mac_minor_rele(minor_t minor)
2313 {
2314 	/*
2315 	 * Return the value to the arena.
2316 	 */
2317 	id_free(minor_ids, minor);
2318 	atomic_dec_32(&minor_count);
2319 }
2320 
2321 uint32_t
2322 mac_no_notification(mac_handle_t mh)
2323 {
2324 	mac_impl_t *mip = (mac_impl_t *)mh;
2325 
2326 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2327 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2328 }
2329 
2330 /*
2331  * Prevent any new opens of this mac in preparation for unregister
2332  */
2333 int
2334 i_mac_disable(mac_impl_t *mip)
2335 {
2336 	mac_client_impl_t	*mcip;
2337 
2338 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2339 	if (mip->mi_state_flags & MIS_DISABLED) {
2340 		/* Already disabled, return success */
2341 		rw_exit(&i_mac_impl_lock);
2342 		return (0);
2343 	}
2344 	/*
2345 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2346 	 * If so return failure. If all the other checks below pass, then
2347 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2348 	 * any new VLAN's from being created or new mac client opens of this
2349 	 * mac end point.
2350 	 */
2351 	if (mip->mi_ref > 0) {
2352 		rw_exit(&i_mac_impl_lock);
2353 		return (EBUSY);
2354 	}
2355 
2356 	/*
2357 	 * mac clients must delete all multicast groups they join before
2358 	 * closing. bcast groups are reference counted, the last client
2359 	 * to delete the group will wait till the group is physically
2360 	 * deleted. Since all clients have closed this mac end point
2361 	 * mi_bcast_ngrps must be zero at this point
2362 	 */
2363 	ASSERT(mip->mi_bcast_ngrps == 0);
2364 
2365 	/*
2366 	 * Don't let go of this if it has some flows.
2367 	 * All other code guarantees no flows are added to a disabled
2368 	 * mac, therefore it is sufficient to check for the flow table
2369 	 * only here.
2370 	 */
2371 	mcip = mac_primary_client_handle(mip);
2372 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2373 		rw_exit(&i_mac_impl_lock);
2374 		return (ENOTEMPTY);
2375 	}
2376 
2377 	mip->mi_state_flags |= MIS_DISABLED;
2378 	rw_exit(&i_mac_impl_lock);
2379 	return (0);
2380 }
2381 
2382 int
2383 mac_disable_nowait(mac_handle_t mh)
2384 {
2385 	mac_impl_t	*mip = (mac_impl_t *)mh;
2386 	int err;
2387 
2388 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2389 		return (err);
2390 	err = i_mac_disable(mip);
2391 	i_mac_perim_exit(mip);
2392 	return (err);
2393 }
2394 
2395 int
2396 mac_disable(mac_handle_t mh)
2397 {
2398 	mac_impl_t	*mip = (mac_impl_t *)mh;
2399 	int err;
2400 
2401 	i_mac_perim_enter(mip);
2402 	err = i_mac_disable(mip);
2403 	i_mac_perim_exit(mip);
2404 
2405 	/*
2406 	 * Clean up notification thread and wait for it to exit.
2407 	 */
2408 	if (err == 0)
2409 		i_mac_notify_exit(mip);
2410 
2411 	return (err);
2412 }
2413 
2414 /*
2415  * Called when the MAC instance has a non empty flow table, to de-multiplex
2416  * incoming packets to the right flow.
2417  * The MAC's rw lock is assumed held as a READER.
2418  */
2419 /* ARGSUSED */
2420 static mblk_t *
2421 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2422 {
2423 	flow_entry_t	*flent = NULL;
2424 	uint_t		flags = FLOW_INBOUND;
2425 	int		err;
2426 
2427 	/*
2428 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2429 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2430 	 * passed to the non-VLAN aggregation flows.
2431 	 *
2432 	 * Note that there is possibly a race between this and
2433 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2434 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2435 	 * VLAN packets will be then filtered out by the mac module.
2436 	 */
2437 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2438 		flags |= FLOW_IGNORE_VLAN;
2439 
2440 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2441 	if (err != 0) {
2442 		/* no registered receive function */
2443 		return (mp);
2444 	} else {
2445 		mac_client_impl_t	*mcip;
2446 
2447 		/*
2448 		 * This flent might just be an additional one on the MAC client,
2449 		 * i.e. for classification purposes (different fdesc), however
2450 		 * the resources, SRS et. al., are in the mci_flent, so if
2451 		 * this isn't the mci_flent, we need to get it.
2452 		 */
2453 		if ((mcip = flent->fe_mcip) != NULL &&
2454 		    mcip->mci_flent != flent) {
2455 			FLOW_REFRELE(flent);
2456 			flent = mcip->mci_flent;
2457 			FLOW_TRY_REFHOLD(flent, err);
2458 			if (err != 0)
2459 				return (mp);
2460 		}
2461 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2462 		    B_FALSE);
2463 		FLOW_REFRELE(flent);
2464 	}
2465 	return (NULL);
2466 }
2467 
2468 mblk_t *
2469 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2470 {
2471 	mac_impl_t	*mip = (mac_impl_t *)mh;
2472 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2473 
2474 	/*
2475 	 * We walk the chain and attempt to classify each packet.
2476 	 * The packets that couldn't be classified will be returned
2477 	 * back to the caller.
2478 	 */
2479 	bp = mp_chain;
2480 	bpp = &list;
2481 	while (bp != NULL) {
2482 		bp1 = bp;
2483 		bp = bp->b_next;
2484 		bp1->b_next = NULL;
2485 
2486 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2487 			*bpp = bp1;
2488 			bpp = &bp1->b_next;
2489 		}
2490 	}
2491 	return (list);
2492 }
2493 
2494 static int
2495 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2496 {
2497 	mac_ring_handle_t ring = arg;
2498 
2499 	if (flent->fe_tx_srs)
2500 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2501 	return (0);
2502 }
2503 
2504 void
2505 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2506 {
2507 	mac_client_impl_t	*cclient;
2508 	mac_soft_ring_set_t	*mac_srs;
2509 
2510 	/*
2511 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2512 	 * If there are any clients mi_disabled must be B_FALSE and can't
2513 	 * get set since there are clients. If there aren't any clients we
2514 	 * don't do anything. In any case the mip has to be valid. The driver
2515 	 * must make sure that it goes single threaded (with respect to mac
2516 	 * calls) and wait for all pending mac calls to finish before calling
2517 	 * mac_unregister.
2518 	 */
2519 	rw_enter(&i_mac_impl_lock, RW_READER);
2520 	if (mip->mi_state_flags & MIS_DISABLED) {
2521 		rw_exit(&i_mac_impl_lock);
2522 		return;
2523 	}
2524 
2525 	/*
2526 	 * Get MAC tx srs from walking mac_client_handle list.
2527 	 */
2528 	rw_enter(&mip->mi_rw_lock, RW_READER);
2529 	for (cclient = mip->mi_clients_list; cclient != NULL;
2530 	    cclient = cclient->mci_client_next) {
2531 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2532 			mac_tx_srs_wakeup(mac_srs, ring);
2533 		} else {
2534 			/*
2535 			 * Aggr opens underlying ports in exclusive mode
2536 			 * and registers flow control callbacks using
2537 			 * mac_tx_client_notify(). When opened in
2538 			 * exclusive mode, Tx SRS won't be created
2539 			 * during mac_unicast_add().
2540 			 */
2541 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2542 				mac_tx_invoke_callbacks(cclient,
2543 				    (mac_tx_cookie_t)ring);
2544 			}
2545 		}
2546 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2547 		    mac_tx_flow_srs_wakeup, ring);
2548 	}
2549 	rw_exit(&mip->mi_rw_lock);
2550 	rw_exit(&i_mac_impl_lock);
2551 }
2552 
2553 /* ARGSUSED */
2554 void
2555 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2556     boolean_t add)
2557 {
2558 	mac_impl_t *mip = (mac_impl_t *)mh;
2559 
2560 	i_mac_perim_enter((mac_impl_t *)mh);
2561 	/*
2562 	 * If no specific refresh function was given then default to the
2563 	 * driver's m_multicst entry point.
2564 	 */
2565 	if (refresh == NULL) {
2566 		refresh = mip->mi_multicst;
2567 		arg = mip->mi_driver;
2568 	}
2569 
2570 	mac_bcast_refresh(mip, refresh, arg, add);
2571 	i_mac_perim_exit((mac_impl_t *)mh);
2572 }
2573 
2574 void
2575 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2576 {
2577 	mac_impl_t	*mip = (mac_impl_t *)mh;
2578 
2579 	/*
2580 	 * If no specific refresh function was given then default to the
2581 	 * driver's m_promisc entry point.
2582 	 */
2583 	if (refresh == NULL) {
2584 		refresh = mip->mi_setpromisc;
2585 		arg = mip->mi_driver;
2586 	}
2587 	ASSERT(refresh != NULL);
2588 
2589 	/*
2590 	 * Call the refresh function with the current promiscuity.
2591 	 */
2592 	refresh(arg, (mip->mi_devpromisc != 0));
2593 }
2594 
2595 /*
2596  * The mac client requests that the mac not to change its margin size to
2597  * be less than the specified value.  If "current" is B_TRUE, then the client
2598  * requests the mac not to change its margin size to be smaller than the
2599  * current size. Further, return the current margin size value in this case.
2600  *
2601  * We keep every requested size in an ordered list from largest to smallest.
2602  */
2603 int
2604 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2605 {
2606 	mac_impl_t		*mip = (mac_impl_t *)mh;
2607 	mac_margin_req_t	**pp, *p;
2608 	int			err = 0;
2609 
2610 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2611 	if (current)
2612 		*marginp = mip->mi_margin;
2613 
2614 	/*
2615 	 * If the current margin value cannot satisfy the margin requested,
2616 	 * return ENOTSUP directly.
2617 	 */
2618 	if (*marginp > mip->mi_margin) {
2619 		err = ENOTSUP;
2620 		goto done;
2621 	}
2622 
2623 	/*
2624 	 * Check whether the given margin is already in the list. If so,
2625 	 * bump the reference count.
2626 	 */
2627 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2628 		if (p->mmr_margin == *marginp) {
2629 			/*
2630 			 * The margin requested is already in the list,
2631 			 * so just bump the reference count.
2632 			 */
2633 			p->mmr_ref++;
2634 			goto done;
2635 		}
2636 		if (p->mmr_margin < *marginp)
2637 			break;
2638 	}
2639 
2640 
2641 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2642 	p->mmr_margin = *marginp;
2643 	p->mmr_ref++;
2644 	p->mmr_nextp = *pp;
2645 	*pp = p;
2646 
2647 done:
2648 	rw_exit(&(mip->mi_rw_lock));
2649 	return (err);
2650 }
2651 
2652 /*
2653  * The mac client requests to cancel its previous mac_margin_add() request.
2654  * We remove the requested margin size from the list.
2655  */
2656 int
2657 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2658 {
2659 	mac_impl_t		*mip = (mac_impl_t *)mh;
2660 	mac_margin_req_t	**pp, *p;
2661 	int			err = 0;
2662 
2663 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2664 	/*
2665 	 * Find the entry in the list for the given margin.
2666 	 */
2667 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2668 		if (p->mmr_margin == margin) {
2669 			if (--p->mmr_ref == 0)
2670 				break;
2671 
2672 			/*
2673 			 * There is still a reference to this address so
2674 			 * there's nothing more to do.
2675 			 */
2676 			goto done;
2677 		}
2678 	}
2679 
2680 	/*
2681 	 * We did not find an entry for the given margin.
2682 	 */
2683 	if (p == NULL) {
2684 		err = ENOENT;
2685 		goto done;
2686 	}
2687 
2688 	ASSERT(p->mmr_ref == 0);
2689 
2690 	/*
2691 	 * Remove it from the list.
2692 	 */
2693 	*pp = p->mmr_nextp;
2694 	kmem_free(p, sizeof (mac_margin_req_t));
2695 done:
2696 	rw_exit(&(mip->mi_rw_lock));
2697 	return (err);
2698 }
2699 
2700 boolean_t
2701 mac_margin_update(mac_handle_t mh, uint32_t margin)
2702 {
2703 	mac_impl_t	*mip = (mac_impl_t *)mh;
2704 	uint32_t	margin_needed = 0;
2705 
2706 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2707 
2708 	if (mip->mi_mmrp != NULL)
2709 		margin_needed = mip->mi_mmrp->mmr_margin;
2710 
2711 	if (margin_needed <= margin)
2712 		mip->mi_margin = margin;
2713 
2714 	rw_exit(&(mip->mi_rw_lock));
2715 
2716 	if (margin_needed <= margin)
2717 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2718 
2719 	return (margin_needed <= margin);
2720 }
2721 
2722 /*
2723  * MAC clients use this interface to request that a MAC device not change its
2724  * MTU below the specified amount. At this time, that amount must be within the
2725  * range of the device's current minimum and the device's current maximum. eg. a
2726  * client cannot request a 3000 byte MTU when the device's MTU is currently
2727  * 2000.
2728  *
2729  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2730  * current underlying mac's maximum for this mac client and return it in mtup.
2731  */
2732 int
2733 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2734 {
2735 	mac_impl_t		*mip = (mac_impl_t *)mh;
2736 	mac_mtu_req_t		*prev, *cur;
2737 	mac_propval_range_t	mpr;
2738 	int			err;
2739 
2740 	i_mac_perim_enter(mip);
2741 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2742 
2743 	if (current == B_TRUE)
2744 		*mtup = mip->mi_sdu_max;
2745 	mpr.mpr_count = 1;
2746 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2747 	if (err != 0) {
2748 		rw_exit(&mip->mi_rw_lock);
2749 		i_mac_perim_exit(mip);
2750 		return (err);
2751 	}
2752 
2753 	if (*mtup > mip->mi_sdu_max ||
2754 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2755 		rw_exit(&mip->mi_rw_lock);
2756 		i_mac_perim_exit(mip);
2757 		return (ENOTSUP);
2758 	}
2759 
2760 	prev = NULL;
2761 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2762 		if (*mtup == cur->mtr_mtu) {
2763 			cur->mtr_ref++;
2764 			rw_exit(&mip->mi_rw_lock);
2765 			i_mac_perim_exit(mip);
2766 			return (0);
2767 		}
2768 
2769 		if (*mtup > cur->mtr_mtu)
2770 			break;
2771 
2772 		prev = cur;
2773 	}
2774 
2775 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2776 	cur->mtr_mtu = *mtup;
2777 	cur->mtr_ref = 1;
2778 	if (prev != NULL) {
2779 		cur->mtr_nextp = prev->mtr_nextp;
2780 		prev->mtr_nextp = cur;
2781 	} else {
2782 		cur->mtr_nextp = mip->mi_mtrp;
2783 		mip->mi_mtrp = cur;
2784 	}
2785 
2786 	rw_exit(&mip->mi_rw_lock);
2787 	i_mac_perim_exit(mip);
2788 	return (0);
2789 }
2790 
2791 int
2792 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2793 {
2794 	mac_impl_t *mip = (mac_impl_t *)mh;
2795 	mac_mtu_req_t *cur, *prev;
2796 
2797 	i_mac_perim_enter(mip);
2798 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2799 
2800 	prev = NULL;
2801 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2802 		if (cur->mtr_mtu == mtu) {
2803 			ASSERT(cur->mtr_ref > 0);
2804 			cur->mtr_ref--;
2805 			if (cur->mtr_ref == 0) {
2806 				if (prev == NULL) {
2807 					mip->mi_mtrp = cur->mtr_nextp;
2808 				} else {
2809 					prev->mtr_nextp = cur->mtr_nextp;
2810 				}
2811 				kmem_free(cur, sizeof (mac_mtu_req_t));
2812 			}
2813 			rw_exit(&mip->mi_rw_lock);
2814 			i_mac_perim_exit(mip);
2815 			return (0);
2816 		}
2817 
2818 		prev = cur;
2819 	}
2820 
2821 	rw_exit(&mip->mi_rw_lock);
2822 	i_mac_perim_exit(mip);
2823 	return (ENOENT);
2824 }
2825 
2826 /*
2827  * MAC Type Plugin functions.
2828  */
2829 
2830 mactype_t *
2831 mactype_getplugin(const char *pname)
2832 {
2833 	mactype_t	*mtype = NULL;
2834 	boolean_t	tried_modload = B_FALSE;
2835 
2836 	mutex_enter(&i_mactype_lock);
2837 
2838 find_registered_mactype:
2839 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2840 	    (mod_hash_val_t *)&mtype) != 0) {
2841 		if (!tried_modload) {
2842 			/*
2843 			 * If the plugin has not yet been loaded, then
2844 			 * attempt to load it now.  If modload() succeeds,
2845 			 * the plugin should have registered using
2846 			 * mactype_register(), in which case we can go back
2847 			 * and attempt to find it again.
2848 			 */
2849 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2850 				tried_modload = B_TRUE;
2851 				goto find_registered_mactype;
2852 			}
2853 		}
2854 	} else {
2855 		/*
2856 		 * Note that there's no danger that the plugin we've loaded
2857 		 * could be unloaded between the modload() step and the
2858 		 * reference count bump here, as we're holding
2859 		 * i_mactype_lock, which mactype_unregister() also holds.
2860 		 */
2861 		atomic_inc_32(&mtype->mt_ref);
2862 	}
2863 
2864 	mutex_exit(&i_mactype_lock);
2865 	return (mtype);
2866 }
2867 
2868 mactype_register_t *
2869 mactype_alloc(uint_t mactype_version)
2870 {
2871 	mactype_register_t *mtrp;
2872 
2873 	/*
2874 	 * Make sure there isn't a version mismatch between the plugin and
2875 	 * the framework.  In the future, if multiple versions are
2876 	 * supported, this check could become more sophisticated.
2877 	 */
2878 	if (mactype_version != MACTYPE_VERSION)
2879 		return (NULL);
2880 
2881 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2882 	mtrp->mtr_version = mactype_version;
2883 	return (mtrp);
2884 }
2885 
2886 void
2887 mactype_free(mactype_register_t *mtrp)
2888 {
2889 	kmem_free(mtrp, sizeof (mactype_register_t));
2890 }
2891 
2892 int
2893 mactype_register(mactype_register_t *mtrp)
2894 {
2895 	mactype_t	*mtp;
2896 	mactype_ops_t	*ops = mtrp->mtr_ops;
2897 
2898 	/* Do some sanity checking before we register this MAC type. */
2899 	if (mtrp->mtr_ident == NULL || ops == NULL)
2900 		return (EINVAL);
2901 
2902 	/*
2903 	 * Verify that all mandatory callbacks are set in the ops
2904 	 * vector.
2905 	 */
2906 	if (ops->mtops_unicst_verify == NULL ||
2907 	    ops->mtops_multicst_verify == NULL ||
2908 	    ops->mtops_sap_verify == NULL ||
2909 	    ops->mtops_header == NULL ||
2910 	    ops->mtops_header_info == NULL) {
2911 		return (EINVAL);
2912 	}
2913 
2914 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2915 	mtp->mt_ident = mtrp->mtr_ident;
2916 	mtp->mt_ops = *ops;
2917 	mtp->mt_type = mtrp->mtr_mactype;
2918 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2919 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2920 	if (mtrp->mtr_brdcst_addr != NULL) {
2921 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2922 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2923 		    mtrp->mtr_addrlen);
2924 	}
2925 
2926 	mtp->mt_stats = mtrp->mtr_stats;
2927 	mtp->mt_statcount = mtrp->mtr_statcount;
2928 
2929 	mtp->mt_mapping = mtrp->mtr_mapping;
2930 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2931 
2932 	if (mod_hash_insert(i_mactype_hash,
2933 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2934 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2935 		kmem_free(mtp, sizeof (*mtp));
2936 		return (EEXIST);
2937 	}
2938 	return (0);
2939 }
2940 
2941 int
2942 mactype_unregister(const char *ident)
2943 {
2944 	mactype_t	*mtp;
2945 	mod_hash_val_t	val;
2946 	int		err;
2947 
2948 	/*
2949 	 * Let's not allow MAC drivers to use this plugin while we're
2950 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2951 	 * plugin from unregistering while a MAC driver is attempting to
2952 	 * hold a reference to it in i_mactype_getplugin().
2953 	 */
2954 	mutex_enter(&i_mactype_lock);
2955 
2956 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2957 	    (mod_hash_val_t *)&mtp)) != 0) {
2958 		/* A plugin is trying to unregister, but it never registered. */
2959 		err = ENXIO;
2960 		goto done;
2961 	}
2962 
2963 	if (mtp->mt_ref != 0) {
2964 		err = EBUSY;
2965 		goto done;
2966 	}
2967 
2968 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2969 	ASSERT(err == 0);
2970 	if (err != 0) {
2971 		/* This should never happen, thus the ASSERT() above. */
2972 		err = EINVAL;
2973 		goto done;
2974 	}
2975 	ASSERT(mtp == (mactype_t *)val);
2976 
2977 	if (mtp->mt_brdcst_addr != NULL)
2978 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2979 	kmem_free(mtp, sizeof (mactype_t));
2980 done:
2981 	mutex_exit(&i_mactype_lock);
2982 	return (err);
2983 }
2984 
2985 /*
2986  * Checks the size of the value size specified for a property as
2987  * part of a property operation. Returns B_TRUE if the size is
2988  * correct, B_FALSE otherwise.
2989  */
2990 boolean_t
2991 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2992 {
2993 	uint_t minsize = 0;
2994 
2995 	if (is_range)
2996 		return (valsize >= sizeof (mac_propval_range_t));
2997 
2998 	switch (id) {
2999 	case MAC_PROP_ZONE:
3000 		minsize = sizeof (dld_ioc_zid_t);
3001 		break;
3002 	case MAC_PROP_AUTOPUSH:
3003 		if (valsize != 0)
3004 			minsize = sizeof (struct dlautopush);
3005 		break;
3006 	case MAC_PROP_TAGMODE:
3007 		minsize = sizeof (link_tagmode_t);
3008 		break;
3009 	case MAC_PROP_RESOURCE:
3010 	case MAC_PROP_RESOURCE_EFF:
3011 		minsize = sizeof (mac_resource_props_t);
3012 		break;
3013 	case MAC_PROP_DUPLEX:
3014 		minsize = sizeof (link_duplex_t);
3015 		break;
3016 	case MAC_PROP_SPEED:
3017 		minsize = sizeof (uint64_t);
3018 		break;
3019 	case MAC_PROP_STATUS:
3020 		minsize = sizeof (link_state_t);
3021 		break;
3022 	case MAC_PROP_AUTONEG:
3023 	case MAC_PROP_EN_AUTONEG:
3024 		minsize = sizeof (uint8_t);
3025 		break;
3026 	case MAC_PROP_MTU:
3027 	case MAC_PROP_LLIMIT:
3028 	case MAC_PROP_LDECAY:
3029 		minsize = sizeof (uint32_t);
3030 		break;
3031 	case MAC_PROP_FLOWCTRL:
3032 		minsize = sizeof (link_flowctrl_t);
3033 		break;
3034 	case MAC_PROP_ADV_5000FDX_CAP:
3035 	case MAC_PROP_EN_5000FDX_CAP:
3036 	case MAC_PROP_ADV_2500FDX_CAP:
3037 	case MAC_PROP_EN_2500FDX_CAP:
3038 	case MAC_PROP_ADV_100GFDX_CAP:
3039 	case MAC_PROP_EN_100GFDX_CAP:
3040 	case MAC_PROP_ADV_50GFDX_CAP:
3041 	case MAC_PROP_EN_50GFDX_CAP:
3042 	case MAC_PROP_ADV_40GFDX_CAP:
3043 	case MAC_PROP_EN_40GFDX_CAP:
3044 	case MAC_PROP_ADV_25GFDX_CAP:
3045 	case MAC_PROP_EN_25GFDX_CAP:
3046 	case MAC_PROP_ADV_10GFDX_CAP:
3047 	case MAC_PROP_EN_10GFDX_CAP:
3048 	case MAC_PROP_ADV_1000HDX_CAP:
3049 	case MAC_PROP_EN_1000HDX_CAP:
3050 	case MAC_PROP_ADV_100FDX_CAP:
3051 	case MAC_PROP_EN_100FDX_CAP:
3052 	case MAC_PROP_ADV_100HDX_CAP:
3053 	case MAC_PROP_EN_100HDX_CAP:
3054 	case MAC_PROP_ADV_10FDX_CAP:
3055 	case MAC_PROP_EN_10FDX_CAP:
3056 	case MAC_PROP_ADV_10HDX_CAP:
3057 	case MAC_PROP_EN_10HDX_CAP:
3058 	case MAC_PROP_ADV_100T4_CAP:
3059 	case MAC_PROP_EN_100T4_CAP:
3060 		minsize = sizeof (uint8_t);
3061 		break;
3062 	case MAC_PROP_PVID:
3063 		minsize = sizeof (uint16_t);
3064 		break;
3065 	case MAC_PROP_IPTUN_HOPLIMIT:
3066 		minsize = sizeof (uint32_t);
3067 		break;
3068 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3069 		minsize = sizeof (uint32_t);
3070 		break;
3071 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3072 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3073 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3074 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3075 		minsize = sizeof (uint_t);
3076 		break;
3077 	case MAC_PROP_WL_ESSID:
3078 		minsize = sizeof (wl_linkstatus_t);
3079 		break;
3080 	case MAC_PROP_WL_BSSID:
3081 		minsize = sizeof (wl_bssid_t);
3082 		break;
3083 	case MAC_PROP_WL_BSSTYPE:
3084 		minsize = sizeof (wl_bss_type_t);
3085 		break;
3086 	case MAC_PROP_WL_LINKSTATUS:
3087 		minsize = sizeof (wl_linkstatus_t);
3088 		break;
3089 	case MAC_PROP_WL_DESIRED_RATES:
3090 		minsize = sizeof (wl_rates_t);
3091 		break;
3092 	case MAC_PROP_WL_SUPPORTED_RATES:
3093 		minsize = sizeof (wl_rates_t);
3094 		break;
3095 	case MAC_PROP_WL_AUTH_MODE:
3096 		minsize = sizeof (wl_authmode_t);
3097 		break;
3098 	case MAC_PROP_WL_ENCRYPTION:
3099 		minsize = sizeof (wl_encryption_t);
3100 		break;
3101 	case MAC_PROP_WL_RSSI:
3102 		minsize = sizeof (wl_rssi_t);
3103 		break;
3104 	case MAC_PROP_WL_PHY_CONFIG:
3105 		minsize = sizeof (wl_phy_conf_t);
3106 		break;
3107 	case MAC_PROP_WL_CAPABILITY:
3108 		minsize = sizeof (wl_capability_t);
3109 		break;
3110 	case MAC_PROP_WL_WPA:
3111 		minsize = sizeof (wl_wpa_t);
3112 		break;
3113 	case MAC_PROP_WL_SCANRESULTS:
3114 		minsize = sizeof (wl_wpa_ess_t);
3115 		break;
3116 	case MAC_PROP_WL_POWER_MODE:
3117 		minsize = sizeof (wl_ps_mode_t);
3118 		break;
3119 	case MAC_PROP_WL_RADIO:
3120 		minsize = sizeof (wl_radio_t);
3121 		break;
3122 	case MAC_PROP_WL_ESS_LIST:
3123 		minsize = sizeof (wl_ess_list_t);
3124 		break;
3125 	case MAC_PROP_WL_KEY_TAB:
3126 		minsize = sizeof (wl_wep_key_tab_t);
3127 		break;
3128 	case MAC_PROP_WL_CREATE_IBSS:
3129 		minsize = sizeof (wl_create_ibss_t);
3130 		break;
3131 	case MAC_PROP_WL_SETOPTIE:
3132 		minsize = sizeof (wl_wpa_ie_t);
3133 		break;
3134 	case MAC_PROP_WL_DELKEY:
3135 		minsize = sizeof (wl_del_key_t);
3136 		break;
3137 	case MAC_PROP_WL_KEY:
3138 		minsize = sizeof (wl_key_t);
3139 		break;
3140 	case MAC_PROP_WL_MLME:
3141 		minsize = sizeof (wl_mlme_t);
3142 		break;
3143 	case MAC_PROP_VN_PROMISC_FILTERED:
3144 		minsize = sizeof (boolean_t);
3145 		break;
3146 	}
3147 
3148 	return (valsize >= minsize);
3149 }
3150 
3151 /*
3152  * mac_set_prop() sets MAC or hardware driver properties:
3153  *
3154  * - MAC-managed properties such as resource properties include maxbw,
3155  *   priority, and cpu binding list, as well as the default port VID
3156  *   used by bridging. These properties are consumed by the MAC layer
3157  *   itself and not passed down to the driver. For resource control
3158  *   properties, this function invokes mac_set_resources() which will
3159  *   cache the property value in mac_impl_t and may call
3160  *   mac_client_set_resource() to update property value of the primary
3161  *   mac client, if it exists.
3162  *
3163  * - Properties which act on the hardware and must be passed to the
3164  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3165  */
3166 int
3167 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3168     uint_t valsize)
3169 {
3170 	int err = ENOTSUP;
3171 	mac_impl_t *mip = (mac_impl_t *)mh;
3172 
3173 	ASSERT(MAC_PERIM_HELD(mh));
3174 
3175 	switch (id) {
3176 	case MAC_PROP_RESOURCE: {
3177 		mac_resource_props_t *mrp;
3178 
3179 		/* call mac_set_resources() for MAC properties */
3180 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3181 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3182 		bcopy(val, mrp, sizeof (*mrp));
3183 		err = mac_set_resources(mh, mrp);
3184 		kmem_free(mrp, sizeof (*mrp));
3185 		break;
3186 	}
3187 
3188 	case MAC_PROP_PVID:
3189 		ASSERT(valsize >= sizeof (uint16_t));
3190 		if (mip->mi_state_flags & MIS_IS_VNIC)
3191 			return (EINVAL);
3192 		err = mac_set_pvid(mh, *(uint16_t *)val);
3193 		break;
3194 
3195 	case MAC_PROP_MTU: {
3196 		uint32_t mtu;
3197 
3198 		ASSERT(valsize >= sizeof (uint32_t));
3199 		bcopy(val, &mtu, sizeof (mtu));
3200 		err = mac_set_mtu(mh, mtu, NULL);
3201 		break;
3202 	}
3203 
3204 	case MAC_PROP_LLIMIT:
3205 	case MAC_PROP_LDECAY: {
3206 		uint32_t learnval;
3207 
3208 		if (valsize < sizeof (learnval) ||
3209 		    (mip->mi_state_flags & MIS_IS_VNIC))
3210 			return (EINVAL);
3211 		bcopy(val, &learnval, sizeof (learnval));
3212 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3213 			return (EINVAL);
3214 		if (id == MAC_PROP_LLIMIT)
3215 			mip->mi_llimit = learnval;
3216 		else
3217 			mip->mi_ldecay = learnval;
3218 		err = 0;
3219 		break;
3220 	}
3221 
3222 	default:
3223 		/* For other driver properties, call driver's callback */
3224 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3225 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3226 			    name, id, valsize, val);
3227 		}
3228 	}
3229 	return (err);
3230 }
3231 
3232 /*
3233  * mac_get_prop() gets MAC or device driver properties.
3234  *
3235  * If the property is a driver property, mac_get_prop() calls driver's callback
3236  * entry point to get it.
3237  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3238  * which returns the cached value in mac_impl_t.
3239  */
3240 int
3241 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3242     uint_t valsize)
3243 {
3244 	int err = ENOTSUP;
3245 	mac_impl_t *mip = (mac_impl_t *)mh;
3246 	uint_t	rings;
3247 	uint_t	vlinks;
3248 
3249 	bzero(val, valsize);
3250 
3251 	switch (id) {
3252 	case MAC_PROP_RESOURCE: {
3253 		mac_resource_props_t *mrp;
3254 
3255 		/* If mac property, read from cache */
3256 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3257 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3258 		mac_get_resources(mh, mrp);
3259 		bcopy(mrp, val, sizeof (*mrp));
3260 		kmem_free(mrp, sizeof (*mrp));
3261 		return (0);
3262 	}
3263 	case MAC_PROP_RESOURCE_EFF: {
3264 		mac_resource_props_t *mrp;
3265 
3266 		/* If mac effective property, read from client */
3267 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3268 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3269 		mac_get_effective_resources(mh, mrp);
3270 		bcopy(mrp, val, sizeof (*mrp));
3271 		kmem_free(mrp, sizeof (*mrp));
3272 		return (0);
3273 	}
3274 
3275 	case MAC_PROP_PVID:
3276 		ASSERT(valsize >= sizeof (uint16_t));
3277 		if (mip->mi_state_flags & MIS_IS_VNIC)
3278 			return (EINVAL);
3279 		*(uint16_t *)val = mac_get_pvid(mh);
3280 		return (0);
3281 
3282 	case MAC_PROP_LLIMIT:
3283 	case MAC_PROP_LDECAY:
3284 		ASSERT(valsize >= sizeof (uint32_t));
3285 		if (mip->mi_state_flags & MIS_IS_VNIC)
3286 			return (EINVAL);
3287 		if (id == MAC_PROP_LLIMIT)
3288 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3289 		else
3290 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3291 		return (0);
3292 
3293 	case MAC_PROP_MTU: {
3294 		uint32_t sdu;
3295 
3296 		ASSERT(valsize >= sizeof (uint32_t));
3297 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3298 		bcopy(&sdu, val, sizeof (sdu));
3299 
3300 		return (0);
3301 	}
3302 	case MAC_PROP_STATUS: {
3303 		link_state_t link_state;
3304 
3305 		if (valsize < sizeof (link_state))
3306 			return (EINVAL);
3307 		link_state = mac_link_get(mh);
3308 		bcopy(&link_state, val, sizeof (link_state));
3309 
3310 		return (0);
3311 	}
3312 
3313 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3314 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3315 		ASSERT(valsize >= sizeof (uint_t));
3316 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3317 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3318 		bcopy(&rings, val, sizeof (uint_t));
3319 		return (0);
3320 
3321 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3322 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3323 		ASSERT(valsize >= sizeof (uint_t));
3324 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3325 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3326 		bcopy(&vlinks, val, sizeof (uint_t));
3327 		return (0);
3328 
3329 	case MAC_PROP_RXRINGSRANGE:
3330 	case MAC_PROP_TXRINGSRANGE:
3331 		/*
3332 		 * The value for these properties are returned through
3333 		 * the MAC_PROP_RESOURCE property.
3334 		 */
3335 		return (0);
3336 
3337 	default:
3338 		break;
3339 
3340 	}
3341 
3342 	/* If driver property, request from driver */
3343 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3344 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3345 		    valsize, val);
3346 	}
3347 
3348 	return (err);
3349 }
3350 
3351 /*
3352  * Helper function to initialize the range structure for use in
3353  * mac_get_prop. If the type can be other than uint32, we can
3354  * pass that as an arg.
3355  */
3356 static void
3357 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3358 {
3359 	range->mpr_count = 1;
3360 	range->mpr_type = MAC_PROPVAL_UINT32;
3361 	range->mpr_range_uint32[0].mpur_min = min;
3362 	range->mpr_range_uint32[0].mpur_max = max;
3363 }
3364 
3365 /*
3366  * Returns information about the specified property, such as default
3367  * values or permissions.
3368  */
3369 int
3370 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3371     void *default_val, uint_t default_size, mac_propval_range_t *range,
3372     uint_t *perm)
3373 {
3374 	mac_prop_info_state_t state;
3375 	mac_impl_t *mip = (mac_impl_t *)mh;
3376 	uint_t	max;
3377 
3378 	/*
3379 	 * A property is read/write by default unless the driver says
3380 	 * otherwise.
3381 	 */
3382 	if (perm != NULL)
3383 		*perm = MAC_PROP_PERM_RW;
3384 
3385 	if (default_val != NULL)
3386 		bzero(default_val, default_size);
3387 
3388 	/*
3389 	 * First, handle framework properties for which we don't need to
3390 	 * involve the driver.
3391 	 */
3392 	switch (id) {
3393 	case MAC_PROP_RESOURCE:
3394 	case MAC_PROP_PVID:
3395 	case MAC_PROP_LLIMIT:
3396 	case MAC_PROP_LDECAY:
3397 		return (0);
3398 
3399 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3400 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3401 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3402 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3403 		if (perm != NULL)
3404 			*perm = MAC_PROP_PERM_READ;
3405 		return (0);
3406 
3407 	case MAC_PROP_RXRINGSRANGE:
3408 	case MAC_PROP_TXRINGSRANGE:
3409 		/*
3410 		 * Currently, we support range for RX and TX rings properties.
3411 		 * When we extend this support to maxbw, cpus and priority,
3412 		 * we should move this to mac_get_resources.
3413 		 * There is no default value for RX or TX rings.
3414 		 */
3415 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3416 		    mac_is_vnic_primary(mh)) {
3417 			/*
3418 			 * We don't support setting rings for a VLAN
3419 			 * data link because it shares its ring with the
3420 			 * primary MAC client.
3421 			 */
3422 			if (perm != NULL)
3423 				*perm = MAC_PROP_PERM_READ;
3424 			if (range != NULL)
3425 				range->mpr_count = 0;
3426 		} else if (range != NULL) {
3427 			if (mip->mi_state_flags & MIS_IS_VNIC)
3428 				mh = mac_get_lower_mac_handle(mh);
3429 			mip = (mac_impl_t *)mh;
3430 			if ((id == MAC_PROP_RXRINGSRANGE &&
3431 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3432 			    (id == MAC_PROP_TXRINGSRANGE &&
3433 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3434 				if (id == MAC_PROP_RXRINGSRANGE) {
3435 					if ((mac_rxhwlnksavail_get(mh) +
3436 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3437 						/*
3438 						 * doesn't support groups or
3439 						 * rings
3440 						 */
3441 						range->mpr_count = 0;
3442 					} else {
3443 						/*
3444 						 * supports specifying groups,
3445 						 * but not rings
3446 						 */
3447 						_mac_set_range(range, 0, 0);
3448 					}
3449 				} else {
3450 					if ((mac_txhwlnksavail_get(mh) +
3451 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3452 						/*
3453 						 * doesn't support groups or
3454 						 * rings
3455 						 */
3456 						range->mpr_count = 0;
3457 					} else {
3458 						/*
3459 						 * supports specifying groups,
3460 						 * but not rings
3461 						 */
3462 						_mac_set_range(range, 0, 0);
3463 					}
3464 				}
3465 			} else {
3466 				max = id == MAC_PROP_RXRINGSRANGE ?
3467 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3468 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3469 				if (max <= 1) {
3470 					/*
3471 					 * doesn't support groups or
3472 					 * rings
3473 					 */
3474 					range->mpr_count = 0;
3475 				} else  {
3476 					/*
3477 					 * -1 because we have to leave out the
3478 					 * default ring.
3479 					 */
3480 					_mac_set_range(range, 1, max - 1);
3481 				}
3482 			}
3483 		}
3484 		return (0);
3485 
3486 	case MAC_PROP_STATUS:
3487 		if (perm != NULL)
3488 			*perm = MAC_PROP_PERM_READ;
3489 		return (0);
3490 	}
3491 
3492 	/*
3493 	 * Get the property info from the driver if it implements the
3494 	 * property info entry point.
3495 	 */
3496 	bzero(&state, sizeof (state));
3497 
3498 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3499 		state.pr_default = default_val;
3500 		state.pr_default_size = default_size;
3501 
3502 		/*
3503 		 * The caller specifies the maximum number of ranges
3504 		 * it can accomodate using mpr_count. We don't touch
3505 		 * this value until the driver returns from its
3506 		 * mc_propinfo() callback, and ensure we don't exceed
3507 		 * this number of range as the driver defines
3508 		 * supported range from its mc_propinfo().
3509 		 *
3510 		 * pr_range_cur_count keeps track of how many ranges
3511 		 * were defined by the driver from its mc_propinfo()
3512 		 * entry point.
3513 		 *
3514 		 * On exit, the user-specified range mpr_count returns
3515 		 * the number of ranges specified by the driver on
3516 		 * success, or the number of ranges it wanted to
3517 		 * define if that number of ranges could not be
3518 		 * accomodated by the specified range structure.  In
3519 		 * the latter case, the caller will be able to
3520 		 * allocate a larger range structure, and query the
3521 		 * property again.
3522 		 */
3523 		state.pr_range_cur_count = 0;
3524 		state.pr_range = range;
3525 
3526 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3527 		    (mac_prop_info_handle_t)&state);
3528 
3529 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3530 			range->mpr_count = state.pr_range_cur_count;
3531 
3532 		/*
3533 		 * The operation could fail if the buffer supplied by
3534 		 * the user was too small for the range or default
3535 		 * value of the property.
3536 		 */
3537 		if (state.pr_errno != 0)
3538 			return (state.pr_errno);
3539 
3540 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3541 			*perm = state.pr_perm;
3542 	}
3543 
3544 	/*
3545 	 * The MAC layer may want to provide default values or allowed
3546 	 * ranges for properties if the driver does not provide a
3547 	 * property info entry point, or that entry point exists, but
3548 	 * it did not provide a default value or allowed ranges for
3549 	 * that property.
3550 	 */
3551 	switch (id) {
3552 	case MAC_PROP_MTU: {
3553 		uint32_t sdu;
3554 
3555 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3556 
3557 		if (range != NULL && !(state.pr_flags &
3558 		    MAC_PROP_INFO_RANGE)) {
3559 			/* MTU range */
3560 			_mac_set_range(range, sdu, sdu);
3561 		}
3562 
3563 		if (default_val != NULL && !(state.pr_flags &
3564 		    MAC_PROP_INFO_DEFAULT)) {
3565 			if (mip->mi_info.mi_media == DL_ETHER)
3566 				sdu = ETHERMTU;
3567 			/* default MTU value */
3568 			bcopy(&sdu, default_val, sizeof (sdu));
3569 		}
3570 	}
3571 	}
3572 
3573 	return (0);
3574 }
3575 
3576 int
3577 mac_fastpath_disable(mac_handle_t mh)
3578 {
3579 	mac_impl_t	*mip = (mac_impl_t *)mh;
3580 
3581 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3582 		return (0);
3583 
3584 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3585 }
3586 
3587 void
3588 mac_fastpath_enable(mac_handle_t mh)
3589 {
3590 	mac_impl_t	*mip = (mac_impl_t *)mh;
3591 
3592 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3593 		return;
3594 
3595 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3596 }
3597 
3598 void
3599 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3600 {
3601 	uint_t nprops, i;
3602 
3603 	if (priv_props == NULL)
3604 		return;
3605 
3606 	nprops = 0;
3607 	while (priv_props[nprops] != NULL)
3608 		nprops++;
3609 	if (nprops == 0)
3610 		return;
3611 
3612 
3613 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3614 
3615 	for (i = 0; i < nprops; i++) {
3616 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3617 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3618 		    MAXLINKPROPNAME);
3619 	}
3620 
3621 	mip->mi_priv_prop_count = nprops;
3622 }
3623 
3624 void
3625 mac_unregister_priv_prop(mac_impl_t *mip)
3626 {
3627 	uint_t i;
3628 
3629 	if (mip->mi_priv_prop_count == 0) {
3630 		ASSERT(mip->mi_priv_prop == NULL);
3631 		return;
3632 	}
3633 
3634 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3635 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3636 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3637 	    sizeof (char *));
3638 
3639 	mip->mi_priv_prop = NULL;
3640 	mip->mi_priv_prop_count = 0;
3641 }
3642 
3643 /*
3644  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3645  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3646  * cases if MAC free's the ring structure after mac_stop_ring(), any
3647  * illegal access to the ring structure coming from the driver will panic
3648  * the system. In order to protect the system from such inadverent access,
3649  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3650  * When packets are received on free'd up rings, MAC (through the generation
3651  * count mechanism) will drop such packets.
3652  */
3653 static mac_ring_t *
3654 mac_ring_alloc(mac_impl_t *mip)
3655 {
3656 	mac_ring_t *ring;
3657 
3658 	mutex_enter(&mip->mi_ring_lock);
3659 	if (mip->mi_ring_freelist != NULL) {
3660 		ring = mip->mi_ring_freelist;
3661 		mip->mi_ring_freelist = ring->mr_next;
3662 		bzero(ring, sizeof (mac_ring_t));
3663 		mutex_exit(&mip->mi_ring_lock);
3664 	} else {
3665 		mutex_exit(&mip->mi_ring_lock);
3666 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3667 	}
3668 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3669 	return (ring);
3670 }
3671 
3672 static void
3673 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3674 {
3675 	ASSERT(ring->mr_state == MR_FREE);
3676 
3677 	mutex_enter(&mip->mi_ring_lock);
3678 	ring->mr_state = MR_FREE;
3679 	ring->mr_flag = 0;
3680 	ring->mr_next = mip->mi_ring_freelist;
3681 	ring->mr_mip = NULL;
3682 	mip->mi_ring_freelist = ring;
3683 	mac_ring_stat_delete(ring);
3684 	mutex_exit(&mip->mi_ring_lock);
3685 }
3686 
3687 static void
3688 mac_ring_freeall(mac_impl_t *mip)
3689 {
3690 	mac_ring_t *ring_next;
3691 	mutex_enter(&mip->mi_ring_lock);
3692 	mac_ring_t *ring = mip->mi_ring_freelist;
3693 	while (ring != NULL) {
3694 		ring_next = ring->mr_next;
3695 		kmem_cache_free(mac_ring_cache, ring);
3696 		ring = ring_next;
3697 	}
3698 	mip->mi_ring_freelist = NULL;
3699 	mutex_exit(&mip->mi_ring_lock);
3700 }
3701 
3702 int
3703 mac_start_ring(mac_ring_t *ring)
3704 {
3705 	int rv = 0;
3706 
3707 	ASSERT(ring->mr_state == MR_FREE);
3708 
3709 	if (ring->mr_start != NULL) {
3710 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3711 		if (rv != 0)
3712 			return (rv);
3713 	}
3714 
3715 	ring->mr_state = MR_INUSE;
3716 	return (rv);
3717 }
3718 
3719 void
3720 mac_stop_ring(mac_ring_t *ring)
3721 {
3722 	ASSERT(ring->mr_state == MR_INUSE);
3723 
3724 	if (ring->mr_stop != NULL)
3725 		ring->mr_stop(ring->mr_driver);
3726 
3727 	ring->mr_state = MR_FREE;
3728 
3729 	/*
3730 	 * Increment the ring generation number for this ring.
3731 	 */
3732 	ring->mr_gen_num++;
3733 }
3734 
3735 int
3736 mac_start_group(mac_group_t *group)
3737 {
3738 	int rv = 0;
3739 
3740 	if (group->mrg_start != NULL)
3741 		rv = group->mrg_start(group->mrg_driver);
3742 
3743 	return (rv);
3744 }
3745 
3746 void
3747 mac_stop_group(mac_group_t *group)
3748 {
3749 	if (group->mrg_stop != NULL)
3750 		group->mrg_stop(group->mrg_driver);
3751 }
3752 
3753 /*
3754  * Called from mac_start() on the default Rx group. Broadcast and multicast
3755  * packets are received only on the default group. Hence the default group
3756  * needs to be up even if the primary client is not up, for the other groups
3757  * to be functional. We do this by calling this function at mac_start time
3758  * itself. However the broadcast packets that are received can't make their
3759  * way beyond mac_rx until a mac client creates a broadcast flow.
3760  */
3761 static int
3762 mac_start_group_and_rings(mac_group_t *group)
3763 {
3764 	mac_ring_t	*ring;
3765 	int		rv = 0;
3766 
3767 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3768 	if ((rv = mac_start_group(group)) != 0)
3769 		return (rv);
3770 
3771 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3772 		ASSERT(ring->mr_state == MR_FREE);
3773 		if ((rv = mac_start_ring(ring)) != 0)
3774 			goto error;
3775 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
3776 	}
3777 	return (0);
3778 
3779 error:
3780 	mac_stop_group_and_rings(group);
3781 	return (rv);
3782 }
3783 
3784 /* Called from mac_stop on the default Rx group */
3785 static void
3786 mac_stop_group_and_rings(mac_group_t *group)
3787 {
3788 	mac_ring_t	*ring;
3789 
3790 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3791 		if (ring->mr_state != MR_FREE) {
3792 			mac_stop_ring(ring);
3793 			ring->mr_flag = 0;
3794 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3795 		}
3796 	}
3797 	mac_stop_group(group);
3798 }
3799 
3800 
3801 static mac_ring_t *
3802 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3803     mac_capab_rings_t *cap_rings)
3804 {
3805 	mac_ring_t *ring, *rnext;
3806 	mac_ring_info_t ring_info;
3807 	ddi_intr_handle_t ddi_handle;
3808 
3809 	ring = mac_ring_alloc(mip);
3810 
3811 	/* Prepare basic information of ring */
3812 
3813 	/*
3814 	 * Ring index is numbered to be unique across a particular device.
3815 	 * Ring index computation makes following assumptions:
3816 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
3817 	 *	ring index exchanged with the driver (e.g. during mr_rget)
3818 	 *	is unique only across the group the ring belongs to.
3819 	 *	- Drivers with dynamic grouping (e.g. nxge), start
3820 	 *	with single group (mrg_index = 0).
3821 	 */
3822 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3823 	ring->mr_type = group->mrg_type;
3824 	ring->mr_gh = (mac_group_handle_t)group;
3825 
3826 	/* Insert the new ring to the list. */
3827 	ring->mr_next = group->mrg_rings;
3828 	group->mrg_rings = ring;
3829 
3830 	/* Zero to reuse the info data structure */
3831 	bzero(&ring_info, sizeof (ring_info));
3832 
3833 	/* Query ring information from driver */
3834 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3835 	    index, &ring_info, (mac_ring_handle_t)ring);
3836 
3837 	ring->mr_info = ring_info;
3838 
3839 	/*
3840 	 * The interrupt handle could be shared among multiple rings.
3841 	 * Thus if there is a bunch of rings that are sharing an
3842 	 * interrupt, then only one ring among the bunch will be made
3843 	 * available for interrupt re-targeting; the rest will have
3844 	 * ddi_shared flag set to TRUE and would not be available for
3845 	 * be interrupt re-targeting.
3846 	 */
3847 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3848 		rnext = ring->mr_next;
3849 		while (rnext != NULL) {
3850 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3851 			    ddi_handle) {
3852 				/*
3853 				 * If default ring (mr_index == 0) is part
3854 				 * of a group of rings sharing an
3855 				 * interrupt, then set ddi_shared flag for
3856 				 * the default ring and give another ring
3857 				 * the chance to be re-targeted.
3858 				 */
3859 				if (rnext->mr_index == 0 &&
3860 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
3861 					rnext->mr_info.mri_intr.mi_ddi_shared =
3862 					    B_TRUE;
3863 				} else {
3864 					ring->mr_info.mri_intr.mi_ddi_shared =
3865 					    B_TRUE;
3866 				}
3867 				break;
3868 			}
3869 			rnext = rnext->mr_next;
3870 		}
3871 		/*
3872 		 * If rnext is NULL, then no matching ddi_handle was found.
3873 		 * Rx rings get registered first. So if this is a Tx ring,
3874 		 * then go through all the Rx rings and see if there is a
3875 		 * matching ddi handle.
3876 		 */
3877 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3878 			mac_compare_ddi_handle(mip->mi_rx_groups,
3879 			    mip->mi_rx_group_count, ring);
3880 		}
3881 	}
3882 
3883 	/* Update ring's status */
3884 	ring->mr_state = MR_FREE;
3885 	ring->mr_flag = 0;
3886 
3887 	/* Update the ring count of the group */
3888 	group->mrg_cur_count++;
3889 
3890 	/* Create per ring kstats */
3891 	if (ring->mr_stat != NULL) {
3892 		ring->mr_mip = mip;
3893 		mac_ring_stat_create(ring);
3894 	}
3895 
3896 	return (ring);
3897 }
3898 
3899 /*
3900  * Rings are chained together for easy regrouping.
3901  */
3902 static void
3903 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3904     mac_capab_rings_t *cap_rings)
3905 {
3906 	int index;
3907 
3908 	/*
3909 	 * Initialize all ring members of this group. Size of zero will not
3910 	 * enter the loop, so it's safe for initializing an empty group.
3911 	 */
3912 	for (index = size - 1; index >= 0; index--)
3913 		(void) mac_init_ring(mip, group, index, cap_rings);
3914 }
3915 
3916 int
3917 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3918 {
3919 	mac_capab_rings_t	*cap_rings;
3920 	mac_group_t		*group;
3921 	mac_group_t		*groups;
3922 	mac_group_info_t	group_info;
3923 	uint_t			group_free = 0;
3924 	uint_t			ring_left;
3925 	mac_ring_t		*ring;
3926 	int			g;
3927 	int			err = 0;
3928 	uint_t			grpcnt;
3929 	boolean_t		pseudo_txgrp = B_FALSE;
3930 
3931 	switch (rtype) {
3932 	case MAC_RING_TYPE_RX:
3933 		ASSERT(mip->mi_rx_groups == NULL);
3934 
3935 		cap_rings = &mip->mi_rx_rings_cap;
3936 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3937 		break;
3938 	case MAC_RING_TYPE_TX:
3939 		ASSERT(mip->mi_tx_groups == NULL);
3940 
3941 		cap_rings = &mip->mi_tx_rings_cap;
3942 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3943 		break;
3944 	default:
3945 		ASSERT(B_FALSE);
3946 	}
3947 
3948 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3949 		return (0);
3950 	grpcnt = cap_rings->mr_gnum;
3951 
3952 	/*
3953 	 * If we have multiple TX rings, but only one TX group, we can
3954 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
3955 	 * except for an aggr. For an aggr currently we maintain only
3956 	 * one group with all the rings (for all its ports), going
3957 	 * forwards we might change this.
3958 	 */
3959 	if (rtype == MAC_RING_TYPE_TX &&
3960 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3961 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3962 		/*
3963 		 * The -1 here is because we create a default TX group
3964 		 * with all the rings in it.
3965 		 */
3966 		grpcnt = cap_rings->mr_rnum - 1;
3967 		pseudo_txgrp = B_TRUE;
3968 	}
3969 
3970 	/*
3971 	 * Allocate a contiguous buffer for all groups.
3972 	 */
3973 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3974 
3975 	ring_left = cap_rings->mr_rnum;
3976 
3977 	/*
3978 	 * Get all ring groups if any, and get their ring members
3979 	 * if any.
3980 	 */
3981 	for (g = 0; g < grpcnt; g++) {
3982 		group = groups + g;
3983 
3984 		/* Prepare basic information of the group */
3985 		group->mrg_index = g;
3986 		group->mrg_type = rtype;
3987 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3988 		group->mrg_mh = (mac_handle_t)mip;
3989 		group->mrg_next = group + 1;
3990 
3991 		/* Zero to reuse the info data structure */
3992 		bzero(&group_info, sizeof (group_info));
3993 
3994 		if (pseudo_txgrp) {
3995 			/*
3996 			 * This is a pseudo group that we created, apart
3997 			 * from setting the state there is nothing to be
3998 			 * done.
3999 			 */
4000 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4001 			group_free++;
4002 			continue;
4003 		}
4004 		/* Query group information from driver */
4005 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4006 		    (mac_group_handle_t)group);
4007 
4008 		switch (cap_rings->mr_group_type) {
4009 		case MAC_GROUP_TYPE_DYNAMIC:
4010 			if (cap_rings->mr_gaddring == NULL ||
4011 			    cap_rings->mr_gremring == NULL) {
4012 				DTRACE_PROBE3(
4013 				    mac__init__rings_no_addremring,
4014 				    char *, mip->mi_name,
4015 				    mac_group_add_ring_t,
4016 				    cap_rings->mr_gaddring,
4017 				    mac_group_add_ring_t,
4018 				    cap_rings->mr_gremring);
4019 				err = EINVAL;
4020 				goto bail;
4021 			}
4022 
4023 			switch (rtype) {
4024 			case MAC_RING_TYPE_RX:
4025 				/*
4026 				 * The first RX group must have non-zero
4027 				 * rings, and the following groups must
4028 				 * have zero rings.
4029 				 */
4030 				if (g == 0 && group_info.mgi_count == 0) {
4031 					DTRACE_PROBE1(
4032 					    mac__init__rings__rx__def__zero,
4033 					    char *, mip->mi_name);
4034 					err = EINVAL;
4035 					goto bail;
4036 				}
4037 				if (g > 0 && group_info.mgi_count != 0) {
4038 					DTRACE_PROBE3(
4039 					    mac__init__rings__rx__nonzero,
4040 					    char *, mip->mi_name,
4041 					    int, g, int, group_info.mgi_count);
4042 					err = EINVAL;
4043 					goto bail;
4044 				}
4045 				break;
4046 			case MAC_RING_TYPE_TX:
4047 				/*
4048 				 * All TX ring groups must have zero rings.
4049 				 */
4050 				if (group_info.mgi_count != 0) {
4051 					DTRACE_PROBE3(
4052 					    mac__init__rings__tx__nonzero,
4053 					    char *, mip->mi_name,
4054 					    int, g, int, group_info.mgi_count);
4055 					err = EINVAL;
4056 					goto bail;
4057 				}
4058 				break;
4059 			}
4060 			break;
4061 		case MAC_GROUP_TYPE_STATIC:
4062 			/*
4063 			 * Note that an empty group is allowed, e.g., an aggr
4064 			 * would start with an empty group.
4065 			 */
4066 			break;
4067 		default:
4068 			/* unknown group type */
4069 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4070 			    char *, mip->mi_name,
4071 			    int, cap_rings->mr_group_type);
4072 			err = EINVAL;
4073 			goto bail;
4074 		}
4075 
4076 
4077 		/*
4078 		 * Driver must register group->mgi_addmac/remmac() for rx groups
4079 		 * to support multiple MAC addresses.
4080 		 */
4081 		if (rtype == MAC_RING_TYPE_RX &&
4082 		    ((group_info.mgi_addmac == NULL) ||
4083 		    (group_info.mgi_remmac == NULL))) {
4084 			err = EINVAL;
4085 			goto bail;
4086 		}
4087 
4088 		/* Cache driver-supplied information */
4089 		group->mrg_info = group_info;
4090 
4091 		/* Update the group's status and group count. */
4092 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4093 		group_free++;
4094 
4095 		group->mrg_rings = NULL;
4096 		group->mrg_cur_count = 0;
4097 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4098 		ring_left -= group_info.mgi_count;
4099 
4100 		/* The current group size should be equal to default value */
4101 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4102 	}
4103 
4104 	/* Build up a dummy group for free resources as a pool */
4105 	group = groups + grpcnt;
4106 
4107 	/* Prepare basic information of the group */
4108 	group->mrg_index = -1;
4109 	group->mrg_type = rtype;
4110 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4111 	group->mrg_mh = (mac_handle_t)mip;
4112 	group->mrg_next = NULL;
4113 
4114 	/*
4115 	 * If there are ungrouped rings, allocate a continuous buffer for
4116 	 * remaining resources.
4117 	 */
4118 	if (ring_left != 0) {
4119 		group->mrg_rings = NULL;
4120 		group->mrg_cur_count = 0;
4121 		mac_init_group(mip, group, ring_left, cap_rings);
4122 
4123 		/* The current group size should be equal to ring_left */
4124 		ASSERT(group->mrg_cur_count == ring_left);
4125 
4126 		ring_left = 0;
4127 
4128 		/* Update this group's status */
4129 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4130 	} else
4131 		group->mrg_rings = NULL;
4132 
4133 	ASSERT(ring_left == 0);
4134 
4135 bail:
4136 
4137 	/* Cache other important information to finalize the initialization */
4138 	switch (rtype) {
4139 	case MAC_RING_TYPE_RX:
4140 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4141 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4142 		mip->mi_rx_groups = groups;
4143 		mip->mi_rx_donor_grp = groups;
4144 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4145 			/*
4146 			 * The default ring is reserved since it is
4147 			 * used for sending the broadcast etc. packets.
4148 			 */
4149 			mip->mi_rxrings_avail =
4150 			    mip->mi_rx_groups->mrg_cur_count - 1;
4151 			mip->mi_rxrings_rsvd = 1;
4152 		}
4153 		/*
4154 		 * The default group cannot be reserved. It is used by
4155 		 * all the clients that do not have an exclusive group.
4156 		 */
4157 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4158 		mip->mi_rxhwclnt_used = 1;
4159 		break;
4160 	case MAC_RING_TYPE_TX:
4161 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4162 		    cap_rings->mr_group_type;
4163 		mip->mi_tx_group_count = grpcnt;
4164 		mip->mi_tx_group_free = group_free;
4165 		mip->mi_tx_groups = groups;
4166 
4167 		group = groups + grpcnt;
4168 		ring = group->mrg_rings;
4169 		/*
4170 		 * The ring can be NULL in the case of aggr. Aggr will
4171 		 * have an empty Tx group which will get populated
4172 		 * later when pseudo Tx rings are added after
4173 		 * mac_register() is done.
4174 		 */
4175 		if (ring == NULL) {
4176 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4177 			/*
4178 			 * pass the group to aggr so it can add Tx
4179 			 * rings to the group later.
4180 			 */
4181 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4182 			    (mac_group_handle_t)group);
4183 			/*
4184 			 * Even though there are no rings at this time
4185 			 * (rings will come later), set the group
4186 			 * state to registered.
4187 			 */
4188 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4189 		} else {
4190 			/*
4191 			 * Ring 0 is used as the default one and it could be
4192 			 * assigned to a client as well.
4193 			 */
4194 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4195 				ring = ring->mr_next;
4196 			ASSERT(ring->mr_index == 0);
4197 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4198 		}
4199 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4200 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4201 			/*
4202 			 * The default ring cannot be reserved.
4203 			 */
4204 			mip->mi_txrings_rsvd = 1;
4205 		}
4206 		/*
4207 		 * The default group cannot be reserved. It will be shared
4208 		 * by clients that do not have an exclusive group.
4209 		 */
4210 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4211 		mip->mi_txhwclnt_used = 1;
4212 		break;
4213 	default:
4214 		ASSERT(B_FALSE);
4215 	}
4216 
4217 	if (err != 0)
4218 		mac_free_rings(mip, rtype);
4219 
4220 	return (err);
4221 }
4222 
4223 /*
4224  * The ddi interrupt handle could be shared amoung rings. If so, compare
4225  * the new ring's ddi handle with the existing ones and set ddi_shared
4226  * flag.
4227  */
4228 void
4229 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4230 {
4231 	mac_group_t *group;
4232 	mac_ring_t *ring;
4233 	ddi_intr_handle_t ddi_handle;
4234 	int g;
4235 
4236 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4237 	for (g = 0; g < grpcnt; g++) {
4238 		group = groups + g;
4239 		for (ring = group->mrg_rings; ring != NULL;
4240 		    ring = ring->mr_next) {
4241 			if (ring == cring)
4242 				continue;
4243 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4244 			    ddi_handle) {
4245 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4246 				    ring->mr_index == 0 &&
4247 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4248 					ring->mr_info.mri_intr.mi_ddi_shared =
4249 					    B_TRUE;
4250 				} else {
4251 					cring->mr_info.mri_intr.mi_ddi_shared =
4252 					    B_TRUE;
4253 				}
4254 				return;
4255 			}
4256 		}
4257 	}
4258 }
4259 
4260 /*
4261  * Called to free all groups of particular type (RX or TX). It's assumed that
4262  * no clients are using these groups.
4263  */
4264 void
4265 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4266 {
4267 	mac_group_t *group, *groups;
4268 	uint_t group_count;
4269 
4270 	switch (rtype) {
4271 	case MAC_RING_TYPE_RX:
4272 		if (mip->mi_rx_groups == NULL)
4273 			return;
4274 
4275 		groups = mip->mi_rx_groups;
4276 		group_count = mip->mi_rx_group_count;
4277 
4278 		mip->mi_rx_groups = NULL;
4279 		mip->mi_rx_donor_grp = NULL;
4280 		mip->mi_rx_group_count = 0;
4281 		break;
4282 	case MAC_RING_TYPE_TX:
4283 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4284 
4285 		if (mip->mi_tx_groups == NULL)
4286 			return;
4287 
4288 		groups = mip->mi_tx_groups;
4289 		group_count = mip->mi_tx_group_count;
4290 
4291 		mip->mi_tx_groups = NULL;
4292 		mip->mi_tx_group_count = 0;
4293 		mip->mi_tx_group_free = 0;
4294 		mip->mi_default_tx_ring = NULL;
4295 		break;
4296 	default:
4297 		ASSERT(B_FALSE);
4298 	}
4299 
4300 	for (group = groups; group != NULL; group = group->mrg_next) {
4301 		mac_ring_t *ring;
4302 
4303 		if (group->mrg_cur_count == 0)
4304 			continue;
4305 
4306 		ASSERT(group->mrg_rings != NULL);
4307 
4308 		while ((ring = group->mrg_rings) != NULL) {
4309 			group->mrg_rings = ring->mr_next;
4310 			mac_ring_free(mip, ring);
4311 		}
4312 	}
4313 
4314 	/* Free all the cached rings */
4315 	mac_ring_freeall(mip);
4316 	/* Free the block of group data strutures */
4317 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4318 }
4319 
4320 /*
4321  * Associate a MAC address with a receive group.
4322  *
4323  * The return value of this function should always be checked properly, because
4324  * any type of failure could cause unexpected results. A group can be added
4325  * or removed with a MAC address only after it has been reserved. Ideally,
4326  * a successful reservation always leads to calling mac_group_addmac() to
4327  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4328  * always imply that the group is functioning abnormally.
4329  *
4330  * Currently this function is called everywhere, and it reflects assumptions
4331  * about MAC addresses in the implementation. CR 6735196.
4332  */
4333 int
4334 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4335 {
4336 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4337 	ASSERT(group->mrg_info.mgi_addmac != NULL);
4338 
4339 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4340 }
4341 
4342 /*
4343  * Remove the association between MAC address and receive group.
4344  */
4345 int
4346 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4347 {
4348 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4349 	ASSERT(group->mrg_info.mgi_remmac != NULL);
4350 
4351 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4352 }
4353 
4354 /*
4355  * This is the entry point for packets transmitted through the bridging code.
4356  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4357  * pointer may be NULL to select the default ring.
4358  */
4359 mblk_t *
4360 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4361 {
4362 	mac_handle_t mh;
4363 
4364 	/*
4365 	 * Once we take a reference on the bridge link, the bridge
4366 	 * module itself can't unload, so the callback pointers are
4367 	 * stable.
4368 	 */
4369 	mutex_enter(&mip->mi_bridge_lock);
4370 	if ((mh = mip->mi_bridge_link) != NULL)
4371 		mac_bridge_ref_cb(mh, B_TRUE);
4372 	mutex_exit(&mip->mi_bridge_lock);
4373 	if (mh == NULL) {
4374 		MAC_RING_TX(mip, rh, mp, mp);
4375 	} else {
4376 		mp = mac_bridge_tx_cb(mh, rh, mp);
4377 		mac_bridge_ref_cb(mh, B_FALSE);
4378 	}
4379 
4380 	return (mp);
4381 }
4382 
4383 /*
4384  * Find a ring from its index.
4385  */
4386 mac_ring_handle_t
4387 mac_find_ring(mac_group_handle_t gh, int index)
4388 {
4389 	mac_group_t *group = (mac_group_t *)gh;
4390 	mac_ring_t *ring = group->mrg_rings;
4391 
4392 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4393 		if (ring->mr_index == index)
4394 			break;
4395 
4396 	return ((mac_ring_handle_t)ring);
4397 }
4398 /*
4399  * Add a ring to an existing group.
4400  *
4401  * The ring must be either passed directly (for example if the ring
4402  * movement is initiated by the framework), or specified through a driver
4403  * index (for example when the ring is added by the driver.
4404  *
4405  * The caller needs to call mac_perim_enter() before calling this function.
4406  */
4407 int
4408 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4409 {
4410 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4411 	mac_capab_rings_t *cap_rings;
4412 	boolean_t driver_call = (ring == NULL);
4413 	mac_group_type_t group_type;
4414 	int ret = 0;
4415 	flow_entry_t *flent;
4416 
4417 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4418 
4419 	switch (group->mrg_type) {
4420 	case MAC_RING_TYPE_RX:
4421 		cap_rings = &mip->mi_rx_rings_cap;
4422 		group_type = mip->mi_rx_group_type;
4423 		break;
4424 	case MAC_RING_TYPE_TX:
4425 		cap_rings = &mip->mi_tx_rings_cap;
4426 		group_type = mip->mi_tx_group_type;
4427 		break;
4428 	default:
4429 		ASSERT(B_FALSE);
4430 	}
4431 
4432 	/*
4433 	 * There should be no ring with the same ring index in the target
4434 	 * group.
4435 	 */
4436 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4437 	    driver_call ? index : ring->mr_index) == NULL);
4438 
4439 	if (driver_call) {
4440 		/*
4441 		 * The function is called as a result of a request from
4442 		 * a driver to add a ring to an existing group, for example
4443 		 * from the aggregation driver. Allocate a new mac_ring_t
4444 		 * for that ring.
4445 		 */
4446 		ring = mac_init_ring(mip, group, index, cap_rings);
4447 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4448 	} else {
4449 		/*
4450 		 * The function is called as a result of a MAC layer request
4451 		 * to add a ring to an existing group. In this case the
4452 		 * ring is being moved between groups, which requires
4453 		 * the underlying driver to support dynamic grouping,
4454 		 * and the mac_ring_t already exists.
4455 		 */
4456 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4457 		ASSERT(group->mrg_driver == NULL ||
4458 		    cap_rings->mr_gaddring != NULL);
4459 		ASSERT(ring->mr_gh == NULL);
4460 	}
4461 
4462 	/*
4463 	 * At this point the ring should not be in use, and it should be
4464 	 * of the right for the target group.
4465 	 */
4466 	ASSERT(ring->mr_state < MR_INUSE);
4467 	ASSERT(ring->mr_srs == NULL);
4468 	ASSERT(ring->mr_type == group->mrg_type);
4469 
4470 	if (!driver_call) {
4471 		/*
4472 		 * Add the driver level hardware ring if the process was not
4473 		 * initiated by the driver, and the target group is not the
4474 		 * group.
4475 		 */
4476 		if (group->mrg_driver != NULL) {
4477 			cap_rings->mr_gaddring(group->mrg_driver,
4478 			    ring->mr_driver, ring->mr_type);
4479 		}
4480 
4481 		/*
4482 		 * Insert the ring ahead existing rings.
4483 		 */
4484 		ring->mr_next = group->mrg_rings;
4485 		group->mrg_rings = ring;
4486 		ring->mr_gh = (mac_group_handle_t)group;
4487 		group->mrg_cur_count++;
4488 	}
4489 
4490 	/*
4491 	 * If the group has not been actively used, we're done.
4492 	 */
4493 	if (group->mrg_index != -1 &&
4494 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4495 		return (0);
4496 
4497 	/*
4498 	 * Start the ring if needed. Failure causes to undo the grouping action.
4499 	 */
4500 	if (ring->mr_state != MR_INUSE) {
4501 		if ((ret = mac_start_ring(ring)) != 0) {
4502 			if (!driver_call) {
4503 				cap_rings->mr_gremring(group->mrg_driver,
4504 				    ring->mr_driver, ring->mr_type);
4505 			}
4506 			group->mrg_cur_count--;
4507 			group->mrg_rings = ring->mr_next;
4508 
4509 			ring->mr_gh = NULL;
4510 
4511 			if (driver_call)
4512 				mac_ring_free(mip, ring);
4513 
4514 			return (ret);
4515 		}
4516 	}
4517 
4518 	/*
4519 	 * Set up SRS/SR according to the ring type.
4520 	 */
4521 	switch (ring->mr_type) {
4522 	case MAC_RING_TYPE_RX:
4523 		/*
4524 		 * Setup SRS on top of the new ring if the group is
4525 		 * reserved for someones exclusive use.
4526 		 */
4527 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4528 			mac_client_impl_t *mcip;
4529 
4530 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4531 			/*
4532 			 * Even though this group is reserved we migth still
4533 			 * have multiple clients, i.e a VLAN shares the
4534 			 * group with the primary mac client.
4535 			 */
4536 			if (mcip != NULL) {
4537 				flent = mcip->mci_flent;
4538 				ASSERT(flent->fe_rx_srs_cnt > 0);
4539 				mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4540 				mac_fanout_setup(mcip, flent,
4541 				    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4542 				    mcip, NULL, NULL);
4543 			} else {
4544 				ring->mr_classify_type = MAC_SW_CLASSIFIER;
4545 			}
4546 		}
4547 		break;
4548 	case MAC_RING_TYPE_TX:
4549 	{
4550 		mac_grp_client_t	*mgcp = group->mrg_clients;
4551 		mac_client_impl_t	*mcip;
4552 		mac_soft_ring_set_t	*mac_srs;
4553 		mac_srs_tx_t		*tx;
4554 
4555 		if (MAC_GROUP_NO_CLIENT(group)) {
4556 			if (ring->mr_state == MR_INUSE)
4557 				mac_stop_ring(ring);
4558 			ring->mr_flag = 0;
4559 			break;
4560 		}
4561 		/*
4562 		 * If the rings are being moved to a group that has
4563 		 * clients using it, then add the new rings to the
4564 		 * clients SRS.
4565 		 */
4566 		while (mgcp != NULL) {
4567 			boolean_t	is_aggr;
4568 
4569 			mcip = mgcp->mgc_client;
4570 			flent = mcip->mci_flent;
4571 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4572 			mac_srs = MCIP_TX_SRS(mcip);
4573 			tx = &mac_srs->srs_tx;
4574 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4575 			/*
4576 			 * If we are  growing from 1 to multiple rings.
4577 			 */
4578 			if (tx->st_mode == SRS_TX_BW ||
4579 			    tx->st_mode == SRS_TX_SERIALIZE ||
4580 			    tx->st_mode == SRS_TX_DEFAULT) {
4581 				mac_ring_t	*tx_ring = tx->st_arg2;
4582 
4583 				tx->st_arg2 = NULL;
4584 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4585 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4586 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4587 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4588 					    SRS_TX_BW_FANOUT;
4589 				} else {
4590 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
4591 					    SRS_TX_FANOUT;
4592 				}
4593 				tx->st_func = mac_tx_get_func(tx->st_mode);
4594 			}
4595 			mac_tx_srs_add_ring(mac_srs, ring);
4596 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4597 			    mac_rx_deliver, mcip, NULL, NULL);
4598 			mac_tx_client_restart((mac_client_handle_t)mcip);
4599 			mgcp = mgcp->mgc_next;
4600 		}
4601 		break;
4602 	}
4603 	default:
4604 		ASSERT(B_FALSE);
4605 	}
4606 	/*
4607 	 * For aggr, the default ring will be NULL to begin with. If it
4608 	 * is NULL, then pick the first ring that gets added as the
4609 	 * default ring. Any ring in an aggregation can be removed at
4610 	 * any time (by the user action of removing a link) and if the
4611 	 * current default ring gets removed, then a new one gets
4612 	 * picked (see i_mac_group_rem_ring()).
4613 	 */
4614 	if (mip->mi_state_flags & MIS_IS_AGGR &&
4615 	    mip->mi_default_tx_ring == NULL &&
4616 	    ring->mr_type == MAC_RING_TYPE_TX) {
4617 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4618 	}
4619 
4620 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
4621 	return (0);
4622 }
4623 
4624 /*
4625  * Remove a ring from it's current group. MAC internal function for dynamic
4626  * grouping.
4627  *
4628  * The caller needs to call mac_perim_enter() before calling this function.
4629  */
4630 void
4631 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4632     boolean_t driver_call)
4633 {
4634 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4635 	mac_capab_rings_t *cap_rings = NULL;
4636 	mac_group_type_t group_type;
4637 
4638 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4639 
4640 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4641 	    ring->mr_index) == (mac_ring_handle_t)ring);
4642 	ASSERT((mac_group_t *)ring->mr_gh == group);
4643 	ASSERT(ring->mr_type == group->mrg_type);
4644 
4645 	if (ring->mr_state == MR_INUSE)
4646 		mac_stop_ring(ring);
4647 	switch (ring->mr_type) {
4648 	case MAC_RING_TYPE_RX:
4649 		group_type = mip->mi_rx_group_type;
4650 		cap_rings = &mip->mi_rx_rings_cap;
4651 
4652 		/*
4653 		 * Only hardware classified packets hold a reference to the
4654 		 * ring all the way up the Rx path. mac_rx_srs_remove()
4655 		 * will take care of quiescing the Rx path and removing the
4656 		 * SRS. The software classified path neither holds a reference
4657 		 * nor any association with the ring in mac_rx.
4658 		 */
4659 		if (ring->mr_srs != NULL) {
4660 			mac_rx_srs_remove(ring->mr_srs);
4661 			ring->mr_srs = NULL;
4662 		}
4663 
4664 		break;
4665 	case MAC_RING_TYPE_TX:
4666 	{
4667 		mac_grp_client_t	*mgcp;
4668 		mac_client_impl_t	*mcip;
4669 		mac_soft_ring_set_t	*mac_srs;
4670 		mac_srs_tx_t		*tx;
4671 		mac_ring_t		*rem_ring;
4672 		mac_group_t		*defgrp;
4673 		uint_t			ring_info = 0;
4674 
4675 		/*
4676 		 * For TX this function is invoked in three
4677 		 * cases:
4678 		 *
4679 		 * 1) In the case of a failure during the
4680 		 * initial creation of a group when a share is
4681 		 * associated with a MAC client. So the SRS is not
4682 		 * yet setup, and will be setup later after the
4683 		 * group has been reserved and populated.
4684 		 *
4685 		 * 2) From mac_release_tx_group() when freeing
4686 		 * a TX SRS.
4687 		 *
4688 		 * 3) In the case of aggr, when a port gets removed,
4689 		 * the pseudo Tx rings that it exposed gets removed.
4690 		 *
4691 		 * In the first two cases the SRS and its soft
4692 		 * rings are already quiesced.
4693 		 */
4694 		if (driver_call) {
4695 			mac_client_impl_t *mcip;
4696 			mac_soft_ring_set_t *mac_srs;
4697 			mac_soft_ring_t *sringp;
4698 			mac_srs_tx_t *srs_tx;
4699 
4700 			if (mip->mi_state_flags & MIS_IS_AGGR &&
4701 			    mip->mi_default_tx_ring ==
4702 			    (mac_ring_handle_t)ring) {
4703 				/* pick a new default Tx ring */
4704 				mip->mi_default_tx_ring =
4705 				    (group->mrg_rings != ring) ?
4706 				    (mac_ring_handle_t)group->mrg_rings :
4707 				    (mac_ring_handle_t)(ring->mr_next);
4708 			}
4709 			/* Presently only aggr case comes here */
4710 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4711 				break;
4712 
4713 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4714 			ASSERT(mcip != NULL);
4715 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4716 			mac_srs = MCIP_TX_SRS(mcip);
4717 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4718 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4719 			srs_tx = &mac_srs->srs_tx;
4720 			/*
4721 			 * Wakeup any callers blocked on this
4722 			 * Tx ring due to flow control.
4723 			 */
4724 			sringp = srs_tx->st_soft_rings[ring->mr_index];
4725 			ASSERT(sringp != NULL);
4726 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4727 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4728 			mac_tx_srs_del_ring(mac_srs, ring);
4729 			mac_tx_client_restart((mac_client_handle_t)mcip);
4730 			break;
4731 		}
4732 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4733 		group_type = mip->mi_tx_group_type;
4734 		cap_rings = &mip->mi_tx_rings_cap;
4735 		/*
4736 		 * See if we need to take it out of the MAC clients using
4737 		 * this group
4738 		 */
4739 		if (MAC_GROUP_NO_CLIENT(group))
4740 			break;
4741 		mgcp = group->mrg_clients;
4742 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
4743 		while (mgcp != NULL) {
4744 			mcip = mgcp->mgc_client;
4745 			mac_srs = MCIP_TX_SRS(mcip);
4746 			tx = &mac_srs->srs_tx;
4747 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4748 			/*
4749 			 * If we are here when removing rings from the
4750 			 * defgroup, mac_reserve_tx_ring would have
4751 			 * already deleted the ring from the MAC
4752 			 * clients in the group.
4753 			 */
4754 			if (group != defgrp) {
4755 				mac_tx_invoke_callbacks(mcip,
4756 				    (mac_tx_cookie_t)
4757 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
4758 				mac_tx_srs_del_ring(mac_srs, ring);
4759 			}
4760 			/*
4761 			 * Additionally, if  we are left with only
4762 			 * one ring in the group after this, we need
4763 			 * to modify the mode etc. to. (We haven't
4764 			 * yet taken the ring out, so we check with 2).
4765 			 */
4766 			if (group->mrg_cur_count == 2) {
4767 				if (ring->mr_next == NULL)
4768 					rem_ring = group->mrg_rings;
4769 				else
4770 					rem_ring = ring->mr_next;
4771 				mac_tx_invoke_callbacks(mcip,
4772 				    (mac_tx_cookie_t)
4773 				    mac_tx_srs_get_soft_ring(mac_srs,
4774 				    rem_ring));
4775 				mac_tx_srs_del_ring(mac_srs, rem_ring);
4776 				if (rem_ring->mr_state != MR_INUSE) {
4777 					(void) mac_start_ring(rem_ring);
4778 				}
4779 				tx->st_arg2 = (void *)rem_ring;
4780 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4781 				ring_info = mac_hwring_getinfo(
4782 				    (mac_ring_handle_t)rem_ring);
4783 				/*
4784 				 * We are  shrinking from multiple
4785 				 * to 1 ring.
4786 				 */
4787 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4788 					tx->st_mode = SRS_TX_BW;
4789 				} else if (mac_tx_serialize ||
4790 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
4791 					tx->st_mode = SRS_TX_SERIALIZE;
4792 				} else {
4793 					tx->st_mode = SRS_TX_DEFAULT;
4794 				}
4795 				tx->st_func = mac_tx_get_func(tx->st_mode);
4796 			}
4797 			mac_tx_client_restart((mac_client_handle_t)mcip);
4798 			mgcp = mgcp->mgc_next;
4799 		}
4800 		break;
4801 	}
4802 	default:
4803 		ASSERT(B_FALSE);
4804 	}
4805 
4806 	/*
4807 	 * Remove the ring from the group.
4808 	 */
4809 	if (ring == group->mrg_rings)
4810 		group->mrg_rings = ring->mr_next;
4811 	else {
4812 		mac_ring_t *pre;
4813 
4814 		pre = group->mrg_rings;
4815 		while (pre->mr_next != ring)
4816 			pre = pre->mr_next;
4817 		pre->mr_next = ring->mr_next;
4818 	}
4819 	group->mrg_cur_count--;
4820 
4821 	if (!driver_call) {
4822 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4823 		ASSERT(group->mrg_driver == NULL ||
4824 		    cap_rings->mr_gremring != NULL);
4825 
4826 		/*
4827 		 * Remove the driver level hardware ring.
4828 		 */
4829 		if (group->mrg_driver != NULL) {
4830 			cap_rings->mr_gremring(group->mrg_driver,
4831 			    ring->mr_driver, ring->mr_type);
4832 		}
4833 	}
4834 
4835 	ring->mr_gh = NULL;
4836 	if (driver_call)
4837 		mac_ring_free(mip, ring);
4838 	else
4839 		ring->mr_flag = 0;
4840 }
4841 
4842 /*
4843  * Move a ring to the target group. If needed, remove the ring from the group
4844  * that it currently belongs to.
4845  *
4846  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4847  */
4848 static int
4849 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4850 {
4851 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4852 	int rv;
4853 
4854 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4855 	ASSERT(d_group != NULL);
4856 	ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
4857 
4858 	if (s_group == d_group)
4859 		return (0);
4860 
4861 	/*
4862 	 * Remove it from current group first.
4863 	 */
4864 	if (s_group != NULL)
4865 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
4866 
4867 	/*
4868 	 * Add it to the new group.
4869 	 */
4870 	rv = i_mac_group_add_ring(d_group, ring, 0);
4871 	if (rv != 0) {
4872 		/*
4873 		 * Failed to add ring back to source group. If
4874 		 * that fails, the ring is stuck in limbo, log message.
4875 		 */
4876 		if (i_mac_group_add_ring(s_group, ring, 0)) {
4877 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4878 			    mip->mi_name, (void *)ring);
4879 		}
4880 	}
4881 
4882 	return (rv);
4883 }
4884 
4885 /*
4886  * Find a MAC address according to its value.
4887  */
4888 mac_address_t *
4889 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4890 {
4891 	mac_address_t *map;
4892 
4893 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4894 
4895 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4896 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4897 			break;
4898 	}
4899 
4900 	return (map);
4901 }
4902 
4903 /*
4904  * Check whether the MAC address is shared by multiple clients.
4905  */
4906 boolean_t
4907 mac_check_macaddr_shared(mac_address_t *map)
4908 {
4909 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4910 
4911 	return (map->ma_nusers > 1);
4912 }
4913 
4914 /*
4915  * Remove the specified MAC address from the MAC address list and free it.
4916  */
4917 static void
4918 mac_free_macaddr(mac_address_t *map)
4919 {
4920 	mac_impl_t *mip = map->ma_mip;
4921 
4922 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4923 	ASSERT(mip->mi_addresses != NULL);
4924 
4925 	map = mac_find_macaddr(mip, map->ma_addr);
4926 
4927 	ASSERT(map != NULL);
4928 	ASSERT(map->ma_nusers == 0);
4929 
4930 	if (map == mip->mi_addresses) {
4931 		mip->mi_addresses = map->ma_next;
4932 	} else {
4933 		mac_address_t *pre;
4934 
4935 		pre = mip->mi_addresses;
4936 		while (pre->ma_next != map)
4937 			pre = pre->ma_next;
4938 		pre->ma_next = map->ma_next;
4939 	}
4940 
4941 	kmem_free(map, sizeof (mac_address_t));
4942 }
4943 
4944 /*
4945  * Add a MAC address reference for a client. If the desired MAC address
4946  * exists, add a reference to it. Otherwise, add the new address by adding
4947  * it to a reserved group or setting promiscuous mode. Won't try different
4948  * group is the group is non-NULL, so the caller must explictly share
4949  * default group when needed.
4950  *
4951  * Note, the primary MAC address is initialized at registration time, so
4952  * to add it to default group only need to activate it if its reference
4953  * count is still zero. Also, some drivers may not have advertised RINGS
4954  * capability.
4955  */
4956 int
4957 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4958     boolean_t use_hw)
4959 {
4960 	mac_address_t *map;
4961 	int err = 0;
4962 	boolean_t allocated_map = B_FALSE;
4963 
4964 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4965 
4966 	map = mac_find_macaddr(mip, mac_addr);
4967 
4968 	/*
4969 	 * If the new MAC address has not been added. Allocate a new one
4970 	 * and set it up.
4971 	 */
4972 	if (map == NULL) {
4973 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4974 		map->ma_len = mip->mi_type->mt_addr_length;
4975 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4976 		map->ma_nusers = 0;
4977 		map->ma_group = group;
4978 		map->ma_mip = mip;
4979 
4980 		/* add the new MAC address to the head of the address list */
4981 		map->ma_next = mip->mi_addresses;
4982 		mip->mi_addresses = map;
4983 
4984 		allocated_map = B_TRUE;
4985 	}
4986 
4987 	ASSERT(map->ma_group == NULL || map->ma_group == group);
4988 	if (map->ma_group == NULL)
4989 		map->ma_group = group;
4990 
4991 	/*
4992 	 * If the MAC address is already in use, simply account for the
4993 	 * new client.
4994 	 */
4995 	if (map->ma_nusers++ > 0)
4996 		return (0);
4997 
4998 	/*
4999 	 * Activate this MAC address by adding it to the reserved group.
5000 	 */
5001 	if (group != NULL) {
5002 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
5003 		if (err == 0) {
5004 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5005 			return (0);
5006 		}
5007 	}
5008 
5009 	/*
5010 	 * The MAC address addition failed. If the client requires a
5011 	 * hardware classified MAC address, fail the operation.
5012 	 */
5013 	if (use_hw) {
5014 		err = ENOSPC;
5015 		goto bail;
5016 	}
5017 
5018 	/*
5019 	 * Try promiscuous mode.
5020 	 *
5021 	 * For drivers that don't advertise RINGS capability, do
5022 	 * nothing for the primary address.
5023 	 */
5024 	if ((group == NULL) &&
5025 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5026 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5027 		return (0);
5028 	}
5029 
5030 	/*
5031 	 * Enable promiscuous mode in order to receive traffic
5032 	 * to the new MAC address.
5033 	 */
5034 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5035 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5036 		return (0);
5037 	}
5038 
5039 	/*
5040 	 * Free the MAC address that could not be added. Don't free
5041 	 * a pre-existing address, it could have been the entry
5042 	 * for the primary MAC address which was pre-allocated by
5043 	 * mac_init_macaddr(), and which must remain on the list.
5044 	 */
5045 bail:
5046 	map->ma_nusers--;
5047 	if (allocated_map)
5048 		mac_free_macaddr(map);
5049 	return (err);
5050 }
5051 
5052 /*
5053  * Remove a reference to a MAC address. This may cause to remove the MAC
5054  * address from an associated group or to turn off promiscuous mode.
5055  * The caller needs to handle the failure properly.
5056  */
5057 int
5058 mac_remove_macaddr(mac_address_t *map)
5059 {
5060 	mac_impl_t *mip = map->ma_mip;
5061 	int err = 0;
5062 
5063 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5064 
5065 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5066 
5067 	/*
5068 	 * If it's not the last client using this MAC address, only update
5069 	 * the MAC clients count.
5070 	 */
5071 	if (--map->ma_nusers > 0)
5072 		return (0);
5073 
5074 	/*
5075 	 * The MAC address is no longer used by any MAC client, so remove
5076 	 * it from its associated group, or turn off promiscuous mode
5077 	 * if it was enabled for the MAC address.
5078 	 */
5079 	switch (map->ma_type) {
5080 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5081 		/*
5082 		 * Don't free the preset primary address for drivers that
5083 		 * don't advertise RINGS capability.
5084 		 */
5085 		if (map->ma_group == NULL)
5086 			return (0);
5087 
5088 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5089 		if (err == 0)
5090 			map->ma_group = NULL;
5091 		break;
5092 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5093 		err = i_mac_promisc_set(mip, B_FALSE);
5094 		break;
5095 	default:
5096 		ASSERT(B_FALSE);
5097 	}
5098 
5099 	if (err != 0)
5100 		return (err);
5101 
5102 	/*
5103 	 * We created MAC address for the primary one at registration, so we
5104 	 * won't free it here. mac_fini_macaddr() will take care of it.
5105 	 */
5106 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5107 		mac_free_macaddr(map);
5108 
5109 	return (0);
5110 }
5111 
5112 /*
5113  * Update an existing MAC address. The caller need to make sure that the new
5114  * value has not been used.
5115  */
5116 int
5117 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5118 {
5119 	mac_impl_t *mip = map->ma_mip;
5120 	int err = 0;
5121 
5122 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5123 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5124 
5125 	switch (map->ma_type) {
5126 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5127 		/*
5128 		 * Update the primary address for drivers that are not
5129 		 * RINGS capable.
5130 		 */
5131 		if (mip->mi_rx_groups == NULL) {
5132 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5133 			    mac_addr);
5134 			if (err != 0)
5135 				return (err);
5136 			break;
5137 		}
5138 
5139 		/*
5140 		 * If this MAC address is not currently in use,
5141 		 * simply break out and update the value.
5142 		 */
5143 		if (map->ma_nusers == 0)
5144 			break;
5145 
5146 		/*
5147 		 * Need to replace the MAC address associated with a group.
5148 		 */
5149 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5150 		if (err != 0)
5151 			return (err);
5152 
5153 		err = mac_group_addmac(map->ma_group, mac_addr);
5154 
5155 		/*
5156 		 * Failure hints hardware error. The MAC layer needs to
5157 		 * have error notification facility to handle this.
5158 		 * Now, simply try to restore the value.
5159 		 */
5160 		if (err != 0)
5161 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5162 
5163 		break;
5164 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5165 		/*
5166 		 * Need to do nothing more if in promiscuous mode.
5167 		 */
5168 		break;
5169 	default:
5170 		ASSERT(B_FALSE);
5171 	}
5172 
5173 	/*
5174 	 * Successfully replaced the MAC address.
5175 	 */
5176 	if (err == 0)
5177 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5178 
5179 	return (err);
5180 }
5181 
5182 /*
5183  * Freshen the MAC address with new value. Its caller must have updated the
5184  * hardware MAC address before calling this function.
5185  * This funcitons is supposed to be used to handle the MAC address change
5186  * notification from underlying drivers.
5187  */
5188 void
5189 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5190 {
5191 	mac_impl_t *mip = map->ma_mip;
5192 
5193 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5194 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5195 
5196 	/*
5197 	 * Freshen the MAC address with new value.
5198 	 */
5199 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5200 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5201 
5202 	/*
5203 	 * Update all MAC clients that share this MAC address.
5204 	 */
5205 	mac_unicast_update_clients(mip, map);
5206 }
5207 
5208 /*
5209  * Set up the primary MAC address.
5210  */
5211 void
5212 mac_init_macaddr(mac_impl_t *mip)
5213 {
5214 	mac_address_t *map;
5215 
5216 	/*
5217 	 * The reference count is initialized to zero, until it's really
5218 	 * activated.
5219 	 */
5220 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5221 	map->ma_len = mip->mi_type->mt_addr_length;
5222 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5223 
5224 	/*
5225 	 * If driver advertises RINGS capability, it shouldn't have initialized
5226 	 * its primary MAC address. For other drivers, including VNIC, the
5227 	 * primary address must work after registration.
5228 	 */
5229 	if (mip->mi_rx_groups == NULL)
5230 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5231 
5232 	map->ma_mip = mip;
5233 
5234 	mip->mi_addresses = map;
5235 }
5236 
5237 /*
5238  * Clean up the primary MAC address. Note, only one primary MAC address
5239  * is allowed. All other MAC addresses must have been freed appropriately.
5240  */
5241 void
5242 mac_fini_macaddr(mac_impl_t *mip)
5243 {
5244 	mac_address_t *map = mip->mi_addresses;
5245 
5246 	if (map == NULL)
5247 		return;
5248 
5249 	/*
5250 	 * If mi_addresses is initialized, there should be exactly one
5251 	 * entry left on the list with no users.
5252 	 */
5253 	ASSERT(map->ma_nusers == 0);
5254 	ASSERT(map->ma_next == NULL);
5255 
5256 	kmem_free(map, sizeof (mac_address_t));
5257 	mip->mi_addresses = NULL;
5258 }
5259 
5260 /*
5261  * Logging related functions.
5262  *
5263  * Note that Kernel statistics have been extended to maintain fine
5264  * granularity of statistics viz. hardware lane, software lane, fanout
5265  * stats etc. However, extended accounting continues to support only
5266  * aggregate statistics like before.
5267  */
5268 
5269 /* Write the flow description to a netinfo_t record */
5270 static netinfo_t *
5271 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5272 {
5273 	netinfo_t		*ninfo;
5274 	net_desc_t		*ndesc;
5275 	flow_desc_t		*fdesc;
5276 	mac_resource_props_t	*mrp;
5277 
5278 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5279 	if (ninfo == NULL)
5280 		return (NULL);
5281 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5282 	if (ndesc == NULL) {
5283 		kmem_free(ninfo, sizeof (netinfo_t));
5284 		return (NULL);
5285 	}
5286 
5287 	/*
5288 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5289 	 * Updates to the fe_flow_desc are done under the fe_lock
5290 	 */
5291 	mutex_enter(&flent->fe_lock);
5292 	fdesc = &flent->fe_flow_desc;
5293 	mrp = &flent->fe_resource_props;
5294 
5295 	ndesc->nd_name = flent->fe_flow_name;
5296 	ndesc->nd_devname = mcip->mci_name;
5297 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5298 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5299 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5300 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5301 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5302 	if (ndesc->nd_isv4) {
5303 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5304 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5305 	} else {
5306 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5307 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5308 	}
5309 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5310 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5311 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5312 	mutex_exit(&flent->fe_lock);
5313 
5314 	ninfo->ni_record = ndesc;
5315 	ninfo->ni_size = sizeof (net_desc_t);
5316 	ninfo->ni_type = EX_NET_FLDESC_REC;
5317 
5318 	return (ninfo);
5319 }
5320 
5321 /* Write the flow statistics to a netinfo_t record */
5322 static netinfo_t *
5323 mac_write_flow_stats(flow_entry_t *flent)
5324 {
5325 	netinfo_t		*ninfo;
5326 	net_stat_t		*nstat;
5327 	mac_soft_ring_set_t	*mac_srs;
5328 	mac_rx_stats_t		*mac_rx_stat;
5329 	mac_tx_stats_t		*mac_tx_stat;
5330 	int			i;
5331 
5332 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5333 	if (ninfo == NULL)
5334 		return (NULL);
5335 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5336 	if (nstat == NULL) {
5337 		kmem_free(ninfo, sizeof (netinfo_t));
5338 		return (NULL);
5339 	}
5340 
5341 	nstat->ns_name = flent->fe_flow_name;
5342 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5343 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5344 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5345 
5346 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5347 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5348 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5349 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5350 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5351 	}
5352 
5353 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5354 	if (mac_srs != NULL) {
5355 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5356 
5357 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5358 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5359 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5360 	}
5361 
5362 	ninfo->ni_record = nstat;
5363 	ninfo->ni_size = sizeof (net_stat_t);
5364 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5365 
5366 	return (ninfo);
5367 }
5368 
5369 /* Write the link description to a netinfo_t record */
5370 static netinfo_t *
5371 mac_write_link_desc(mac_client_impl_t *mcip)
5372 {
5373 	netinfo_t		*ninfo;
5374 	net_desc_t		*ndesc;
5375 	flow_entry_t		*flent = mcip->mci_flent;
5376 
5377 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5378 	if (ninfo == NULL)
5379 		return (NULL);
5380 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5381 	if (ndesc == NULL) {
5382 		kmem_free(ninfo, sizeof (netinfo_t));
5383 		return (NULL);
5384 	}
5385 
5386 	ndesc->nd_name = mcip->mci_name;
5387 	ndesc->nd_devname = mcip->mci_name;
5388 	ndesc->nd_isv4 = B_TRUE;
5389 	/*
5390 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5391 	 * Updates to the fe_flow_desc are done under the fe_lock
5392 	 * after removing the flent from the flow table.
5393 	 */
5394 	mutex_enter(&flent->fe_lock);
5395 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5396 	mutex_exit(&flent->fe_lock);
5397 
5398 	ninfo->ni_record = ndesc;
5399 	ninfo->ni_size = sizeof (net_desc_t);
5400 	ninfo->ni_type = EX_NET_LNDESC_REC;
5401 
5402 	return (ninfo);
5403 }
5404 
5405 /* Write the link statistics to a netinfo_t record */
5406 static netinfo_t *
5407 mac_write_link_stats(mac_client_impl_t *mcip)
5408 {
5409 	netinfo_t		*ninfo;
5410 	net_stat_t		*nstat;
5411 	flow_entry_t		*flent;
5412 	mac_soft_ring_set_t	*mac_srs;
5413 	mac_rx_stats_t		*mac_rx_stat;
5414 	mac_tx_stats_t		*mac_tx_stat;
5415 	int			i;
5416 
5417 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5418 	if (ninfo == NULL)
5419 		return (NULL);
5420 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5421 	if (nstat == NULL) {
5422 		kmem_free(ninfo, sizeof (netinfo_t));
5423 		return (NULL);
5424 	}
5425 
5426 	nstat->ns_name = mcip->mci_name;
5427 	flent = mcip->mci_flent;
5428 	if (flent != NULL)  {
5429 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5430 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5431 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5432 
5433 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5434 			    mac_rx_stat->mrs_pollbytes +
5435 			    mac_rx_stat->mrs_lclbytes;
5436 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5437 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5438 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5439 		}
5440 	}
5441 
5442 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5443 	if (mac_srs != NULL) {
5444 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5445 
5446 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5447 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5448 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5449 	}
5450 
5451 	ninfo->ni_record = nstat;
5452 	ninfo->ni_size = sizeof (net_stat_t);
5453 	ninfo->ni_type = EX_NET_LNSTAT_REC;
5454 
5455 	return (ninfo);
5456 }
5457 
5458 typedef struct i_mac_log_state_s {
5459 	boolean_t	mi_last;
5460 	int		mi_fenable;
5461 	int		mi_lenable;
5462 	list_t		*mi_list;
5463 } i_mac_log_state_t;
5464 
5465 /*
5466  * For a given flow, if the description has not been logged before, do it now.
5467  * If it is a VNIC, then we have collected information about it from the MAC
5468  * table, so skip it.
5469  *
5470  * Called through mac_flow_walk_nolock()
5471  *
5472  * Return 0 if successful.
5473  */
5474 static int
5475 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5476 {
5477 	mac_client_impl_t	*mcip = flent->fe_mcip;
5478 	i_mac_log_state_t	*lstate = arg;
5479 	netinfo_t		*ninfo;
5480 
5481 	if (mcip == NULL)
5482 		return (0);
5483 
5484 	/*
5485 	 * If the name starts with "vnic", and fe_user_generated is true (to
5486 	 * exclude the mcast and active flow entries created implicitly for
5487 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5488 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5489 	 */
5490 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5491 	    (flent->fe_type & FLOW_USER) != 0) {
5492 		return (0);
5493 	}
5494 
5495 	if (!flent->fe_desc_logged) {
5496 		/*
5497 		 * We don't return error because we want to continue the
5498 		 * walk in case this is the last walk which means we
5499 		 * need to reset fe_desc_logged in all the flows.
5500 		 */
5501 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5502 			return (0);
5503 		list_insert_tail(lstate->mi_list, ninfo);
5504 		flent->fe_desc_logged = B_TRUE;
5505 	}
5506 
5507 	/*
5508 	 * Regardless of the error, we want to proceed in case we have to
5509 	 * reset fe_desc_logged.
5510 	 */
5511 	ninfo = mac_write_flow_stats(flent);
5512 	if (ninfo == NULL)
5513 		return (-1);
5514 
5515 	list_insert_tail(lstate->mi_list, ninfo);
5516 
5517 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5518 		flent->fe_desc_logged = B_FALSE;
5519 
5520 	return (0);
5521 }
5522 
5523 /*
5524  * Log the description for each mac client of this mac_impl_t, if it
5525  * hasn't already been done. Additionally, log statistics for the link as
5526  * well. Walk the flow table and log information for each flow as well.
5527  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5528  * also fe_desc_logged, if flow logging is on) since we want to log the
5529  * description if and when logging is restarted.
5530  *
5531  * Return 0 upon success or -1 upon failure
5532  */
5533 static int
5534 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5535 {
5536 	mac_client_impl_t	*mcip;
5537 	netinfo_t		*ninfo;
5538 
5539 	i_mac_perim_enter(mip);
5540 	/*
5541 	 * Only walk the client list for NIC and etherstub
5542 	 */
5543 	if ((mip->mi_state_flags & MIS_DISABLED) ||
5544 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
5545 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5546 		i_mac_perim_exit(mip);
5547 		return (0);
5548 	}
5549 
5550 	for (mcip = mip->mi_clients_list; mcip != NULL;
5551 	    mcip = mcip->mci_client_next) {
5552 		if (!MCIP_DATAPATH_SETUP(mcip))
5553 			continue;
5554 		if (lstate->mi_lenable) {
5555 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5556 				ninfo = mac_write_link_desc(mcip);
5557 				if (ninfo == NULL) {
5558 				/*
5559 				 * We can't terminate it if this is the last
5560 				 * walk, else there might be some links with
5561 				 * mi_desc_logged set to true, which means
5562 				 * their description won't be logged the next
5563 				 * time logging is started (similarly for the
5564 				 * flows within such links). We can continue
5565 				 * without walking the flow table (i.e. to
5566 				 * set fe_desc_logged to false) because we
5567 				 * won't have written any flow stuff for this
5568 				 * link as we haven't logged the link itself.
5569 				 */
5570 					i_mac_perim_exit(mip);
5571 					if (lstate->mi_last)
5572 						return (0);
5573 					else
5574 						return (-1);
5575 				}
5576 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5577 				list_insert_tail(lstate->mi_list, ninfo);
5578 			}
5579 		}
5580 
5581 		ninfo = mac_write_link_stats(mcip);
5582 		if (ninfo == NULL && !lstate->mi_last) {
5583 			i_mac_perim_exit(mip);
5584 			return (-1);
5585 		}
5586 		list_insert_tail(lstate->mi_list, ninfo);
5587 
5588 		if (lstate->mi_last)
5589 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5590 
5591 		if (lstate->mi_fenable) {
5592 			if (mcip->mci_subflow_tab != NULL) {
5593 				(void) mac_flow_walk_nolock(
5594 				    mcip->mci_subflow_tab, mac_log_flowinfo,
5595 				    lstate);
5596 			}
5597 		}
5598 	}
5599 	i_mac_perim_exit(mip);
5600 	return (0);
5601 }
5602 
5603 /*
5604  * modhash walker function to add a mac_impl_t to a list
5605  */
5606 /*ARGSUSED*/
5607 static uint_t
5608 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5609 {
5610 	list_t			*list = (list_t *)arg;
5611 	mac_impl_t		*mip = (mac_impl_t *)val;
5612 
5613 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5614 		list_insert_tail(list, mip);
5615 		mip->mi_ref++;
5616 	}
5617 
5618 	return (MH_WALK_CONTINUE);
5619 }
5620 
5621 void
5622 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5623 {
5624 	list_t			mac_impl_list;
5625 	mac_impl_t		*mip;
5626 	netinfo_t		*ninfo;
5627 
5628 	/* Create list of mac_impls */
5629 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5630 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5631 	    mi_node));
5632 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5633 	rw_exit(&i_mac_impl_lock);
5634 
5635 	/* Create log entries for each mac_impl */
5636 	for (mip = list_head(&mac_impl_list); mip != NULL;
5637 	    mip = list_next(&mac_impl_list, mip)) {
5638 		if (i_mac_impl_log(mip, lstate) != 0)
5639 			continue;
5640 	}
5641 
5642 	/* Remove elements and destroy list of mac_impls */
5643 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5644 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5645 		mip->mi_ref--;
5646 	}
5647 	rw_exit(&i_mac_impl_lock);
5648 	list_destroy(&mac_impl_list);
5649 
5650 	/*
5651 	 * Write log entries to files outside of locks, free associated
5652 	 * structures, and remove entries from the list.
5653 	 */
5654 	while ((ninfo = list_head(net_log_list)) != NULL) {
5655 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5656 		list_remove(net_log_list, ninfo);
5657 		kmem_free(ninfo->ni_record, ninfo->ni_size);
5658 		kmem_free(ninfo, sizeof (*ninfo));
5659 	}
5660 	list_destroy(net_log_list);
5661 }
5662 
5663 /*
5664  * The timer thread that runs every mac_logging_interval seconds and logs
5665  * link and/or flow information.
5666  */
5667 /* ARGSUSED */
5668 void
5669 mac_log_linkinfo(void *arg)
5670 {
5671 	i_mac_log_state_t	lstate;
5672 	list_t			net_log_list;
5673 
5674 	list_create(&net_log_list, sizeof (netinfo_t),
5675 	    offsetof(netinfo_t, ni_link));
5676 
5677 	rw_enter(&i_mac_impl_lock, RW_READER);
5678 	if (!mac_flow_log_enable && !mac_link_log_enable) {
5679 		rw_exit(&i_mac_impl_lock);
5680 		return;
5681 	}
5682 	lstate.mi_fenable = mac_flow_log_enable;
5683 	lstate.mi_lenable = mac_link_log_enable;
5684 	lstate.mi_last = B_FALSE;
5685 	lstate.mi_list = &net_log_list;
5686 
5687 	/* Write log entries for each mac_impl in the list */
5688 	i_mac_log_info(&net_log_list, &lstate);
5689 
5690 	if (mac_flow_log_enable || mac_link_log_enable) {
5691 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5692 		    SEC_TO_TICK(mac_logging_interval));
5693 	}
5694 }
5695 
5696 typedef struct i_mac_fastpath_state_s {
5697 	boolean_t	mf_disable;
5698 	int		mf_err;
5699 } i_mac_fastpath_state_t;
5700 
5701 /* modhash walker function to enable or disable fastpath */
5702 /*ARGSUSED*/
5703 static uint_t
5704 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5705     void *arg)
5706 {
5707 	i_mac_fastpath_state_t	*state = arg;
5708 	mac_handle_t		mh = (mac_handle_t)val;
5709 
5710 	if (state->mf_disable)
5711 		state->mf_err = mac_fastpath_disable(mh);
5712 	else
5713 		mac_fastpath_enable(mh);
5714 
5715 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5716 }
5717 
5718 /*
5719  * Start the logging timer.
5720  */
5721 int
5722 mac_start_logusage(mac_logtype_t type, uint_t interval)
5723 {
5724 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
5725 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5726 	int			err;
5727 
5728 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5729 	switch (type) {
5730 	case MAC_LOGTYPE_FLOW:
5731 		if (mac_flow_log_enable) {
5732 			rw_exit(&i_mac_impl_lock);
5733 			return (0);
5734 		}
5735 		/* FALLTHRU */
5736 	case MAC_LOGTYPE_LINK:
5737 		if (mac_link_log_enable) {
5738 			rw_exit(&i_mac_impl_lock);
5739 			return (0);
5740 		}
5741 		break;
5742 	default:
5743 		ASSERT(0);
5744 	}
5745 
5746 	/* Disable fastpath */
5747 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5748 	if ((err = dstate.mf_err) != 0) {
5749 		/* Reenable fastpath  */
5750 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5751 		rw_exit(&i_mac_impl_lock);
5752 		return (err);
5753 	}
5754 
5755 	switch (type) {
5756 	case MAC_LOGTYPE_FLOW:
5757 		mac_flow_log_enable = B_TRUE;
5758 		/* FALLTHRU */
5759 	case MAC_LOGTYPE_LINK:
5760 		mac_link_log_enable = B_TRUE;
5761 		break;
5762 	}
5763 
5764 	mac_logging_interval = interval;
5765 	rw_exit(&i_mac_impl_lock);
5766 	mac_log_linkinfo(NULL);
5767 	return (0);
5768 }
5769 
5770 /*
5771  * Stop the logging timer if both link and flow logging are turned off.
5772  */
5773 void
5774 mac_stop_logusage(mac_logtype_t type)
5775 {
5776 	i_mac_log_state_t	lstate;
5777 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5778 	list_t			net_log_list;
5779 
5780 	list_create(&net_log_list, sizeof (netinfo_t),
5781 	    offsetof(netinfo_t, ni_link));
5782 
5783 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5784 
5785 	lstate.mi_fenable = mac_flow_log_enable;
5786 	lstate.mi_lenable = mac_link_log_enable;
5787 	lstate.mi_list = &net_log_list;
5788 
5789 	/* Last walk */
5790 	lstate.mi_last = B_TRUE;
5791 
5792 	switch (type) {
5793 	case MAC_LOGTYPE_FLOW:
5794 		if (lstate.mi_fenable) {
5795 			ASSERT(mac_link_log_enable);
5796 			mac_flow_log_enable = B_FALSE;
5797 			mac_link_log_enable = B_FALSE;
5798 			break;
5799 		}
5800 		/* FALLTHRU */
5801 	case MAC_LOGTYPE_LINK:
5802 		if (!lstate.mi_lenable || mac_flow_log_enable) {
5803 			rw_exit(&i_mac_impl_lock);
5804 			return;
5805 		}
5806 		mac_link_log_enable = B_FALSE;
5807 		break;
5808 	default:
5809 		ASSERT(0);
5810 	}
5811 
5812 	/* Reenable fastpath */
5813 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5814 
5815 	(void) untimeout(mac_logging_timer);
5816 	mac_logging_timer = 0;
5817 
5818 	/* Write log entries for each mac_impl in the list */
5819 	i_mac_log_info(&net_log_list, &lstate);
5820 }
5821 
5822 /*
5823  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5824  */
5825 void
5826 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5827 {
5828 	pri_t			pri;
5829 	int			count;
5830 	mac_soft_ring_set_t	*mac_srs;
5831 
5832 	if (flent->fe_rx_srs_cnt <= 0)
5833 		return;
5834 
5835 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5836 	    SRST_FLOW) {
5837 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
5838 		    mcip->mci_max_pri,
5839 		    flent->fe_resource_props.mrp_priority);
5840 	} else {
5841 		pri = mcip->mci_max_pri;
5842 	}
5843 
5844 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5845 		mac_srs = flent->fe_rx_srs[count];
5846 		mac_update_srs_priority(mac_srs, pri);
5847 	}
5848 	/*
5849 	 * If we have a Tx SRS, we need to modify all the threads associated
5850 	 * with it.
5851 	 */
5852 	if (flent->fe_tx_srs != NULL)
5853 		mac_update_srs_priority(flent->fe_tx_srs, pri);
5854 }
5855 
5856 /*
5857  * RX and TX rings are reserved according to different semantics depending
5858  * on the requests from the MAC clients and type of rings:
5859  *
5860  * On the Tx side, by default we reserve individual rings, independently from
5861  * the groups.
5862  *
5863  * On the Rx side, the reservation is at the granularity of the group
5864  * of rings, and used for v12n level 1 only. It has a special case for the
5865  * primary client.
5866  *
5867  * If a share is allocated to a MAC client, we allocate a TX group and an
5868  * RX group to the client, and assign TX rings and RX rings to these
5869  * groups according to information gathered from the driver through
5870  * the share capability.
5871  *
5872  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5873  * to allocate individual rings out of a group and program the hw classifier
5874  * based on IP address or higher level criteria.
5875  */
5876 
5877 /*
5878  * mac_reserve_tx_ring()
5879  * Reserve a unused ring by marking it with MR_INUSE state.
5880  * As reserved, the ring is ready to function.
5881  *
5882  * Notes for Hybrid I/O:
5883  *
5884  * If a specific ring is needed, it is specified through the desired_ring
5885  * argument. Otherwise that argument is set to NULL.
5886  * If the desired ring was previous allocated to another client, this
5887  * function swaps it with a new ring from the group of unassigned rings.
5888  */
5889 mac_ring_t *
5890 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5891 {
5892 	mac_group_t		*group;
5893 	mac_grp_client_t	*mgcp;
5894 	mac_client_impl_t	*mcip;
5895 	mac_soft_ring_set_t	*srs;
5896 
5897 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5898 
5899 	/*
5900 	 * Find an available ring and start it before changing its status.
5901 	 * The unassigned rings are at the end of the mi_tx_groups
5902 	 * array.
5903 	 */
5904 	group = MAC_DEFAULT_TX_GROUP(mip);
5905 
5906 	/* Can't take the default ring out of the default group */
5907 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5908 
5909 	if (desired_ring->mr_state == MR_FREE) {
5910 		ASSERT(MAC_GROUP_NO_CLIENT(group));
5911 		if (mac_start_ring(desired_ring) != 0)
5912 			return (NULL);
5913 		return (desired_ring);
5914 	}
5915 	/*
5916 	 * There are clients using this ring, so let's move the clients
5917 	 * away from using this ring.
5918 	 */
5919 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5920 		mcip = mgcp->mgc_client;
5921 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
5922 		srs = MCIP_TX_SRS(mcip);
5923 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5924 		mac_tx_invoke_callbacks(mcip,
5925 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5926 		    desired_ring));
5927 		mac_tx_srs_del_ring(srs, desired_ring);
5928 		mac_tx_client_restart((mac_client_handle_t)mcip);
5929 	}
5930 	return (desired_ring);
5931 }
5932 
5933 /*
5934  * For a reserved group with multiple clients, return the primary client.
5935  */
5936 static mac_client_impl_t *
5937 mac_get_grp_primary(mac_group_t *grp)
5938 {
5939 	mac_grp_client_t	*mgcp = grp->mrg_clients;
5940 	mac_client_impl_t	*mcip;
5941 
5942 	while (mgcp != NULL) {
5943 		mcip = mgcp->mgc_client;
5944 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5945 			return (mcip);
5946 		mgcp = mgcp->mgc_next;
5947 	}
5948 	return (NULL);
5949 }
5950 
5951 /*
5952  * Hybrid I/O specifies the ring that should be given to a share.
5953  * If the ring is already used by clients, then we need to release
5954  * the ring back to the default group so that we can give it to
5955  * the share. This means the clients using this ring now get a
5956  * replacement ring. If there aren't any replacement rings, this
5957  * function returns a failure.
5958  */
5959 static int
5960 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5961     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5962 {
5963 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
5964 	mac_resource_props_t	*mrp;
5965 	mac_client_impl_t	*mcip;
5966 	mac_group_t		*defgrp;
5967 	mac_ring_t		*tring;
5968 	mac_group_t		*tgrp;
5969 	int			i;
5970 	int			j;
5971 
5972 	mcip = MAC_GROUP_ONLY_CLIENT(group);
5973 	if (mcip == NULL)
5974 		mcip = mac_get_grp_primary(group);
5975 	ASSERT(mcip != NULL);
5976 	ASSERT(mcip->mci_share == 0);
5977 
5978 	mrp = MCIP_RESOURCE_PROPS(mcip);
5979 	if (ring_type == MAC_RING_TYPE_RX) {
5980 		defgrp = mip->mi_rx_donor_grp;
5981 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5982 			/* Need to put this mac client in the default group */
5983 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5984 				return (ENOSPC);
5985 		} else {
5986 			/*
5987 			 * Switch this ring with some other ring from
5988 			 * the default group.
5989 			 */
5990 			for (tring = defgrp->mrg_rings; tring != NULL;
5991 			    tring = tring->mr_next) {
5992 				if (tring->mr_index == 0)
5993 					continue;
5994 				for (j = 0; j < nrings; j++) {
5995 					if (rings[j] == tring)
5996 						break;
5997 				}
5998 				if (j >= nrings)
5999 					break;
6000 			}
6001 			if (tring == NULL)
6002 				return (ENOSPC);
6003 			if (mac_group_mov_ring(mip, group, tring) != 0)
6004 				return (ENOSPC);
6005 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6006 				(void) mac_group_mov_ring(mip, defgrp, tring);
6007 				return (ENOSPC);
6008 			}
6009 		}
6010 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6011 		return (0);
6012 	}
6013 
6014 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6015 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6016 		/*
6017 		 * See if we can get a spare ring to replace the default
6018 		 * ring.
6019 		 */
6020 		if (defgrp->mrg_cur_count == 1) {
6021 			/*
6022 			 * Need to get a ring from another client, see if
6023 			 * there are any clients that can be moved to
6024 			 * the default group, thereby freeing some rings.
6025 			 */
6026 			for (i = 0; i < mip->mi_tx_group_count; i++) {
6027 				tgrp = &mip->mi_tx_groups[i];
6028 				if (tgrp->mrg_state ==
6029 				    MAC_GROUP_STATE_REGISTERED) {
6030 					continue;
6031 				}
6032 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6033 				if (mcip == NULL)
6034 					mcip = mac_get_grp_primary(tgrp);
6035 				ASSERT(mcip != NULL);
6036 				mrp = MCIP_RESOURCE_PROPS(mcip);
6037 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6038 					ASSERT(tgrp->mrg_cur_count == 1);
6039 					/*
6040 					 * If this ring is part of the
6041 					 * rings asked by the share we cannot
6042 					 * use it as the default ring.
6043 					 */
6044 					for (j = 0; j < nrings; j++) {
6045 						if (rings[j] == tgrp->mrg_rings)
6046 							break;
6047 					}
6048 					if (j < nrings)
6049 						continue;
6050 					mac_tx_client_quiesce(
6051 					    (mac_client_handle_t)mcip);
6052 					mac_tx_switch_group(mcip, tgrp,
6053 					    defgrp);
6054 					mac_tx_client_restart(
6055 					    (mac_client_handle_t)mcip);
6056 					break;
6057 				}
6058 			}
6059 			/*
6060 			 * All the rings are reserved, can't give up the
6061 			 * default ring.
6062 			 */
6063 			if (defgrp->mrg_cur_count <= 1)
6064 				return (ENOSPC);
6065 		}
6066 		/*
6067 		 * Swap the default ring with another.
6068 		 */
6069 		for (tring = defgrp->mrg_rings; tring != NULL;
6070 		    tring = tring->mr_next) {
6071 			/*
6072 			 * If this ring is part of the rings asked by the
6073 			 * share we cannot use it as the default ring.
6074 			 */
6075 			for (j = 0; j < nrings; j++) {
6076 				if (rings[j] == tring)
6077 					break;
6078 			}
6079 			if (j >= nrings)
6080 				break;
6081 		}
6082 		ASSERT(tring != NULL);
6083 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6084 		return (0);
6085 	}
6086 	/*
6087 	 * The Tx ring is with a group reserved by a MAC client. See if
6088 	 * we can swap it.
6089 	 */
6090 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6091 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6092 	if (mcip == NULL)
6093 		mcip = mac_get_grp_primary(group);
6094 	ASSERT(mcip !=  NULL);
6095 	mrp = MCIP_RESOURCE_PROPS(mcip);
6096 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6097 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6098 		ASSERT(group->mrg_cur_count == 1);
6099 		/* Put this mac client in the default group */
6100 		mac_tx_switch_group(mcip, group, defgrp);
6101 	} else {
6102 		/*
6103 		 * Switch this ring with some other ring from
6104 		 * the default group.
6105 		 */
6106 		for (tring = defgrp->mrg_rings; tring != NULL;
6107 		    tring = tring->mr_next) {
6108 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6109 				continue;
6110 			/*
6111 			 * If this ring is part of the rings asked by the
6112 			 * share we cannot use it for swapping.
6113 			 */
6114 			for (j = 0; j < nrings; j++) {
6115 				if (rings[j] == tring)
6116 					break;
6117 			}
6118 			if (j >= nrings)
6119 				break;
6120 		}
6121 		if (tring == NULL) {
6122 			mac_tx_client_restart((mac_client_handle_t)mcip);
6123 			return (ENOSPC);
6124 		}
6125 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6126 			mac_tx_client_restart((mac_client_handle_t)mcip);
6127 			return (ENOSPC);
6128 		}
6129 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6130 			(void) mac_group_mov_ring(mip, defgrp, tring);
6131 			mac_tx_client_restart((mac_client_handle_t)mcip);
6132 			return (ENOSPC);
6133 		}
6134 	}
6135 	mac_tx_client_restart((mac_client_handle_t)mcip);
6136 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6137 	return (0);
6138 }
6139 
6140 /*
6141  * Populate a zero-ring group with rings. If the share is non-NULL,
6142  * the rings are chosen according to that share.
6143  * Invoked after allocating a new RX or TX group through
6144  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6145  * Returns zero on success, an errno otherwise.
6146  */
6147 int
6148 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6149     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6150     uint32_t ringcnt)
6151 {
6152 	mac_ring_t **rings, *ring;
6153 	uint_t nrings;
6154 	int rv = 0, i = 0, j;
6155 
6156 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6157 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6158 	    (ring_type == MAC_RING_TYPE_TX &&
6159 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6160 
6161 	/*
6162 	 * First find the rings to allocate to the group.
6163 	 */
6164 	if (share != 0) {
6165 		/* get rings through ms_squery() */
6166 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6167 		ASSERT(nrings != 0);
6168 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6169 		    KM_SLEEP);
6170 		mip->mi_share_capab.ms_squery(share, ring_type,
6171 		    (mac_ring_handle_t *)rings, &nrings);
6172 		for (i = 0; i < nrings; i++) {
6173 			/*
6174 			 * If we have given this ring to a non-default
6175 			 * group, we need to check if we can get this
6176 			 * ring.
6177 			 */
6178 			ring = rings[i];
6179 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6180 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6181 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6182 				    ring, rings, nrings) != 0) {
6183 					rv = ENOSPC;
6184 					goto bail;
6185 				}
6186 			}
6187 		}
6188 	} else {
6189 		/*
6190 		 * Pick one ring from default group.
6191 		 *
6192 		 * for now pick the second ring which requires the first ring
6193 		 * at index 0 to stay in the default group, since it is the
6194 		 * ring which carries the multicast traffic.
6195 		 * We need a better way for a driver to indicate this,
6196 		 * for example a per-ring flag.
6197 		 */
6198 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6199 		    KM_SLEEP);
6200 		for (ring = src_group->mrg_rings; ring != NULL;
6201 		    ring = ring->mr_next) {
6202 			if (ring_type == MAC_RING_TYPE_RX &&
6203 			    ring->mr_index == 0) {
6204 				continue;
6205 			}
6206 			if (ring_type == MAC_RING_TYPE_TX &&
6207 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6208 				continue;
6209 			}
6210 			rings[i++] = ring;
6211 			if (i == ringcnt)
6212 				break;
6213 		}
6214 		ASSERT(ring != NULL);
6215 		nrings = i;
6216 		/* Not enough rings as required */
6217 		if (nrings != ringcnt) {
6218 			rv = ENOSPC;
6219 			goto bail;
6220 		}
6221 	}
6222 
6223 	switch (ring_type) {
6224 	case MAC_RING_TYPE_RX:
6225 		if (src_group->mrg_cur_count - nrings < 1) {
6226 			/* we ran out of rings */
6227 			rv = ENOSPC;
6228 			goto bail;
6229 		}
6230 
6231 		/* move receive rings to new group */
6232 		for (i = 0; i < nrings; i++) {
6233 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6234 			if (rv != 0) {
6235 				/* move rings back on failure */
6236 				for (j = 0; j < i; j++) {
6237 					(void) mac_group_mov_ring(mip,
6238 					    src_group, rings[j]);
6239 				}
6240 				goto bail;
6241 			}
6242 		}
6243 		break;
6244 
6245 	case MAC_RING_TYPE_TX: {
6246 		mac_ring_t *tmp_ring;
6247 
6248 		/* move the TX rings to the new group */
6249 		for (i = 0; i < nrings; i++) {
6250 			/* get the desired ring */
6251 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6252 			if (tmp_ring == NULL) {
6253 				rv = ENOSPC;
6254 				goto bail;
6255 			}
6256 			ASSERT(tmp_ring == rings[i]);
6257 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6258 			if (rv != 0) {
6259 				/* cleanup on failure */
6260 				for (j = 0; j < i; j++) {
6261 					(void) mac_group_mov_ring(mip,
6262 					    MAC_DEFAULT_TX_GROUP(mip),
6263 					    rings[j]);
6264 				}
6265 				goto bail;
6266 			}
6267 		}
6268 		break;
6269 	}
6270 	}
6271 
6272 	/* add group to share */
6273 	if (share != 0)
6274 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6275 
6276 bail:
6277 	/* free temporary array of rings */
6278 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6279 
6280 	return (rv);
6281 }
6282 
6283 void
6284 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6285 {
6286 	mac_grp_client_t *mgcp;
6287 
6288 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6289 		if (mgcp->mgc_client == mcip)
6290 			break;
6291 	}
6292 
6293 	VERIFY(mgcp == NULL);
6294 
6295 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6296 	mgcp->mgc_client = mcip;
6297 	mgcp->mgc_next = grp->mrg_clients;
6298 	grp->mrg_clients = mgcp;
6299 
6300 }
6301 
6302 void
6303 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6304 {
6305 	mac_grp_client_t *mgcp, **pprev;
6306 
6307 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6308 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6309 		if (mgcp->mgc_client == mcip)
6310 			break;
6311 	}
6312 
6313 	ASSERT(mgcp != NULL);
6314 
6315 	*pprev = mgcp->mgc_next;
6316 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6317 }
6318 
6319 /*
6320  * mac_reserve_rx_group()
6321  *
6322  * Finds an available group and exclusively reserves it for a client.
6323  * The group is chosen to suit the flow's resource controls (bandwidth and
6324  * fanout requirements) and the address type.
6325  * If the requestor is the pimary MAC then return the group with the
6326  * largest number of rings, otherwise the default ring when available.
6327  */
6328 mac_group_t *
6329 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6330 {
6331 	mac_share_handle_t	share = mcip->mci_share;
6332 	mac_impl_t		*mip = mcip->mci_mip;
6333 	mac_group_t		*grp = NULL;
6334 	int			i;
6335 	int			err = 0;
6336 	mac_address_t		*map;
6337 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6338 	int			nrings;
6339 	int			donor_grp_rcnt;
6340 	boolean_t		need_exclgrp = B_FALSE;
6341 	int			need_rings = 0;
6342 	mac_group_t		*candidate_grp = NULL;
6343 	mac_client_impl_t	*gclient;
6344 	mac_resource_props_t	*gmrp;
6345 	mac_group_t		*donorgrp = NULL;
6346 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6347 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6348 	boolean_t		isprimary;
6349 
6350 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6351 
6352 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6353 
6354 	/*
6355 	 * Check if a group already has this mac address (case of VLANs)
6356 	 * unless we are moving this MAC client from one group to another.
6357 	 */
6358 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6359 		if (map->ma_group != NULL)
6360 			return (map->ma_group);
6361 	}
6362 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6363 		return (NULL);
6364 	/*
6365 	 * If exclusive open, return NULL which will enable the
6366 	 * caller to use the default group.
6367 	 */
6368 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6369 		return (NULL);
6370 
6371 	/* For dynamic groups default unspecified to 1 */
6372 	if (rxhw && unspec &&
6373 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6374 		mrp->mrp_nrxrings = 1;
6375 	}
6376 	/*
6377 	 * For static grouping we allow only specifying rings=0 and
6378 	 * unspecified
6379 	 */
6380 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6381 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6382 		return (NULL);
6383 	}
6384 	if (rxhw) {
6385 		/*
6386 		 * We have explicitly asked for a group (with nrxrings,
6387 		 * if unspec).
6388 		 */
6389 		if (unspec || mrp->mrp_nrxrings > 0) {
6390 			need_exclgrp = B_TRUE;
6391 			need_rings = mrp->mrp_nrxrings;
6392 		} else if (mrp->mrp_nrxrings == 0) {
6393 			/*
6394 			 * We have asked for a software group.
6395 			 */
6396 			return (NULL);
6397 		}
6398 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
6399 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6400 		/*
6401 		 * If the primary is the only active client on this
6402 		 * mip and we have not asked for any rings, we give
6403 		 * it the default group so that the primary gets to
6404 		 * use all the rings.
6405 		 */
6406 		return (NULL);
6407 	}
6408 
6409 	/* The group that can donate rings */
6410 	donorgrp = mip->mi_rx_donor_grp;
6411 
6412 	/*
6413 	 * The number of rings that the default group can donate.
6414 	 * We need to leave at least one ring.
6415 	 */
6416 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6417 
6418 	/*
6419 	 * Try to exclusively reserve a RX group.
6420 	 *
6421 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6422 	 * client), try to reserve the a non-default RX group and give
6423 	 * it all the rings from the donor group, except the default ring
6424 	 *
6425 	 * For flows requiring HW_RING (unicast flow of other clients), try
6426 	 * to reserve non-default RX group with the specified number of
6427 	 * rings, if available.
6428 	 *
6429 	 * For flows that have not asked for software or hardware ring,
6430 	 * try to reserve a non-default group with 1 ring, if available.
6431 	 */
6432 	for (i = 1; i < mip->mi_rx_group_count; i++) {
6433 		grp = &mip->mi_rx_groups[i];
6434 
6435 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6436 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6437 
6438 		/*
6439 		 * Check if this group could be a candidate group for
6440 		 * eviction if we need a group for this MAC client,
6441 		 * but there aren't any. A candidate group is one
6442 		 * that didn't ask for an exclusive group, but got
6443 		 * one and it has enough rings (combined with what
6444 		 * the donor group can donate) for the new MAC
6445 		 * client
6446 		 */
6447 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6448 			/*
6449 			 * If the primary/donor group is not the default
6450 			 * group, don't bother looking for a candidate group.
6451 			 * If we don't have enough rings we will check
6452 			 * if the primary group can be vacated.
6453 			 */
6454 			if (candidate_grp == NULL &&
6455 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6456 				ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6457 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6458 				if (gclient == NULL)
6459 					gclient = mac_get_grp_primary(grp);
6460 				ASSERT(gclient != NULL);
6461 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6462 				if (gclient->mci_share == 0 &&
6463 				    (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6464 				    (unspec ||
6465 				    (grp->mrg_cur_count + donor_grp_rcnt >=
6466 				    need_rings))) {
6467 					candidate_grp = grp;
6468 				}
6469 			}
6470 			continue;
6471 		}
6472 		/*
6473 		 * This group could already be SHARED by other multicast
6474 		 * flows on this client. In that case, the group would
6475 		 * be shared and has already been started.
6476 		 */
6477 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6478 
6479 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6480 		    (mac_start_group(grp) != 0)) {
6481 			continue;
6482 		}
6483 
6484 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6485 			break;
6486 		ASSERT(grp->mrg_cur_count == 0);
6487 
6488 		/*
6489 		 * Populate the group. Rings should be taken
6490 		 * from the donor group.
6491 		 */
6492 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6493 
6494 		/*
6495 		 * If the donor group can't donate, let's just walk and
6496 		 * see if someone can vacate a group, so that we have
6497 		 * enough rings for this, unless we already have
6498 		 * identified a candiate group..
6499 		 */
6500 		if (nrings <= donor_grp_rcnt) {
6501 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6502 			    donorgrp, grp, share, nrings);
6503 			if (err == 0) {
6504 				/*
6505 				 * For a share i_mac_group_allocate_rings gets
6506 				 * the rings from the driver, let's populate
6507 				 * the property for the client now.
6508 				 */
6509 				if (share != 0) {
6510 					mac_client_set_rings(
6511 					    (mac_client_handle_t)mcip,
6512 					    grp->mrg_cur_count, -1);
6513 				}
6514 				if (mac_is_primary_client(mcip) && !rxhw)
6515 					mip->mi_rx_donor_grp = grp;
6516 				break;
6517 			}
6518 		}
6519 
6520 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6521 		    mip->mi_name, int, grp->mrg_index, int, err);
6522 
6523 		/*
6524 		 * It's a dynamic group but the grouping operation
6525 		 * failed.
6526 		 */
6527 		mac_stop_group(grp);
6528 	}
6529 	/* We didn't find an exclusive group for this MAC client */
6530 	if (i >= mip->mi_rx_group_count) {
6531 
6532 		if (!need_exclgrp)
6533 			return (NULL);
6534 
6535 		/*
6536 		 * If we found a candidate group then we switch the
6537 		 * MAC client from the candidate_group to the default
6538 		 * group and give the group to this MAC client. If
6539 		 * we didn't find a candidate_group, check if the
6540 		 * primary is in its own group and if it can make way
6541 		 * for this MAC client.
6542 		 */
6543 		if (candidate_grp == NULL &&
6544 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6545 		    donorgrp->mrg_cur_count >= need_rings) {
6546 			candidate_grp = donorgrp;
6547 		}
6548 		if (candidate_grp != NULL) {
6549 			boolean_t	prim_grp = B_FALSE;
6550 
6551 			/*
6552 			 * Switch the MAC client from the candidate group
6553 			 * to the default group.. If this group was the
6554 			 * donor group, then after the switch we need
6555 			 * to update the donor group too.
6556 			 */
6557 			grp = candidate_grp;
6558 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6559 			if (gclient == NULL)
6560 				gclient = mac_get_grp_primary(grp);
6561 			if (grp == mip->mi_rx_donor_grp)
6562 				prim_grp = B_TRUE;
6563 			if (mac_rx_switch_group(gclient, grp,
6564 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6565 				return (NULL);
6566 			}
6567 			if (prim_grp) {
6568 				mip->mi_rx_donor_grp =
6569 				    MAC_DEFAULT_RX_GROUP(mip);
6570 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6571 			}
6572 
6573 
6574 			/*
6575 			 * Now give this group with the required rings
6576 			 * to this MAC client.
6577 			 */
6578 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6579 			if (mac_start_group(grp) != 0)
6580 				return (NULL);
6581 
6582 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6583 				return (grp);
6584 
6585 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6586 			ASSERT(grp->mrg_cur_count == 0);
6587 			ASSERT(donor_grp_rcnt >= need_rings);
6588 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6589 			    donorgrp, grp, share, need_rings);
6590 			if (err == 0) {
6591 				/*
6592 				 * For a share i_mac_group_allocate_rings gets
6593 				 * the rings from the driver, let's populate
6594 				 * the property for the client now.
6595 				 */
6596 				if (share != 0) {
6597 					mac_client_set_rings(
6598 					    (mac_client_handle_t)mcip,
6599 					    grp->mrg_cur_count, -1);
6600 				}
6601 				DTRACE_PROBE2(rx__group__reserved,
6602 				    char *, mip->mi_name, int, grp->mrg_index);
6603 				return (grp);
6604 			}
6605 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6606 			    mip->mi_name, int, grp->mrg_index, int, err);
6607 			mac_stop_group(grp);
6608 		}
6609 		return (NULL);
6610 	}
6611 	ASSERT(grp != NULL);
6612 
6613 	DTRACE_PROBE2(rx__group__reserved,
6614 	    char *, mip->mi_name, int, grp->mrg_index);
6615 	return (grp);
6616 }
6617 
6618 /*
6619  * mac_rx_release_group()
6620  *
6621  * This is called when there are no clients left for the group.
6622  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6623  * and if it is a non default group, the shares are removed and
6624  * all rings are assigned back to default group.
6625  */
6626 void
6627 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6628 {
6629 	mac_impl_t		*mip = mcip->mci_mip;
6630 	mac_ring_t		*ring;
6631 
6632 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6633 
6634 	if (mip->mi_rx_donor_grp == group)
6635 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6636 
6637 	/*
6638 	 * This is the case where there are no clients left. Any
6639 	 * SRS etc on this group have also be quiesced.
6640 	 */
6641 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6642 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6643 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6644 			/*
6645 			 * Remove the SRS associated with the HW ring.
6646 			 * As a result, polling will be disabled.
6647 			 */
6648 			ring->mr_srs = NULL;
6649 		}
6650 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6651 		    ring->mr_state == MR_INUSE);
6652 		if (ring->mr_state == MR_INUSE) {
6653 			mac_stop_ring(ring);
6654 			ring->mr_flag = 0;
6655 		}
6656 	}
6657 
6658 	/* remove group from share */
6659 	if (mcip->mci_share != 0) {
6660 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
6661 		    group->mrg_driver);
6662 	}
6663 
6664 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6665 		mac_ring_t *ring;
6666 
6667 		/*
6668 		 * Rings were dynamically allocated to group.
6669 		 * Move rings back to default group.
6670 		 */
6671 		while ((ring = group->mrg_rings) != NULL) {
6672 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6673 			    ring);
6674 		}
6675 	}
6676 	mac_stop_group(group);
6677 	/*
6678 	 * Possible improvement: See if we can assign the group just released
6679 	 * to a another client of the mip
6680 	 */
6681 }
6682 
6683 /*
6684  * When we move the primary's mac address between groups, we need to also
6685  * take all the clients sharing the same mac address along with it (VLANs)
6686  * We remove the mac address for such clients from the group after quiescing
6687  * them. When we add the mac address we restart the client. Note that
6688  * the primary's mac address is removed from the group after all the
6689  * other clients sharing the address are removed. Similarly, the primary's
6690  * mac address is added before all the other client's mac address are
6691  * added. While grp is the group where the clients reside, tgrp is
6692  * the group where the addresses have to be added.
6693  */
6694 static void
6695 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6696     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6697 {
6698 	mac_impl_t		*mip = mcip->mci_mip;
6699 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6700 	mac_client_impl_t	*gmcip;
6701 	boolean_t		prim;
6702 
6703 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6704 
6705 	/*
6706 	 * If the clients are in a non-default group, we just have to
6707 	 * walk the group's client list. If it is in the default group
6708 	 * (which will be shared by other clients as well, we need to
6709 	 * check if the unicast address matches mcip's unicast.
6710 	 */
6711 	while (mgcp != NULL) {
6712 		gmcip = mgcp->mgc_client;
6713 		if (gmcip != mcip &&
6714 		    (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6715 		    mcip->mci_unicast == gmcip->mci_unicast)) {
6716 			if (!add) {
6717 				mac_rx_client_quiesce(
6718 				    (mac_client_handle_t)gmcip);
6719 				(void) mac_remove_macaddr(mcip->mci_unicast);
6720 			} else {
6721 				(void) mac_add_macaddr(mip, tgrp, maddr, prim);
6722 				mac_rx_client_restart(
6723 				    (mac_client_handle_t)gmcip);
6724 			}
6725 		}
6726 		mgcp = mgcp->mgc_next;
6727 	}
6728 }
6729 
6730 
6731 /*
6732  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6733  * we need to take any VLANs etc. together too.
6734  */
6735 static int
6736 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6737     mac_group_t *tgrp)
6738 {
6739 	mac_impl_t		*mip = mcip->mci_mip;
6740 	uint8_t			maddr[MAXMACADDRLEN];
6741 	int			err = 0;
6742 	boolean_t		prim;
6743 	boolean_t		multiclnt = B_FALSE;
6744 
6745 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
6746 	ASSERT(mcip->mci_unicast != NULL);
6747 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6748 
6749 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6750 	if (mcip->mci_unicast->ma_nusers > 1) {
6751 		mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6752 		multiclnt = B_TRUE;
6753 	}
6754 	ASSERT(mcip->mci_unicast->ma_nusers == 1);
6755 	err = mac_remove_macaddr(mcip->mci_unicast);
6756 	if (err != 0) {
6757 		mac_rx_client_restart((mac_client_handle_t)mcip);
6758 		if (multiclnt) {
6759 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6760 			    B_TRUE);
6761 		}
6762 		return (err);
6763 	}
6764 	/*
6765 	 * Program the H/W Classifier first, if this fails we need
6766 	 * not proceed with the other stuff.
6767 	 */
6768 	if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6769 		/* Revert back the H/W Classifier */
6770 		if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6771 			/*
6772 			 * This should not fail now since it worked earlier,
6773 			 * should we panic?
6774 			 */
6775 			cmn_err(CE_WARN,
6776 			    "mac_rx_switch_group: switching %p back"
6777 			    " to group %p failed!!", (void *)mcip,
6778 			    (void *)fgrp);
6779 		}
6780 		mac_rx_client_restart((mac_client_handle_t)mcip);
6781 		if (multiclnt) {
6782 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6783 			    B_TRUE);
6784 		}
6785 		return (err);
6786 	}
6787 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6788 	mac_rx_client_restart((mac_client_handle_t)mcip);
6789 	if (multiclnt)
6790 		mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6791 	return (err);
6792 }
6793 
6794 /*
6795  * Switch the MAC client from one group to another. This means we need
6796  * to remove the MAC address from the group, remove the MAC client,
6797  * teardown the SRSs and revert the group state. Then, we add the client
6798  * to the destination group, set the SRSs, and add the MAC address to the
6799  * group.
6800  */
6801 int
6802 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6803     mac_group_t *tgrp)
6804 {
6805 	int			err;
6806 	mac_group_state_t	next_state;
6807 	mac_client_impl_t	*group_only_mcip;
6808 	mac_client_impl_t	*gmcip;
6809 	mac_impl_t		*mip = mcip->mci_mip;
6810 	mac_grp_client_t	*mgcp;
6811 
6812 	ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6813 
6814 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6815 		return (err);
6816 
6817 	/*
6818 	 * The group might be reserved, but SRSs may not be set up, e.g.
6819 	 * primary and its vlans using a reserved group.
6820 	 */
6821 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6822 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6823 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6824 	}
6825 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6826 		mgcp = fgrp->mrg_clients;
6827 		while (mgcp != NULL) {
6828 			gmcip = mgcp->mgc_client;
6829 			mgcp = mgcp->mgc_next;
6830 			mac_group_remove_client(fgrp, gmcip);
6831 			mac_group_add_client(tgrp, gmcip);
6832 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
6833 		}
6834 		mac_release_rx_group(mcip, fgrp);
6835 		ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6836 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6837 	} else {
6838 		mac_group_remove_client(fgrp, mcip);
6839 		mac_group_add_client(tgrp, mcip);
6840 		mcip->mci_flent->fe_rx_ring_group = tgrp;
6841 		/*
6842 		 * If there are other clients (VLANs) sharing this address
6843 		 * we should be here only for the primary.
6844 		 */
6845 		if (mcip->mci_unicast->ma_nusers > 1) {
6846 			/*
6847 			 * We need to move all the clients that are using
6848 			 * this h/w address.
6849 			 */
6850 			mgcp = fgrp->mrg_clients;
6851 			while (mgcp != NULL) {
6852 				gmcip = mgcp->mgc_client;
6853 				mgcp = mgcp->mgc_next;
6854 				if (mcip->mci_unicast == gmcip->mci_unicast) {
6855 					mac_group_remove_client(fgrp, gmcip);
6856 					mac_group_add_client(tgrp, gmcip);
6857 					gmcip->mci_flent->fe_rx_ring_group =
6858 					    tgrp;
6859 				}
6860 			}
6861 		}
6862 		/*
6863 		 * The default group will still take the multicast,
6864 		 * broadcast traffic etc., so it won't go to
6865 		 * MAC_GROUP_STATE_REGISTERED.
6866 		 */
6867 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6868 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6869 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6870 	}
6871 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
6872 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6873 	mac_set_group_state(tgrp, next_state);
6874 	/*
6875 	 * If the destination group is reserved, setup the SRSs etc.
6876 	 */
6877 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6878 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6879 		mac_fanout_setup(mcip, mcip->mci_flent,
6880 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6881 		    NULL);
6882 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6883 	} else {
6884 		mac_rx_switch_grp_to_sw(tgrp);
6885 	}
6886 	return (0);
6887 }
6888 
6889 /*
6890  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6891  * when a share was allocated to the client.
6892  */
6893 mac_group_t *
6894 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6895 {
6896 	mac_impl_t		*mip = mcip->mci_mip;
6897 	mac_group_t		*grp = NULL;
6898 	int			rv;
6899 	int			i;
6900 	int			err;
6901 	mac_group_t		*defgrp;
6902 	mac_share_handle_t	share = mcip->mci_share;
6903 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6904 	int			nrings;
6905 	int			defnrings;
6906 	boolean_t		need_exclgrp = B_FALSE;
6907 	int			need_rings = 0;
6908 	mac_group_t		*candidate_grp = NULL;
6909 	mac_client_impl_t	*gclient;
6910 	mac_resource_props_t	*gmrp;
6911 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
6912 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6913 	boolean_t		isprimary;
6914 
6915 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6916 	/*
6917 	 * When we come here for a VLAN on the primary (dladm create-vlan),
6918 	 * we need to pair it along with the primary (to keep it consistent
6919 	 * with the RX side). So, we check if the primary is already assigned
6920 	 * to a group and return the group if so. The other way is also
6921 	 * true, i.e. the VLAN is already created and now we are plumbing
6922 	 * the primary.
6923 	 */
6924 	if (!move && isprimary) {
6925 		for (gclient = mip->mi_clients_list; gclient != NULL;
6926 		    gclient = gclient->mci_client_next) {
6927 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6928 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
6929 				return (gclient->mci_flent->fe_tx_ring_group);
6930 			}
6931 		}
6932 	}
6933 
6934 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6935 		return (NULL);
6936 
6937 	/* For dynamic groups, default unspec to 1 */
6938 	if (txhw && unspec &&
6939 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6940 		mrp->mrp_ntxrings = 1;
6941 	}
6942 	/*
6943 	 * For static grouping we allow only specifying rings=0 and
6944 	 * unspecified
6945 	 */
6946 	if (txhw && mrp->mrp_ntxrings > 0 &&
6947 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6948 		return (NULL);
6949 	}
6950 
6951 	if (txhw) {
6952 		/*
6953 		 * We have explicitly asked for a group (with ntxrings,
6954 		 * if unspec).
6955 		 */
6956 		if (unspec || mrp->mrp_ntxrings > 0) {
6957 			need_exclgrp = B_TRUE;
6958 			need_rings = mrp->mrp_ntxrings;
6959 		} else if (mrp->mrp_ntxrings == 0) {
6960 			/*
6961 			 * We have asked for a software group.
6962 			 */
6963 			return (NULL);
6964 		}
6965 	}
6966 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6967 	/*
6968 	 * The number of rings that the default group can donate.
6969 	 * We need to leave at least one ring - the default ring - in
6970 	 * this group.
6971 	 */
6972 	defnrings = defgrp->mrg_cur_count - 1;
6973 
6974 	/*
6975 	 * Primary gets default group unless explicitly told not
6976 	 * to  (i.e. rings > 0).
6977 	 */
6978 	if (isprimary && !need_exclgrp)
6979 		return (NULL);
6980 
6981 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6982 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
6983 		grp = &mip->mi_tx_groups[i];
6984 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6985 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6986 			/*
6987 			 * Select a candidate for replacement if we don't
6988 			 * get an exclusive group. A candidate group is one
6989 			 * that didn't ask for an exclusive group, but got
6990 			 * one and it has enough rings (combined with what
6991 			 * the default group can donate) for the new MAC
6992 			 * client.
6993 			 */
6994 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6995 			    candidate_grp == NULL) {
6996 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6997 				if (gclient == NULL)
6998 					gclient = mac_get_grp_primary(grp);
6999 				gmrp = MCIP_RESOURCE_PROPS(gclient);
7000 				if (gclient->mci_share == 0 &&
7001 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7002 				    (unspec ||
7003 				    (grp->mrg_cur_count + defnrings) >=
7004 				    need_rings)) {
7005 					candidate_grp = grp;
7006 				}
7007 			}
7008 			continue;
7009 		}
7010 		/*
7011 		 * If the default can't donate let's just walk and
7012 		 * see if someone can vacate a group, so that we have
7013 		 * enough rings for this.
7014 		 */
7015 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7016 		    nrings <= defnrings) {
7017 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7018 				rv = mac_start_group(grp);
7019 				ASSERT(rv == 0);
7020 			}
7021 			break;
7022 		}
7023 	}
7024 
7025 	/* The default group */
7026 	if (i >= mip->mi_tx_group_count) {
7027 		/*
7028 		 * If we need an exclusive group and have identified a
7029 		 * candidate group we switch the MAC client from the
7030 		 * candidate group to the default group and give the
7031 		 * candidate group to this client.
7032 		 */
7033 		if (need_exclgrp && candidate_grp != NULL) {
7034 			/*
7035 			 * Switch the MAC client from the candidate group
7036 			 * to the default group.
7037 			 */
7038 			grp = candidate_grp;
7039 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
7040 			if (gclient == NULL)
7041 				gclient = mac_get_grp_primary(grp);
7042 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7043 			mac_tx_switch_group(gclient, grp, defgrp);
7044 			mac_tx_client_restart((mac_client_handle_t)gclient);
7045 
7046 			/*
7047 			 * Give the candidate group with the specified number
7048 			 * of rings to this MAC client.
7049 			 */
7050 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7051 			rv = mac_start_group(grp);
7052 			ASSERT(rv == 0);
7053 
7054 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7055 				return (grp);
7056 
7057 			ASSERT(grp->mrg_cur_count == 0);
7058 			ASSERT(defgrp->mrg_cur_count > need_rings);
7059 
7060 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7061 			    defgrp, grp, share, need_rings);
7062 			if (err == 0) {
7063 				/*
7064 				 * For a share i_mac_group_allocate_rings gets
7065 				 * the rings from the driver, let's populate
7066 				 * the property for the client now.
7067 				 */
7068 				if (share != 0) {
7069 					mac_client_set_rings(
7070 					    (mac_client_handle_t)mcip, -1,
7071 					    grp->mrg_cur_count);
7072 				}
7073 				mip->mi_tx_group_free--;
7074 				return (grp);
7075 			}
7076 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7077 			    mip->mi_name, int, grp->mrg_index, int, err);
7078 			mac_stop_group(grp);
7079 		}
7080 		return (NULL);
7081 	}
7082 	/*
7083 	 * We got an exclusive group, but it is not dynamic.
7084 	 */
7085 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7086 		mip->mi_tx_group_free--;
7087 		return (grp);
7088 	}
7089 
7090 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7091 	    share, nrings);
7092 	if (rv != 0) {
7093 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7094 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7095 		mac_stop_group(grp);
7096 		return (NULL);
7097 	}
7098 	/*
7099 	 * For a share i_mac_group_allocate_rings gets the rings from the
7100 	 * driver, let's populate the property for the client now.
7101 	 */
7102 	if (share != 0) {
7103 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7104 		    grp->mrg_cur_count);
7105 	}
7106 	mip->mi_tx_group_free--;
7107 	return (grp);
7108 }
7109 
7110 void
7111 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7112 {
7113 	mac_impl_t		*mip = mcip->mci_mip;
7114 	mac_share_handle_t	share = mcip->mci_share;
7115 	mac_ring_t		*ring;
7116 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7117 	mac_group_t		*defgrp;
7118 
7119 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7120 	if (srs != NULL) {
7121 		if (srs->srs_soft_ring_count > 0) {
7122 			for (ring = grp->mrg_rings; ring != NULL;
7123 			    ring = ring->mr_next) {
7124 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7125 				mac_tx_invoke_callbacks(mcip,
7126 				    (mac_tx_cookie_t)
7127 				    mac_tx_srs_get_soft_ring(srs, ring));
7128 				mac_tx_srs_del_ring(srs, ring);
7129 			}
7130 		} else {
7131 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7132 			srs->srs_tx.st_arg2 = NULL;
7133 			mac_srs_stat_delete(srs);
7134 		}
7135 	}
7136 	if (share != 0)
7137 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7138 
7139 	/* move the ring back to the pool */
7140 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7141 		while ((ring = grp->mrg_rings) != NULL)
7142 			(void) mac_group_mov_ring(mip, defgrp, ring);
7143 	}
7144 	mac_stop_group(grp);
7145 	mip->mi_tx_group_free++;
7146 }
7147 
7148 /*
7149  * Disassociate a MAC client from a group, i.e go through the rings in the
7150  * group and delete all the soft rings tied to them.
7151  */
7152 static void
7153 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7154 {
7155 	mac_client_impl_t	*mcip = flent->fe_mcip;
7156 	mac_soft_ring_set_t	*tx_srs;
7157 	mac_srs_tx_t		*tx;
7158 	mac_ring_t		*ring;
7159 
7160 	tx_srs = flent->fe_tx_srs;
7161 	tx = &tx_srs->srs_tx;
7162 
7163 	/* Single ring case we haven't created any soft rings */
7164 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7165 	    tx->st_mode == SRS_TX_DEFAULT) {
7166 		tx->st_arg2 = NULL;
7167 		mac_srs_stat_delete(tx_srs);
7168 	/* Fanout case, where we have to dismantle the soft rings */
7169 	} else {
7170 		for (ring = fgrp->mrg_rings; ring != NULL;
7171 		    ring = ring->mr_next) {
7172 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7173 			mac_tx_invoke_callbacks(mcip,
7174 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7175 			    ring));
7176 			mac_tx_srs_del_ring(tx_srs, ring);
7177 		}
7178 		ASSERT(tx->st_arg2 == NULL);
7179 	}
7180 }
7181 
7182 /*
7183  * Switch the MAC client from one group to another. This means we need
7184  * to remove the MAC client, teardown the SRSs and revert the group state.
7185  * Then, we add the client to the destination roup, set the SRSs etc.
7186  */
7187 void
7188 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7189     mac_group_t *tgrp)
7190 {
7191 	mac_client_impl_t	*group_only_mcip;
7192 	mac_impl_t		*mip = mcip->mci_mip;
7193 	flow_entry_t		*flent = mcip->mci_flent;
7194 	mac_group_t		*defgrp;
7195 	mac_grp_client_t	*mgcp;
7196 	mac_client_impl_t	*gmcip;
7197 	flow_entry_t		*gflent;
7198 
7199 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7200 	ASSERT(fgrp == flent->fe_tx_ring_group);
7201 
7202 	if (fgrp == defgrp) {
7203 		/*
7204 		 * If this is the primary we need to find any VLANs on
7205 		 * the primary and move them too.
7206 		 */
7207 		mac_group_remove_client(fgrp, mcip);
7208 		mac_tx_dismantle_soft_rings(fgrp, flent);
7209 		if (mcip->mci_unicast->ma_nusers > 1) {
7210 			mgcp = fgrp->mrg_clients;
7211 			while (mgcp != NULL) {
7212 				gmcip = mgcp->mgc_client;
7213 				mgcp = mgcp->mgc_next;
7214 				if (mcip->mci_unicast != gmcip->mci_unicast)
7215 					continue;
7216 				mac_tx_client_quiesce(
7217 				    (mac_client_handle_t)gmcip);
7218 
7219 				gflent = gmcip->mci_flent;
7220 				mac_group_remove_client(fgrp, gmcip);
7221 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7222 
7223 				mac_group_add_client(tgrp, gmcip);
7224 				gflent->fe_tx_ring_group = tgrp;
7225 				/* We could directly set this to SHARED */
7226 				tgrp->mrg_state = mac_group_next_state(tgrp,
7227 				    &group_only_mcip, defgrp, B_FALSE);
7228 
7229 				mac_tx_srs_group_setup(gmcip, gflent,
7230 				    SRST_LINK);
7231 				mac_fanout_setup(gmcip, gflent,
7232 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7233 				    gmcip, NULL, NULL);
7234 
7235 				mac_tx_client_restart(
7236 				    (mac_client_handle_t)gmcip);
7237 			}
7238 		}
7239 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7240 			mac_ring_t	*ring;
7241 			int		cnt;
7242 			int		ringcnt;
7243 
7244 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7245 			/*
7246 			 * Additionally, we also need to stop all
7247 			 * the rings in the default group, except
7248 			 * the default ring. The reason being
7249 			 * this group won't be released since it is
7250 			 * the default group, so the rings won't
7251 			 * be stopped otherwise.
7252 			 */
7253 			ringcnt = fgrp->mrg_cur_count;
7254 			ring = fgrp->mrg_rings;
7255 			for (cnt = 0; cnt < ringcnt; cnt++) {
7256 				if (ring->mr_state == MR_INUSE &&
7257 				    ring !=
7258 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7259 					mac_stop_ring(ring);
7260 					ring->mr_flag = 0;
7261 				}
7262 				ring = ring->mr_next;
7263 			}
7264 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7265 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7266 		} else {
7267 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7268 		}
7269 	} else {
7270 		/*
7271 		 * We could have VLANs sharing the non-default group with
7272 		 * the primary.
7273 		 */
7274 		mgcp = fgrp->mrg_clients;
7275 		while (mgcp != NULL) {
7276 			gmcip = mgcp->mgc_client;
7277 			mgcp = mgcp->mgc_next;
7278 			if (gmcip == mcip)
7279 				continue;
7280 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7281 			gflent = gmcip->mci_flent;
7282 
7283 			mac_group_remove_client(fgrp, gmcip);
7284 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7285 
7286 			mac_group_add_client(tgrp, gmcip);
7287 			gflent->fe_tx_ring_group = tgrp;
7288 			/* We could directly set this to SHARED */
7289 			tgrp->mrg_state = mac_group_next_state(tgrp,
7290 			    &group_only_mcip, defgrp, B_FALSE);
7291 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7292 			mac_fanout_setup(gmcip, gflent,
7293 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7294 			    gmcip, NULL, NULL);
7295 
7296 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7297 		}
7298 		mac_group_remove_client(fgrp, mcip);
7299 		mac_release_tx_group(mcip, fgrp);
7300 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7301 	}
7302 
7303 	/* Add it to the tgroup */
7304 	mac_group_add_client(tgrp, mcip);
7305 	flent->fe_tx_ring_group = tgrp;
7306 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7307 	    defgrp, B_FALSE);
7308 
7309 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7310 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7311 	    mac_rx_deliver, mcip, NULL, NULL);
7312 }
7313 
7314 /*
7315  * This is a 1-time control path activity initiated by the client (IP).
7316  * The mac perimeter protects against other simultaneous control activities,
7317  * for example an ioctl that attempts to change the degree of fanout and
7318  * increase or decrease the number of softrings associated with this Tx SRS.
7319  */
7320 static mac_tx_notify_cb_t *
7321 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7322     mac_tx_notify_t notify, void *arg)
7323 {
7324 	mac_cb_info_t *mcbi;
7325 	mac_tx_notify_cb_t *mtnfp;
7326 
7327 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7328 
7329 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7330 	mtnfp->mtnf_fn = notify;
7331 	mtnfp->mtnf_arg = arg;
7332 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7333 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7334 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7335 
7336 	mcbi = &mcip->mci_tx_notify_cb_info;
7337 	mutex_enter(mcbi->mcbi_lockp);
7338 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7339 	mutex_exit(mcbi->mcbi_lockp);
7340 	return (mtnfp);
7341 }
7342 
7343 static void
7344 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7345 {
7346 	mac_cb_info_t	*mcbi;
7347 	mac_cb_t	**cblist;
7348 
7349 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7350 
7351 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7352 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7353 		cmn_err(CE_WARN,
7354 		    "mac_client_tx_notify_remove: callback not "
7355 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7356 		return;
7357 	}
7358 
7359 	mcbi = &mcip->mci_tx_notify_cb_info;
7360 	cblist = &mcip->mci_tx_notify_cb_list;
7361 	mutex_enter(mcbi->mcbi_lockp);
7362 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7363 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7364 	else
7365 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7366 	mutex_exit(mcbi->mcbi_lockp);
7367 }
7368 
7369 /*
7370  * mac_client_tx_notify():
7371  * call to add and remove flow control callback routine.
7372  */
7373 mac_tx_notify_handle_t
7374 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7375     void *ptr)
7376 {
7377 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7378 	mac_tx_notify_cb_t	*mtnfp = NULL;
7379 
7380 	i_mac_perim_enter(mcip->mci_mip);
7381 
7382 	if (callb_func != NULL) {
7383 		/* Add a notify callback */
7384 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7385 	} else {
7386 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7387 	}
7388 	i_mac_perim_exit(mcip->mci_mip);
7389 
7390 	return ((mac_tx_notify_handle_t)mtnfp);
7391 }
7392 
7393 void
7394 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7395     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7396 {
7397 	mac_bridge_tx_cb = txf;
7398 	mac_bridge_rx_cb = rxf;
7399 	mac_bridge_ref_cb = reff;
7400 	mac_bridge_ls_cb = lsf;
7401 }
7402 
7403 int
7404 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7405 {
7406 	mac_impl_t *mip = (mac_impl_t *)mh;
7407 	int retv;
7408 
7409 	mutex_enter(&mip->mi_bridge_lock);
7410 	if (mip->mi_bridge_link == NULL) {
7411 		mip->mi_bridge_link = link;
7412 		retv = 0;
7413 	} else {
7414 		retv = EBUSY;
7415 	}
7416 	mutex_exit(&mip->mi_bridge_lock);
7417 	if (retv == 0) {
7418 		mac_poll_state_change(mh, B_FALSE);
7419 		mac_capab_update(mh);
7420 	}
7421 	return (retv);
7422 }
7423 
7424 /*
7425  * Disable bridging on the indicated link.
7426  */
7427 void
7428 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7429 {
7430 	mac_impl_t *mip = (mac_impl_t *)mh;
7431 
7432 	mutex_enter(&mip->mi_bridge_lock);
7433 	ASSERT(mip->mi_bridge_link == link);
7434 	mip->mi_bridge_link = NULL;
7435 	mutex_exit(&mip->mi_bridge_lock);
7436 	mac_poll_state_change(mh, B_TRUE);
7437 	mac_capab_update(mh);
7438 }
7439 
7440 void
7441 mac_no_active(mac_handle_t mh)
7442 {
7443 	mac_impl_t *mip = (mac_impl_t *)mh;
7444 
7445 	i_mac_perim_enter(mip);
7446 	mip->mi_state_flags |= MIS_NO_ACTIVE;
7447 	i_mac_perim_exit(mip);
7448 }
7449 
7450 /*
7451  * Walk the primary VLAN clients whenever the primary's rings property
7452  * changes and update the mac_resource_props_t for the VLAN's client.
7453  * We need to do this since we don't support setting these properties
7454  * on the primary's VLAN clients, but the VLAN clients have to
7455  * follow the primary w.r.t the rings property;
7456  */
7457 void
7458 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7459 {
7460 	mac_client_impl_t	*vmcip;
7461 	mac_resource_props_t	*vmrp;
7462 
7463 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
7464 	    vmcip = vmcip->mci_client_next) {
7465 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7466 		    mac_client_vid((mac_client_handle_t)vmcip) ==
7467 		    VLAN_ID_NONE) {
7468 			continue;
7469 		}
7470 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
7471 
7472 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7473 		if (mrp->mrp_mask & MRP_RX_RINGS)
7474 			vmrp->mrp_mask |= MRP_RX_RINGS;
7475 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
7476 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
7477 
7478 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7479 		if (mrp->mrp_mask & MRP_TX_RINGS)
7480 			vmrp->mrp_mask |= MRP_TX_RINGS;
7481 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
7482 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
7483 
7484 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7485 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7486 		else
7487 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7488 
7489 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7490 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7491 		else
7492 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7493 	}
7494 }
7495 
7496 /*
7497  * We are adding or removing ring(s) from a group. The source for taking
7498  * rings is the default group. The destination for giving rings back is
7499  * the default group.
7500  */
7501 int
7502 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7503     mac_group_t *defgrp)
7504 {
7505 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7506 	uint_t			modify;
7507 	int			count;
7508 	mac_ring_t		*ring;
7509 	mac_ring_t		*next;
7510 	mac_impl_t		*mip = mcip->mci_mip;
7511 	mac_ring_t		**rings;
7512 	uint_t			ringcnt;
7513 	int			i = 0;
7514 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7515 	int			start;
7516 	int			end;
7517 	mac_group_t		*tgrp;
7518 	int			j;
7519 	int			rv = 0;
7520 
7521 	/*
7522 	 * If we are asked for just a group, we give 1 ring, else
7523 	 * the specified number of rings.
7524 	 */
7525 	if (rx_group) {
7526 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7527 		    mrp->mrp_nrxrings;
7528 	} else {
7529 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7530 		    mrp->mrp_ntxrings;
7531 	}
7532 
7533 	/* don't allow modifying rings for a share for now. */
7534 	ASSERT(mcip->mci_share == 0);
7535 
7536 	if (ringcnt == group->mrg_cur_count)
7537 		return (0);
7538 
7539 	if (group->mrg_cur_count > ringcnt) {
7540 		modify = group->mrg_cur_count - ringcnt;
7541 		if (rx_group) {
7542 			if (mip->mi_rx_donor_grp == group) {
7543 				ASSERT(mac_is_primary_client(mcip));
7544 				mip->mi_rx_donor_grp = defgrp;
7545 			} else {
7546 				defgrp = mip->mi_rx_donor_grp;
7547 			}
7548 		}
7549 		ring = group->mrg_rings;
7550 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7551 		    KM_SLEEP);
7552 		j = 0;
7553 		for (count = 0; count < modify; count++) {
7554 			next = ring->mr_next;
7555 			rv = mac_group_mov_ring(mip, defgrp, ring);
7556 			if (rv != 0) {
7557 				/* cleanup on failure */
7558 				for (j = 0; j < count; j++) {
7559 					(void) mac_group_mov_ring(mip, group,
7560 					    rings[j]);
7561 				}
7562 				break;
7563 			}
7564 			rings[j++] = ring;
7565 			ring = next;
7566 		}
7567 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7568 		return (rv);
7569 	}
7570 	if (ringcnt >= MAX_RINGS_PER_GROUP)
7571 		return (EINVAL);
7572 
7573 	modify = ringcnt - group->mrg_cur_count;
7574 
7575 	if (rx_group) {
7576 		if (group != mip->mi_rx_donor_grp)
7577 			defgrp = mip->mi_rx_donor_grp;
7578 		else
7579 			/*
7580 			 * This is the donor group with all the remaining
7581 			 * rings. Default group now gets to be the donor
7582 			 */
7583 			mip->mi_rx_donor_grp = defgrp;
7584 		start = 1;
7585 		end = mip->mi_rx_group_count;
7586 	} else {
7587 		start = 0;
7588 		end = mip->mi_tx_group_count - 1;
7589 	}
7590 	/*
7591 	 * If the default doesn't have any rings, lets see if we can
7592 	 * take rings given to an h/w client that doesn't need it.
7593 	 * For now, we just see if there is  any one client that can donate
7594 	 * all the required rings.
7595 	 */
7596 	if (defgrp->mrg_cur_count < (modify + 1)) {
7597 		for (i = start; i < end; i++) {
7598 			if (rx_group) {
7599 				tgrp = &mip->mi_rx_groups[i];
7600 				if (tgrp == group || tgrp->mrg_state <
7601 				    MAC_GROUP_STATE_RESERVED) {
7602 					continue;
7603 				}
7604 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7605 				if (mcip == NULL)
7606 					mcip = mac_get_grp_primary(tgrp);
7607 				ASSERT(mcip != NULL);
7608 				mrp = MCIP_RESOURCE_PROPS(mcip);
7609 				if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7610 					continue;
7611 				if ((tgrp->mrg_cur_count +
7612 				    defgrp->mrg_cur_count) < (modify + 1)) {
7613 					continue;
7614 				}
7615 				if (mac_rx_switch_group(mcip, tgrp,
7616 				    defgrp) != 0) {
7617 					return (ENOSPC);
7618 				}
7619 			} else {
7620 				tgrp = &mip->mi_tx_groups[i];
7621 				if (tgrp == group || tgrp->mrg_state <
7622 				    MAC_GROUP_STATE_RESERVED) {
7623 					continue;
7624 				}
7625 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7626 				if (mcip == NULL)
7627 					mcip = mac_get_grp_primary(tgrp);
7628 				mrp = MCIP_RESOURCE_PROPS(mcip);
7629 				if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7630 					continue;
7631 				if ((tgrp->mrg_cur_count +
7632 				    defgrp->mrg_cur_count) < (modify + 1)) {
7633 					continue;
7634 				}
7635 				/* OK, we can switch this to s/w */
7636 				mac_tx_client_quiesce(
7637 				    (mac_client_handle_t)mcip);
7638 				mac_tx_switch_group(mcip, tgrp, defgrp);
7639 				mac_tx_client_restart(
7640 				    (mac_client_handle_t)mcip);
7641 			}
7642 		}
7643 		if (defgrp->mrg_cur_count < (modify + 1))
7644 			return (ENOSPC);
7645 	}
7646 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7647 	    group, mcip->mci_share, modify)) != 0) {
7648 		return (rv);
7649 	}
7650 	return (0);
7651 }
7652 
7653 /*
7654  * Given the poolname in mac_resource_props, find the cpupart
7655  * that is associated with this pool.  The cpupart will be used
7656  * later for finding the cpus to be bound to the networking threads.
7657  *
7658  * use_default is set B_TRUE if pools are enabled and pool_default
7659  * is returned.  This avoids a 2nd lookup to set the poolname
7660  * for pool-effective.
7661  *
7662  * returns:
7663  *
7664  *    NULL -   pools are disabled or if the 'cpus' property is set.
7665  *    cpupart of pool_default  - pools are enabled and the pool
7666  *             is not available or poolname is blank
7667  *    cpupart of named pool    - pools are enabled and the pool
7668  *             is available.
7669  */
7670 cpupart_t *
7671 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7672 {
7673 	pool_t		*pool;
7674 	cpupart_t	*cpupart;
7675 
7676 	*use_default = B_FALSE;
7677 
7678 	/* CPUs property is set */
7679 	if (mrp->mrp_mask & MRP_CPUS)
7680 		return (NULL);
7681 
7682 	ASSERT(pool_lock_held());
7683 
7684 	/* Pools are disabled, no pset */
7685 	if (pool_state == POOL_DISABLED)
7686 		return (NULL);
7687 
7688 	/* Pools property is set */
7689 	if (mrp->mrp_mask & MRP_POOL) {
7690 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7691 			/* Pool not found */
7692 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7693 			    mrp->mrp_pool);
7694 			*use_default = B_TRUE;
7695 			pool = pool_default;
7696 		}
7697 	/* Pools property is not set */
7698 	} else {
7699 		*use_default = B_TRUE;
7700 		pool = pool_default;
7701 	}
7702 
7703 	/* Find the CPU pset that corresponds to the pool */
7704 	mutex_enter(&cpu_lock);
7705 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7706 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7707 		    pool->pool_pset->pset_id);
7708 	}
7709 	mutex_exit(&cpu_lock);
7710 
7711 	return (cpupart);
7712 }
7713 
7714 void
7715 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7716     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7717 {
7718 	ASSERT(pool_lock_held());
7719 
7720 	if (cpupart != NULL) {
7721 		emrp->mrp_mask |= MRP_POOL;
7722 		if (use_default) {
7723 			(void) strcpy(emrp->mrp_pool,
7724 			    "pool_default");
7725 		} else {
7726 			ASSERT(strlen(mrp->mrp_pool) != 0);
7727 			(void) strcpy(emrp->mrp_pool,
7728 			    mrp->mrp_pool);
7729 		}
7730 	} else {
7731 		emrp->mrp_mask &= ~MRP_POOL;
7732 		bzero(emrp->mrp_pool, MAXPATHLEN);
7733 	}
7734 }
7735 
7736 struct mac_pool_arg {
7737 	char		mpa_poolname[MAXPATHLEN];
7738 	pool_event_t	mpa_what;
7739 };
7740 
7741 /*ARGSUSED*/
7742 static uint_t
7743 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7744 {
7745 	struct mac_pool_arg	*mpa = arg;
7746 	mac_impl_t		*mip = (mac_impl_t *)val;
7747 	mac_client_impl_t	*mcip;
7748 	mac_resource_props_t	*mrp, *emrp;
7749 	boolean_t		pool_update = B_FALSE;
7750 	boolean_t		pool_clear = B_FALSE;
7751 	boolean_t		use_default = B_FALSE;
7752 	cpupart_t		*cpupart = NULL;
7753 
7754 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7755 	i_mac_perim_enter(mip);
7756 	for (mcip = mip->mi_clients_list; mcip != NULL;
7757 	    mcip = mcip->mci_client_next) {
7758 		pool_update = B_FALSE;
7759 		pool_clear = B_FALSE;
7760 		use_default = B_FALSE;
7761 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7762 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
7763 
7764 		/*
7765 		 * When pools are enabled
7766 		 */
7767 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
7768 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7769 			mrp->mrp_mask |= MRP_POOL;
7770 			pool_update = B_TRUE;
7771 		}
7772 
7773 		/*
7774 		 * When pools are disabled
7775 		 */
7776 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
7777 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7778 			mrp->mrp_mask |= MRP_POOL;
7779 			pool_clear = B_TRUE;
7780 		}
7781 
7782 		/*
7783 		 * Look for links with the pool property set and the poolname
7784 		 * matching the one which is changing.
7785 		 */
7786 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7787 			/*
7788 			 * The pool associated with the link has changed.
7789 			 */
7790 			if (mpa->mpa_what == POOL_E_CHANGE) {
7791 				mrp->mrp_mask |= MRP_POOL;
7792 				pool_update = B_TRUE;
7793 			}
7794 		}
7795 
7796 		/*
7797 		 * This link is associated with pool_default and
7798 		 * pool_default has changed.
7799 		 */
7800 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
7801 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7802 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7803 			mrp->mrp_mask |= MRP_POOL;
7804 			pool_update = B_TRUE;
7805 		}
7806 
7807 		/*
7808 		 * Get new list of cpus for the pool, bind network
7809 		 * threads to new list of cpus and update resources.
7810 		 */
7811 		if (pool_update) {
7812 			if (MCIP_DATAPATH_SETUP(mcip)) {
7813 				pool_lock();
7814 				cpupart = mac_pset_find(mrp, &use_default);
7815 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7816 				    mac_rx_deliver, mcip, NULL, cpupart);
7817 				mac_set_pool_effective(use_default, cpupart,
7818 				    mrp, emrp);
7819 				pool_unlock();
7820 			}
7821 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7822 			    B_FALSE);
7823 		}
7824 
7825 		/*
7826 		 * Clear the effective pool and bind network threads
7827 		 * to any available CPU.
7828 		 */
7829 		if (pool_clear) {
7830 			if (MCIP_DATAPATH_SETUP(mcip)) {
7831 				emrp->mrp_mask &= ~MRP_POOL;
7832 				bzero(emrp->mrp_pool, MAXPATHLEN);
7833 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7834 				    mac_rx_deliver, mcip, NULL, NULL);
7835 			}
7836 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7837 			    B_FALSE);
7838 		}
7839 	}
7840 	i_mac_perim_exit(mip);
7841 	kmem_free(mrp, sizeof (*mrp));
7842 	return (MH_WALK_CONTINUE);
7843 }
7844 
7845 static void
7846 mac_pool_update(void *arg)
7847 {
7848 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7849 	kmem_free(arg, sizeof (struct mac_pool_arg));
7850 }
7851 
7852 /*
7853  * Callback function to be executed when a noteworthy pool event
7854  * takes place.
7855  */
7856 /* ARGSUSED */
7857 static void
7858 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7859 {
7860 	pool_t			*pool;
7861 	char			*poolname = NULL;
7862 	struct mac_pool_arg	*mpa;
7863 
7864 	pool_lock();
7865 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7866 
7867 	switch (what) {
7868 	case POOL_E_ENABLE:
7869 	case POOL_E_DISABLE:
7870 		break;
7871 
7872 	case POOL_E_CHANGE:
7873 		pool = pool_lookup_pool_by_id(id);
7874 		if (pool == NULL) {
7875 			kmem_free(mpa, sizeof (struct mac_pool_arg));
7876 			pool_unlock();
7877 			return;
7878 		}
7879 		pool_get_name(pool, &poolname);
7880 		(void) strlcpy(mpa->mpa_poolname, poolname,
7881 		    sizeof (mpa->mpa_poolname));
7882 		break;
7883 
7884 	default:
7885 		kmem_free(mpa, sizeof (struct mac_pool_arg));
7886 		pool_unlock();
7887 		return;
7888 	}
7889 	pool_unlock();
7890 
7891 	mpa->mpa_what = what;
7892 
7893 	mac_pool_update(mpa);
7894 }
7895 
7896 /*
7897  * Set effective rings property. This could be called from datapath_setup/
7898  * datapath_teardown or set-linkprop.
7899  * If the group is reserved we just go ahead and set the effective rings.
7900  * Additionally, for TX this could mean the default  group has lost/gained
7901  * some rings, so if the default group is reserved, we need to adjust the
7902  * effective rings for the default group clients. For RX, if we are working
7903  * with the non-default group, we just need * to reset the effective props
7904  * for the default group clients.
7905  */
7906 void
7907 mac_set_rings_effective(mac_client_impl_t *mcip)
7908 {
7909 	mac_impl_t		*mip = mcip->mci_mip;
7910 	mac_group_t		*grp;
7911 	mac_group_t		*defgrp;
7912 	flow_entry_t		*flent = mcip->mci_flent;
7913 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
7914 	mac_grp_client_t	*mgcp;
7915 	mac_client_impl_t	*gmcip;
7916 
7917 	grp = flent->fe_rx_ring_group;
7918 	if (grp != NULL) {
7919 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
7920 		/*
7921 		 * If we have reserved a group, set the effective rings
7922 		 * to the ring count in the group.
7923 		 */
7924 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7925 			emrp->mrp_mask |= MRP_RX_RINGS;
7926 			emrp->mrp_nrxrings = grp->mrg_cur_count;
7927 		}
7928 
7929 		/*
7930 		 * We go through the clients in the shared group and
7931 		 * reset the effective properties. It is possible this
7932 		 * might have already been done for some client (i.e.
7933 		 * if some client is being moved to a group that is
7934 		 * already shared). The case where the default group is
7935 		 * RESERVED is taken care of above (note in the RX side if
7936 		 * there is a non-default group, the default group is always
7937 		 * SHARED).
7938 		 */
7939 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7940 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7941 				mgcp = grp->mrg_clients;
7942 			else
7943 				mgcp = defgrp->mrg_clients;
7944 			while (mgcp != NULL) {
7945 				gmcip = mgcp->mgc_client;
7946 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7947 				if (emrp->mrp_mask & MRP_RX_RINGS) {
7948 					emrp->mrp_mask &= ~MRP_RX_RINGS;
7949 					emrp->mrp_nrxrings = 0;
7950 				}
7951 				mgcp = mgcp->mgc_next;
7952 			}
7953 		}
7954 	}
7955 
7956 	/* Now the TX side */
7957 	grp = flent->fe_tx_ring_group;
7958 	if (grp != NULL) {
7959 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
7960 
7961 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7962 			emrp->mrp_mask |= MRP_TX_RINGS;
7963 			emrp->mrp_ntxrings = grp->mrg_cur_count;
7964 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7965 			mgcp = grp->mrg_clients;
7966 			while (mgcp != NULL) {
7967 				gmcip = mgcp->mgc_client;
7968 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7969 				if (emrp->mrp_mask & MRP_TX_RINGS) {
7970 					emrp->mrp_mask &= ~MRP_TX_RINGS;
7971 					emrp->mrp_ntxrings = 0;
7972 				}
7973 				mgcp = mgcp->mgc_next;
7974 			}
7975 		}
7976 
7977 		/*
7978 		 * If the group is not the default group and the default
7979 		 * group is reserved, the ring count in the default group
7980 		 * might have changed, update it.
7981 		 */
7982 		if (grp != defgrp &&
7983 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7984 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7985 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7986 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7987 		}
7988 	}
7989 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
7990 }
7991 
7992 /*
7993  * Check if the primary is in the default group. If so, see if we
7994  * can give it a an exclusive group now that another client is
7995  * being configured. We take the primary out of the default group
7996  * because the multicast/broadcast packets for the all the clients
7997  * will land in the default ring in the default group which means
7998  * any client in the default group, even if it is the only on in
7999  * the group, will lose exclusive access to the rings, hence
8000  * polling.
8001  */
8002 mac_client_impl_t *
8003 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8004 {
8005 	mac_impl_t		*mip = mcip->mci_mip;
8006 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
8007 	flow_entry_t		*flent = mcip->mci_flent;
8008 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8009 	uint8_t			*mac_addr;
8010 	mac_group_t		*ngrp;
8011 
8012 	/*
8013 	 * Check if the primary is in the default group, if not
8014 	 * or if it is explicitly configured to be in the default
8015 	 * group OR set the RX rings property, return.
8016 	 */
8017 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8018 		return (NULL);
8019 
8020 	/*
8021 	 * If the new client needs an exclusive group and we
8022 	 * don't have another for the primary, return.
8023 	 */
8024 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
8025 		return (NULL);
8026 
8027 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
8028 	/*
8029 	 * We call this when we are setting up the datapath for
8030 	 * the first non-primary.
8031 	 */
8032 	ASSERT(mip->mi_nactiveclients == 2);
8033 	/*
8034 	 * OK, now we have the primary that needs to be relocated.
8035 	 */
8036 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8037 	if (ngrp == NULL)
8038 		return (NULL);
8039 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8040 		mac_stop_group(ngrp);
8041 		return (NULL);
8042 	}
8043 	return (mcip);
8044 }
8045 
8046 void
8047 mac_transceiver_init(mac_impl_t *mip)
8048 {
8049 	if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8050 	    &mip->mi_transceiver)) {
8051 		/*
8052 		 * The driver set a flag that we don't know about. In this case,
8053 		 * we need to warn about that case and ignore this capability.
8054 		 */
8055 		if (mip->mi_transceiver.mct_flags != 0) {
8056 			dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8057 			    "flags to invalid value: 0x%x, ignoring "
8058 			    "capability", mip->mi_transceiver.mct_flags);
8059 			bzero(&mip->mi_transceiver,
8060 			    sizeof (mac_capab_transceiver_t));
8061 		}
8062 	} else {
8063 			bzero(&mip->mi_transceiver,
8064 			    sizeof (mac_capab_transceiver_t));
8065 	}
8066 }
8067 
8068 int
8069 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8070 {
8071 	mac_impl_t *mip = (mac_impl_t *)mh;
8072 
8073 	ASSERT(MAC_PERIM_HELD(mh));
8074 
8075 	if (mip->mi_transceiver.mct_ntransceivers == 0)
8076 		return (ENOTSUP);
8077 
8078 	*countp = mip->mi_transceiver.mct_ntransceivers;
8079 	return (0);
8080 }
8081 
8082 int
8083 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8084     boolean_t *usable)
8085 {
8086 	int ret;
8087 	mac_transceiver_info_t info;
8088 
8089 	mac_impl_t *mip = (mac_impl_t *)mh;
8090 
8091 	ASSERT(MAC_PERIM_HELD(mh));
8092 
8093 	if (mip->mi_transceiver.mct_info == NULL ||
8094 	    mip->mi_transceiver.mct_ntransceivers == 0)
8095 		return (ENOTSUP);
8096 
8097 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8098 		return (EINVAL);
8099 
8100 	bzero(&info, sizeof (mac_transceiver_info_t));
8101 	if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8102 	    &info)) != 0) {
8103 		return (ret);
8104 	}
8105 
8106 	*present = info.mti_present;
8107 	*usable = info.mti_usable;
8108 	return (0);
8109 }
8110 
8111 int
8112 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8113     size_t nbytes, off_t offset, size_t *nread)
8114 {
8115 	int ret;
8116 	size_t nr;
8117 	mac_impl_t *mip = (mac_impl_t *)mh;
8118 
8119 	ASSERT(MAC_PERIM_HELD(mh));
8120 
8121 	if (mip->mi_transceiver.mct_read == NULL)
8122 		return (ENOTSUP);
8123 
8124 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8125 		return (EINVAL);
8126 
8127 	/*
8128 	 * All supported pages today are 256 bytes wide. Make sure offset +
8129 	 * nbytes never exceeds that.
8130 	 */
8131 	if (offset < 0 || offset >= 256 || nbytes > 256 ||
8132 	    offset + nbytes > 256)
8133 		return (EINVAL);
8134 
8135 	if (nread == NULL)
8136 		nread = &nr;
8137 	ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8138 	    nbytes, offset, nread);
8139 	if (ret == 0 && *nread > nbytes) {
8140 		dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8141 		    "%lu byte sized buffer, possible memory corruption",
8142 		    *nread, nbytes);
8143 	}
8144 
8145 	return (ret);
8146 }
8147 
8148 void
8149 mac_led_init(mac_impl_t *mip)
8150 {
8151 	mip->mi_led_modes = MAC_LED_DEFAULT;
8152 
8153 	if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8154 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8155 		return;
8156 	}
8157 
8158 	if (mip->mi_led.mcl_flags != 0) {
8159 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8160 		    "flags to invalid value: 0x%x, ignoring "
8161 		    "capability", mip->mi_transceiver.mct_flags);
8162 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8163 		return;
8164 	}
8165 
8166 	if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8167 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8168 		    "supported modes to invalid value: 0x%x, ignoring "
8169 		    "capability", mip->mi_transceiver.mct_flags);
8170 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8171 		return;
8172 	}
8173 }
8174 
8175 int
8176 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8177 {
8178 	mac_impl_t *mip = (mac_impl_t *)mh;
8179 
8180 	ASSERT(MAC_PERIM_HELD(mh));
8181 
8182 	if (mip->mi_led.mcl_set == NULL)
8183 		return (ENOTSUP);
8184 
8185 	*supported = mip->mi_led.mcl_modes;
8186 	*active = mip->mi_led_modes;
8187 
8188 	return (0);
8189 }
8190 
8191 /*
8192  * Update and multiplex the various LED requests. We only ever send one LED to
8193  * the underlying driver at a time. As such, we end up multiplexing all
8194  * requested states and picking one to send down to the driver.
8195  */
8196 int
8197 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8198 {
8199 	int ret;
8200 	mac_led_mode_t driver;
8201 
8202 	mac_impl_t *mip = (mac_impl_t *)mh;
8203 
8204 	ASSERT(MAC_PERIM_HELD(mh));
8205 
8206 	/*
8207 	 * If we've been passed a desired value of zero, that indicates that
8208 	 * we're basically resetting to the value of zero, which is our default
8209 	 * value.
8210 	 */
8211 	if (desired == 0)
8212 		desired = MAC_LED_DEFAULT;
8213 
8214 	if (mip->mi_led.mcl_set == NULL)
8215 		return (ENOTSUP);
8216 
8217 	/*
8218 	 * Catch both values that we don't know about and those that the driver
8219 	 * doesn't support.
8220 	 */
8221 	if ((desired & ~MAC_LED_ALL) != 0)
8222 		return (EINVAL);
8223 
8224 	if ((desired & ~mip->mi_led.mcl_modes) != 0)
8225 		return (ENOTSUP);
8226 
8227 	/*
8228 	 * If we have the same value, then there is nothing to do.
8229 	 */
8230 	if (desired == mip->mi_led_modes)
8231 		return (0);
8232 
8233 	/*
8234 	 * Based on the desired value, determine what to send to the driver. We
8235 	 * only will send a single bit to the driver at any given time. IDENT
8236 	 * takes priority over OFF or ON. We also let OFF take priority over the
8237 	 * rest.
8238 	 */
8239 	if (desired & MAC_LED_IDENT) {
8240 		driver = MAC_LED_IDENT;
8241 	} else if (desired & MAC_LED_OFF) {
8242 		driver = MAC_LED_OFF;
8243 	} else if (desired & MAC_LED_ON) {
8244 		driver = MAC_LED_ON;
8245 	} else {
8246 		driver = MAC_LED_DEFAULT;
8247 	}
8248 
8249 	if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8250 		mip->mi_led_modes = desired;
8251 	}
8252 
8253 	return (ret);
8254 }
8255