xref: /illumos-gate/usr/src/uts/common/io/mac/mac.c (revision 30165b7f6753bc3d48c52319bed7ec7b3ea36b3c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2017, Joyent, Inc.
25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26  */
27 
28 /*
29  * MAC Services Module
30  *
31  * The GLDv3 framework locking -  The MAC layer
32  * --------------------------------------------
33  *
34  * The MAC layer is central to the GLD framework and can provide the locking
35  * framework needed for itself and for the use of MAC clients. MAC end points
36  * are fairly disjoint and don't share a lot of state. So a coarse grained
37  * multi-threading scheme is to single thread all create/modify/delete or set
38  * type of control operations on a per mac end point while allowing data threads
39  * concurrently.
40  *
41  * Control operations (set) that modify a mac end point are always serialized on
42  * a per mac end point basis, We have at most 1 such thread per mac end point
43  * at a time.
44  *
45  * All other operations that are not serialized are essentially multi-threaded.
46  * For example a control operation (get) like getting statistics which may not
47  * care about reading values atomically or data threads sending or receiving
48  * data. Mostly these type of operations don't modify the control state. Any
49  * state these operations care about are protected using traditional locks.
50  *
51  * The perimeter only serializes serial operations. It does not imply there
52  * aren't any other concurrent operations. However a serialized operation may
53  * sometimes need to make sure it is the only thread. In this case it needs
54  * to use reference counting mechanisms to cv_wait until any current data
55  * threads are done.
56  *
57  * The mac layer itself does not hold any locks across a call to another layer.
58  * The perimeter is however held across a down call to the driver to make the
59  * whole control operation atomic with respect to other control operations.
60  * Also the data path and get type control operations may proceed concurrently.
61  * These operations synchronize with the single serial operation on a given mac
62  * end point using regular locks. The perimeter ensures that conflicting
63  * operations like say a mac_multicast_add and a mac_multicast_remove on the
64  * same mac end point don't interfere with each other and also ensures that the
65  * changes in the mac layer and the call to the underlying driver to say add a
66  * multicast address are done atomically without interference from a thread
67  * trying to delete the same address.
68  *
69  * For example, consider
70  * mac_multicst_add()
71  * {
72  *	mac_perimeter_enter();	serialize all control operations
73  *
74  *	grab list lock		protect against access by data threads
75  *	add to list
76  *	drop list lock
77  *
78  *	call driver's mi_multicst
79  *
80  *	mac_perimeter_exit();
81  * }
82  *
83  * To lessen the number of serialization locks and simplify the lock hierarchy,
84  * we serialize all the control operations on a per mac end point by using a
85  * single serialization lock called the perimeter. We allow recursive entry into
86  * the perimeter to facilitate use of this mechanism by both the mac client and
87  * the MAC layer itself.
88  *
89  * MAC client means an entity that does an operation on a mac handle
90  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
91  * an entity that does an operation on a mac handle obtained from a
92  * mac_register. An entity could be both client and driver but on different
93  * handles eg. aggr. and should only make the corresponding mac interface calls
94  * i.e. mac driver interface or mac client interface as appropriate for that
95  * mac handle.
96  *
97  * General rules.
98  * -------------
99  *
100  * R1. The lock order of upcall threads is natually opposite to downcall
101  * threads. Hence upcalls must not hold any locks across layers for fear of
102  * recursive lock enter and lock order violation. This applies to all layers.
103  *
104  * R2. The perimeter is just another lock. Since it is held in the down
105  * direction, acquiring the perimeter in an upcall is prohibited as it would
106  * cause a deadlock. This applies to all layers.
107  *
108  * Note that upcalls that need to grab the mac perimeter (for example
109  * mac_notify upcalls) can still achieve that by posting the request to a
110  * thread, which can then grab all the required perimeters and locks in the
111  * right global order. Note that in the above example the mac layer iself
112  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
113  * to the client must do that. Please see the aggr code for an example.
114  *
115  * MAC client rules
116  * ----------------
117  *
118  * R3. A MAC client may use the MAC provided perimeter facility to serialize
119  * control operations on a per mac end point. It does this by by acquring
120  * and holding the perimeter across a sequence of calls to the mac layer.
121  * This ensures atomicity across the entire block of mac calls. In this
122  * model the MAC client must not hold any client locks across the calls to
123  * the mac layer. This model is the preferred solution.
124  *
125  * R4. However if a MAC client has a lot of global state across all mac end
126  * points the per mac end point serialization may not be sufficient. In this
127  * case the client may choose to use global locks or use its own serialization.
128  * To avoid deadlocks, these client layer locks held across the mac calls
129  * in the control path must never be acquired by the data path for the reason
130  * mentioned below.
131  *
132  * (Assume that a control operation that holds a client lock blocks in the
133  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
134  * data thread that holds this reference count, tries to acquire the same
135  * client lock subsequently it will deadlock).
136  *
137  * A MAC client may follow either the R3 model or the R4 model, but can't
138  * mix both. In the former, the hierarchy is Perim -> client locks, but in
139  * the latter it is client locks -> Perim.
140  *
141  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
142  * context since they may block while trying to acquire the perimeter.
143  * In addition some calls may block waiting for upcall refcnts to come down to
144  * zero.
145  *
146  * R6. MAC clients must make sure that they are single threaded and all threads
147  * from the top (in particular data threads) have finished before calling
148  * mac_client_close. The MAC framework does not track the number of client
149  * threads using the mac client handle. Also mac clients must make sure
150  * they have undone all the control operations before calling mac_client_close.
151  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
152  * mac_unicast_add/mac_multicast_add.
153  *
154  * MAC framework rules
155  * -------------------
156  *
157  * R7. The mac layer itself must not hold any mac layer locks (except the mac
158  * perimeter) across a call to any other layer from the mac layer. The call to
159  * any other layer could be via mi_* entry points, classifier entry points into
160  * the driver or via upcall pointers into layers above. The mac perimeter may
161  * be acquired or held only in the down direction, for e.g. when calling into
162  * a mi_* driver enty point to provide atomicity of the operation.
163  *
164  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
165  * mac driver interfaces, the MAC layer must provide a cut out for control
166  * interfaces like upcall notifications and start them in a separate thread.
167  *
168  * R9. Note that locking order also implies a plumbing order. For example
169  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
170  * to plumb in any other order must be failed at mac_open time, otherwise it
171  * could lead to deadlocks due to inverse locking order.
172  *
173  * R10. MAC driver interfaces must not block since the driver could call them
174  * in interrupt context.
175  *
176  * R11. Walkers must preferably not hold any locks while calling walker
177  * callbacks. Instead these can operate on reference counts. In simple
178  * callbacks it may be ok to hold a lock and call the callbacks, but this is
179  * harder to maintain in the general case of arbitrary callbacks.
180  *
181  * R12. The MAC layer must protect upcall notification callbacks using reference
182  * counts rather than holding locks across the callbacks.
183  *
184  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
185  * sure that any pointers (such as mac ring pointers) it passes to the driver
186  * remain valid until mac unregister time. Currently the mac layer achieves
187  * this by using generation numbers for rings and freeing the mac rings only
188  * at unregister time.  The MAC layer must provide a layer of indirection and
189  * must not expose underlying driver rings or driver data structures/pointers
190  * directly to MAC clients.
191  *
192  * MAC driver rules
193  * ----------------
194  *
195  * R14. It would be preferable if MAC drivers don't hold any locks across any
196  * mac call. However at a minimum they must not hold any locks across data
197  * upcalls. They must also make sure that all references to mac data structures
198  * are cleaned up and that it is single threaded at mac_unregister time.
199  *
200  * R15. MAC driver interfaces don't block and so the action may be done
201  * asynchronously in a separate thread as for example handling notifications.
202  * The driver must not assume that the action is complete when the call
203  * returns.
204  *
205  * R16. Drivers must maintain a generation number per Rx ring, and pass it
206  * back to mac_rx_ring(); They are expected to increment the generation
207  * number whenever the ring's stop routine is invoked.
208  * See comments in mac_rx_ring();
209  *
210  * R17 Similarly mi_stop is another synchronization point and the driver must
211  * ensure that all upcalls are done and there won't be any future upcall
212  * before returning from mi_stop.
213  *
214  * R18. The driver may assume that all set/modify control operations via
215  * the mi_* entry points are single threaded on a per mac end point.
216  *
217  * Lock and Perimeter hierarchy scenarios
218  * ---------------------------------------
219  *
220  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
221  *
222  * ft_lock -> fe_lock [mac_flow_lookup]
223  *
224  * mi_rw_lock -> fe_lock [mac_bcast_send]
225  *
226  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
227  *
228  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
229  *
230  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
231  *
232  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
233  * client to driver. In the case of clients that explictly use the mac provided
234  * perimeter mechanism for its serialization, the hierarchy is
235  * Perimeter -> mac layer locks, since the client never holds any locks across
236  * the mac calls. In the case of clients that use its own locks the hierarchy
237  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
238  * calls mac_perim_enter/exit in this case.
239  *
240  * Subflow creation rules
241  * ---------------------------
242  * o In case of a user specified cpulist present on underlying link and flows,
243  * the flows cpulist must be a subset of the underlying link.
244  * o In case of a user specified fanout mode present on link and flow, the
245  * subflow fanout count has to be less than or equal to that of the
246  * underlying link. The cpu-bindings for the subflows will be a subset of
247  * the underlying link.
248  * o In case if no cpulist specified on both underlying link and flow, the
249  * underlying link relies on a  MAC tunable to provide out of box fanout.
250  * The subflow will have no cpulist (the subflow will be unbound)
251  * o In case if no cpulist is specified on the underlying link, a subflow can
252  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
253  * for the subflow will not adhere to restriction that they need to be subset
254  * of the underlying link.
255  * o In case where the underlying link is carrying either a user specified
256  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
257  * created unbound.
258  * o While creating unbound subflows, bandwidth mode changes attempt to
259  * figure a right fanout count. In such cases the fanout count will override
260  * the unbound cpu-binding behavior.
261  * o In addition to this, while cycling between flow and link properties, we
262  * impose a restriction that if a link property has a subflow with
263  * user-specified attributes, we will not allow changing the link property.
264  * The administrator needs to reset all the user specified properties for the
265  * subflows before attempting a link property change.
266  * Some of the above rules can be overridden by specifying additional command
267  * line options while creating or modifying link or subflow properties.
268  *
269  * Datapath
270  * --------
271  *
272  * For information on the datapath, the world of soft rings, hardware rings, how
273  * it is structured, and the path of an mblk_t between a driver and a mac
274  * client, see mac_sched.c.
275  */
276 
277 #include <sys/types.h>
278 #include <sys/conf.h>
279 #include <sys/id_space.h>
280 #include <sys/esunddi.h>
281 #include <sys/stat.h>
282 #include <sys/mkdev.h>
283 #include <sys/stream.h>
284 #include <sys/strsun.h>
285 #include <sys/strsubr.h>
286 #include <sys/dlpi.h>
287 #include <sys/list.h>
288 #include <sys/modhash.h>
289 #include <sys/mac_provider.h>
290 #include <sys/mac_client_impl.h>
291 #include <sys/mac_soft_ring.h>
292 #include <sys/mac_stat.h>
293 #include <sys/mac_impl.h>
294 #include <sys/mac.h>
295 #include <sys/dls.h>
296 #include <sys/dld.h>
297 #include <sys/modctl.h>
298 #include <sys/fs/dv_node.h>
299 #include <sys/thread.h>
300 #include <sys/proc.h>
301 #include <sys/callb.h>
302 #include <sys/cpuvar.h>
303 #include <sys/atomic.h>
304 #include <sys/bitmap.h>
305 #include <sys/sdt.h>
306 #include <sys/mac_flow.h>
307 #include <sys/ddi_intr_impl.h>
308 #include <sys/disp.h>
309 #include <sys/sdt.h>
310 #include <sys/vnic.h>
311 #include <sys/vnic_impl.h>
312 #include <sys/vlan.h>
313 #include <inet/ip.h>
314 #include <inet/ip6.h>
315 #include <sys/exacct.h>
316 #include <sys/exacct_impl.h>
317 #include <inet/nd.h>
318 #include <sys/ethernet.h>
319 #include <sys/pool.h>
320 #include <sys/pool_pset.h>
321 #include <sys/cpupart.h>
322 #include <inet/wifi_ioctl.h>
323 #include <net/wpa.h>
324 
325 #define	IMPL_HASHSZ	67	/* prime */
326 
327 kmem_cache_t		*i_mac_impl_cachep;
328 mod_hash_t		*i_mac_impl_hash;
329 krwlock_t		i_mac_impl_lock;
330 uint_t			i_mac_impl_count;
331 static kmem_cache_t	*mac_ring_cache;
332 static id_space_t	*minor_ids;
333 static uint32_t		minor_count;
334 static pool_event_cb_t	mac_pool_event_reg;
335 
336 /*
337  * Logging stuff. Perhaps mac_logging_interval could be broken into
338  * mac_flow_log_interval and mac_link_log_interval if we want to be
339  * able to schedule them differently.
340  */
341 uint_t			mac_logging_interval;
342 boolean_t		mac_flow_log_enable;
343 boolean_t		mac_link_log_enable;
344 timeout_id_t		mac_logging_timer;
345 
346 #define	MACTYPE_KMODDIR	"mac"
347 #define	MACTYPE_HASHSZ	67
348 static mod_hash_t	*i_mactype_hash;
349 /*
350  * i_mactype_lock synchronizes threads that obtain references to mactype_t
351  * structures through i_mactype_getplugin().
352  */
353 static kmutex_t		i_mactype_lock;
354 
355 /*
356  * mac_tx_percpu_cnt
357  *
358  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
359  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
360  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
361  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
362  */
363 int mac_tx_percpu_cnt;
364 int mac_tx_percpu_cnt_max = 128;
365 
366 /*
367  * Call back functions for the bridge module.  These are guaranteed to be valid
368  * when holding a reference on a link or when holding mip->mi_bridge_lock and
369  * mi_bridge_link is non-NULL.
370  */
371 mac_bridge_tx_t mac_bridge_tx_cb;
372 mac_bridge_rx_t mac_bridge_rx_cb;
373 mac_bridge_ref_t mac_bridge_ref_cb;
374 mac_bridge_ls_t mac_bridge_ls_cb;
375 
376 static int i_mac_constructor(void *, void *, int);
377 static void i_mac_destructor(void *, void *);
378 static int i_mac_ring_ctor(void *, void *, int);
379 static void i_mac_ring_dtor(void *, void *);
380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
381 void mac_tx_client_flush(mac_client_impl_t *);
382 void mac_tx_client_block(mac_client_impl_t *);
383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
384 static int mac_start_group_and_rings(mac_group_t *);
385 static void mac_stop_group_and_rings(mac_group_t *);
386 static void mac_pool_event_cb(pool_event_t, int, void *);
387 
388 typedef struct netinfo_s {
389 	list_node_t	ni_link;
390 	void		*ni_record;
391 	int		ni_size;
392 	int		ni_type;
393 } netinfo_t;
394 
395 /*
396  * Module initialization functions.
397  */
398 
399 void
400 mac_init(void)
401 {
402 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
403 	    boot_max_ncpus);
404 
405 	/* Upper bound is mac_tx_percpu_cnt_max */
406 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
407 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
408 
409 	if (mac_tx_percpu_cnt < 1) {
410 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
411 		mac_tx_percpu_cnt = 1;
412 	}
413 
414 	ASSERT(mac_tx_percpu_cnt >= 1);
415 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
416 	/*
417 	 * Make it of the form 2**N - 1 in the range
418 	 * [0 .. mac_tx_percpu_cnt_max - 1]
419 	 */
420 	mac_tx_percpu_cnt--;
421 
422 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
423 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
424 	    NULL, NULL, NULL, 0);
425 	ASSERT(i_mac_impl_cachep != NULL);
426 
427 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
428 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
429 	    NULL, NULL, 0);
430 	ASSERT(mac_ring_cache != NULL);
431 
432 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
433 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
434 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
435 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
436 
437 	mac_flow_init();
438 	mac_soft_ring_init();
439 	mac_bcast_init();
440 	mac_client_init();
441 
442 	i_mac_impl_count = 0;
443 
444 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
445 	    MACTYPE_HASHSZ,
446 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
447 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
448 
449 	/*
450 	 * Allocate an id space to manage minor numbers. The range of the
451 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
452 	 * leaves half of the 32-bit minors available for driver private use.
453 	 */
454 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
455 	    MAC_PRIVATE_MINOR-1);
456 	ASSERT(minor_ids != NULL);
457 	minor_count = 0;
458 
459 	/* Let's default to 20 seconds */
460 	mac_logging_interval = 20;
461 	mac_flow_log_enable = B_FALSE;
462 	mac_link_log_enable = B_FALSE;
463 	mac_logging_timer = 0;
464 
465 	/* Register to be notified of noteworthy pools events */
466 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
467 	mac_pool_event_reg.pec_arg = NULL;
468 	pool_event_cb_register(&mac_pool_event_reg);
469 }
470 
471 int
472 mac_fini(void)
473 {
474 
475 	if (i_mac_impl_count > 0 || minor_count > 0)
476 		return (EBUSY);
477 
478 	pool_event_cb_unregister(&mac_pool_event_reg);
479 
480 	id_space_destroy(minor_ids);
481 	mac_flow_fini();
482 
483 	mod_hash_destroy_hash(i_mac_impl_hash);
484 	rw_destroy(&i_mac_impl_lock);
485 
486 	mac_client_fini();
487 	kmem_cache_destroy(mac_ring_cache);
488 
489 	mod_hash_destroy_hash(i_mactype_hash);
490 	mac_soft_ring_finish();
491 
492 
493 	return (0);
494 }
495 
496 /*
497  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
498  * (e.g. softmac) may pass in a NULL ops argument.
499  */
500 void
501 mac_init_ops(struct dev_ops *ops, const char *name)
502 {
503 	major_t major = ddi_name_to_major((char *)name);
504 
505 	/*
506 	 * By returning on error below, we are not letting the driver continue
507 	 * in an undefined context.  The mac_register() function will faill if
508 	 * DN_GLDV3_DRIVER isn't set.
509 	 */
510 	if (major == DDI_MAJOR_T_NONE)
511 		return;
512 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
513 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
514 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 	if (ops != NULL)
516 		dld_init_ops(ops, name);
517 }
518 
519 void
520 mac_fini_ops(struct dev_ops *ops)
521 {
522 	dld_fini_ops(ops);
523 }
524 
525 /*ARGSUSED*/
526 static int
527 i_mac_constructor(void *buf, void *arg, int kmflag)
528 {
529 	mac_impl_t	*mip = buf;
530 
531 	bzero(buf, sizeof (mac_impl_t));
532 
533 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
534 
535 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
536 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
537 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
538 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
539 
540 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
541 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
542 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
543 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544 
545 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
546 
547 	return (0);
548 }
549 
550 /*ARGSUSED*/
551 static void
552 i_mac_destructor(void *buf, void *arg)
553 {
554 	mac_impl_t	*mip = buf;
555 	mac_cb_info_t	*mcbi;
556 
557 	ASSERT(mip->mi_ref == 0);
558 	ASSERT(mip->mi_active == 0);
559 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
560 	ASSERT(mip->mi_devpromisc == 0);
561 	ASSERT(mip->mi_ksp == NULL);
562 	ASSERT(mip->mi_kstat_count == 0);
563 	ASSERT(mip->mi_nclients == 0);
564 	ASSERT(mip->mi_nactiveclients == 0);
565 	ASSERT(mip->mi_single_active_client == NULL);
566 	ASSERT(mip->mi_state_flags == 0);
567 	ASSERT(mip->mi_factory_addr == NULL);
568 	ASSERT(mip->mi_factory_addr_num == 0);
569 	ASSERT(mip->mi_default_tx_ring == NULL);
570 
571 	mcbi = &mip->mi_notify_cb_info;
572 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
573 	ASSERT(mip->mi_notify_bits == 0);
574 	ASSERT(mip->mi_notify_thread == NULL);
575 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
576 	mcbi->mcbi_lockp = NULL;
577 
578 	mcbi = &mip->mi_promisc_cb_info;
579 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
580 	ASSERT(mip->mi_promisc_list == NULL);
581 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
582 	mcbi->mcbi_lockp = NULL;
583 
584 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
585 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
586 
587 	rw_destroy(&mip->mi_rw_lock);
588 
589 	mutex_destroy(&mip->mi_promisc_lock);
590 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
591 	mutex_destroy(&mip->mi_notify_lock);
592 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
593 	mutex_destroy(&mip->mi_ring_lock);
594 
595 	ASSERT(mip->mi_bridge_link == NULL);
596 }
597 
598 /* ARGSUSED */
599 static int
600 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
601 {
602 	mac_ring_t *ring = (mac_ring_t *)buf;
603 
604 	bzero(ring, sizeof (mac_ring_t));
605 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
606 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
607 	ring->mr_state = MR_FREE;
608 	return (0);
609 }
610 
611 /* ARGSUSED */
612 static void
613 i_mac_ring_dtor(void *buf, void *arg)
614 {
615 	mac_ring_t *ring = (mac_ring_t *)buf;
616 
617 	cv_destroy(&ring->mr_cv);
618 	mutex_destroy(&ring->mr_lock);
619 }
620 
621 /*
622  * Common functions to do mac callback addition and deletion. Currently this is
623  * used by promisc callbacks and notify callbacks. List addition and deletion
624  * need to take care of list walkers. List walkers in general, can't hold list
625  * locks and make upcall callbacks due to potential lock order and recursive
626  * reentry issues. Instead list walkers increment the list walker count to mark
627  * the presence of a walker thread. Addition can be carefully done to ensure
628  * that the list walker always sees either the old list or the new list.
629  * However the deletion can't be done while the walker is active, instead the
630  * deleting thread simply marks the entry as logically deleted. The last walker
631  * physically deletes and frees up the logically deleted entries when the walk
632  * is complete.
633  */
634 void
635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
636     mac_cb_t *mcb_elem)
637 {
638 	mac_cb_t	*p;
639 	mac_cb_t	**pp;
640 
641 	/* Verify it is not already in the list */
642 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
643 		if (p == mcb_elem)
644 			break;
645 	}
646 	VERIFY(p == NULL);
647 
648 	/*
649 	 * Add it to the head of the callback list. The membar ensures that
650 	 * the following list pointer manipulations reach global visibility
651 	 * in exactly the program order below.
652 	 */
653 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
654 
655 	mcb_elem->mcb_nextp = *mcb_head;
656 	membar_producer();
657 	*mcb_head = mcb_elem;
658 }
659 
660 /*
661  * Mark the entry as logically deleted. If there aren't any walkers unlink
662  * from the list. In either case return the corresponding status.
663  */
664 boolean_t
665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
666     mac_cb_t *mcb_elem)
667 {
668 	mac_cb_t	*p;
669 	mac_cb_t	**pp;
670 
671 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
672 	/*
673 	 * Search the callback list for the entry to be removed
674 	 */
675 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
676 		if (p == mcb_elem)
677 			break;
678 	}
679 	VERIFY(p != NULL);
680 
681 	/*
682 	 * If there are walkers just mark it as deleted and the last walker
683 	 * will remove from the list and free it.
684 	 */
685 	if (mcbi->mcbi_walker_cnt != 0) {
686 		p->mcb_flags |= MCB_CONDEMNED;
687 		mcbi->mcbi_del_cnt++;
688 		return (B_FALSE);
689 	}
690 
691 	ASSERT(mcbi->mcbi_del_cnt == 0);
692 	*pp = p->mcb_nextp;
693 	p->mcb_nextp = NULL;
694 	return (B_TRUE);
695 }
696 
697 /*
698  * Wait for all pending callback removals to be completed
699  */
700 void
701 mac_callback_remove_wait(mac_cb_info_t *mcbi)
702 {
703 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
704 	while (mcbi->mcbi_del_cnt != 0) {
705 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
706 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
707 	}
708 }
709 
710 /*
711  * The last mac callback walker does the cleanup. Walk the list and unlik
712  * all the logically deleted entries and construct a temporary list of
713  * removed entries. Return the list of removed entries to the caller.
714  */
715 mac_cb_t *
716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
717 {
718 	mac_cb_t	*p;
719 	mac_cb_t	**pp;
720 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
721 	int	cnt = 0;
722 
723 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
724 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
725 
726 	pp = mcb_head;
727 	while (*pp != NULL) {
728 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
729 			p = *pp;
730 			*pp = p->mcb_nextp;
731 			p->mcb_nextp = rmlist;
732 			rmlist = p;
733 			cnt++;
734 			continue;
735 		}
736 		pp = &(*pp)->mcb_nextp;
737 	}
738 
739 	ASSERT(mcbi->mcbi_del_cnt == cnt);
740 	mcbi->mcbi_del_cnt = 0;
741 	return (rmlist);
742 }
743 
744 boolean_t
745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
746 {
747 	mac_cb_t	*mcb;
748 
749 	/* Verify it is not already in the list */
750 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
751 		if (mcb == mcb_elem)
752 			return (B_TRUE);
753 	}
754 
755 	return (B_FALSE);
756 }
757 
758 boolean_t
759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
760 {
761 	boolean_t	found;
762 
763 	mutex_enter(mcbi->mcbi_lockp);
764 	found = mac_callback_lookup(mcb_headp, mcb_elem);
765 	mutex_exit(mcbi->mcbi_lockp);
766 
767 	return (found);
768 }
769 
770 /* Free the list of removed callbacks */
771 void
772 mac_callback_free(mac_cb_t *rmlist)
773 {
774 	mac_cb_t	*mcb;
775 	mac_cb_t	*mcb_next;
776 
777 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
778 		mcb_next = mcb->mcb_nextp;
779 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
780 	}
781 }
782 
783 /*
784  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
785  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
786  * is only a single shared total walker count, and an entry can't be physically
787  * unlinked if a walker is active on either list. The last walker does this
788  * cleanup of logically deleted entries.
789  */
790 void
791 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
792 {
793 	mac_cb_t	*rmlist;
794 	mac_cb_t	*mcb;
795 	mac_cb_t	*mcb_next;
796 	mac_promisc_impl_t	*mpip;
797 
798 	/*
799 	 * Construct a temporary list of deleted callbacks by walking the
800 	 * the mi_promisc_list. Then for each entry in the temporary list,
801 	 * remove it from the mci_promisc_list and free the entry.
802 	 */
803 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
804 	    &mip->mi_promisc_list);
805 
806 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
807 		mcb_next = mcb->mcb_nextp;
808 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
809 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
810 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
811 		mcb->mcb_flags = 0;
812 		mcb->mcb_nextp = NULL;
813 		kmem_cache_free(mac_promisc_impl_cache, mpip);
814 	}
815 }
816 
817 void
818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
819 {
820 	mac_cb_info_t	*mcbi;
821 
822 	/*
823 	 * Signal the notify thread even after mi_ref has become zero and
824 	 * mi_disabled is set. The synchronization with the notify thread
825 	 * happens in mac_unregister and that implies the driver must make
826 	 * sure it is single-threaded (with respect to mac calls) and that
827 	 * all pending mac calls have returned before it calls mac_unregister
828 	 */
829 	rw_enter(&i_mac_impl_lock, RW_READER);
830 	if (mip->mi_state_flags & MIS_DISABLED)
831 		goto exit;
832 
833 	/*
834 	 * Guard against incorrect notifications.  (Running a newer
835 	 * mac client against an older implementation?)
836 	 */
837 	if (type >= MAC_NNOTE)
838 		goto exit;
839 
840 	mcbi = &mip->mi_notify_cb_info;
841 	mutex_enter(mcbi->mcbi_lockp);
842 	mip->mi_notify_bits |= (1 << type);
843 	cv_broadcast(&mcbi->mcbi_cv);
844 	mutex_exit(mcbi->mcbi_lockp);
845 
846 exit:
847 	rw_exit(&i_mac_impl_lock);
848 }
849 
850 /*
851  * Mac serialization primitives. Please see the block comment at the
852  * top of the file.
853  */
854 void
855 i_mac_perim_enter(mac_impl_t *mip)
856 {
857 	mac_client_impl_t	*mcip;
858 
859 	if (mip->mi_state_flags & MIS_IS_VNIC) {
860 		/*
861 		 * This is a VNIC. Return the lower mac since that is what
862 		 * we want to serialize on.
863 		 */
864 		mcip = mac_vnic_lower(mip);
865 		mip = mcip->mci_mip;
866 	}
867 
868 	mutex_enter(&mip->mi_perim_lock);
869 	if (mip->mi_perim_owner == curthread) {
870 		mip->mi_perim_ocnt++;
871 		mutex_exit(&mip->mi_perim_lock);
872 		return;
873 	}
874 
875 	while (mip->mi_perim_owner != NULL)
876 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
877 
878 	mip->mi_perim_owner = curthread;
879 	ASSERT(mip->mi_perim_ocnt == 0);
880 	mip->mi_perim_ocnt++;
881 #ifdef DEBUG
882 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
883 	    MAC_PERIM_STACK_DEPTH);
884 #endif
885 	mutex_exit(&mip->mi_perim_lock);
886 }
887 
888 int
889 i_mac_perim_enter_nowait(mac_impl_t *mip)
890 {
891 	/*
892 	 * The vnic is a special case, since the serialization is done based
893 	 * on the lower mac. If the lower mac is busy, it does not imply the
894 	 * vnic can't be unregistered. But in the case of other drivers,
895 	 * a busy perimeter or open mac handles implies that the mac is busy
896 	 * and can't be unregistered.
897 	 */
898 	if (mip->mi_state_flags & MIS_IS_VNIC) {
899 		i_mac_perim_enter(mip);
900 		return (0);
901 	}
902 
903 	mutex_enter(&mip->mi_perim_lock);
904 	if (mip->mi_perim_owner != NULL) {
905 		mutex_exit(&mip->mi_perim_lock);
906 		return (EBUSY);
907 	}
908 	ASSERT(mip->mi_perim_ocnt == 0);
909 	mip->mi_perim_owner = curthread;
910 	mip->mi_perim_ocnt++;
911 	mutex_exit(&mip->mi_perim_lock);
912 
913 	return (0);
914 }
915 
916 void
917 i_mac_perim_exit(mac_impl_t *mip)
918 {
919 	mac_client_impl_t *mcip;
920 
921 	if (mip->mi_state_flags & MIS_IS_VNIC) {
922 		/*
923 		 * This is a VNIC. Return the lower mac since that is what
924 		 * we want to serialize on.
925 		 */
926 		mcip = mac_vnic_lower(mip);
927 		mip = mcip->mci_mip;
928 	}
929 
930 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
931 
932 	mutex_enter(&mip->mi_perim_lock);
933 	if (--mip->mi_perim_ocnt == 0) {
934 		mip->mi_perim_owner = NULL;
935 		cv_signal(&mip->mi_perim_cv);
936 	}
937 	mutex_exit(&mip->mi_perim_lock);
938 }
939 
940 /*
941  * Returns whether the current thread holds the mac perimeter. Used in making
942  * assertions.
943  */
944 boolean_t
945 mac_perim_held(mac_handle_t mh)
946 {
947 	mac_impl_t	*mip = (mac_impl_t *)mh;
948 	mac_client_impl_t *mcip;
949 
950 	if (mip->mi_state_flags & MIS_IS_VNIC) {
951 		/*
952 		 * This is a VNIC. Return the lower mac since that is what
953 		 * we want to serialize on.
954 		 */
955 		mcip = mac_vnic_lower(mip);
956 		mip = mcip->mci_mip;
957 	}
958 	return (mip->mi_perim_owner == curthread);
959 }
960 
961 /*
962  * mac client interfaces to enter the mac perimeter of a mac end point, given
963  * its mac handle, or macname or linkid.
964  */
965 void
966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
967 {
968 	mac_impl_t	*mip = (mac_impl_t *)mh;
969 
970 	i_mac_perim_enter(mip);
971 	/*
972 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
973 	 * mac_open has been done internally while entering the perimeter.
974 	 * This information is used in mac_perim_exit
975 	 */
976 	MAC_ENCODE_MPH(*mphp, mip, 0);
977 }
978 
979 int
980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
981 {
982 	int	err;
983 	mac_handle_t	mh;
984 
985 	if ((err = mac_open(name, &mh)) != 0)
986 		return (err);
987 
988 	mac_perim_enter_by_mh(mh, mphp);
989 	MAC_ENCODE_MPH(*mphp, mh, 1);
990 	return (0);
991 }
992 
993 int
994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
995 {
996 	int	err;
997 	mac_handle_t	mh;
998 
999 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1000 		return (err);
1001 
1002 	mac_perim_enter_by_mh(mh, mphp);
1003 	MAC_ENCODE_MPH(*mphp, mh, 1);
1004 	return (0);
1005 }
1006 
1007 void
1008 mac_perim_exit(mac_perim_handle_t mph)
1009 {
1010 	mac_impl_t	*mip;
1011 	boolean_t	need_close;
1012 
1013 	MAC_DECODE_MPH(mph, mip, need_close);
1014 	i_mac_perim_exit(mip);
1015 	if (need_close)
1016 		mac_close((mac_handle_t)mip);
1017 }
1018 
1019 int
1020 mac_hold(const char *macname, mac_impl_t **pmip)
1021 {
1022 	mac_impl_t	*mip;
1023 	int		err;
1024 
1025 	/*
1026 	 * Check the device name length to make sure it won't overflow our
1027 	 * buffer.
1028 	 */
1029 	if (strlen(macname) >= MAXNAMELEN)
1030 		return (EINVAL);
1031 
1032 	/*
1033 	 * Look up its entry in the global hash table.
1034 	 */
1035 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1036 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1037 	    (mod_hash_val_t *)&mip);
1038 
1039 	if (err != 0) {
1040 		rw_exit(&i_mac_impl_lock);
1041 		return (ENOENT);
1042 	}
1043 
1044 	if (mip->mi_state_flags & MIS_DISABLED) {
1045 		rw_exit(&i_mac_impl_lock);
1046 		return (ENOENT);
1047 	}
1048 
1049 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1050 		rw_exit(&i_mac_impl_lock);
1051 		return (EBUSY);
1052 	}
1053 
1054 	mip->mi_ref++;
1055 	rw_exit(&i_mac_impl_lock);
1056 
1057 	*pmip = mip;
1058 	return (0);
1059 }
1060 
1061 void
1062 mac_rele(mac_impl_t *mip)
1063 {
1064 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1065 	ASSERT(mip->mi_ref != 0);
1066 	if (--mip->mi_ref == 0) {
1067 		ASSERT(mip->mi_nactiveclients == 0 &&
1068 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1069 	}
1070 	rw_exit(&i_mac_impl_lock);
1071 }
1072 
1073 /*
1074  * Private GLDv3 function to start a MAC instance.
1075  */
1076 int
1077 mac_start(mac_handle_t mh)
1078 {
1079 	mac_impl_t	*mip = (mac_impl_t *)mh;
1080 	int		err = 0;
1081 	mac_group_t	*defgrp;
1082 
1083 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1084 	ASSERT(mip->mi_start != NULL);
1085 
1086 	/*
1087 	 * Check whether the device is already started.
1088 	 */
1089 	if (mip->mi_active++ == 0) {
1090 		mac_ring_t *ring = NULL;
1091 
1092 		/*
1093 		 * Start the device.
1094 		 */
1095 		err = mip->mi_start(mip->mi_driver);
1096 		if (err != 0) {
1097 			mip->mi_active--;
1098 			return (err);
1099 		}
1100 
1101 		/*
1102 		 * Start the default tx ring.
1103 		 */
1104 		if (mip->mi_default_tx_ring != NULL) {
1105 
1106 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1107 			if (ring->mr_state != MR_INUSE) {
1108 				err = mac_start_ring(ring);
1109 				if (err != 0) {
1110 					mip->mi_active--;
1111 					return (err);
1112 				}
1113 			}
1114 		}
1115 
1116 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1117 			/*
1118 			 * Start the default ring, since it will be needed
1119 			 * to receive broadcast and multicast traffic for
1120 			 * both primary and non-primary MAC clients.
1121 			 */
1122 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1123 			err = mac_start_group_and_rings(defgrp);
1124 			if (err != 0) {
1125 				mip->mi_active--;
1126 				if ((ring != NULL) &&
1127 				    (ring->mr_state == MR_INUSE))
1128 					mac_stop_ring(ring);
1129 				return (err);
1130 			}
1131 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1132 		}
1133 	}
1134 
1135 	return (err);
1136 }
1137 
1138 /*
1139  * Private GLDv3 function to stop a MAC instance.
1140  */
1141 void
1142 mac_stop(mac_handle_t mh)
1143 {
1144 	mac_impl_t	*mip = (mac_impl_t *)mh;
1145 	mac_group_t	*grp;
1146 
1147 	ASSERT(mip->mi_stop != NULL);
1148 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1149 
1150 	/*
1151 	 * Check whether the device is still needed.
1152 	 */
1153 	ASSERT(mip->mi_active != 0);
1154 	if (--mip->mi_active == 0) {
1155 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1156 			/*
1157 			 * There should be no more active clients since the
1158 			 * MAC is being stopped. Stop the default RX group
1159 			 * and transition it back to registered state.
1160 			 *
1161 			 * When clients are torn down, the groups
1162 			 * are release via mac_release_rx_group which
1163 			 * knows the the default group is always in
1164 			 * started mode since broadcast uses it. So
1165 			 * we can assert that their are no clients
1166 			 * (since mac_bcast_add doesn't register itself
1167 			 * as a client) and group is in SHARED state.
1168 			 */
1169 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1170 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1171 			    mip->mi_nactiveclients == 0);
1172 			mac_stop_group_and_rings(grp);
1173 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1174 		}
1175 
1176 		if (mip->mi_default_tx_ring != NULL) {
1177 			mac_ring_t *ring;
1178 
1179 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1180 			if (ring->mr_state == MR_INUSE) {
1181 				mac_stop_ring(ring);
1182 				ring->mr_flag = 0;
1183 			}
1184 		}
1185 
1186 		/*
1187 		 * Stop the device.
1188 		 */
1189 		mip->mi_stop(mip->mi_driver);
1190 	}
1191 }
1192 
1193 int
1194 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1195 {
1196 	int		err = 0;
1197 
1198 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1199 	ASSERT(mip->mi_setpromisc != NULL);
1200 
1201 	if (on) {
1202 		/*
1203 		 * Enable promiscuous mode on the device if not yet enabled.
1204 		 */
1205 		if (mip->mi_devpromisc++ == 0) {
1206 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1207 			if (err != 0) {
1208 				mip->mi_devpromisc--;
1209 				return (err);
1210 			}
1211 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1212 		}
1213 	} else {
1214 		if (mip->mi_devpromisc == 0)
1215 			return (EPROTO);
1216 
1217 		/*
1218 		 * Disable promiscuous mode on the device if this is the last
1219 		 * enabling.
1220 		 */
1221 		if (--mip->mi_devpromisc == 0) {
1222 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1223 			if (err != 0) {
1224 				mip->mi_devpromisc++;
1225 				return (err);
1226 			}
1227 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1228 		}
1229 	}
1230 
1231 	return (0);
1232 }
1233 
1234 /*
1235  * The promiscuity state can change any time. If the caller needs to take
1236  * actions that are atomic with the promiscuity state, then the caller needs
1237  * to bracket the entire sequence with mac_perim_enter/exit
1238  */
1239 boolean_t
1240 mac_promisc_get(mac_handle_t mh)
1241 {
1242 	mac_impl_t		*mip = (mac_impl_t *)mh;
1243 
1244 	/*
1245 	 * Return the current promiscuity.
1246 	 */
1247 	return (mip->mi_devpromisc != 0);
1248 }
1249 
1250 /*
1251  * Invoked at MAC instance attach time to initialize the list
1252  * of factory MAC addresses supported by a MAC instance. This function
1253  * builds a local cache in the mac_impl_t for the MAC addresses
1254  * supported by the underlying hardware. The MAC clients themselves
1255  * use the mac_addr_factory*() functions to query and reserve
1256  * factory MAC addresses.
1257  */
1258 void
1259 mac_addr_factory_init(mac_impl_t *mip)
1260 {
1261 	mac_capab_multifactaddr_t capab;
1262 	uint8_t *addr;
1263 	int i;
1264 
1265 	/*
1266 	 * First round to see how many factory MAC addresses are available.
1267 	 */
1268 	bzero(&capab, sizeof (capab));
1269 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1270 	    &capab) || (capab.mcm_naddr == 0)) {
1271 		/*
1272 		 * The MAC instance doesn't support multiple factory
1273 		 * MAC addresses, we're done here.
1274 		 */
1275 		return;
1276 	}
1277 
1278 	/*
1279 	 * Allocate the space and get all the factory addresses.
1280 	 */
1281 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1282 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1283 
1284 	mip->mi_factory_addr_num = capab.mcm_naddr;
1285 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1286 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1287 
1288 	for (i = 0; i < capab.mcm_naddr; i++) {
1289 		bcopy(addr + i * MAXMACADDRLEN,
1290 		    mip->mi_factory_addr[i].mfa_addr,
1291 		    mip->mi_type->mt_addr_length);
1292 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1293 	}
1294 
1295 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1296 }
1297 
1298 void
1299 mac_addr_factory_fini(mac_impl_t *mip)
1300 {
1301 	if (mip->mi_factory_addr == NULL) {
1302 		ASSERT(mip->mi_factory_addr_num == 0);
1303 		return;
1304 	}
1305 
1306 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1307 	    sizeof (mac_factory_addr_t));
1308 
1309 	mip->mi_factory_addr = NULL;
1310 	mip->mi_factory_addr_num = 0;
1311 }
1312 
1313 /*
1314  * Reserve a factory MAC address. If *slot is set to -1, the function
1315  * attempts to reserve any of the available factory MAC addresses and
1316  * returns the reserved slot id. If no slots are available, the function
1317  * returns ENOSPC. If *slot is not set to -1, the function reserves
1318  * the specified slot if it is available, or returns EBUSY is the slot
1319  * is already used. Returns ENOTSUP if the underlying MAC does not
1320  * support multiple factory addresses. If the slot number is not -1 but
1321  * is invalid, returns EINVAL.
1322  */
1323 int
1324 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1325 {
1326 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1327 	mac_impl_t *mip = mcip->mci_mip;
1328 	int i, ret = 0;
1329 
1330 	i_mac_perim_enter(mip);
1331 	/*
1332 	 * Protect against concurrent readers that may need a self-consistent
1333 	 * view of the factory addresses
1334 	 */
1335 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1336 
1337 	if (mip->mi_factory_addr_num == 0) {
1338 		ret = ENOTSUP;
1339 		goto bail;
1340 	}
1341 
1342 	if (*slot != -1) {
1343 		/* check the specified slot */
1344 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1345 			ret = EINVAL;
1346 			goto bail;
1347 		}
1348 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1349 			ret = EBUSY;
1350 			goto bail;
1351 		}
1352 	} else {
1353 		/* pick the next available slot */
1354 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1355 			if (!mip->mi_factory_addr[i].mfa_in_use)
1356 				break;
1357 		}
1358 
1359 		if (i == mip->mi_factory_addr_num) {
1360 			ret = ENOSPC;
1361 			goto bail;
1362 		}
1363 		*slot = i+1;
1364 	}
1365 
1366 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1367 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1368 
1369 bail:
1370 	rw_exit(&mip->mi_rw_lock);
1371 	i_mac_perim_exit(mip);
1372 	return (ret);
1373 }
1374 
1375 /*
1376  * Release the specified factory MAC address slot.
1377  */
1378 void
1379 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1380 {
1381 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1382 	mac_impl_t *mip = mcip->mci_mip;
1383 
1384 	i_mac_perim_enter(mip);
1385 	/*
1386 	 * Protect against concurrent readers that may need a self-consistent
1387 	 * view of the factory addresses
1388 	 */
1389 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1390 
1391 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1392 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1393 
1394 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1395 
1396 	rw_exit(&mip->mi_rw_lock);
1397 	i_mac_perim_exit(mip);
1398 }
1399 
1400 /*
1401  * Stores in mac_addr the value of the specified MAC address. Returns
1402  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1403  * The caller must provide a string of at least MAXNAMELEN bytes.
1404  */
1405 void
1406 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1407     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1408 {
1409 	mac_impl_t *mip = (mac_impl_t *)mh;
1410 	boolean_t in_use;
1411 
1412 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1413 
1414 	/*
1415 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1416 	 * and mi_rw_lock
1417 	 */
1418 	rw_enter(&mip->mi_rw_lock, RW_READER);
1419 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1420 	*addr_len = mip->mi_type->mt_addr_length;
1421 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1422 	if (in_use && client_name != NULL) {
1423 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1424 		    client_name, MAXNAMELEN);
1425 	}
1426 	if (in_use_arg != NULL)
1427 		*in_use_arg = in_use;
1428 	rw_exit(&mip->mi_rw_lock);
1429 }
1430 
1431 /*
1432  * Returns the number of factory MAC addresses (in addition to the
1433  * primary MAC address), 0 if the underlying MAC doesn't support
1434  * that feature.
1435  */
1436 uint_t
1437 mac_addr_factory_num(mac_handle_t mh)
1438 {
1439 	mac_impl_t *mip = (mac_impl_t *)mh;
1440 
1441 	return (mip->mi_factory_addr_num);
1442 }
1443 
1444 
1445 void
1446 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1447 {
1448 	mac_ring_t	*ring;
1449 
1450 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1451 		ring->mr_flag &= ~flag;
1452 }
1453 
1454 /*
1455  * The following mac_hwrings_xxx() functions are private mac client functions
1456  * used by the aggr driver to access and control the underlying HW Rx group
1457  * and rings. In this case, the aggr driver has exclusive control of the
1458  * underlying HW Rx group/rings, it calls the following functions to
1459  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1460  * addresses, or set up the Rx callback.
1461  */
1462 /* ARGSUSED */
1463 static void
1464 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1465     mblk_t *mp_chain, boolean_t loopback)
1466 {
1467 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1468 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1469 	mac_direct_rx_t		proc;
1470 	void			*arg1;
1471 	mac_resource_handle_t	arg2;
1472 
1473 	proc = srs_rx->sr_func;
1474 	arg1 = srs_rx->sr_arg1;
1475 	arg2 = mac_srs->srs_mrh;
1476 
1477 	proc(arg1, arg2, mp_chain, NULL);
1478 }
1479 
1480 /*
1481  * This function is called to get the list of HW rings that are reserved by
1482  * an exclusive mac client.
1483  *
1484  * Return value: the number of HW rings.
1485  */
1486 int
1487 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1488     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1489 {
1490 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1491 	flow_entry_t		*flent = mcip->mci_flent;
1492 	mac_group_t		*grp;
1493 	mac_ring_t		*ring;
1494 	int			cnt = 0;
1495 
1496 	if (rtype == MAC_RING_TYPE_RX) {
1497 		grp = flent->fe_rx_ring_group;
1498 	} else if (rtype == MAC_RING_TYPE_TX) {
1499 		grp = flent->fe_tx_ring_group;
1500 	} else {
1501 		ASSERT(B_FALSE);
1502 		return (-1);
1503 	}
1504 	/*
1505 	 * The mac client did not reserve any RX group, return directly.
1506 	 * This is probably because the underlying MAC does not support
1507 	 * any groups.
1508 	 */
1509 	if (hwgh != NULL)
1510 		*hwgh = NULL;
1511 	if (grp == NULL)
1512 		return (0);
1513 	/*
1514 	 * This group must be reserved by this mac client.
1515 	 */
1516 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1517 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1518 
1519 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1520 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1521 		hwrh[cnt] = (mac_ring_handle_t)ring;
1522 	}
1523 	if (hwgh != NULL)
1524 		*hwgh = (mac_group_handle_t)grp;
1525 
1526 	return (cnt);
1527 }
1528 
1529 /*
1530  * This function is called to get info about Tx/Rx rings.
1531  *
1532  * Return value: returns uint_t which will have various bits set
1533  * that indicates different properties of the ring.
1534  */
1535 uint_t
1536 mac_hwring_getinfo(mac_ring_handle_t rh)
1537 {
1538 	mac_ring_t *ring = (mac_ring_t *)rh;
1539 	mac_ring_info_t *info = &ring->mr_info;
1540 
1541 	return (info->mri_flags);
1542 }
1543 
1544 /*
1545  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1546  * setup the RX callback of the mac client which exclusively controls
1547  * HW ring.
1548  */
1549 void
1550 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1551     mac_ring_handle_t pseudo_rh)
1552 {
1553 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1554 	mac_ring_t		*pseudo_ring;
1555 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1556 
1557 	if (pseudo_rh != NULL) {
1558 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1559 		/* Export the ddi handles to pseudo ring */
1560 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1561 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1562 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1563 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1564 		/*
1565 		 * Save a pointer to pseudo ring in the hw ring. If
1566 		 * interrupt handle changes, the hw ring will be
1567 		 * notified of the change (see mac_ring_intr_set())
1568 		 * and the appropriate change has to be made to
1569 		 * the pseudo ring that has exported the ddi handle.
1570 		 */
1571 		hw_ring->mr_prh = pseudo_rh;
1572 	}
1573 
1574 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1575 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1576 		mac_srs->srs_mrh = prh;
1577 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1578 	}
1579 }
1580 
1581 void
1582 mac_hwring_teardown(mac_ring_handle_t hwrh)
1583 {
1584 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1585 	mac_soft_ring_set_t	*mac_srs;
1586 
1587 	if (hw_ring == NULL)
1588 		return;
1589 	hw_ring->mr_prh = NULL;
1590 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1591 		mac_srs = hw_ring->mr_srs;
1592 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1593 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1594 		mac_srs->srs_mrh = NULL;
1595 	}
1596 }
1597 
1598 int
1599 mac_hwring_disable_intr(mac_ring_handle_t rh)
1600 {
1601 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1602 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1603 
1604 	return (intr->mi_disable(intr->mi_handle));
1605 }
1606 
1607 int
1608 mac_hwring_enable_intr(mac_ring_handle_t rh)
1609 {
1610 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1611 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1612 
1613 	return (intr->mi_enable(intr->mi_handle));
1614 }
1615 
1616 int
1617 mac_hwring_start(mac_ring_handle_t rh)
1618 {
1619 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1620 
1621 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1622 	return (0);
1623 }
1624 
1625 void
1626 mac_hwring_stop(mac_ring_handle_t rh)
1627 {
1628 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1629 
1630 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1631 }
1632 
1633 mblk_t *
1634 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1635 {
1636 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1637 	mac_ring_info_t *info = &rr_ring->mr_info;
1638 
1639 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1640 }
1641 
1642 /*
1643  * Send packets through a selected tx ring.
1644  */
1645 mblk_t *
1646 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1647 {
1648 	mac_ring_t *ring = (mac_ring_t *)rh;
1649 	mac_ring_info_t *info = &ring->mr_info;
1650 
1651 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1652 	    ring->mr_state >= MR_INUSE);
1653 	return (info->mri_tx(info->mri_driver, mp));
1654 }
1655 
1656 /*
1657  * Query stats for a particular rx/tx ring
1658  */
1659 int
1660 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1661 {
1662 	mac_ring_t	*ring = (mac_ring_t *)rh;
1663 	mac_ring_info_t *info = &ring->mr_info;
1664 
1665 	return (info->mri_stat(info->mri_driver, stat, val));
1666 }
1667 
1668 /*
1669  * Private function that is only used by aggr to send packets through
1670  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1671  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1672  * access to mac_impl_t to send packets through m_tx() entry point.
1673  * It accomplishes this by calling mac_hwring_send_priv() function.
1674  */
1675 mblk_t *
1676 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1677 {
1678 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1679 	mac_impl_t *mip = mcip->mci_mip;
1680 
1681 	MAC_TX(mip, rh, mp, mcip);
1682 	return (mp);
1683 }
1684 
1685 /*
1686  * Private function that is only used by aggr to update the default transmission
1687  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1688  * temporarily be down, it may need to update the default ring that is used by
1689  * MAC such that it refers to a link that can actively be used to send traffic.
1690  * Note that this is different from the case where the port has been removed
1691  * from the group. In those cases, all of the rings will be torn down because
1692  * the ring will no longer exist. It's important to give aggr a case where the
1693  * rings can still exist such that it may be able to continue to send LACP PDUs
1694  * to potentially restore the link.
1695  *
1696  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1697  * This is to help out aggr which doesn't really know the internal state that
1698  * MAC does about the rings and can't know that it's not quite ready for use
1699  * yet.
1700  */
1701 void
1702 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1703 {
1704 	mac_impl_t *mip = (mac_impl_t *)mh;
1705 	mac_ring_t *ring = (mac_ring_t *)rh;
1706 
1707 	ASSERT(MAC_PERIM_HELD(mh));
1708 	VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1709 
1710 	if (ring->mr_state != MR_INUSE)
1711 		return;
1712 
1713 	mip->mi_default_tx_ring = rh;
1714 }
1715 
1716 int
1717 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1718 {
1719 	mac_group_t *group = (mac_group_t *)gh;
1720 
1721 	return (mac_group_addmac(group, addr));
1722 }
1723 
1724 int
1725 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1726 {
1727 	mac_group_t *group = (mac_group_t *)gh;
1728 
1729 	return (mac_group_remmac(group, addr));
1730 }
1731 
1732 /*
1733  * Set the RX group to be shared/reserved. Note that the group must be
1734  * started/stopped outside of this function.
1735  */
1736 void
1737 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1738 {
1739 	/*
1740 	 * If there is no change in the group state, just return.
1741 	 */
1742 	if (grp->mrg_state == state)
1743 		return;
1744 
1745 	switch (state) {
1746 	case MAC_GROUP_STATE_RESERVED:
1747 		/*
1748 		 * Successfully reserved the group.
1749 		 *
1750 		 * Given that there is an exclusive client controlling this
1751 		 * group, we enable the group level polling when available,
1752 		 * so that SRSs get to turn on/off individual rings they's
1753 		 * assigned to.
1754 		 */
1755 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1756 
1757 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1758 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1759 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1760 		}
1761 		break;
1762 
1763 	case MAC_GROUP_STATE_SHARED:
1764 		/*
1765 		 * Set all rings of this group to software classified.
1766 		 * If the group has an overriding interrupt, then re-enable it.
1767 		 */
1768 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1769 
1770 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1771 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1772 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1773 		}
1774 		/* The ring is not available for reservations any more */
1775 		break;
1776 
1777 	case MAC_GROUP_STATE_REGISTERED:
1778 		/* Also callable from mac_register, perim is not held */
1779 		break;
1780 
1781 	default:
1782 		ASSERT(B_FALSE);
1783 		break;
1784 	}
1785 
1786 	grp->mrg_state = state;
1787 }
1788 
1789 /*
1790  * Quiesce future hardware classified packets for the specified Rx ring
1791  */
1792 static void
1793 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1794 {
1795 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1796 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1797 
1798 	mutex_enter(&rx_ring->mr_lock);
1799 	rx_ring->mr_flag |= ring_flag;
1800 	while (rx_ring->mr_refcnt != 0)
1801 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1802 	mutex_exit(&rx_ring->mr_lock);
1803 }
1804 
1805 /*
1806  * Please see mac_tx for details about the per cpu locking scheme
1807  */
1808 static void
1809 mac_tx_lock_all(mac_client_impl_t *mcip)
1810 {
1811 	int	i;
1812 
1813 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1814 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1815 }
1816 
1817 static void
1818 mac_tx_unlock_all(mac_client_impl_t *mcip)
1819 {
1820 	int	i;
1821 
1822 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1823 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1824 }
1825 
1826 static void
1827 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1828 {
1829 	int	i;
1830 
1831 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1832 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1833 }
1834 
1835 static int
1836 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1837 {
1838 	int	i;
1839 	int	refcnt = 0;
1840 
1841 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1842 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1843 
1844 	return (refcnt);
1845 }
1846 
1847 /*
1848  * Stop future Tx packets coming down from the client in preparation for
1849  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1850  * of rings between clients
1851  */
1852 void
1853 mac_tx_client_block(mac_client_impl_t *mcip)
1854 {
1855 	mac_tx_lock_all(mcip);
1856 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1857 	while (mac_tx_sum_refcnt(mcip) != 0) {
1858 		mac_tx_unlock_allbutzero(mcip);
1859 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1860 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1861 		mac_tx_lock_all(mcip);
1862 	}
1863 	mac_tx_unlock_all(mcip);
1864 }
1865 
1866 void
1867 mac_tx_client_unblock(mac_client_impl_t *mcip)
1868 {
1869 	mac_tx_lock_all(mcip);
1870 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1871 	mac_tx_unlock_all(mcip);
1872 	/*
1873 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1874 	 * notification because the MAC client is quiesced. Send the
1875 	 * notification again.
1876 	 */
1877 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1878 }
1879 
1880 /*
1881  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1882  * quiesce is done.
1883  */
1884 static void
1885 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1886 {
1887 	mutex_enter(&srs->srs_lock);
1888 	while (!(srs->srs_state & srs_flag))
1889 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1890 	mutex_exit(&srs->srs_lock);
1891 }
1892 
1893 /*
1894  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1895  * works bottom up by cutting off packet flow from the bottommost point in the
1896  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1897  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1898  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1899  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1900  * for the SRS and MR flags. In the former case the threads pause waiting for
1901  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1902  * is also mostly similar to the above.
1903  *
1904  * 1. Stop future hardware classified packets at the lowest level in the mac.
1905  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1906  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1907  *    from increasing. Upcalls from the driver that come through hardware
1908  *    classification will be dropped in mac_rx from now on. Then we wait for
1909  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1910  *    sure there aren't any upcall threads from the driver through hardware
1911  *    classification. In the case of SRS teardown we also remove the
1912  *    classification rule in the driver.
1913  *
1914  * 2. Stop future software classified packets by marking the flow entry with
1915  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1916  *    increasing. We also remove the flow entry from the table in the latter
1917  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1918  *    that indicates there aren't any active threads using that flow entry.
1919  *
1920  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1921  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1922  *    with the SRS worker thread serving as a master controller. This
1923  *    mechansim is explained in mac_srs_worker_quiesce().
1924  *
1925  * The restart mechanism to reactivate the SRS and softrings is explained
1926  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1927  * restart sequence.
1928  */
1929 void
1930 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1931 {
1932 	flow_entry_t	*flent = srs->srs_flent;
1933 	uint_t	mr_flag, srs_done_flag;
1934 
1935 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1936 	ASSERT(!(srs->srs_type & SRST_TX));
1937 
1938 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1939 		mr_flag = MR_CONDEMNED;
1940 		srs_done_flag = SRS_CONDEMNED_DONE;
1941 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1942 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1943 	} else {
1944 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1945 		mr_flag = MR_QUIESCE;
1946 		srs_done_flag = SRS_QUIESCE_DONE;
1947 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1948 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1949 	}
1950 
1951 	if (srs->srs_ring != NULL) {
1952 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1953 	} else {
1954 		/*
1955 		 * SRS is driven by software classification. In case
1956 		 * of CONDEMNED, the top level teardown functions will
1957 		 * deal with flow removal.
1958 		 */
1959 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1960 			FLOW_MARK(flent, FE_QUIESCE);
1961 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1967 	 * SRS quiesce to complete. The SRS worker thread will wake us
1968 	 * up when the quiesce is complete
1969 	 */
1970 	mac_srs_signal(srs, srs_quiesce_flag);
1971 	mac_srs_quiesce_wait(srs, srs_done_flag);
1972 }
1973 
1974 /*
1975  * Remove an SRS.
1976  */
1977 void
1978 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1979 {
1980 	flow_entry_t *flent = srs->srs_flent;
1981 	int i;
1982 
1983 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1984 	/*
1985 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1986 	 * adjust the fe_rx_srs array entries and array count by
1987 	 * moving the last entry into the vacated spot.
1988 	 */
1989 	mutex_enter(&flent->fe_lock);
1990 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1991 		if (flent->fe_rx_srs[i] == srs)
1992 			break;
1993 	}
1994 
1995 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1996 	if (i != flent->fe_rx_srs_cnt - 1) {
1997 		flent->fe_rx_srs[i] =
1998 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1999 		i = flent->fe_rx_srs_cnt - 1;
2000 	}
2001 
2002 	flent->fe_rx_srs[i] = NULL;
2003 	flent->fe_rx_srs_cnt--;
2004 	mutex_exit(&flent->fe_lock);
2005 
2006 	mac_srs_free(srs);
2007 }
2008 
2009 static void
2010 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2011 {
2012 	mutex_enter(&srs->srs_lock);
2013 	srs->srs_state &= ~flag;
2014 	mutex_exit(&srs->srs_lock);
2015 }
2016 
2017 void
2018 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2019 {
2020 	flow_entry_t	*flent = srs->srs_flent;
2021 	mac_ring_t	*mr;
2022 
2023 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2024 	ASSERT((srs->srs_type & SRST_TX) == 0);
2025 
2026 	/*
2027 	 * This handles a change in the number of SRSs between the quiesce and
2028 	 * and restart operation of a flow.
2029 	 */
2030 	if (!SRS_QUIESCED(srs))
2031 		return;
2032 
2033 	/*
2034 	 * Signal the SRS to restart itself. Wait for the restart to complete
2035 	 * Note that we only restart the SRS if it is not marked as
2036 	 * permanently quiesced.
2037 	 */
2038 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2039 		mac_srs_signal(srs, SRS_RESTART);
2040 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2041 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2042 
2043 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2044 	}
2045 
2046 	/* Finally clear the flags to let the packets in */
2047 	mr = srs->srs_ring;
2048 	if (mr != NULL) {
2049 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2050 		/* In case the ring was stopped, safely restart it */
2051 		if (mr->mr_state != MR_INUSE)
2052 			(void) mac_start_ring(mr);
2053 	} else {
2054 		FLOW_UNMARK(flent, FE_QUIESCE);
2055 	}
2056 }
2057 
2058 /*
2059  * Temporary quiesce of a flow and associated Rx SRS.
2060  * Please see block comment above mac_rx_classify_flow_rem.
2061  */
2062 /* ARGSUSED */
2063 int
2064 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2065 {
2066 	int		i;
2067 
2068 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2069 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2070 		    SRS_QUIESCE);
2071 	}
2072 	return (0);
2073 }
2074 
2075 /*
2076  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2077  * Please see block comment above mac_rx_classify_flow_rem
2078  */
2079 /* ARGSUSED */
2080 int
2081 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2082 {
2083 	int		i;
2084 
2085 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2086 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2087 
2088 	return (0);
2089 }
2090 
2091 void
2092 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2093 {
2094 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2095 	flow_entry_t		*flent = mcip->mci_flent;
2096 	mac_impl_t		*mip = mcip->mci_mip;
2097 	mac_soft_ring_set_t	*mac_srs;
2098 	int			i;
2099 
2100 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2101 
2102 	if (flent == NULL)
2103 		return;
2104 
2105 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2106 		mac_srs = flent->fe_rx_srs[i];
2107 		mutex_enter(&mac_srs->srs_lock);
2108 		if (on)
2109 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2110 		else
2111 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2112 		mutex_exit(&mac_srs->srs_lock);
2113 	}
2114 }
2115 
2116 void
2117 mac_rx_client_quiesce(mac_client_handle_t mch)
2118 {
2119 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2120 	mac_impl_t		*mip = mcip->mci_mip;
2121 
2122 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2123 
2124 	if (MCIP_DATAPATH_SETUP(mcip)) {
2125 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2126 		    NULL);
2127 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2128 		    mac_rx_classify_flow_quiesce, NULL);
2129 	}
2130 }
2131 
2132 void
2133 mac_rx_client_restart(mac_client_handle_t mch)
2134 {
2135 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2136 	mac_impl_t		*mip = mcip->mci_mip;
2137 
2138 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2139 
2140 	if (MCIP_DATAPATH_SETUP(mcip)) {
2141 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2142 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2143 		    mac_rx_classify_flow_restart, NULL);
2144 	}
2145 }
2146 
2147 /*
2148  * This function only quiesces the Tx SRS and softring worker threads. Callers
2149  * need to make sure that there aren't any mac client threads doing current or
2150  * future transmits in the mac before calling this function.
2151  */
2152 void
2153 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2154 {
2155 	mac_client_impl_t	*mcip = srs->srs_mcip;
2156 
2157 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2158 
2159 	ASSERT(srs->srs_type & SRST_TX);
2160 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2161 	    srs_quiesce_flag == SRS_QUIESCE);
2162 
2163 	/*
2164 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2165 	 * SRS quiesce to complete. The SRS worker thread will wake us
2166 	 * up when the quiesce is complete
2167 	 */
2168 	mac_srs_signal(srs, srs_quiesce_flag);
2169 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2170 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2171 }
2172 
2173 void
2174 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2175 {
2176 	/*
2177 	 * Resizing the fanout could result in creation of new SRSs.
2178 	 * They may not necessarily be in the quiesced state in which
2179 	 * case it need be restarted
2180 	 */
2181 	if (!SRS_QUIESCED(srs))
2182 		return;
2183 
2184 	mac_srs_signal(srs, SRS_RESTART);
2185 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2186 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2187 }
2188 
2189 /*
2190  * Temporary quiesce of a flow and associated Rx SRS.
2191  * Please see block comment above mac_rx_srs_quiesce
2192  */
2193 /* ARGSUSED */
2194 int
2195 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2196 {
2197 	/*
2198 	 * The fe_tx_srs is null for a subflow on an interface that is
2199 	 * not plumbed
2200 	 */
2201 	if (flent->fe_tx_srs != NULL)
2202 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2203 	return (0);
2204 }
2205 
2206 /* ARGSUSED */
2207 int
2208 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2209 {
2210 	/*
2211 	 * The fe_tx_srs is null for a subflow on an interface that is
2212 	 * not plumbed
2213 	 */
2214 	if (flent->fe_tx_srs != NULL)
2215 		mac_tx_srs_restart(flent->fe_tx_srs);
2216 	return (0);
2217 }
2218 
2219 static void
2220 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2221 {
2222 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2223 
2224 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2225 
2226 	mac_tx_client_block(mcip);
2227 	if (MCIP_TX_SRS(mcip) != NULL) {
2228 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2229 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2230 		    mac_tx_flow_quiesce, NULL);
2231 	}
2232 }
2233 
2234 void
2235 mac_tx_client_quiesce(mac_client_handle_t mch)
2236 {
2237 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2238 }
2239 
2240 void
2241 mac_tx_client_condemn(mac_client_handle_t mch)
2242 {
2243 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2244 }
2245 
2246 void
2247 mac_tx_client_restart(mac_client_handle_t mch)
2248 {
2249 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2250 
2251 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2252 
2253 	mac_tx_client_unblock(mcip);
2254 	if (MCIP_TX_SRS(mcip) != NULL) {
2255 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2256 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2257 		    mac_tx_flow_restart, NULL);
2258 	}
2259 }
2260 
2261 void
2262 mac_tx_client_flush(mac_client_impl_t *mcip)
2263 {
2264 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2265 
2266 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2267 	mac_tx_client_restart((mac_client_handle_t)mcip);
2268 }
2269 
2270 void
2271 mac_client_quiesce(mac_client_impl_t *mcip)
2272 {
2273 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2274 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2275 }
2276 
2277 void
2278 mac_client_restart(mac_client_impl_t *mcip)
2279 {
2280 	mac_rx_client_restart((mac_client_handle_t)mcip);
2281 	mac_tx_client_restart((mac_client_handle_t)mcip);
2282 }
2283 
2284 /*
2285  * Allocate a minor number.
2286  */
2287 minor_t
2288 mac_minor_hold(boolean_t sleep)
2289 {
2290 	minor_t	minor;
2291 
2292 	/*
2293 	 * Grab a value from the arena.
2294 	 */
2295 	atomic_inc_32(&minor_count);
2296 
2297 	if (sleep)
2298 		minor = (uint_t)id_alloc(minor_ids);
2299 	else
2300 		minor = (uint_t)id_alloc_nosleep(minor_ids);
2301 
2302 	if (minor == 0) {
2303 		atomic_dec_32(&minor_count);
2304 		return (0);
2305 	}
2306 
2307 	return (minor);
2308 }
2309 
2310 /*
2311  * Release a previously allocated minor number.
2312  */
2313 void
2314 mac_minor_rele(minor_t minor)
2315 {
2316 	/*
2317 	 * Return the value to the arena.
2318 	 */
2319 	id_free(minor_ids, minor);
2320 	atomic_dec_32(&minor_count);
2321 }
2322 
2323 uint32_t
2324 mac_no_notification(mac_handle_t mh)
2325 {
2326 	mac_impl_t *mip = (mac_impl_t *)mh;
2327 
2328 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2329 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2330 }
2331 
2332 /*
2333  * Prevent any new opens of this mac in preparation for unregister
2334  */
2335 int
2336 i_mac_disable(mac_impl_t *mip)
2337 {
2338 	mac_client_impl_t	*mcip;
2339 
2340 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2341 	if (mip->mi_state_flags & MIS_DISABLED) {
2342 		/* Already disabled, return success */
2343 		rw_exit(&i_mac_impl_lock);
2344 		return (0);
2345 	}
2346 	/*
2347 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2348 	 * If so return failure. If all the other checks below pass, then
2349 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2350 	 * any new VLAN's from being created or new mac client opens of this
2351 	 * mac end point.
2352 	 */
2353 	if (mip->mi_ref > 0) {
2354 		rw_exit(&i_mac_impl_lock);
2355 		return (EBUSY);
2356 	}
2357 
2358 	/*
2359 	 * mac clients must delete all multicast groups they join before
2360 	 * closing. bcast groups are reference counted, the last client
2361 	 * to delete the group will wait till the group is physically
2362 	 * deleted. Since all clients have closed this mac end point
2363 	 * mi_bcast_ngrps must be zero at this point
2364 	 */
2365 	ASSERT(mip->mi_bcast_ngrps == 0);
2366 
2367 	/*
2368 	 * Don't let go of this if it has some flows.
2369 	 * All other code guarantees no flows are added to a disabled
2370 	 * mac, therefore it is sufficient to check for the flow table
2371 	 * only here.
2372 	 */
2373 	mcip = mac_primary_client_handle(mip);
2374 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2375 		rw_exit(&i_mac_impl_lock);
2376 		return (ENOTEMPTY);
2377 	}
2378 
2379 	mip->mi_state_flags |= MIS_DISABLED;
2380 	rw_exit(&i_mac_impl_lock);
2381 	return (0);
2382 }
2383 
2384 int
2385 mac_disable_nowait(mac_handle_t mh)
2386 {
2387 	mac_impl_t	*mip = (mac_impl_t *)mh;
2388 	int err;
2389 
2390 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2391 		return (err);
2392 	err = i_mac_disable(mip);
2393 	i_mac_perim_exit(mip);
2394 	return (err);
2395 }
2396 
2397 int
2398 mac_disable(mac_handle_t mh)
2399 {
2400 	mac_impl_t	*mip = (mac_impl_t *)mh;
2401 	int err;
2402 
2403 	i_mac_perim_enter(mip);
2404 	err = i_mac_disable(mip);
2405 	i_mac_perim_exit(mip);
2406 
2407 	/*
2408 	 * Clean up notification thread and wait for it to exit.
2409 	 */
2410 	if (err == 0)
2411 		i_mac_notify_exit(mip);
2412 
2413 	return (err);
2414 }
2415 
2416 /*
2417  * Called when the MAC instance has a non empty flow table, to de-multiplex
2418  * incoming packets to the right flow.
2419  * The MAC's rw lock is assumed held as a READER.
2420  */
2421 /* ARGSUSED */
2422 static mblk_t *
2423 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2424 {
2425 	flow_entry_t	*flent = NULL;
2426 	uint_t		flags = FLOW_INBOUND;
2427 	int		err;
2428 
2429 	/*
2430 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2431 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2432 	 * passed to the non-VLAN aggregation flows.
2433 	 *
2434 	 * Note that there is possibly a race between this and
2435 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2436 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2437 	 * VLAN packets will be then filtered out by the mac module.
2438 	 */
2439 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2440 		flags |= FLOW_IGNORE_VLAN;
2441 
2442 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2443 	if (err != 0) {
2444 		/* no registered receive function */
2445 		return (mp);
2446 	} else {
2447 		mac_client_impl_t	*mcip;
2448 
2449 		/*
2450 		 * This flent might just be an additional one on the MAC client,
2451 		 * i.e. for classification purposes (different fdesc), however
2452 		 * the resources, SRS et. al., are in the mci_flent, so if
2453 		 * this isn't the mci_flent, we need to get it.
2454 		 */
2455 		if ((mcip = flent->fe_mcip) != NULL &&
2456 		    mcip->mci_flent != flent) {
2457 			FLOW_REFRELE(flent);
2458 			flent = mcip->mci_flent;
2459 			FLOW_TRY_REFHOLD(flent, err);
2460 			if (err != 0)
2461 				return (mp);
2462 		}
2463 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2464 		    B_FALSE);
2465 		FLOW_REFRELE(flent);
2466 	}
2467 	return (NULL);
2468 }
2469 
2470 mblk_t *
2471 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2472 {
2473 	mac_impl_t	*mip = (mac_impl_t *)mh;
2474 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2475 
2476 	/*
2477 	 * We walk the chain and attempt to classify each packet.
2478 	 * The packets that couldn't be classified will be returned
2479 	 * back to the caller.
2480 	 */
2481 	bp = mp_chain;
2482 	bpp = &list;
2483 	while (bp != NULL) {
2484 		bp1 = bp;
2485 		bp = bp->b_next;
2486 		bp1->b_next = NULL;
2487 
2488 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2489 			*bpp = bp1;
2490 			bpp = &bp1->b_next;
2491 		}
2492 	}
2493 	return (list);
2494 }
2495 
2496 static int
2497 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2498 {
2499 	mac_ring_handle_t ring = arg;
2500 
2501 	if (flent->fe_tx_srs)
2502 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2503 	return (0);
2504 }
2505 
2506 void
2507 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2508 {
2509 	mac_client_impl_t	*cclient;
2510 	mac_soft_ring_set_t	*mac_srs;
2511 
2512 	/*
2513 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2514 	 * If there are any clients mi_disabled must be B_FALSE and can't
2515 	 * get set since there are clients. If there aren't any clients we
2516 	 * don't do anything. In any case the mip has to be valid. The driver
2517 	 * must make sure that it goes single threaded (with respect to mac
2518 	 * calls) and wait for all pending mac calls to finish before calling
2519 	 * mac_unregister.
2520 	 */
2521 	rw_enter(&i_mac_impl_lock, RW_READER);
2522 	if (mip->mi_state_flags & MIS_DISABLED) {
2523 		rw_exit(&i_mac_impl_lock);
2524 		return;
2525 	}
2526 
2527 	/*
2528 	 * Get MAC tx srs from walking mac_client_handle list.
2529 	 */
2530 	rw_enter(&mip->mi_rw_lock, RW_READER);
2531 	for (cclient = mip->mi_clients_list; cclient != NULL;
2532 	    cclient = cclient->mci_client_next) {
2533 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2534 			mac_tx_srs_wakeup(mac_srs, ring);
2535 		} else {
2536 			/*
2537 			 * Aggr opens underlying ports in exclusive mode
2538 			 * and registers flow control callbacks using
2539 			 * mac_tx_client_notify(). When opened in
2540 			 * exclusive mode, Tx SRS won't be created
2541 			 * during mac_unicast_add().
2542 			 */
2543 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2544 				mac_tx_invoke_callbacks(cclient,
2545 				    (mac_tx_cookie_t)ring);
2546 			}
2547 		}
2548 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2549 		    mac_tx_flow_srs_wakeup, ring);
2550 	}
2551 	rw_exit(&mip->mi_rw_lock);
2552 	rw_exit(&i_mac_impl_lock);
2553 }
2554 
2555 /* ARGSUSED */
2556 void
2557 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2558     boolean_t add)
2559 {
2560 	mac_impl_t *mip = (mac_impl_t *)mh;
2561 
2562 	i_mac_perim_enter((mac_impl_t *)mh);
2563 	/*
2564 	 * If no specific refresh function was given then default to the
2565 	 * driver's m_multicst entry point.
2566 	 */
2567 	if (refresh == NULL) {
2568 		refresh = mip->mi_multicst;
2569 		arg = mip->mi_driver;
2570 	}
2571 
2572 	mac_bcast_refresh(mip, refresh, arg, add);
2573 	i_mac_perim_exit((mac_impl_t *)mh);
2574 }
2575 
2576 void
2577 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2578 {
2579 	mac_impl_t	*mip = (mac_impl_t *)mh;
2580 
2581 	/*
2582 	 * If no specific refresh function was given then default to the
2583 	 * driver's m_promisc entry point.
2584 	 */
2585 	if (refresh == NULL) {
2586 		refresh = mip->mi_setpromisc;
2587 		arg = mip->mi_driver;
2588 	}
2589 	ASSERT(refresh != NULL);
2590 
2591 	/*
2592 	 * Call the refresh function with the current promiscuity.
2593 	 */
2594 	refresh(arg, (mip->mi_devpromisc != 0));
2595 }
2596 
2597 /*
2598  * The mac client requests that the mac not to change its margin size to
2599  * be less than the specified value.  If "current" is B_TRUE, then the client
2600  * requests the mac not to change its margin size to be smaller than the
2601  * current size. Further, return the current margin size value in this case.
2602  *
2603  * We keep every requested size in an ordered list from largest to smallest.
2604  */
2605 int
2606 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2607 {
2608 	mac_impl_t		*mip = (mac_impl_t *)mh;
2609 	mac_margin_req_t	**pp, *p;
2610 	int			err = 0;
2611 
2612 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2613 	if (current)
2614 		*marginp = mip->mi_margin;
2615 
2616 	/*
2617 	 * If the current margin value cannot satisfy the margin requested,
2618 	 * return ENOTSUP directly.
2619 	 */
2620 	if (*marginp > mip->mi_margin) {
2621 		err = ENOTSUP;
2622 		goto done;
2623 	}
2624 
2625 	/*
2626 	 * Check whether the given margin is already in the list. If so,
2627 	 * bump the reference count.
2628 	 */
2629 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2630 		if (p->mmr_margin == *marginp) {
2631 			/*
2632 			 * The margin requested is already in the list,
2633 			 * so just bump the reference count.
2634 			 */
2635 			p->mmr_ref++;
2636 			goto done;
2637 		}
2638 		if (p->mmr_margin < *marginp)
2639 			break;
2640 	}
2641 
2642 
2643 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2644 	p->mmr_margin = *marginp;
2645 	p->mmr_ref++;
2646 	p->mmr_nextp = *pp;
2647 	*pp = p;
2648 
2649 done:
2650 	rw_exit(&(mip->mi_rw_lock));
2651 	return (err);
2652 }
2653 
2654 /*
2655  * The mac client requests to cancel its previous mac_margin_add() request.
2656  * We remove the requested margin size from the list.
2657  */
2658 int
2659 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2660 {
2661 	mac_impl_t		*mip = (mac_impl_t *)mh;
2662 	mac_margin_req_t	**pp, *p;
2663 	int			err = 0;
2664 
2665 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2666 	/*
2667 	 * Find the entry in the list for the given margin.
2668 	 */
2669 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2670 		if (p->mmr_margin == margin) {
2671 			if (--p->mmr_ref == 0)
2672 				break;
2673 
2674 			/*
2675 			 * There is still a reference to this address so
2676 			 * there's nothing more to do.
2677 			 */
2678 			goto done;
2679 		}
2680 	}
2681 
2682 	/*
2683 	 * We did not find an entry for the given margin.
2684 	 */
2685 	if (p == NULL) {
2686 		err = ENOENT;
2687 		goto done;
2688 	}
2689 
2690 	ASSERT(p->mmr_ref == 0);
2691 
2692 	/*
2693 	 * Remove it from the list.
2694 	 */
2695 	*pp = p->mmr_nextp;
2696 	kmem_free(p, sizeof (mac_margin_req_t));
2697 done:
2698 	rw_exit(&(mip->mi_rw_lock));
2699 	return (err);
2700 }
2701 
2702 boolean_t
2703 mac_margin_update(mac_handle_t mh, uint32_t margin)
2704 {
2705 	mac_impl_t	*mip = (mac_impl_t *)mh;
2706 	uint32_t	margin_needed = 0;
2707 
2708 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2709 
2710 	if (mip->mi_mmrp != NULL)
2711 		margin_needed = mip->mi_mmrp->mmr_margin;
2712 
2713 	if (margin_needed <= margin)
2714 		mip->mi_margin = margin;
2715 
2716 	rw_exit(&(mip->mi_rw_lock));
2717 
2718 	if (margin_needed <= margin)
2719 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2720 
2721 	return (margin_needed <= margin);
2722 }
2723 
2724 /*
2725  * MAC clients use this interface to request that a MAC device not change its
2726  * MTU below the specified amount. At this time, that amount must be within the
2727  * range of the device's current minimum and the device's current maximum. eg. a
2728  * client cannot request a 3000 byte MTU when the device's MTU is currently
2729  * 2000.
2730  *
2731  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2732  * current underlying mac's maximum for this mac client and return it in mtup.
2733  */
2734 int
2735 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2736 {
2737 	mac_impl_t		*mip = (mac_impl_t *)mh;
2738 	mac_mtu_req_t		*prev, *cur;
2739 	mac_propval_range_t	mpr;
2740 	int			err;
2741 
2742 	i_mac_perim_enter(mip);
2743 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2744 
2745 	if (current == B_TRUE)
2746 		*mtup = mip->mi_sdu_max;
2747 	mpr.mpr_count = 1;
2748 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2749 	if (err != 0) {
2750 		rw_exit(&mip->mi_rw_lock);
2751 		i_mac_perim_exit(mip);
2752 		return (err);
2753 	}
2754 
2755 	if (*mtup > mip->mi_sdu_max ||
2756 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2757 		rw_exit(&mip->mi_rw_lock);
2758 		i_mac_perim_exit(mip);
2759 		return (ENOTSUP);
2760 	}
2761 
2762 	prev = NULL;
2763 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2764 		if (*mtup == cur->mtr_mtu) {
2765 			cur->mtr_ref++;
2766 			rw_exit(&mip->mi_rw_lock);
2767 			i_mac_perim_exit(mip);
2768 			return (0);
2769 		}
2770 
2771 		if (*mtup > cur->mtr_mtu)
2772 			break;
2773 
2774 		prev = cur;
2775 	}
2776 
2777 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2778 	cur->mtr_mtu = *mtup;
2779 	cur->mtr_ref = 1;
2780 	if (prev != NULL) {
2781 		cur->mtr_nextp = prev->mtr_nextp;
2782 		prev->mtr_nextp = cur;
2783 	} else {
2784 		cur->mtr_nextp = mip->mi_mtrp;
2785 		mip->mi_mtrp = cur;
2786 	}
2787 
2788 	rw_exit(&mip->mi_rw_lock);
2789 	i_mac_perim_exit(mip);
2790 	return (0);
2791 }
2792 
2793 int
2794 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2795 {
2796 	mac_impl_t *mip = (mac_impl_t *)mh;
2797 	mac_mtu_req_t *cur, *prev;
2798 
2799 	i_mac_perim_enter(mip);
2800 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2801 
2802 	prev = NULL;
2803 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2804 		if (cur->mtr_mtu == mtu) {
2805 			ASSERT(cur->mtr_ref > 0);
2806 			cur->mtr_ref--;
2807 			if (cur->mtr_ref == 0) {
2808 				if (prev == NULL) {
2809 					mip->mi_mtrp = cur->mtr_nextp;
2810 				} else {
2811 					prev->mtr_nextp = cur->mtr_nextp;
2812 				}
2813 				kmem_free(cur, sizeof (mac_mtu_req_t));
2814 			}
2815 			rw_exit(&mip->mi_rw_lock);
2816 			i_mac_perim_exit(mip);
2817 			return (0);
2818 		}
2819 
2820 		prev = cur;
2821 	}
2822 
2823 	rw_exit(&mip->mi_rw_lock);
2824 	i_mac_perim_exit(mip);
2825 	return (ENOENT);
2826 }
2827 
2828 /*
2829  * MAC Type Plugin functions.
2830  */
2831 
2832 mactype_t *
2833 mactype_getplugin(const char *pname)
2834 {
2835 	mactype_t	*mtype = NULL;
2836 	boolean_t	tried_modload = B_FALSE;
2837 
2838 	mutex_enter(&i_mactype_lock);
2839 
2840 find_registered_mactype:
2841 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2842 	    (mod_hash_val_t *)&mtype) != 0) {
2843 		if (!tried_modload) {
2844 			/*
2845 			 * If the plugin has not yet been loaded, then
2846 			 * attempt to load it now.  If modload() succeeds,
2847 			 * the plugin should have registered using
2848 			 * mactype_register(), in which case we can go back
2849 			 * and attempt to find it again.
2850 			 */
2851 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2852 				tried_modload = B_TRUE;
2853 				goto find_registered_mactype;
2854 			}
2855 		}
2856 	} else {
2857 		/*
2858 		 * Note that there's no danger that the plugin we've loaded
2859 		 * could be unloaded between the modload() step and the
2860 		 * reference count bump here, as we're holding
2861 		 * i_mactype_lock, which mactype_unregister() also holds.
2862 		 */
2863 		atomic_inc_32(&mtype->mt_ref);
2864 	}
2865 
2866 	mutex_exit(&i_mactype_lock);
2867 	return (mtype);
2868 }
2869 
2870 mactype_register_t *
2871 mactype_alloc(uint_t mactype_version)
2872 {
2873 	mactype_register_t *mtrp;
2874 
2875 	/*
2876 	 * Make sure there isn't a version mismatch between the plugin and
2877 	 * the framework.  In the future, if multiple versions are
2878 	 * supported, this check could become more sophisticated.
2879 	 */
2880 	if (mactype_version != MACTYPE_VERSION)
2881 		return (NULL);
2882 
2883 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2884 	mtrp->mtr_version = mactype_version;
2885 	return (mtrp);
2886 }
2887 
2888 void
2889 mactype_free(mactype_register_t *mtrp)
2890 {
2891 	kmem_free(mtrp, sizeof (mactype_register_t));
2892 }
2893 
2894 int
2895 mactype_register(mactype_register_t *mtrp)
2896 {
2897 	mactype_t	*mtp;
2898 	mactype_ops_t	*ops = mtrp->mtr_ops;
2899 
2900 	/* Do some sanity checking before we register this MAC type. */
2901 	if (mtrp->mtr_ident == NULL || ops == NULL)
2902 		return (EINVAL);
2903 
2904 	/*
2905 	 * Verify that all mandatory callbacks are set in the ops
2906 	 * vector.
2907 	 */
2908 	if (ops->mtops_unicst_verify == NULL ||
2909 	    ops->mtops_multicst_verify == NULL ||
2910 	    ops->mtops_sap_verify == NULL ||
2911 	    ops->mtops_header == NULL ||
2912 	    ops->mtops_header_info == NULL) {
2913 		return (EINVAL);
2914 	}
2915 
2916 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2917 	mtp->mt_ident = mtrp->mtr_ident;
2918 	mtp->mt_ops = *ops;
2919 	mtp->mt_type = mtrp->mtr_mactype;
2920 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2921 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2922 	if (mtrp->mtr_brdcst_addr != NULL) {
2923 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2924 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2925 		    mtrp->mtr_addrlen);
2926 	}
2927 
2928 	mtp->mt_stats = mtrp->mtr_stats;
2929 	mtp->mt_statcount = mtrp->mtr_statcount;
2930 
2931 	mtp->mt_mapping = mtrp->mtr_mapping;
2932 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2933 
2934 	if (mod_hash_insert(i_mactype_hash,
2935 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2936 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2937 		kmem_free(mtp, sizeof (*mtp));
2938 		return (EEXIST);
2939 	}
2940 	return (0);
2941 }
2942 
2943 int
2944 mactype_unregister(const char *ident)
2945 {
2946 	mactype_t	*mtp;
2947 	mod_hash_val_t	val;
2948 	int 		err;
2949 
2950 	/*
2951 	 * Let's not allow MAC drivers to use this plugin while we're
2952 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2953 	 * plugin from unregistering while a MAC driver is attempting to
2954 	 * hold a reference to it in i_mactype_getplugin().
2955 	 */
2956 	mutex_enter(&i_mactype_lock);
2957 
2958 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2959 	    (mod_hash_val_t *)&mtp)) != 0) {
2960 		/* A plugin is trying to unregister, but it never registered. */
2961 		err = ENXIO;
2962 		goto done;
2963 	}
2964 
2965 	if (mtp->mt_ref != 0) {
2966 		err = EBUSY;
2967 		goto done;
2968 	}
2969 
2970 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2971 	ASSERT(err == 0);
2972 	if (err != 0) {
2973 		/* This should never happen, thus the ASSERT() above. */
2974 		err = EINVAL;
2975 		goto done;
2976 	}
2977 	ASSERT(mtp == (mactype_t *)val);
2978 
2979 	if (mtp->mt_brdcst_addr != NULL)
2980 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2981 	kmem_free(mtp, sizeof (mactype_t));
2982 done:
2983 	mutex_exit(&i_mactype_lock);
2984 	return (err);
2985 }
2986 
2987 /*
2988  * Checks the size of the value size specified for a property as
2989  * part of a property operation. Returns B_TRUE if the size is
2990  * correct, B_FALSE otherwise.
2991  */
2992 boolean_t
2993 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2994 {
2995 	uint_t minsize = 0;
2996 
2997 	if (is_range)
2998 		return (valsize >= sizeof (mac_propval_range_t));
2999 
3000 	switch (id) {
3001 	case MAC_PROP_ZONE:
3002 		minsize = sizeof (dld_ioc_zid_t);
3003 		break;
3004 	case MAC_PROP_AUTOPUSH:
3005 		if (valsize != 0)
3006 			minsize = sizeof (struct dlautopush);
3007 		break;
3008 	case MAC_PROP_TAGMODE:
3009 		minsize = sizeof (link_tagmode_t);
3010 		break;
3011 	case MAC_PROP_RESOURCE:
3012 	case MAC_PROP_RESOURCE_EFF:
3013 		minsize = sizeof (mac_resource_props_t);
3014 		break;
3015 	case MAC_PROP_DUPLEX:
3016 		minsize = sizeof (link_duplex_t);
3017 		break;
3018 	case MAC_PROP_SPEED:
3019 		minsize = sizeof (uint64_t);
3020 		break;
3021 	case MAC_PROP_STATUS:
3022 		minsize = sizeof (link_state_t);
3023 		break;
3024 	case MAC_PROP_AUTONEG:
3025 	case MAC_PROP_EN_AUTONEG:
3026 		minsize = sizeof (uint8_t);
3027 		break;
3028 	case MAC_PROP_MTU:
3029 	case MAC_PROP_LLIMIT:
3030 	case MAC_PROP_LDECAY:
3031 		minsize = sizeof (uint32_t);
3032 		break;
3033 	case MAC_PROP_FLOWCTRL:
3034 		minsize = sizeof (link_flowctrl_t);
3035 		break;
3036 	case MAC_PROP_ADV_5000FDX_CAP:
3037 	case MAC_PROP_EN_5000FDX_CAP:
3038 	case MAC_PROP_ADV_2500FDX_CAP:
3039 	case MAC_PROP_EN_2500FDX_CAP:
3040 	case MAC_PROP_ADV_100GFDX_CAP:
3041 	case MAC_PROP_EN_100GFDX_CAP:
3042 	case MAC_PROP_ADV_50GFDX_CAP:
3043 	case MAC_PROP_EN_50GFDX_CAP:
3044 	case MAC_PROP_ADV_40GFDX_CAP:
3045 	case MAC_PROP_EN_40GFDX_CAP:
3046 	case MAC_PROP_ADV_25GFDX_CAP:
3047 	case MAC_PROP_EN_25GFDX_CAP:
3048 	case MAC_PROP_ADV_10GFDX_CAP:
3049 	case MAC_PROP_EN_10GFDX_CAP:
3050 	case MAC_PROP_ADV_1000HDX_CAP:
3051 	case MAC_PROP_EN_1000HDX_CAP:
3052 	case MAC_PROP_ADV_100FDX_CAP:
3053 	case MAC_PROP_EN_100FDX_CAP:
3054 	case MAC_PROP_ADV_100HDX_CAP:
3055 	case MAC_PROP_EN_100HDX_CAP:
3056 	case MAC_PROP_ADV_10FDX_CAP:
3057 	case MAC_PROP_EN_10FDX_CAP:
3058 	case MAC_PROP_ADV_10HDX_CAP:
3059 	case MAC_PROP_EN_10HDX_CAP:
3060 	case MAC_PROP_ADV_100T4_CAP:
3061 	case MAC_PROP_EN_100T4_CAP:
3062 		minsize = sizeof (uint8_t);
3063 		break;
3064 	case MAC_PROP_PVID:
3065 		minsize = sizeof (uint16_t);
3066 		break;
3067 	case MAC_PROP_IPTUN_HOPLIMIT:
3068 		minsize = sizeof (uint32_t);
3069 		break;
3070 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3071 		minsize = sizeof (uint32_t);
3072 		break;
3073 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3074 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3075 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3076 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3077 		minsize = sizeof (uint_t);
3078 		break;
3079 	case MAC_PROP_WL_ESSID:
3080 		minsize = sizeof (wl_linkstatus_t);
3081 		break;
3082 	case MAC_PROP_WL_BSSID:
3083 		minsize = sizeof (wl_bssid_t);
3084 		break;
3085 	case MAC_PROP_WL_BSSTYPE:
3086 		minsize = sizeof (wl_bss_type_t);
3087 		break;
3088 	case MAC_PROP_WL_LINKSTATUS:
3089 		minsize = sizeof (wl_linkstatus_t);
3090 		break;
3091 	case MAC_PROP_WL_DESIRED_RATES:
3092 		minsize = sizeof (wl_rates_t);
3093 		break;
3094 	case MAC_PROP_WL_SUPPORTED_RATES:
3095 		minsize = sizeof (wl_rates_t);
3096 		break;
3097 	case MAC_PROP_WL_AUTH_MODE:
3098 		minsize = sizeof (wl_authmode_t);
3099 		break;
3100 	case MAC_PROP_WL_ENCRYPTION:
3101 		minsize = sizeof (wl_encryption_t);
3102 		break;
3103 	case MAC_PROP_WL_RSSI:
3104 		minsize = sizeof (wl_rssi_t);
3105 		break;
3106 	case MAC_PROP_WL_PHY_CONFIG:
3107 		minsize = sizeof (wl_phy_conf_t);
3108 		break;
3109 	case MAC_PROP_WL_CAPABILITY:
3110 		minsize = sizeof (wl_capability_t);
3111 		break;
3112 	case MAC_PROP_WL_WPA:
3113 		minsize = sizeof (wl_wpa_t);
3114 		break;
3115 	case MAC_PROP_WL_SCANRESULTS:
3116 		minsize = sizeof (wl_wpa_ess_t);
3117 		break;
3118 	case MAC_PROP_WL_POWER_MODE:
3119 		minsize = sizeof (wl_ps_mode_t);
3120 		break;
3121 	case MAC_PROP_WL_RADIO:
3122 		minsize = sizeof (wl_radio_t);
3123 		break;
3124 	case MAC_PROP_WL_ESS_LIST:
3125 		minsize = sizeof (wl_ess_list_t);
3126 		break;
3127 	case MAC_PROP_WL_KEY_TAB:
3128 		minsize = sizeof (wl_wep_key_tab_t);
3129 		break;
3130 	case MAC_PROP_WL_CREATE_IBSS:
3131 		minsize = sizeof (wl_create_ibss_t);
3132 		break;
3133 	case MAC_PROP_WL_SETOPTIE:
3134 		minsize = sizeof (wl_wpa_ie_t);
3135 		break;
3136 	case MAC_PROP_WL_DELKEY:
3137 		minsize = sizeof (wl_del_key_t);
3138 		break;
3139 	case MAC_PROP_WL_KEY:
3140 		minsize = sizeof (wl_key_t);
3141 		break;
3142 	case MAC_PROP_WL_MLME:
3143 		minsize = sizeof (wl_mlme_t);
3144 		break;
3145 	case MAC_PROP_VN_PROMISC_FILTERED:
3146 		minsize = sizeof (boolean_t);
3147 		break;
3148 	}
3149 
3150 	return (valsize >= minsize);
3151 }
3152 
3153 /*
3154  * mac_set_prop() sets MAC or hardware driver properties:
3155  *
3156  * - MAC-managed properties such as resource properties include maxbw,
3157  *   priority, and cpu binding list, as well as the default port VID
3158  *   used by bridging. These properties are consumed by the MAC layer
3159  *   itself and not passed down to the driver. For resource control
3160  *   properties, this function invokes mac_set_resources() which will
3161  *   cache the property value in mac_impl_t and may call
3162  *   mac_client_set_resource() to update property value of the primary
3163  *   mac client, if it exists.
3164  *
3165  * - Properties which act on the hardware and must be passed to the
3166  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3167  */
3168 int
3169 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3170     uint_t valsize)
3171 {
3172 	int err = ENOTSUP;
3173 	mac_impl_t *mip = (mac_impl_t *)mh;
3174 
3175 	ASSERT(MAC_PERIM_HELD(mh));
3176 
3177 	switch (id) {
3178 	case MAC_PROP_RESOURCE: {
3179 		mac_resource_props_t *mrp;
3180 
3181 		/* call mac_set_resources() for MAC properties */
3182 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3183 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3184 		bcopy(val, mrp, sizeof (*mrp));
3185 		err = mac_set_resources(mh, mrp);
3186 		kmem_free(mrp, sizeof (*mrp));
3187 		break;
3188 	}
3189 
3190 	case MAC_PROP_PVID:
3191 		ASSERT(valsize >= sizeof (uint16_t));
3192 		if (mip->mi_state_flags & MIS_IS_VNIC)
3193 			return (EINVAL);
3194 		err = mac_set_pvid(mh, *(uint16_t *)val);
3195 		break;
3196 
3197 	case MAC_PROP_MTU: {
3198 		uint32_t mtu;
3199 
3200 		ASSERT(valsize >= sizeof (uint32_t));
3201 		bcopy(val, &mtu, sizeof (mtu));
3202 		err = mac_set_mtu(mh, mtu, NULL);
3203 		break;
3204 	}
3205 
3206 	case MAC_PROP_LLIMIT:
3207 	case MAC_PROP_LDECAY: {
3208 		uint32_t learnval;
3209 
3210 		if (valsize < sizeof (learnval) ||
3211 		    (mip->mi_state_flags & MIS_IS_VNIC))
3212 			return (EINVAL);
3213 		bcopy(val, &learnval, sizeof (learnval));
3214 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3215 			return (EINVAL);
3216 		if (id == MAC_PROP_LLIMIT)
3217 			mip->mi_llimit = learnval;
3218 		else
3219 			mip->mi_ldecay = learnval;
3220 		err = 0;
3221 		break;
3222 	}
3223 
3224 	default:
3225 		/* For other driver properties, call driver's callback */
3226 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3227 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3228 			    name, id, valsize, val);
3229 		}
3230 	}
3231 	return (err);
3232 }
3233 
3234 /*
3235  * mac_get_prop() gets MAC or device driver properties.
3236  *
3237  * If the property is a driver property, mac_get_prop() calls driver's callback
3238  * entry point to get it.
3239  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3240  * which returns the cached value in mac_impl_t.
3241  */
3242 int
3243 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3244     uint_t valsize)
3245 {
3246 	int err = ENOTSUP;
3247 	mac_impl_t *mip = (mac_impl_t *)mh;
3248 	uint_t	rings;
3249 	uint_t	vlinks;
3250 
3251 	bzero(val, valsize);
3252 
3253 	switch (id) {
3254 	case MAC_PROP_RESOURCE: {
3255 		mac_resource_props_t *mrp;
3256 
3257 		/* If mac property, read from cache */
3258 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3259 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3260 		mac_get_resources(mh, mrp);
3261 		bcopy(mrp, val, sizeof (*mrp));
3262 		kmem_free(mrp, sizeof (*mrp));
3263 		return (0);
3264 	}
3265 	case MAC_PROP_RESOURCE_EFF: {
3266 		mac_resource_props_t *mrp;
3267 
3268 		/* If mac effective property, read from client */
3269 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3270 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3271 		mac_get_effective_resources(mh, mrp);
3272 		bcopy(mrp, val, sizeof (*mrp));
3273 		kmem_free(mrp, sizeof (*mrp));
3274 		return (0);
3275 	}
3276 
3277 	case MAC_PROP_PVID:
3278 		ASSERT(valsize >= sizeof (uint16_t));
3279 		if (mip->mi_state_flags & MIS_IS_VNIC)
3280 			return (EINVAL);
3281 		*(uint16_t *)val = mac_get_pvid(mh);
3282 		return (0);
3283 
3284 	case MAC_PROP_LLIMIT:
3285 	case MAC_PROP_LDECAY:
3286 		ASSERT(valsize >= sizeof (uint32_t));
3287 		if (mip->mi_state_flags & MIS_IS_VNIC)
3288 			return (EINVAL);
3289 		if (id == MAC_PROP_LLIMIT)
3290 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3291 		else
3292 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3293 		return (0);
3294 
3295 	case MAC_PROP_MTU: {
3296 		uint32_t sdu;
3297 
3298 		ASSERT(valsize >= sizeof (uint32_t));
3299 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3300 		bcopy(&sdu, val, sizeof (sdu));
3301 
3302 		return (0);
3303 	}
3304 	case MAC_PROP_STATUS: {
3305 		link_state_t link_state;
3306 
3307 		if (valsize < sizeof (link_state))
3308 			return (EINVAL);
3309 		link_state = mac_link_get(mh);
3310 		bcopy(&link_state, val, sizeof (link_state));
3311 
3312 		return (0);
3313 	}
3314 
3315 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3316 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3317 		ASSERT(valsize >= sizeof (uint_t));
3318 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3319 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3320 		bcopy(&rings, val, sizeof (uint_t));
3321 		return (0);
3322 
3323 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3324 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3325 		ASSERT(valsize >= sizeof (uint_t));
3326 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3327 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3328 		bcopy(&vlinks, val, sizeof (uint_t));
3329 		return (0);
3330 
3331 	case MAC_PROP_RXRINGSRANGE:
3332 	case MAC_PROP_TXRINGSRANGE:
3333 		/*
3334 		 * The value for these properties are returned through
3335 		 * the MAC_PROP_RESOURCE property.
3336 		 */
3337 		return (0);
3338 
3339 	default:
3340 		break;
3341 
3342 	}
3343 
3344 	/* If driver property, request from driver */
3345 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3346 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3347 		    valsize, val);
3348 	}
3349 
3350 	return (err);
3351 }
3352 
3353 /*
3354  * Helper function to initialize the range structure for use in
3355  * mac_get_prop. If the type can be other than uint32, we can
3356  * pass that as an arg.
3357  */
3358 static void
3359 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3360 {
3361 	range->mpr_count = 1;
3362 	range->mpr_type = MAC_PROPVAL_UINT32;
3363 	range->mpr_range_uint32[0].mpur_min = min;
3364 	range->mpr_range_uint32[0].mpur_max = max;
3365 }
3366 
3367 /*
3368  * Returns information about the specified property, such as default
3369  * values or permissions.
3370  */
3371 int
3372 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3373     void *default_val, uint_t default_size, mac_propval_range_t *range,
3374     uint_t *perm)
3375 {
3376 	mac_prop_info_state_t state;
3377 	mac_impl_t *mip = (mac_impl_t *)mh;
3378 	uint_t	max;
3379 
3380 	/*
3381 	 * A property is read/write by default unless the driver says
3382 	 * otherwise.
3383 	 */
3384 	if (perm != NULL)
3385 		*perm = MAC_PROP_PERM_RW;
3386 
3387 	if (default_val != NULL)
3388 		bzero(default_val, default_size);
3389 
3390 	/*
3391 	 * First, handle framework properties for which we don't need to
3392 	 * involve the driver.
3393 	 */
3394 	switch (id) {
3395 	case MAC_PROP_RESOURCE:
3396 	case MAC_PROP_PVID:
3397 	case MAC_PROP_LLIMIT:
3398 	case MAC_PROP_LDECAY:
3399 		return (0);
3400 
3401 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3402 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3403 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3404 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3405 		if (perm != NULL)
3406 			*perm = MAC_PROP_PERM_READ;
3407 		return (0);
3408 
3409 	case MAC_PROP_RXRINGSRANGE:
3410 	case MAC_PROP_TXRINGSRANGE:
3411 		/*
3412 		 * Currently, we support range for RX and TX rings properties.
3413 		 * When we extend this support to maxbw, cpus and priority,
3414 		 * we should move this to mac_get_resources.
3415 		 * There is no default value for RX or TX rings.
3416 		 */
3417 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3418 		    mac_is_vnic_primary(mh)) {
3419 			/*
3420 			 * We don't support setting rings for a VLAN
3421 			 * data link because it shares its ring with the
3422 			 * primary MAC client.
3423 			 */
3424 			if (perm != NULL)
3425 				*perm = MAC_PROP_PERM_READ;
3426 			if (range != NULL)
3427 				range->mpr_count = 0;
3428 		} else if (range != NULL) {
3429 			if (mip->mi_state_flags & MIS_IS_VNIC)
3430 				mh = mac_get_lower_mac_handle(mh);
3431 			mip = (mac_impl_t *)mh;
3432 			if ((id == MAC_PROP_RXRINGSRANGE &&
3433 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3434 			    (id == MAC_PROP_TXRINGSRANGE &&
3435 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3436 				if (id == MAC_PROP_RXRINGSRANGE) {
3437 					if ((mac_rxhwlnksavail_get(mh) +
3438 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3439 						/*
3440 						 * doesn't support groups or
3441 						 * rings
3442 						 */
3443 						range->mpr_count = 0;
3444 					} else {
3445 						/*
3446 						 * supports specifying groups,
3447 						 * but not rings
3448 						 */
3449 						_mac_set_range(range, 0, 0);
3450 					}
3451 				} else {
3452 					if ((mac_txhwlnksavail_get(mh) +
3453 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3454 						/*
3455 						 * doesn't support groups or
3456 						 * rings
3457 						 */
3458 						range->mpr_count = 0;
3459 					} else {
3460 						/*
3461 						 * supports specifying groups,
3462 						 * but not rings
3463 						 */
3464 						_mac_set_range(range, 0, 0);
3465 					}
3466 				}
3467 			} else {
3468 				max = id == MAC_PROP_RXRINGSRANGE ?
3469 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3470 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3471 				if (max <= 1) {
3472 					/*
3473 					 * doesn't support groups or
3474 					 * rings
3475 					 */
3476 					range->mpr_count = 0;
3477 				} else  {
3478 					/*
3479 					 * -1 because we have to leave out the
3480 					 * default ring.
3481 					 */
3482 					_mac_set_range(range, 1, max - 1);
3483 				}
3484 			}
3485 		}
3486 		return (0);
3487 
3488 	case MAC_PROP_STATUS:
3489 		if (perm != NULL)
3490 			*perm = MAC_PROP_PERM_READ;
3491 		return (0);
3492 	}
3493 
3494 	/*
3495 	 * Get the property info from the driver if it implements the
3496 	 * property info entry point.
3497 	 */
3498 	bzero(&state, sizeof (state));
3499 
3500 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3501 		state.pr_default = default_val;
3502 		state.pr_default_size = default_size;
3503 
3504 		/*
3505 		 * The caller specifies the maximum number of ranges
3506 		 * it can accomodate using mpr_count. We don't touch
3507 		 * this value until the driver returns from its
3508 		 * mc_propinfo() callback, and ensure we don't exceed
3509 		 * this number of range as the driver defines
3510 		 * supported range from its mc_propinfo().
3511 		 *
3512 		 * pr_range_cur_count keeps track of how many ranges
3513 		 * were defined by the driver from its mc_propinfo()
3514 		 * entry point.
3515 		 *
3516 		 * On exit, the user-specified range mpr_count returns
3517 		 * the number of ranges specified by the driver on
3518 		 * success, or the number of ranges it wanted to
3519 		 * define if that number of ranges could not be
3520 		 * accomodated by the specified range structure.  In
3521 		 * the latter case, the caller will be able to
3522 		 * allocate a larger range structure, and query the
3523 		 * property again.
3524 		 */
3525 		state.pr_range_cur_count = 0;
3526 		state.pr_range = range;
3527 
3528 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3529 		    (mac_prop_info_handle_t)&state);
3530 
3531 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3532 			range->mpr_count = state.pr_range_cur_count;
3533 
3534 		/*
3535 		 * The operation could fail if the buffer supplied by
3536 		 * the user was too small for the range or default
3537 		 * value of the property.
3538 		 */
3539 		if (state.pr_errno != 0)
3540 			return (state.pr_errno);
3541 
3542 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3543 			*perm = state.pr_perm;
3544 	}
3545 
3546 	/*
3547 	 * The MAC layer may want to provide default values or allowed
3548 	 * ranges for properties if the driver does not provide a
3549 	 * property info entry point, or that entry point exists, but
3550 	 * it did not provide a default value or allowed ranges for
3551 	 * that property.
3552 	 */
3553 	switch (id) {
3554 	case MAC_PROP_MTU: {
3555 		uint32_t sdu;
3556 
3557 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3558 
3559 		if (range != NULL && !(state.pr_flags &
3560 		    MAC_PROP_INFO_RANGE)) {
3561 			/* MTU range */
3562 			_mac_set_range(range, sdu, sdu);
3563 		}
3564 
3565 		if (default_val != NULL && !(state.pr_flags &
3566 		    MAC_PROP_INFO_DEFAULT)) {
3567 			if (mip->mi_info.mi_media == DL_ETHER)
3568 				sdu = ETHERMTU;
3569 			/* default MTU value */
3570 			bcopy(&sdu, default_val, sizeof (sdu));
3571 		}
3572 	}
3573 	}
3574 
3575 	return (0);
3576 }
3577 
3578 int
3579 mac_fastpath_disable(mac_handle_t mh)
3580 {
3581 	mac_impl_t	*mip = (mac_impl_t *)mh;
3582 
3583 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3584 		return (0);
3585 
3586 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3587 }
3588 
3589 void
3590 mac_fastpath_enable(mac_handle_t mh)
3591 {
3592 	mac_impl_t	*mip = (mac_impl_t *)mh;
3593 
3594 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3595 		return;
3596 
3597 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3598 }
3599 
3600 void
3601 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3602 {
3603 	uint_t nprops, i;
3604 
3605 	if (priv_props == NULL)
3606 		return;
3607 
3608 	nprops = 0;
3609 	while (priv_props[nprops] != NULL)
3610 		nprops++;
3611 	if (nprops == 0)
3612 		return;
3613 
3614 
3615 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3616 
3617 	for (i = 0; i < nprops; i++) {
3618 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3619 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3620 		    MAXLINKPROPNAME);
3621 	}
3622 
3623 	mip->mi_priv_prop_count = nprops;
3624 }
3625 
3626 void
3627 mac_unregister_priv_prop(mac_impl_t *mip)
3628 {
3629 	uint_t i;
3630 
3631 	if (mip->mi_priv_prop_count == 0) {
3632 		ASSERT(mip->mi_priv_prop == NULL);
3633 		return;
3634 	}
3635 
3636 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3637 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3638 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3639 	    sizeof (char *));
3640 
3641 	mip->mi_priv_prop = NULL;
3642 	mip->mi_priv_prop_count = 0;
3643 }
3644 
3645 /*
3646  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3647  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3648  * cases if MAC free's the ring structure after mac_stop_ring(), any
3649  * illegal access to the ring structure coming from the driver will panic
3650  * the system. In order to protect the system from such inadverent access,
3651  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3652  * When packets are received on free'd up rings, MAC (through the generation
3653  * count mechanism) will drop such packets.
3654  */
3655 static mac_ring_t *
3656 mac_ring_alloc(mac_impl_t *mip)
3657 {
3658 	mac_ring_t *ring;
3659 
3660 	mutex_enter(&mip->mi_ring_lock);
3661 	if (mip->mi_ring_freelist != NULL) {
3662 		ring = mip->mi_ring_freelist;
3663 		mip->mi_ring_freelist = ring->mr_next;
3664 		bzero(ring, sizeof (mac_ring_t));
3665 		mutex_exit(&mip->mi_ring_lock);
3666 	} else {
3667 		mutex_exit(&mip->mi_ring_lock);
3668 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3669 	}
3670 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3671 	return (ring);
3672 }
3673 
3674 static void
3675 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3676 {
3677 	ASSERT(ring->mr_state == MR_FREE);
3678 
3679 	mutex_enter(&mip->mi_ring_lock);
3680 	ring->mr_state = MR_FREE;
3681 	ring->mr_flag = 0;
3682 	ring->mr_next = mip->mi_ring_freelist;
3683 	ring->mr_mip = NULL;
3684 	mip->mi_ring_freelist = ring;
3685 	mac_ring_stat_delete(ring);
3686 	mutex_exit(&mip->mi_ring_lock);
3687 }
3688 
3689 static void
3690 mac_ring_freeall(mac_impl_t *mip)
3691 {
3692 	mac_ring_t *ring_next;
3693 	mutex_enter(&mip->mi_ring_lock);
3694 	mac_ring_t *ring = mip->mi_ring_freelist;
3695 	while (ring != NULL) {
3696 		ring_next = ring->mr_next;
3697 		kmem_cache_free(mac_ring_cache, ring);
3698 		ring = ring_next;
3699 	}
3700 	mip->mi_ring_freelist = NULL;
3701 	mutex_exit(&mip->mi_ring_lock);
3702 }
3703 
3704 int
3705 mac_start_ring(mac_ring_t *ring)
3706 {
3707 	int rv = 0;
3708 
3709 	ASSERT(ring->mr_state == MR_FREE);
3710 
3711 	if (ring->mr_start != NULL) {
3712 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3713 		if (rv != 0)
3714 			return (rv);
3715 	}
3716 
3717 	ring->mr_state = MR_INUSE;
3718 	return (rv);
3719 }
3720 
3721 void
3722 mac_stop_ring(mac_ring_t *ring)
3723 {
3724 	ASSERT(ring->mr_state == MR_INUSE);
3725 
3726 	if (ring->mr_stop != NULL)
3727 		ring->mr_stop(ring->mr_driver);
3728 
3729 	ring->mr_state = MR_FREE;
3730 
3731 	/*
3732 	 * Increment the ring generation number for this ring.
3733 	 */
3734 	ring->mr_gen_num++;
3735 }
3736 
3737 int
3738 mac_start_group(mac_group_t *group)
3739 {
3740 	int rv = 0;
3741 
3742 	if (group->mrg_start != NULL)
3743 		rv = group->mrg_start(group->mrg_driver);
3744 
3745 	return (rv);
3746 }
3747 
3748 void
3749 mac_stop_group(mac_group_t *group)
3750 {
3751 	if (group->mrg_stop != NULL)
3752 		group->mrg_stop(group->mrg_driver);
3753 }
3754 
3755 /*
3756  * Called from mac_start() on the default Rx group. Broadcast and multicast
3757  * packets are received only on the default group. Hence the default group
3758  * needs to be up even if the primary client is not up, for the other groups
3759  * to be functional. We do this by calling this function at mac_start time
3760  * itself. However the broadcast packets that are received can't make their
3761  * way beyond mac_rx until a mac client creates a broadcast flow.
3762  */
3763 static int
3764 mac_start_group_and_rings(mac_group_t *group)
3765 {
3766 	mac_ring_t	*ring;
3767 	int		rv = 0;
3768 
3769 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3770 	if ((rv = mac_start_group(group)) != 0)
3771 		return (rv);
3772 
3773 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3774 		ASSERT(ring->mr_state == MR_FREE);
3775 		if ((rv = mac_start_ring(ring)) != 0)
3776 			goto error;
3777 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
3778 	}
3779 	return (0);
3780 
3781 error:
3782 	mac_stop_group_and_rings(group);
3783 	return (rv);
3784 }
3785 
3786 /* Called from mac_stop on the default Rx group */
3787 static void
3788 mac_stop_group_and_rings(mac_group_t *group)
3789 {
3790 	mac_ring_t	*ring;
3791 
3792 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3793 		if (ring->mr_state != MR_FREE) {
3794 			mac_stop_ring(ring);
3795 			ring->mr_flag = 0;
3796 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3797 		}
3798 	}
3799 	mac_stop_group(group);
3800 }
3801 
3802 
3803 static mac_ring_t *
3804 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3805     mac_capab_rings_t *cap_rings)
3806 {
3807 	mac_ring_t *ring, *rnext;
3808 	mac_ring_info_t ring_info;
3809 	ddi_intr_handle_t ddi_handle;
3810 
3811 	ring = mac_ring_alloc(mip);
3812 
3813 	/* Prepare basic information of ring */
3814 
3815 	/*
3816 	 * Ring index is numbered to be unique across a particular device.
3817 	 * Ring index computation makes following assumptions:
3818 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
3819 	 *	ring index exchanged with the driver (e.g. during mr_rget)
3820 	 *	is unique only across the group the ring belongs to.
3821 	 *	- Drivers with dynamic grouping (e.g. nxge), start
3822 	 *	with single group (mrg_index = 0).
3823 	 */
3824 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3825 	ring->mr_type = group->mrg_type;
3826 	ring->mr_gh = (mac_group_handle_t)group;
3827 
3828 	/* Insert the new ring to the list. */
3829 	ring->mr_next = group->mrg_rings;
3830 	group->mrg_rings = ring;
3831 
3832 	/* Zero to reuse the info data structure */
3833 	bzero(&ring_info, sizeof (ring_info));
3834 
3835 	/* Query ring information from driver */
3836 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3837 	    index, &ring_info, (mac_ring_handle_t)ring);
3838 
3839 	ring->mr_info = ring_info;
3840 
3841 	/*
3842 	 * The interrupt handle could be shared among multiple rings.
3843 	 * Thus if there is a bunch of rings that are sharing an
3844 	 * interrupt, then only one ring among the bunch will be made
3845 	 * available for interrupt re-targeting; the rest will have
3846 	 * ddi_shared flag set to TRUE and would not be available for
3847 	 * be interrupt re-targeting.
3848 	 */
3849 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3850 		rnext = ring->mr_next;
3851 		while (rnext != NULL) {
3852 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3853 			    ddi_handle) {
3854 				/*
3855 				 * If default ring (mr_index == 0) is part
3856 				 * of a group of rings sharing an
3857 				 * interrupt, then set ddi_shared flag for
3858 				 * the default ring and give another ring
3859 				 * the chance to be re-targeted.
3860 				 */
3861 				if (rnext->mr_index == 0 &&
3862 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
3863 					rnext->mr_info.mri_intr.mi_ddi_shared =
3864 					    B_TRUE;
3865 				} else {
3866 					ring->mr_info.mri_intr.mi_ddi_shared =
3867 					    B_TRUE;
3868 				}
3869 				break;
3870 			}
3871 			rnext = rnext->mr_next;
3872 		}
3873 		/*
3874 		 * If rnext is NULL, then no matching ddi_handle was found.
3875 		 * Rx rings get registered first. So if this is a Tx ring,
3876 		 * then go through all the Rx rings and see if there is a
3877 		 * matching ddi handle.
3878 		 */
3879 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3880 			mac_compare_ddi_handle(mip->mi_rx_groups,
3881 			    mip->mi_rx_group_count, ring);
3882 		}
3883 	}
3884 
3885 	/* Update ring's status */
3886 	ring->mr_state = MR_FREE;
3887 	ring->mr_flag = 0;
3888 
3889 	/* Update the ring count of the group */
3890 	group->mrg_cur_count++;
3891 
3892 	/* Create per ring kstats */
3893 	if (ring->mr_stat != NULL) {
3894 		ring->mr_mip = mip;
3895 		mac_ring_stat_create(ring);
3896 	}
3897 
3898 	return (ring);
3899 }
3900 
3901 /*
3902  * Rings are chained together for easy regrouping.
3903  */
3904 static void
3905 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3906     mac_capab_rings_t *cap_rings)
3907 {
3908 	int index;
3909 
3910 	/*
3911 	 * Initialize all ring members of this group. Size of zero will not
3912 	 * enter the loop, so it's safe for initializing an empty group.
3913 	 */
3914 	for (index = size - 1; index >= 0; index--)
3915 		(void) mac_init_ring(mip, group, index, cap_rings);
3916 }
3917 
3918 int
3919 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3920 {
3921 	mac_capab_rings_t	*cap_rings;
3922 	mac_group_t		*group;
3923 	mac_group_t		*groups;
3924 	mac_group_info_t	group_info;
3925 	uint_t			group_free = 0;
3926 	uint_t			ring_left;
3927 	mac_ring_t		*ring;
3928 	int			g;
3929 	int			err = 0;
3930 	uint_t			grpcnt;
3931 	boolean_t		pseudo_txgrp = B_FALSE;
3932 
3933 	switch (rtype) {
3934 	case MAC_RING_TYPE_RX:
3935 		ASSERT(mip->mi_rx_groups == NULL);
3936 
3937 		cap_rings = &mip->mi_rx_rings_cap;
3938 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3939 		break;
3940 	case MAC_RING_TYPE_TX:
3941 		ASSERT(mip->mi_tx_groups == NULL);
3942 
3943 		cap_rings = &mip->mi_tx_rings_cap;
3944 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3945 		break;
3946 	default:
3947 		ASSERT(B_FALSE);
3948 	}
3949 
3950 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3951 		return (0);
3952 	grpcnt = cap_rings->mr_gnum;
3953 
3954 	/*
3955 	 * If we have multiple TX rings, but only one TX group, we can
3956 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
3957 	 * except for an aggr. For an aggr currently we maintain only
3958 	 * one group with all the rings (for all its ports), going
3959 	 * forwards we might change this.
3960 	 */
3961 	if (rtype == MAC_RING_TYPE_TX &&
3962 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3963 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3964 		/*
3965 		 * The -1 here is because we create a default TX group
3966 		 * with all the rings in it.
3967 		 */
3968 		grpcnt = cap_rings->mr_rnum - 1;
3969 		pseudo_txgrp = B_TRUE;
3970 	}
3971 
3972 	/*
3973 	 * Allocate a contiguous buffer for all groups.
3974 	 */
3975 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3976 
3977 	ring_left = cap_rings->mr_rnum;
3978 
3979 	/*
3980 	 * Get all ring groups if any, and get their ring members
3981 	 * if any.
3982 	 */
3983 	for (g = 0; g < grpcnt; g++) {
3984 		group = groups + g;
3985 
3986 		/* Prepare basic information of the group */
3987 		group->mrg_index = g;
3988 		group->mrg_type = rtype;
3989 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3990 		group->mrg_mh = (mac_handle_t)mip;
3991 		group->mrg_next = group + 1;
3992 
3993 		/* Zero to reuse the info data structure */
3994 		bzero(&group_info, sizeof (group_info));
3995 
3996 		if (pseudo_txgrp) {
3997 			/*
3998 			 * This is a pseudo group that we created, apart
3999 			 * from setting the state there is nothing to be
4000 			 * done.
4001 			 */
4002 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4003 			group_free++;
4004 			continue;
4005 		}
4006 		/* Query group information from driver */
4007 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4008 		    (mac_group_handle_t)group);
4009 
4010 		switch (cap_rings->mr_group_type) {
4011 		case MAC_GROUP_TYPE_DYNAMIC:
4012 			if (cap_rings->mr_gaddring == NULL ||
4013 			    cap_rings->mr_gremring == NULL) {
4014 				DTRACE_PROBE3(
4015 				    mac__init__rings_no_addremring,
4016 				    char *, mip->mi_name,
4017 				    mac_group_add_ring_t,
4018 				    cap_rings->mr_gaddring,
4019 				    mac_group_add_ring_t,
4020 				    cap_rings->mr_gremring);
4021 				err = EINVAL;
4022 				goto bail;
4023 			}
4024 
4025 			switch (rtype) {
4026 			case MAC_RING_TYPE_RX:
4027 				/*
4028 				 * The first RX group must have non-zero
4029 				 * rings, and the following groups must
4030 				 * have zero rings.
4031 				 */
4032 				if (g == 0 && group_info.mgi_count == 0) {
4033 					DTRACE_PROBE1(
4034 					    mac__init__rings__rx__def__zero,
4035 					    char *, mip->mi_name);
4036 					err = EINVAL;
4037 					goto bail;
4038 				}
4039 				if (g > 0 && group_info.mgi_count != 0) {
4040 					DTRACE_PROBE3(
4041 					    mac__init__rings__rx__nonzero,
4042 					    char *, mip->mi_name,
4043 					    int, g, int, group_info.mgi_count);
4044 					err = EINVAL;
4045 					goto bail;
4046 				}
4047 				break;
4048 			case MAC_RING_TYPE_TX:
4049 				/*
4050 				 * All TX ring groups must have zero rings.
4051 				 */
4052 				if (group_info.mgi_count != 0) {
4053 					DTRACE_PROBE3(
4054 					    mac__init__rings__tx__nonzero,
4055 					    char *, mip->mi_name,
4056 					    int, g, int, group_info.mgi_count);
4057 					err = EINVAL;
4058 					goto bail;
4059 				}
4060 				break;
4061 			}
4062 			break;
4063 		case MAC_GROUP_TYPE_STATIC:
4064 			/*
4065 			 * Note that an empty group is allowed, e.g., an aggr
4066 			 * would start with an empty group.
4067 			 */
4068 			break;
4069 		default:
4070 			/* unknown group type */
4071 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4072 			    char *, mip->mi_name,
4073 			    int, cap_rings->mr_group_type);
4074 			err = EINVAL;
4075 			goto bail;
4076 		}
4077 
4078 
4079 		/*
4080 		 * Driver must register group->mgi_addmac/remmac() for rx groups
4081 		 * to support multiple MAC addresses.
4082 		 */
4083 		if (rtype == MAC_RING_TYPE_RX &&
4084 		    ((group_info.mgi_addmac == NULL) ||
4085 		    (group_info.mgi_remmac == NULL))) {
4086 			err = EINVAL;
4087 			goto bail;
4088 		}
4089 
4090 		/* Cache driver-supplied information */
4091 		group->mrg_info = group_info;
4092 
4093 		/* Update the group's status and group count. */
4094 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4095 		group_free++;
4096 
4097 		group->mrg_rings = NULL;
4098 		group->mrg_cur_count = 0;
4099 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4100 		ring_left -= group_info.mgi_count;
4101 
4102 		/* The current group size should be equal to default value */
4103 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4104 	}
4105 
4106 	/* Build up a dummy group for free resources as a pool */
4107 	group = groups + grpcnt;
4108 
4109 	/* Prepare basic information of the group */
4110 	group->mrg_index = -1;
4111 	group->mrg_type = rtype;
4112 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4113 	group->mrg_mh = (mac_handle_t)mip;
4114 	group->mrg_next = NULL;
4115 
4116 	/*
4117 	 * If there are ungrouped rings, allocate a continuous buffer for
4118 	 * remaining resources.
4119 	 */
4120 	if (ring_left != 0) {
4121 		group->mrg_rings = NULL;
4122 		group->mrg_cur_count = 0;
4123 		mac_init_group(mip, group, ring_left, cap_rings);
4124 
4125 		/* The current group size should be equal to ring_left */
4126 		ASSERT(group->mrg_cur_count == ring_left);
4127 
4128 		ring_left = 0;
4129 
4130 		/* Update this group's status */
4131 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4132 	} else
4133 		group->mrg_rings = NULL;
4134 
4135 	ASSERT(ring_left == 0);
4136 
4137 bail:
4138 
4139 	/* Cache other important information to finalize the initialization */
4140 	switch (rtype) {
4141 	case MAC_RING_TYPE_RX:
4142 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4143 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4144 		mip->mi_rx_groups = groups;
4145 		mip->mi_rx_donor_grp = groups;
4146 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4147 			/*
4148 			 * The default ring is reserved since it is
4149 			 * used for sending the broadcast etc. packets.
4150 			 */
4151 			mip->mi_rxrings_avail =
4152 			    mip->mi_rx_groups->mrg_cur_count - 1;
4153 			mip->mi_rxrings_rsvd = 1;
4154 		}
4155 		/*
4156 		 * The default group cannot be reserved. It is used by
4157 		 * all the clients that do not have an exclusive group.
4158 		 */
4159 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4160 		mip->mi_rxhwclnt_used = 1;
4161 		break;
4162 	case MAC_RING_TYPE_TX:
4163 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4164 		    cap_rings->mr_group_type;
4165 		mip->mi_tx_group_count = grpcnt;
4166 		mip->mi_tx_group_free = group_free;
4167 		mip->mi_tx_groups = groups;
4168 
4169 		group = groups + grpcnt;
4170 		ring = group->mrg_rings;
4171 		/*
4172 		 * The ring can be NULL in the case of aggr. Aggr will
4173 		 * have an empty Tx group which will get populated
4174 		 * later when pseudo Tx rings are added after
4175 		 * mac_register() is done.
4176 		 */
4177 		if (ring == NULL) {
4178 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4179 			/*
4180 			 * pass the group to aggr so it can add Tx
4181 			 * rings to the group later.
4182 			 */
4183 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4184 			    (mac_group_handle_t)group);
4185 			/*
4186 			 * Even though there are no rings at this time
4187 			 * (rings will come later), set the group
4188 			 * state to registered.
4189 			 */
4190 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4191 		} else {
4192 			/*
4193 			 * Ring 0 is used as the default one and it could be
4194 			 * assigned to a client as well.
4195 			 */
4196 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4197 				ring = ring->mr_next;
4198 			ASSERT(ring->mr_index == 0);
4199 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4200 		}
4201 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4202 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4203 			/*
4204 			 * The default ring cannot be reserved.
4205 			 */
4206 			mip->mi_txrings_rsvd = 1;
4207 		}
4208 		/*
4209 		 * The default group cannot be reserved. It will be shared
4210 		 * by clients that do not have an exclusive group.
4211 		 */
4212 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4213 		mip->mi_txhwclnt_used = 1;
4214 		break;
4215 	default:
4216 		ASSERT(B_FALSE);
4217 	}
4218 
4219 	if (err != 0)
4220 		mac_free_rings(mip, rtype);
4221 
4222 	return (err);
4223 }
4224 
4225 /*
4226  * The ddi interrupt handle could be shared amoung rings. If so, compare
4227  * the new ring's ddi handle with the existing ones and set ddi_shared
4228  * flag.
4229  */
4230 void
4231 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4232 {
4233 	mac_group_t *group;
4234 	mac_ring_t *ring;
4235 	ddi_intr_handle_t ddi_handle;
4236 	int g;
4237 
4238 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4239 	for (g = 0; g < grpcnt; g++) {
4240 		group = groups + g;
4241 		for (ring = group->mrg_rings; ring != NULL;
4242 		    ring = ring->mr_next) {
4243 			if (ring == cring)
4244 				continue;
4245 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4246 			    ddi_handle) {
4247 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4248 				    ring->mr_index == 0 &&
4249 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4250 					ring->mr_info.mri_intr.mi_ddi_shared =
4251 					    B_TRUE;
4252 				} else {
4253 					cring->mr_info.mri_intr.mi_ddi_shared =
4254 					    B_TRUE;
4255 				}
4256 				return;
4257 			}
4258 		}
4259 	}
4260 }
4261 
4262 /*
4263  * Called to free all groups of particular type (RX or TX). It's assumed that
4264  * no clients are using these groups.
4265  */
4266 void
4267 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4268 {
4269 	mac_group_t *group, *groups;
4270 	uint_t group_count;
4271 
4272 	switch (rtype) {
4273 	case MAC_RING_TYPE_RX:
4274 		if (mip->mi_rx_groups == NULL)
4275 			return;
4276 
4277 		groups = mip->mi_rx_groups;
4278 		group_count = mip->mi_rx_group_count;
4279 
4280 		mip->mi_rx_groups = NULL;
4281 		mip->mi_rx_donor_grp = NULL;
4282 		mip->mi_rx_group_count = 0;
4283 		break;
4284 	case MAC_RING_TYPE_TX:
4285 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4286 
4287 		if (mip->mi_tx_groups == NULL)
4288 			return;
4289 
4290 		groups = mip->mi_tx_groups;
4291 		group_count = mip->mi_tx_group_count;
4292 
4293 		mip->mi_tx_groups = NULL;
4294 		mip->mi_tx_group_count = 0;
4295 		mip->mi_tx_group_free = 0;
4296 		mip->mi_default_tx_ring = NULL;
4297 		break;
4298 	default:
4299 		ASSERT(B_FALSE);
4300 	}
4301 
4302 	for (group = groups; group != NULL; group = group->mrg_next) {
4303 		mac_ring_t *ring;
4304 
4305 		if (group->mrg_cur_count == 0)
4306 			continue;
4307 
4308 		ASSERT(group->mrg_rings != NULL);
4309 
4310 		while ((ring = group->mrg_rings) != NULL) {
4311 			group->mrg_rings = ring->mr_next;
4312 			mac_ring_free(mip, ring);
4313 		}
4314 	}
4315 
4316 	/* Free all the cached rings */
4317 	mac_ring_freeall(mip);
4318 	/* Free the block of group data strutures */
4319 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4320 }
4321 
4322 /*
4323  * Associate a MAC address with a receive group.
4324  *
4325  * The return value of this function should always be checked properly, because
4326  * any type of failure could cause unexpected results. A group can be added
4327  * or removed with a MAC address only after it has been reserved. Ideally,
4328  * a successful reservation always leads to calling mac_group_addmac() to
4329  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4330  * always imply that the group is functioning abnormally.
4331  *
4332  * Currently this function is called everywhere, and it reflects assumptions
4333  * about MAC addresses in the implementation. CR 6735196.
4334  */
4335 int
4336 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4337 {
4338 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4339 	ASSERT(group->mrg_info.mgi_addmac != NULL);
4340 
4341 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4342 }
4343 
4344 /*
4345  * Remove the association between MAC address and receive group.
4346  */
4347 int
4348 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4349 {
4350 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4351 	ASSERT(group->mrg_info.mgi_remmac != NULL);
4352 
4353 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4354 }
4355 
4356 /*
4357  * This is the entry point for packets transmitted through the bridging code.
4358  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4359  * pointer may be NULL to select the default ring.
4360  */
4361 mblk_t *
4362 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4363 {
4364 	mac_handle_t mh;
4365 
4366 	/*
4367 	 * Once we take a reference on the bridge link, the bridge
4368 	 * module itself can't unload, so the callback pointers are
4369 	 * stable.
4370 	 */
4371 	mutex_enter(&mip->mi_bridge_lock);
4372 	if ((mh = mip->mi_bridge_link) != NULL)
4373 		mac_bridge_ref_cb(mh, B_TRUE);
4374 	mutex_exit(&mip->mi_bridge_lock);
4375 	if (mh == NULL) {
4376 		MAC_RING_TX(mip, rh, mp, mp);
4377 	} else {
4378 		mp = mac_bridge_tx_cb(mh, rh, mp);
4379 		mac_bridge_ref_cb(mh, B_FALSE);
4380 	}
4381 
4382 	return (mp);
4383 }
4384 
4385 /*
4386  * Find a ring from its index.
4387  */
4388 mac_ring_handle_t
4389 mac_find_ring(mac_group_handle_t gh, int index)
4390 {
4391 	mac_group_t *group = (mac_group_t *)gh;
4392 	mac_ring_t *ring = group->mrg_rings;
4393 
4394 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4395 		if (ring->mr_index == index)
4396 			break;
4397 
4398 	return ((mac_ring_handle_t)ring);
4399 }
4400 /*
4401  * Add a ring to an existing group.
4402  *
4403  * The ring must be either passed directly (for example if the ring
4404  * movement is initiated by the framework), or specified through a driver
4405  * index (for example when the ring is added by the driver.
4406  *
4407  * The caller needs to call mac_perim_enter() before calling this function.
4408  */
4409 int
4410 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4411 {
4412 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4413 	mac_capab_rings_t *cap_rings;
4414 	boolean_t driver_call = (ring == NULL);
4415 	mac_group_type_t group_type;
4416 	int ret = 0;
4417 	flow_entry_t *flent;
4418 
4419 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4420 
4421 	switch (group->mrg_type) {
4422 	case MAC_RING_TYPE_RX:
4423 		cap_rings = &mip->mi_rx_rings_cap;
4424 		group_type = mip->mi_rx_group_type;
4425 		break;
4426 	case MAC_RING_TYPE_TX:
4427 		cap_rings = &mip->mi_tx_rings_cap;
4428 		group_type = mip->mi_tx_group_type;
4429 		break;
4430 	default:
4431 		ASSERT(B_FALSE);
4432 	}
4433 
4434 	/*
4435 	 * There should be no ring with the same ring index in the target
4436 	 * group.
4437 	 */
4438 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4439 	    driver_call ? index : ring->mr_index) == NULL);
4440 
4441 	if (driver_call) {
4442 		/*
4443 		 * The function is called as a result of a request from
4444 		 * a driver to add a ring to an existing group, for example
4445 		 * from the aggregation driver. Allocate a new mac_ring_t
4446 		 * for that ring.
4447 		 */
4448 		ring = mac_init_ring(mip, group, index, cap_rings);
4449 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4450 	} else {
4451 		/*
4452 		 * The function is called as a result of a MAC layer request
4453 		 * to add a ring to an existing group. In this case the
4454 		 * ring is being moved between groups, which requires
4455 		 * the underlying driver to support dynamic grouping,
4456 		 * and the mac_ring_t already exists.
4457 		 */
4458 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4459 		ASSERT(group->mrg_driver == NULL ||
4460 		    cap_rings->mr_gaddring != NULL);
4461 		ASSERT(ring->mr_gh == NULL);
4462 	}
4463 
4464 	/*
4465 	 * At this point the ring should not be in use, and it should be
4466 	 * of the right for the target group.
4467 	 */
4468 	ASSERT(ring->mr_state < MR_INUSE);
4469 	ASSERT(ring->mr_srs == NULL);
4470 	ASSERT(ring->mr_type == group->mrg_type);
4471 
4472 	if (!driver_call) {
4473 		/*
4474 		 * Add the driver level hardware ring if the process was not
4475 		 * initiated by the driver, and the target group is not the
4476 		 * group.
4477 		 */
4478 		if (group->mrg_driver != NULL) {
4479 			cap_rings->mr_gaddring(group->mrg_driver,
4480 			    ring->mr_driver, ring->mr_type);
4481 		}
4482 
4483 		/*
4484 		 * Insert the ring ahead existing rings.
4485 		 */
4486 		ring->mr_next = group->mrg_rings;
4487 		group->mrg_rings = ring;
4488 		ring->mr_gh = (mac_group_handle_t)group;
4489 		group->mrg_cur_count++;
4490 	}
4491 
4492 	/*
4493 	 * If the group has not been actively used, we're done.
4494 	 */
4495 	if (group->mrg_index != -1 &&
4496 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4497 		return (0);
4498 
4499 	/*
4500 	 * Start the ring if needed. Failure causes to undo the grouping action.
4501 	 */
4502 	if (ring->mr_state != MR_INUSE) {
4503 		if ((ret = mac_start_ring(ring)) != 0) {
4504 			if (!driver_call) {
4505 				cap_rings->mr_gremring(group->mrg_driver,
4506 				    ring->mr_driver, ring->mr_type);
4507 			}
4508 			group->mrg_cur_count--;
4509 			group->mrg_rings = ring->mr_next;
4510 
4511 			ring->mr_gh = NULL;
4512 
4513 			if (driver_call)
4514 				mac_ring_free(mip, ring);
4515 
4516 			return (ret);
4517 		}
4518 	}
4519 
4520 	/*
4521 	 * Set up SRS/SR according to the ring type.
4522 	 */
4523 	switch (ring->mr_type) {
4524 	case MAC_RING_TYPE_RX:
4525 		/*
4526 		 * Setup SRS on top of the new ring if the group is
4527 		 * reserved for someones exclusive use.
4528 		 */
4529 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4530 			mac_client_impl_t *mcip;
4531 
4532 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4533 			/*
4534 			 * Even though this group is reserved we migth still
4535 			 * have multiple clients, i.e a VLAN shares the
4536 			 * group with the primary mac client.
4537 			 */
4538 			if (mcip != NULL) {
4539 				flent = mcip->mci_flent;
4540 				ASSERT(flent->fe_rx_srs_cnt > 0);
4541 				mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4542 				mac_fanout_setup(mcip, flent,
4543 				    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4544 				    mcip, NULL, NULL);
4545 			} else {
4546 				ring->mr_classify_type = MAC_SW_CLASSIFIER;
4547 			}
4548 		}
4549 		break;
4550 	case MAC_RING_TYPE_TX:
4551 	{
4552 		mac_grp_client_t	*mgcp = group->mrg_clients;
4553 		mac_client_impl_t	*mcip;
4554 		mac_soft_ring_set_t	*mac_srs;
4555 		mac_srs_tx_t		*tx;
4556 
4557 		if (MAC_GROUP_NO_CLIENT(group)) {
4558 			if (ring->mr_state == MR_INUSE)
4559 				mac_stop_ring(ring);
4560 			ring->mr_flag = 0;
4561 			break;
4562 		}
4563 		/*
4564 		 * If the rings are being moved to a group that has
4565 		 * clients using it, then add the new rings to the
4566 		 * clients SRS.
4567 		 */
4568 		while (mgcp != NULL) {
4569 			boolean_t	is_aggr;
4570 
4571 			mcip = mgcp->mgc_client;
4572 			flent = mcip->mci_flent;
4573 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4574 			mac_srs = MCIP_TX_SRS(mcip);
4575 			tx = &mac_srs->srs_tx;
4576 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4577 			/*
4578 			 * If we are  growing from 1 to multiple rings.
4579 			 */
4580 			if (tx->st_mode == SRS_TX_BW ||
4581 			    tx->st_mode == SRS_TX_SERIALIZE ||
4582 			    tx->st_mode == SRS_TX_DEFAULT) {
4583 				mac_ring_t	*tx_ring = tx->st_arg2;
4584 
4585 				tx->st_arg2 = NULL;
4586 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4587 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4588 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4589 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4590 					    SRS_TX_BW_FANOUT;
4591 				} else {
4592 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
4593 					    SRS_TX_FANOUT;
4594 				}
4595 				tx->st_func = mac_tx_get_func(tx->st_mode);
4596 			}
4597 			mac_tx_srs_add_ring(mac_srs, ring);
4598 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4599 			    mac_rx_deliver, mcip, NULL, NULL);
4600 			mac_tx_client_restart((mac_client_handle_t)mcip);
4601 			mgcp = mgcp->mgc_next;
4602 		}
4603 		break;
4604 	}
4605 	default:
4606 		ASSERT(B_FALSE);
4607 	}
4608 	/*
4609 	 * For aggr, the default ring will be NULL to begin with. If it
4610 	 * is NULL, then pick the first ring that gets added as the
4611 	 * default ring. Any ring in an aggregation can be removed at
4612 	 * any time (by the user action of removing a link) and if the
4613 	 * current default ring gets removed, then a new one gets
4614 	 * picked (see i_mac_group_rem_ring()).
4615 	 */
4616 	if (mip->mi_state_flags & MIS_IS_AGGR &&
4617 	    mip->mi_default_tx_ring == NULL &&
4618 	    ring->mr_type == MAC_RING_TYPE_TX) {
4619 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4620 	}
4621 
4622 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
4623 	return (0);
4624 }
4625 
4626 /*
4627  * Remove a ring from it's current group. MAC internal function for dynamic
4628  * grouping.
4629  *
4630  * The caller needs to call mac_perim_enter() before calling this function.
4631  */
4632 void
4633 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4634     boolean_t driver_call)
4635 {
4636 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4637 	mac_capab_rings_t *cap_rings = NULL;
4638 	mac_group_type_t group_type;
4639 
4640 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4641 
4642 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4643 	    ring->mr_index) == (mac_ring_handle_t)ring);
4644 	ASSERT((mac_group_t *)ring->mr_gh == group);
4645 	ASSERT(ring->mr_type == group->mrg_type);
4646 
4647 	if (ring->mr_state == MR_INUSE)
4648 		mac_stop_ring(ring);
4649 	switch (ring->mr_type) {
4650 	case MAC_RING_TYPE_RX:
4651 		group_type = mip->mi_rx_group_type;
4652 		cap_rings = &mip->mi_rx_rings_cap;
4653 
4654 		/*
4655 		 * Only hardware classified packets hold a reference to the
4656 		 * ring all the way up the Rx path. mac_rx_srs_remove()
4657 		 * will take care of quiescing the Rx path and removing the
4658 		 * SRS. The software classified path neither holds a reference
4659 		 * nor any association with the ring in mac_rx.
4660 		 */
4661 		if (ring->mr_srs != NULL) {
4662 			mac_rx_srs_remove(ring->mr_srs);
4663 			ring->mr_srs = NULL;
4664 		}
4665 
4666 		break;
4667 	case MAC_RING_TYPE_TX:
4668 	{
4669 		mac_grp_client_t	*mgcp;
4670 		mac_client_impl_t	*mcip;
4671 		mac_soft_ring_set_t	*mac_srs;
4672 		mac_srs_tx_t		*tx;
4673 		mac_ring_t		*rem_ring;
4674 		mac_group_t		*defgrp;
4675 		uint_t			ring_info = 0;
4676 
4677 		/*
4678 		 * For TX this function is invoked in three
4679 		 * cases:
4680 		 *
4681 		 * 1) In the case of a failure during the
4682 		 * initial creation of a group when a share is
4683 		 * associated with a MAC client. So the SRS is not
4684 		 * yet setup, and will be setup later after the
4685 		 * group has been reserved and populated.
4686 		 *
4687 		 * 2) From mac_release_tx_group() when freeing
4688 		 * a TX SRS.
4689 		 *
4690 		 * 3) In the case of aggr, when a port gets removed,
4691 		 * the pseudo Tx rings that it exposed gets removed.
4692 		 *
4693 		 * In the first two cases the SRS and its soft
4694 		 * rings are already quiesced.
4695 		 */
4696 		if (driver_call) {
4697 			mac_client_impl_t *mcip;
4698 			mac_soft_ring_set_t *mac_srs;
4699 			mac_soft_ring_t *sringp;
4700 			mac_srs_tx_t *srs_tx;
4701 
4702 			if (mip->mi_state_flags & MIS_IS_AGGR &&
4703 			    mip->mi_default_tx_ring ==
4704 			    (mac_ring_handle_t)ring) {
4705 				/* pick a new default Tx ring */
4706 				mip->mi_default_tx_ring =
4707 				    (group->mrg_rings != ring) ?
4708 				    (mac_ring_handle_t)group->mrg_rings :
4709 				    (mac_ring_handle_t)(ring->mr_next);
4710 			}
4711 			/* Presently only aggr case comes here */
4712 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4713 				break;
4714 
4715 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4716 			ASSERT(mcip != NULL);
4717 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4718 			mac_srs = MCIP_TX_SRS(mcip);
4719 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4720 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4721 			srs_tx = &mac_srs->srs_tx;
4722 			/*
4723 			 * Wakeup any callers blocked on this
4724 			 * Tx ring due to flow control.
4725 			 */
4726 			sringp = srs_tx->st_soft_rings[ring->mr_index];
4727 			ASSERT(sringp != NULL);
4728 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4729 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4730 			mac_tx_srs_del_ring(mac_srs, ring);
4731 			mac_tx_client_restart((mac_client_handle_t)mcip);
4732 			break;
4733 		}
4734 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4735 		group_type = mip->mi_tx_group_type;
4736 		cap_rings = &mip->mi_tx_rings_cap;
4737 		/*
4738 		 * See if we need to take it out of the MAC clients using
4739 		 * this group
4740 		 */
4741 		if (MAC_GROUP_NO_CLIENT(group))
4742 			break;
4743 		mgcp = group->mrg_clients;
4744 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
4745 		while (mgcp != NULL) {
4746 			mcip = mgcp->mgc_client;
4747 			mac_srs = MCIP_TX_SRS(mcip);
4748 			tx = &mac_srs->srs_tx;
4749 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4750 			/*
4751 			 * If we are here when removing rings from the
4752 			 * defgroup, mac_reserve_tx_ring would have
4753 			 * already deleted the ring from the MAC
4754 			 * clients in the group.
4755 			 */
4756 			if (group != defgrp) {
4757 				mac_tx_invoke_callbacks(mcip,
4758 				    (mac_tx_cookie_t)
4759 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
4760 				mac_tx_srs_del_ring(mac_srs, ring);
4761 			}
4762 			/*
4763 			 * Additionally, if  we are left with only
4764 			 * one ring in the group after this, we need
4765 			 * to modify the mode etc. to. (We haven't
4766 			 * yet taken the ring out, so we check with 2).
4767 			 */
4768 			if (group->mrg_cur_count == 2) {
4769 				if (ring->mr_next == NULL)
4770 					rem_ring = group->mrg_rings;
4771 				else
4772 					rem_ring = ring->mr_next;
4773 				mac_tx_invoke_callbacks(mcip,
4774 				    (mac_tx_cookie_t)
4775 				    mac_tx_srs_get_soft_ring(mac_srs,
4776 				    rem_ring));
4777 				mac_tx_srs_del_ring(mac_srs, rem_ring);
4778 				if (rem_ring->mr_state != MR_INUSE) {
4779 					(void) mac_start_ring(rem_ring);
4780 				}
4781 				tx->st_arg2 = (void *)rem_ring;
4782 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4783 				ring_info = mac_hwring_getinfo(
4784 				    (mac_ring_handle_t)rem_ring);
4785 				/*
4786 				 * We are  shrinking from multiple
4787 				 * to 1 ring.
4788 				 */
4789 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4790 					tx->st_mode = SRS_TX_BW;
4791 				} else if (mac_tx_serialize ||
4792 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
4793 					tx->st_mode = SRS_TX_SERIALIZE;
4794 				} else {
4795 					tx->st_mode = SRS_TX_DEFAULT;
4796 				}
4797 				tx->st_func = mac_tx_get_func(tx->st_mode);
4798 			}
4799 			mac_tx_client_restart((mac_client_handle_t)mcip);
4800 			mgcp = mgcp->mgc_next;
4801 		}
4802 		break;
4803 	}
4804 	default:
4805 		ASSERT(B_FALSE);
4806 	}
4807 
4808 	/*
4809 	 * Remove the ring from the group.
4810 	 */
4811 	if (ring == group->mrg_rings)
4812 		group->mrg_rings = ring->mr_next;
4813 	else {
4814 		mac_ring_t *pre;
4815 
4816 		pre = group->mrg_rings;
4817 		while (pre->mr_next != ring)
4818 			pre = pre->mr_next;
4819 		pre->mr_next = ring->mr_next;
4820 	}
4821 	group->mrg_cur_count--;
4822 
4823 	if (!driver_call) {
4824 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4825 		ASSERT(group->mrg_driver == NULL ||
4826 		    cap_rings->mr_gremring != NULL);
4827 
4828 		/*
4829 		 * Remove the driver level hardware ring.
4830 		 */
4831 		if (group->mrg_driver != NULL) {
4832 			cap_rings->mr_gremring(group->mrg_driver,
4833 			    ring->mr_driver, ring->mr_type);
4834 		}
4835 	}
4836 
4837 	ring->mr_gh = NULL;
4838 	if (driver_call)
4839 		mac_ring_free(mip, ring);
4840 	else
4841 		ring->mr_flag = 0;
4842 }
4843 
4844 /*
4845  * Move a ring to the target group. If needed, remove the ring from the group
4846  * that it currently belongs to.
4847  *
4848  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4849  */
4850 static int
4851 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4852 {
4853 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4854 	int rv;
4855 
4856 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4857 	ASSERT(d_group != NULL);
4858 	ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4859 
4860 	if (s_group == d_group)
4861 		return (0);
4862 
4863 	/*
4864 	 * Remove it from current group first.
4865 	 */
4866 	if (s_group != NULL)
4867 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
4868 
4869 	/*
4870 	 * Add it to the new group.
4871 	 */
4872 	rv = i_mac_group_add_ring(d_group, ring, 0);
4873 	if (rv != 0) {
4874 		/*
4875 		 * Failed to add ring back to source group. If
4876 		 * that fails, the ring is stuck in limbo, log message.
4877 		 */
4878 		if (i_mac_group_add_ring(s_group, ring, 0)) {
4879 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4880 			    mip->mi_name, (void *)ring);
4881 		}
4882 	}
4883 
4884 	return (rv);
4885 }
4886 
4887 /*
4888  * Find a MAC address according to its value.
4889  */
4890 mac_address_t *
4891 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4892 {
4893 	mac_address_t *map;
4894 
4895 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4896 
4897 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4898 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4899 			break;
4900 	}
4901 
4902 	return (map);
4903 }
4904 
4905 /*
4906  * Check whether the MAC address is shared by multiple clients.
4907  */
4908 boolean_t
4909 mac_check_macaddr_shared(mac_address_t *map)
4910 {
4911 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4912 
4913 	return (map->ma_nusers > 1);
4914 }
4915 
4916 /*
4917  * Remove the specified MAC address from the MAC address list and free it.
4918  */
4919 static void
4920 mac_free_macaddr(mac_address_t *map)
4921 {
4922 	mac_impl_t *mip = map->ma_mip;
4923 
4924 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4925 	ASSERT(mip->mi_addresses != NULL);
4926 
4927 	map = mac_find_macaddr(mip, map->ma_addr);
4928 
4929 	ASSERT(map != NULL);
4930 	ASSERT(map->ma_nusers == 0);
4931 
4932 	if (map == mip->mi_addresses) {
4933 		mip->mi_addresses = map->ma_next;
4934 	} else {
4935 		mac_address_t *pre;
4936 
4937 		pre = mip->mi_addresses;
4938 		while (pre->ma_next != map)
4939 			pre = pre->ma_next;
4940 		pre->ma_next = map->ma_next;
4941 	}
4942 
4943 	kmem_free(map, sizeof (mac_address_t));
4944 }
4945 
4946 /*
4947  * Add a MAC address reference for a client. If the desired MAC address
4948  * exists, add a reference to it. Otherwise, add the new address by adding
4949  * it to a reserved group or setting promiscuous mode. Won't try different
4950  * group is the group is non-NULL, so the caller must explictly share
4951  * default group when needed.
4952  *
4953  * Note, the primary MAC address is initialized at registration time, so
4954  * to add it to default group only need to activate it if its reference
4955  * count is still zero. Also, some drivers may not have advertised RINGS
4956  * capability.
4957  */
4958 int
4959 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4960     boolean_t use_hw)
4961 {
4962 	mac_address_t *map;
4963 	int err = 0;
4964 	boolean_t allocated_map = B_FALSE;
4965 
4966 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4967 
4968 	map = mac_find_macaddr(mip, mac_addr);
4969 
4970 	/*
4971 	 * If the new MAC address has not been added. Allocate a new one
4972 	 * and set it up.
4973 	 */
4974 	if (map == NULL) {
4975 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4976 		map->ma_len = mip->mi_type->mt_addr_length;
4977 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4978 		map->ma_nusers = 0;
4979 		map->ma_group = group;
4980 		map->ma_mip = mip;
4981 
4982 		/* add the new MAC address to the head of the address list */
4983 		map->ma_next = mip->mi_addresses;
4984 		mip->mi_addresses = map;
4985 
4986 		allocated_map = B_TRUE;
4987 	}
4988 
4989 	ASSERT(map->ma_group == NULL || map->ma_group == group);
4990 	if (map->ma_group == NULL)
4991 		map->ma_group = group;
4992 
4993 	/*
4994 	 * If the MAC address is already in use, simply account for the
4995 	 * new client.
4996 	 */
4997 	if (map->ma_nusers++ > 0)
4998 		return (0);
4999 
5000 	/*
5001 	 * Activate this MAC address by adding it to the reserved group.
5002 	 */
5003 	if (group != NULL) {
5004 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
5005 		if (err == 0) {
5006 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5007 			return (0);
5008 		}
5009 	}
5010 
5011 	/*
5012 	 * The MAC address addition failed. If the client requires a
5013 	 * hardware classified MAC address, fail the operation.
5014 	 */
5015 	if (use_hw) {
5016 		err = ENOSPC;
5017 		goto bail;
5018 	}
5019 
5020 	/*
5021 	 * Try promiscuous mode.
5022 	 *
5023 	 * For drivers that don't advertise RINGS capability, do
5024 	 * nothing for the primary address.
5025 	 */
5026 	if ((group == NULL) &&
5027 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5028 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5029 		return (0);
5030 	}
5031 
5032 	/*
5033 	 * Enable promiscuous mode in order to receive traffic
5034 	 * to the new MAC address.
5035 	 */
5036 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5037 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5038 		return (0);
5039 	}
5040 
5041 	/*
5042 	 * Free the MAC address that could not be added. Don't free
5043 	 * a pre-existing address, it could have been the entry
5044 	 * for the primary MAC address which was pre-allocated by
5045 	 * mac_init_macaddr(), and which must remain on the list.
5046 	 */
5047 bail:
5048 	map->ma_nusers--;
5049 	if (allocated_map)
5050 		mac_free_macaddr(map);
5051 	return (err);
5052 }
5053 
5054 /*
5055  * Remove a reference to a MAC address. This may cause to remove the MAC
5056  * address from an associated group or to turn off promiscuous mode.
5057  * The caller needs to handle the failure properly.
5058  */
5059 int
5060 mac_remove_macaddr(mac_address_t *map)
5061 {
5062 	mac_impl_t *mip = map->ma_mip;
5063 	int err = 0;
5064 
5065 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5066 
5067 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5068 
5069 	/*
5070 	 * If it's not the last client using this MAC address, only update
5071 	 * the MAC clients count.
5072 	 */
5073 	if (--map->ma_nusers > 0)
5074 		return (0);
5075 
5076 	/*
5077 	 * The MAC address is no longer used by any MAC client, so remove
5078 	 * it from its associated group, or turn off promiscuous mode
5079 	 * if it was enabled for the MAC address.
5080 	 */
5081 	switch (map->ma_type) {
5082 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5083 		/*
5084 		 * Don't free the preset primary address for drivers that
5085 		 * don't advertise RINGS capability.
5086 		 */
5087 		if (map->ma_group == NULL)
5088 			return (0);
5089 
5090 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5091 		if (err == 0)
5092 			map->ma_group = NULL;
5093 		break;
5094 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5095 		err = i_mac_promisc_set(mip, B_FALSE);
5096 		break;
5097 	default:
5098 		ASSERT(B_FALSE);
5099 	}
5100 
5101 	if (err != 0)
5102 		return (err);
5103 
5104 	/*
5105 	 * We created MAC address for the primary one at registration, so we
5106 	 * won't free it here. mac_fini_macaddr() will take care of it.
5107 	 */
5108 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5109 		mac_free_macaddr(map);
5110 
5111 	return (0);
5112 }
5113 
5114 /*
5115  * Update an existing MAC address. The caller need to make sure that the new
5116  * value has not been used.
5117  */
5118 int
5119 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5120 {
5121 	mac_impl_t *mip = map->ma_mip;
5122 	int err = 0;
5123 
5124 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5125 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5126 
5127 	switch (map->ma_type) {
5128 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5129 		/*
5130 		 * Update the primary address for drivers that are not
5131 		 * RINGS capable.
5132 		 */
5133 		if (mip->mi_rx_groups == NULL) {
5134 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5135 			    mac_addr);
5136 			if (err != 0)
5137 				return (err);
5138 			break;
5139 		}
5140 
5141 		/*
5142 		 * If this MAC address is not currently in use,
5143 		 * simply break out and update the value.
5144 		 */
5145 		if (map->ma_nusers == 0)
5146 			break;
5147 
5148 		/*
5149 		 * Need to replace the MAC address associated with a group.
5150 		 */
5151 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5152 		if (err != 0)
5153 			return (err);
5154 
5155 		err = mac_group_addmac(map->ma_group, mac_addr);
5156 
5157 		/*
5158 		 * Failure hints hardware error. The MAC layer needs to
5159 		 * have error notification facility to handle this.
5160 		 * Now, simply try to restore the value.
5161 		 */
5162 		if (err != 0)
5163 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5164 
5165 		break;
5166 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5167 		/*
5168 		 * Need to do nothing more if in promiscuous mode.
5169 		 */
5170 		break;
5171 	default:
5172 		ASSERT(B_FALSE);
5173 	}
5174 
5175 	/*
5176 	 * Successfully replaced the MAC address.
5177 	 */
5178 	if (err == 0)
5179 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5180 
5181 	return (err);
5182 }
5183 
5184 /*
5185  * Freshen the MAC address with new value. Its caller must have updated the
5186  * hardware MAC address before calling this function.
5187  * This funcitons is supposed to be used to handle the MAC address change
5188  * notification from underlying drivers.
5189  */
5190 void
5191 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5192 {
5193 	mac_impl_t *mip = map->ma_mip;
5194 
5195 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5196 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5197 
5198 	/*
5199 	 * Freshen the MAC address with new value.
5200 	 */
5201 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5202 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5203 
5204 	/*
5205 	 * Update all MAC clients that share this MAC address.
5206 	 */
5207 	mac_unicast_update_clients(mip, map);
5208 }
5209 
5210 /*
5211  * Set up the primary MAC address.
5212  */
5213 void
5214 mac_init_macaddr(mac_impl_t *mip)
5215 {
5216 	mac_address_t *map;
5217 
5218 	/*
5219 	 * The reference count is initialized to zero, until it's really
5220 	 * activated.
5221 	 */
5222 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5223 	map->ma_len = mip->mi_type->mt_addr_length;
5224 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5225 
5226 	/*
5227 	 * If driver advertises RINGS capability, it shouldn't have initialized
5228 	 * its primary MAC address. For other drivers, including VNIC, the
5229 	 * primary address must work after registration.
5230 	 */
5231 	if (mip->mi_rx_groups == NULL)
5232 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5233 
5234 	map->ma_mip = mip;
5235 
5236 	mip->mi_addresses = map;
5237 }
5238 
5239 /*
5240  * Clean up the primary MAC address. Note, only one primary MAC address
5241  * is allowed. All other MAC addresses must have been freed appropriately.
5242  */
5243 void
5244 mac_fini_macaddr(mac_impl_t *mip)
5245 {
5246 	mac_address_t *map = mip->mi_addresses;
5247 
5248 	if (map == NULL)
5249 		return;
5250 
5251 	/*
5252 	 * If mi_addresses is initialized, there should be exactly one
5253 	 * entry left on the list with no users.
5254 	 */
5255 	ASSERT(map->ma_nusers == 0);
5256 	ASSERT(map->ma_next == NULL);
5257 
5258 	kmem_free(map, sizeof (mac_address_t));
5259 	mip->mi_addresses = NULL;
5260 }
5261 
5262 /*
5263  * Logging related functions.
5264  *
5265  * Note that Kernel statistics have been extended to maintain fine
5266  * granularity of statistics viz. hardware lane, software lane, fanout
5267  * stats etc. However, extended accounting continues to support only
5268  * aggregate statistics like before.
5269  */
5270 
5271 /* Write the flow description to a netinfo_t record */
5272 static netinfo_t *
5273 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5274 {
5275 	netinfo_t		*ninfo;
5276 	net_desc_t		*ndesc;
5277 	flow_desc_t		*fdesc;
5278 	mac_resource_props_t	*mrp;
5279 
5280 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5281 	if (ninfo == NULL)
5282 		return (NULL);
5283 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5284 	if (ndesc == NULL) {
5285 		kmem_free(ninfo, sizeof (netinfo_t));
5286 		return (NULL);
5287 	}
5288 
5289 	/*
5290 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5291 	 * Updates to the fe_flow_desc are done under the fe_lock
5292 	 */
5293 	mutex_enter(&flent->fe_lock);
5294 	fdesc = &flent->fe_flow_desc;
5295 	mrp = &flent->fe_resource_props;
5296 
5297 	ndesc->nd_name = flent->fe_flow_name;
5298 	ndesc->nd_devname = mcip->mci_name;
5299 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5300 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5301 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5302 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5303 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5304 	if (ndesc->nd_isv4) {
5305 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5306 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5307 	} else {
5308 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5309 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5310 	}
5311 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5312 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5313 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5314 	mutex_exit(&flent->fe_lock);
5315 
5316 	ninfo->ni_record = ndesc;
5317 	ninfo->ni_size = sizeof (net_desc_t);
5318 	ninfo->ni_type = EX_NET_FLDESC_REC;
5319 
5320 	return (ninfo);
5321 }
5322 
5323 /* Write the flow statistics to a netinfo_t record */
5324 static netinfo_t *
5325 mac_write_flow_stats(flow_entry_t *flent)
5326 {
5327 	netinfo_t		*ninfo;
5328 	net_stat_t		*nstat;
5329 	mac_soft_ring_set_t	*mac_srs;
5330 	mac_rx_stats_t		*mac_rx_stat;
5331 	mac_tx_stats_t		*mac_tx_stat;
5332 	int			i;
5333 
5334 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5335 	if (ninfo == NULL)
5336 		return (NULL);
5337 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5338 	if (nstat == NULL) {
5339 		kmem_free(ninfo, sizeof (netinfo_t));
5340 		return (NULL);
5341 	}
5342 
5343 	nstat->ns_name = flent->fe_flow_name;
5344 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5345 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5346 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5347 
5348 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5349 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5350 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5351 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5352 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5353 	}
5354 
5355 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5356 	if (mac_srs != NULL) {
5357 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5358 
5359 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5360 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5361 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5362 	}
5363 
5364 	ninfo->ni_record = nstat;
5365 	ninfo->ni_size = sizeof (net_stat_t);
5366 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5367 
5368 	return (ninfo);
5369 }
5370 
5371 /* Write the link description to a netinfo_t record */
5372 static netinfo_t *
5373 mac_write_link_desc(mac_client_impl_t *mcip)
5374 {
5375 	netinfo_t		*ninfo;
5376 	net_desc_t		*ndesc;
5377 	flow_entry_t		*flent = mcip->mci_flent;
5378 
5379 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5380 	if (ninfo == NULL)
5381 		return (NULL);
5382 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5383 	if (ndesc == NULL) {
5384 		kmem_free(ninfo, sizeof (netinfo_t));
5385 		return (NULL);
5386 	}
5387 
5388 	ndesc->nd_name = mcip->mci_name;
5389 	ndesc->nd_devname = mcip->mci_name;
5390 	ndesc->nd_isv4 = B_TRUE;
5391 	/*
5392 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5393 	 * Updates to the fe_flow_desc are done under the fe_lock
5394 	 * after removing the flent from the flow table.
5395 	 */
5396 	mutex_enter(&flent->fe_lock);
5397 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5398 	mutex_exit(&flent->fe_lock);
5399 
5400 	ninfo->ni_record = ndesc;
5401 	ninfo->ni_size = sizeof (net_desc_t);
5402 	ninfo->ni_type = EX_NET_LNDESC_REC;
5403 
5404 	return (ninfo);
5405 }
5406 
5407 /* Write the link statistics to a netinfo_t record */
5408 static netinfo_t *
5409 mac_write_link_stats(mac_client_impl_t *mcip)
5410 {
5411 	netinfo_t		*ninfo;
5412 	net_stat_t		*nstat;
5413 	flow_entry_t		*flent;
5414 	mac_soft_ring_set_t	*mac_srs;
5415 	mac_rx_stats_t		*mac_rx_stat;
5416 	mac_tx_stats_t		*mac_tx_stat;
5417 	int			i;
5418 
5419 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5420 	if (ninfo == NULL)
5421 		return (NULL);
5422 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5423 	if (nstat == NULL) {
5424 		kmem_free(ninfo, sizeof (netinfo_t));
5425 		return (NULL);
5426 	}
5427 
5428 	nstat->ns_name = mcip->mci_name;
5429 	flent = mcip->mci_flent;
5430 	if (flent != NULL)  {
5431 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5432 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5433 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5434 
5435 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5436 			    mac_rx_stat->mrs_pollbytes +
5437 			    mac_rx_stat->mrs_lclbytes;
5438 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5439 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5440 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5441 		}
5442 	}
5443 
5444 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5445 	if (mac_srs != NULL) {
5446 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5447 
5448 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5449 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5450 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5451 	}
5452 
5453 	ninfo->ni_record = nstat;
5454 	ninfo->ni_size = sizeof (net_stat_t);
5455 	ninfo->ni_type = EX_NET_LNSTAT_REC;
5456 
5457 	return (ninfo);
5458 }
5459 
5460 typedef struct i_mac_log_state_s {
5461 	boolean_t	mi_last;
5462 	int		mi_fenable;
5463 	int		mi_lenable;
5464 	list_t		*mi_list;
5465 } i_mac_log_state_t;
5466 
5467 /*
5468  * For a given flow, if the description has not been logged before, do it now.
5469  * If it is a VNIC, then we have collected information about it from the MAC
5470  * table, so skip it.
5471  *
5472  * Called through mac_flow_walk_nolock()
5473  *
5474  * Return 0 if successful.
5475  */
5476 static int
5477 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5478 {
5479 	mac_client_impl_t	*mcip = flent->fe_mcip;
5480 	i_mac_log_state_t	*lstate = arg;
5481 	netinfo_t		*ninfo;
5482 
5483 	if (mcip == NULL)
5484 		return (0);
5485 
5486 	/*
5487 	 * If the name starts with "vnic", and fe_user_generated is true (to
5488 	 * exclude the mcast and active flow entries created implicitly for
5489 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5490 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5491 	 */
5492 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5493 	    (flent->fe_type & FLOW_USER) != 0) {
5494 		return (0);
5495 	}
5496 
5497 	if (!flent->fe_desc_logged) {
5498 		/*
5499 		 * We don't return error because we want to continue the
5500 		 * walk in case this is the last walk which means we
5501 		 * need to reset fe_desc_logged in all the flows.
5502 		 */
5503 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5504 			return (0);
5505 		list_insert_tail(lstate->mi_list, ninfo);
5506 		flent->fe_desc_logged = B_TRUE;
5507 	}
5508 
5509 	/*
5510 	 * Regardless of the error, we want to proceed in case we have to
5511 	 * reset fe_desc_logged.
5512 	 */
5513 	ninfo = mac_write_flow_stats(flent);
5514 	if (ninfo == NULL)
5515 		return (-1);
5516 
5517 	list_insert_tail(lstate->mi_list, ninfo);
5518 
5519 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5520 		flent->fe_desc_logged = B_FALSE;
5521 
5522 	return (0);
5523 }
5524 
5525 /*
5526  * Log the description for each mac client of this mac_impl_t, if it
5527  * hasn't already been done. Additionally, log statistics for the link as
5528  * well. Walk the flow table and log information for each flow as well.
5529  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5530  * also fe_desc_logged, if flow logging is on) since we want to log the
5531  * description if and when logging is restarted.
5532  *
5533  * Return 0 upon success or -1 upon failure
5534  */
5535 static int
5536 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5537 {
5538 	mac_client_impl_t	*mcip;
5539 	netinfo_t		*ninfo;
5540 
5541 	i_mac_perim_enter(mip);
5542 	/*
5543 	 * Only walk the client list for NIC and etherstub
5544 	 */
5545 	if ((mip->mi_state_flags & MIS_DISABLED) ||
5546 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
5547 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5548 		i_mac_perim_exit(mip);
5549 		return (0);
5550 	}
5551 
5552 	for (mcip = mip->mi_clients_list; mcip != NULL;
5553 	    mcip = mcip->mci_client_next) {
5554 		if (!MCIP_DATAPATH_SETUP(mcip))
5555 			continue;
5556 		if (lstate->mi_lenable) {
5557 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5558 				ninfo = mac_write_link_desc(mcip);
5559 				if (ninfo == NULL) {
5560 				/*
5561 				 * We can't terminate it if this is the last
5562 				 * walk, else there might be some links with
5563 				 * mi_desc_logged set to true, which means
5564 				 * their description won't be logged the next
5565 				 * time logging is started (similarly for the
5566 				 * flows within such links). We can continue
5567 				 * without walking the flow table (i.e. to
5568 				 * set fe_desc_logged to false) because we
5569 				 * won't have written any flow stuff for this
5570 				 * link as we haven't logged the link itself.
5571 				 */
5572 					i_mac_perim_exit(mip);
5573 					if (lstate->mi_last)
5574 						return (0);
5575 					else
5576 						return (-1);
5577 				}
5578 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5579 				list_insert_tail(lstate->mi_list, ninfo);
5580 			}
5581 		}
5582 
5583 		ninfo = mac_write_link_stats(mcip);
5584 		if (ninfo == NULL && !lstate->mi_last) {
5585 			i_mac_perim_exit(mip);
5586 			return (-1);
5587 		}
5588 		list_insert_tail(lstate->mi_list, ninfo);
5589 
5590 		if (lstate->mi_last)
5591 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5592 
5593 		if (lstate->mi_fenable) {
5594 			if (mcip->mci_subflow_tab != NULL) {
5595 				(void) mac_flow_walk_nolock(
5596 				    mcip->mci_subflow_tab, mac_log_flowinfo,
5597 				    lstate);
5598 			}
5599 		}
5600 	}
5601 	i_mac_perim_exit(mip);
5602 	return (0);
5603 }
5604 
5605 /*
5606  * modhash walker function to add a mac_impl_t to a list
5607  */
5608 /*ARGSUSED*/
5609 static uint_t
5610 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5611 {
5612 	list_t			*list = (list_t *)arg;
5613 	mac_impl_t		*mip = (mac_impl_t *)val;
5614 
5615 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5616 		list_insert_tail(list, mip);
5617 		mip->mi_ref++;
5618 	}
5619 
5620 	return (MH_WALK_CONTINUE);
5621 }
5622 
5623 void
5624 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5625 {
5626 	list_t			mac_impl_list;
5627 	mac_impl_t		*mip;
5628 	netinfo_t		*ninfo;
5629 
5630 	/* Create list of mac_impls */
5631 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5632 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5633 	    mi_node));
5634 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5635 	rw_exit(&i_mac_impl_lock);
5636 
5637 	/* Create log entries for each mac_impl */
5638 	for (mip = list_head(&mac_impl_list); mip != NULL;
5639 	    mip = list_next(&mac_impl_list, mip)) {
5640 		if (i_mac_impl_log(mip, lstate) != 0)
5641 			continue;
5642 	}
5643 
5644 	/* Remove elements and destroy list of mac_impls */
5645 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5646 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5647 		mip->mi_ref--;
5648 	}
5649 	rw_exit(&i_mac_impl_lock);
5650 	list_destroy(&mac_impl_list);
5651 
5652 	/*
5653 	 * Write log entries to files outside of locks, free associated
5654 	 * structures, and remove entries from the list.
5655 	 */
5656 	while ((ninfo = list_head(net_log_list)) != NULL) {
5657 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5658 		list_remove(net_log_list, ninfo);
5659 		kmem_free(ninfo->ni_record, ninfo->ni_size);
5660 		kmem_free(ninfo, sizeof (*ninfo));
5661 	}
5662 	list_destroy(net_log_list);
5663 }
5664 
5665 /*
5666  * The timer thread that runs every mac_logging_interval seconds and logs
5667  * link and/or flow information.
5668  */
5669 /* ARGSUSED */
5670 void
5671 mac_log_linkinfo(void *arg)
5672 {
5673 	i_mac_log_state_t	lstate;
5674 	list_t			net_log_list;
5675 
5676 	list_create(&net_log_list, sizeof (netinfo_t),
5677 	    offsetof(netinfo_t, ni_link));
5678 
5679 	rw_enter(&i_mac_impl_lock, RW_READER);
5680 	if (!mac_flow_log_enable && !mac_link_log_enable) {
5681 		rw_exit(&i_mac_impl_lock);
5682 		return;
5683 	}
5684 	lstate.mi_fenable = mac_flow_log_enable;
5685 	lstate.mi_lenable = mac_link_log_enable;
5686 	lstate.mi_last = B_FALSE;
5687 	lstate.mi_list = &net_log_list;
5688 
5689 	/* Write log entries for each mac_impl in the list */
5690 	i_mac_log_info(&net_log_list, &lstate);
5691 
5692 	if (mac_flow_log_enable || mac_link_log_enable) {
5693 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5694 		    SEC_TO_TICK(mac_logging_interval));
5695 	}
5696 }
5697 
5698 typedef struct i_mac_fastpath_state_s {
5699 	boolean_t	mf_disable;
5700 	int		mf_err;
5701 } i_mac_fastpath_state_t;
5702 
5703 /* modhash walker function to enable or disable fastpath */
5704 /*ARGSUSED*/
5705 static uint_t
5706 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5707     void *arg)
5708 {
5709 	i_mac_fastpath_state_t	*state = arg;
5710 	mac_handle_t		mh = (mac_handle_t)val;
5711 
5712 	if (state->mf_disable)
5713 		state->mf_err = mac_fastpath_disable(mh);
5714 	else
5715 		mac_fastpath_enable(mh);
5716 
5717 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5718 }
5719 
5720 /*
5721  * Start the logging timer.
5722  */
5723 int
5724 mac_start_logusage(mac_logtype_t type, uint_t interval)
5725 {
5726 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
5727 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5728 	int			err;
5729 
5730 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5731 	switch (type) {
5732 	case MAC_LOGTYPE_FLOW:
5733 		if (mac_flow_log_enable) {
5734 			rw_exit(&i_mac_impl_lock);
5735 			return (0);
5736 		}
5737 		/* FALLTHRU */
5738 	case MAC_LOGTYPE_LINK:
5739 		if (mac_link_log_enable) {
5740 			rw_exit(&i_mac_impl_lock);
5741 			return (0);
5742 		}
5743 		break;
5744 	default:
5745 		ASSERT(0);
5746 	}
5747 
5748 	/* Disable fastpath */
5749 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5750 	if ((err = dstate.mf_err) != 0) {
5751 		/* Reenable fastpath  */
5752 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5753 		rw_exit(&i_mac_impl_lock);
5754 		return (err);
5755 	}
5756 
5757 	switch (type) {
5758 	case MAC_LOGTYPE_FLOW:
5759 		mac_flow_log_enable = B_TRUE;
5760 		/* FALLTHRU */
5761 	case MAC_LOGTYPE_LINK:
5762 		mac_link_log_enable = B_TRUE;
5763 		break;
5764 	}
5765 
5766 	mac_logging_interval = interval;
5767 	rw_exit(&i_mac_impl_lock);
5768 	mac_log_linkinfo(NULL);
5769 	return (0);
5770 }
5771 
5772 /*
5773  * Stop the logging timer if both link and flow logging are turned off.
5774  */
5775 void
5776 mac_stop_logusage(mac_logtype_t type)
5777 {
5778 	i_mac_log_state_t	lstate;
5779 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5780 	list_t			net_log_list;
5781 
5782 	list_create(&net_log_list, sizeof (netinfo_t),
5783 	    offsetof(netinfo_t, ni_link));
5784 
5785 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5786 
5787 	lstate.mi_fenable = mac_flow_log_enable;
5788 	lstate.mi_lenable = mac_link_log_enable;
5789 	lstate.mi_list = &net_log_list;
5790 
5791 	/* Last walk */
5792 	lstate.mi_last = B_TRUE;
5793 
5794 	switch (type) {
5795 	case MAC_LOGTYPE_FLOW:
5796 		if (lstate.mi_fenable) {
5797 			ASSERT(mac_link_log_enable);
5798 			mac_flow_log_enable = B_FALSE;
5799 			mac_link_log_enable = B_FALSE;
5800 			break;
5801 		}
5802 		/* FALLTHRU */
5803 	case MAC_LOGTYPE_LINK:
5804 		if (!lstate.mi_lenable || mac_flow_log_enable) {
5805 			rw_exit(&i_mac_impl_lock);
5806 			return;
5807 		}
5808 		mac_link_log_enable = B_FALSE;
5809 		break;
5810 	default:
5811 		ASSERT(0);
5812 	}
5813 
5814 	/* Reenable fastpath */
5815 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5816 
5817 	(void) untimeout(mac_logging_timer);
5818 	mac_logging_timer = 0;
5819 
5820 	/* Write log entries for each mac_impl in the list */
5821 	i_mac_log_info(&net_log_list, &lstate);
5822 }
5823 
5824 /*
5825  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5826  */
5827 void
5828 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5829 {
5830 	pri_t			pri;
5831 	int			count;
5832 	mac_soft_ring_set_t	*mac_srs;
5833 
5834 	if (flent->fe_rx_srs_cnt <= 0)
5835 		return;
5836 
5837 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5838 	    SRST_FLOW) {
5839 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
5840 		    mcip->mci_max_pri,
5841 		    flent->fe_resource_props.mrp_priority);
5842 	} else {
5843 		pri = mcip->mci_max_pri;
5844 	}
5845 
5846 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5847 		mac_srs = flent->fe_rx_srs[count];
5848 		mac_update_srs_priority(mac_srs, pri);
5849 	}
5850 	/*
5851 	 * If we have a Tx SRS, we need to modify all the threads associated
5852 	 * with it.
5853 	 */
5854 	if (flent->fe_tx_srs != NULL)
5855 		mac_update_srs_priority(flent->fe_tx_srs, pri);
5856 }
5857 
5858 /*
5859  * RX and TX rings are reserved according to different semantics depending
5860  * on the requests from the MAC clients and type of rings:
5861  *
5862  * On the Tx side, by default we reserve individual rings, independently from
5863  * the groups.
5864  *
5865  * On the Rx side, the reservation is at the granularity of the group
5866  * of rings, and used for v12n level 1 only. It has a special case for the
5867  * primary client.
5868  *
5869  * If a share is allocated to a MAC client, we allocate a TX group and an
5870  * RX group to the client, and assign TX rings and RX rings to these
5871  * groups according to information gathered from the driver through
5872  * the share capability.
5873  *
5874  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5875  * to allocate individual rings out of a group and program the hw classifier
5876  * based on IP address or higher level criteria.
5877  */
5878 
5879 /*
5880  * mac_reserve_tx_ring()
5881  * Reserve a unused ring by marking it with MR_INUSE state.
5882  * As reserved, the ring is ready to function.
5883  *
5884  * Notes for Hybrid I/O:
5885  *
5886  * If a specific ring is needed, it is specified through the desired_ring
5887  * argument. Otherwise that argument is set to NULL.
5888  * If the desired ring was previous allocated to another client, this
5889  * function swaps it with a new ring from the group of unassigned rings.
5890  */
5891 mac_ring_t *
5892 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5893 {
5894 	mac_group_t		*group;
5895 	mac_grp_client_t	*mgcp;
5896 	mac_client_impl_t	*mcip;
5897 	mac_soft_ring_set_t	*srs;
5898 
5899 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5900 
5901 	/*
5902 	 * Find an available ring and start it before changing its status.
5903 	 * The unassigned rings are at the end of the mi_tx_groups
5904 	 * array.
5905 	 */
5906 	group = MAC_DEFAULT_TX_GROUP(mip);
5907 
5908 	/* Can't take the default ring out of the default group */
5909 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5910 
5911 	if (desired_ring->mr_state == MR_FREE) {
5912 		ASSERT(MAC_GROUP_NO_CLIENT(group));
5913 		if (mac_start_ring(desired_ring) != 0)
5914 			return (NULL);
5915 		return (desired_ring);
5916 	}
5917 	/*
5918 	 * There are clients using this ring, so let's move the clients
5919 	 * away from using this ring.
5920 	 */
5921 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5922 		mcip = mgcp->mgc_client;
5923 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
5924 		srs = MCIP_TX_SRS(mcip);
5925 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5926 		mac_tx_invoke_callbacks(mcip,
5927 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5928 		    desired_ring));
5929 		mac_tx_srs_del_ring(srs, desired_ring);
5930 		mac_tx_client_restart((mac_client_handle_t)mcip);
5931 	}
5932 	return (desired_ring);
5933 }
5934 
5935 /*
5936  * For a reserved group with multiple clients, return the primary client.
5937  */
5938 static mac_client_impl_t *
5939 mac_get_grp_primary(mac_group_t *grp)
5940 {
5941 	mac_grp_client_t	*mgcp = grp->mrg_clients;
5942 	mac_client_impl_t	*mcip;
5943 
5944 	while (mgcp != NULL) {
5945 		mcip = mgcp->mgc_client;
5946 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5947 			return (mcip);
5948 		mgcp = mgcp->mgc_next;
5949 	}
5950 	return (NULL);
5951 }
5952 
5953 /*
5954  * Hybrid I/O specifies the ring that should be given to a share.
5955  * If the ring is already used by clients, then we need to release
5956  * the ring back to the default group so that we can give it to
5957  * the share. This means the clients using this ring now get a
5958  * replacement ring. If there aren't any replacement rings, this
5959  * function returns a failure.
5960  */
5961 static int
5962 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5963     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5964 {
5965 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
5966 	mac_resource_props_t	*mrp;
5967 	mac_client_impl_t	*mcip;
5968 	mac_group_t		*defgrp;
5969 	mac_ring_t		*tring;
5970 	mac_group_t		*tgrp;
5971 	int			i;
5972 	int			j;
5973 
5974 	mcip = MAC_GROUP_ONLY_CLIENT(group);
5975 	if (mcip == NULL)
5976 		mcip = mac_get_grp_primary(group);
5977 	ASSERT(mcip != NULL);
5978 	ASSERT(mcip->mci_share == NULL);
5979 
5980 	mrp = MCIP_RESOURCE_PROPS(mcip);
5981 	if (ring_type == MAC_RING_TYPE_RX) {
5982 		defgrp = mip->mi_rx_donor_grp;
5983 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5984 			/* Need to put this mac client in the default group */
5985 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5986 				return (ENOSPC);
5987 		} else {
5988 			/*
5989 			 * Switch this ring with some other ring from
5990 			 * the default group.
5991 			 */
5992 			for (tring = defgrp->mrg_rings; tring != NULL;
5993 			    tring = tring->mr_next) {
5994 				if (tring->mr_index == 0)
5995 					continue;
5996 				for (j = 0; j < nrings; j++) {
5997 					if (rings[j] == tring)
5998 						break;
5999 				}
6000 				if (j >= nrings)
6001 					break;
6002 			}
6003 			if (tring == NULL)
6004 				return (ENOSPC);
6005 			if (mac_group_mov_ring(mip, group, tring) != 0)
6006 				return (ENOSPC);
6007 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6008 				(void) mac_group_mov_ring(mip, defgrp, tring);
6009 				return (ENOSPC);
6010 			}
6011 		}
6012 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6013 		return (0);
6014 	}
6015 
6016 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6017 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6018 		/*
6019 		 * See if we can get a spare ring to replace the default
6020 		 * ring.
6021 		 */
6022 		if (defgrp->mrg_cur_count == 1) {
6023 			/*
6024 			 * Need to get a ring from another client, see if
6025 			 * there are any clients that can be moved to
6026 			 * the default group, thereby freeing some rings.
6027 			 */
6028 			for (i = 0; i < mip->mi_tx_group_count; i++) {
6029 				tgrp = &mip->mi_tx_groups[i];
6030 				if (tgrp->mrg_state ==
6031 				    MAC_GROUP_STATE_REGISTERED) {
6032 					continue;
6033 				}
6034 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6035 				if (mcip == NULL)
6036 					mcip = mac_get_grp_primary(tgrp);
6037 				ASSERT(mcip != NULL);
6038 				mrp = MCIP_RESOURCE_PROPS(mcip);
6039 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6040 					ASSERT(tgrp->mrg_cur_count == 1);
6041 					/*
6042 					 * If this ring is part of the
6043 					 * rings asked by the share we cannot
6044 					 * use it as the default ring.
6045 					 */
6046 					for (j = 0; j < nrings; j++) {
6047 						if (rings[j] == tgrp->mrg_rings)
6048 							break;
6049 					}
6050 					if (j < nrings)
6051 						continue;
6052 					mac_tx_client_quiesce(
6053 					    (mac_client_handle_t)mcip);
6054 					mac_tx_switch_group(mcip, tgrp,
6055 					    defgrp);
6056 					mac_tx_client_restart(
6057 					    (mac_client_handle_t)mcip);
6058 					break;
6059 				}
6060 			}
6061 			/*
6062 			 * All the rings are reserved, can't give up the
6063 			 * default ring.
6064 			 */
6065 			if (defgrp->mrg_cur_count <= 1)
6066 				return (ENOSPC);
6067 		}
6068 		/*
6069 		 * Swap the default ring with another.
6070 		 */
6071 		for (tring = defgrp->mrg_rings; tring != NULL;
6072 		    tring = tring->mr_next) {
6073 			/*
6074 			 * If this ring is part of the rings asked by the
6075 			 * share we cannot use it as the default ring.
6076 			 */
6077 			for (j = 0; j < nrings; j++) {
6078 				if (rings[j] == tring)
6079 					break;
6080 			}
6081 			if (j >= nrings)
6082 				break;
6083 		}
6084 		ASSERT(tring != NULL);
6085 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6086 		return (0);
6087 	}
6088 	/*
6089 	 * The Tx ring is with a group reserved by a MAC client. See if
6090 	 * we can swap it.
6091 	 */
6092 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6093 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6094 	if (mcip == NULL)
6095 		mcip = mac_get_grp_primary(group);
6096 	ASSERT(mcip !=  NULL);
6097 	mrp = MCIP_RESOURCE_PROPS(mcip);
6098 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6099 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6100 		ASSERT(group->mrg_cur_count == 1);
6101 		/* Put this mac client in the default group */
6102 		mac_tx_switch_group(mcip, group, defgrp);
6103 	} else {
6104 		/*
6105 		 * Switch this ring with some other ring from
6106 		 * the default group.
6107 		 */
6108 		for (tring = defgrp->mrg_rings; tring != NULL;
6109 		    tring = tring->mr_next) {
6110 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6111 				continue;
6112 			/*
6113 			 * If this ring is part of the rings asked by the
6114 			 * share we cannot use it for swapping.
6115 			 */
6116 			for (j = 0; j < nrings; j++) {
6117 				if (rings[j] == tring)
6118 					break;
6119 			}
6120 			if (j >= nrings)
6121 				break;
6122 		}
6123 		if (tring == NULL) {
6124 			mac_tx_client_restart((mac_client_handle_t)mcip);
6125 			return (ENOSPC);
6126 		}
6127 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6128 			mac_tx_client_restart((mac_client_handle_t)mcip);
6129 			return (ENOSPC);
6130 		}
6131 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6132 			(void) mac_group_mov_ring(mip, defgrp, tring);
6133 			mac_tx_client_restart((mac_client_handle_t)mcip);
6134 			return (ENOSPC);
6135 		}
6136 	}
6137 	mac_tx_client_restart((mac_client_handle_t)mcip);
6138 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6139 	return (0);
6140 }
6141 
6142 /*
6143  * Populate a zero-ring group with rings. If the share is non-NULL,
6144  * the rings are chosen according to that share.
6145  * Invoked after allocating a new RX or TX group through
6146  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6147  * Returns zero on success, an errno otherwise.
6148  */
6149 int
6150 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6151     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6152     uint32_t ringcnt)
6153 {
6154 	mac_ring_t **rings, *ring;
6155 	uint_t nrings;
6156 	int rv = 0, i = 0, j;
6157 
6158 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6159 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6160 	    (ring_type == MAC_RING_TYPE_TX &&
6161 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6162 
6163 	/*
6164 	 * First find the rings to allocate to the group.
6165 	 */
6166 	if (share != NULL) {
6167 		/* get rings through ms_squery() */
6168 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6169 		ASSERT(nrings != 0);
6170 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6171 		    KM_SLEEP);
6172 		mip->mi_share_capab.ms_squery(share, ring_type,
6173 		    (mac_ring_handle_t *)rings, &nrings);
6174 		for (i = 0; i < nrings; i++) {
6175 			/*
6176 			 * If we have given this ring to a non-default
6177 			 * group, we need to check if we can get this
6178 			 * ring.
6179 			 */
6180 			ring = rings[i];
6181 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6182 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6183 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6184 				    ring, rings, nrings) != 0) {
6185 					rv = ENOSPC;
6186 					goto bail;
6187 				}
6188 			}
6189 		}
6190 	} else {
6191 		/*
6192 		 * Pick one ring from default group.
6193 		 *
6194 		 * for now pick the second ring which requires the first ring
6195 		 * at index 0 to stay in the default group, since it is the
6196 		 * ring which carries the multicast traffic.
6197 		 * We need a better way for a driver to indicate this,
6198 		 * for example a per-ring flag.
6199 		 */
6200 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6201 		    KM_SLEEP);
6202 		for (ring = src_group->mrg_rings; ring != NULL;
6203 		    ring = ring->mr_next) {
6204 			if (ring_type == MAC_RING_TYPE_RX &&
6205 			    ring->mr_index == 0) {
6206 				continue;
6207 			}
6208 			if (ring_type == MAC_RING_TYPE_TX &&
6209 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6210 				continue;
6211 			}
6212 			rings[i++] = ring;
6213 			if (i == ringcnt)
6214 				break;
6215 		}
6216 		ASSERT(ring != NULL);
6217 		nrings = i;
6218 		/* Not enough rings as required */
6219 		if (nrings != ringcnt) {
6220 			rv = ENOSPC;
6221 			goto bail;
6222 		}
6223 	}
6224 
6225 	switch (ring_type) {
6226 	case MAC_RING_TYPE_RX:
6227 		if (src_group->mrg_cur_count - nrings < 1) {
6228 			/* we ran out of rings */
6229 			rv = ENOSPC;
6230 			goto bail;
6231 		}
6232 
6233 		/* move receive rings to new group */
6234 		for (i = 0; i < nrings; i++) {
6235 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6236 			if (rv != 0) {
6237 				/* move rings back on failure */
6238 				for (j = 0; j < i; j++) {
6239 					(void) mac_group_mov_ring(mip,
6240 					    src_group, rings[j]);
6241 				}
6242 				goto bail;
6243 			}
6244 		}
6245 		break;
6246 
6247 	case MAC_RING_TYPE_TX: {
6248 		mac_ring_t *tmp_ring;
6249 
6250 		/* move the TX rings to the new group */
6251 		for (i = 0; i < nrings; i++) {
6252 			/* get the desired ring */
6253 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6254 			if (tmp_ring == NULL) {
6255 				rv = ENOSPC;
6256 				goto bail;
6257 			}
6258 			ASSERT(tmp_ring == rings[i]);
6259 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6260 			if (rv != 0) {
6261 				/* cleanup on failure */
6262 				for (j = 0; j < i; j++) {
6263 					(void) mac_group_mov_ring(mip,
6264 					    MAC_DEFAULT_TX_GROUP(mip),
6265 					    rings[j]);
6266 				}
6267 				goto bail;
6268 			}
6269 		}
6270 		break;
6271 	}
6272 	}
6273 
6274 	/* add group to share */
6275 	if (share != NULL)
6276 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6277 
6278 bail:
6279 	/* free temporary array of rings */
6280 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6281 
6282 	return (rv);
6283 }
6284 
6285 void
6286 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6287 {
6288 	mac_grp_client_t *mgcp;
6289 
6290 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6291 		if (mgcp->mgc_client == mcip)
6292 			break;
6293 	}
6294 
6295 	VERIFY(mgcp == NULL);
6296 
6297 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6298 	mgcp->mgc_client = mcip;
6299 	mgcp->mgc_next = grp->mrg_clients;
6300 	grp->mrg_clients = mgcp;
6301 
6302 }
6303 
6304 void
6305 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6306 {
6307 	mac_grp_client_t *mgcp, **pprev;
6308 
6309 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6310 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6311 		if (mgcp->mgc_client == mcip)
6312 			break;
6313 	}
6314 
6315 	ASSERT(mgcp != NULL);
6316 
6317 	*pprev = mgcp->mgc_next;
6318 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6319 }
6320 
6321 /*
6322  * mac_reserve_rx_group()
6323  *
6324  * Finds an available group and exclusively reserves it for a client.
6325  * The group is chosen to suit the flow's resource controls (bandwidth and
6326  * fanout requirements) and the address type.
6327  * If the requestor is the pimary MAC then return the group with the
6328  * largest number of rings, otherwise the default ring when available.
6329  */
6330 mac_group_t *
6331 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6332 {
6333 	mac_share_handle_t	share = mcip->mci_share;
6334 	mac_impl_t		*mip = mcip->mci_mip;
6335 	mac_group_t		*grp = NULL;
6336 	int			i;
6337 	int			err = 0;
6338 	mac_address_t		*map;
6339 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6340 	int			nrings;
6341 	int			donor_grp_rcnt;
6342 	boolean_t		need_exclgrp = B_FALSE;
6343 	int			need_rings = 0;
6344 	mac_group_t		*candidate_grp = NULL;
6345 	mac_client_impl_t	*gclient;
6346 	mac_resource_props_t	*gmrp;
6347 	mac_group_t		*donorgrp = NULL;
6348 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6349 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6350 	boolean_t		isprimary;
6351 
6352 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6353 
6354 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6355 
6356 	/*
6357 	 * Check if a group already has this mac address (case of VLANs)
6358 	 * unless we are moving this MAC client from one group to another.
6359 	 */
6360 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6361 		if (map->ma_group != NULL)
6362 			return (map->ma_group);
6363 	}
6364 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6365 		return (NULL);
6366 	/*
6367 	 * If exclusive open, return NULL which will enable the
6368 	 * caller to use the default group.
6369 	 */
6370 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6371 		return (NULL);
6372 
6373 	/* For dynamic groups default unspecified to 1 */
6374 	if (rxhw && unspec &&
6375 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6376 		mrp->mrp_nrxrings = 1;
6377 	}
6378 	/*
6379 	 * For static grouping we allow only specifying rings=0 and
6380 	 * unspecified
6381 	 */
6382 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6383 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6384 		return (NULL);
6385 	}
6386 	if (rxhw) {
6387 		/*
6388 		 * We have explicitly asked for a group (with nrxrings,
6389 		 * if unspec).
6390 		 */
6391 		if (unspec || mrp->mrp_nrxrings > 0) {
6392 			need_exclgrp = B_TRUE;
6393 			need_rings = mrp->mrp_nrxrings;
6394 		} else if (mrp->mrp_nrxrings == 0) {
6395 			/*
6396 			 * We have asked for a software group.
6397 			 */
6398 			return (NULL);
6399 		}
6400 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
6401 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6402 		/*
6403 		 * If the primary is the only active client on this
6404 		 * mip and we have not asked for any rings, we give
6405 		 * it the default group so that the primary gets to
6406 		 * use all the rings.
6407 		 */
6408 		return (NULL);
6409 	}
6410 
6411 	/* The group that can donate rings */
6412 	donorgrp = mip->mi_rx_donor_grp;
6413 
6414 	/*
6415 	 * The number of rings that the default group can donate.
6416 	 * We need to leave at least one ring.
6417 	 */
6418 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6419 
6420 	/*
6421 	 * Try to exclusively reserve a RX group.
6422 	 *
6423 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6424 	 * client), try to reserve the a non-default RX group and give
6425 	 * it all the rings from the donor group, except the default ring
6426 	 *
6427 	 * For flows requiring HW_RING (unicast flow of other clients), try
6428 	 * to reserve non-default RX group with the specified number of
6429 	 * rings, if available.
6430 	 *
6431 	 * For flows that have not asked for software or hardware ring,
6432 	 * try to reserve a non-default group with 1 ring, if available.
6433 	 */
6434 	for (i = 1; i < mip->mi_rx_group_count; i++) {
6435 		grp = &mip->mi_rx_groups[i];
6436 
6437 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6438 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6439 
6440 		/*
6441 		 * Check if this group could be a candidate group for
6442 		 * eviction if we need a group for this MAC client,
6443 		 * but there aren't any. A candidate group is one
6444 		 * that didn't ask for an exclusive group, but got
6445 		 * one and it has enough rings (combined with what
6446 		 * the donor group can donate) for the new MAC
6447 		 * client
6448 		 */
6449 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6450 			/*
6451 			 * If the primary/donor group is not the default
6452 			 * group, don't bother looking for a candidate group.
6453 			 * If we don't have enough rings we will check
6454 			 * if the primary group can be vacated.
6455 			 */
6456 			if (candidate_grp == NULL &&
6457 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6458 				ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6459 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6460 				if (gclient == NULL)
6461 					gclient = mac_get_grp_primary(grp);
6462 				ASSERT(gclient != NULL);
6463 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6464 				if (gclient->mci_share == NULL &&
6465 				    (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6466 				    (unspec ||
6467 				    (grp->mrg_cur_count + donor_grp_rcnt >=
6468 				    need_rings))) {
6469 					candidate_grp = grp;
6470 				}
6471 			}
6472 			continue;
6473 		}
6474 		/*
6475 		 * This group could already be SHARED by other multicast
6476 		 * flows on this client. In that case, the group would
6477 		 * be shared and has already been started.
6478 		 */
6479 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6480 
6481 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6482 		    (mac_start_group(grp) != 0)) {
6483 			continue;
6484 		}
6485 
6486 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6487 			break;
6488 		ASSERT(grp->mrg_cur_count == 0);
6489 
6490 		/*
6491 		 * Populate the group. Rings should be taken
6492 		 * from the donor group.
6493 		 */
6494 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6495 
6496 		/*
6497 		 * If the donor group can't donate, let's just walk and
6498 		 * see if someone can vacate a group, so that we have
6499 		 * enough rings for this, unless we already have
6500 		 * identified a candiate group..
6501 		 */
6502 		if (nrings <= donor_grp_rcnt) {
6503 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6504 			    donorgrp, grp, share, nrings);
6505 			if (err == 0) {
6506 				/*
6507 				 * For a share i_mac_group_allocate_rings gets
6508 				 * the rings from the driver, let's populate
6509 				 * the property for the client now.
6510 				 */
6511 				if (share != NULL) {
6512 					mac_client_set_rings(
6513 					    (mac_client_handle_t)mcip,
6514 					    grp->mrg_cur_count, -1);
6515 				}
6516 				if (mac_is_primary_client(mcip) && !rxhw)
6517 					mip->mi_rx_donor_grp = grp;
6518 				break;
6519 			}
6520 		}
6521 
6522 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6523 		    mip->mi_name, int, grp->mrg_index, int, err);
6524 
6525 		/*
6526 		 * It's a dynamic group but the grouping operation
6527 		 * failed.
6528 		 */
6529 		mac_stop_group(grp);
6530 	}
6531 	/* We didn't find an exclusive group for this MAC client */
6532 	if (i >= mip->mi_rx_group_count) {
6533 
6534 		if (!need_exclgrp)
6535 			return (NULL);
6536 
6537 		/*
6538 		 * If we found a candidate group then we switch the
6539 		 * MAC client from the candidate_group to the default
6540 		 * group and give the group to this MAC client. If
6541 		 * we didn't find a candidate_group, check if the
6542 		 * primary is in its own group and if it can make way
6543 		 * for this MAC client.
6544 		 */
6545 		if (candidate_grp == NULL &&
6546 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6547 		    donorgrp->mrg_cur_count >= need_rings) {
6548 			candidate_grp = donorgrp;
6549 		}
6550 		if (candidate_grp != NULL) {
6551 			boolean_t	prim_grp = B_FALSE;
6552 
6553 			/*
6554 			 * Switch the MAC client from the candidate group
6555 			 * to the default group.. If this group was the
6556 			 * donor group, then after the switch we need
6557 			 * to update the donor group too.
6558 			 */
6559 			grp = candidate_grp;
6560 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6561 			if (gclient == NULL)
6562 				gclient = mac_get_grp_primary(grp);
6563 			if (grp == mip->mi_rx_donor_grp)
6564 				prim_grp = B_TRUE;
6565 			if (mac_rx_switch_group(gclient, grp,
6566 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6567 				return (NULL);
6568 			}
6569 			if (prim_grp) {
6570 				mip->mi_rx_donor_grp =
6571 				    MAC_DEFAULT_RX_GROUP(mip);
6572 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6573 			}
6574 
6575 
6576 			/*
6577 			 * Now give this group with the required rings
6578 			 * to this MAC client.
6579 			 */
6580 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6581 			if (mac_start_group(grp) != 0)
6582 				return (NULL);
6583 
6584 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6585 				return (grp);
6586 
6587 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6588 			ASSERT(grp->mrg_cur_count == 0);
6589 			ASSERT(donor_grp_rcnt >= need_rings);
6590 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6591 			    donorgrp, grp, share, need_rings);
6592 			if (err == 0) {
6593 				/*
6594 				 * For a share i_mac_group_allocate_rings gets
6595 				 * the rings from the driver, let's populate
6596 				 * the property for the client now.
6597 				 */
6598 				if (share != NULL) {
6599 					mac_client_set_rings(
6600 					    (mac_client_handle_t)mcip,
6601 					    grp->mrg_cur_count, -1);
6602 				}
6603 				DTRACE_PROBE2(rx__group__reserved,
6604 				    char *, mip->mi_name, int, grp->mrg_index);
6605 				return (grp);
6606 			}
6607 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6608 			    mip->mi_name, int, grp->mrg_index, int, err);
6609 			mac_stop_group(grp);
6610 		}
6611 		return (NULL);
6612 	}
6613 	ASSERT(grp != NULL);
6614 
6615 	DTRACE_PROBE2(rx__group__reserved,
6616 	    char *, mip->mi_name, int, grp->mrg_index);
6617 	return (grp);
6618 }
6619 
6620 /*
6621  * mac_rx_release_group()
6622  *
6623  * This is called when there are no clients left for the group.
6624  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6625  * and if it is a non default group, the shares are removed and
6626  * all rings are assigned back to default group.
6627  */
6628 void
6629 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6630 {
6631 	mac_impl_t		*mip = mcip->mci_mip;
6632 	mac_ring_t		*ring;
6633 
6634 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6635 
6636 	if (mip->mi_rx_donor_grp == group)
6637 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6638 
6639 	/*
6640 	 * This is the case where there are no clients left. Any
6641 	 * SRS etc on this group have also be quiesced.
6642 	 */
6643 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6644 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6645 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6646 			/*
6647 			 * Remove the SRS associated with the HW ring.
6648 			 * As a result, polling will be disabled.
6649 			 */
6650 			ring->mr_srs = NULL;
6651 		}
6652 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6653 		    ring->mr_state == MR_INUSE);
6654 		if (ring->mr_state == MR_INUSE) {
6655 			mac_stop_ring(ring);
6656 			ring->mr_flag = 0;
6657 		}
6658 	}
6659 
6660 	/* remove group from share */
6661 	if (mcip->mci_share != NULL) {
6662 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
6663 		    group->mrg_driver);
6664 	}
6665 
6666 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6667 		mac_ring_t *ring;
6668 
6669 		/*
6670 		 * Rings were dynamically allocated to group.
6671 		 * Move rings back to default group.
6672 		 */
6673 		while ((ring = group->mrg_rings) != NULL) {
6674 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6675 			    ring);
6676 		}
6677 	}
6678 	mac_stop_group(group);
6679 	/*
6680 	 * Possible improvement: See if we can assign the group just released
6681 	 * to a another client of the mip
6682 	 */
6683 }
6684 
6685 /*
6686  * When we move the primary's mac address between groups, we need to also
6687  * take all the clients sharing the same mac address along with it (VLANs)
6688  * We remove the mac address for such clients from the group after quiescing
6689  * them. When we add the mac address we restart the client. Note that
6690  * the primary's mac address is removed from the group after all the
6691  * other clients sharing the address are removed. Similarly, the primary's
6692  * mac address is added before all the other client's mac address are
6693  * added. While grp is the group where the clients reside, tgrp is
6694  * the group where the addresses have to be added.
6695  */
6696 static void
6697 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6698     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6699 {
6700 	mac_impl_t		*mip = mcip->mci_mip;
6701 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6702 	mac_client_impl_t	*gmcip;
6703 	boolean_t		prim;
6704 
6705 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6706 
6707 	/*
6708 	 * If the clients are in a non-default group, we just have to
6709 	 * walk the group's client list. If it is in the default group
6710 	 * (which will be shared by other clients as well, we need to
6711 	 * check if the unicast address matches mcip's unicast.
6712 	 */
6713 	while (mgcp != NULL) {
6714 		gmcip = mgcp->mgc_client;
6715 		if (gmcip != mcip &&
6716 		    (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6717 		    mcip->mci_unicast == gmcip->mci_unicast)) {
6718 			if (!add) {
6719 				mac_rx_client_quiesce(
6720 				    (mac_client_handle_t)gmcip);
6721 				(void) mac_remove_macaddr(mcip->mci_unicast);
6722 			} else {
6723 				(void) mac_add_macaddr(mip, tgrp, maddr, prim);
6724 				mac_rx_client_restart(
6725 				    (mac_client_handle_t)gmcip);
6726 			}
6727 		}
6728 		mgcp = mgcp->mgc_next;
6729 	}
6730 }
6731 
6732 
6733 /*
6734  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6735  * we need to take any VLANs etc. together too.
6736  */
6737 static int
6738 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6739     mac_group_t *tgrp)
6740 {
6741 	mac_impl_t		*mip = mcip->mci_mip;
6742 	uint8_t			maddr[MAXMACADDRLEN];
6743 	int			err = 0;
6744 	boolean_t		prim;
6745 	boolean_t		multiclnt = B_FALSE;
6746 
6747 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
6748 	ASSERT(mcip->mci_unicast != NULL);
6749 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6750 
6751 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6752 	if (mcip->mci_unicast->ma_nusers > 1) {
6753 		mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6754 		multiclnt = B_TRUE;
6755 	}
6756 	ASSERT(mcip->mci_unicast->ma_nusers == 1);
6757 	err = mac_remove_macaddr(mcip->mci_unicast);
6758 	if (err != 0) {
6759 		mac_rx_client_restart((mac_client_handle_t)mcip);
6760 		if (multiclnt) {
6761 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6762 			    B_TRUE);
6763 		}
6764 		return (err);
6765 	}
6766 	/*
6767 	 * Program the H/W Classifier first, if this fails we need
6768 	 * not proceed with the other stuff.
6769 	 */
6770 	if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6771 		/* Revert back the H/W Classifier */
6772 		if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6773 			/*
6774 			 * This should not fail now since it worked earlier,
6775 			 * should we panic?
6776 			 */
6777 			cmn_err(CE_WARN,
6778 			    "mac_rx_switch_group: switching %p back"
6779 			    " to group %p failed!!", (void *)mcip,
6780 			    (void *)fgrp);
6781 		}
6782 		mac_rx_client_restart((mac_client_handle_t)mcip);
6783 		if (multiclnt) {
6784 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6785 			    B_TRUE);
6786 		}
6787 		return (err);
6788 	}
6789 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6790 	mac_rx_client_restart((mac_client_handle_t)mcip);
6791 	if (multiclnt)
6792 		mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6793 	return (err);
6794 }
6795 
6796 /*
6797  * Switch the MAC client from one group to another. This means we need
6798  * to remove the MAC address from the group, remove the MAC client,
6799  * teardown the SRSs and revert the group state. Then, we add the client
6800  * to the destination group, set the SRSs, and add the MAC address to the
6801  * group.
6802  */
6803 int
6804 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6805     mac_group_t *tgrp)
6806 {
6807 	int			err;
6808 	mac_group_state_t	next_state;
6809 	mac_client_impl_t	*group_only_mcip;
6810 	mac_client_impl_t	*gmcip;
6811 	mac_impl_t		*mip = mcip->mci_mip;
6812 	mac_grp_client_t	*mgcp;
6813 
6814 	ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6815 
6816 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6817 		return (err);
6818 
6819 	/*
6820 	 * The group might be reserved, but SRSs may not be set up, e.g.
6821 	 * primary and its vlans using a reserved group.
6822 	 */
6823 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6824 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6825 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6826 	}
6827 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6828 		mgcp = fgrp->mrg_clients;
6829 		while (mgcp != NULL) {
6830 			gmcip = mgcp->mgc_client;
6831 			mgcp = mgcp->mgc_next;
6832 			mac_group_remove_client(fgrp, gmcip);
6833 			mac_group_add_client(tgrp, gmcip);
6834 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
6835 		}
6836 		mac_release_rx_group(mcip, fgrp);
6837 		ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6838 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6839 	} else {
6840 		mac_group_remove_client(fgrp, mcip);
6841 		mac_group_add_client(tgrp, mcip);
6842 		mcip->mci_flent->fe_rx_ring_group = tgrp;
6843 		/*
6844 		 * If there are other clients (VLANs) sharing this address
6845 		 * we should be here only for the primary.
6846 		 */
6847 		if (mcip->mci_unicast->ma_nusers > 1) {
6848 			/*
6849 			 * We need to move all the clients that are using
6850 			 * this h/w address.
6851 			 */
6852 			mgcp = fgrp->mrg_clients;
6853 			while (mgcp != NULL) {
6854 				gmcip = mgcp->mgc_client;
6855 				mgcp = mgcp->mgc_next;
6856 				if (mcip->mci_unicast == gmcip->mci_unicast) {
6857 					mac_group_remove_client(fgrp, gmcip);
6858 					mac_group_add_client(tgrp, gmcip);
6859 					gmcip->mci_flent->fe_rx_ring_group =
6860 					    tgrp;
6861 				}
6862 			}
6863 		}
6864 		/*
6865 		 * The default group will still take the multicast,
6866 		 * broadcast traffic etc., so it won't go to
6867 		 * MAC_GROUP_STATE_REGISTERED.
6868 		 */
6869 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6870 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6871 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6872 	}
6873 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
6874 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6875 	mac_set_group_state(tgrp, next_state);
6876 	/*
6877 	 * If the destination group is reserved, setup the SRSs etc.
6878 	 */
6879 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6880 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6881 		mac_fanout_setup(mcip, mcip->mci_flent,
6882 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6883 		    NULL);
6884 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6885 	} else {
6886 		mac_rx_switch_grp_to_sw(tgrp);
6887 	}
6888 	return (0);
6889 }
6890 
6891 /*
6892  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6893  * when a share was allocated to the client.
6894  */
6895 mac_group_t *
6896 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6897 {
6898 	mac_impl_t		*mip = mcip->mci_mip;
6899 	mac_group_t		*grp = NULL;
6900 	int			rv;
6901 	int			i;
6902 	int			err;
6903 	mac_group_t		*defgrp;
6904 	mac_share_handle_t	share = mcip->mci_share;
6905 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6906 	int			nrings;
6907 	int			defnrings;
6908 	boolean_t		need_exclgrp = B_FALSE;
6909 	int			need_rings = 0;
6910 	mac_group_t		*candidate_grp = NULL;
6911 	mac_client_impl_t	*gclient;
6912 	mac_resource_props_t	*gmrp;
6913 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
6914 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6915 	boolean_t		isprimary;
6916 
6917 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6918 	/*
6919 	 * When we come here for a VLAN on the primary (dladm create-vlan),
6920 	 * we need to pair it along with the primary (to keep it consistent
6921 	 * with the RX side). So, we check if the primary is already assigned
6922 	 * to a group and return the group if so. The other way is also
6923 	 * true, i.e. the VLAN is already created and now we are plumbing
6924 	 * the primary.
6925 	 */
6926 	if (!move && isprimary) {
6927 		for (gclient = mip->mi_clients_list; gclient != NULL;
6928 		    gclient = gclient->mci_client_next) {
6929 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6930 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
6931 				return (gclient->mci_flent->fe_tx_ring_group);
6932 			}
6933 		}
6934 	}
6935 
6936 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6937 		return (NULL);
6938 
6939 	/* For dynamic groups, default unspec to 1 */
6940 	if (txhw && unspec &&
6941 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6942 		mrp->mrp_ntxrings = 1;
6943 	}
6944 	/*
6945 	 * For static grouping we allow only specifying rings=0 and
6946 	 * unspecified
6947 	 */
6948 	if (txhw && mrp->mrp_ntxrings > 0 &&
6949 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6950 		return (NULL);
6951 	}
6952 
6953 	if (txhw) {
6954 		/*
6955 		 * We have explicitly asked for a group (with ntxrings,
6956 		 * if unspec).
6957 		 */
6958 		if (unspec || mrp->mrp_ntxrings > 0) {
6959 			need_exclgrp = B_TRUE;
6960 			need_rings = mrp->mrp_ntxrings;
6961 		} else if (mrp->mrp_ntxrings == 0) {
6962 			/*
6963 			 * We have asked for a software group.
6964 			 */
6965 			return (NULL);
6966 		}
6967 	}
6968 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6969 	/*
6970 	 * The number of rings that the default group can donate.
6971 	 * We need to leave at least one ring - the default ring - in
6972 	 * this group.
6973 	 */
6974 	defnrings = defgrp->mrg_cur_count - 1;
6975 
6976 	/*
6977 	 * Primary gets default group unless explicitly told not
6978 	 * to  (i.e. rings > 0).
6979 	 */
6980 	if (isprimary && !need_exclgrp)
6981 		return (NULL);
6982 
6983 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6984 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
6985 		grp = &mip->mi_tx_groups[i];
6986 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6987 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6988 			/*
6989 			 * Select a candidate for replacement if we don't
6990 			 * get an exclusive group. A candidate group is one
6991 			 * that didn't ask for an exclusive group, but got
6992 			 * one and it has enough rings (combined with what
6993 			 * the default group can donate) for the new MAC
6994 			 * client.
6995 			 */
6996 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6997 			    candidate_grp == NULL) {
6998 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6999 				if (gclient == NULL)
7000 					gclient = mac_get_grp_primary(grp);
7001 				gmrp = MCIP_RESOURCE_PROPS(gclient);
7002 				if (gclient->mci_share == NULL &&
7003 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7004 				    (unspec ||
7005 				    (grp->mrg_cur_count + defnrings) >=
7006 				    need_rings)) {
7007 					candidate_grp = grp;
7008 				}
7009 			}
7010 			continue;
7011 		}
7012 		/*
7013 		 * If the default can't donate let's just walk and
7014 		 * see if someone can vacate a group, so that we have
7015 		 * enough rings for this.
7016 		 */
7017 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7018 		    nrings <= defnrings) {
7019 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7020 				rv = mac_start_group(grp);
7021 				ASSERT(rv == 0);
7022 			}
7023 			break;
7024 		}
7025 	}
7026 
7027 	/* The default group */
7028 	if (i >= mip->mi_tx_group_count) {
7029 		/*
7030 		 * If we need an exclusive group and have identified a
7031 		 * candidate group we switch the MAC client from the
7032 		 * candidate group to the default group and give the
7033 		 * candidate group to this client.
7034 		 */
7035 		if (need_exclgrp && candidate_grp != NULL) {
7036 			/*
7037 			 * Switch the MAC client from the candidate group
7038 			 * to the default group.
7039 			 */
7040 			grp = candidate_grp;
7041 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
7042 			if (gclient == NULL)
7043 				gclient = mac_get_grp_primary(grp);
7044 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7045 			mac_tx_switch_group(gclient, grp, defgrp);
7046 			mac_tx_client_restart((mac_client_handle_t)gclient);
7047 
7048 			/*
7049 			 * Give the candidate group with the specified number
7050 			 * of rings to this MAC client.
7051 			 */
7052 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7053 			rv = mac_start_group(grp);
7054 			ASSERT(rv == 0);
7055 
7056 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7057 				return (grp);
7058 
7059 			ASSERT(grp->mrg_cur_count == 0);
7060 			ASSERT(defgrp->mrg_cur_count > need_rings);
7061 
7062 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7063 			    defgrp, grp, share, need_rings);
7064 			if (err == 0) {
7065 				/*
7066 				 * For a share i_mac_group_allocate_rings gets
7067 				 * the rings from the driver, let's populate
7068 				 * the property for the client now.
7069 				 */
7070 				if (share != NULL) {
7071 					mac_client_set_rings(
7072 					    (mac_client_handle_t)mcip, -1,
7073 					    grp->mrg_cur_count);
7074 				}
7075 				mip->mi_tx_group_free--;
7076 				return (grp);
7077 			}
7078 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7079 			    mip->mi_name, int, grp->mrg_index, int, err);
7080 			mac_stop_group(grp);
7081 		}
7082 		return (NULL);
7083 	}
7084 	/*
7085 	 * We got an exclusive group, but it is not dynamic.
7086 	 */
7087 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7088 		mip->mi_tx_group_free--;
7089 		return (grp);
7090 	}
7091 
7092 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7093 	    share, nrings);
7094 	if (rv != 0) {
7095 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7096 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7097 		mac_stop_group(grp);
7098 		return (NULL);
7099 	}
7100 	/*
7101 	 * For a share i_mac_group_allocate_rings gets the rings from the
7102 	 * driver, let's populate the property for the client now.
7103 	 */
7104 	if (share != NULL) {
7105 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7106 		    grp->mrg_cur_count);
7107 	}
7108 	mip->mi_tx_group_free--;
7109 	return (grp);
7110 }
7111 
7112 void
7113 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7114 {
7115 	mac_impl_t		*mip = mcip->mci_mip;
7116 	mac_share_handle_t	share = mcip->mci_share;
7117 	mac_ring_t		*ring;
7118 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7119 	mac_group_t		*defgrp;
7120 
7121 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7122 	if (srs != NULL) {
7123 		if (srs->srs_soft_ring_count > 0) {
7124 			for (ring = grp->mrg_rings; ring != NULL;
7125 			    ring = ring->mr_next) {
7126 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7127 				mac_tx_invoke_callbacks(mcip,
7128 				    (mac_tx_cookie_t)
7129 				    mac_tx_srs_get_soft_ring(srs, ring));
7130 				mac_tx_srs_del_ring(srs, ring);
7131 			}
7132 		} else {
7133 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7134 			srs->srs_tx.st_arg2 = NULL;
7135 			mac_srs_stat_delete(srs);
7136 		}
7137 	}
7138 	if (share != NULL)
7139 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7140 
7141 	/* move the ring back to the pool */
7142 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7143 		while ((ring = grp->mrg_rings) != NULL)
7144 			(void) mac_group_mov_ring(mip, defgrp, ring);
7145 	}
7146 	mac_stop_group(grp);
7147 	mip->mi_tx_group_free++;
7148 }
7149 
7150 /*
7151  * Disassociate a MAC client from a group, i.e go through the rings in the
7152  * group and delete all the soft rings tied to them.
7153  */
7154 static void
7155 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7156 {
7157 	mac_client_impl_t	*mcip = flent->fe_mcip;
7158 	mac_soft_ring_set_t	*tx_srs;
7159 	mac_srs_tx_t		*tx;
7160 	mac_ring_t		*ring;
7161 
7162 	tx_srs = flent->fe_tx_srs;
7163 	tx = &tx_srs->srs_tx;
7164 
7165 	/* Single ring case we haven't created any soft rings */
7166 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7167 	    tx->st_mode == SRS_TX_DEFAULT) {
7168 		tx->st_arg2 = NULL;
7169 		mac_srs_stat_delete(tx_srs);
7170 	/* Fanout case, where we have to dismantle the soft rings */
7171 	} else {
7172 		for (ring = fgrp->mrg_rings; ring != NULL;
7173 		    ring = ring->mr_next) {
7174 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7175 			mac_tx_invoke_callbacks(mcip,
7176 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7177 			    ring));
7178 			mac_tx_srs_del_ring(tx_srs, ring);
7179 		}
7180 		ASSERT(tx->st_arg2 == NULL);
7181 	}
7182 }
7183 
7184 /*
7185  * Switch the MAC client from one group to another. This means we need
7186  * to remove the MAC client, teardown the SRSs and revert the group state.
7187  * Then, we add the client to the destination roup, set the SRSs etc.
7188  */
7189 void
7190 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7191     mac_group_t *tgrp)
7192 {
7193 	mac_client_impl_t	*group_only_mcip;
7194 	mac_impl_t		*mip = mcip->mci_mip;
7195 	flow_entry_t		*flent = mcip->mci_flent;
7196 	mac_group_t		*defgrp;
7197 	mac_grp_client_t	*mgcp;
7198 	mac_client_impl_t	*gmcip;
7199 	flow_entry_t		*gflent;
7200 
7201 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7202 	ASSERT(fgrp == flent->fe_tx_ring_group);
7203 
7204 	if (fgrp == defgrp) {
7205 		/*
7206 		 * If this is the primary we need to find any VLANs on
7207 		 * the primary and move them too.
7208 		 */
7209 		mac_group_remove_client(fgrp, mcip);
7210 		mac_tx_dismantle_soft_rings(fgrp, flent);
7211 		if (mcip->mci_unicast->ma_nusers > 1) {
7212 			mgcp = fgrp->mrg_clients;
7213 			while (mgcp != NULL) {
7214 				gmcip = mgcp->mgc_client;
7215 				mgcp = mgcp->mgc_next;
7216 				if (mcip->mci_unicast != gmcip->mci_unicast)
7217 					continue;
7218 				mac_tx_client_quiesce(
7219 				    (mac_client_handle_t)gmcip);
7220 
7221 				gflent = gmcip->mci_flent;
7222 				mac_group_remove_client(fgrp, gmcip);
7223 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7224 
7225 				mac_group_add_client(tgrp, gmcip);
7226 				gflent->fe_tx_ring_group = tgrp;
7227 				/* We could directly set this to SHARED */
7228 				tgrp->mrg_state = mac_group_next_state(tgrp,
7229 				    &group_only_mcip, defgrp, B_FALSE);
7230 
7231 				mac_tx_srs_group_setup(gmcip, gflent,
7232 				    SRST_LINK);
7233 				mac_fanout_setup(gmcip, gflent,
7234 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7235 				    gmcip, NULL, NULL);
7236 
7237 				mac_tx_client_restart(
7238 				    (mac_client_handle_t)gmcip);
7239 			}
7240 		}
7241 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7242 			mac_ring_t	*ring;
7243 			int		cnt;
7244 			int		ringcnt;
7245 
7246 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7247 			/*
7248 			 * Additionally, we also need to stop all
7249 			 * the rings in the default group, except
7250 			 * the default ring. The reason being
7251 			 * this group won't be released since it is
7252 			 * the default group, so the rings won't
7253 			 * be stopped otherwise.
7254 			 */
7255 			ringcnt = fgrp->mrg_cur_count;
7256 			ring = fgrp->mrg_rings;
7257 			for (cnt = 0; cnt < ringcnt; cnt++) {
7258 				if (ring->mr_state == MR_INUSE &&
7259 				    ring !=
7260 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7261 					mac_stop_ring(ring);
7262 					ring->mr_flag = 0;
7263 				}
7264 				ring = ring->mr_next;
7265 			}
7266 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7267 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7268 		} else {
7269 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7270 		}
7271 	} else {
7272 		/*
7273 		 * We could have VLANs sharing the non-default group with
7274 		 * the primary.
7275 		 */
7276 		mgcp = fgrp->mrg_clients;
7277 		while (mgcp != NULL) {
7278 			gmcip = mgcp->mgc_client;
7279 			mgcp = mgcp->mgc_next;
7280 			if (gmcip == mcip)
7281 				continue;
7282 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7283 			gflent = gmcip->mci_flent;
7284 
7285 			mac_group_remove_client(fgrp, gmcip);
7286 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7287 
7288 			mac_group_add_client(tgrp, gmcip);
7289 			gflent->fe_tx_ring_group = tgrp;
7290 			/* We could directly set this to SHARED */
7291 			tgrp->mrg_state = mac_group_next_state(tgrp,
7292 			    &group_only_mcip, defgrp, B_FALSE);
7293 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7294 			mac_fanout_setup(gmcip, gflent,
7295 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7296 			    gmcip, NULL, NULL);
7297 
7298 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7299 		}
7300 		mac_group_remove_client(fgrp, mcip);
7301 		mac_release_tx_group(mcip, fgrp);
7302 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7303 	}
7304 
7305 	/* Add it to the tgroup */
7306 	mac_group_add_client(tgrp, mcip);
7307 	flent->fe_tx_ring_group = tgrp;
7308 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7309 	    defgrp, B_FALSE);
7310 
7311 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7312 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7313 	    mac_rx_deliver, mcip, NULL, NULL);
7314 }
7315 
7316 /*
7317  * This is a 1-time control path activity initiated by the client (IP).
7318  * The mac perimeter protects against other simultaneous control activities,
7319  * for example an ioctl that attempts to change the degree of fanout and
7320  * increase or decrease the number of softrings associated with this Tx SRS.
7321  */
7322 static mac_tx_notify_cb_t *
7323 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7324     mac_tx_notify_t notify, void *arg)
7325 {
7326 	mac_cb_info_t *mcbi;
7327 	mac_tx_notify_cb_t *mtnfp;
7328 
7329 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7330 
7331 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7332 	mtnfp->mtnf_fn = notify;
7333 	mtnfp->mtnf_arg = arg;
7334 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7335 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7336 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7337 
7338 	mcbi = &mcip->mci_tx_notify_cb_info;
7339 	mutex_enter(mcbi->mcbi_lockp);
7340 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7341 	mutex_exit(mcbi->mcbi_lockp);
7342 	return (mtnfp);
7343 }
7344 
7345 static void
7346 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7347 {
7348 	mac_cb_info_t	*mcbi;
7349 	mac_cb_t	**cblist;
7350 
7351 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7352 
7353 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7354 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7355 		cmn_err(CE_WARN,
7356 		    "mac_client_tx_notify_remove: callback not "
7357 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7358 		return;
7359 	}
7360 
7361 	mcbi = &mcip->mci_tx_notify_cb_info;
7362 	cblist = &mcip->mci_tx_notify_cb_list;
7363 	mutex_enter(mcbi->mcbi_lockp);
7364 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7365 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7366 	else
7367 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7368 	mutex_exit(mcbi->mcbi_lockp);
7369 }
7370 
7371 /*
7372  * mac_client_tx_notify():
7373  * call to add and remove flow control callback routine.
7374  */
7375 mac_tx_notify_handle_t
7376 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7377     void *ptr)
7378 {
7379 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7380 	mac_tx_notify_cb_t	*mtnfp = NULL;
7381 
7382 	i_mac_perim_enter(mcip->mci_mip);
7383 
7384 	if (callb_func != NULL) {
7385 		/* Add a notify callback */
7386 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7387 	} else {
7388 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7389 	}
7390 	i_mac_perim_exit(mcip->mci_mip);
7391 
7392 	return ((mac_tx_notify_handle_t)mtnfp);
7393 }
7394 
7395 void
7396 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7397     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7398 {
7399 	mac_bridge_tx_cb = txf;
7400 	mac_bridge_rx_cb = rxf;
7401 	mac_bridge_ref_cb = reff;
7402 	mac_bridge_ls_cb = lsf;
7403 }
7404 
7405 int
7406 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7407 {
7408 	mac_impl_t *mip = (mac_impl_t *)mh;
7409 	int retv;
7410 
7411 	mutex_enter(&mip->mi_bridge_lock);
7412 	if (mip->mi_bridge_link == NULL) {
7413 		mip->mi_bridge_link = link;
7414 		retv = 0;
7415 	} else {
7416 		retv = EBUSY;
7417 	}
7418 	mutex_exit(&mip->mi_bridge_lock);
7419 	if (retv == 0) {
7420 		mac_poll_state_change(mh, B_FALSE);
7421 		mac_capab_update(mh);
7422 	}
7423 	return (retv);
7424 }
7425 
7426 /*
7427  * Disable bridging on the indicated link.
7428  */
7429 void
7430 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7431 {
7432 	mac_impl_t *mip = (mac_impl_t *)mh;
7433 
7434 	mutex_enter(&mip->mi_bridge_lock);
7435 	ASSERT(mip->mi_bridge_link == link);
7436 	mip->mi_bridge_link = NULL;
7437 	mutex_exit(&mip->mi_bridge_lock);
7438 	mac_poll_state_change(mh, B_TRUE);
7439 	mac_capab_update(mh);
7440 }
7441 
7442 void
7443 mac_no_active(mac_handle_t mh)
7444 {
7445 	mac_impl_t *mip = (mac_impl_t *)mh;
7446 
7447 	i_mac_perim_enter(mip);
7448 	mip->mi_state_flags |= MIS_NO_ACTIVE;
7449 	i_mac_perim_exit(mip);
7450 }
7451 
7452 /*
7453  * Walk the primary VLAN clients whenever the primary's rings property
7454  * changes and update the mac_resource_props_t for the VLAN's client.
7455  * We need to do this since we don't support setting these properties
7456  * on the primary's VLAN clients, but the VLAN clients have to
7457  * follow the primary w.r.t the rings property;
7458  */
7459 void
7460 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7461 {
7462 	mac_client_impl_t	*vmcip;
7463 	mac_resource_props_t	*vmrp;
7464 
7465 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
7466 	    vmcip = vmcip->mci_client_next) {
7467 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7468 		    mac_client_vid((mac_client_handle_t)vmcip) ==
7469 		    VLAN_ID_NONE) {
7470 			continue;
7471 		}
7472 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
7473 
7474 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7475 		if (mrp->mrp_mask & MRP_RX_RINGS)
7476 			vmrp->mrp_mask |= MRP_RX_RINGS;
7477 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
7478 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
7479 
7480 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7481 		if (mrp->mrp_mask & MRP_TX_RINGS)
7482 			vmrp->mrp_mask |= MRP_TX_RINGS;
7483 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
7484 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
7485 
7486 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7487 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7488 		else
7489 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7490 
7491 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7492 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7493 		else
7494 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7495 	}
7496 }
7497 
7498 /*
7499  * We are adding or removing ring(s) from a group. The source for taking
7500  * rings is the default group. The destination for giving rings back is
7501  * the default group.
7502  */
7503 int
7504 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7505     mac_group_t *defgrp)
7506 {
7507 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7508 	uint_t			modify;
7509 	int			count;
7510 	mac_ring_t		*ring;
7511 	mac_ring_t		*next;
7512 	mac_impl_t		*mip = mcip->mci_mip;
7513 	mac_ring_t		**rings;
7514 	uint_t			ringcnt;
7515 	int			i = 0;
7516 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7517 	int			start;
7518 	int			end;
7519 	mac_group_t		*tgrp;
7520 	int			j;
7521 	int			rv = 0;
7522 
7523 	/*
7524 	 * If we are asked for just a group, we give 1 ring, else
7525 	 * the specified number of rings.
7526 	 */
7527 	if (rx_group) {
7528 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7529 		    mrp->mrp_nrxrings;
7530 	} else {
7531 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7532 		    mrp->mrp_ntxrings;
7533 	}
7534 
7535 	/* don't allow modifying rings for a share for now. */
7536 	ASSERT(mcip->mci_share == NULL);
7537 
7538 	if (ringcnt == group->mrg_cur_count)
7539 		return (0);
7540 
7541 	if (group->mrg_cur_count > ringcnt) {
7542 		modify = group->mrg_cur_count - ringcnt;
7543 		if (rx_group) {
7544 			if (mip->mi_rx_donor_grp == group) {
7545 				ASSERT(mac_is_primary_client(mcip));
7546 				mip->mi_rx_donor_grp = defgrp;
7547 			} else {
7548 				defgrp = mip->mi_rx_donor_grp;
7549 			}
7550 		}
7551 		ring = group->mrg_rings;
7552 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7553 		    KM_SLEEP);
7554 		j = 0;
7555 		for (count = 0; count < modify; count++) {
7556 			next = ring->mr_next;
7557 			rv = mac_group_mov_ring(mip, defgrp, ring);
7558 			if (rv != 0) {
7559 				/* cleanup on failure */
7560 				for (j = 0; j < count; j++) {
7561 					(void) mac_group_mov_ring(mip, group,
7562 					    rings[j]);
7563 				}
7564 				break;
7565 			}
7566 			rings[j++] = ring;
7567 			ring = next;
7568 		}
7569 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7570 		return (rv);
7571 	}
7572 	if (ringcnt >= MAX_RINGS_PER_GROUP)
7573 		return (EINVAL);
7574 
7575 	modify = ringcnt - group->mrg_cur_count;
7576 
7577 	if (rx_group) {
7578 		if (group != mip->mi_rx_donor_grp)
7579 			defgrp = mip->mi_rx_donor_grp;
7580 		else
7581 			/*
7582 			 * This is the donor group with all the remaining
7583 			 * rings. Default group now gets to be the donor
7584 			 */
7585 			mip->mi_rx_donor_grp = defgrp;
7586 		start = 1;
7587 		end = mip->mi_rx_group_count;
7588 	} else {
7589 		start = 0;
7590 		end = mip->mi_tx_group_count - 1;
7591 	}
7592 	/*
7593 	 * If the default doesn't have any rings, lets see if we can
7594 	 * take rings given to an h/w client that doesn't need it.
7595 	 * For now, we just see if there is  any one client that can donate
7596 	 * all the required rings.
7597 	 */
7598 	if (defgrp->mrg_cur_count < (modify + 1)) {
7599 		for (i = start; i < end; i++) {
7600 			if (rx_group) {
7601 				tgrp = &mip->mi_rx_groups[i];
7602 				if (tgrp == group || tgrp->mrg_state <
7603 				    MAC_GROUP_STATE_RESERVED) {
7604 					continue;
7605 				}
7606 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7607 				if (mcip == NULL)
7608 					mcip = mac_get_grp_primary(tgrp);
7609 				ASSERT(mcip != NULL);
7610 				mrp = MCIP_RESOURCE_PROPS(mcip);
7611 				if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7612 					continue;
7613 				if ((tgrp->mrg_cur_count +
7614 				    defgrp->mrg_cur_count) < (modify + 1)) {
7615 					continue;
7616 				}
7617 				if (mac_rx_switch_group(mcip, tgrp,
7618 				    defgrp) != 0) {
7619 					return (ENOSPC);
7620 				}
7621 			} else {
7622 				tgrp = &mip->mi_tx_groups[i];
7623 				if (tgrp == group || tgrp->mrg_state <
7624 				    MAC_GROUP_STATE_RESERVED) {
7625 					continue;
7626 				}
7627 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7628 				if (mcip == NULL)
7629 					mcip = mac_get_grp_primary(tgrp);
7630 				mrp = MCIP_RESOURCE_PROPS(mcip);
7631 				if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7632 					continue;
7633 				if ((tgrp->mrg_cur_count +
7634 				    defgrp->mrg_cur_count) < (modify + 1)) {
7635 					continue;
7636 				}
7637 				/* OK, we can switch this to s/w */
7638 				mac_tx_client_quiesce(
7639 				    (mac_client_handle_t)mcip);
7640 				mac_tx_switch_group(mcip, tgrp, defgrp);
7641 				mac_tx_client_restart(
7642 				    (mac_client_handle_t)mcip);
7643 			}
7644 		}
7645 		if (defgrp->mrg_cur_count < (modify + 1))
7646 			return (ENOSPC);
7647 	}
7648 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7649 	    group, mcip->mci_share, modify)) != 0) {
7650 		return (rv);
7651 	}
7652 	return (0);
7653 }
7654 
7655 /*
7656  * Given the poolname in mac_resource_props, find the cpupart
7657  * that is associated with this pool.  The cpupart will be used
7658  * later for finding the cpus to be bound to the networking threads.
7659  *
7660  * use_default is set B_TRUE if pools are enabled and pool_default
7661  * is returned.  This avoids a 2nd lookup to set the poolname
7662  * for pool-effective.
7663  *
7664  * returns:
7665  *
7666  *    NULL -   pools are disabled or if the 'cpus' property is set.
7667  *    cpupart of pool_default  - pools are enabled and the pool
7668  *             is not available or poolname is blank
7669  *    cpupart of named pool    - pools are enabled and the pool
7670  *             is available.
7671  */
7672 cpupart_t *
7673 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7674 {
7675 	pool_t		*pool;
7676 	cpupart_t	*cpupart;
7677 
7678 	*use_default = B_FALSE;
7679 
7680 	/* CPUs property is set */
7681 	if (mrp->mrp_mask & MRP_CPUS)
7682 		return (NULL);
7683 
7684 	ASSERT(pool_lock_held());
7685 
7686 	/* Pools are disabled, no pset */
7687 	if (pool_state == POOL_DISABLED)
7688 		return (NULL);
7689 
7690 	/* Pools property is set */
7691 	if (mrp->mrp_mask & MRP_POOL) {
7692 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7693 			/* Pool not found */
7694 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7695 			    mrp->mrp_pool);
7696 			*use_default = B_TRUE;
7697 			pool = pool_default;
7698 		}
7699 	/* Pools property is not set */
7700 	} else {
7701 		*use_default = B_TRUE;
7702 		pool = pool_default;
7703 	}
7704 
7705 	/* Find the CPU pset that corresponds to the pool */
7706 	mutex_enter(&cpu_lock);
7707 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7708 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7709 		    pool->pool_pset->pset_id);
7710 	}
7711 	mutex_exit(&cpu_lock);
7712 
7713 	return (cpupart);
7714 }
7715 
7716 void
7717 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7718     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7719 {
7720 	ASSERT(pool_lock_held());
7721 
7722 	if (cpupart != NULL) {
7723 		emrp->mrp_mask |= MRP_POOL;
7724 		if (use_default) {
7725 			(void) strcpy(emrp->mrp_pool,
7726 			    "pool_default");
7727 		} else {
7728 			ASSERT(strlen(mrp->mrp_pool) != 0);
7729 			(void) strcpy(emrp->mrp_pool,
7730 			    mrp->mrp_pool);
7731 		}
7732 	} else {
7733 		emrp->mrp_mask &= ~MRP_POOL;
7734 		bzero(emrp->mrp_pool, MAXPATHLEN);
7735 	}
7736 }
7737 
7738 struct mac_pool_arg {
7739 	char		mpa_poolname[MAXPATHLEN];
7740 	pool_event_t	mpa_what;
7741 };
7742 
7743 /*ARGSUSED*/
7744 static uint_t
7745 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7746 {
7747 	struct mac_pool_arg	*mpa = arg;
7748 	mac_impl_t		*mip = (mac_impl_t *)val;
7749 	mac_client_impl_t	*mcip;
7750 	mac_resource_props_t	*mrp, *emrp;
7751 	boolean_t		pool_update = B_FALSE;
7752 	boolean_t		pool_clear = B_FALSE;
7753 	boolean_t		use_default = B_FALSE;
7754 	cpupart_t		*cpupart = NULL;
7755 
7756 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7757 	i_mac_perim_enter(mip);
7758 	for (mcip = mip->mi_clients_list; mcip != NULL;
7759 	    mcip = mcip->mci_client_next) {
7760 		pool_update = B_FALSE;
7761 		pool_clear = B_FALSE;
7762 		use_default = B_FALSE;
7763 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7764 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
7765 
7766 		/*
7767 		 * When pools are enabled
7768 		 */
7769 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
7770 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7771 			mrp->mrp_mask |= MRP_POOL;
7772 			pool_update = B_TRUE;
7773 		}
7774 
7775 		/*
7776 		 * When pools are disabled
7777 		 */
7778 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
7779 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7780 			mrp->mrp_mask |= MRP_POOL;
7781 			pool_clear = B_TRUE;
7782 		}
7783 
7784 		/*
7785 		 * Look for links with the pool property set and the poolname
7786 		 * matching the one which is changing.
7787 		 */
7788 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7789 			/*
7790 			 * The pool associated with the link has changed.
7791 			 */
7792 			if (mpa->mpa_what == POOL_E_CHANGE) {
7793 				mrp->mrp_mask |= MRP_POOL;
7794 				pool_update = B_TRUE;
7795 			}
7796 		}
7797 
7798 		/*
7799 		 * This link is associated with pool_default and
7800 		 * pool_default has changed.
7801 		 */
7802 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
7803 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7804 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7805 			mrp->mrp_mask |= MRP_POOL;
7806 			pool_update = B_TRUE;
7807 		}
7808 
7809 		/*
7810 		 * Get new list of cpus for the pool, bind network
7811 		 * threads to new list of cpus and update resources.
7812 		 */
7813 		if (pool_update) {
7814 			if (MCIP_DATAPATH_SETUP(mcip)) {
7815 				pool_lock();
7816 				cpupart = mac_pset_find(mrp, &use_default);
7817 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7818 				    mac_rx_deliver, mcip, NULL, cpupart);
7819 				mac_set_pool_effective(use_default, cpupart,
7820 				    mrp, emrp);
7821 				pool_unlock();
7822 			}
7823 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7824 			    B_FALSE);
7825 		}
7826 
7827 		/*
7828 		 * Clear the effective pool and bind network threads
7829 		 * to any available CPU.
7830 		 */
7831 		if (pool_clear) {
7832 			if (MCIP_DATAPATH_SETUP(mcip)) {
7833 				emrp->mrp_mask &= ~MRP_POOL;
7834 				bzero(emrp->mrp_pool, MAXPATHLEN);
7835 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7836 				    mac_rx_deliver, mcip, NULL, NULL);
7837 			}
7838 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7839 			    B_FALSE);
7840 		}
7841 	}
7842 	i_mac_perim_exit(mip);
7843 	kmem_free(mrp, sizeof (*mrp));
7844 	return (MH_WALK_CONTINUE);
7845 }
7846 
7847 static void
7848 mac_pool_update(void *arg)
7849 {
7850 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7851 	kmem_free(arg, sizeof (struct mac_pool_arg));
7852 }
7853 
7854 /*
7855  * Callback function to be executed when a noteworthy pool event
7856  * takes place.
7857  */
7858 /* ARGSUSED */
7859 static void
7860 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7861 {
7862 	pool_t			*pool;
7863 	char			*poolname = NULL;
7864 	struct mac_pool_arg	*mpa;
7865 
7866 	pool_lock();
7867 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7868 
7869 	switch (what) {
7870 	case POOL_E_ENABLE:
7871 	case POOL_E_DISABLE:
7872 		break;
7873 
7874 	case POOL_E_CHANGE:
7875 		pool = pool_lookup_pool_by_id(id);
7876 		if (pool == NULL) {
7877 			kmem_free(mpa, sizeof (struct mac_pool_arg));
7878 			pool_unlock();
7879 			return;
7880 		}
7881 		pool_get_name(pool, &poolname);
7882 		(void) strlcpy(mpa->mpa_poolname, poolname,
7883 		    sizeof (mpa->mpa_poolname));
7884 		break;
7885 
7886 	default:
7887 		kmem_free(mpa, sizeof (struct mac_pool_arg));
7888 		pool_unlock();
7889 		return;
7890 	}
7891 	pool_unlock();
7892 
7893 	mpa->mpa_what = what;
7894 
7895 	mac_pool_update(mpa);
7896 }
7897 
7898 /*
7899  * Set effective rings property. This could be called from datapath_setup/
7900  * datapath_teardown or set-linkprop.
7901  * If the group is reserved we just go ahead and set the effective rings.
7902  * Additionally, for TX this could mean the default  group has lost/gained
7903  * some rings, so if the default group is reserved, we need to adjust the
7904  * effective rings for the default group clients. For RX, if we are working
7905  * with the non-default group, we just need * to reset the effective props
7906  * for the default group clients.
7907  */
7908 void
7909 mac_set_rings_effective(mac_client_impl_t *mcip)
7910 {
7911 	mac_impl_t		*mip = mcip->mci_mip;
7912 	mac_group_t		*grp;
7913 	mac_group_t		*defgrp;
7914 	flow_entry_t		*flent = mcip->mci_flent;
7915 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
7916 	mac_grp_client_t	*mgcp;
7917 	mac_client_impl_t	*gmcip;
7918 
7919 	grp = flent->fe_rx_ring_group;
7920 	if (grp != NULL) {
7921 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
7922 		/*
7923 		 * If we have reserved a group, set the effective rings
7924 		 * to the ring count in the group.
7925 		 */
7926 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7927 			emrp->mrp_mask |= MRP_RX_RINGS;
7928 			emrp->mrp_nrxrings = grp->mrg_cur_count;
7929 		}
7930 
7931 		/*
7932 		 * We go through the clients in the shared group and
7933 		 * reset the effective properties. It is possible this
7934 		 * might have already been done for some client (i.e.
7935 		 * if some client is being moved to a group that is
7936 		 * already shared). The case where the default group is
7937 		 * RESERVED is taken care of above (note in the RX side if
7938 		 * there is a non-default group, the default group is always
7939 		 * SHARED).
7940 		 */
7941 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7942 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7943 				mgcp = grp->mrg_clients;
7944 			else
7945 				mgcp = defgrp->mrg_clients;
7946 			while (mgcp != NULL) {
7947 				gmcip = mgcp->mgc_client;
7948 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7949 				if (emrp->mrp_mask & MRP_RX_RINGS) {
7950 					emrp->mrp_mask &= ~MRP_RX_RINGS;
7951 					emrp->mrp_nrxrings = 0;
7952 				}
7953 				mgcp = mgcp->mgc_next;
7954 			}
7955 		}
7956 	}
7957 
7958 	/* Now the TX side */
7959 	grp = flent->fe_tx_ring_group;
7960 	if (grp != NULL) {
7961 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
7962 
7963 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7964 			emrp->mrp_mask |= MRP_TX_RINGS;
7965 			emrp->mrp_ntxrings = grp->mrg_cur_count;
7966 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7967 			mgcp = grp->mrg_clients;
7968 			while (mgcp != NULL) {
7969 				gmcip = mgcp->mgc_client;
7970 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7971 				if (emrp->mrp_mask & MRP_TX_RINGS) {
7972 					emrp->mrp_mask &= ~MRP_TX_RINGS;
7973 					emrp->mrp_ntxrings = 0;
7974 				}
7975 				mgcp = mgcp->mgc_next;
7976 			}
7977 		}
7978 
7979 		/*
7980 		 * If the group is not the default group and the default
7981 		 * group is reserved, the ring count in the default group
7982 		 * might have changed, update it.
7983 		 */
7984 		if (grp != defgrp &&
7985 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7986 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7987 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7988 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7989 		}
7990 	}
7991 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
7992 }
7993 
7994 /*
7995  * Check if the primary is in the default group. If so, see if we
7996  * can give it a an exclusive group now that another client is
7997  * being configured. We take the primary out of the default group
7998  * because the multicast/broadcast packets for the all the clients
7999  * will land in the default ring in the default group which means
8000  * any client in the default group, even if it is the only on in
8001  * the group, will lose exclusive access to the rings, hence
8002  * polling.
8003  */
8004 mac_client_impl_t *
8005 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8006 {
8007 	mac_impl_t		*mip = mcip->mci_mip;
8008 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
8009 	flow_entry_t		*flent = mcip->mci_flent;
8010 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
8011 	uint8_t			*mac_addr;
8012 	mac_group_t		*ngrp;
8013 
8014 	/*
8015 	 * Check if the primary is in the default group, if not
8016 	 * or if it is explicitly configured to be in the default
8017 	 * group OR set the RX rings property, return.
8018 	 */
8019 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8020 		return (NULL);
8021 
8022 	/*
8023 	 * If the new client needs an exclusive group and we
8024 	 * don't have another for the primary, return.
8025 	 */
8026 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
8027 		return (NULL);
8028 
8029 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
8030 	/*
8031 	 * We call this when we are setting up the datapath for
8032 	 * the first non-primary.
8033 	 */
8034 	ASSERT(mip->mi_nactiveclients == 2);
8035 	/*
8036 	 * OK, now we have the primary that needs to be relocated.
8037 	 */
8038 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8039 	if (ngrp == NULL)
8040 		return (NULL);
8041 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8042 		mac_stop_group(ngrp);
8043 		return (NULL);
8044 	}
8045 	return (mcip);
8046 }
8047 
8048 void
8049 mac_transceiver_init(mac_impl_t *mip)
8050 {
8051 	if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8052 	    &mip->mi_transceiver)) {
8053 		/*
8054 		 * The driver set a flag that we don't know about. In this case,
8055 		 * we need to warn about that case and ignore this capability.
8056 		 */
8057 		if (mip->mi_transceiver.mct_flags != 0) {
8058 			dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8059 			    "flags to invalid value: 0x%x, ignoring "
8060 			    "capability", mip->mi_transceiver.mct_flags);
8061 			bzero(&mip->mi_transceiver,
8062 			    sizeof (mac_capab_transceiver_t));
8063 		}
8064 	} else {
8065 			bzero(&mip->mi_transceiver,
8066 			    sizeof (mac_capab_transceiver_t));
8067 	}
8068 }
8069 
8070 int
8071 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8072 {
8073 	mac_impl_t *mip = (mac_impl_t *)mh;
8074 
8075 	ASSERT(MAC_PERIM_HELD(mh));
8076 
8077 	if (mip->mi_transceiver.mct_ntransceivers == 0)
8078 		return (ENOTSUP);
8079 
8080 	*countp = mip->mi_transceiver.mct_ntransceivers;
8081 	return (0);
8082 }
8083 
8084 int
8085 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8086     boolean_t *usable)
8087 {
8088 	int ret;
8089 	mac_transceiver_info_t info;
8090 
8091 	mac_impl_t *mip = (mac_impl_t *)mh;
8092 
8093 	ASSERT(MAC_PERIM_HELD(mh));
8094 
8095 	if (mip->mi_transceiver.mct_info == NULL ||
8096 	    mip->mi_transceiver.mct_ntransceivers == 0)
8097 		return (ENOTSUP);
8098 
8099 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8100 		return (EINVAL);
8101 
8102 	bzero(&info, sizeof (mac_transceiver_info_t));
8103 	if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8104 	    &info)) != 0) {
8105 		return (ret);
8106 	}
8107 
8108 	*present = info.mti_present;
8109 	*usable = info.mti_usable;
8110 	return (0);
8111 }
8112 
8113 int
8114 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8115     size_t nbytes, off_t offset, size_t *nread)
8116 {
8117 	int ret;
8118 	size_t nr;
8119 	mac_impl_t *mip = (mac_impl_t *)mh;
8120 
8121 	ASSERT(MAC_PERIM_HELD(mh));
8122 
8123 	if (mip->mi_transceiver.mct_read == NULL)
8124 		return (ENOTSUP);
8125 
8126 	if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8127 		return (EINVAL);
8128 
8129 	/*
8130 	 * All supported pages today are 256 bytes wide. Make sure offset +
8131 	 * nbytes never exceeds that.
8132 	 */
8133 	if (offset < 0 || offset >= 256 || nbytes > 256 ||
8134 	    offset + nbytes > 256)
8135 		return (EINVAL);
8136 
8137 	if (nread == NULL)
8138 		nread = &nr;
8139 	ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8140 	    nbytes, offset, nread);
8141 	if (ret == 0 && *nread > nbytes) {
8142 		dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8143 		    "%lu byte sized buffer, possible memory corruption",
8144 		    *nread, nbytes);
8145 	}
8146 
8147 	return (ret);
8148 }
8149 
8150 void
8151 mac_led_init(mac_impl_t *mip)
8152 {
8153 	mip->mi_led_modes = MAC_LED_DEFAULT;
8154 
8155 	if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8156 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8157 		return;
8158 	}
8159 
8160 	if (mip->mi_led.mcl_flags != 0) {
8161 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8162 		    "flags to invalid value: 0x%x, ignoring "
8163 		    "capability", mip->mi_transceiver.mct_flags);
8164 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8165 		return;
8166 	}
8167 
8168 	if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8169 		dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8170 		    "supported modes to invalid value: 0x%x, ignoring "
8171 		    "capability", mip->mi_transceiver.mct_flags);
8172 		bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8173 		return;
8174 	}
8175 }
8176 
8177 int
8178 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8179 {
8180 	mac_impl_t *mip = (mac_impl_t *)mh;
8181 
8182 	ASSERT(MAC_PERIM_HELD(mh));
8183 
8184 	if (mip->mi_led.mcl_set == NULL)
8185 		return (ENOTSUP);
8186 
8187 	*supported = mip->mi_led.mcl_modes;
8188 	*active = mip->mi_led_modes;
8189 
8190 	return (0);
8191 }
8192 
8193 /*
8194  * Update and multiplex the various LED requests. We only ever send one LED to
8195  * the underlying driver at a time. As such, we end up multiplexing all
8196  * requested states and picking one to send down to the driver.
8197  */
8198 int
8199 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8200 {
8201 	int ret;
8202 	mac_led_mode_t driver;
8203 
8204 	mac_impl_t *mip = (mac_impl_t *)mh;
8205 
8206 	ASSERT(MAC_PERIM_HELD(mh));
8207 
8208 	/*
8209 	 * If we've been passed a desired value of zero, that indicates that
8210 	 * we're basically resetting to the value of zero, which is our default
8211 	 * value.
8212 	 */
8213 	if (desired == 0)
8214 		desired = MAC_LED_DEFAULT;
8215 
8216 	if (mip->mi_led.mcl_set == NULL)
8217 		return (ENOTSUP);
8218 
8219 	/*
8220 	 * Catch both values that we don't know about and those that the driver
8221 	 * doesn't support.
8222 	 */
8223 	if ((desired & ~MAC_LED_ALL) != 0)
8224 		return (EINVAL);
8225 
8226 	if ((desired & ~mip->mi_led.mcl_modes) != 0)
8227 		return (ENOTSUP);
8228 
8229 	/*
8230 	 * If we have the same value, then there is nothing to do.
8231 	 */
8232 	if (desired == mip->mi_led_modes)
8233 		return (0);
8234 
8235 	/*
8236 	 * Based on the desired value, determine what to send to the driver. We
8237 	 * only will send a single bit to the driver at any given time. IDENT
8238 	 * takes priority over OFF or ON. We also let OFF take priority over the
8239 	 * rest.
8240 	 */
8241 	if (desired & MAC_LED_IDENT) {
8242 		driver = MAC_LED_IDENT;
8243 	} else if (desired & MAC_LED_OFF) {
8244 		driver = MAC_LED_OFF;
8245 	} else if (desired & MAC_LED_ON) {
8246 		driver = MAC_LED_ON;
8247 	} else {
8248 		driver = MAC_LED_DEFAULT;
8249 	}
8250 
8251 	if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8252 		mip->mi_led_modes = desired;
8253 	}
8254 
8255 	return (ret);
8256 }
8257