1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * lofi (loopback file) driver - allows you to attach a file to a device, 27 * which can then be accessed through that device. The simple model is that 28 * you tell lofi to open a file, and then use the block device you get as 29 * you would any block device. lofi translates access to the block device 30 * into I/O on the underlying file. This is mostly useful for 31 * mounting images of filesystems. 32 * 33 * lofi is controlled through /dev/lofictl - this is the only device exported 34 * during attach, and is minor number 0. lofiadm communicates with lofi through 35 * ioctls on this device. When a file is attached to lofi, block and character 36 * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices 37 * are identified by their minor number, and the minor number is also used 38 * as the name in /dev/lofi. If we ever decide to support virtual disks, 39 * we'll have to divide the minor number space to identify fdisk partitions 40 * and slices, and the name will then be the minor number shifted down a 41 * few bits. Minor devices are tracked with state structures handled with 42 * ddi_soft_state(9F) for simplicity. 43 * 44 * A file attached to lofi is opened when attached and not closed until 45 * explicitly detached from lofi. This seems more sensible than deferring 46 * the open until the /dev/lofi device is opened, for a number of reasons. 47 * One is that any failure is likely to be noticed by the person (or script) 48 * running lofiadm. Another is that it would be a security problem if the 49 * file was replaced by another one after being added but before being opened. 50 * 51 * The only hard part about lofi is the ioctls. In order to support things 52 * like 'newfs' on a lofi device, it needs to support certain disk ioctls. 53 * So it has to fake disk geometry and partition information. More may need 54 * to be faked if your favorite utility doesn't work and you think it should 55 * (fdformat doesn't work because it really wants to know the type of floppy 56 * controller to talk to, and that didn't seem easy to fake. Or possibly even 57 * necessary, since we have mkfs_pcfs now). 58 * 59 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To 60 * support simulation of hotplug events, an optional force flag is provided. 61 * If a lofi device is open when a force detach is requested, then the 62 * underlying file is closed and any subsequent operations return EIO. When the 63 * device is closed for the last time, it will be cleaned up at that time. In 64 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is 65 * detached but not removed. 66 * 67 * Known problems: 68 * 69 * UFS logging. Mounting a UFS filesystem image "logging" 70 * works for basic copy testing but wedges during a build of ON through 71 * that image. Some deadlock in lufs holding the log mutex and then 72 * getting stuck on a buf. So for now, don't do that. 73 * 74 * Direct I/O. Since the filesystem data is being cached in the buffer 75 * cache, _and_ again in the underlying filesystem, it's tempting to 76 * enable direct I/O on the underlying file. Don't, because that deadlocks. 77 * I think to fix the cache-twice problem we might need filesystem support. 78 * 79 * lofi on itself. The simple lock strategy (lofi_lock) precludes this 80 * because you'll be in lofi_ioctl, holding the lock when you open the 81 * file, which, if it's lofi, will grab lofi_lock. We prevent this for 82 * now, though not using ddi_soft_state(9F) would make it possible to 83 * do. Though it would still be silly. 84 * 85 * Interesting things to do: 86 * 87 * Allow multiple files for each device. A poor-man's metadisk, basically. 88 * 89 * Pass-through ioctls on block devices. You can (though it's not 90 * documented), give lofi a block device as a file name. Then we shouldn't 91 * need to fake a geometry, however, it may be relevant if you're replacing 92 * metadisk, or using lofi to get crypto. 93 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 94 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. 95 * In fact this even makes sense if you have lofi "above" metadisk. 96 * 97 * Encryption: 98 * Each lofi device can have its own symmetric key and cipher. 99 * They are passed to us by lofiadm(1m) in the correct format for use 100 * with the misc/kcf crypto_* routines. 101 * 102 * Each block has its own IV, that is calculated in lofi_blk_mech(), based 103 * on the "master" key held in the lsp and the block number of the buffer. 104 */ 105 106 #include <sys/types.h> 107 #include <netinet/in.h> 108 #include <sys/sysmacros.h> 109 #include <sys/uio.h> 110 #include <sys/kmem.h> 111 #include <sys/cred.h> 112 #include <sys/mman.h> 113 #include <sys/errno.h> 114 #include <sys/aio_req.h> 115 #include <sys/stat.h> 116 #include <sys/file.h> 117 #include <sys/modctl.h> 118 #include <sys/conf.h> 119 #include <sys/debug.h> 120 #include <sys/vnode.h> 121 #include <sys/lofi.h> 122 #include <sys/fcntl.h> 123 #include <sys/pathname.h> 124 #include <sys/filio.h> 125 #include <sys/fdio.h> 126 #include <sys/open.h> 127 #include <sys/disp.h> 128 #include <vm/seg_map.h> 129 #include <sys/ddi.h> 130 #include <sys/sunddi.h> 131 #include <sys/zmod.h> 132 #include <sys/crypto/common.h> 133 #include <sys/crypto/api.h> 134 #include <LzmaDec.h> 135 136 /* 137 * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h. 138 * Crypto metadata, if it exists, is located at the end of the boot block 139 * (BBOFF + BBSIZE, which is SBOFF). The super block and everything after 140 * is offset by the size of the crypto metadata which is handled by 141 * lsp->ls_crypto_offset. 142 */ 143 #define CRYOFF ((off_t)8192) 144 145 #define NBLOCKS_PROP_NAME "Nblocks" 146 #define SIZE_PROP_NAME "Size" 147 148 #define SETUP_C_DATA(cd, buf, len) \ 149 (cd).cd_format = CRYPTO_DATA_RAW; \ 150 (cd).cd_offset = 0; \ 151 (cd).cd_miscdata = NULL; \ 152 (cd).cd_length = (len); \ 153 (cd).cd_raw.iov_base = (buf); \ 154 (cd).cd_raw.iov_len = (len); 155 156 #define UIO_CHECK(uio) \ 157 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ 158 ((uio)->uio_resid % DEV_BSIZE) != 0) { \ 159 return (EINVAL); \ 160 } 161 162 static dev_info_t *lofi_dip = NULL; 163 static void *lofi_statep = NULL; 164 static kmutex_t lofi_lock; /* state lock */ 165 166 /* 167 * Because lofi_taskq_nthreads limits the actual swamping of the device, the 168 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively 169 * high. If we want to be assured that the underlying device is always busy, 170 * we must be sure that the number of bytes enqueued when the number of 171 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for 172 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should 173 * set maxalloc to be the maximum throughput (in bytes per second) of the 174 * underlying device divided by the minimum I/O size. We assume a realistic 175 * maximum throughput of one hundred megabytes per second; we set maxalloc on 176 * the lofi task queue to be 104857600 divided by DEV_BSIZE. 177 */ 178 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; 179 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ 180 181 uint32_t lofi_max_files = LOFI_MAX_FILES; 182 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; 183 184 /* 185 * To avoid decompressing data in a compressed segment multiple times 186 * when accessing small parts of a segment's data, we cache and reuse 187 * the uncompressed segment's data. 188 * 189 * A single cached segment is sufficient to avoid lots of duplicate 190 * segment decompress operations. A small cache size also reduces the 191 * memory footprint. 192 * 193 * lofi_max_comp_cache is the maximum number of decompressed data segments 194 * cached for each compressed lofi image. It can be set to 0 to disable 195 * caching. 196 */ 197 198 uint32_t lofi_max_comp_cache = 1; 199 200 static int gzip_decompress(void *src, size_t srclen, void *dst, 201 size_t *destlen, int level); 202 203 static int lzma_decompress(void *src, size_t srclen, void *dst, 204 size_t *dstlen, int level); 205 206 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { 207 {gzip_decompress, NULL, 6, "gzip"}, /* default */ 208 {gzip_decompress, NULL, 6, "gzip-6"}, 209 {gzip_decompress, NULL, 9, "gzip-9"}, 210 {lzma_decompress, NULL, 0, "lzma"} 211 }; 212 213 /*ARGSUSED*/ 214 static void 215 *SzAlloc(void *p, size_t size) 216 { 217 return (kmem_alloc(size, KM_SLEEP)); 218 } 219 220 /*ARGSUSED*/ 221 static void 222 SzFree(void *p, void *address, size_t size) 223 { 224 kmem_free(address, size); 225 } 226 227 static ISzAlloc g_Alloc = { SzAlloc, SzFree }; 228 229 /* 230 * Free data referenced by the linked list of cached uncompressed 231 * segments. 232 */ 233 static void 234 lofi_free_comp_cache(struct lofi_state *lsp) 235 { 236 struct lofi_comp_cache *lc; 237 238 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { 239 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 240 kmem_free(lc, sizeof (struct lofi_comp_cache)); 241 lsp->ls_comp_cache_count--; 242 } 243 ASSERT(lsp->ls_comp_cache_count == 0); 244 } 245 246 static int 247 lofi_busy(void) 248 { 249 minor_t minor; 250 251 /* 252 * We need to make sure no mappings exist - mod_remove won't 253 * help because the device isn't open. 254 */ 255 mutex_enter(&lofi_lock); 256 for (minor = 1; minor <= lofi_max_files; minor++) { 257 if (ddi_get_soft_state(lofi_statep, minor) != NULL) { 258 mutex_exit(&lofi_lock); 259 return (EBUSY); 260 } 261 } 262 mutex_exit(&lofi_lock); 263 return (0); 264 } 265 266 static int 267 is_opened(struct lofi_state *lsp) 268 { 269 ASSERT(mutex_owned(&lofi_lock)); 270 return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count); 271 } 272 273 static int 274 mark_opened(struct lofi_state *lsp, int otyp) 275 { 276 ASSERT(mutex_owned(&lofi_lock)); 277 switch (otyp) { 278 case OTYP_CHR: 279 lsp->ls_chr_open = 1; 280 break; 281 case OTYP_BLK: 282 lsp->ls_blk_open = 1; 283 break; 284 case OTYP_LYR: 285 lsp->ls_lyr_open_count++; 286 break; 287 default: 288 return (-1); 289 } 290 return (0); 291 } 292 293 static void 294 mark_closed(struct lofi_state *lsp, int otyp) 295 { 296 ASSERT(mutex_owned(&lofi_lock)); 297 switch (otyp) { 298 case OTYP_CHR: 299 lsp->ls_chr_open = 0; 300 break; 301 case OTYP_BLK: 302 lsp->ls_blk_open = 0; 303 break; 304 case OTYP_LYR: 305 lsp->ls_lyr_open_count--; 306 break; 307 default: 308 break; 309 } 310 } 311 312 static void 313 lofi_free_crypto(struct lofi_state *lsp) 314 { 315 ASSERT(mutex_owned(&lofi_lock)); 316 317 if (lsp->ls_crypto_enabled) { 318 /* 319 * Clean up the crypto state so that it doesn't hang around 320 * in memory after we are done with it. 321 */ 322 bzero(lsp->ls_key.ck_data, 323 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 324 kmem_free(lsp->ls_key.ck_data, 325 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 326 lsp->ls_key.ck_data = NULL; 327 lsp->ls_key.ck_length = 0; 328 329 if (lsp->ls_mech.cm_param != NULL) { 330 kmem_free(lsp->ls_mech.cm_param, 331 lsp->ls_mech.cm_param_len); 332 lsp->ls_mech.cm_param = NULL; 333 lsp->ls_mech.cm_param_len = 0; 334 } 335 336 if (lsp->ls_iv_mech.cm_param != NULL) { 337 kmem_free(lsp->ls_iv_mech.cm_param, 338 lsp->ls_iv_mech.cm_param_len); 339 lsp->ls_iv_mech.cm_param = NULL; 340 lsp->ls_iv_mech.cm_param_len = 0; 341 } 342 343 mutex_destroy(&lsp->ls_crypto_lock); 344 } 345 } 346 347 static void 348 lofi_free_handle(dev_t dev, minor_t minor, struct lofi_state *lsp, 349 cred_t *credp) 350 { 351 dev_t newdev; 352 char namebuf[50]; 353 int i; 354 355 ASSERT(mutex_owned(&lofi_lock)); 356 357 lofi_free_crypto(lsp); 358 359 if (lsp->ls_vp) { 360 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 361 1, 0, credp, NULL); 362 VN_RELE(lsp->ls_vp); 363 lsp->ls_vp = NULL; 364 } 365 366 newdev = makedevice(getmajor(dev), minor); 367 (void) ddi_prop_remove(newdev, lofi_dip, SIZE_PROP_NAME); 368 (void) ddi_prop_remove(newdev, lofi_dip, NBLOCKS_PROP_NAME); 369 370 (void) snprintf(namebuf, sizeof (namebuf), "%d", minor); 371 ddi_remove_minor_node(lofi_dip, namebuf); 372 (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor); 373 ddi_remove_minor_node(lofi_dip, namebuf); 374 375 kmem_free(lsp->ls_filename, lsp->ls_filename_sz); 376 taskq_destroy(lsp->ls_taskq); 377 if (lsp->ls_kstat) { 378 kstat_delete(lsp->ls_kstat); 379 mutex_destroy(&lsp->ls_kstat_lock); 380 } 381 382 /* 383 * Free cached decompressed segment data 384 */ 385 lofi_free_comp_cache(lsp); 386 list_destroy(&lsp->ls_comp_cache); 387 mutex_destroy(&lsp->ls_comp_cache_lock); 388 389 if (lsp->ls_uncomp_seg_sz > 0) { 390 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); 391 lsp->ls_uncomp_seg_sz = 0; 392 } 393 394 /* 395 * Free pre-allocated compressed buffers 396 */ 397 if (lsp->ls_comp_bufs != NULL) { 398 for (i = 0; i < lofi_taskq_nthreads; i++) { 399 if (lsp->ls_comp_bufs[i].bufsize > 0) 400 kmem_free(lsp->ls_comp_bufs[i].buf, 401 lsp->ls_comp_bufs[i].bufsize); 402 } 403 kmem_free(lsp->ls_comp_bufs, 404 sizeof (struct compbuf) * lofi_taskq_nthreads); 405 mutex_destroy(&lsp->ls_comp_bufs_lock); 406 } 407 408 mutex_destroy(&lsp->ls_vp_lock); 409 410 ddi_soft_state_free(lofi_statep, minor); 411 } 412 413 /*ARGSUSED*/ 414 static int 415 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) 416 { 417 minor_t minor; 418 struct lofi_state *lsp; 419 420 mutex_enter(&lofi_lock); 421 minor = getminor(*devp); 422 if (minor == 0) { 423 /* master control device */ 424 /* must be opened exclusively */ 425 if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) { 426 mutex_exit(&lofi_lock); 427 return (EINVAL); 428 } 429 lsp = ddi_get_soft_state(lofi_statep, 0); 430 if (lsp == NULL) { 431 mutex_exit(&lofi_lock); 432 return (ENXIO); 433 } 434 if (is_opened(lsp)) { 435 mutex_exit(&lofi_lock); 436 return (EBUSY); 437 } 438 (void) mark_opened(lsp, OTYP_CHR); 439 mutex_exit(&lofi_lock); 440 return (0); 441 } 442 443 /* otherwise, the mapping should already exist */ 444 lsp = ddi_get_soft_state(lofi_statep, minor); 445 if (lsp == NULL) { 446 mutex_exit(&lofi_lock); 447 return (EINVAL); 448 } 449 450 if (lsp->ls_vp == NULL) { 451 mutex_exit(&lofi_lock); 452 return (ENXIO); 453 } 454 455 if (mark_opened(lsp, otyp) == -1) { 456 mutex_exit(&lofi_lock); 457 return (EINVAL); 458 } 459 460 mutex_exit(&lofi_lock); 461 return (0); 462 } 463 464 /*ARGSUSED*/ 465 static int 466 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) 467 { 468 minor_t minor; 469 struct lofi_state *lsp; 470 471 mutex_enter(&lofi_lock); 472 minor = getminor(dev); 473 lsp = ddi_get_soft_state(lofi_statep, minor); 474 if (lsp == NULL) { 475 mutex_exit(&lofi_lock); 476 return (EINVAL); 477 } 478 mark_closed(lsp, otyp); 479 480 /* 481 * If we forcibly closed the underlying device (li_force), or 482 * asked for cleanup (li_cleanup), finish up if we're the last 483 * out of the door. 484 */ 485 if (minor != 0 && !is_opened(lsp) && 486 (lsp->ls_cleanup || lsp->ls_vp == NULL)) 487 lofi_free_handle(dev, minor, lsp, credp); 488 489 mutex_exit(&lofi_lock); 490 return (0); 491 } 492 493 /* 494 * Sets the mechanism's initialization vector (IV) if one is needed. 495 * The IV is computed from the data block number. lsp->ls_mech is 496 * altered so that: 497 * lsp->ls_mech.cm_param_len is set to the IV len. 498 * lsp->ls_mech.cm_param is set to the IV. 499 */ 500 static int 501 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) 502 { 503 int ret; 504 crypto_data_t cdata; 505 char *iv; 506 size_t iv_len; 507 size_t min; 508 void *data; 509 size_t datasz; 510 511 ASSERT(mutex_owned(&lsp->ls_crypto_lock)); 512 513 if (lsp == NULL) 514 return (CRYPTO_DEVICE_ERROR); 515 516 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ 517 if (lsp->ls_iv_type == IVM_NONE) { 518 return (CRYPTO_SUCCESS); 519 } 520 521 /* 522 * if kmem already alloced from previous call and it's the same size 523 * we need now, just recycle it; allocate new kmem only if we have to 524 */ 525 if (lsp->ls_mech.cm_param == NULL || 526 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { 527 iv_len = lsp->ls_iv_len; 528 iv = kmem_zalloc(iv_len, KM_SLEEP); 529 } else { 530 iv_len = lsp->ls_mech.cm_param_len; 531 iv = lsp->ls_mech.cm_param; 532 bzero(iv, iv_len); 533 } 534 535 switch (lsp->ls_iv_type) { 536 case IVM_ENC_BLKNO: 537 /* iv is not static, lblkno changes each time */ 538 data = &lblkno; 539 datasz = sizeof (lblkno); 540 break; 541 default: 542 data = 0; 543 datasz = 0; 544 break; 545 } 546 547 /* 548 * write blkno into the iv buffer padded on the left in case 549 * blkno ever grows bigger than its current longlong_t size 550 * or a variation other than blkno is used for the iv data 551 */ 552 min = MIN(datasz, iv_len); 553 bcopy(data, iv + (iv_len - min), min); 554 555 /* encrypt the data in-place to get the IV */ 556 SETUP_C_DATA(cdata, iv, iv_len); 557 558 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, 559 NULL, NULL, NULL); 560 if (ret != CRYPTO_SUCCESS) { 561 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", 562 lblkno, ret); 563 if (lsp->ls_mech.cm_param != iv) 564 kmem_free(iv, iv_len); 565 566 return (ret); 567 } 568 569 /* clean up the iv from the last computation */ 570 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) 571 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); 572 573 lsp->ls_mech.cm_param_len = iv_len; 574 lsp->ls_mech.cm_param = iv; 575 576 return (CRYPTO_SUCCESS); 577 } 578 579 /* 580 * Performs encryption and decryption of a chunk of data of size "len", 581 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of 582 * DEV_BSIZE. 583 */ 584 static int 585 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, 586 caddr_t ciphertext, size_t len, boolean_t op_encrypt) 587 { 588 crypto_data_t cdata; 589 crypto_data_t wdata; 590 int ret; 591 longlong_t lblkno = bp->b_lblkno; 592 593 mutex_enter(&lsp->ls_crypto_lock); 594 595 /* 596 * though we could encrypt/decrypt entire "len" chunk of data, we need 597 * to break it into DEV_BSIZE pieces to capture blkno incrementing 598 */ 599 SETUP_C_DATA(cdata, plaintext, len); 600 cdata.cd_length = DEV_BSIZE; 601 if (ciphertext != NULL) { /* not in-place crypto */ 602 SETUP_C_DATA(wdata, ciphertext, len); 603 wdata.cd_length = DEV_BSIZE; 604 } 605 606 do { 607 ret = lofi_blk_mech(lsp, lblkno); 608 if (ret != CRYPTO_SUCCESS) 609 continue; 610 611 if (op_encrypt) { 612 ret = crypto_encrypt(&lsp->ls_mech, &cdata, 613 &lsp->ls_key, NULL, 614 ((ciphertext != NULL) ? &wdata : NULL), NULL); 615 } else { 616 ret = crypto_decrypt(&lsp->ls_mech, &cdata, 617 &lsp->ls_key, NULL, 618 ((ciphertext != NULL) ? &wdata : NULL), NULL); 619 } 620 621 cdata.cd_offset += DEV_BSIZE; 622 if (ciphertext != NULL) 623 wdata.cd_offset += DEV_BSIZE; 624 lblkno++; 625 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); 626 627 mutex_exit(&lsp->ls_crypto_lock); 628 629 if (ret != CRYPTO_SUCCESS) { 630 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", 631 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", 632 lblkno, ret); 633 } 634 635 return (ret); 636 } 637 638 #define RDWR_RAW 1 639 #define RDWR_BCOPY 2 640 641 static int 642 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 643 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) 644 { 645 ssize_t resid; 646 int isread; 647 int error; 648 649 /* 650 * Handles reads/writes for both plain and encrypted lofi 651 * Note: offset is already shifted by lsp->ls_crypto_offset 652 * when it gets here. 653 */ 654 655 isread = bp->b_flags & B_READ; 656 if (isread) { 657 if (method == RDWR_BCOPY) { 658 /* DO NOT update bp->b_resid for bcopy */ 659 bcopy(bcopy_locn, bufaddr, len); 660 error = 0; 661 } else { /* RDWR_RAW */ 662 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, 663 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 664 &resid); 665 bp->b_resid = resid; 666 } 667 if (lsp->ls_crypto_enabled && error == 0) { 668 if (lofi_crypto(lsp, bp, bufaddr, NULL, len, 669 B_FALSE) != CRYPTO_SUCCESS) { 670 /* 671 * XXX: original code didn't set residual 672 * back to len because no error was expected 673 * from bcopy() if encryption is not enabled 674 */ 675 if (method != RDWR_BCOPY) 676 bp->b_resid = len; 677 error = EIO; 678 } 679 } 680 return (error); 681 } else { 682 void *iobuf = bufaddr; 683 684 if (lsp->ls_crypto_enabled) { 685 /* don't do in-place crypto to keep bufaddr intact */ 686 iobuf = kmem_alloc(len, KM_SLEEP); 687 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, 688 B_TRUE) != CRYPTO_SUCCESS) { 689 kmem_free(iobuf, len); 690 if (method != RDWR_BCOPY) 691 bp->b_resid = len; 692 return (EIO); 693 } 694 } 695 if (method == RDWR_BCOPY) { 696 /* DO NOT update bp->b_resid for bcopy */ 697 bcopy(iobuf, bcopy_locn, len); 698 error = 0; 699 } else { /* RDWR_RAW */ 700 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, 701 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 702 &resid); 703 bp->b_resid = resid; 704 } 705 if (lsp->ls_crypto_enabled) { 706 kmem_free(iobuf, len); 707 } 708 return (error); 709 } 710 } 711 712 static int 713 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 714 struct lofi_state *lsp) 715 { 716 int error; 717 offset_t alignedoffset, mapoffset; 718 size_t xfersize; 719 int isread; 720 int smflags; 721 caddr_t mapaddr; 722 size_t len; 723 enum seg_rw srw; 724 int save_error; 725 726 /* 727 * Note: offset is already shifted by lsp->ls_crypto_offset 728 * when it gets here. 729 */ 730 if (lsp->ls_crypto_enabled) 731 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); 732 733 /* 734 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on 735 * an 8K boundary, but the buf transfer address may not be 736 * aligned on more than a 512-byte boundary (we don't enforce 737 * that even though we could). This matters since the initial 738 * part of the transfer may not start at offset 0 within the 739 * segmap'd chunk. So we have to compensate for that with 740 * 'mapoffset'. Subsequent chunks always start off at the 741 * beginning, and the last is capped by b_resid 742 * 743 * Visually, where "|" represents page map boundaries: 744 * alignedoffset (mapaddr begins at this segmap boundary) 745 * | offset (from beginning of file) 746 * | | len 747 * v v v 748 * ===|====X========|====...======|========X====|==== 749 * /-------------...---------------/ 750 * ^ bp->b_bcount/bp->b_resid at start 751 * /----/--------/----...------/--------/ 752 * ^ ^ ^ ^ ^ 753 * | | | | nth xfersize (<= MAXBSIZE) 754 * | | 2nd thru n-1st xfersize (= MAXBSIZE) 755 * | 1st xfersize (<= MAXBSIZE) 756 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) 757 * 758 * Notes: "alignedoffset" is "offset" rounded down to nearest 759 * MAXBSIZE boundary. "len" is next page boundary of size 760 * PAGESIZE after "alignedoffset". 761 */ 762 mapoffset = offset & MAXBOFFSET; 763 alignedoffset = offset - mapoffset; 764 bp->b_resid = bp->b_bcount; 765 isread = bp->b_flags & B_READ; 766 srw = isread ? S_READ : S_WRITE; 767 do { 768 xfersize = MIN(lsp->ls_vp_comp_size - offset, 769 MIN(MAXBSIZE - mapoffset, bp->b_resid)); 770 len = roundup(mapoffset + xfersize, PAGESIZE); 771 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, 772 alignedoffset, MAXBSIZE, 1, srw); 773 /* 774 * Now fault in the pages. This lets us check 775 * for errors before we reference mapaddr and 776 * try to resolve the fault in bcopy (which would 777 * panic instead). And this can easily happen, 778 * particularly if you've lofi'd a file over NFS 779 * and someone deletes the file on the server. 780 */ 781 error = segmap_fault(kas.a_hat, segkmap, mapaddr, 782 len, F_SOFTLOCK, srw); 783 if (error) { 784 (void) segmap_release(segkmap, mapaddr, 0); 785 if (FC_CODE(error) == FC_OBJERR) 786 error = FC_ERRNO(error); 787 else 788 error = EIO; 789 break; 790 } 791 /* error may be non-zero for encrypted lofi */ 792 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, 793 RDWR_BCOPY, mapaddr + mapoffset); 794 if (error == 0) { 795 bp->b_resid -= xfersize; 796 bufaddr += xfersize; 797 offset += xfersize; 798 } 799 smflags = 0; 800 if (isread) { 801 smflags |= SM_FREE; 802 /* 803 * If we're reading an entire page starting 804 * at a page boundary, there's a good chance 805 * we won't need it again. Put it on the 806 * head of the freelist. 807 */ 808 if (mapoffset == 0 && xfersize == MAXBSIZE) 809 smflags |= SM_DONTNEED; 810 } else { 811 /* 812 * Write back good pages, it is okay to 813 * always release asynchronous here as we'll 814 * follow with VOP_FSYNC for B_SYNC buffers. 815 */ 816 if (error == 0) 817 smflags |= SM_WRITE | SM_ASYNC; 818 } 819 (void) segmap_fault(kas.a_hat, segkmap, mapaddr, 820 len, F_SOFTUNLOCK, srw); 821 save_error = segmap_release(segkmap, mapaddr, smflags); 822 if (error == 0) 823 error = save_error; 824 /* only the first map may start partial */ 825 mapoffset = 0; 826 alignedoffset += MAXBSIZE; 827 } while ((error == 0) && (bp->b_resid > 0) && 828 (offset < lsp->ls_vp_comp_size)); 829 830 return (error); 831 } 832 833 /* 834 * Check if segment seg_index is present in the decompressed segment 835 * data cache. 836 * 837 * Returns a pointer to the decompressed segment data cache entry if 838 * found, and NULL when decompressed data for this segment is not yet 839 * cached. 840 */ 841 static struct lofi_comp_cache * 842 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) 843 { 844 struct lofi_comp_cache *lc; 845 846 ASSERT(mutex_owned(&lsp->ls_comp_cache_lock)); 847 848 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; 849 lc = list_next(&lsp->ls_comp_cache, lc)) { 850 if (lc->lc_index == seg_index) { 851 /* 852 * Decompressed segment data was found in the 853 * cache. 854 * 855 * The cache uses an LRU replacement strategy; 856 * move the entry to head of list. 857 */ 858 list_remove(&lsp->ls_comp_cache, lc); 859 list_insert_head(&lsp->ls_comp_cache, lc); 860 return (lc); 861 } 862 } 863 return (NULL); 864 } 865 866 /* 867 * Add the data for a decompressed segment at segment index 868 * seg_index to the cache of the decompressed segments. 869 * 870 * Returns a pointer to the cache element structure in case 871 * the data was added to the cache; returns NULL when the data 872 * wasn't cached. 873 */ 874 static struct lofi_comp_cache * 875 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, 876 uchar_t *data) 877 { 878 struct lofi_comp_cache *lc; 879 880 ASSERT(mutex_owned(&lsp->ls_comp_cache_lock)); 881 882 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { 883 lc = list_remove_tail(&lsp->ls_comp_cache); 884 ASSERT(lc != NULL); 885 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 886 kmem_free(lc, sizeof (struct lofi_comp_cache)); 887 lsp->ls_comp_cache_count--; 888 } 889 890 /* 891 * Do not cache when disabled by tunable variable 892 */ 893 if (lofi_max_comp_cache == 0) 894 return (NULL); 895 896 /* 897 * When the cache has not yet reached the maximum allowed 898 * number of segments, allocate a new cache element. 899 * Otherwise the cache is full; reuse the last list element 900 * (LRU) for caching the decompressed segment data. 901 * 902 * The cache element for the new decompressed segment data is 903 * added to the head of the list. 904 */ 905 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { 906 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); 907 lc->lc_data = NULL; 908 list_insert_head(&lsp->ls_comp_cache, lc); 909 lsp->ls_comp_cache_count++; 910 } else { 911 lc = list_remove_tail(&lsp->ls_comp_cache); 912 if (lc == NULL) 913 return (NULL); 914 list_insert_head(&lsp->ls_comp_cache, lc); 915 } 916 917 /* 918 * Free old uncompressed segment data when reusing a cache 919 * entry. 920 */ 921 if (lc->lc_data != NULL) 922 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 923 924 lc->lc_data = data; 925 lc->lc_index = seg_index; 926 return (lc); 927 } 928 929 930 /*ARGSUSED*/ 931 static int 932 gzip_decompress(void *src, size_t srclen, void *dst, 933 size_t *dstlen, int level) 934 { 935 ASSERT(*dstlen >= srclen); 936 937 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) 938 return (-1); 939 return (0); 940 } 941 942 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) 943 /*ARGSUSED*/ 944 static int 945 lzma_decompress(void *src, size_t srclen, void *dst, 946 size_t *dstlen, int level) 947 { 948 size_t insizepure; 949 void *actual_src; 950 ELzmaStatus status; 951 952 insizepure = srclen - LZMA_HEADER_SIZE; 953 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); 954 955 if (LzmaDecode((Byte *)dst, (size_t *)dstlen, 956 (const Byte *)actual_src, &insizepure, 957 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, 958 &g_Alloc) != SZ_OK) { 959 return (-1); 960 } 961 return (0); 962 } 963 964 /* 965 * This is basically what strategy used to be before we found we 966 * needed task queues. 967 */ 968 static void 969 lofi_strategy_task(void *arg) 970 { 971 struct buf *bp = (struct buf *)arg; 972 int error; 973 int syncflag = 0; 974 struct lofi_state *lsp; 975 offset_t offset; 976 caddr_t bufaddr; 977 size_t len; 978 size_t xfersize; 979 boolean_t bufinited = B_FALSE; 980 981 lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev)); 982 if (lsp == NULL) { 983 error = ENXIO; 984 goto errout; 985 } 986 if (lsp->ls_kstat) { 987 mutex_enter(lsp->ls_kstat->ks_lock); 988 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); 989 mutex_exit(lsp->ls_kstat->ks_lock); 990 } 991 bp_mapin(bp); 992 bufaddr = bp->b_un.b_addr; 993 offset = bp->b_lblkno * DEV_BSIZE; /* offset within file */ 994 if (lsp->ls_crypto_enabled) { 995 /* encrypted data really begins after crypto header */ 996 offset += lsp->ls_crypto_offset; 997 } 998 len = bp->b_bcount; 999 bufinited = B_TRUE; 1000 1001 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1002 error = EIO; 1003 goto errout; 1004 } 1005 1006 /* 1007 * If we're writing and the buffer was not B_ASYNC 1008 * we'll follow up with a VOP_FSYNC() to force any 1009 * asynchronous I/O to stable storage. 1010 */ 1011 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) 1012 syncflag = FSYNC; 1013 1014 /* 1015 * We used to always use vn_rdwr here, but we cannot do that because 1016 * we might decide to read or write from the the underlying 1017 * file during this call, which would be a deadlock because 1018 * we have the rw_lock. So instead we page, unless it's not 1019 * mapable or it's a character device or it's an encrypted lofi. 1020 */ 1021 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || 1022 lsp->ls_crypto_enabled) { 1023 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, 1024 NULL); 1025 } else if (lsp->ls_uncomp_seg_sz == 0) { 1026 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); 1027 } else { 1028 uchar_t *compressed_seg = NULL, *cmpbuf; 1029 uchar_t *uncompressed_seg = NULL; 1030 lofi_compress_info_t *li; 1031 size_t oblkcount; 1032 ulong_t seglen; 1033 uint64_t sblkno, eblkno, cmpbytes; 1034 uint64_t uncompressed_seg_index; 1035 struct lofi_comp_cache *lc; 1036 offset_t sblkoff, eblkoff; 1037 u_offset_t salign, ealign; 1038 u_offset_t sdiff; 1039 uint32_t comp_data_sz; 1040 uint64_t i; 1041 int j; 1042 1043 /* 1044 * From here on we're dealing primarily with compressed files 1045 */ 1046 ASSERT(!lsp->ls_crypto_enabled); 1047 1048 /* 1049 * Compressed files can only be read from and 1050 * not written to 1051 */ 1052 if (!(bp->b_flags & B_READ)) { 1053 bp->b_resid = bp->b_bcount; 1054 error = EROFS; 1055 goto done; 1056 } 1057 1058 ASSERT(lsp->ls_comp_algorithm_index >= 0); 1059 li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; 1060 /* 1061 * Compute starting and ending compressed segment numbers 1062 * We use only bitwise operations avoiding division and 1063 * modulus because we enforce the compression segment size 1064 * to a power of 2 1065 */ 1066 sblkno = offset >> lsp->ls_comp_seg_shift; 1067 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); 1068 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; 1069 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); 1070 1071 /* 1072 * Check the decompressed segment cache. 1073 * 1074 * The cache is used only when the requested data 1075 * is within a segment. Requests that cross 1076 * segment boundaries bypass the cache. 1077 */ 1078 if (sblkno == eblkno || 1079 (sblkno + 1 == eblkno && eblkoff == 0)) { 1080 /* 1081 * Request doesn't cross a segment boundary, 1082 * now check the cache. 1083 */ 1084 mutex_enter(&lsp->ls_comp_cache_lock); 1085 lc = lofi_find_comp_data(lsp, sblkno); 1086 if (lc != NULL) { 1087 /* 1088 * We've found the decompressed segment 1089 * data in the cache; reuse it. 1090 */ 1091 bcopy(lc->lc_data + sblkoff, bufaddr, 1092 bp->b_bcount); 1093 mutex_exit(&lsp->ls_comp_cache_lock); 1094 bp->b_resid = 0; 1095 error = 0; 1096 goto done; 1097 } 1098 mutex_exit(&lsp->ls_comp_cache_lock); 1099 } 1100 1101 /* 1102 * Align start offset to block boundary for segmap 1103 */ 1104 salign = lsp->ls_comp_seg_index[sblkno]; 1105 sdiff = salign & (DEV_BSIZE - 1); 1106 salign -= sdiff; 1107 if (eblkno >= (lsp->ls_comp_index_sz - 1)) { 1108 /* 1109 * We're dealing with the last segment of 1110 * the compressed file -- the size of this 1111 * segment *may not* be the same as the 1112 * segment size for the file 1113 */ 1114 eblkoff = (offset + bp->b_bcount) & 1115 (lsp->ls_uncomp_last_seg_sz - 1); 1116 ealign = lsp->ls_vp_comp_size; 1117 } else { 1118 ealign = lsp->ls_comp_seg_index[eblkno + 1]; 1119 } 1120 1121 /* 1122 * Preserve original request paramaters 1123 */ 1124 oblkcount = bp->b_bcount; 1125 1126 /* 1127 * Assign the calculated parameters 1128 */ 1129 comp_data_sz = ealign - salign; 1130 bp->b_bcount = comp_data_sz; 1131 1132 /* 1133 * Buffers to hold compressed segments are pre-allocated 1134 * on a per-thread basis. Find a pre-allocated buffer 1135 * that is not currently in use and mark it for use. 1136 */ 1137 mutex_enter(&lsp->ls_comp_bufs_lock); 1138 for (j = 0; j < lofi_taskq_nthreads; j++) { 1139 if (lsp->ls_comp_bufs[j].inuse == 0) { 1140 lsp->ls_comp_bufs[j].inuse = 1; 1141 break; 1142 } 1143 } 1144 1145 mutex_exit(&lsp->ls_comp_bufs_lock); 1146 ASSERT(j < lofi_taskq_nthreads); 1147 1148 /* 1149 * If the pre-allocated buffer size does not match 1150 * the size of the I/O request, re-allocate it with 1151 * the appropriate size 1152 */ 1153 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) { 1154 if (lsp->ls_comp_bufs[j].bufsize > 0) 1155 kmem_free(lsp->ls_comp_bufs[j].buf, 1156 lsp->ls_comp_bufs[j].bufsize); 1157 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount, 1158 KM_SLEEP); 1159 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount; 1160 } 1161 compressed_seg = lsp->ls_comp_bufs[j].buf; 1162 1163 /* 1164 * Map in the calculated number of blocks 1165 */ 1166 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, 1167 bp, lsp); 1168 1169 bp->b_bcount = oblkcount; 1170 bp->b_resid = oblkcount; 1171 if (error != 0) 1172 goto done; 1173 1174 /* 1175 * decompress compressed blocks start 1176 */ 1177 cmpbuf = compressed_seg + sdiff; 1178 for (i = sblkno; i <= eblkno; i++) { 1179 ASSERT(i < lsp->ls_comp_index_sz - 1); 1180 uchar_t *useg; 1181 1182 /* 1183 * The last segment is special in that it is 1184 * most likely not going to be the same 1185 * (uncompressed) size as the other segments. 1186 */ 1187 if (i == (lsp->ls_comp_index_sz - 2)) { 1188 seglen = lsp->ls_uncomp_last_seg_sz; 1189 } else { 1190 seglen = lsp->ls_uncomp_seg_sz; 1191 } 1192 1193 /* 1194 * Each of the segment index entries contains 1195 * the starting block number for that segment. 1196 * The number of compressed bytes in a segment 1197 * is thus the difference between the starting 1198 * block number of this segment and the starting 1199 * block number of the next segment. 1200 */ 1201 cmpbytes = lsp->ls_comp_seg_index[i + 1] - 1202 lsp->ls_comp_seg_index[i]; 1203 1204 /* 1205 * The first byte in a compressed segment is a flag 1206 * that indicates whether this segment is compressed 1207 * at all. 1208 * 1209 * The variable 'useg' is used (instead of 1210 * uncompressed_seg) in this loop to keep a 1211 * reference to the uncompressed segment. 1212 * 1213 * N.B. If 'useg' is replaced with uncompressed_seg, 1214 * it leads to memory leaks and heap corruption in 1215 * corner cases where compressed segments lie 1216 * adjacent to uncompressed segments. 1217 */ 1218 if (*cmpbuf == UNCOMPRESSED) { 1219 useg = cmpbuf + SEGHDR; 1220 } else { 1221 if (uncompressed_seg == NULL) 1222 uncompressed_seg = 1223 kmem_alloc(lsp->ls_uncomp_seg_sz, 1224 KM_SLEEP); 1225 useg = uncompressed_seg; 1226 uncompressed_seg_index = i; 1227 1228 if (li->l_decompress((cmpbuf + SEGHDR), 1229 (cmpbytes - SEGHDR), uncompressed_seg, 1230 &seglen, li->l_level) != 0) { 1231 error = EIO; 1232 goto done; 1233 } 1234 } 1235 1236 /* 1237 * Determine how much uncompressed data we 1238 * have to copy and copy it 1239 */ 1240 xfersize = lsp->ls_uncomp_seg_sz - sblkoff; 1241 if (i == eblkno) 1242 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); 1243 1244 bcopy((useg + sblkoff), bufaddr, xfersize); 1245 1246 cmpbuf += cmpbytes; 1247 bufaddr += xfersize; 1248 bp->b_resid -= xfersize; 1249 sblkoff = 0; 1250 1251 if (bp->b_resid == 0) 1252 break; 1253 } /* decompress compressed blocks ends */ 1254 1255 /* 1256 * Skip to done if there is no uncompressed data to cache 1257 */ 1258 if (uncompressed_seg == NULL) 1259 goto done; 1260 1261 /* 1262 * Add the data for the last decompressed segment to 1263 * the cache. 1264 * 1265 * In case the uncompressed segment data was added to (and 1266 * is referenced by) the cache, make sure we don't free it 1267 * here. 1268 */ 1269 mutex_enter(&lsp->ls_comp_cache_lock); 1270 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, 1271 uncompressed_seg)) != NULL) { 1272 uncompressed_seg = NULL; 1273 } 1274 mutex_exit(&lsp->ls_comp_cache_lock); 1275 1276 done: 1277 if (compressed_seg != NULL) { 1278 mutex_enter(&lsp->ls_comp_bufs_lock); 1279 lsp->ls_comp_bufs[j].inuse = 0; 1280 mutex_exit(&lsp->ls_comp_bufs_lock); 1281 } 1282 if (uncompressed_seg != NULL) 1283 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); 1284 } /* end of handling compressed files */ 1285 1286 if ((error == 0) && (syncflag != 0)) 1287 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); 1288 1289 errout: 1290 if (bufinited && lsp->ls_kstat) { 1291 size_t n_done = bp->b_bcount - bp->b_resid; 1292 kstat_io_t *kioptr; 1293 1294 mutex_enter(lsp->ls_kstat->ks_lock); 1295 kioptr = KSTAT_IO_PTR(lsp->ls_kstat); 1296 if (bp->b_flags & B_READ) { 1297 kioptr->nread += n_done; 1298 kioptr->reads++; 1299 } else { 1300 kioptr->nwritten += n_done; 1301 kioptr->writes++; 1302 } 1303 kstat_runq_exit(kioptr); 1304 mutex_exit(lsp->ls_kstat->ks_lock); 1305 } 1306 1307 mutex_enter(&lsp->ls_vp_lock); 1308 if (--lsp->ls_vp_iocount == 0) 1309 cv_broadcast(&lsp->ls_vp_cv); 1310 mutex_exit(&lsp->ls_vp_lock); 1311 1312 bioerror(bp, error); 1313 biodone(bp); 1314 } 1315 1316 static int 1317 lofi_strategy(struct buf *bp) 1318 { 1319 struct lofi_state *lsp; 1320 offset_t offset; 1321 1322 /* 1323 * We cannot just do I/O here, because the current thread 1324 * _might_ end up back in here because the underlying filesystem 1325 * wants a buffer, which eventually gets into bio_recycle and 1326 * might call into lofi to write out a delayed-write buffer. 1327 * This is bad if the filesystem above lofi is the same as below. 1328 * 1329 * We could come up with a complex strategy using threads to 1330 * do the I/O asynchronously, or we could use task queues. task 1331 * queues were incredibly easy so they win. 1332 */ 1333 lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev)); 1334 if (lsp == NULL) { 1335 bioerror(bp, ENXIO); 1336 biodone(bp); 1337 return (0); 1338 } 1339 1340 mutex_enter(&lsp->ls_vp_lock); 1341 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1342 bioerror(bp, EIO); 1343 biodone(bp); 1344 mutex_exit(&lsp->ls_vp_lock); 1345 return (0); 1346 } 1347 1348 offset = bp->b_lblkno * DEV_BSIZE; /* offset within file */ 1349 if (lsp->ls_crypto_enabled) { 1350 /* encrypted data really begins after crypto header */ 1351 offset += lsp->ls_crypto_offset; 1352 } 1353 if (offset == lsp->ls_vp_size) { 1354 /* EOF */ 1355 if ((bp->b_flags & B_READ) != 0) { 1356 bp->b_resid = bp->b_bcount; 1357 bioerror(bp, 0); 1358 } else { 1359 /* writes should fail */ 1360 bioerror(bp, ENXIO); 1361 } 1362 biodone(bp); 1363 mutex_exit(&lsp->ls_vp_lock); 1364 return (0); 1365 } 1366 if (offset > lsp->ls_vp_size) { 1367 bioerror(bp, ENXIO); 1368 biodone(bp); 1369 mutex_exit(&lsp->ls_vp_lock); 1370 return (0); 1371 } 1372 lsp->ls_vp_iocount++; 1373 mutex_exit(&lsp->ls_vp_lock); 1374 1375 if (lsp->ls_kstat) { 1376 mutex_enter(lsp->ls_kstat->ks_lock); 1377 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 1378 mutex_exit(lsp->ls_kstat->ks_lock); 1379 } 1380 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 1381 return (0); 1382 } 1383 1384 /*ARGSUSED2*/ 1385 static int 1386 lofi_read(dev_t dev, struct uio *uio, struct cred *credp) 1387 { 1388 if (getminor(dev) == 0) 1389 return (EINVAL); 1390 UIO_CHECK(uio); 1391 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); 1392 } 1393 1394 /*ARGSUSED2*/ 1395 static int 1396 lofi_write(dev_t dev, struct uio *uio, struct cred *credp) 1397 { 1398 if (getminor(dev) == 0) 1399 return (EINVAL); 1400 UIO_CHECK(uio); 1401 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); 1402 } 1403 1404 /*ARGSUSED2*/ 1405 static int 1406 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) 1407 { 1408 if (getminor(dev) == 0) 1409 return (EINVAL); 1410 UIO_CHECK(aio->aio_uio); 1411 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); 1412 } 1413 1414 /*ARGSUSED2*/ 1415 static int 1416 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) 1417 { 1418 if (getminor(dev) == 0) 1419 return (EINVAL); 1420 UIO_CHECK(aio->aio_uio); 1421 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); 1422 } 1423 1424 /*ARGSUSED*/ 1425 static int 1426 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1427 { 1428 switch (infocmd) { 1429 case DDI_INFO_DEVT2DEVINFO: 1430 *result = lofi_dip; 1431 return (DDI_SUCCESS); 1432 case DDI_INFO_DEVT2INSTANCE: 1433 *result = 0; 1434 return (DDI_SUCCESS); 1435 } 1436 return (DDI_FAILURE); 1437 } 1438 1439 static int 1440 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1441 { 1442 int error; 1443 1444 if (cmd != DDI_ATTACH) 1445 return (DDI_FAILURE); 1446 error = ddi_soft_state_zalloc(lofi_statep, 0); 1447 if (error == DDI_FAILURE) { 1448 return (DDI_FAILURE); 1449 } 1450 error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, 1451 DDI_PSEUDO, NULL); 1452 if (error == DDI_FAILURE) { 1453 ddi_soft_state_free(lofi_statep, 0); 1454 return (DDI_FAILURE); 1455 } 1456 /* driver handles kernel-issued IOCTLs */ 1457 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1458 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1459 ddi_remove_minor_node(dip, NULL); 1460 ddi_soft_state_free(lofi_statep, 0); 1461 return (DDI_FAILURE); 1462 } 1463 lofi_dip = dip; 1464 ddi_report_dev(dip); 1465 return (DDI_SUCCESS); 1466 } 1467 1468 static int 1469 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1470 { 1471 if (cmd != DDI_DETACH) 1472 return (DDI_FAILURE); 1473 if (lofi_busy()) 1474 return (DDI_FAILURE); 1475 lofi_dip = NULL; 1476 ddi_remove_minor_node(dip, NULL); 1477 ddi_prop_remove_all(dip); 1478 ddi_soft_state_free(lofi_statep, 0); 1479 return (DDI_SUCCESS); 1480 } 1481 1482 /* 1483 * With addition of encryption, be careful that encryption key is wiped before 1484 * kernel memory structures are freed, and also that key is not accidentally 1485 * passed out into userland structures. 1486 */ 1487 static void 1488 free_lofi_ioctl(struct lofi_ioctl *klip) 1489 { 1490 /* Make sure this encryption key doesn't stick around */ 1491 bzero(klip->li_key, sizeof (klip->li_key)); 1492 kmem_free(klip, sizeof (struct lofi_ioctl)); 1493 } 1494 1495 /* 1496 * These two just simplify the rest of the ioctls that need to copyin/out 1497 * the lofi_ioctl structure. 1498 */ 1499 struct lofi_ioctl * 1500 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, int flag) 1501 { 1502 struct lofi_ioctl *klip; 1503 int error; 1504 1505 klip = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); 1506 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); 1507 if (error) { 1508 free_lofi_ioctl(klip); 1509 return (NULL); 1510 } 1511 1512 /* make sure filename is always null-terminated */ 1513 klip->li_filename[MAXPATHLEN-1] = '\0'; 1514 1515 /* validate minor number */ 1516 if (klip->li_minor > lofi_max_files) { 1517 free_lofi_ioctl(klip); 1518 cmn_err(CE_WARN, "attempt to map more than lofi_max_files (%d)", 1519 lofi_max_files); 1520 return (NULL); 1521 } 1522 return (klip); 1523 } 1524 1525 int 1526 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, 1527 int flag) 1528 { 1529 int error; 1530 1531 /* 1532 * NOTE: Do NOT copy the crypto_key_t "back" to userland. 1533 * This ensures that an attacker can't trivially find the 1534 * key for a mapping just by issuing the ioctl. 1535 * 1536 * It can still be found by poking around in kmem with mdb(1), 1537 * but there is no point in making it easy when the info isn't 1538 * of any use in this direction anyway. 1539 * 1540 * Either way we don't actually have the raw key stored in 1541 * a form that we can get it anyway, since we just used it 1542 * to create a ctx template and didn't keep "the original". 1543 */ 1544 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); 1545 if (error) 1546 return (EFAULT); 1547 return (0); 1548 } 1549 1550 /* 1551 * Return the minor number 'filename' is mapped to, if it is. 1552 */ 1553 static int 1554 file_to_minor(char *filename) 1555 { 1556 minor_t minor; 1557 struct lofi_state *lsp; 1558 1559 ASSERT(mutex_owned(&lofi_lock)); 1560 for (minor = 1; minor <= lofi_max_files; minor++) { 1561 lsp = ddi_get_soft_state(lofi_statep, minor); 1562 if (lsp == NULL) 1563 continue; 1564 if (strcmp(lsp->ls_filename, filename) == 0) 1565 return (minor); 1566 } 1567 return (0); 1568 } 1569 1570 /* 1571 * lofiadm does some validation, but since Joe Random (or crashme) could 1572 * do our ioctls, we need to do some validation too. 1573 */ 1574 static int 1575 valid_filename(const char *filename) 1576 { 1577 static char *blkprefix = "/dev/" LOFI_BLOCK_NAME "/"; 1578 static char *charprefix = "/dev/" LOFI_CHAR_NAME "/"; 1579 1580 /* must be absolute path */ 1581 if (filename[0] != '/') 1582 return (0); 1583 /* must not be lofi */ 1584 if (strncmp(filename, blkprefix, strlen(blkprefix)) == 0) 1585 return (0); 1586 if (strncmp(filename, charprefix, strlen(charprefix)) == 0) 1587 return (0); 1588 return (1); 1589 } 1590 1591 /* 1592 * Fakes up a disk geometry, and one big partition, based on the size 1593 * of the file. This is needed because we allow newfs'ing the device, 1594 * and newfs will do several disk ioctls to figure out the geometry and 1595 * partition information. It uses that information to determine the parameters 1596 * to pass to mkfs. Geometry is pretty much irrelevant these days, but we 1597 * have to support it. 1598 */ 1599 static void 1600 fake_disk_geometry(struct lofi_state *lsp) 1601 { 1602 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; 1603 1604 /* dk_geom - see dkio(7I) */ 1605 /* 1606 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs 1607 * of sectors), but that breaks programs like fdisk which want to 1608 * partition a disk by cylinder. With one cylinder, you can't create 1609 * an fdisk partition and put pcfs on it for testing (hard to pick 1610 * a number between one and one). 1611 * 1612 * The cheezy floppy test is an attempt to not have too few cylinders 1613 * for a small file, or so many on a big file that you waste space 1614 * for backup superblocks or cylinder group structures. 1615 */ 1616 if (dsize < (2 * 1024 * 1024)) /* floppy? */ 1617 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); 1618 else 1619 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); 1620 /* in case file file is < 100k */ 1621 if (lsp->ls_dkg.dkg_ncyl == 0) 1622 lsp->ls_dkg.dkg_ncyl = 1; 1623 lsp->ls_dkg.dkg_acyl = 0; 1624 lsp->ls_dkg.dkg_bcyl = 0; 1625 lsp->ls_dkg.dkg_nhead = 1; 1626 lsp->ls_dkg.dkg_obs1 = 0; 1627 lsp->ls_dkg.dkg_intrlv = 0; 1628 lsp->ls_dkg.dkg_obs2 = 0; 1629 lsp->ls_dkg.dkg_obs3 = 0; 1630 lsp->ls_dkg.dkg_apc = 0; 1631 lsp->ls_dkg.dkg_rpm = 7200; 1632 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl; 1633 lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl); 1634 lsp->ls_dkg.dkg_write_reinstruct = 0; 1635 lsp->ls_dkg.dkg_read_reinstruct = 0; 1636 1637 /* vtoc - see dkio(7I) */ 1638 bzero(&lsp->ls_vtoc, sizeof (struct vtoc)); 1639 lsp->ls_vtoc.v_sanity = VTOC_SANE; 1640 lsp->ls_vtoc.v_version = V_VERSION; 1641 (void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME, 1642 sizeof (lsp->ls_vtoc.v_volume)); 1643 lsp->ls_vtoc.v_sectorsz = DEV_BSIZE; 1644 lsp->ls_vtoc.v_nparts = 1; 1645 lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED; 1646 1647 /* 1648 * A compressed file is read-only, other files can 1649 * be read-write 1650 */ 1651 if (lsp->ls_uncomp_seg_sz > 0) { 1652 lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY; 1653 } else { 1654 lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT; 1655 } 1656 lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0; 1657 /* 1658 * The partition size cannot just be the number of sectors, because 1659 * that might not end on a cylinder boundary. And if that's the case, 1660 * newfs/mkfs will print a scary warning. So just figure the size 1661 * based on the number of cylinders and sectors/cylinder. 1662 */ 1663 lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * 1664 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; 1665 1666 /* dk_cinfo - see dkio(7I) */ 1667 bzero(&lsp->ls_ci, sizeof (struct dk_cinfo)); 1668 (void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME); 1669 lsp->ls_ci.dki_ctype = DKC_MD; 1670 lsp->ls_ci.dki_flags = 0; 1671 lsp->ls_ci.dki_cnum = 0; 1672 lsp->ls_ci.dki_addr = 0; 1673 lsp->ls_ci.dki_space = 0; 1674 lsp->ls_ci.dki_prio = 0; 1675 lsp->ls_ci.dki_vec = 0; 1676 (void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME); 1677 lsp->ls_ci.dki_unit = 0; 1678 lsp->ls_ci.dki_slave = 0; 1679 lsp->ls_ci.dki_partition = 0; 1680 /* 1681 * newfs uses this to set maxcontig. Must not be < 16, or it 1682 * will be 0 when newfs multiplies it by DEV_BSIZE and divides 1683 * it by the block size. Then tunefs doesn't work because 1684 * maxcontig is 0. 1685 */ 1686 lsp->ls_ci.dki_maxtransfer = 16; 1687 } 1688 1689 /* 1690 * map in a compressed file 1691 * 1692 * Read in the header and the index that follows. 1693 * 1694 * The header is as follows - 1695 * 1696 * Signature (name of the compression algorithm) 1697 * Compression segment size (a multiple of 512) 1698 * Number of index entries 1699 * Size of the last block 1700 * The array containing the index entries 1701 * 1702 * The header information is always stored in 1703 * network byte order on disk. 1704 */ 1705 static int 1706 lofi_map_compressed_file(struct lofi_state *lsp, char *buf) 1707 { 1708 uint32_t index_sz, header_len, i; 1709 ssize_t resid; 1710 enum uio_rw rw; 1711 char *tbuf = buf; 1712 int error; 1713 1714 /* The signature has already been read */ 1715 tbuf += sizeof (lsp->ls_comp_algorithm); 1716 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); 1717 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); 1718 1719 /* 1720 * The compressed segment size must be a power of 2 1721 */ 1722 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || 1723 !ISP2(lsp->ls_uncomp_seg_sz)) 1724 return (EINVAL); 1725 1726 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) 1727 ; 1728 1729 lsp->ls_comp_seg_shift = i; 1730 1731 tbuf += sizeof (lsp->ls_uncomp_seg_sz); 1732 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); 1733 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); 1734 1735 tbuf += sizeof (lsp->ls_comp_index_sz); 1736 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), 1737 sizeof (lsp->ls_uncomp_last_seg_sz)); 1738 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); 1739 1740 /* 1741 * Compute the total size of the uncompressed data 1742 * for use in fake_disk_geometry and other calculations. 1743 * Disk geometry has to be faked with respect to the 1744 * actual uncompressed data size rather than the 1745 * compressed file size. 1746 */ 1747 lsp->ls_vp_size = 1748 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz 1749 + lsp->ls_uncomp_last_seg_sz; 1750 1751 /* 1752 * Index size is rounded up to DEV_BSIZE for ease 1753 * of segmapping 1754 */ 1755 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; 1756 header_len = sizeof (lsp->ls_comp_algorithm) + 1757 sizeof (lsp->ls_uncomp_seg_sz) + 1758 sizeof (lsp->ls_comp_index_sz) + 1759 sizeof (lsp->ls_uncomp_last_seg_sz); 1760 lsp->ls_comp_offbase = header_len + index_sz; 1761 1762 index_sz += header_len; 1763 index_sz = roundup(index_sz, DEV_BSIZE); 1764 1765 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); 1766 lsp->ls_comp_index_data_sz = index_sz; 1767 1768 /* 1769 * Read in the index -- this has a side-effect 1770 * of reading in the header as well 1771 */ 1772 rw = UIO_READ; 1773 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 1774 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 1775 1776 if (error != 0) 1777 return (error); 1778 1779 /* Skip the header, this is where the index really begins */ 1780 lsp->ls_comp_seg_index = 1781 /*LINTED*/ 1782 (uint64_t *)(lsp->ls_comp_index_data + header_len); 1783 1784 /* 1785 * Now recompute offsets in the index to account for 1786 * the header length 1787 */ 1788 for (i = 0; i < lsp->ls_comp_index_sz; i++) { 1789 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + 1790 BE_64(lsp->ls_comp_seg_index[i]); 1791 } 1792 1793 /* 1794 * Finally setup per-thread pre-allocated buffers 1795 */ 1796 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads * 1797 sizeof (struct compbuf), KM_SLEEP); 1798 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL); 1799 1800 return (error); 1801 } 1802 1803 /* 1804 * Check to see if the passed in signature is a valid 1805 * one. If it is valid, return the index into 1806 * lofi_compress_table. 1807 * 1808 * Return -1 if it is invalid 1809 */ 1810 static int lofi_compress_select(char *signature) 1811 { 1812 int i; 1813 1814 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { 1815 if (strcmp(lofi_compress_table[i].l_name, signature) == 0) 1816 return (i); 1817 } 1818 1819 return (-1); 1820 } 1821 1822 /* 1823 * map a file to a minor number. Return the minor number. 1824 */ 1825 static int 1826 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, 1827 int *rvalp, struct cred *credp, int ioctl_flag) 1828 { 1829 minor_t newminor; 1830 struct lofi_state *lsp; 1831 struct lofi_ioctl *klip; 1832 int error; 1833 struct vnode *vp; 1834 int64_t Nblocks_prop_val; 1835 int64_t Size_prop_val; 1836 int compress_index; 1837 vattr_t vattr; 1838 int flag; 1839 enum vtype v_type; 1840 int zalloced = 0; 1841 dev_t newdev; 1842 char namebuf[50]; 1843 char buf[DEV_BSIZE]; 1844 char crybuf[DEV_BSIZE]; 1845 ssize_t resid; 1846 boolean_t need_vn_close = B_FALSE; 1847 boolean_t keycopied = B_FALSE; 1848 boolean_t need_size_update = B_FALSE; 1849 1850 klip = copy_in_lofi_ioctl(ulip, ioctl_flag); 1851 if (klip == NULL) 1852 return (EFAULT); 1853 1854 mutex_enter(&lofi_lock); 1855 1856 if (!valid_filename(klip->li_filename)) { 1857 error = EINVAL; 1858 goto out; 1859 } 1860 1861 if (file_to_minor(klip->li_filename) != 0) { 1862 error = EBUSY; 1863 goto out; 1864 } 1865 1866 if (pickminor) { 1867 /* Find a free one */ 1868 for (newminor = 1; newminor <= lofi_max_files; newminor++) 1869 if (ddi_get_soft_state(lofi_statep, newminor) == NULL) 1870 break; 1871 if (newminor >= lofi_max_files) { 1872 error = EAGAIN; 1873 goto out; 1874 } 1875 } else { 1876 newminor = klip->li_minor; 1877 if (ddi_get_soft_state(lofi_statep, newminor) != NULL) { 1878 error = EEXIST; 1879 goto out; 1880 } 1881 } 1882 1883 /* make sure it's valid */ 1884 error = lookupname(klip->li_filename, UIO_SYSSPACE, FOLLOW, 1885 NULLVPP, &vp); 1886 if (error) { 1887 goto out; 1888 } 1889 v_type = vp->v_type; 1890 VN_RELE(vp); 1891 if (!V_ISLOFIABLE(v_type)) { 1892 error = EINVAL; 1893 goto out; 1894 } 1895 flag = FREAD | FWRITE | FOFFMAX | FEXCL; 1896 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); 1897 if (error) { 1898 /* try read-only */ 1899 flag &= ~FWRITE; 1900 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, 1901 &vp, 0, 0); 1902 if (error) { 1903 goto out; 1904 } 1905 } 1906 need_vn_close = B_TRUE; 1907 1908 vattr.va_mask = AT_SIZE; 1909 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); 1910 if (error) { 1911 goto out; 1912 } 1913 /* the file needs to be a multiple of the block size */ 1914 if ((vattr.va_size % DEV_BSIZE) != 0) { 1915 error = EINVAL; 1916 goto out; 1917 } 1918 newdev = makedevice(getmajor(dev), newminor); 1919 Size_prop_val = vattr.va_size; 1920 if ((ddi_prop_update_int64(newdev, lofi_dip, 1921 SIZE_PROP_NAME, Size_prop_val)) != DDI_PROP_SUCCESS) { 1922 error = EINVAL; 1923 goto out; 1924 } 1925 Nblocks_prop_val = vattr.va_size / DEV_BSIZE; 1926 if ((ddi_prop_update_int64(newdev, lofi_dip, 1927 NBLOCKS_PROP_NAME, Nblocks_prop_val)) != DDI_PROP_SUCCESS) { 1928 error = EINVAL; 1929 goto propout; 1930 } 1931 error = ddi_soft_state_zalloc(lofi_statep, newminor); 1932 if (error == DDI_FAILURE) { 1933 error = ENOMEM; 1934 goto propout; 1935 } 1936 zalloced = 1; 1937 (void) snprintf(namebuf, sizeof (namebuf), "%d", newminor); 1938 error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, newminor, 1939 DDI_PSEUDO, NULL); 1940 if (error != DDI_SUCCESS) { 1941 error = ENXIO; 1942 goto propout; 1943 } 1944 (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", newminor); 1945 error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, newminor, 1946 DDI_PSEUDO, NULL); 1947 if (error != DDI_SUCCESS) { 1948 /* remove block node */ 1949 (void) snprintf(namebuf, sizeof (namebuf), "%d", newminor); 1950 ddi_remove_minor_node(lofi_dip, namebuf); 1951 error = ENXIO; 1952 goto propout; 1953 } 1954 lsp = ddi_get_soft_state(lofi_statep, newminor); 1955 lsp->ls_filename_sz = strlen(klip->li_filename) + 1; 1956 lsp->ls_filename = kmem_alloc(lsp->ls_filename_sz, KM_SLEEP); 1957 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", 1958 LOFI_DRIVER_NAME, newminor); 1959 lsp->ls_taskq = taskq_create(namebuf, lofi_taskq_nthreads, 1960 minclsyspri, 1, lofi_taskq_maxalloc, 0); 1961 lsp->ls_kstat = kstat_create(LOFI_DRIVER_NAME, newminor, 1962 NULL, "disk", KSTAT_TYPE_IO, 1, 0); 1963 if (lsp->ls_kstat) { 1964 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); 1965 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; 1966 kstat_install(lsp->ls_kstat); 1967 } 1968 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); 1969 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); 1970 1971 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), 1972 offsetof(struct lofi_comp_cache, lc_list)); 1973 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); 1974 1975 /* 1976 * save open mode so file can be closed properly and vnode counts 1977 * updated correctly. 1978 */ 1979 lsp->ls_openflag = flag; 1980 1981 /* 1982 * Try to handle stacked lofs vnodes. 1983 */ 1984 if (vp->v_type == VREG) { 1985 if (VOP_REALVP(vp, &lsp->ls_vp, NULL) != 0) { 1986 lsp->ls_vp = vp; 1987 } else { 1988 /* 1989 * Even though vp was obtained via vn_open(), we 1990 * can't call vn_close() on it, since lofs will 1991 * pass the VOP_CLOSE() on down to the realvp 1992 * (which we are about to use). Hence we merely 1993 * drop the reference to the lofs vnode and hold 1994 * the realvp so things behave as if we've 1995 * opened the realvp without any interaction 1996 * with lofs. 1997 */ 1998 VN_HOLD(lsp->ls_vp); 1999 VN_RELE(vp); 2000 } 2001 } else { 2002 lsp->ls_vp = vp; 2003 } 2004 lsp->ls_vp_size = vattr.va_size; 2005 (void) strcpy(lsp->ls_filename, klip->li_filename); 2006 if (rvalp) 2007 *rvalp = (int)newminor; 2008 klip->li_minor = newminor; 2009 2010 /* 2011 * Initialize crypto details for encrypted lofi 2012 */ 2013 if (klip->li_crypto_enabled) { 2014 int ret; 2015 2016 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); 2017 2018 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); 2019 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { 2020 cmn_err(CE_WARN, "invalid cipher %s requested for %s", 2021 klip->li_cipher, lsp->ls_filename); 2022 error = EINVAL; 2023 goto propout; 2024 } 2025 2026 /* this is just initialization here */ 2027 lsp->ls_mech.cm_param = NULL; 2028 lsp->ls_mech.cm_param_len = 0; 2029 2030 lsp->ls_iv_type = klip->li_iv_type; 2031 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); 2032 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { 2033 cmn_err(CE_WARN, "invalid iv cipher %s requested" 2034 " for %s", klip->li_iv_cipher, lsp->ls_filename); 2035 error = EINVAL; 2036 goto propout; 2037 } 2038 2039 /* iv mech must itself take a null iv */ 2040 lsp->ls_iv_mech.cm_param = NULL; 2041 lsp->ls_iv_mech.cm_param_len = 0; 2042 lsp->ls_iv_len = klip->li_iv_len; 2043 2044 /* 2045 * Create ctx using li_cipher & the raw li_key after checking 2046 * that it isn't a weak key. 2047 */ 2048 lsp->ls_key.ck_format = CRYPTO_KEY_RAW; 2049 lsp->ls_key.ck_length = klip->li_key_len; 2050 lsp->ls_key.ck_data = kmem_alloc( 2051 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); 2052 bcopy(klip->li_key, lsp->ls_key.ck_data, 2053 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2054 keycopied = B_TRUE; 2055 2056 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); 2057 if (ret != CRYPTO_SUCCESS) { 2058 error = EINVAL; 2059 cmn_err(CE_WARN, "weak key check failed for cipher " 2060 "%s on file %s (0x%x)", klip->li_cipher, 2061 lsp->ls_filename, ret); 2062 goto propout; 2063 } 2064 } 2065 lsp->ls_crypto_enabled = klip->li_crypto_enabled; 2066 2067 /* 2068 * Read the file signature to check if it is compressed or encrypted. 2069 * Crypto signature is in a different location; both areas should 2070 * read to keep compression and encryption mutually exclusive. 2071 */ 2072 if (lsp->ls_crypto_enabled) { 2073 error = vn_rdwr(UIO_READ, lsp->ls_vp, crybuf, DEV_BSIZE, 2074 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2075 if (error != 0) 2076 goto propout; 2077 } 2078 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 2079 0, RLIM64_INFINITY, kcred, &resid); 2080 if (error != 0) 2081 goto propout; 2082 2083 /* initialize these variables for all lofi files */ 2084 lsp->ls_comp_bufs = NULL; 2085 lsp->ls_uncomp_seg_sz = 0; 2086 lsp->ls_vp_comp_size = lsp->ls_vp_size; 2087 lsp->ls_comp_algorithm[0] = '\0'; 2088 2089 /* encrypted lofi reads/writes shifted by crypto metadata size */ 2090 lsp->ls_crypto_offset = 0; 2091 2092 /* this is a compressed lofi */ 2093 if ((compress_index = lofi_compress_select(buf)) != -1) { 2094 2095 /* compression and encryption are mutually exclusive */ 2096 if (klip->li_crypto_enabled) { 2097 error = ENOTSUP; 2098 goto propout; 2099 } 2100 2101 /* initialize compression info for compressed lofi */ 2102 lsp->ls_comp_algorithm_index = compress_index; 2103 (void) strlcpy(lsp->ls_comp_algorithm, 2104 lofi_compress_table[compress_index].l_name, 2105 sizeof (lsp->ls_comp_algorithm)); 2106 2107 error = lofi_map_compressed_file(lsp, buf); 2108 if (error != 0) 2109 goto propout; 2110 need_size_update = B_TRUE; 2111 2112 /* this is an encrypted lofi */ 2113 } else if (strncmp(crybuf, lofi_crypto_magic, 2114 sizeof (lofi_crypto_magic)) == 0) { 2115 2116 char *marker = crybuf; 2117 2118 /* 2119 * This is the case where the header in the lofi image is 2120 * already initialized to indicate it is encrypted. 2121 * There is another case (see below) where encryption is 2122 * requested but the lofi image has never been used yet, 2123 * so the header needs to be written with encryption magic. 2124 */ 2125 2126 /* indicate this must be an encrypted lofi due to magic */ 2127 klip->li_crypto_enabled = B_TRUE; 2128 2129 /* 2130 * The encryption header information is laid out this way: 2131 * 6 bytes: hex "CFLOFI" 2132 * 2 bytes: version = 0 ... for now 2133 * 96 bytes: reserved1 (not implemented yet) 2134 * 4 bytes: data_sector = 2 ... for now 2135 * more... not implemented yet 2136 */ 2137 2138 /* copy the magic */ 2139 bcopy(marker, lsp->ls_crypto.magic, 2140 sizeof (lsp->ls_crypto.magic)); 2141 marker += sizeof (lsp->ls_crypto.magic); 2142 2143 /* read the encryption version number */ 2144 bcopy(marker, &(lsp->ls_crypto.version), 2145 sizeof (lsp->ls_crypto.version)); 2146 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); 2147 marker += sizeof (lsp->ls_crypto.version); 2148 2149 /* read a chunk of reserved data */ 2150 bcopy(marker, lsp->ls_crypto.reserved1, 2151 sizeof (lsp->ls_crypto.reserved1)); 2152 marker += sizeof (lsp->ls_crypto.reserved1); 2153 2154 /* read block number where encrypted data begins */ 2155 bcopy(marker, &(lsp->ls_crypto.data_sector), 2156 sizeof (lsp->ls_crypto.data_sector)); 2157 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); 2158 marker += sizeof (lsp->ls_crypto.data_sector); 2159 2160 /* and ignore the rest until it is implemented */ 2161 2162 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2163 need_size_update = B_TRUE; 2164 2165 /* neither compressed nor encrypted, BUT could be new encrypted lofi */ 2166 } else if (klip->li_crypto_enabled) { 2167 2168 /* 2169 * This is the case where encryption was requested but the 2170 * appears to be entirely blank where the encryption header 2171 * would have been in the lofi image. If it is blank, 2172 * assume it is a brand new lofi image and initialize the 2173 * header area with encryption magic and current version 2174 * header data. If it is not blank, that's an error. 2175 */ 2176 int i; 2177 char *marker; 2178 struct crypto_meta chead; 2179 2180 for (i = 0; i < sizeof (struct crypto_meta); i++) 2181 if (crybuf[i] != '\0') 2182 break; 2183 if (i != sizeof (struct crypto_meta)) { 2184 error = EINVAL; 2185 goto propout; 2186 } 2187 2188 /* nothing there, initialize as encrypted lofi */ 2189 marker = crybuf; 2190 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); 2191 marker += sizeof (lofi_crypto_magic); 2192 chead.version = htons(LOFI_CRYPTO_VERSION); 2193 bcopy(&(chead.version), marker, sizeof (chead.version)); 2194 marker += sizeof (chead.version); 2195 marker += sizeof (chead.reserved1); 2196 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); 2197 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); 2198 2199 /* write the header */ 2200 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, crybuf, DEV_BSIZE, 2201 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2202 if (error != 0) 2203 goto propout; 2204 2205 /* fix things up so it looks like we read this info */ 2206 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, 2207 sizeof (lofi_crypto_magic)); 2208 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; 2209 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; 2210 2211 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2212 need_size_update = B_TRUE; 2213 } 2214 2215 /* 2216 * Either lsp->ls_vp_size or lsp->ls_crypto_offset changed; 2217 * for encrypted lofi, advertise that it is somewhat shorter 2218 * due to embedded crypto metadata section 2219 */ 2220 if (need_size_update) { 2221 /* update DDI properties */ 2222 Size_prop_val = lsp->ls_vp_size - lsp->ls_crypto_offset; 2223 if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME, 2224 Size_prop_val)) != DDI_PROP_SUCCESS) { 2225 error = EINVAL; 2226 goto propout; 2227 } 2228 Nblocks_prop_val = 2229 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE; 2230 if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME, 2231 Nblocks_prop_val)) != DDI_PROP_SUCCESS) { 2232 error = EINVAL; 2233 goto propout; 2234 } 2235 } 2236 2237 fake_disk_geometry(lsp); 2238 mutex_exit(&lofi_lock); 2239 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2240 free_lofi_ioctl(klip); 2241 return (0); 2242 2243 propout: 2244 if (keycopied) { 2245 bzero(lsp->ls_key.ck_data, 2246 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2247 kmem_free(lsp->ls_key.ck_data, 2248 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2249 lsp->ls_key.ck_data = NULL; 2250 lsp->ls_key.ck_length = 0; 2251 } 2252 2253 if (zalloced) 2254 ddi_soft_state_free(lofi_statep, newminor); 2255 2256 (void) ddi_prop_remove(newdev, lofi_dip, SIZE_PROP_NAME); 2257 (void) ddi_prop_remove(newdev, lofi_dip, NBLOCKS_PROP_NAME); 2258 2259 out: 2260 if (need_vn_close) { 2261 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); 2262 VN_RELE(vp); 2263 } 2264 2265 mutex_exit(&lofi_lock); 2266 free_lofi_ioctl(klip); 2267 return (error); 2268 } 2269 2270 /* 2271 * unmap a file. 2272 */ 2273 static int 2274 lofi_unmap_file(dev_t dev, struct lofi_ioctl *ulip, int byfilename, 2275 struct cred *credp, int ioctl_flag) 2276 { 2277 struct lofi_state *lsp; 2278 struct lofi_ioctl *klip; 2279 minor_t minor; 2280 2281 klip = copy_in_lofi_ioctl(ulip, ioctl_flag); 2282 if (klip == NULL) 2283 return (EFAULT); 2284 2285 mutex_enter(&lofi_lock); 2286 if (byfilename) { 2287 minor = file_to_minor(klip->li_filename); 2288 } else { 2289 minor = klip->li_minor; 2290 } 2291 if (minor == 0) { 2292 mutex_exit(&lofi_lock); 2293 free_lofi_ioctl(klip); 2294 return (ENXIO); 2295 } 2296 lsp = ddi_get_soft_state(lofi_statep, minor); 2297 if (lsp == NULL || lsp->ls_vp == NULL) { 2298 mutex_exit(&lofi_lock); 2299 free_lofi_ioctl(klip); 2300 return (ENXIO); 2301 } 2302 2303 /* 2304 * If it's still held open, we'll do one of three things: 2305 * 2306 * If no flag is set, just return EBUSY. 2307 * 2308 * If the 'cleanup' flag is set, unmap and remove the device when 2309 * the last user finishes. 2310 * 2311 * If the 'force' flag is set, then we forcibly close the underlying 2312 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl 2313 * will return DKIO_DEV_GONE. When the device is last closed, the 2314 * device will be cleaned up appropriately. 2315 * 2316 * This is complicated by the fact that we may have outstanding 2317 * dispatched I/Os. Rather than having a single mutex to serialize all 2318 * I/O, we keep a count of the number of outstanding I/O requests 2319 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os 2320 * should be dispatched (ls_vp_closereq). 2321 * 2322 * We set the flag, wait for the number of outstanding I/Os to reach 0, 2323 * and then close the underlying vnode. 2324 */ 2325 if (is_opened(lsp)) { 2326 if (klip->li_force) { 2327 mutex_enter(&lsp->ls_vp_lock); 2328 lsp->ls_vp_closereq = B_TRUE; 2329 /* wake up any threads waiting on dkiocstate */ 2330 cv_broadcast(&lsp->ls_vp_cv); 2331 while (lsp->ls_vp_iocount > 0) 2332 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 2333 mutex_exit(&lsp->ls_vp_lock); 2334 lofi_free_handle(dev, minor, lsp, credp); 2335 2336 klip->li_minor = minor; 2337 mutex_exit(&lofi_lock); 2338 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2339 free_lofi_ioctl(klip); 2340 return (0); 2341 } else if (klip->li_cleanup) { 2342 lsp->ls_cleanup = 1; 2343 mutex_exit(&lofi_lock); 2344 free_lofi_ioctl(klip); 2345 return (0); 2346 } 2347 2348 mutex_exit(&lofi_lock); 2349 free_lofi_ioctl(klip); 2350 return (EBUSY); 2351 } 2352 2353 lofi_free_handle(dev, minor, lsp, credp); 2354 2355 klip->li_minor = minor; 2356 mutex_exit(&lofi_lock); 2357 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2358 free_lofi_ioctl(klip); 2359 return (0); 2360 } 2361 2362 /* 2363 * get the filename given the minor number, or the minor number given 2364 * the name. 2365 */ 2366 /*ARGSUSED*/ 2367 static int 2368 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, 2369 struct cred *credp, int ioctl_flag) 2370 { 2371 struct lofi_state *lsp; 2372 struct lofi_ioctl *klip; 2373 int error; 2374 minor_t minor; 2375 2376 klip = copy_in_lofi_ioctl(ulip, ioctl_flag); 2377 if (klip == NULL) 2378 return (EFAULT); 2379 2380 switch (which) { 2381 case LOFI_GET_FILENAME: 2382 minor = klip->li_minor; 2383 if (minor == 0) { 2384 free_lofi_ioctl(klip); 2385 return (EINVAL); 2386 } 2387 2388 mutex_enter(&lofi_lock); 2389 lsp = ddi_get_soft_state(lofi_statep, minor); 2390 if (lsp == NULL) { 2391 mutex_exit(&lofi_lock); 2392 free_lofi_ioctl(klip); 2393 return (ENXIO); 2394 } 2395 (void) strcpy(klip->li_filename, lsp->ls_filename); 2396 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 2397 sizeof (klip->li_algorithm)); 2398 klip->li_crypto_enabled = lsp->ls_crypto_enabled; 2399 mutex_exit(&lofi_lock); 2400 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2401 free_lofi_ioctl(klip); 2402 return (error); 2403 case LOFI_GET_MINOR: 2404 mutex_enter(&lofi_lock); 2405 klip->li_minor = file_to_minor(klip->li_filename); 2406 /* caller should not depend on klip->li_crypto_enabled here */ 2407 mutex_exit(&lofi_lock); 2408 if (klip->li_minor == 0) { 2409 free_lofi_ioctl(klip); 2410 return (ENOENT); 2411 } 2412 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2413 free_lofi_ioctl(klip); 2414 return (error); 2415 case LOFI_CHECK_COMPRESSED: 2416 mutex_enter(&lofi_lock); 2417 klip->li_minor = file_to_minor(klip->li_filename); 2418 mutex_exit(&lofi_lock); 2419 if (klip->li_minor == 0) { 2420 free_lofi_ioctl(klip); 2421 return (ENOENT); 2422 } 2423 mutex_enter(&lofi_lock); 2424 lsp = ddi_get_soft_state(lofi_statep, klip->li_minor); 2425 if (lsp == NULL) { 2426 mutex_exit(&lofi_lock); 2427 free_lofi_ioctl(klip); 2428 return (ENXIO); 2429 } 2430 ASSERT(strcmp(klip->li_filename, lsp->ls_filename) == 0); 2431 2432 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 2433 sizeof (klip->li_algorithm)); 2434 mutex_exit(&lofi_lock); 2435 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2436 free_lofi_ioctl(klip); 2437 return (error); 2438 default: 2439 free_lofi_ioctl(klip); 2440 return (EINVAL); 2441 } 2442 2443 } 2444 2445 static int 2446 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, 2447 int *rvalp) 2448 { 2449 int error; 2450 enum dkio_state dkstate; 2451 struct lofi_state *lsp; 2452 minor_t minor; 2453 2454 minor = getminor(dev); 2455 /* lofi ioctls only apply to the master device */ 2456 if (minor == 0) { 2457 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; 2458 2459 /* 2460 * the query command only need read-access - i.e., normal 2461 * users are allowed to do those on the ctl device as 2462 * long as they can open it read-only. 2463 */ 2464 switch (cmd) { 2465 case LOFI_MAP_FILE: 2466 if ((flag & FWRITE) == 0) 2467 return (EPERM); 2468 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); 2469 case LOFI_MAP_FILE_MINOR: 2470 if ((flag & FWRITE) == 0) 2471 return (EPERM); 2472 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); 2473 case LOFI_UNMAP_FILE: 2474 if ((flag & FWRITE) == 0) 2475 return (EPERM); 2476 return (lofi_unmap_file(dev, lip, 1, credp, flag)); 2477 case LOFI_UNMAP_FILE_MINOR: 2478 if ((flag & FWRITE) == 0) 2479 return (EPERM); 2480 return (lofi_unmap_file(dev, lip, 0, credp, flag)); 2481 case LOFI_GET_FILENAME: 2482 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, 2483 credp, flag)); 2484 case LOFI_GET_MINOR: 2485 return (lofi_get_info(dev, lip, LOFI_GET_MINOR, 2486 credp, flag)); 2487 case LOFI_GET_MAXMINOR: 2488 error = ddi_copyout(&lofi_max_files, &lip->li_minor, 2489 sizeof (lofi_max_files), flag); 2490 if (error) 2491 return (EFAULT); 2492 return (0); 2493 case LOFI_CHECK_COMPRESSED: 2494 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, 2495 credp, flag)); 2496 default: 2497 break; 2498 } 2499 } 2500 2501 mutex_enter(&lofi_lock); 2502 lsp = ddi_get_soft_state(lofi_statep, minor); 2503 if (lsp == NULL || lsp->ls_vp_closereq) { 2504 mutex_exit(&lofi_lock); 2505 return (ENXIO); 2506 } 2507 mutex_exit(&lofi_lock); 2508 2509 /* 2510 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with 2511 * EIO as if the device was no longer present. 2512 */ 2513 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) 2514 return (EIO); 2515 2516 /* these are for faking out utilities like newfs */ 2517 switch (cmd) { 2518 case DKIOCGVTOC: 2519 switch (ddi_model_convert_from(flag & FMODELS)) { 2520 case DDI_MODEL_ILP32: { 2521 struct vtoc32 vtoc32; 2522 2523 vtoctovtoc32(lsp->ls_vtoc, vtoc32); 2524 if (ddi_copyout(&vtoc32, (void *)arg, 2525 sizeof (struct vtoc32), flag)) 2526 return (EFAULT); 2527 break; 2528 } 2529 2530 case DDI_MODEL_NONE: 2531 if (ddi_copyout(&lsp->ls_vtoc, (void *)arg, 2532 sizeof (struct vtoc), flag)) 2533 return (EFAULT); 2534 break; 2535 } 2536 return (0); 2537 case DKIOCINFO: 2538 error = ddi_copyout(&lsp->ls_ci, (void *)arg, 2539 sizeof (struct dk_cinfo), flag); 2540 if (error) 2541 return (EFAULT); 2542 return (0); 2543 case DKIOCG_VIRTGEOM: 2544 case DKIOCG_PHYGEOM: 2545 case DKIOCGGEOM: 2546 error = ddi_copyout(&lsp->ls_dkg, (void *)arg, 2547 sizeof (struct dk_geom), flag); 2548 if (error) 2549 return (EFAULT); 2550 return (0); 2551 case DKIOCSTATE: 2552 /* 2553 * Normally, lofi devices are always in the INSERTED state. If 2554 * a device is forcefully unmapped, then the device transitions 2555 * to the DKIO_DEV_GONE state. 2556 */ 2557 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), 2558 flag) != 0) 2559 return (EFAULT); 2560 2561 mutex_enter(&lsp->ls_vp_lock); 2562 lsp->ls_vp_iocount++; 2563 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || 2564 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && 2565 !lsp->ls_vp_closereq) { 2566 /* 2567 * By virtue of having the device open, we know that 2568 * 'lsp' will remain valid when we return. 2569 */ 2570 if (!cv_wait_sig(&lsp->ls_vp_cv, 2571 &lsp->ls_vp_lock)) { 2572 lsp->ls_vp_iocount--; 2573 cv_broadcast(&lsp->ls_vp_cv); 2574 mutex_exit(&lsp->ls_vp_lock); 2575 return (EINTR); 2576 } 2577 } 2578 2579 dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ? 2580 DKIO_INSERTED : DKIO_DEV_GONE); 2581 lsp->ls_vp_iocount--; 2582 cv_broadcast(&lsp->ls_vp_cv); 2583 mutex_exit(&lsp->ls_vp_lock); 2584 2585 if (ddi_copyout(&dkstate, (void *)arg, 2586 sizeof (dkstate), flag) != 0) 2587 return (EFAULT); 2588 return (0); 2589 default: 2590 return (ENOTTY); 2591 } 2592 } 2593 2594 static struct cb_ops lofi_cb_ops = { 2595 lofi_open, /* open */ 2596 lofi_close, /* close */ 2597 lofi_strategy, /* strategy */ 2598 nodev, /* print */ 2599 nodev, /* dump */ 2600 lofi_read, /* read */ 2601 lofi_write, /* write */ 2602 lofi_ioctl, /* ioctl */ 2603 nodev, /* devmap */ 2604 nodev, /* mmap */ 2605 nodev, /* segmap */ 2606 nochpoll, /* poll */ 2607 ddi_prop_op, /* prop_op */ 2608 0, /* streamtab */ 2609 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ 2610 CB_REV, 2611 lofi_aread, 2612 lofi_awrite 2613 }; 2614 2615 static struct dev_ops lofi_ops = { 2616 DEVO_REV, /* devo_rev, */ 2617 0, /* refcnt */ 2618 lofi_info, /* info */ 2619 nulldev, /* identify */ 2620 nulldev, /* probe */ 2621 lofi_attach, /* attach */ 2622 lofi_detach, /* detach */ 2623 nodev, /* reset */ 2624 &lofi_cb_ops, /* driver operations */ 2625 NULL, /* no bus operations */ 2626 NULL, /* power */ 2627 ddi_quiesce_not_needed, /* quiesce */ 2628 }; 2629 2630 static struct modldrv modldrv = { 2631 &mod_driverops, 2632 "loopback file driver", 2633 &lofi_ops, 2634 }; 2635 2636 static struct modlinkage modlinkage = { 2637 MODREV_1, 2638 &modldrv, 2639 NULL 2640 }; 2641 2642 int 2643 _init(void) 2644 { 2645 int error; 2646 2647 error = ddi_soft_state_init(&lofi_statep, 2648 sizeof (struct lofi_state), 0); 2649 if (error) 2650 return (error); 2651 2652 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); 2653 error = mod_install(&modlinkage); 2654 if (error) { 2655 mutex_destroy(&lofi_lock); 2656 ddi_soft_state_fini(&lofi_statep); 2657 } 2658 2659 return (error); 2660 } 2661 2662 int 2663 _fini(void) 2664 { 2665 int error; 2666 2667 if (lofi_busy()) 2668 return (EBUSY); 2669 2670 error = mod_remove(&modlinkage); 2671 if (error) 2672 return (error); 2673 2674 mutex_destroy(&lofi_lock); 2675 ddi_soft_state_fini(&lofi_statep); 2676 2677 return (error); 2678 } 2679 2680 int 2681 _info(struct modinfo *modinfop) 2682 { 2683 return (mod_info(&modlinkage, modinfop)); 2684 } 2685