1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016 Andrey Sokolov 26 * Copyright 2016 Toomas Soome <tsoome@me.com> 27 * Copyright 2019 Joyent, Inc. 28 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 /* 32 * lofi (loopback file) driver - allows you to attach a file to a device, 33 * which can then be accessed through that device. The simple model is that 34 * you tell lofi to open a file, and then use the block device you get as 35 * you would any block device. lofi translates access to the block device 36 * into I/O on the underlying file. This is mostly useful for 37 * mounting images of filesystems. 38 * 39 * lofi is controlled through /dev/lofictl - this is the only device exported 40 * during attach, and is instance number 0. lofiadm communicates with lofi 41 * through ioctls on this device. When a file is attached to lofi, block and 42 * character devices are exported in /dev/lofi and /dev/rlofi. These devices 43 * are identified by lofi instance number, and the instance number is also used 44 * as the name in /dev/lofi. 45 * 46 * Virtual disks, or, labeled lofi, implements virtual disk support to 47 * support partition table and related tools. Such mappings will cause 48 * block and character devices to be exported in /dev/dsk and /dev/rdsk 49 * directories. 50 * 51 * To support virtual disks, the instance number space is divided to two 52 * parts, upper part for instance number and lower part for minor number 53 * space to identify partitions and slices. The virtual disk support is 54 * implemented by stacking cmlb module. For virtual disks, the partition 55 * related ioctl calls are routed to cmlb module. Compression and encryption 56 * is not supported for virtual disks. 57 * 58 * Mapped devices are tracked with state structures handled with 59 * ddi_soft_state(9F) for simplicity. 60 * 61 * A file attached to lofi is opened when attached and not closed until 62 * explicitly detached from lofi. This seems more sensible than deferring 63 * the open until the /dev/lofi device is opened, for a number of reasons. 64 * One is that any failure is likely to be noticed by the person (or script) 65 * running lofiadm. Another is that it would be a security problem if the 66 * file was replaced by another one after being added but before being opened. 67 * 68 * The only hard part about lofi is the ioctls. In order to support things 69 * like 'newfs' on a lofi device, it needs to support certain disk ioctls. 70 * So it has to fake disk geometry and partition information. More may need 71 * to be faked if your favorite utility doesn't work and you think it should 72 * (fdformat doesn't work because it really wants to know the type of floppy 73 * controller to talk to, and that didn't seem easy to fake. Or possibly even 74 * necessary, since we have mkfs_pcfs now). 75 * 76 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To 77 * support simulation of hotplug events, an optional force flag is provided. 78 * If a lofi device is open when a force detach is requested, then the 79 * underlying file is closed and any subsequent operations return EIO. When the 80 * device is closed for the last time, it will be cleaned up at that time. In 81 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is 82 * detached but not removed. 83 * 84 * If detach was requested and lofi device is not open, we will perform 85 * unmap and remove the lofi instance. 86 * 87 * If the lofi device is open and the li_cleanup is set on ioctl request, 88 * we set ls_cleanup flag to notify the cleanup is requested, and the 89 * last lofi_close will perform the unmapping and this lofi instance will be 90 * removed. 91 * 92 * If the lofi device is open and the li_force is set on ioctl request, 93 * we set ls_cleanup flag to notify the cleanup is requested, 94 * we also set ls_vp_closereq to notify IO tasks to return EIO on new 95 * IO requests and wait in process IO count to become 0, indicating there 96 * are no more IO requests. Since ls_cleanup is set, the last lofi_close 97 * will perform unmap and this lofi instance will be removed. 98 * See also lofi_unmap_file() for details. 99 * 100 * Once ls_cleanup is set for the instance, we do not allow lofi_open() 101 * calls to succeed and can have last lofi_close() to remove the instance. 102 * 103 * Known problems: 104 * 105 * UFS logging. Mounting a UFS filesystem image "logging" 106 * works for basic copy testing but wedges during a build of ON through 107 * that image. Some deadlock in lufs holding the log mutex and then 108 * getting stuck on a buf. So for now, don't do that. 109 * 110 * Direct I/O. Since the filesystem data is being cached in the buffer 111 * cache, _and_ again in the underlying filesystem, it's tempting to 112 * enable direct I/O on the underlying file. Don't, because that deadlocks. 113 * I think to fix the cache-twice problem we might need filesystem support. 114 * 115 * Interesting things to do: 116 * 117 * Allow multiple files for each device. A poor-man's metadisk, basically. 118 * 119 * Pass-through ioctls on block devices. You can (though it's not 120 * documented), give lofi a block device as a file name. Then we shouldn't 121 * need to fake a geometry, however, it may be relevant if you're replacing 122 * metadisk, or using lofi to get crypto. 123 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 124 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. 125 * In fact this even makes sense if you have lofi "above" metadisk. 126 * 127 * Encryption: 128 * Each lofi device can have its own symmetric key and cipher. 129 * They are passed to us by lofiadm(1m) in the correct format for use 130 * with the misc/kcf crypto_* routines. 131 * 132 * Each block has its own IV, that is calculated in lofi_blk_mech(), based 133 * on the "master" key held in the lsp and the block number of the buffer. 134 */ 135 136 #include <sys/types.h> 137 #include <netinet/in.h> 138 #include <sys/sysmacros.h> 139 #include <sys/uio.h> 140 #include <sys/kmem.h> 141 #include <sys/cred.h> 142 #include <sys/mman.h> 143 #include <sys/errno.h> 144 #include <sys/aio_req.h> 145 #include <sys/stat.h> 146 #include <sys/file.h> 147 #include <sys/modctl.h> 148 #include <sys/conf.h> 149 #include <sys/debug.h> 150 #include <sys/vnode.h> 151 #include <sys/lofi.h> 152 #include <sys/lofi_impl.h> /* for cache structure */ 153 #include <sys/fcntl.h> 154 #include <sys/pathname.h> 155 #include <sys/filio.h> 156 #include <sys/fdio.h> 157 #include <sys/open.h> 158 #include <sys/disp.h> 159 #include <vm/seg_map.h> 160 #include <sys/ddi.h> 161 #include <sys/sunddi.h> 162 #include <sys/zmod.h> 163 #include <sys/id_space.h> 164 #include <sys/mkdev.h> 165 #include <sys/crypto/common.h> 166 #include <sys/crypto/api.h> 167 #include <sys/rctl.h> 168 #include <sys/vtoc.h> 169 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */ 170 #include <sys/scsi/impl/uscsi.h> 171 #include <sys/sysevent/dev.h> 172 #include <sys/efi_partition.h> 173 #include <sys/note.h> 174 #include <LzmaDec.h> 175 176 #define NBLOCKS_PROP_NAME "Nblocks" 177 #define SIZE_PROP_NAME "Size" 178 #define ZONE_PROP_NAME "zone" 179 180 #define SETUP_C_DATA(cd, buf, len) \ 181 (cd).cd_format = CRYPTO_DATA_RAW; \ 182 (cd).cd_offset = 0; \ 183 (cd).cd_miscdata = NULL; \ 184 (cd).cd_length = (len); \ 185 (cd).cd_raw.iov_base = (buf); \ 186 (cd).cd_raw.iov_len = (len); 187 188 #define UIO_CHECK(uio) \ 189 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ 190 ((uio)->uio_resid % DEV_BSIZE) != 0) { \ 191 return (EINVAL); \ 192 } 193 194 #define LOFI_TIMEOUT 120 195 196 int lofi_timeout = LOFI_TIMEOUT; 197 static void *lofi_statep; 198 static kmutex_t lofi_lock; /* state lock */ 199 static id_space_t *lofi_id; /* lofi ID values */ 200 static list_t lofi_list; 201 static zone_key_t lofi_zone_key; 202 203 /* 204 * Because lofi_taskq_nthreads limits the actual swamping of the device, the 205 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively 206 * high. If we want to be assured that the underlying device is always busy, 207 * we must be sure that the number of bytes enqueued when the number of 208 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for 209 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should 210 * set maxalloc to be the maximum throughput (in bytes per second) of the 211 * underlying device divided by the minimum I/O size. We assume a realistic 212 * maximum throughput of one hundred megabytes per second; we set maxalloc on 213 * the lofi task queue to be 104857600 divided by DEV_BSIZE. 214 */ 215 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; 216 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ 217 218 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; 219 220 /* 221 * To avoid decompressing data in a compressed segment multiple times 222 * when accessing small parts of a segment's data, we cache and reuse 223 * the uncompressed segment's data. 224 * 225 * A single cached segment is sufficient to avoid lots of duplicate 226 * segment decompress operations. A small cache size also reduces the 227 * memory footprint. 228 * 229 * lofi_max_comp_cache is the maximum number of decompressed data segments 230 * cached for each compressed lofi image. It can be set to 0 to disable 231 * caching. 232 */ 233 234 uint32_t lofi_max_comp_cache = 1; 235 236 static int gzip_decompress(void *src, size_t srclen, void *dst, 237 size_t *destlen, int level); 238 239 static int lzma_decompress(void *src, size_t srclen, void *dst, 240 size_t *dstlen, int level); 241 242 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { 243 {gzip_decompress, NULL, 6, "gzip"}, /* default */ 244 {gzip_decompress, NULL, 6, "gzip-6"}, 245 {gzip_decompress, NULL, 9, "gzip-9"}, 246 {lzma_decompress, NULL, 0, "lzma"} 247 }; 248 249 static void lofi_strategy_task(void *); 250 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, 251 size_t, void *); 252 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *); 253 254 struct cmlb_tg_ops lofi_tg_ops = { 255 TG_DK_OPS_VERSION_1, 256 lofi_tg_rdwr, 257 lofi_tg_getinfo 258 }; 259 260 /*ARGSUSED*/ 261 static void 262 *SzAlloc(void *p, size_t size) 263 { 264 return (kmem_alloc(size, KM_SLEEP)); 265 } 266 267 /*ARGSUSED*/ 268 static void 269 SzFree(void *p, void *address, size_t size) 270 { 271 kmem_free(address, size); 272 } 273 274 static ISzAlloc g_Alloc = { SzAlloc, SzFree }; 275 276 /* 277 * Free data referenced by the linked list of cached uncompressed 278 * segments. 279 */ 280 static void 281 lofi_free_comp_cache(struct lofi_state *lsp) 282 { 283 struct lofi_comp_cache *lc; 284 285 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { 286 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 287 kmem_free(lc, sizeof (struct lofi_comp_cache)); 288 lsp->ls_comp_cache_count--; 289 } 290 ASSERT(lsp->ls_comp_cache_count == 0); 291 } 292 293 static int 294 is_opened(struct lofi_state *lsp) 295 { 296 int i; 297 boolean_t last = B_TRUE; 298 299 ASSERT(MUTEX_HELD(&lofi_lock)); 300 for (i = 0; i < LOFI_PART_MAX; i++) { 301 if (lsp->ls_open_lyr[i]) { 302 last = B_FALSE; 303 break; 304 } 305 } 306 307 for (i = 0; last && (i < OTYP_LYR); i++) { 308 if (lsp->ls_open_reg[i]) { 309 last = B_FALSE; 310 } 311 } 312 313 return (!last); 314 } 315 316 static void 317 lofi_set_cleanup(struct lofi_state *lsp) 318 { 319 ASSERT(MUTEX_HELD(&lofi_lock)); 320 321 lsp->ls_cleanup = B_TRUE; 322 323 /* wake up any threads waiting on dkiocstate */ 324 cv_broadcast(&lsp->ls_vp_cv); 325 } 326 327 static void 328 lofi_free_crypto(struct lofi_state *lsp) 329 { 330 ASSERT(MUTEX_HELD(&lofi_lock)); 331 332 if (lsp->ls_crypto_enabled) { 333 /* 334 * Clean up the crypto state so that it doesn't hang around 335 * in memory after we are done with it. 336 */ 337 if (lsp->ls_key.ck_data != NULL) { 338 bzero(lsp->ls_key.ck_data, 339 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 340 kmem_free(lsp->ls_key.ck_data, 341 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 342 lsp->ls_key.ck_data = NULL; 343 lsp->ls_key.ck_length = 0; 344 } 345 346 if (lsp->ls_mech.cm_param != NULL) { 347 kmem_free(lsp->ls_mech.cm_param, 348 lsp->ls_mech.cm_param_len); 349 lsp->ls_mech.cm_param = NULL; 350 lsp->ls_mech.cm_param_len = 0; 351 } 352 353 if (lsp->ls_iv_mech.cm_param != NULL) { 354 kmem_free(lsp->ls_iv_mech.cm_param, 355 lsp->ls_iv_mech.cm_param_len); 356 lsp->ls_iv_mech.cm_param = NULL; 357 lsp->ls_iv_mech.cm_param_len = 0; 358 } 359 360 mutex_destroy(&lsp->ls_crypto_lock); 361 } 362 } 363 364 /* ARGSUSED */ 365 static int 366 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start, 367 size_t length, void *tg_cookie) 368 { 369 struct lofi_state *lsp; 370 buf_t *bp; 371 int instance; 372 int rv = 0; 373 374 instance = ddi_get_instance(dip); 375 if (instance == 0) /* control node does not have disk */ 376 return (ENXIO); 377 378 lsp = ddi_get_soft_state(lofi_statep, instance); 379 380 if (lsp == NULL) 381 return (ENXIO); 382 383 if (cmd != TG_READ && cmd != TG_WRITE) 384 return (EINVAL); 385 386 /* 387 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 388 */ 389 mutex_enter(&lsp->ls_vp_lock); 390 while (lsp->ls_vp_ready == B_FALSE) 391 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 392 mutex_exit(&lsp->ls_vp_lock); 393 394 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) { 395 /* We can only transfer whole blocks at a time! */ 396 return (EINVAL); 397 } 398 399 bp = getrbuf(KM_SLEEP); 400 401 if (cmd == TG_READ) { 402 bp->b_flags = B_READ; 403 } else { 404 if (lsp->ls_readonly == B_TRUE) { 405 freerbuf(bp); 406 return (EROFS); 407 } 408 bp->b_flags = B_WRITE; 409 } 410 411 bp->b_un.b_addr = bufaddr; 412 bp->b_bcount = length; 413 bp->b_lblkno = start; 414 bp->b_private = NULL; 415 bp->b_edev = lsp->ls_dev; 416 417 if (lsp->ls_kstat) { 418 mutex_enter(lsp->ls_kstat->ks_lock); 419 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 420 mutex_exit(lsp->ls_kstat->ks_lock); 421 } 422 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 423 (void) biowait(bp); 424 425 rv = geterror(bp); 426 freerbuf(bp); 427 return (rv); 428 } 429 430 /* 431 * Get device geometry info for cmlb. 432 * 433 * We have mapped disk image as virtual block device and have to report 434 * physical/virtual geometry to cmlb. 435 * 436 * So we have two principal cases: 437 * 1. Uninitialised image without any existing labels, 438 * for this case we fabricate the data based on mapped image. 439 * 2. Image with existing label information. 440 * Since we have no information how the image was created (it may be 441 * dump from some physical device), we need to rely on label information 442 * from image, or we get "corrupted label" errors. 443 * NOTE: label can be MBR, MBR+SMI, GPT 444 */ 445 static int 446 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie) 447 { 448 struct lofi_state *lsp; 449 int instance; 450 int ashift; 451 452 _NOTE(ARGUNUSED(tg_cookie)); 453 instance = ddi_get_instance(dip); 454 if (instance == 0) /* control device has no storage */ 455 return (ENXIO); 456 457 lsp = ddi_get_soft_state(lofi_statep, instance); 458 459 if (lsp == NULL) 460 return (ENXIO); 461 462 /* 463 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 464 * 465 * When mapping is created, new lofi instance is created and 466 * lofi_attach() will call cmlb_attach() as part of the procedure 467 * to set the mapping up. This chain of events will happen in 468 * the same thread. 469 * Since cmlb_attach() will call lofi_tg_getinfo to get 470 * capacity, we return error on that call if cookie is set, 471 * otherwise lofi_attach will be stuck as the mapping is not yet 472 * finalized and lofi is not yet ready. 473 * Note, such error is not fatal for cmlb, as the label setup 474 * will be finalized when cmlb_validate() is called. 475 */ 476 mutex_enter(&lsp->ls_vp_lock); 477 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) { 478 mutex_exit(&lsp->ls_vp_lock); 479 return (ENXIO); 480 } 481 while (lsp->ls_vp_ready == B_FALSE) 482 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 483 mutex_exit(&lsp->ls_vp_lock); 484 485 ashift = lsp->ls_lbshift; 486 487 switch (cmd) { 488 case TG_GETPHYGEOM: { 489 cmlb_geom_t *geomp = arg; 490 491 geomp->g_capacity = 492 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 493 geomp->g_nsect = lsp->ls_dkg.dkg_nsect; 494 geomp->g_nhead = lsp->ls_dkg.dkg_nhead; 495 geomp->g_acyl = lsp->ls_dkg.dkg_acyl; 496 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl; 497 geomp->g_secsize = (1U << ashift); 498 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv; 499 geomp->g_rpm = lsp->ls_dkg.dkg_rpm; 500 return (0); 501 } 502 503 case TG_GETCAPACITY: 504 *(diskaddr_t *)arg = 505 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 506 return (0); 507 508 case TG_GETBLOCKSIZE: 509 *(uint32_t *)arg = (1U << ashift); 510 return (0); 511 512 case TG_GETATTR: { 513 tg_attribute_t *tgattr = arg; 514 515 tgattr->media_is_writable = !lsp->ls_readonly; 516 tgattr->media_is_solid_state = B_FALSE; 517 tgattr->media_is_rotational = B_FALSE; 518 return (0); 519 } 520 521 default: 522 return (EINVAL); 523 } 524 } 525 526 static void 527 lofi_destroy(struct lofi_state *lsp, cred_t *credp) 528 { 529 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 530 int i; 531 532 ASSERT(MUTEX_HELD(&lofi_lock)); 533 534 /* 535 * Before we can start to release the other resources, 536 * make sure we have all tasks completed and taskq removed. 537 */ 538 if (lsp->ls_taskq != NULL) { 539 taskq_destroy(lsp->ls_taskq); 540 lsp->ls_taskq = NULL; 541 } 542 543 list_remove(&lofi_list, lsp); 544 545 lofi_free_crypto(lsp); 546 547 /* 548 * Free pre-allocated compressed buffers 549 */ 550 if (lsp->ls_comp_bufs != NULL) { 551 for (i = 0; i < lofi_taskq_nthreads; i++) { 552 if (lsp->ls_comp_bufs[i].bufsize > 0) 553 kmem_free(lsp->ls_comp_bufs[i].buf, 554 lsp->ls_comp_bufs[i].bufsize); 555 } 556 kmem_free(lsp->ls_comp_bufs, 557 sizeof (struct compbuf) * lofi_taskq_nthreads); 558 } 559 560 if (lsp->ls_vp != NULL) { 561 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_FREE, credp, NULL); 562 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 563 1, 0, credp, NULL); 564 VN_RELE(lsp->ls_vp); 565 } 566 if (lsp->ls_stacked_vp != lsp->ls_vp) 567 VN_RELE(lsp->ls_stacked_vp); 568 lsp->ls_vp = lsp->ls_stacked_vp = NULL; 569 570 if (lsp->ls_kstat != NULL) { 571 kstat_delete(lsp->ls_kstat); 572 lsp->ls_kstat = NULL; 573 } 574 575 /* 576 * Free cached decompressed segment data 577 */ 578 lofi_free_comp_cache(lsp); 579 list_destroy(&lsp->ls_comp_cache); 580 581 if (lsp->ls_uncomp_seg_sz > 0) { 582 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); 583 lsp->ls_uncomp_seg_sz = 0; 584 } 585 586 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1); 587 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 588 589 mutex_destroy(&lsp->ls_comp_cache_lock); 590 mutex_destroy(&lsp->ls_comp_bufs_lock); 591 mutex_destroy(&lsp->ls_kstat_lock); 592 mutex_destroy(&lsp->ls_vp_lock); 593 cv_destroy(&lsp->ls_vp_cv); 594 lsp->ls_vp_ready = B_FALSE; 595 lsp->ls_vp_closereq = B_FALSE; 596 597 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp); 598 (void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE); 599 id_free(lofi_id, id); 600 } 601 602 static void 603 lofi_free_dev(struct lofi_state *lsp) 604 { 605 ASSERT(MUTEX_HELD(&lofi_lock)); 606 607 if (lsp->ls_cmlbhandle != NULL) { 608 cmlb_invalidate(lsp->ls_cmlbhandle, 0); 609 cmlb_detach(lsp->ls_cmlbhandle, 0); 610 cmlb_free_handle(&lsp->ls_cmlbhandle); 611 lsp->ls_cmlbhandle = NULL; 612 } 613 (void) ddi_prop_remove_all(lsp->ls_dip); 614 ddi_remove_minor_node(lsp->ls_dip, NULL); 615 } 616 617 /*ARGSUSED*/ 618 static void 619 lofi_zone_shutdown(zoneid_t zoneid, void *arg) 620 { 621 struct lofi_state *lsp; 622 struct lofi_state *next; 623 624 mutex_enter(&lofi_lock); 625 626 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) { 627 628 /* lofi_destroy() frees lsp */ 629 next = list_next(&lofi_list, lsp); 630 631 if (lsp->ls_zone.zref_zone->zone_id != zoneid) 632 continue; 633 634 /* 635 * No in-zone processes are running, but something has this 636 * open. It's either a global zone process, or a lofi 637 * mount. In either case we set ls_cleanup so the last 638 * user destroys the device. 639 */ 640 if (is_opened(lsp)) { 641 lofi_set_cleanup(lsp); 642 } else { 643 lofi_free_dev(lsp); 644 lofi_destroy(lsp, kcred); 645 } 646 } 647 648 mutex_exit(&lofi_lock); 649 } 650 651 /*ARGSUSED*/ 652 static int 653 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) 654 { 655 int id; 656 minor_t part; 657 uint64_t mask; 658 diskaddr_t nblks; 659 diskaddr_t lba; 660 boolean_t ndelay; 661 662 struct lofi_state *lsp; 663 664 if (otyp >= OTYPCNT) 665 return (EINVAL); 666 667 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE; 668 669 /* 670 * lofiadm -a /dev/lofi/1 gets us here. 671 */ 672 if (mutex_owner(&lofi_lock) == curthread) 673 return (EINVAL); 674 675 mutex_enter(&lofi_lock); 676 677 id = LOFI_MINOR2ID(getminor(*devp)); 678 part = LOFI_PART(getminor(*devp)); 679 mask = (1U << part); 680 681 /* master control device */ 682 if (id == 0) { 683 mutex_exit(&lofi_lock); 684 return (0); 685 } 686 687 /* otherwise, the mapping should already exist */ 688 lsp = ddi_get_soft_state(lofi_statep, id); 689 if (lsp == NULL) { 690 mutex_exit(&lofi_lock); 691 return (EINVAL); 692 } 693 694 if (lsp->ls_cleanup == B_TRUE) { 695 mutex_exit(&lofi_lock); 696 return (ENXIO); 697 } 698 699 if (lsp->ls_vp == NULL) { 700 mutex_exit(&lofi_lock); 701 return (ENXIO); 702 } 703 704 if (lsp->ls_readonly && (flag & FWRITE)) { 705 mutex_exit(&lofi_lock); 706 return (EROFS); 707 } 708 709 if ((lsp->ls_open_excl) & (mask)) { 710 mutex_exit(&lofi_lock); 711 return (EBUSY); 712 } 713 714 if (flag & FEXCL) { 715 if (lsp->ls_open_lyr[part]) { 716 mutex_exit(&lofi_lock); 717 return (EBUSY); 718 } 719 for (int i = 0; i < OTYP_LYR; i++) { 720 if (lsp->ls_open_reg[i] & mask) { 721 mutex_exit(&lofi_lock); 722 return (EBUSY); 723 } 724 } 725 } 726 727 if (lsp->ls_cmlbhandle != NULL) { 728 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) { 729 /* 730 * non-blocking opens are allowed to succeed to 731 * support format and fdisk to create partitioning. 732 */ 733 if (!ndelay) { 734 mutex_exit(&lofi_lock); 735 return (ENXIO); 736 } 737 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba, 738 NULL, NULL, 0) == 0) { 739 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) { 740 mutex_exit(&lofi_lock); 741 return (ENXIO); 742 } 743 } else if (!ndelay) { 744 mutex_exit(&lofi_lock); 745 return (ENXIO); 746 } 747 } 748 749 if (otyp == OTYP_LYR) { 750 lsp->ls_open_lyr[part]++; 751 } else { 752 lsp->ls_open_reg[otyp] |= mask; 753 } 754 if (flag & FEXCL) { 755 lsp->ls_open_excl |= mask; 756 } 757 758 mutex_exit(&lofi_lock); 759 return (0); 760 } 761 762 /*ARGSUSED*/ 763 static int 764 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) 765 { 766 minor_t part; 767 int id; 768 uint64_t mask; 769 struct lofi_state *lsp; 770 771 id = LOFI_MINOR2ID(getminor(dev)); 772 part = LOFI_PART(getminor(dev)); 773 mask = (1U << part); 774 775 mutex_enter(&lofi_lock); 776 lsp = ddi_get_soft_state(lofi_statep, id); 777 if (lsp == NULL) { 778 mutex_exit(&lofi_lock); 779 return (EINVAL); 780 } 781 782 if (id == 0) { 783 mutex_exit(&lofi_lock); 784 return (0); 785 } 786 787 if (lsp->ls_open_excl & mask) 788 lsp->ls_open_excl &= ~mask; 789 790 if (otyp == OTYP_LYR) { 791 lsp->ls_open_lyr[part]--; 792 } else { 793 lsp->ls_open_reg[otyp] &= ~mask; 794 } 795 796 /* 797 * If we forcibly closed the underlying device (li_force), or 798 * asked for cleanup (li_cleanup), finish up if we're the last 799 * out of the door. 800 */ 801 if (!is_opened(lsp) && 802 (lsp->ls_cleanup == B_TRUE || lsp->ls_vp == NULL)) { 803 lofi_free_dev(lsp); 804 lofi_destroy(lsp, credp); 805 } 806 807 mutex_exit(&lofi_lock); 808 return (0); 809 } 810 811 /* 812 * Sets the mechanism's initialization vector (IV) if one is needed. 813 * The IV is computed from the data block number. lsp->ls_mech is 814 * altered so that: 815 * lsp->ls_mech.cm_param_len is set to the IV len. 816 * lsp->ls_mech.cm_param is set to the IV. 817 */ 818 static int 819 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) 820 { 821 int ret; 822 crypto_data_t cdata; 823 char *iv; 824 size_t iv_len; 825 size_t min; 826 void *data; 827 size_t datasz; 828 829 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock)); 830 831 if (lsp == NULL) 832 return (CRYPTO_DEVICE_ERROR); 833 834 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ 835 if (lsp->ls_iv_type == IVM_NONE) { 836 return (CRYPTO_SUCCESS); 837 } 838 839 /* 840 * if kmem already alloced from previous call and it's the same size 841 * we need now, just recycle it; allocate new kmem only if we have to 842 */ 843 if (lsp->ls_mech.cm_param == NULL || 844 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { 845 iv_len = lsp->ls_iv_len; 846 iv = kmem_zalloc(iv_len, KM_SLEEP); 847 } else { 848 iv_len = lsp->ls_mech.cm_param_len; 849 iv = lsp->ls_mech.cm_param; 850 bzero(iv, iv_len); 851 } 852 853 switch (lsp->ls_iv_type) { 854 case IVM_ENC_BLKNO: 855 /* iv is not static, lblkno changes each time */ 856 data = &lblkno; 857 datasz = sizeof (lblkno); 858 break; 859 default: 860 data = 0; 861 datasz = 0; 862 break; 863 } 864 865 /* 866 * write blkno into the iv buffer padded on the left in case 867 * blkno ever grows bigger than its current longlong_t size 868 * or a variation other than blkno is used for the iv data 869 */ 870 min = MIN(datasz, iv_len); 871 bcopy(data, iv + (iv_len - min), min); 872 873 /* encrypt the data in-place to get the IV */ 874 SETUP_C_DATA(cdata, iv, iv_len); 875 876 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, 877 NULL, NULL, NULL); 878 if (ret != CRYPTO_SUCCESS) { 879 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", 880 lblkno, ret); 881 if (lsp->ls_mech.cm_param != iv) 882 kmem_free(iv, iv_len); 883 884 return (ret); 885 } 886 887 /* clean up the iv from the last computation */ 888 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) 889 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); 890 891 lsp->ls_mech.cm_param_len = iv_len; 892 lsp->ls_mech.cm_param = iv; 893 894 return (CRYPTO_SUCCESS); 895 } 896 897 /* 898 * Performs encryption and decryption of a chunk of data of size "len", 899 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of 900 * DEV_BSIZE. 901 */ 902 static int 903 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, 904 caddr_t ciphertext, size_t len, boolean_t op_encrypt) 905 { 906 crypto_data_t cdata; 907 crypto_data_t wdata; 908 int ret; 909 longlong_t lblkno = bp->b_lblkno; 910 911 mutex_enter(&lsp->ls_crypto_lock); 912 913 /* 914 * though we could encrypt/decrypt entire "len" chunk of data, we need 915 * to break it into DEV_BSIZE pieces to capture blkno incrementing 916 */ 917 SETUP_C_DATA(cdata, plaintext, len); 918 cdata.cd_length = DEV_BSIZE; 919 if (ciphertext != NULL) { /* not in-place crypto */ 920 SETUP_C_DATA(wdata, ciphertext, len); 921 wdata.cd_length = DEV_BSIZE; 922 } 923 924 do { 925 ret = lofi_blk_mech(lsp, lblkno); 926 if (ret != CRYPTO_SUCCESS) 927 continue; 928 929 if (op_encrypt) { 930 ret = crypto_encrypt(&lsp->ls_mech, &cdata, 931 &lsp->ls_key, NULL, 932 ((ciphertext != NULL) ? &wdata : NULL), NULL); 933 } else { 934 ret = crypto_decrypt(&lsp->ls_mech, &cdata, 935 &lsp->ls_key, NULL, 936 ((ciphertext != NULL) ? &wdata : NULL), NULL); 937 } 938 939 cdata.cd_offset += DEV_BSIZE; 940 if (ciphertext != NULL) 941 wdata.cd_offset += DEV_BSIZE; 942 lblkno++; 943 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); 944 945 mutex_exit(&lsp->ls_crypto_lock); 946 947 if (ret != CRYPTO_SUCCESS) { 948 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", 949 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", 950 lblkno, ret); 951 } 952 953 return (ret); 954 } 955 956 #define RDWR_RAW 1 957 #define RDWR_BCOPY 2 958 959 static int 960 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 961 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) 962 { 963 ssize_t resid; 964 int isread; 965 int error; 966 967 /* 968 * Handles reads/writes for both plain and encrypted lofi 969 * Note: offset is already shifted by lsp->ls_crypto_offset 970 * when it gets here. 971 */ 972 973 isread = bp->b_flags & B_READ; 974 if (isread) { 975 if (method == RDWR_BCOPY) { 976 /* DO NOT update bp->b_resid for bcopy */ 977 bcopy(bcopy_locn, bufaddr, len); 978 error = 0; 979 } else { /* RDWR_RAW */ 980 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, 981 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 982 &resid); 983 bp->b_resid = resid; 984 } 985 if (lsp->ls_crypto_enabled && error == 0) { 986 if (lofi_crypto(lsp, bp, bufaddr, NULL, len, 987 B_FALSE) != CRYPTO_SUCCESS) { 988 /* 989 * XXX: original code didn't set residual 990 * back to len because no error was expected 991 * from bcopy() if encryption is not enabled 992 */ 993 if (method != RDWR_BCOPY) 994 bp->b_resid = len; 995 error = EIO; 996 } 997 } 998 return (error); 999 } else { 1000 void *iobuf = bufaddr; 1001 1002 if (lsp->ls_crypto_enabled) { 1003 /* don't do in-place crypto to keep bufaddr intact */ 1004 iobuf = kmem_alloc(len, KM_SLEEP); 1005 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, 1006 B_TRUE) != CRYPTO_SUCCESS) { 1007 kmem_free(iobuf, len); 1008 if (method != RDWR_BCOPY) 1009 bp->b_resid = len; 1010 return (EIO); 1011 } 1012 } 1013 if (method == RDWR_BCOPY) { 1014 /* DO NOT update bp->b_resid for bcopy */ 1015 bcopy(iobuf, bcopy_locn, len); 1016 error = 0; 1017 } else { /* RDWR_RAW */ 1018 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, 1019 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 1020 &resid); 1021 bp->b_resid = resid; 1022 } 1023 if (lsp->ls_crypto_enabled) { 1024 kmem_free(iobuf, len); 1025 } 1026 return (error); 1027 } 1028 } 1029 1030 static int 1031 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 1032 struct lofi_state *lsp) 1033 { 1034 int error; 1035 offset_t alignedoffset, mapoffset; 1036 size_t xfersize; 1037 int isread; 1038 int smflags; 1039 caddr_t mapaddr; 1040 size_t len; 1041 enum seg_rw srw; 1042 int save_error; 1043 1044 /* 1045 * Note: offset is already shifted by lsp->ls_crypto_offset 1046 * when it gets here. 1047 */ 1048 if (lsp->ls_crypto_enabled) 1049 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); 1050 1051 /* 1052 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on 1053 * an 8K boundary, but the buf transfer address may not be 1054 * aligned on more than a 512-byte boundary (we don't enforce 1055 * that even though we could). This matters since the initial 1056 * part of the transfer may not start at offset 0 within the 1057 * segmap'd chunk. So we have to compensate for that with 1058 * 'mapoffset'. Subsequent chunks always start off at the 1059 * beginning, and the last is capped by b_resid 1060 * 1061 * Visually, where "|" represents page map boundaries: 1062 * alignedoffset (mapaddr begins at this segmap boundary) 1063 * | offset (from beginning of file) 1064 * | | len 1065 * v v v 1066 * ===|====X========|====...======|========X====|==== 1067 * /-------------...---------------/ 1068 * ^ bp->b_bcount/bp->b_resid at start 1069 * /----/--------/----...------/--------/ 1070 * ^ ^ ^ ^ ^ 1071 * | | | | nth xfersize (<= MAXBSIZE) 1072 * | | 2nd thru n-1st xfersize (= MAXBSIZE) 1073 * | 1st xfersize (<= MAXBSIZE) 1074 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) 1075 * 1076 * Notes: "alignedoffset" is "offset" rounded down to nearest 1077 * MAXBSIZE boundary. "len" is next page boundary of size 1078 * PAGESIZE after "alignedoffset". 1079 */ 1080 mapoffset = offset & MAXBOFFSET; 1081 alignedoffset = offset - mapoffset; 1082 bp->b_resid = bp->b_bcount; 1083 isread = bp->b_flags & B_READ; 1084 srw = isread ? S_READ : S_WRITE; 1085 do { 1086 xfersize = MIN(lsp->ls_vp_comp_size - offset, 1087 MIN(MAXBSIZE - mapoffset, bp->b_resid)); 1088 len = roundup(mapoffset + xfersize, PAGESIZE); 1089 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, 1090 alignedoffset, MAXBSIZE, 1, srw); 1091 /* 1092 * Now fault in the pages. This lets us check 1093 * for errors before we reference mapaddr and 1094 * try to resolve the fault in bcopy (which would 1095 * panic instead). And this can easily happen, 1096 * particularly if you've lofi'd a file over NFS 1097 * and someone deletes the file on the server. 1098 */ 1099 error = segmap_fault(kas.a_hat, segkmap, mapaddr, 1100 len, F_SOFTLOCK, srw); 1101 if (error) { 1102 (void) segmap_release(segkmap, mapaddr, 0); 1103 if (FC_CODE(error) == FC_OBJERR) 1104 error = FC_ERRNO(error); 1105 else 1106 error = EIO; 1107 break; 1108 } 1109 /* error may be non-zero for encrypted lofi */ 1110 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, 1111 RDWR_BCOPY, mapaddr + mapoffset); 1112 if (error == 0) { 1113 bp->b_resid -= xfersize; 1114 bufaddr += xfersize; 1115 offset += xfersize; 1116 } 1117 smflags = 0; 1118 if (isread) { 1119 smflags |= SM_FREE; 1120 /* 1121 * If we're reading an entire page starting 1122 * at a page boundary, there's a good chance 1123 * we won't need it again. Put it on the 1124 * head of the freelist. 1125 */ 1126 if (mapoffset == 0 && xfersize == MAXBSIZE) 1127 smflags |= SM_DONTNEED; 1128 } else { 1129 /* 1130 * Write back good pages, it is okay to 1131 * always release asynchronous here as we'll 1132 * follow with VOP_FSYNC for B_SYNC buffers. 1133 */ 1134 if (error == 0) 1135 smflags |= SM_WRITE | SM_ASYNC; 1136 } 1137 (void) segmap_fault(kas.a_hat, segkmap, mapaddr, 1138 len, F_SOFTUNLOCK, srw); 1139 save_error = segmap_release(segkmap, mapaddr, smflags); 1140 if (error == 0) 1141 error = save_error; 1142 /* only the first map may start partial */ 1143 mapoffset = 0; 1144 alignedoffset += MAXBSIZE; 1145 } while ((error == 0) && (bp->b_resid > 0) && 1146 (offset < lsp->ls_vp_comp_size)); 1147 1148 return (error); 1149 } 1150 1151 /* 1152 * Check if segment seg_index is present in the decompressed segment 1153 * data cache. 1154 * 1155 * Returns a pointer to the decompressed segment data cache entry if 1156 * found, and NULL when decompressed data for this segment is not yet 1157 * cached. 1158 */ 1159 static struct lofi_comp_cache * 1160 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) 1161 { 1162 struct lofi_comp_cache *lc; 1163 1164 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1165 1166 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; 1167 lc = list_next(&lsp->ls_comp_cache, lc)) { 1168 if (lc->lc_index == seg_index) { 1169 /* 1170 * Decompressed segment data was found in the 1171 * cache. 1172 * 1173 * The cache uses an LRU replacement strategy; 1174 * move the entry to head of list. 1175 */ 1176 list_remove(&lsp->ls_comp_cache, lc); 1177 list_insert_head(&lsp->ls_comp_cache, lc); 1178 return (lc); 1179 } 1180 } 1181 return (NULL); 1182 } 1183 1184 /* 1185 * Add the data for a decompressed segment at segment index 1186 * seg_index to the cache of the decompressed segments. 1187 * 1188 * Returns a pointer to the cache element structure in case 1189 * the data was added to the cache; returns NULL when the data 1190 * wasn't cached. 1191 */ 1192 static struct lofi_comp_cache * 1193 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, 1194 uchar_t *data) 1195 { 1196 struct lofi_comp_cache *lc; 1197 1198 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1199 1200 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { 1201 lc = list_remove_tail(&lsp->ls_comp_cache); 1202 ASSERT(lc != NULL); 1203 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1204 kmem_free(lc, sizeof (struct lofi_comp_cache)); 1205 lsp->ls_comp_cache_count--; 1206 } 1207 1208 /* 1209 * Do not cache when disabled by tunable variable 1210 */ 1211 if (lofi_max_comp_cache == 0) 1212 return (NULL); 1213 1214 /* 1215 * When the cache has not yet reached the maximum allowed 1216 * number of segments, allocate a new cache element. 1217 * Otherwise the cache is full; reuse the last list element 1218 * (LRU) for caching the decompressed segment data. 1219 * 1220 * The cache element for the new decompressed segment data is 1221 * added to the head of the list. 1222 */ 1223 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { 1224 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); 1225 lc->lc_data = NULL; 1226 list_insert_head(&lsp->ls_comp_cache, lc); 1227 lsp->ls_comp_cache_count++; 1228 } else { 1229 lc = list_remove_tail(&lsp->ls_comp_cache); 1230 if (lc == NULL) 1231 return (NULL); 1232 list_insert_head(&lsp->ls_comp_cache, lc); 1233 } 1234 1235 /* 1236 * Free old uncompressed segment data when reusing a cache 1237 * entry. 1238 */ 1239 if (lc->lc_data != NULL) 1240 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1241 1242 lc->lc_data = data; 1243 lc->lc_index = seg_index; 1244 return (lc); 1245 } 1246 1247 1248 /*ARGSUSED*/ 1249 static int 1250 gzip_decompress(void *src, size_t srclen, void *dst, 1251 size_t *dstlen, int level) 1252 { 1253 ASSERT(*dstlen >= srclen); 1254 1255 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) 1256 return (-1); 1257 return (0); 1258 } 1259 1260 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) 1261 /*ARGSUSED*/ 1262 static int 1263 lzma_decompress(void *src, size_t srclen, void *dst, 1264 size_t *dstlen, int level) 1265 { 1266 size_t insizepure; 1267 void *actual_src; 1268 ELzmaStatus status; 1269 1270 insizepure = srclen - LZMA_HEADER_SIZE; 1271 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); 1272 1273 if (LzmaDecode((Byte *)dst, (size_t *)dstlen, 1274 (const Byte *)actual_src, &insizepure, 1275 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, 1276 &g_Alloc) != SZ_OK) { 1277 return (-1); 1278 } 1279 return (0); 1280 } 1281 1282 /* 1283 * This is basically what strategy used to be before we found we 1284 * needed task queues. 1285 */ 1286 static void 1287 lofi_strategy_task(void *arg) 1288 { 1289 struct buf *bp = (struct buf *)arg; 1290 int error; 1291 int syncflag = 0; 1292 struct lofi_state *lsp; 1293 offset_t offset; 1294 caddr_t bufaddr; 1295 size_t len; 1296 size_t xfersize; 1297 boolean_t bufinited = B_FALSE; 1298 1299 lsp = ddi_get_soft_state(lofi_statep, 1300 LOFI_MINOR2ID(getminor(bp->b_edev))); 1301 1302 if (lsp == NULL) { 1303 error = ENXIO; 1304 goto errout; 1305 } 1306 if (lsp->ls_kstat) { 1307 mutex_enter(lsp->ls_kstat->ks_lock); 1308 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); 1309 mutex_exit(lsp->ls_kstat->ks_lock); 1310 } 1311 1312 mutex_enter(&lsp->ls_vp_lock); 1313 lsp->ls_vp_iocount++; 1314 mutex_exit(&lsp->ls_vp_lock); 1315 1316 bp_mapin(bp); 1317 bufaddr = bp->b_un.b_addr; 1318 offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private) 1319 << lsp->ls_lbshift; /* offset within file */ 1320 if (lsp->ls_crypto_enabled) { 1321 /* encrypted data really begins after crypto header */ 1322 offset += lsp->ls_crypto_offset; 1323 } 1324 len = bp->b_bcount; 1325 bufinited = B_TRUE; 1326 1327 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1328 error = EIO; 1329 goto errout; 1330 } 1331 1332 /* 1333 * If we're writing and the buffer was not B_ASYNC 1334 * we'll follow up with a VOP_FSYNC() to force any 1335 * asynchronous I/O to stable storage. 1336 */ 1337 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) 1338 syncflag = FSYNC; 1339 1340 /* 1341 * We used to always use vn_rdwr here, but we cannot do that because 1342 * we might decide to read or write from the the underlying 1343 * file during this call, which would be a deadlock because 1344 * we have the rw_lock. So instead we page, unless it's not 1345 * mapable or it's a character device or it's an encrypted lofi. 1346 */ 1347 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || 1348 lsp->ls_crypto_enabled) { 1349 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, 1350 NULL); 1351 } else if (lsp->ls_uncomp_seg_sz == 0) { 1352 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); 1353 } else { 1354 uchar_t *compressed_seg = NULL, *cmpbuf; 1355 uchar_t *uncompressed_seg = NULL; 1356 lofi_compress_info_t *li; 1357 size_t oblkcount; 1358 ulong_t seglen; 1359 uint64_t sblkno, eblkno, cmpbytes; 1360 uint64_t uncompressed_seg_index; 1361 struct lofi_comp_cache *lc; 1362 offset_t sblkoff, eblkoff; 1363 u_offset_t salign, ealign; 1364 u_offset_t sdiff; 1365 uint32_t comp_data_sz; 1366 uint64_t i; 1367 int j; 1368 1369 /* 1370 * From here on we're dealing primarily with compressed files 1371 */ 1372 ASSERT(!lsp->ls_crypto_enabled); 1373 1374 /* 1375 * Compressed files can only be read from and 1376 * not written to 1377 */ 1378 if (!(bp->b_flags & B_READ)) { 1379 bp->b_resid = bp->b_bcount; 1380 error = EROFS; 1381 goto done; 1382 } 1383 1384 ASSERT(lsp->ls_comp_algorithm_index >= 0); 1385 li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; 1386 /* 1387 * Compute starting and ending compressed segment numbers 1388 * We use only bitwise operations avoiding division and 1389 * modulus because we enforce the compression segment size 1390 * to a power of 2 1391 */ 1392 sblkno = offset >> lsp->ls_comp_seg_shift; 1393 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); 1394 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; 1395 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); 1396 1397 /* 1398 * Check the decompressed segment cache. 1399 * 1400 * The cache is used only when the requested data 1401 * is within a segment. Requests that cross 1402 * segment boundaries bypass the cache. 1403 */ 1404 if (sblkno == eblkno || 1405 (sblkno + 1 == eblkno && eblkoff == 0)) { 1406 /* 1407 * Request doesn't cross a segment boundary, 1408 * now check the cache. 1409 */ 1410 mutex_enter(&lsp->ls_comp_cache_lock); 1411 lc = lofi_find_comp_data(lsp, sblkno); 1412 if (lc != NULL) { 1413 /* 1414 * We've found the decompressed segment 1415 * data in the cache; reuse it. 1416 */ 1417 bcopy(lc->lc_data + sblkoff, bufaddr, 1418 bp->b_bcount); 1419 mutex_exit(&lsp->ls_comp_cache_lock); 1420 bp->b_resid = 0; 1421 error = 0; 1422 goto done; 1423 } 1424 mutex_exit(&lsp->ls_comp_cache_lock); 1425 } 1426 1427 /* 1428 * Align start offset to block boundary for segmap 1429 */ 1430 salign = lsp->ls_comp_seg_index[sblkno]; 1431 sdiff = salign & (DEV_BSIZE - 1); 1432 salign -= sdiff; 1433 if (eblkno >= (lsp->ls_comp_index_sz - 1)) { 1434 /* 1435 * We're dealing with the last segment of 1436 * the compressed file -- the size of this 1437 * segment *may not* be the same as the 1438 * segment size for the file 1439 */ 1440 eblkoff = (offset + bp->b_bcount) & 1441 (lsp->ls_uncomp_last_seg_sz - 1); 1442 ealign = lsp->ls_vp_comp_size; 1443 } else { 1444 ealign = lsp->ls_comp_seg_index[eblkno + 1]; 1445 } 1446 1447 /* 1448 * Preserve original request paramaters 1449 */ 1450 oblkcount = bp->b_bcount; 1451 1452 /* 1453 * Assign the calculated parameters 1454 */ 1455 comp_data_sz = ealign - salign; 1456 bp->b_bcount = comp_data_sz; 1457 1458 /* 1459 * Buffers to hold compressed segments are pre-allocated 1460 * on a per-thread basis. Find a pre-allocated buffer 1461 * that is not currently in use and mark it for use. 1462 */ 1463 mutex_enter(&lsp->ls_comp_bufs_lock); 1464 for (j = 0; j < lofi_taskq_nthreads; j++) { 1465 if (lsp->ls_comp_bufs[j].inuse == 0) { 1466 lsp->ls_comp_bufs[j].inuse = 1; 1467 break; 1468 } 1469 } 1470 1471 mutex_exit(&lsp->ls_comp_bufs_lock); 1472 ASSERT(j < lofi_taskq_nthreads); 1473 1474 /* 1475 * If the pre-allocated buffer size does not match 1476 * the size of the I/O request, re-allocate it with 1477 * the appropriate size 1478 */ 1479 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) { 1480 if (lsp->ls_comp_bufs[j].bufsize > 0) 1481 kmem_free(lsp->ls_comp_bufs[j].buf, 1482 lsp->ls_comp_bufs[j].bufsize); 1483 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount, 1484 KM_SLEEP); 1485 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount; 1486 } 1487 compressed_seg = lsp->ls_comp_bufs[j].buf; 1488 1489 /* 1490 * Map in the calculated number of blocks 1491 */ 1492 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, 1493 bp, lsp); 1494 1495 bp->b_bcount = oblkcount; 1496 bp->b_resid = oblkcount; 1497 if (error != 0) 1498 goto done; 1499 1500 /* 1501 * decompress compressed blocks start 1502 */ 1503 cmpbuf = compressed_seg + sdiff; 1504 for (i = sblkno; i <= eblkno; i++) { 1505 ASSERT(i < lsp->ls_comp_index_sz - 1); 1506 uchar_t *useg; 1507 1508 /* 1509 * The last segment is special in that it is 1510 * most likely not going to be the same 1511 * (uncompressed) size as the other segments. 1512 */ 1513 if (i == (lsp->ls_comp_index_sz - 2)) { 1514 seglen = lsp->ls_uncomp_last_seg_sz; 1515 } else { 1516 seglen = lsp->ls_uncomp_seg_sz; 1517 } 1518 1519 /* 1520 * Each of the segment index entries contains 1521 * the starting block number for that segment. 1522 * The number of compressed bytes in a segment 1523 * is thus the difference between the starting 1524 * block number of this segment and the starting 1525 * block number of the next segment. 1526 */ 1527 cmpbytes = lsp->ls_comp_seg_index[i + 1] - 1528 lsp->ls_comp_seg_index[i]; 1529 1530 /* 1531 * The first byte in a compressed segment is a flag 1532 * that indicates whether this segment is compressed 1533 * at all. 1534 * 1535 * The variable 'useg' is used (instead of 1536 * uncompressed_seg) in this loop to keep a 1537 * reference to the uncompressed segment. 1538 * 1539 * N.B. If 'useg' is replaced with uncompressed_seg, 1540 * it leads to memory leaks and heap corruption in 1541 * corner cases where compressed segments lie 1542 * adjacent to uncompressed segments. 1543 */ 1544 if (*cmpbuf == UNCOMPRESSED) { 1545 useg = cmpbuf + SEGHDR; 1546 } else { 1547 if (uncompressed_seg == NULL) 1548 uncompressed_seg = 1549 kmem_alloc(lsp->ls_uncomp_seg_sz, 1550 KM_SLEEP); 1551 useg = uncompressed_seg; 1552 uncompressed_seg_index = i; 1553 1554 if (li->l_decompress((cmpbuf + SEGHDR), 1555 (cmpbytes - SEGHDR), uncompressed_seg, 1556 &seglen, li->l_level) != 0) { 1557 error = EIO; 1558 goto done; 1559 } 1560 } 1561 1562 /* 1563 * Determine how much uncompressed data we 1564 * have to copy and copy it 1565 */ 1566 xfersize = lsp->ls_uncomp_seg_sz - sblkoff; 1567 if (i == eblkno) 1568 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); 1569 1570 bcopy((useg + sblkoff), bufaddr, xfersize); 1571 1572 cmpbuf += cmpbytes; 1573 bufaddr += xfersize; 1574 bp->b_resid -= xfersize; 1575 sblkoff = 0; 1576 1577 if (bp->b_resid == 0) 1578 break; 1579 } /* decompress compressed blocks ends */ 1580 1581 /* 1582 * Skip to done if there is no uncompressed data to cache 1583 */ 1584 if (uncompressed_seg == NULL) 1585 goto done; 1586 1587 /* 1588 * Add the data for the last decompressed segment to 1589 * the cache. 1590 * 1591 * In case the uncompressed segment data was added to (and 1592 * is referenced by) the cache, make sure we don't free it 1593 * here. 1594 */ 1595 mutex_enter(&lsp->ls_comp_cache_lock); 1596 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, 1597 uncompressed_seg)) != NULL) { 1598 uncompressed_seg = NULL; 1599 } 1600 mutex_exit(&lsp->ls_comp_cache_lock); 1601 1602 done: 1603 if (compressed_seg != NULL) { 1604 mutex_enter(&lsp->ls_comp_bufs_lock); 1605 lsp->ls_comp_bufs[j].inuse = 0; 1606 mutex_exit(&lsp->ls_comp_bufs_lock); 1607 } 1608 if (uncompressed_seg != NULL) 1609 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); 1610 } /* end of handling compressed files */ 1611 1612 if ((error == 0) && (syncflag != 0)) 1613 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); 1614 1615 errout: 1616 if (bufinited && lsp->ls_kstat) { 1617 size_t n_done = bp->b_bcount - bp->b_resid; 1618 kstat_io_t *kioptr; 1619 1620 mutex_enter(lsp->ls_kstat->ks_lock); 1621 kioptr = KSTAT_IO_PTR(lsp->ls_kstat); 1622 if (bp->b_flags & B_READ) { 1623 kioptr->nread += n_done; 1624 kioptr->reads++; 1625 } else { 1626 kioptr->nwritten += n_done; 1627 kioptr->writes++; 1628 } 1629 kstat_runq_exit(kioptr); 1630 mutex_exit(lsp->ls_kstat->ks_lock); 1631 } 1632 1633 mutex_enter(&lsp->ls_vp_lock); 1634 if (--lsp->ls_vp_iocount == 0) 1635 cv_broadcast(&lsp->ls_vp_cv); 1636 mutex_exit(&lsp->ls_vp_lock); 1637 1638 bioerror(bp, error); 1639 biodone(bp); 1640 } 1641 1642 static int 1643 lofi_strategy(struct buf *bp) 1644 { 1645 struct lofi_state *lsp; 1646 offset_t offset; 1647 minor_t part; 1648 diskaddr_t p_lba; 1649 diskaddr_t p_nblks; 1650 int shift; 1651 1652 /* 1653 * We cannot just do I/O here, because the current thread 1654 * _might_ end up back in here because the underlying filesystem 1655 * wants a buffer, which eventually gets into bio_recycle and 1656 * might call into lofi to write out a delayed-write buffer. 1657 * This is bad if the filesystem above lofi is the same as below. 1658 * 1659 * We could come up with a complex strategy using threads to 1660 * do the I/O asynchronously, or we could use task queues. task 1661 * queues were incredibly easy so they win. 1662 */ 1663 1664 lsp = ddi_get_soft_state(lofi_statep, 1665 LOFI_MINOR2ID(getminor(bp->b_edev))); 1666 part = LOFI_PART(getminor(bp->b_edev)); 1667 1668 if (lsp == NULL) { 1669 bioerror(bp, ENXIO); 1670 biodone(bp); 1671 return (0); 1672 } 1673 1674 /* Check if we are closing. */ 1675 mutex_enter(&lsp->ls_vp_lock); 1676 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1677 mutex_exit(&lsp->ls_vp_lock); 1678 bioerror(bp, EIO); 1679 biodone(bp); 1680 return (0); 1681 } 1682 mutex_exit(&lsp->ls_vp_lock); 1683 1684 shift = lsp->ls_lbshift; 1685 p_lba = 0; 1686 p_nblks = lsp->ls_vp_size >> shift; 1687 1688 if (lsp->ls_cmlbhandle != NULL) { 1689 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba, 1690 NULL, NULL, 0)) { 1691 bioerror(bp, ENXIO); 1692 biodone(bp); 1693 return (0); 1694 } 1695 } 1696 1697 /* start block past partition end? */ 1698 if (bp->b_lblkno > p_nblks) { 1699 bioerror(bp, ENXIO); 1700 biodone(bp); 1701 return (0); 1702 } 1703 1704 offset = (bp->b_lblkno+p_lba) << shift; /* offset within file */ 1705 1706 mutex_enter(&lsp->ls_vp_lock); 1707 if (lsp->ls_crypto_enabled) { 1708 /* encrypted data really begins after crypto header */ 1709 offset += lsp->ls_crypto_offset; 1710 } 1711 1712 /* make sure we will not pass the file or partition size */ 1713 if (offset == lsp->ls_vp_size || 1714 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) { 1715 /* EOF */ 1716 if ((bp->b_flags & B_READ) != 0) { 1717 bp->b_resid = bp->b_bcount; 1718 bioerror(bp, 0); 1719 } else { 1720 /* writes should fail */ 1721 bioerror(bp, ENXIO); 1722 } 1723 biodone(bp); 1724 mutex_exit(&lsp->ls_vp_lock); 1725 return (0); 1726 } 1727 if ((offset > lsp->ls_vp_size) || 1728 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) || 1729 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) { 1730 bioerror(bp, ENXIO); 1731 biodone(bp); 1732 mutex_exit(&lsp->ls_vp_lock); 1733 return (0); 1734 } 1735 1736 mutex_exit(&lsp->ls_vp_lock); 1737 1738 if (lsp->ls_kstat) { 1739 mutex_enter(lsp->ls_kstat->ks_lock); 1740 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 1741 mutex_exit(lsp->ls_kstat->ks_lock); 1742 } 1743 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */ 1744 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 1745 return (0); 1746 } 1747 1748 static int 1749 lofi_read(dev_t dev, struct uio *uio, struct cred *credp) 1750 { 1751 _NOTE(ARGUNUSED(credp)); 1752 1753 if (getminor(dev) == 0) 1754 return (EINVAL); 1755 UIO_CHECK(uio); 1756 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); 1757 } 1758 1759 static int 1760 lofi_write(dev_t dev, struct uio *uio, struct cred *credp) 1761 { 1762 _NOTE(ARGUNUSED(credp)); 1763 1764 if (getminor(dev) == 0) 1765 return (EINVAL); 1766 UIO_CHECK(uio); 1767 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); 1768 } 1769 1770 static int 1771 lofi_urw(struct lofi_state *lsp, uint16_t fmode, diskaddr_t off, size_t size, 1772 intptr_t arg, int flag, cred_t *credp) 1773 { 1774 struct uio uio; 1775 iovec_t iov; 1776 1777 /* 1778 * 1024 * 1024 apes cmlb_tg_max_efi_xfer as a reasonable max. 1779 */ 1780 if (size == 0 || size > 1024 * 1024 || 1781 (size % (1 << lsp->ls_lbshift)) != 0) 1782 return (EINVAL); 1783 1784 iov.iov_base = (void *)arg; 1785 iov.iov_len = size; 1786 uio.uio_iov = &iov; 1787 uio.uio_iovcnt = 1; 1788 uio.uio_loffset = off; 1789 uio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE; 1790 uio.uio_llimit = MAXOFFSET_T; 1791 uio.uio_resid = size; 1792 uio.uio_fmode = fmode; 1793 uio.uio_extflg = 0; 1794 1795 return (fmode == FREAD ? 1796 lofi_read(lsp->ls_dev, &uio, credp) : 1797 lofi_write(lsp->ls_dev, &uio, credp)); 1798 } 1799 1800 /*ARGSUSED2*/ 1801 static int 1802 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) 1803 { 1804 if (getminor(dev) == 0) 1805 return (EINVAL); 1806 UIO_CHECK(aio->aio_uio); 1807 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); 1808 } 1809 1810 /*ARGSUSED2*/ 1811 static int 1812 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) 1813 { 1814 if (getminor(dev) == 0) 1815 return (EINVAL); 1816 UIO_CHECK(aio->aio_uio); 1817 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); 1818 } 1819 1820 /*ARGSUSED*/ 1821 static int 1822 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1823 { 1824 struct lofi_state *lsp; 1825 dev_t dev = (dev_t)arg; 1826 int instance; 1827 1828 instance = LOFI_MINOR2ID(getminor(dev)); 1829 switch (infocmd) { 1830 case DDI_INFO_DEVT2DEVINFO: 1831 lsp = ddi_get_soft_state(lofi_statep, instance); 1832 if (lsp == NULL) 1833 return (DDI_FAILURE); 1834 *result = lsp->ls_dip; 1835 return (DDI_SUCCESS); 1836 case DDI_INFO_DEVT2INSTANCE: 1837 *result = (void *) (intptr_t)instance; 1838 return (DDI_SUCCESS); 1839 } 1840 return (DDI_FAILURE); 1841 } 1842 1843 static int 1844 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled) 1845 { 1846 int error = 0; 1847 int instance = ddi_get_instance(lsp->ls_dip); 1848 1849 if (labeled == B_TRUE) { 1850 cmlb_alloc_handle(&lsp->ls_cmlbhandle); 1851 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT, 1852 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN, 1853 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1); 1854 1855 if (error != DDI_SUCCESS) { 1856 cmlb_free_handle(&lsp->ls_cmlbhandle); 1857 lsp->ls_cmlbhandle = NULL; 1858 error = ENXIO; 1859 } 1860 } else { 1861 /* create minor nodes */ 1862 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE, 1863 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0); 1864 if (error == DDI_SUCCESS) { 1865 error = ddi_create_minor_node(lsp->ls_dip, 1866 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance), 1867 DDI_PSEUDO, 0); 1868 if (error != DDI_SUCCESS) { 1869 ddi_remove_minor_node(lsp->ls_dip, 1870 LOFI_BLOCK_NODE); 1871 error = ENXIO; 1872 } 1873 } else 1874 error = ENXIO; 1875 } 1876 return (error); 1877 } 1878 1879 static int 1880 lofi_zone_bind(struct lofi_state *lsp) 1881 { 1882 int error = 0; 1883 1884 mutex_enter(&curproc->p_lock); 1885 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) { 1886 mutex_exit(&curproc->p_lock); 1887 return (error); 1888 } 1889 mutex_exit(&curproc->p_lock); 1890 1891 if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME, 1892 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) { 1893 rctl_decr_lofi(curproc->p_zone, 1); 1894 error = EINVAL; 1895 } else { 1896 zone_init_ref(&lsp->ls_zone); 1897 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI); 1898 } 1899 return (error); 1900 } 1901 1902 static void 1903 lofi_zone_unbind(struct lofi_state *lsp) 1904 { 1905 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME); 1906 rctl_decr_lofi(curproc->p_zone, 1); 1907 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 1908 } 1909 1910 static int 1911 lofi_online_dev(dev_info_t *dip) 1912 { 1913 boolean_t labeled; 1914 int error; 1915 int instance = ddi_get_instance(dip); 1916 struct lofi_state *lsp; 1917 1918 labeled = B_FALSE; 1919 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled")) 1920 labeled = B_TRUE; 1921 1922 /* lsp alloc+init, soft state is freed in lofi_detach */ 1923 error = ddi_soft_state_zalloc(lofi_statep, instance); 1924 if (error == DDI_FAILURE) { 1925 return (ENOMEM); 1926 } 1927 1928 lsp = ddi_get_soft_state(lofi_statep, instance); 1929 lsp->ls_dip = dip; 1930 1931 if ((error = lofi_zone_bind(lsp)) != 0) 1932 goto err; 1933 1934 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); 1935 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); 1936 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL); 1937 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); 1938 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); 1939 1940 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) { 1941 lofi_zone_unbind(lsp); 1942 goto lerr; 1943 } 1944 1945 /* driver handles kernel-issued IOCTLs */ 1946 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1947 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1948 error = DDI_FAILURE; 1949 goto merr; 1950 } 1951 1952 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance, 1953 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid()); 1954 if (lsp->ls_kstat == NULL) { 1955 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, 1956 DDI_KERNEL_IOCTL); 1957 error = ENOMEM; 1958 goto merr; 1959 } 1960 1961 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; 1962 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID); 1963 kstat_install(lsp->ls_kstat); 1964 return (DDI_SUCCESS); 1965 merr: 1966 if (lsp->ls_cmlbhandle != NULL) { 1967 cmlb_detach(lsp->ls_cmlbhandle, 0); 1968 cmlb_free_handle(&lsp->ls_cmlbhandle); 1969 } 1970 ddi_remove_minor_node(dip, NULL); 1971 lofi_zone_unbind(lsp); 1972 lerr: 1973 mutex_destroy(&lsp->ls_comp_cache_lock); 1974 mutex_destroy(&lsp->ls_comp_bufs_lock); 1975 mutex_destroy(&lsp->ls_kstat_lock); 1976 mutex_destroy(&lsp->ls_vp_lock); 1977 cv_destroy(&lsp->ls_vp_cv); 1978 err: 1979 ddi_soft_state_free(lofi_statep, instance); 1980 return (error); 1981 } 1982 1983 static int 1984 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1985 { 1986 int rv; 1987 int instance = ddi_get_instance(dip); 1988 struct lofi_state *lsp; 1989 1990 if (cmd != DDI_ATTACH) 1991 return (DDI_FAILURE); 1992 1993 /* 1994 * Instance 0 is control instance, attaching control instance 1995 * will set the lofi up and ready. 1996 */ 1997 if (instance == 0) { 1998 rv = ddi_soft_state_zalloc(lofi_statep, 0); 1999 if (rv == DDI_FAILURE) { 2000 return (DDI_FAILURE); 2001 } 2002 lsp = ddi_get_soft_state(lofi_statep, instance); 2003 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, 2004 DDI_PSEUDO, 0); 2005 if (rv == DDI_FAILURE) { 2006 ddi_soft_state_free(lofi_statep, 0); 2007 return (DDI_FAILURE); 2008 } 2009 /* driver handles kernel-issued IOCTLs */ 2010 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 2011 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 2012 ddi_remove_minor_node(dip, NULL); 2013 ddi_soft_state_free(lofi_statep, 0); 2014 return (DDI_FAILURE); 2015 } 2016 2017 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL); 2018 2019 lsp->ls_dip = dip; 2020 } else { 2021 if (lofi_online_dev(dip) == DDI_FAILURE) 2022 return (DDI_FAILURE); 2023 } 2024 2025 ddi_report_dev(dip); 2026 return (DDI_SUCCESS); 2027 } 2028 2029 static int 2030 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2031 { 2032 struct lofi_state *lsp; 2033 int instance = ddi_get_instance(dip); 2034 2035 if (cmd != DDI_DETACH) 2036 return (DDI_FAILURE); 2037 2038 /* 2039 * If the instance is not 0, release state. 2040 * The instance 0 is control device, we can not detach it 2041 * before other instances are detached. 2042 */ 2043 if (instance != 0) { 2044 lsp = ddi_get_soft_state(lofi_statep, instance); 2045 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) { 2046 ddi_soft_state_free(lofi_statep, instance); 2047 return (DDI_SUCCESS); 2048 } else 2049 return (DDI_FAILURE); 2050 } 2051 mutex_enter(&lofi_lock); 2052 2053 if (!list_is_empty(&lofi_list)) { 2054 mutex_exit(&lofi_lock); 2055 return (DDI_FAILURE); 2056 } 2057 2058 ddi_remove_minor_node(dip, NULL); 2059 ddi_prop_remove_all(dip); 2060 2061 mutex_exit(&lofi_lock); 2062 2063 if (zone_key_delete(lofi_zone_key) != 0) 2064 cmn_err(CE_WARN, "failed to delete zone key"); 2065 2066 ddi_soft_state_free(lofi_statep, 0); 2067 2068 return (DDI_SUCCESS); 2069 } 2070 2071 /* 2072 * With the addition of encryption, we must be careful that encryption key is 2073 * wiped before kernel's data structures are freed so it cannot accidentally 2074 * slip out to userland through uninitialized data elsewhere. 2075 */ 2076 static void 2077 free_lofi_ioctl(struct lofi_ioctl *klip) 2078 { 2079 /* Make sure this encryption key doesn't stick around */ 2080 bzero(klip->li_key, sizeof (klip->li_key)); 2081 kmem_free(klip, sizeof (struct lofi_ioctl)); 2082 } 2083 2084 /* 2085 * These two functions simplify the rest of the ioctls that need to copyin/out 2086 * the lofi_ioctl structure. 2087 */ 2088 int 2089 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp, 2090 int flag) 2091 { 2092 struct lofi_ioctl *klip; 2093 int error; 2094 2095 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); 2096 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); 2097 if (error) 2098 goto err; 2099 2100 /* ensure NULL termination */ 2101 klip->li_filename[MAXPATHLEN-1] = '\0'; 2102 klip->li_devpath[MAXPATHLEN-1] = '\0'; 2103 klip->li_algorithm[MAXALGLEN-1] = '\0'; 2104 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2105 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2106 2107 if (klip->li_id > L_MAXMIN32) { 2108 error = EINVAL; 2109 goto err; 2110 } 2111 2112 return (0); 2113 2114 err: 2115 free_lofi_ioctl(klip); 2116 return (error); 2117 } 2118 2119 int 2120 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, 2121 int flag) 2122 { 2123 int error; 2124 2125 /* 2126 * NOTE: Do NOT copy the crypto_key_t "back" to userland. 2127 * This ensures that an attacker can't trivially find the 2128 * key for a mapping just by issuing the ioctl. 2129 * 2130 * It can still be found by poking around in kmem with mdb(1), 2131 * but there is no point in making it easy when the info isn't 2132 * of any use in this direction anyway. 2133 * 2134 * Either way we don't actually have the raw key stored in 2135 * a form that we can get it anyway, since we just used it 2136 * to create a ctx template and didn't keep "the original". 2137 */ 2138 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); 2139 if (error) 2140 return (EFAULT); 2141 return (0); 2142 } 2143 2144 static int 2145 lofi_access(struct lofi_state *lsp) 2146 { 2147 ASSERT(MUTEX_HELD(&lofi_lock)); 2148 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone) 2149 return (0); 2150 return (EPERM); 2151 } 2152 2153 /* 2154 * Find the lofi state for the given filename. We compare by vnode to 2155 * allow the global zone visibility into NGZ lofi nodes. 2156 */ 2157 static int 2158 file_to_lofi_nocheck(char *filename, boolean_t readonly, 2159 struct lofi_state **lspp) 2160 { 2161 struct lofi_state *lsp; 2162 vnode_t *vp = NULL; 2163 int err = 0; 2164 int rdfiles = 0; 2165 2166 ASSERT(MUTEX_HELD(&lofi_lock)); 2167 2168 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW, 2169 NULLVPP, &vp)) != 0) 2170 goto out; 2171 2172 if (vp->v_type == VREG) { 2173 vnode_t *realvp; 2174 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2175 VN_HOLD(realvp); 2176 VN_RELE(vp); 2177 vp = realvp; 2178 } 2179 } 2180 2181 for (lsp = list_head(&lofi_list); lsp != NULL; 2182 lsp = list_next(&lofi_list, lsp)) { 2183 if (lsp->ls_vp == vp) { 2184 if (lspp != NULL) 2185 *lspp = lsp; 2186 if (lsp->ls_readonly) { 2187 rdfiles++; 2188 /* Skip if '-r' is specified */ 2189 if (readonly) 2190 continue; 2191 } 2192 goto out; 2193 } 2194 } 2195 2196 err = ENOENT; 2197 2198 /* 2199 * If a filename is given as an argument for lofi_unmap, we shouldn't 2200 * allow unmap if there are multiple read-only lofi devices associated 2201 * with this file. 2202 */ 2203 if (lspp != NULL) { 2204 if (rdfiles == 1) 2205 err = 0; 2206 else if (rdfiles > 1) 2207 err = EBUSY; 2208 } 2209 2210 out: 2211 if (vp != NULL) 2212 VN_RELE(vp); 2213 return (err); 2214 } 2215 2216 /* 2217 * Find the minor for the given filename, checking the zone can access 2218 * it. 2219 */ 2220 static int 2221 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp) 2222 { 2223 int err = 0; 2224 2225 ASSERT(MUTEX_HELD(&lofi_lock)); 2226 2227 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0) 2228 return (err); 2229 2230 if ((err = lofi_access(*lspp)) != 0) 2231 return (err); 2232 2233 return (0); 2234 } 2235 2236 /* 2237 * Fakes up a disk geometry based on the size of the file. This is needed 2238 * to support newfs on traditional lofi device, but also will provide 2239 * geometry hint for cmlb. 2240 */ 2241 static void 2242 fake_disk_geometry(struct lofi_state *lsp) 2243 { 2244 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; 2245 2246 /* dk_geom - see dkio(7I) */ 2247 /* 2248 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs 2249 * of sectors), but that breaks programs like fdisk which want to 2250 * partition a disk by cylinder. With one cylinder, you can't create 2251 * an fdisk partition and put pcfs on it for testing (hard to pick 2252 * a number between one and one). 2253 * 2254 * The cheezy floppy test is an attempt to not have too few cylinders 2255 * for a small file, or so many on a big file that you waste space 2256 * for backup superblocks or cylinder group structures. 2257 */ 2258 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg)); 2259 if (dsize < (2 * 1024 * 1024)) /* floppy? */ 2260 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); 2261 else 2262 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); 2263 /* in case file file is < 100k */ 2264 if (lsp->ls_dkg.dkg_ncyl == 0) 2265 lsp->ls_dkg.dkg_ncyl = 1; 2266 2267 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl; 2268 lsp->ls_dkg.dkg_nhead = 1; 2269 lsp->ls_dkg.dkg_rpm = 7200; 2270 2271 lsp->ls_dkg.dkg_nsect = dsize / 2272 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift); 2273 } 2274 2275 /* 2276 * build vtoc - see dkio(7I) 2277 * 2278 * Fakes one big partition based on the size of the file. This is needed 2279 * because we allow newfs'ing the traditional lofi device and newfs will 2280 * do several disk ioctls to figure out the geometry and partition information. 2281 * It uses that information to determine the parameters to pass to mkfs. 2282 */ 2283 static void 2284 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt) 2285 { 2286 bzero(vt, sizeof (struct vtoc)); 2287 vt->v_sanity = VTOC_SANE; 2288 vt->v_version = V_VERSION; 2289 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME, 2290 sizeof (vt->v_volume)); 2291 vt->v_sectorsz = 1 << lsp->ls_pbshift; 2292 vt->v_nparts = 1; 2293 vt->v_part[0].p_tag = V_UNASSIGNED; 2294 2295 /* 2296 * A compressed file is read-only, other files can 2297 * be read-write 2298 */ 2299 if (lsp->ls_uncomp_seg_sz > 0) { 2300 vt->v_part[0].p_flag = V_UNMNT | V_RONLY; 2301 } else { 2302 vt->v_part[0].p_flag = V_UNMNT; 2303 } 2304 vt->v_part[0].p_start = (daddr_t)0; 2305 /* 2306 * The partition size cannot just be the number of sectors, because 2307 * that might not end on a cylinder boundary. And if that's the case, 2308 * newfs/mkfs will print a scary warning. So just figure the size 2309 * based on the number of cylinders and sectors/cylinder. 2310 */ 2311 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * 2312 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; 2313 } 2314 2315 /* 2316 * build dk_cinfo - see dkio(7I) 2317 */ 2318 static void 2319 fake_disk_info(dev_t dev, struct dk_cinfo *ci) 2320 { 2321 bzero(ci, sizeof (struct dk_cinfo)); 2322 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname)); 2323 ci->dki_ctype = DKC_SCSI_CCS; 2324 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname)); 2325 ci->dki_unit = LOFI_MINOR2ID(getminor(dev)); 2326 ci->dki_partition = LOFI_PART(getminor(dev)); 2327 /* 2328 * newfs uses this to set maxcontig. Must not be < 16, or it 2329 * will be 0 when newfs multiplies it by DEV_BSIZE and divides 2330 * it by the block size. Then tunefs doesn't work because 2331 * maxcontig is 0. 2332 */ 2333 ci->dki_maxtransfer = 16; 2334 } 2335 2336 /* 2337 * map in a compressed file 2338 * 2339 * Read in the header and the index that follows. 2340 * 2341 * The header is as follows - 2342 * 2343 * Signature (name of the compression algorithm) 2344 * Compression segment size (a multiple of 512) 2345 * Number of index entries 2346 * Size of the last block 2347 * The array containing the index entries 2348 * 2349 * The header information is always stored in 2350 * network byte order on disk. 2351 */ 2352 static int 2353 lofi_map_compressed_file(struct lofi_state *lsp, char *buf) 2354 { 2355 uint32_t index_sz, header_len, i; 2356 ssize_t resid; 2357 enum uio_rw rw; 2358 char *tbuf = buf; 2359 int error; 2360 2361 /* The signature has already been read */ 2362 tbuf += sizeof (lsp->ls_comp_algorithm); 2363 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); 2364 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); 2365 2366 /* 2367 * The compressed segment size must be a power of 2 2368 */ 2369 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || 2370 !ISP2(lsp->ls_uncomp_seg_sz)) 2371 return (EINVAL); 2372 2373 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) 2374 ; 2375 2376 lsp->ls_comp_seg_shift = i; 2377 2378 tbuf += sizeof (lsp->ls_uncomp_seg_sz); 2379 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); 2380 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); 2381 2382 tbuf += sizeof (lsp->ls_comp_index_sz); 2383 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), 2384 sizeof (lsp->ls_uncomp_last_seg_sz)); 2385 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); 2386 2387 /* 2388 * Compute the total size of the uncompressed data 2389 * for use in fake_disk_geometry and other calculations. 2390 * Disk geometry has to be faked with respect to the 2391 * actual uncompressed data size rather than the 2392 * compressed file size. 2393 */ 2394 lsp->ls_vp_size = 2395 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz 2396 + lsp->ls_uncomp_last_seg_sz; 2397 2398 /* 2399 * Index size is rounded up to DEV_BSIZE for ease 2400 * of segmapping 2401 */ 2402 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; 2403 header_len = sizeof (lsp->ls_comp_algorithm) + 2404 sizeof (lsp->ls_uncomp_seg_sz) + 2405 sizeof (lsp->ls_comp_index_sz) + 2406 sizeof (lsp->ls_uncomp_last_seg_sz); 2407 lsp->ls_comp_offbase = header_len + index_sz; 2408 2409 index_sz += header_len; 2410 index_sz = roundup(index_sz, DEV_BSIZE); 2411 2412 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); 2413 lsp->ls_comp_index_data_sz = index_sz; 2414 2415 /* 2416 * Read in the index -- this has a side-effect 2417 * of reading in the header as well 2418 */ 2419 rw = UIO_READ; 2420 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 2421 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2422 2423 if (error != 0) 2424 return (error); 2425 2426 /* Skip the header, this is where the index really begins */ 2427 lsp->ls_comp_seg_index = 2428 /*LINTED*/ 2429 (uint64_t *)(lsp->ls_comp_index_data + header_len); 2430 2431 /* 2432 * Now recompute offsets in the index to account for 2433 * the header length 2434 */ 2435 for (i = 0; i < lsp->ls_comp_index_sz; i++) { 2436 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + 2437 BE_64(lsp->ls_comp_seg_index[i]); 2438 } 2439 2440 return (error); 2441 } 2442 2443 static int 2444 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip) 2445 { 2446 struct crypto_meta chead; 2447 char buf[DEV_BSIZE]; 2448 ssize_t resid; 2449 char *marker; 2450 int error; 2451 int ret; 2452 int i; 2453 2454 if (!klip->li_crypto_enabled) 2455 return (0); 2456 2457 /* 2458 * All current algorithms have a max of 448 bits. 2459 */ 2460 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512)) 2461 return (EINVAL); 2462 2463 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key)) 2464 return (EINVAL); 2465 2466 lsp->ls_crypto_enabled = klip->li_crypto_enabled; 2467 2468 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); 2469 2470 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); 2471 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { 2472 cmn_err(CE_WARN, "invalid cipher %s requested for %s", 2473 klip->li_cipher, klip->li_filename); 2474 return (EINVAL); 2475 } 2476 2477 /* this is just initialization here */ 2478 lsp->ls_mech.cm_param = NULL; 2479 lsp->ls_mech.cm_param_len = 0; 2480 2481 lsp->ls_iv_type = klip->li_iv_type; 2482 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); 2483 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { 2484 cmn_err(CE_WARN, "invalid iv cipher %s requested" 2485 " for %s", klip->li_iv_cipher, klip->li_filename); 2486 return (EINVAL); 2487 } 2488 2489 /* iv mech must itself take a null iv */ 2490 lsp->ls_iv_mech.cm_param = NULL; 2491 lsp->ls_iv_mech.cm_param_len = 0; 2492 lsp->ls_iv_len = klip->li_iv_len; 2493 2494 /* 2495 * Create ctx using li_cipher & the raw li_key after checking 2496 * that it isn't a weak key. 2497 */ 2498 lsp->ls_key.ck_format = CRYPTO_KEY_RAW; 2499 lsp->ls_key.ck_length = klip->li_key_len; 2500 lsp->ls_key.ck_data = kmem_alloc( 2501 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); 2502 bcopy(klip->li_key, lsp->ls_key.ck_data, 2503 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2504 2505 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); 2506 if (ret != CRYPTO_SUCCESS) { 2507 cmn_err(CE_WARN, "weak key check failed for cipher " 2508 "%s on file %s (0x%x)", klip->li_cipher, 2509 klip->li_filename, ret); 2510 return (EINVAL); 2511 } 2512 2513 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 2514 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2515 if (error != 0) 2516 return (error); 2517 2518 /* 2519 * This is the case where the header in the lofi image is already 2520 * initialized to indicate it is encrypted. 2521 */ 2522 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) { 2523 /* 2524 * The encryption header information is laid out this way: 2525 * 6 bytes: hex "CFLOFI" 2526 * 2 bytes: version = 0 ... for now 2527 * 96 bytes: reserved1 (not implemented yet) 2528 * 4 bytes: data_sector = 2 ... for now 2529 * more... not implemented yet 2530 */ 2531 2532 marker = buf; 2533 2534 /* copy the magic */ 2535 bcopy(marker, lsp->ls_crypto.magic, 2536 sizeof (lsp->ls_crypto.magic)); 2537 marker += sizeof (lsp->ls_crypto.magic); 2538 2539 /* read the encryption version number */ 2540 bcopy(marker, &(lsp->ls_crypto.version), 2541 sizeof (lsp->ls_crypto.version)); 2542 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); 2543 marker += sizeof (lsp->ls_crypto.version); 2544 2545 /* read a chunk of reserved data */ 2546 bcopy(marker, lsp->ls_crypto.reserved1, 2547 sizeof (lsp->ls_crypto.reserved1)); 2548 marker += sizeof (lsp->ls_crypto.reserved1); 2549 2550 /* read block number where encrypted data begins */ 2551 bcopy(marker, &(lsp->ls_crypto.data_sector), 2552 sizeof (lsp->ls_crypto.data_sector)); 2553 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); 2554 marker += sizeof (lsp->ls_crypto.data_sector); 2555 2556 /* and ignore the rest until it is implemented */ 2557 2558 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2559 return (0); 2560 } 2561 2562 /* 2563 * We've requested encryption, but no magic was found, so it must be 2564 * a new image. 2565 */ 2566 2567 for (i = 0; i < sizeof (struct crypto_meta); i++) { 2568 if (buf[i] != '\0') 2569 return (EINVAL); 2570 } 2571 2572 marker = buf; 2573 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); 2574 marker += sizeof (lofi_crypto_magic); 2575 chead.version = htons(LOFI_CRYPTO_VERSION); 2576 bcopy(&(chead.version), marker, sizeof (chead.version)); 2577 marker += sizeof (chead.version); 2578 marker += sizeof (chead.reserved1); 2579 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); 2580 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); 2581 2582 /* write the header */ 2583 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE, 2584 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2585 if (error != 0) 2586 return (error); 2587 2588 /* fix things up so it looks like we read this info */ 2589 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, 2590 sizeof (lofi_crypto_magic)); 2591 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; 2592 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; 2593 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2594 return (0); 2595 } 2596 2597 /* 2598 * Check to see if the passed in signature is a valid one. If it is 2599 * valid, return the index into lofi_compress_table. 2600 * 2601 * Return -1 if it is invalid 2602 */ 2603 static int 2604 lofi_compress_select(const char *signature) 2605 { 2606 int i; 2607 2608 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { 2609 if (strcmp(lofi_compress_table[i].l_name, signature) == 0) 2610 return (i); 2611 } 2612 2613 return (-1); 2614 } 2615 2616 static int 2617 lofi_init_compress(struct lofi_state *lsp) 2618 { 2619 char buf[DEV_BSIZE]; 2620 int compress_index; 2621 ssize_t resid; 2622 int error; 2623 2624 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 2625 0, RLIM64_INFINITY, kcred, &resid); 2626 2627 if (error != 0) 2628 return (error); 2629 2630 if ((compress_index = lofi_compress_select(buf)) == -1) 2631 return (0); 2632 2633 /* compression and encryption are mutually exclusive */ 2634 if (lsp->ls_crypto_enabled) 2635 return (ENOTSUP); 2636 2637 /* initialize compression info for compressed lofi */ 2638 lsp->ls_comp_algorithm_index = compress_index; 2639 (void) strlcpy(lsp->ls_comp_algorithm, 2640 lofi_compress_table[compress_index].l_name, 2641 sizeof (lsp->ls_comp_algorithm)); 2642 2643 /* Finally setup per-thread pre-allocated buffers */ 2644 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads * 2645 sizeof (struct compbuf), KM_SLEEP); 2646 2647 return (lofi_map_compressed_file(lsp, buf)); 2648 } 2649 2650 /* 2651 * Allocate new or proposed id from lofi_id. 2652 * 2653 * Special cases for proposed id: 2654 * 0: not allowed, 0 is id for control device. 2655 * -1: allocate first usable id from lofi_id. 2656 * any other value is proposed value from userland 2657 * 2658 * returns DDI_SUCCESS or errno. 2659 */ 2660 static int 2661 lofi_alloc_id(int *idp) 2662 { 2663 int id, error = DDI_SUCCESS; 2664 2665 if (*idp == -1) { 2666 id = id_allocff_nosleep(lofi_id); 2667 if (id == -1) { 2668 error = EAGAIN; 2669 goto err; 2670 } 2671 } else if (*idp == 0) { 2672 error = EINVAL; 2673 goto err; 2674 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) { 2675 error = ERANGE; 2676 goto err; 2677 } else { 2678 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) { 2679 error = EEXIST; 2680 goto err; 2681 } 2682 2683 id = id_alloc_specific_nosleep(lofi_id, *idp); 2684 if (id == -1) { 2685 error = EAGAIN; 2686 goto err; 2687 } 2688 } 2689 *idp = id; 2690 err: 2691 return (error); 2692 } 2693 2694 static int 2695 lofi_create_dev(struct lofi_ioctl *klip) 2696 { 2697 dev_info_t *parent, *child; 2698 struct lofi_state *lsp = NULL; 2699 char namebuf[MAXNAMELEN]; 2700 int error, circ; 2701 2702 /* get control device */ 2703 lsp = ddi_get_soft_state(lofi_statep, 0); 2704 parent = ddi_get_parent(lsp->ls_dip); 2705 2706 if ((error = lofi_alloc_id((int *)&klip->li_id))) 2707 return (error); 2708 2709 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d", 2710 klip->li_id); 2711 2712 ndi_devi_enter(parent, &circ); 2713 child = ndi_devi_findchild(parent, namebuf); 2714 ndi_devi_exit(parent, circ); 2715 2716 if (child == NULL) { 2717 child = ddi_add_child(parent, LOFI_DRIVER_NAME, 2718 (pnode_t)DEVI_SID_NODEID, klip->li_id); 2719 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child, 2720 "instance", klip->li_id)) != DDI_PROP_SUCCESS) 2721 goto err; 2722 2723 if (klip->li_labeled == B_TRUE) { 2724 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child, 2725 DDI_PROP_CANSLEEP, "labeled", 0, 0)) 2726 != DDI_PROP_SUCCESS) 2727 goto err; 2728 } 2729 2730 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH)) 2731 != NDI_SUCCESS) 2732 goto err; 2733 } else { 2734 id_free(lofi_id, klip->li_id); 2735 error = EEXIST; 2736 return (error); 2737 } 2738 2739 goto done; 2740 2741 err: 2742 ddi_prop_remove_all(child); 2743 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE); 2744 id_free(lofi_id, klip->li_id); 2745 done: 2746 2747 return (error); 2748 } 2749 2750 static void 2751 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq) 2752 { 2753 char *p = NULL; 2754 2755 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid)); 2756 2757 mutex_enter(&lsp->ls_vp_lock); 2758 if (lsp->ls_vp != NULL) 2759 p = strrchr(lsp->ls_vp->v_path, '/'); 2760 if (p != NULL) 2761 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid)); 2762 mutex_exit(&lsp->ls_vp_lock); 2763 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision)); 2764 } 2765 2766 /* 2767 * copy devlink name from event cache 2768 */ 2769 static void 2770 lofi_copy_devpath(struct lofi_ioctl *klip) 2771 { 2772 int error; 2773 char namebuf[MAXNAMELEN], *str; 2774 clock_t ticks; 2775 nvlist_t *nvl = NULL; 2776 2777 if (klip->li_labeled == B_TRUE) 2778 klip->li_devpath[0] = '\0'; 2779 else { 2780 /* no need to wait for messages */ 2781 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath), 2782 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id); 2783 return; 2784 } 2785 2786 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id); 2787 2788 mutex_enter(&lofi_devlink_cache.ln_lock); 2789 for (;;) { 2790 error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data, 2791 namebuf, &nvl); 2792 2793 if (error == 0 && 2794 nvlist_lookup_string(nvl, DEV_NAME, &str) == 0 && 2795 strncmp(str, "/dev/" LOFI_CHAR_NAME, 2796 sizeof ("/dev/" LOFI_CHAR_NAME) - 1) != 0) { 2797 (void) strlcpy(klip->li_devpath, str, 2798 sizeof (klip->li_devpath)); 2799 break; 2800 } 2801 /* 2802 * Either there is no data in the cache, or the 2803 * cache entry still has the wrong device name. 2804 */ 2805 ticks = ddi_get_lbolt() + lofi_timeout * drv_usectohz(1000000); 2806 error = cv_timedwait(&lofi_devlink_cache.ln_cv, 2807 &lofi_devlink_cache.ln_lock, ticks); 2808 if (error == -1) 2809 break; /* timeout */ 2810 } 2811 mutex_exit(&lofi_devlink_cache.ln_lock); 2812 } 2813 2814 /* 2815 * map a file to a minor number. Return the minor number. 2816 */ 2817 static int 2818 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, 2819 int *rvalp, struct cred *credp, int ioctl_flag) 2820 { 2821 int id = -1; 2822 struct lofi_state *lsp = NULL; 2823 struct lofi_ioctl *klip; 2824 int error; 2825 struct vnode *vp = NULL; 2826 vattr_t vattr; 2827 int flag; 2828 char namebuf[MAXNAMELEN]; 2829 2830 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2831 if (error != 0) 2832 return (error); 2833 2834 mutex_enter(&lofi_lock); 2835 2836 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly, 2837 NULL) == 0) { 2838 error = EBUSY; 2839 goto err; 2840 } 2841 2842 flag = FREAD | FWRITE | FOFFMAX | FEXCL; 2843 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); 2844 if (error) { 2845 /* try read-only */ 2846 flag &= ~FWRITE; 2847 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, 2848 &vp, 0, 0); 2849 if (error) 2850 goto err; 2851 } 2852 2853 if (!V_ISLOFIABLE(vp->v_type)) { 2854 error = EINVAL; 2855 goto err; 2856 } 2857 2858 vattr.va_mask = AT_SIZE; 2859 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); 2860 if (error) 2861 goto err; 2862 2863 /* the file needs to be a multiple of the block size */ 2864 if ((vattr.va_size % DEV_BSIZE) != 0) { 2865 error = EINVAL; 2866 goto err; 2867 } 2868 2869 if (pickminor) { 2870 klip->li_id = (uint32_t)-1; 2871 } 2872 if ((error = lofi_create_dev(klip)) != 0) 2873 goto err; 2874 2875 id = klip->li_id; 2876 lsp = ddi_get_soft_state(lofi_statep, id); 2877 if (lsp == NULL) 2878 goto err; 2879 2880 /* 2881 * from this point lofi_destroy() is used to clean up on error 2882 * make sure the basic data is set 2883 */ 2884 list_insert_tail(&lofi_list, lsp); 2885 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id)); 2886 2887 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), 2888 offsetof(struct lofi_comp_cache, lc_list)); 2889 2890 /* 2891 * save open mode so file can be closed properly and vnode counts 2892 * updated correctly. 2893 */ 2894 lsp->ls_openflag = flag; 2895 2896 lsp->ls_vp = vp; 2897 lsp->ls_stacked_vp = vp; 2898 2899 lsp->ls_vp_size = vattr.va_size; 2900 lsp->ls_vp_comp_size = lsp->ls_vp_size; 2901 2902 /* 2903 * Try to handle stacked lofs vnodes. 2904 */ 2905 if (vp->v_type == VREG) { 2906 vnode_t *realvp; 2907 2908 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2909 /* 2910 * We need to use the realvp for uniqueness 2911 * checking, but keep the stacked vp for 2912 * LOFI_GET_FILENAME display. 2913 */ 2914 VN_HOLD(realvp); 2915 lsp->ls_vp = realvp; 2916 } 2917 } 2918 2919 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1; 2920 lsp->ls_pbshift = lsp->ls_lbshift; 2921 2922 lsp->ls_readonly = klip->li_readonly; 2923 lsp->ls_uncomp_seg_sz = 0; 2924 lsp->ls_comp_algorithm[0] = '\0'; 2925 lsp->ls_crypto_offset = 0; 2926 2927 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", 2928 LOFI_DRIVER_NAME, id); 2929 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads, 2930 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0); 2931 2932 if ((error = lofi_init_crypto(lsp, klip)) != 0) 2933 goto err; 2934 2935 if ((error = lofi_init_compress(lsp)) != 0) 2936 goto err; 2937 2938 fake_disk_geometry(lsp); 2939 2940 /* For unlabeled lofi add Nblocks and Size */ 2941 if (klip->li_labeled == B_FALSE) { 2942 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, 2943 SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset); 2944 if (error != DDI_PROP_SUCCESS) { 2945 error = EINVAL; 2946 goto err; 2947 } 2948 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, 2949 NBLOCKS_PROP_NAME, 2950 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE); 2951 if (error != DDI_PROP_SUCCESS) { 2952 error = EINVAL; 2953 goto err; 2954 } 2955 } 2956 2957 /* 2958 * Notify we are ready to rock. 2959 */ 2960 mutex_enter(&lsp->ls_vp_lock); 2961 lsp->ls_vp_ready = B_TRUE; 2962 cv_broadcast(&lsp->ls_vp_cv); 2963 mutex_exit(&lsp->ls_vp_lock); 2964 mutex_exit(&lofi_lock); 2965 2966 lofi_copy_devpath(klip); 2967 2968 if (rvalp) 2969 *rvalp = id; 2970 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2971 free_lofi_ioctl(klip); 2972 return (0); 2973 2974 err: 2975 if (lsp != NULL) { 2976 lofi_destroy(lsp, credp); 2977 } else { 2978 if (vp != NULL) { 2979 (void) VOP_PUTPAGE(vp, 0, 0, B_FREE, credp, NULL); 2980 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); 2981 VN_RELE(vp); 2982 } 2983 } 2984 2985 mutex_exit(&lofi_lock); 2986 free_lofi_ioctl(klip); 2987 return (error); 2988 } 2989 2990 /* 2991 * unmap a file. 2992 */ 2993 static int 2994 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename, 2995 struct cred *credp, int ioctl_flag) 2996 { 2997 struct lofi_state *lsp; 2998 struct lofi_ioctl *klip; 2999 char namebuf[MAXNAMELEN]; 3000 int err; 3001 3002 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 3003 if (err != 0) 3004 return (err); 3005 3006 mutex_enter(&lofi_lock); 3007 if (byfilename) { 3008 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly, 3009 &lsp)) != 0) { 3010 goto done; 3011 } 3012 } else if (klip->li_id == 0) { 3013 err = ENXIO; 3014 goto done; 3015 } else { 3016 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 3017 } 3018 3019 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) { 3020 err = ENXIO; 3021 goto done; 3022 } 3023 3024 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3025 (void) snprintf(namebuf, sizeof (namebuf), "%u", klip->li_id); 3026 3027 /* 3028 * If it's still held open, we'll do one of three things: 3029 * 3030 * If no flag is set, just return EBUSY. 3031 * 3032 * If the 'cleanup' flag is set, unmap and remove the device when 3033 * the last user finishes. 3034 * 3035 * If the 'force' flag is set, then we forcibly close the underlying 3036 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl 3037 * will return DKIO_DEV_GONE. When the device is last closed, the 3038 * device will be cleaned up appropriately. 3039 * 3040 * This is complicated by the fact that we may have outstanding 3041 * dispatched I/Os. Rather than having a single mutex to serialize all 3042 * I/O, we keep a count of the number of outstanding I/O requests 3043 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os 3044 * should be dispatched (ls_vp_closereq). 3045 * 3046 * We set the flag, wait for the number of outstanding I/Os to reach 0, 3047 * and then close the underlying vnode. 3048 */ 3049 if (is_opened(lsp)) { 3050 if (klip->li_force) { 3051 /* Mark the device for cleanup. */ 3052 lofi_set_cleanup(lsp); 3053 mutex_enter(&lsp->ls_vp_lock); 3054 lsp->ls_vp_closereq = B_TRUE; 3055 /* Wake up any threads waiting on dkiocstate. */ 3056 cv_broadcast(&lsp->ls_vp_cv); 3057 while (lsp->ls_vp_iocount > 0) 3058 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 3059 mutex_exit(&lsp->ls_vp_lock); 3060 } else if (klip->li_cleanup) { 3061 lofi_set_cleanup(lsp); 3062 } else { 3063 err = EBUSY; 3064 } 3065 } else { 3066 lofi_free_dev(lsp); 3067 lofi_destroy(lsp, credp); 3068 } 3069 3070 /* Remove name from devlink cache */ 3071 mutex_enter(&lofi_devlink_cache.ln_lock); 3072 (void) nvlist_remove_all(lofi_devlink_cache.ln_data, namebuf); 3073 cv_broadcast(&lofi_devlink_cache.ln_cv); 3074 mutex_exit(&lofi_devlink_cache.ln_lock); 3075 done: 3076 mutex_exit(&lofi_lock); 3077 if (err == 0) 3078 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3079 free_lofi_ioctl(klip); 3080 return (err); 3081 } 3082 3083 /* 3084 * get the filename given the minor number, or the minor number given 3085 * the name. 3086 */ 3087 /*ARGSUSED*/ 3088 static int 3089 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, 3090 struct cred *credp, int ioctl_flag) 3091 { 3092 struct lofi_ioctl *klip; 3093 struct lofi_state *lsp; 3094 int error; 3095 3096 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 3097 if (error != 0) 3098 return (error); 3099 3100 switch (which) { 3101 case LOFI_GET_FILENAME: 3102 if (klip->li_id == 0) { 3103 free_lofi_ioctl(klip); 3104 return (EINVAL); 3105 } 3106 3107 mutex_enter(&lofi_lock); 3108 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 3109 if (lsp == NULL || lofi_access(lsp) != 0) { 3110 mutex_exit(&lofi_lock); 3111 free_lofi_ioctl(klip); 3112 return (ENXIO); 3113 } 3114 3115 /* 3116 * This may fail if, for example, we're trying to look 3117 * up a zoned NFS path from the global zone. 3118 */ 3119 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename, 3120 sizeof (klip->li_filename), CRED()) != 0) { 3121 (void) strlcpy(klip->li_filename, "?", 3122 sizeof (klip->li_filename)); 3123 } 3124 3125 klip->li_readonly = lsp->ls_readonly; 3126 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3127 3128 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3129 sizeof (klip->li_algorithm)); 3130 klip->li_crypto_enabled = lsp->ls_crypto_enabled; 3131 mutex_exit(&lofi_lock); 3132 3133 lofi_copy_devpath(klip); 3134 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3135 free_lofi_ioctl(klip); 3136 return (error); 3137 case LOFI_GET_MINOR: 3138 mutex_enter(&lofi_lock); 3139 error = file_to_lofi(klip->li_filename, 3140 klip->li_readonly, &lsp); 3141 if (error != 0) { 3142 mutex_exit(&lofi_lock); 3143 free_lofi_ioctl(klip); 3144 return (error); 3145 } 3146 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3147 3148 klip->li_readonly = lsp->ls_readonly; 3149 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3150 mutex_exit(&lofi_lock); 3151 3152 lofi_copy_devpath(klip); 3153 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3154 3155 free_lofi_ioctl(klip); 3156 return (error); 3157 case LOFI_CHECK_COMPRESSED: 3158 mutex_enter(&lofi_lock); 3159 error = file_to_lofi(klip->li_filename, 3160 klip->li_readonly, &lsp); 3161 if (error != 0) { 3162 mutex_exit(&lofi_lock); 3163 free_lofi_ioctl(klip); 3164 return (error); 3165 } 3166 3167 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3168 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3169 sizeof (klip->li_algorithm)); 3170 3171 mutex_exit(&lofi_lock); 3172 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3173 free_lofi_ioctl(klip); 3174 return (error); 3175 default: 3176 free_lofi_ioctl(klip); 3177 return (EINVAL); 3178 } 3179 } 3180 3181 static int 3182 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb, 3183 struct uscsi_cmd *uscmd) 3184 { 3185 int rval; 3186 3187 #ifdef _MULTI_DATAMODEL 3188 switch (ddi_model_convert_from(flag & FMODELS)) { 3189 case DDI_MODEL_ILP32: { 3190 struct uscsi_cmd32 ucmd32; 3191 3192 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) { 3193 rval = EFAULT; 3194 goto err; 3195 } 3196 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd); 3197 break; 3198 } 3199 case DDI_MODEL_NONE: 3200 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3201 rval = EFAULT; 3202 goto err; 3203 } 3204 break; 3205 default: 3206 rval = EFAULT; 3207 goto err; 3208 } 3209 #else 3210 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3211 rval = EFAULT; 3212 goto err; 3213 } 3214 #endif /* _MULTI_DATAMODEL */ 3215 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) { 3216 rval = EFAULT; 3217 goto err; 3218 } 3219 if (cdb->scc_cmd == SCMD_INQUIRY) { 3220 return (0); 3221 } 3222 err: 3223 return (rval); 3224 } 3225 3226 static int 3227 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, 3228 int *rvalp) 3229 { 3230 int error; 3231 enum dkio_state dkstate; 3232 struct lofi_state *lsp; 3233 dk_efi_t user_efi; 3234 int id; 3235 3236 id = LOFI_MINOR2ID(getminor(dev)); 3237 3238 /* lofi ioctls only apply to the master device */ 3239 if (id == 0) { 3240 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; 3241 3242 /* 3243 * the query command only need read-access - i.e., normal 3244 * users are allowed to do those on the ctl device as 3245 * long as they can open it read-only. 3246 */ 3247 switch (cmd) { 3248 case LOFI_MAP_FILE: 3249 if ((flag & FWRITE) == 0) 3250 return (EPERM); 3251 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); 3252 case LOFI_MAP_FILE_MINOR: 3253 if ((flag & FWRITE) == 0) 3254 return (EPERM); 3255 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); 3256 case LOFI_UNMAP_FILE: 3257 if ((flag & FWRITE) == 0) 3258 return (EPERM); 3259 return (lofi_unmap_file(lip, 1, credp, flag)); 3260 case LOFI_UNMAP_FILE_MINOR: 3261 if ((flag & FWRITE) == 0) 3262 return (EPERM); 3263 return (lofi_unmap_file(lip, 0, credp, flag)); 3264 case LOFI_GET_FILENAME: 3265 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, 3266 credp, flag)); 3267 case LOFI_GET_MINOR: 3268 return (lofi_get_info(dev, lip, LOFI_GET_MINOR, 3269 credp, flag)); 3270 3271 /* 3272 * This API made limited sense when this value was fixed 3273 * at LOFI_MAX_FILES. However, its use to iterate 3274 * across all possible devices in lofiadm means we don't 3275 * want to return L_MAXMIN, but the highest 3276 * *allocated* id. 3277 */ 3278 case LOFI_GET_MAXMINOR: 3279 id = 0; 3280 3281 mutex_enter(&lofi_lock); 3282 3283 for (lsp = list_head(&lofi_list); lsp != NULL; 3284 lsp = list_next(&lofi_list, lsp)) { 3285 int i; 3286 if (lofi_access(lsp) != 0) 3287 continue; 3288 3289 i = ddi_get_instance(lsp->ls_dip); 3290 if (i > id) 3291 id = i; 3292 } 3293 3294 mutex_exit(&lofi_lock); 3295 3296 error = ddi_copyout(&id, &lip->li_id, 3297 sizeof (id), flag); 3298 if (error) 3299 return (EFAULT); 3300 return (0); 3301 3302 case LOFI_CHECK_COMPRESSED: 3303 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, 3304 credp, flag)); 3305 default: 3306 return (EINVAL); 3307 } 3308 } 3309 3310 mutex_enter(&lofi_lock); 3311 lsp = ddi_get_soft_state(lofi_statep, id); 3312 if (lsp == NULL || lsp->ls_cleanup) { 3313 mutex_exit(&lofi_lock); 3314 return (ENXIO); 3315 } 3316 mutex_exit(&lofi_lock); 3317 3318 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS, 3319 "labeled") == 1) { 3320 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag, 3321 credp, rvalp, 0); 3322 if (error != ENOTTY) 3323 return (error); 3324 } 3325 3326 /* 3327 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with 3328 * EIO as if the device was no longer present. 3329 */ 3330 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) 3331 return (EIO); 3332 3333 /* these are for faking out utilities like newfs */ 3334 switch (cmd) { 3335 case DKIOCGMEDIAINFO: 3336 case DKIOCGMEDIAINFOEXT: { 3337 struct dk_minfo_ext media_info; 3338 int shift = lsp->ls_lbshift; 3339 int size; 3340 3341 if (cmd == DKIOCGMEDIAINFOEXT) { 3342 media_info.dki_pbsize = 1U << lsp->ls_pbshift; 3343 size = sizeof (struct dk_minfo_ext); 3344 } else { 3345 size = sizeof (struct dk_minfo); 3346 } 3347 3348 media_info.dki_media_type = DK_FIXED_DISK; 3349 media_info.dki_lbsize = 1U << shift; 3350 media_info.dki_capacity = 3351 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift; 3352 3353 if (ddi_copyout(&media_info, (void *)arg, size, flag)) 3354 return (EFAULT); 3355 return (0); 3356 } 3357 case DKIOCREMOVABLE: { 3358 int i = 0; 3359 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag)) 3360 return (EFAULT); 3361 return (0); 3362 } 3363 3364 case DKIOCGVTOC: { 3365 struct vtoc vt; 3366 fake_disk_vtoc(lsp, &vt); 3367 3368 switch (ddi_model_convert_from(flag & FMODELS)) { 3369 case DDI_MODEL_ILP32: { 3370 struct vtoc32 vtoc32; 3371 3372 vtoctovtoc32(vt, vtoc32); 3373 if (ddi_copyout(&vtoc32, (void *)arg, 3374 sizeof (struct vtoc32), flag)) 3375 return (EFAULT); 3376 break; 3377 } 3378 3379 case DDI_MODEL_NONE: 3380 if (ddi_copyout(&vt, (void *)arg, 3381 sizeof (struct vtoc), flag)) 3382 return (EFAULT); 3383 break; 3384 } 3385 return (0); 3386 } 3387 case DKIOCINFO: { 3388 struct dk_cinfo ci; 3389 fake_disk_info(dev, &ci); 3390 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag)) 3391 return (EFAULT); 3392 return (0); 3393 } 3394 case DKIOCG_VIRTGEOM: 3395 case DKIOCG_PHYGEOM: 3396 case DKIOCGGEOM: 3397 error = ddi_copyout(&lsp->ls_dkg, (void *)arg, 3398 sizeof (struct dk_geom), flag); 3399 if (error) 3400 return (EFAULT); 3401 return (0); 3402 case DKIOCSTATE: 3403 /* 3404 * Normally, lofi devices are always in the INSERTED state. If 3405 * a device is forcefully unmapped, then the device transitions 3406 * to the DKIO_DEV_GONE state. 3407 */ 3408 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), 3409 flag) != 0) 3410 return (EFAULT); 3411 3412 mutex_enter(&lsp->ls_vp_lock); 3413 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || 3414 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && 3415 !lsp->ls_cleanup) { 3416 /* 3417 * By virtue of having the device open, we know that 3418 * 'lsp' will remain valid when we return. 3419 */ 3420 if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) { 3421 mutex_exit(&lsp->ls_vp_lock); 3422 return (EINTR); 3423 } 3424 } 3425 3426 dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ? 3427 DKIO_INSERTED : DKIO_DEV_GONE); 3428 mutex_exit(&lsp->ls_vp_lock); 3429 3430 if (ddi_copyout(&dkstate, (void *)arg, 3431 sizeof (dkstate), flag) != 0) 3432 return (EFAULT); 3433 return (0); 3434 case USCSICMD: { 3435 struct uscsi_cmd uscmd; 3436 union scsi_cdb cdb; 3437 3438 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) { 3439 struct scsi_inquiry inq = {0}; 3440 3441 lofi_create_inquiry(lsp, &inq); 3442 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr, 3443 uscmd.uscsi_buflen, flag) != 0) 3444 return (EFAULT); 3445 return (0); 3446 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) { 3447 struct scsi_capacity capacity; 3448 3449 capacity.capacity = 3450 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >> 3451 lsp->ls_lbshift); 3452 capacity.lbasize = BE_32(1 << lsp->ls_lbshift); 3453 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr, 3454 uscmd.uscsi_buflen, flag) != 0) 3455 return (EFAULT); 3456 return (0); 3457 } 3458 3459 uscmd.uscsi_rqstatus = 0xff; 3460 #ifdef _MULTI_DATAMODEL 3461 switch (ddi_model_convert_from(flag & FMODELS)) { 3462 case DDI_MODEL_ILP32: { 3463 struct uscsi_cmd32 ucmd32; 3464 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32)); 3465 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32), 3466 flag) != 0) 3467 return (EFAULT); 3468 break; 3469 } 3470 case DDI_MODEL_NONE: 3471 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), 3472 flag) != 0) 3473 return (EFAULT); 3474 break; 3475 default: 3476 return (EFAULT); 3477 } 3478 #else 3479 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0) 3480 return (EFAULT); 3481 #endif /* _MULTI_DATAMODEL */ 3482 return (0); 3483 } 3484 3485 case DKIOCGMBOOT: 3486 return (lofi_urw(lsp, FREAD, 0, 1 << lsp->ls_lbshift, 3487 arg, flag, credp)); 3488 3489 case DKIOCSMBOOT: 3490 return (lofi_urw(lsp, FWRITE, 0, 1 << lsp->ls_lbshift, 3491 arg, flag, credp)); 3492 3493 case DKIOCGETEFI: 3494 if (ddi_copyin((void *)arg, &user_efi, 3495 sizeof (dk_efi_t), flag) != 0) 3496 return (EFAULT); 3497 3498 return (lofi_urw(lsp, FREAD, 3499 user_efi.dki_lba * (1 << lsp->ls_lbshift), 3500 user_efi.dki_length, (intptr_t)user_efi.dki_data, 3501 flag, credp)); 3502 3503 case DKIOCSETEFI: 3504 if (ddi_copyin((void *)arg, &user_efi, 3505 sizeof (dk_efi_t), flag) != 0) 3506 return (EFAULT); 3507 3508 return (lofi_urw(lsp, FWRITE, 3509 user_efi.dki_lba * (1 << lsp->ls_lbshift), 3510 user_efi.dki_length, (intptr_t)user_efi.dki_data, 3511 flag, credp)); 3512 3513 default: 3514 #ifdef DEBUG 3515 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd); 3516 #endif /* DEBUG */ 3517 return (ENOTTY); 3518 } 3519 } 3520 3521 static int 3522 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 3523 char *name, caddr_t valuep, int *lengthp) 3524 { 3525 struct lofi_state *lsp; 3526 int rc; 3527 3528 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip)); 3529 if (lsp == NULL) { 3530 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 3531 name, valuep, lengthp)); 3532 } 3533 3534 rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags, 3535 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL); 3536 if (rc == DDI_PROP_SUCCESS) 3537 return (rc); 3538 3539 return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags, 3540 name, valuep, lengthp)); 3541 } 3542 3543 static struct cb_ops lofi_cb_ops = { 3544 lofi_open, /* open */ 3545 lofi_close, /* close */ 3546 lofi_strategy, /* strategy */ 3547 nodev, /* print */ 3548 nodev, /* dump */ 3549 lofi_read, /* read */ 3550 lofi_write, /* write */ 3551 lofi_ioctl, /* ioctl */ 3552 nodev, /* devmap */ 3553 nodev, /* mmap */ 3554 nodev, /* segmap */ 3555 nochpoll, /* poll */ 3556 lofi_prop_op, /* prop_op */ 3557 0, /* streamtab */ 3558 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ 3559 CB_REV, 3560 lofi_aread, 3561 lofi_awrite 3562 }; 3563 3564 static struct dev_ops lofi_ops = { 3565 DEVO_REV, /* devo_rev, */ 3566 0, /* refcnt */ 3567 lofi_info, /* info */ 3568 nulldev, /* identify */ 3569 nulldev, /* probe */ 3570 lofi_attach, /* attach */ 3571 lofi_detach, /* detach */ 3572 nodev, /* reset */ 3573 &lofi_cb_ops, /* driver operations */ 3574 NULL, /* no bus operations */ 3575 NULL, /* power */ 3576 ddi_quiesce_not_needed, /* quiesce */ 3577 }; 3578 3579 static struct modldrv modldrv = { 3580 &mod_driverops, 3581 "loopback file driver", 3582 &lofi_ops, 3583 }; 3584 3585 static struct modlinkage modlinkage = { 3586 MODREV_1, 3587 &modldrv, 3588 NULL 3589 }; 3590 3591 int 3592 _init(void) 3593 { 3594 int error; 3595 3596 list_create(&lofi_list, sizeof (struct lofi_state), 3597 offsetof(struct lofi_state, ls_list)); 3598 3599 error = ddi_soft_state_init((void **)&lofi_statep, 3600 sizeof (struct lofi_state), 0); 3601 if (error) { 3602 list_destroy(&lofi_list); 3603 return (error); 3604 } 3605 3606 /* 3607 * The minor number is stored as id << LOFI_CMLB_SHIFT as 3608 * we need to reserve space for cmlb minor numbers. 3609 * This will leave out 4096 id values on 32bit kernel, which should 3610 * still suffice. 3611 */ 3612 lofi_id = id_space_create("lofi_id", 1, 3613 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT))); 3614 3615 if (lofi_id == NULL) { 3616 ddi_soft_state_fini((void **)&lofi_statep); 3617 list_destroy(&lofi_list); 3618 return (DDI_FAILURE); 3619 } 3620 3621 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); 3622 3623 error = mod_install(&modlinkage); 3624 3625 if (error) { 3626 id_space_destroy(lofi_id); 3627 mutex_destroy(&lofi_lock); 3628 ddi_soft_state_fini((void **)&lofi_statep); 3629 list_destroy(&lofi_list); 3630 } 3631 3632 return (error); 3633 } 3634 3635 int 3636 _fini(void) 3637 { 3638 int error; 3639 3640 mutex_enter(&lofi_lock); 3641 3642 if (!list_is_empty(&lofi_list)) { 3643 mutex_exit(&lofi_lock); 3644 return (EBUSY); 3645 } 3646 3647 mutex_exit(&lofi_lock); 3648 3649 error = mod_remove(&modlinkage); 3650 if (error) 3651 return (error); 3652 3653 mutex_destroy(&lofi_lock); 3654 id_space_destroy(lofi_id); 3655 ddi_soft_state_fini((void **)&lofi_statep); 3656 list_destroy(&lofi_list); 3657 3658 return (error); 3659 } 3660 3661 int 3662 _info(struct modinfo *modinfop) 3663 { 3664 return (mod_info(&modlinkage, modinfop)); 3665 } 3666