xref: /illumos-gate/usr/src/uts/common/io/lofi.c (revision 67d74cc3e7c9d9461311136a0b2069813a3fd927)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  *
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 Andrey Sokolov
26  * Copyright 2016 Toomas Soome <tsoome@me.com>
27  * Copyright 2019 Joyent, Inc.
28  * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
29  */
30 
31 /*
32  * lofi (loopback file) driver - allows you to attach a file to a device,
33  * which can then be accessed through that device. The simple model is that
34  * you tell lofi to open a file, and then use the block device you get as
35  * you would any block device. lofi translates access to the block device
36  * into I/O on the underlying file. This is mostly useful for
37  * mounting images of filesystems.
38  *
39  * lofi is controlled through /dev/lofictl - this is the only device exported
40  * during attach, and is instance number 0. lofiadm communicates with lofi
41  * through ioctls on this device. When a file is attached to lofi, block and
42  * character devices are exported in /dev/lofi and /dev/rlofi. These devices
43  * are identified by lofi instance number, and the instance number is also used
44  * as the name in /dev/lofi.
45  *
46  * Virtual disks, or, labeled lofi, implements virtual disk support to
47  * support partition table and related tools. Such mappings will cause
48  * block and character devices to be exported in /dev/dsk and /dev/rdsk
49  * directories.
50  *
51  * To support virtual disks, the instance number space is divided to two
52  * parts, upper part for instance number and lower part for minor number
53  * space to identify partitions and slices. The virtual disk support is
54  * implemented by stacking cmlb module. For virtual disks, the partition
55  * related ioctl calls are routed to cmlb module. Compression and encryption
56  * is not supported for virtual disks.
57  *
58  * Mapped devices are tracked with state structures handled with
59  * ddi_soft_state(9F) for simplicity.
60  *
61  * A file attached to lofi is opened when attached and not closed until
62  * explicitly detached from lofi. This seems more sensible than deferring
63  * the open until the /dev/lofi device is opened, for a number of reasons.
64  * One is that any failure is likely to be noticed by the person (or script)
65  * running lofiadm. Another is that it would be a security problem if the
66  * file was replaced by another one after being added but before being opened.
67  *
68  * The only hard part about lofi is the ioctls. In order to support things
69  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
70  * So it has to fake disk geometry and partition information. More may need
71  * to be faked if your favorite utility doesn't work and you think it should
72  * (fdformat doesn't work because it really wants to know the type of floppy
73  * controller to talk to, and that didn't seem easy to fake. Or possibly even
74  * necessary, since we have mkfs_pcfs now).
75  *
76  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
77  * support simulation of hotplug events, an optional force flag is provided.
78  * If a lofi device is open when a force detach is requested, then the
79  * underlying file is closed and any subsequent operations return EIO.  When the
80  * device is closed for the last time, it will be cleaned up at that time.  In
81  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
82  * detached but not removed.
83  *
84  * If detach was requested and lofi device is not open, we will perform
85  * unmap and remove the lofi instance.
86  *
87  * If the lofi device is open and the li_cleanup is set on ioctl request,
88  * we set ls_cleanup flag to notify the cleanup is requested, and the
89  * last lofi_close will perform the unmapping and this lofi instance will be
90  * removed.
91  *
92  * If the lofi device is open and the li_force is set on ioctl request,
93  * we set ls_cleanup flag to notify the cleanup is requested,
94  * we also set ls_vp_closereq to notify IO tasks to return EIO on new
95  * IO requests and wait in process IO count to become 0, indicating there
96  * are no more IO requests. Since ls_cleanup is set, the last lofi_close
97  * will perform unmap and this lofi instance will be removed.
98  * See also lofi_unmap_file() for details.
99  *
100  * Once ls_cleanup is set for the instance, we do not allow lofi_open()
101  * calls to succeed and can have last lofi_close() to remove the instance.
102  *
103  * Known problems:
104  *
105  *	UFS logging. Mounting a UFS filesystem image "logging"
106  *	works for basic copy testing but wedges during a build of ON through
107  *	that image. Some deadlock in lufs holding the log mutex and then
108  *	getting stuck on a buf. So for now, don't do that.
109  *
110  *	Direct I/O. Since the filesystem data is being cached in the buffer
111  *	cache, _and_ again in the underlying filesystem, it's tempting to
112  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
113  *	I think to fix the cache-twice problem we might need filesystem support.
114  *
115  * Interesting things to do:
116  *
117  *	Allow multiple files for each device. A poor-man's metadisk, basically.
118  *
119  *	Pass-through ioctls on block devices. You can (though it's not
120  *	documented), give lofi a block device as a file name. Then we shouldn't
121  *	need to fake a geometry, however, it may be relevant if you're replacing
122  *	metadisk, or using lofi to get crypto.
123  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
124  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
125  *	In fact this even makes sense if you have lofi "above" metadisk.
126  *
127  * Encryption:
128  *	Each lofi device can have its own symmetric key and cipher.
129  *	They are passed to us by lofiadm(1m) in the correct format for use
130  *	with the misc/kcf crypto_* routines.
131  *
132  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
133  *	on the "master" key held in the lsp and the block number of the buffer.
134  */
135 
136 #include <sys/types.h>
137 #include <netinet/in.h>
138 #include <sys/sysmacros.h>
139 #include <sys/uio.h>
140 #include <sys/kmem.h>
141 #include <sys/cred.h>
142 #include <sys/mman.h>
143 #include <sys/errno.h>
144 #include <sys/aio_req.h>
145 #include <sys/stat.h>
146 #include <sys/file.h>
147 #include <sys/modctl.h>
148 #include <sys/conf.h>
149 #include <sys/debug.h>
150 #include <sys/vnode.h>
151 #include <sys/lofi.h>
152 #include <sys/lofi_impl.h>	/* for cache structure */
153 #include <sys/fcntl.h>
154 #include <sys/pathname.h>
155 #include <sys/filio.h>
156 #include <sys/fdio.h>
157 #include <sys/open.h>
158 #include <sys/disp.h>
159 #include <vm/seg_map.h>
160 #include <sys/ddi.h>
161 #include <sys/sunddi.h>
162 #include <sys/zmod.h>
163 #include <sys/id_space.h>
164 #include <sys/mkdev.h>
165 #include <sys/crypto/common.h>
166 #include <sys/crypto/api.h>
167 #include <sys/rctl.h>
168 #include <sys/vtoc.h>
169 #include <sys/scsi/scsi.h>	/* for DTYPE_DIRECT */
170 #include <sys/scsi/impl/uscsi.h>
171 #include <sys/sysevent/dev.h>
172 #include <sys/efi_partition.h>
173 #include <sys/note.h>
174 #include <LzmaDec.h>
175 
176 #define	NBLOCKS_PROP_NAME	"Nblocks"
177 #define	SIZE_PROP_NAME		"Size"
178 #define	ZONE_PROP_NAME		"zone"
179 
180 #define	SETUP_C_DATA(cd, buf, len)		\
181 	(cd).cd_format = CRYPTO_DATA_RAW;	\
182 	(cd).cd_offset = 0;			\
183 	(cd).cd_miscdata = NULL;		\
184 	(cd).cd_length = (len);			\
185 	(cd).cd_raw.iov_base = (buf);		\
186 	(cd).cd_raw.iov_len = (len);
187 
188 #define	UIO_CHECK(uio)	\
189 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
190 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
191 		return (EINVAL); \
192 	}
193 
194 #define	LOFI_TIMEOUT	120
195 
196 int lofi_timeout = LOFI_TIMEOUT;
197 static void *lofi_statep;
198 static kmutex_t lofi_lock;		/* state lock */
199 static id_space_t *lofi_id;		/* lofi ID values */
200 static list_t lofi_list;
201 static zone_key_t lofi_zone_key;
202 
203 /*
204  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
205  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
206  * high.  If we want to be assured that the underlying device is always busy,
207  * we must be sure that the number of bytes enqueued when the number of
208  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
209  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
210  * set maxalloc to be the maximum throughput (in bytes per second) of the
211  * underlying device divided by the minimum I/O size.  We assume a realistic
212  * maximum throughput of one hundred megabytes per second; we set maxalloc on
213  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
214  */
215 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
216 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
217 
218 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
219 
220 /*
221  * To avoid decompressing data in a compressed segment multiple times
222  * when accessing small parts of a segment's data, we cache and reuse
223  * the uncompressed segment's data.
224  *
225  * A single cached segment is sufficient to avoid lots of duplicate
226  * segment decompress operations. A small cache size also reduces the
227  * memory footprint.
228  *
229  * lofi_max_comp_cache is the maximum number of decompressed data segments
230  * cached for each compressed lofi image. It can be set to 0 to disable
231  * caching.
232  */
233 
234 uint32_t lofi_max_comp_cache = 1;
235 
236 static int gzip_decompress(void *src, size_t srclen, void *dst,
237 	size_t *destlen, int level);
238 
239 static int lzma_decompress(void *src, size_t srclen, void *dst,
240 	size_t *dstlen, int level);
241 
242 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
243 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
244 	{gzip_decompress,	NULL,	6,	"gzip-6"},
245 	{gzip_decompress,	NULL,	9,	"gzip-9"},
246 	{lzma_decompress,	NULL,	0,	"lzma"}
247 };
248 
249 static void lofi_strategy_task(void *);
250 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
251     size_t, void *);
252 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
253 
254 struct cmlb_tg_ops lofi_tg_ops = {
255 	TG_DK_OPS_VERSION_1,
256 	lofi_tg_rdwr,
257 	lofi_tg_getinfo
258 };
259 
260 /*ARGSUSED*/
261 static void
262 *SzAlloc(void *p, size_t size)
263 {
264 	return (kmem_alloc(size, KM_SLEEP));
265 }
266 
267 /*ARGSUSED*/
268 static void
269 SzFree(void *p, void *address, size_t size)
270 {
271 	kmem_free(address, size);
272 }
273 
274 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
275 
276 /*
277  * Free data referenced by the linked list of cached uncompressed
278  * segments.
279  */
280 static void
281 lofi_free_comp_cache(struct lofi_state *lsp)
282 {
283 	struct lofi_comp_cache *lc;
284 
285 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
286 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
287 		kmem_free(lc, sizeof (struct lofi_comp_cache));
288 		lsp->ls_comp_cache_count--;
289 	}
290 	ASSERT(lsp->ls_comp_cache_count == 0);
291 }
292 
293 static int
294 is_opened(struct lofi_state *lsp)
295 {
296 	int i;
297 	boolean_t last = B_TRUE;
298 
299 	ASSERT(MUTEX_HELD(&lofi_lock));
300 	for (i = 0; i < LOFI_PART_MAX; i++) {
301 		if (lsp->ls_open_lyr[i]) {
302 			last = B_FALSE;
303 			break;
304 		}
305 	}
306 
307 	for (i = 0; last && (i < OTYP_LYR); i++) {
308 		if (lsp->ls_open_reg[i]) {
309 			last = B_FALSE;
310 		}
311 	}
312 
313 	return (!last);
314 }
315 
316 static void
317 lofi_set_cleanup(struct lofi_state *lsp)
318 {
319 	ASSERT(MUTEX_HELD(&lofi_lock));
320 
321 	lsp->ls_cleanup = B_TRUE;
322 
323 	/* wake up any threads waiting on dkiocstate */
324 	cv_broadcast(&lsp->ls_vp_cv);
325 }
326 
327 static void
328 lofi_free_crypto(struct lofi_state *lsp)
329 {
330 	ASSERT(MUTEX_HELD(&lofi_lock));
331 
332 	if (lsp->ls_crypto_enabled) {
333 		/*
334 		 * Clean up the crypto state so that it doesn't hang around
335 		 * in memory after we are done with it.
336 		 */
337 		if (lsp->ls_key.ck_data != NULL) {
338 			bzero(lsp->ls_key.ck_data,
339 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
340 			kmem_free(lsp->ls_key.ck_data,
341 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
342 			lsp->ls_key.ck_data = NULL;
343 			lsp->ls_key.ck_length = 0;
344 		}
345 
346 		if (lsp->ls_mech.cm_param != NULL) {
347 			kmem_free(lsp->ls_mech.cm_param,
348 			    lsp->ls_mech.cm_param_len);
349 			lsp->ls_mech.cm_param = NULL;
350 			lsp->ls_mech.cm_param_len = 0;
351 		}
352 
353 		if (lsp->ls_iv_mech.cm_param != NULL) {
354 			kmem_free(lsp->ls_iv_mech.cm_param,
355 			    lsp->ls_iv_mech.cm_param_len);
356 			lsp->ls_iv_mech.cm_param = NULL;
357 			lsp->ls_iv_mech.cm_param_len = 0;
358 		}
359 
360 		mutex_destroy(&lsp->ls_crypto_lock);
361 	}
362 }
363 
364 /* ARGSUSED */
365 static int
366 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
367     size_t length, void *tg_cookie)
368 {
369 	struct lofi_state *lsp;
370 	buf_t	*bp;
371 	int	instance;
372 	int	rv = 0;
373 
374 	instance = ddi_get_instance(dip);
375 	if (instance == 0)	/* control node does not have disk */
376 		return (ENXIO);
377 
378 	lsp = ddi_get_soft_state(lofi_statep, instance);
379 
380 	if (lsp == NULL)
381 		return (ENXIO);
382 
383 	if (cmd != TG_READ && cmd != TG_WRITE)
384 		return (EINVAL);
385 
386 	/*
387 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
388 	 */
389 	mutex_enter(&lsp->ls_vp_lock);
390 	while (lsp->ls_vp_ready == B_FALSE)
391 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
392 	mutex_exit(&lsp->ls_vp_lock);
393 
394 	if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
395 		/* We can only transfer whole blocks at a time! */
396 		return (EINVAL);
397 	}
398 
399 	bp = getrbuf(KM_SLEEP);
400 
401 	if (cmd == TG_READ) {
402 		bp->b_flags = B_READ;
403 	} else {
404 		if (lsp->ls_readonly == B_TRUE) {
405 			freerbuf(bp);
406 			return (EROFS);
407 		}
408 		bp->b_flags = B_WRITE;
409 	}
410 
411 	bp->b_un.b_addr = bufaddr;
412 	bp->b_bcount = length;
413 	bp->b_lblkno = start;
414 	bp->b_private = NULL;
415 	bp->b_edev = lsp->ls_dev;
416 
417 	if (lsp->ls_kstat) {
418 		mutex_enter(lsp->ls_kstat->ks_lock);
419 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
420 		mutex_exit(lsp->ls_kstat->ks_lock);
421 	}
422 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
423 	(void) biowait(bp);
424 
425 	rv = geterror(bp);
426 	freerbuf(bp);
427 	return (rv);
428 }
429 
430 /*
431  * Get device geometry info for cmlb.
432  *
433  * We have mapped disk image as virtual block device and have to report
434  * physical/virtual geometry to cmlb.
435  *
436  * So we have two principal cases:
437  * 1. Uninitialised image without any existing labels,
438  *    for this case we fabricate the data based on mapped image.
439  * 2. Image with existing label information.
440  *    Since we have no information how the image was created (it may be
441  *    dump from some physical device), we need to rely on label information
442  *    from image, or we get "corrupted label" errors.
443  *    NOTE: label can be MBR, MBR+SMI, GPT
444  */
445 static int
446 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
447 {
448 	struct lofi_state *lsp;
449 	int instance;
450 	int ashift;
451 
452 	_NOTE(ARGUNUSED(tg_cookie));
453 	instance = ddi_get_instance(dip);
454 	if (instance == 0)		/* control device has no storage */
455 		return (ENXIO);
456 
457 	lsp = ddi_get_soft_state(lofi_statep, instance);
458 
459 	if (lsp == NULL)
460 		return (ENXIO);
461 
462 	/*
463 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
464 	 *
465 	 * When mapping is created, new lofi instance is created and
466 	 * lofi_attach() will call cmlb_attach() as part of the procedure
467 	 * to set the mapping up. This chain of events will happen in
468 	 * the same thread.
469 	 * Since cmlb_attach() will call lofi_tg_getinfo to get
470 	 * capacity, we return error on that call if cookie is set,
471 	 * otherwise lofi_attach will be stuck as the mapping is not yet
472 	 * finalized and lofi is not yet ready.
473 	 * Note, such error is not fatal for cmlb, as the label setup
474 	 * will be finalized when cmlb_validate() is called.
475 	 */
476 	mutex_enter(&lsp->ls_vp_lock);
477 	if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
478 		mutex_exit(&lsp->ls_vp_lock);
479 		return (ENXIO);
480 	}
481 	while (lsp->ls_vp_ready == B_FALSE)
482 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
483 	mutex_exit(&lsp->ls_vp_lock);
484 
485 	ashift = lsp->ls_lbshift;
486 
487 	switch (cmd) {
488 	case TG_GETPHYGEOM: {
489 		cmlb_geom_t *geomp = arg;
490 
491 		geomp->g_capacity	=
492 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
493 		geomp->g_nsect		= lsp->ls_dkg.dkg_nsect;
494 		geomp->g_nhead		= lsp->ls_dkg.dkg_nhead;
495 		geomp->g_acyl		= lsp->ls_dkg.dkg_acyl;
496 		geomp->g_ncyl		= lsp->ls_dkg.dkg_ncyl;
497 		geomp->g_secsize	= (1U << ashift);
498 		geomp->g_intrlv		= lsp->ls_dkg.dkg_intrlv;
499 		geomp->g_rpm		= lsp->ls_dkg.dkg_rpm;
500 		return (0);
501 	}
502 
503 	case TG_GETCAPACITY:
504 		*(diskaddr_t *)arg =
505 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
506 		return (0);
507 
508 	case TG_GETBLOCKSIZE:
509 		*(uint32_t *)arg = (1U << ashift);
510 		return (0);
511 
512 	case TG_GETATTR: {
513 		tg_attribute_t *tgattr = arg;
514 
515 		tgattr->media_is_writable = !lsp->ls_readonly;
516 		tgattr->media_is_solid_state = B_FALSE;
517 		tgattr->media_is_rotational = B_FALSE;
518 		return (0);
519 	}
520 
521 	default:
522 		return (EINVAL);
523 	}
524 }
525 
526 static void
527 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
528 {
529 	int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
530 	int i;
531 
532 	ASSERT(MUTEX_HELD(&lofi_lock));
533 
534 	/*
535 	 * Before we can start to release the other resources,
536 	 * make sure we have all tasks completed and taskq removed.
537 	 */
538 	if (lsp->ls_taskq != NULL) {
539 		taskq_destroy(lsp->ls_taskq);
540 		lsp->ls_taskq = NULL;
541 	}
542 
543 	list_remove(&lofi_list, lsp);
544 
545 	lofi_free_crypto(lsp);
546 
547 	/*
548 	 * Free pre-allocated compressed buffers
549 	 */
550 	if (lsp->ls_comp_bufs != NULL) {
551 		for (i = 0; i < lofi_taskq_nthreads; i++) {
552 			if (lsp->ls_comp_bufs[i].bufsize > 0)
553 				kmem_free(lsp->ls_comp_bufs[i].buf,
554 				    lsp->ls_comp_bufs[i].bufsize);
555 		}
556 		kmem_free(lsp->ls_comp_bufs,
557 		    sizeof (struct compbuf) * lofi_taskq_nthreads);
558 	}
559 
560 	if (lsp->ls_vp != NULL) {
561 		(void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_FREE, credp, NULL);
562 		(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
563 		    1, 0, credp, NULL);
564 		VN_RELE(lsp->ls_vp);
565 	}
566 	if (lsp->ls_stacked_vp != lsp->ls_vp)
567 		VN_RELE(lsp->ls_stacked_vp);
568 	lsp->ls_vp = lsp->ls_stacked_vp = NULL;
569 
570 	if (lsp->ls_kstat != NULL) {
571 		kstat_delete(lsp->ls_kstat);
572 		lsp->ls_kstat = NULL;
573 	}
574 
575 	/*
576 	 * Free cached decompressed segment data
577 	 */
578 	lofi_free_comp_cache(lsp);
579 	list_destroy(&lsp->ls_comp_cache);
580 
581 	if (lsp->ls_uncomp_seg_sz > 0) {
582 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
583 		lsp->ls_uncomp_seg_sz = 0;
584 	}
585 
586 	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
587 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
588 
589 	mutex_destroy(&lsp->ls_comp_cache_lock);
590 	mutex_destroy(&lsp->ls_comp_bufs_lock);
591 	mutex_destroy(&lsp->ls_kstat_lock);
592 	mutex_destroy(&lsp->ls_vp_lock);
593 	cv_destroy(&lsp->ls_vp_cv);
594 	lsp->ls_vp_ready = B_FALSE;
595 	lsp->ls_vp_closereq = B_FALSE;
596 
597 	ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
598 	(void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE);
599 	id_free(lofi_id, id);
600 }
601 
602 static void
603 lofi_free_dev(struct lofi_state *lsp)
604 {
605 	ASSERT(MUTEX_HELD(&lofi_lock));
606 
607 	if (lsp->ls_cmlbhandle != NULL) {
608 		cmlb_invalidate(lsp->ls_cmlbhandle, 0);
609 		cmlb_detach(lsp->ls_cmlbhandle, 0);
610 		cmlb_free_handle(&lsp->ls_cmlbhandle);
611 		lsp->ls_cmlbhandle = NULL;
612 	}
613 	(void) ddi_prop_remove_all(lsp->ls_dip);
614 	ddi_remove_minor_node(lsp->ls_dip, NULL);
615 }
616 
617 /*ARGSUSED*/
618 static void
619 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
620 {
621 	struct lofi_state *lsp;
622 	struct lofi_state *next;
623 
624 	mutex_enter(&lofi_lock);
625 
626 	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
627 
628 		/* lofi_destroy() frees lsp */
629 		next = list_next(&lofi_list, lsp);
630 
631 		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
632 			continue;
633 
634 		/*
635 		 * No in-zone processes are running, but something has this
636 		 * open.  It's either a global zone process, or a lofi
637 		 * mount.  In either case we set ls_cleanup so the last
638 		 * user destroys the device.
639 		 */
640 		if (is_opened(lsp)) {
641 			lofi_set_cleanup(lsp);
642 		} else {
643 			lofi_free_dev(lsp);
644 			lofi_destroy(lsp, kcred);
645 		}
646 	}
647 
648 	mutex_exit(&lofi_lock);
649 }
650 
651 /*ARGSUSED*/
652 static int
653 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
654 {
655 	int id;
656 	minor_t	part;
657 	uint64_t mask;
658 	diskaddr_t nblks;
659 	diskaddr_t lba;
660 	boolean_t ndelay;
661 
662 	struct lofi_state *lsp;
663 
664 	if (otyp >= OTYPCNT)
665 		return (EINVAL);
666 
667 	ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
668 
669 	/*
670 	 * lofiadm -a /dev/lofi/1 gets us here.
671 	 */
672 	if (mutex_owner(&lofi_lock) == curthread)
673 		return (EINVAL);
674 
675 	mutex_enter(&lofi_lock);
676 
677 	id = LOFI_MINOR2ID(getminor(*devp));
678 	part = LOFI_PART(getminor(*devp));
679 	mask = (1U << part);
680 
681 	/* master control device */
682 	if (id == 0) {
683 		mutex_exit(&lofi_lock);
684 		return (0);
685 	}
686 
687 	/* otherwise, the mapping should already exist */
688 	lsp = ddi_get_soft_state(lofi_statep, id);
689 	if (lsp == NULL) {
690 		mutex_exit(&lofi_lock);
691 		return (EINVAL);
692 	}
693 
694 	if (lsp->ls_cleanup == B_TRUE) {
695 		mutex_exit(&lofi_lock);
696 		return (ENXIO);
697 	}
698 
699 	if (lsp->ls_vp == NULL) {
700 		mutex_exit(&lofi_lock);
701 		return (ENXIO);
702 	}
703 
704 	if (lsp->ls_readonly && (flag & FWRITE)) {
705 		mutex_exit(&lofi_lock);
706 		return (EROFS);
707 	}
708 
709 	if ((lsp->ls_open_excl) & (mask)) {
710 		mutex_exit(&lofi_lock);
711 		return (EBUSY);
712 	}
713 
714 	if (flag & FEXCL) {
715 		if (lsp->ls_open_lyr[part]) {
716 			mutex_exit(&lofi_lock);
717 			return (EBUSY);
718 		}
719 		for (int i = 0; i < OTYP_LYR; i++) {
720 			if (lsp->ls_open_reg[i] & mask) {
721 				mutex_exit(&lofi_lock);
722 				return (EBUSY);
723 			}
724 		}
725 	}
726 
727 	if (lsp->ls_cmlbhandle != NULL) {
728 		if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
729 			/*
730 			 * non-blocking opens are allowed to succeed to
731 			 * support format and fdisk to create partitioning.
732 			 */
733 			if (!ndelay) {
734 				mutex_exit(&lofi_lock);
735 				return (ENXIO);
736 			}
737 		} else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
738 		    NULL, NULL, 0) == 0) {
739 			if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
740 				mutex_exit(&lofi_lock);
741 				return (ENXIO);
742 			}
743 		} else if (!ndelay) {
744 			mutex_exit(&lofi_lock);
745 			return (ENXIO);
746 		}
747 	}
748 
749 	if (otyp == OTYP_LYR) {
750 		lsp->ls_open_lyr[part]++;
751 	} else {
752 		lsp->ls_open_reg[otyp] |= mask;
753 	}
754 	if (flag & FEXCL) {
755 		lsp->ls_open_excl |= mask;
756 	}
757 
758 	mutex_exit(&lofi_lock);
759 	return (0);
760 }
761 
762 /*ARGSUSED*/
763 static int
764 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
765 {
766 	minor_t	part;
767 	int id;
768 	uint64_t mask;
769 	struct lofi_state *lsp;
770 
771 	id = LOFI_MINOR2ID(getminor(dev));
772 	part = LOFI_PART(getminor(dev));
773 	mask = (1U << part);
774 
775 	mutex_enter(&lofi_lock);
776 	lsp = ddi_get_soft_state(lofi_statep, id);
777 	if (lsp == NULL) {
778 		mutex_exit(&lofi_lock);
779 		return (EINVAL);
780 	}
781 
782 	if (id == 0) {
783 		mutex_exit(&lofi_lock);
784 		return (0);
785 	}
786 
787 	if (lsp->ls_open_excl & mask)
788 		lsp->ls_open_excl &= ~mask;
789 
790 	if (otyp == OTYP_LYR) {
791 		lsp->ls_open_lyr[part]--;
792 	} else {
793 		lsp->ls_open_reg[otyp] &= ~mask;
794 	}
795 
796 	/*
797 	 * If we forcibly closed the underlying device (li_force), or
798 	 * asked for cleanup (li_cleanup), finish up if we're the last
799 	 * out of the door.
800 	 */
801 	if (!is_opened(lsp) &&
802 	    (lsp->ls_cleanup == B_TRUE || lsp->ls_vp == NULL)) {
803 		lofi_free_dev(lsp);
804 		lofi_destroy(lsp, credp);
805 	}
806 
807 	mutex_exit(&lofi_lock);
808 	return (0);
809 }
810 
811 /*
812  * Sets the mechanism's initialization vector (IV) if one is needed.
813  * The IV is computed from the data block number.  lsp->ls_mech is
814  * altered so that:
815  *	lsp->ls_mech.cm_param_len is set to the IV len.
816  *	lsp->ls_mech.cm_param is set to the IV.
817  */
818 static int
819 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
820 {
821 	int	ret;
822 	crypto_data_t cdata;
823 	char	*iv;
824 	size_t	iv_len;
825 	size_t	min;
826 	void	*data;
827 	size_t	datasz;
828 
829 	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
830 
831 	if (lsp == NULL)
832 		return (CRYPTO_DEVICE_ERROR);
833 
834 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
835 	if (lsp->ls_iv_type == IVM_NONE) {
836 		return (CRYPTO_SUCCESS);
837 	}
838 
839 	/*
840 	 * if kmem already alloced from previous call and it's the same size
841 	 * we need now, just recycle it; allocate new kmem only if we have to
842 	 */
843 	if (lsp->ls_mech.cm_param == NULL ||
844 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
845 		iv_len = lsp->ls_iv_len;
846 		iv = kmem_zalloc(iv_len, KM_SLEEP);
847 	} else {
848 		iv_len = lsp->ls_mech.cm_param_len;
849 		iv = lsp->ls_mech.cm_param;
850 		bzero(iv, iv_len);
851 	}
852 
853 	switch (lsp->ls_iv_type) {
854 	case IVM_ENC_BLKNO:
855 		/* iv is not static, lblkno changes each time */
856 		data = &lblkno;
857 		datasz = sizeof (lblkno);
858 		break;
859 	default:
860 		data = 0;
861 		datasz = 0;
862 		break;
863 	}
864 
865 	/*
866 	 * write blkno into the iv buffer padded on the left in case
867 	 * blkno ever grows bigger than its current longlong_t size
868 	 * or a variation other than blkno is used for the iv data
869 	 */
870 	min = MIN(datasz, iv_len);
871 	bcopy(data, iv + (iv_len - min), min);
872 
873 	/* encrypt the data in-place to get the IV */
874 	SETUP_C_DATA(cdata, iv, iv_len);
875 
876 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
877 	    NULL, NULL, NULL);
878 	if (ret != CRYPTO_SUCCESS) {
879 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
880 		    lblkno, ret);
881 		if (lsp->ls_mech.cm_param != iv)
882 			kmem_free(iv, iv_len);
883 
884 		return (ret);
885 	}
886 
887 	/* clean up the iv from the last computation */
888 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
889 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
890 
891 	lsp->ls_mech.cm_param_len = iv_len;
892 	lsp->ls_mech.cm_param = iv;
893 
894 	return (CRYPTO_SUCCESS);
895 }
896 
897 /*
898  * Performs encryption and decryption of a chunk of data of size "len",
899  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
900  * DEV_BSIZE.
901  */
902 static int
903 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
904     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
905 {
906 	crypto_data_t cdata;
907 	crypto_data_t wdata;
908 	int ret;
909 	longlong_t lblkno = bp->b_lblkno;
910 
911 	mutex_enter(&lsp->ls_crypto_lock);
912 
913 	/*
914 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
915 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
916 	 */
917 	SETUP_C_DATA(cdata, plaintext, len);
918 	cdata.cd_length = DEV_BSIZE;
919 	if (ciphertext != NULL) {		/* not in-place crypto */
920 		SETUP_C_DATA(wdata, ciphertext, len);
921 		wdata.cd_length = DEV_BSIZE;
922 	}
923 
924 	do {
925 		ret = lofi_blk_mech(lsp, lblkno);
926 		if (ret != CRYPTO_SUCCESS)
927 			continue;
928 
929 		if (op_encrypt) {
930 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
931 			    &lsp->ls_key, NULL,
932 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
933 		} else {
934 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
935 			    &lsp->ls_key, NULL,
936 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
937 		}
938 
939 		cdata.cd_offset += DEV_BSIZE;
940 		if (ciphertext != NULL)
941 			wdata.cd_offset += DEV_BSIZE;
942 		lblkno++;
943 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
944 
945 	mutex_exit(&lsp->ls_crypto_lock);
946 
947 	if (ret != CRYPTO_SUCCESS) {
948 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
949 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
950 		    lblkno, ret);
951 	}
952 
953 	return (ret);
954 }
955 
956 #define	RDWR_RAW	1
957 #define	RDWR_BCOPY	2
958 
959 static int
960 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
961     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
962 {
963 	ssize_t resid;
964 	int isread;
965 	int error;
966 
967 	/*
968 	 * Handles reads/writes for both plain and encrypted lofi
969 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
970 	 * when it gets here.
971 	 */
972 
973 	isread = bp->b_flags & B_READ;
974 	if (isread) {
975 		if (method == RDWR_BCOPY) {
976 			/* DO NOT update bp->b_resid for bcopy */
977 			bcopy(bcopy_locn, bufaddr, len);
978 			error = 0;
979 		} else {		/* RDWR_RAW */
980 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
981 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
982 			    &resid);
983 			bp->b_resid = resid;
984 		}
985 		if (lsp->ls_crypto_enabled && error == 0) {
986 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
987 			    B_FALSE) != CRYPTO_SUCCESS) {
988 				/*
989 				 * XXX: original code didn't set residual
990 				 * back to len because no error was expected
991 				 * from bcopy() if encryption is not enabled
992 				 */
993 				if (method != RDWR_BCOPY)
994 					bp->b_resid = len;
995 				error = EIO;
996 			}
997 		}
998 		return (error);
999 	} else {
1000 		void *iobuf = bufaddr;
1001 
1002 		if (lsp->ls_crypto_enabled) {
1003 			/* don't do in-place crypto to keep bufaddr intact */
1004 			iobuf = kmem_alloc(len, KM_SLEEP);
1005 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
1006 			    B_TRUE) != CRYPTO_SUCCESS) {
1007 				kmem_free(iobuf, len);
1008 				if (method != RDWR_BCOPY)
1009 					bp->b_resid = len;
1010 				return (EIO);
1011 			}
1012 		}
1013 		if (method == RDWR_BCOPY) {
1014 			/* DO NOT update bp->b_resid for bcopy */
1015 			bcopy(iobuf, bcopy_locn, len);
1016 			error = 0;
1017 		} else {		/* RDWR_RAW */
1018 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
1019 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
1020 			    &resid);
1021 			bp->b_resid = resid;
1022 		}
1023 		if (lsp->ls_crypto_enabled) {
1024 			kmem_free(iobuf, len);
1025 		}
1026 		return (error);
1027 	}
1028 }
1029 
1030 static int
1031 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
1032     struct lofi_state *lsp)
1033 {
1034 	int error;
1035 	offset_t alignedoffset, mapoffset;
1036 	size_t	xfersize;
1037 	int	isread;
1038 	int	smflags;
1039 	caddr_t	mapaddr;
1040 	size_t	len;
1041 	enum seg_rw srw;
1042 	int	save_error;
1043 
1044 	/*
1045 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
1046 	 * when it gets here.
1047 	 */
1048 	if (lsp->ls_crypto_enabled)
1049 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
1050 
1051 	/*
1052 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1053 	 * an 8K boundary, but the buf transfer address may not be
1054 	 * aligned on more than a 512-byte boundary (we don't enforce
1055 	 * that even though we could). This matters since the initial
1056 	 * part of the transfer may not start at offset 0 within the
1057 	 * segmap'd chunk. So we have to compensate for that with
1058 	 * 'mapoffset'. Subsequent chunks always start off at the
1059 	 * beginning, and the last is capped by b_resid
1060 	 *
1061 	 * Visually, where "|" represents page map boundaries:
1062 	 *   alignedoffset (mapaddr begins at this segmap boundary)
1063 	 *    |   offset (from beginning of file)
1064 	 *    |    |	   len
1065 	 *    v    v	    v
1066 	 * ===|====X========|====...======|========X====|====
1067 	 *	   /-------------...---------------/
1068 	 *		^ bp->b_bcount/bp->b_resid at start
1069 	 *    /----/--------/----...------/--------/
1070 	 *	^	^	^   ^		^
1071 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
1072 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
1073 	 *	|	1st xfersize (<= MAXBSIZE)
1074 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1075 	 *
1076 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
1077 	 * MAXBSIZE boundary.  "len" is next page boundary of size
1078 	 * PAGESIZE after "alignedoffset".
1079 	 */
1080 	mapoffset = offset & MAXBOFFSET;
1081 	alignedoffset = offset - mapoffset;
1082 	bp->b_resid = bp->b_bcount;
1083 	isread = bp->b_flags & B_READ;
1084 	srw = isread ? S_READ : S_WRITE;
1085 	do {
1086 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
1087 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
1088 		len = roundup(mapoffset + xfersize, PAGESIZE);
1089 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1090 		    alignedoffset, MAXBSIZE, 1, srw);
1091 		/*
1092 		 * Now fault in the pages. This lets us check
1093 		 * for errors before we reference mapaddr and
1094 		 * try to resolve the fault in bcopy (which would
1095 		 * panic instead). And this can easily happen,
1096 		 * particularly if you've lofi'd a file over NFS
1097 		 * and someone deletes the file on the server.
1098 		 */
1099 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1100 		    len, F_SOFTLOCK, srw);
1101 		if (error) {
1102 			(void) segmap_release(segkmap, mapaddr, 0);
1103 			if (FC_CODE(error) == FC_OBJERR)
1104 				error = FC_ERRNO(error);
1105 			else
1106 				error = EIO;
1107 			break;
1108 		}
1109 		/* error may be non-zero for encrypted lofi */
1110 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1111 		    RDWR_BCOPY, mapaddr + mapoffset);
1112 		if (error == 0) {
1113 			bp->b_resid -= xfersize;
1114 			bufaddr += xfersize;
1115 			offset += xfersize;
1116 		}
1117 		smflags = 0;
1118 		if (isread) {
1119 			smflags |= SM_FREE;
1120 			/*
1121 			 * If we're reading an entire page starting
1122 			 * at a page boundary, there's a good chance
1123 			 * we won't need it again. Put it on the
1124 			 * head of the freelist.
1125 			 */
1126 			if (mapoffset == 0 && xfersize == MAXBSIZE)
1127 				smflags |= SM_DONTNEED;
1128 		} else {
1129 			/*
1130 			 * Write back good pages, it is okay to
1131 			 * always release asynchronous here as we'll
1132 			 * follow with VOP_FSYNC for B_SYNC buffers.
1133 			 */
1134 			if (error == 0)
1135 				smflags |= SM_WRITE | SM_ASYNC;
1136 		}
1137 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1138 		    len, F_SOFTUNLOCK, srw);
1139 		save_error = segmap_release(segkmap, mapaddr, smflags);
1140 		if (error == 0)
1141 			error = save_error;
1142 		/* only the first map may start partial */
1143 		mapoffset = 0;
1144 		alignedoffset += MAXBSIZE;
1145 	} while ((error == 0) && (bp->b_resid > 0) &&
1146 	    (offset < lsp->ls_vp_comp_size));
1147 
1148 	return (error);
1149 }
1150 
1151 /*
1152  * Check if segment seg_index is present in the decompressed segment
1153  * data cache.
1154  *
1155  * Returns a pointer to the decompressed segment data cache entry if
1156  * found, and NULL when decompressed data for this segment is not yet
1157  * cached.
1158  */
1159 static struct lofi_comp_cache *
1160 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1161 {
1162 	struct lofi_comp_cache *lc;
1163 
1164 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1165 
1166 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1167 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
1168 		if (lc->lc_index == seg_index) {
1169 			/*
1170 			 * Decompressed segment data was found in the
1171 			 * cache.
1172 			 *
1173 			 * The cache uses an LRU replacement strategy;
1174 			 * move the entry to head of list.
1175 			 */
1176 			list_remove(&lsp->ls_comp_cache, lc);
1177 			list_insert_head(&lsp->ls_comp_cache, lc);
1178 			return (lc);
1179 		}
1180 	}
1181 	return (NULL);
1182 }
1183 
1184 /*
1185  * Add the data for a decompressed segment at segment index
1186  * seg_index to the cache of the decompressed segments.
1187  *
1188  * Returns a pointer to the cache element structure in case
1189  * the data was added to the cache; returns NULL when the data
1190  * wasn't cached.
1191  */
1192 static struct lofi_comp_cache *
1193 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1194     uchar_t *data)
1195 {
1196 	struct lofi_comp_cache *lc;
1197 
1198 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1199 
1200 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1201 		lc = list_remove_tail(&lsp->ls_comp_cache);
1202 		ASSERT(lc != NULL);
1203 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1204 		kmem_free(lc, sizeof (struct lofi_comp_cache));
1205 		lsp->ls_comp_cache_count--;
1206 	}
1207 
1208 	/*
1209 	 * Do not cache when disabled by tunable variable
1210 	 */
1211 	if (lofi_max_comp_cache == 0)
1212 		return (NULL);
1213 
1214 	/*
1215 	 * When the cache has not yet reached the maximum allowed
1216 	 * number of segments, allocate a new cache element.
1217 	 * Otherwise the cache is full; reuse the last list element
1218 	 * (LRU) for caching the decompressed segment data.
1219 	 *
1220 	 * The cache element for the new decompressed segment data is
1221 	 * added to the head of the list.
1222 	 */
1223 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1224 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1225 		lc->lc_data = NULL;
1226 		list_insert_head(&lsp->ls_comp_cache, lc);
1227 		lsp->ls_comp_cache_count++;
1228 	} else {
1229 		lc = list_remove_tail(&lsp->ls_comp_cache);
1230 		if (lc == NULL)
1231 			return (NULL);
1232 		list_insert_head(&lsp->ls_comp_cache, lc);
1233 	}
1234 
1235 	/*
1236 	 * Free old uncompressed segment data when reusing a cache
1237 	 * entry.
1238 	 */
1239 	if (lc->lc_data != NULL)
1240 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1241 
1242 	lc->lc_data = data;
1243 	lc->lc_index = seg_index;
1244 	return (lc);
1245 }
1246 
1247 
1248 /*ARGSUSED*/
1249 static int
1250 gzip_decompress(void *src, size_t srclen, void *dst,
1251     size_t *dstlen, int level)
1252 {
1253 	ASSERT(*dstlen >= srclen);
1254 
1255 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1256 		return (-1);
1257 	return (0);
1258 }
1259 
1260 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
1261 /*ARGSUSED*/
1262 static int
1263 lzma_decompress(void *src, size_t srclen, void *dst,
1264     size_t *dstlen, int level)
1265 {
1266 	size_t insizepure;
1267 	void *actual_src;
1268 	ELzmaStatus status;
1269 
1270 	insizepure = srclen - LZMA_HEADER_SIZE;
1271 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1272 
1273 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1274 	    (const Byte *)actual_src, &insizepure,
1275 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1276 	    &g_Alloc) != SZ_OK) {
1277 		return (-1);
1278 	}
1279 	return (0);
1280 }
1281 
1282 /*
1283  * This is basically what strategy used to be before we found we
1284  * needed task queues.
1285  */
1286 static void
1287 lofi_strategy_task(void *arg)
1288 {
1289 	struct buf *bp = (struct buf *)arg;
1290 	int error;
1291 	int syncflag = 0;
1292 	struct lofi_state *lsp;
1293 	offset_t offset;
1294 	caddr_t	bufaddr;
1295 	size_t	len;
1296 	size_t	xfersize;
1297 	boolean_t bufinited = B_FALSE;
1298 
1299 	lsp = ddi_get_soft_state(lofi_statep,
1300 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1301 
1302 	if (lsp == NULL) {
1303 		error = ENXIO;
1304 		goto errout;
1305 	}
1306 	if (lsp->ls_kstat) {
1307 		mutex_enter(lsp->ls_kstat->ks_lock);
1308 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1309 		mutex_exit(lsp->ls_kstat->ks_lock);
1310 	}
1311 
1312 	mutex_enter(&lsp->ls_vp_lock);
1313 	lsp->ls_vp_iocount++;
1314 	mutex_exit(&lsp->ls_vp_lock);
1315 
1316 	bp_mapin(bp);
1317 	bufaddr = bp->b_un.b_addr;
1318 	offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private)
1319 	    << lsp->ls_lbshift;	/* offset within file */
1320 	if (lsp->ls_crypto_enabled) {
1321 		/* encrypted data really begins after crypto header */
1322 		offset += lsp->ls_crypto_offset;
1323 	}
1324 	len = bp->b_bcount;
1325 	bufinited = B_TRUE;
1326 
1327 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1328 		error = EIO;
1329 		goto errout;
1330 	}
1331 
1332 	/*
1333 	 * If we're writing and the buffer was not B_ASYNC
1334 	 * we'll follow up with a VOP_FSYNC() to force any
1335 	 * asynchronous I/O to stable storage.
1336 	 */
1337 	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1338 		syncflag = FSYNC;
1339 
1340 	/*
1341 	 * We used to always use vn_rdwr here, but we cannot do that because
1342 	 * we might decide to read or write from the the underlying
1343 	 * file during this call, which would be a deadlock because
1344 	 * we have the rw_lock. So instead we page, unless it's not
1345 	 * mapable or it's a character device or it's an encrypted lofi.
1346 	 */
1347 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1348 	    lsp->ls_crypto_enabled) {
1349 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1350 		    NULL);
1351 	} else if (lsp->ls_uncomp_seg_sz == 0) {
1352 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1353 	} else {
1354 		uchar_t *compressed_seg = NULL, *cmpbuf;
1355 		uchar_t *uncompressed_seg = NULL;
1356 		lofi_compress_info_t *li;
1357 		size_t oblkcount;
1358 		ulong_t seglen;
1359 		uint64_t sblkno, eblkno, cmpbytes;
1360 		uint64_t uncompressed_seg_index;
1361 		struct lofi_comp_cache *lc;
1362 		offset_t sblkoff, eblkoff;
1363 		u_offset_t salign, ealign;
1364 		u_offset_t sdiff;
1365 		uint32_t comp_data_sz;
1366 		uint64_t i;
1367 		int j;
1368 
1369 		/*
1370 		 * From here on we're dealing primarily with compressed files
1371 		 */
1372 		ASSERT(!lsp->ls_crypto_enabled);
1373 
1374 		/*
1375 		 * Compressed files can only be read from and
1376 		 * not written to
1377 		 */
1378 		if (!(bp->b_flags & B_READ)) {
1379 			bp->b_resid = bp->b_bcount;
1380 			error = EROFS;
1381 			goto done;
1382 		}
1383 
1384 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1385 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1386 		/*
1387 		 * Compute starting and ending compressed segment numbers
1388 		 * We use only bitwise operations avoiding division and
1389 		 * modulus because we enforce the compression segment size
1390 		 * to a power of 2
1391 		 */
1392 		sblkno = offset >> lsp->ls_comp_seg_shift;
1393 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1394 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1395 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1396 
1397 		/*
1398 		 * Check the decompressed segment cache.
1399 		 *
1400 		 * The cache is used only when the requested data
1401 		 * is within a segment. Requests that cross
1402 		 * segment boundaries bypass the cache.
1403 		 */
1404 		if (sblkno == eblkno ||
1405 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1406 			/*
1407 			 * Request doesn't cross a segment boundary,
1408 			 * now check the cache.
1409 			 */
1410 			mutex_enter(&lsp->ls_comp_cache_lock);
1411 			lc = lofi_find_comp_data(lsp, sblkno);
1412 			if (lc != NULL) {
1413 				/*
1414 				 * We've found the decompressed segment
1415 				 * data in the cache; reuse it.
1416 				 */
1417 				bcopy(lc->lc_data + sblkoff, bufaddr,
1418 				    bp->b_bcount);
1419 				mutex_exit(&lsp->ls_comp_cache_lock);
1420 				bp->b_resid = 0;
1421 				error = 0;
1422 				goto done;
1423 			}
1424 			mutex_exit(&lsp->ls_comp_cache_lock);
1425 		}
1426 
1427 		/*
1428 		 * Align start offset to block boundary for segmap
1429 		 */
1430 		salign = lsp->ls_comp_seg_index[sblkno];
1431 		sdiff = salign & (DEV_BSIZE - 1);
1432 		salign -= sdiff;
1433 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1434 			/*
1435 			 * We're dealing with the last segment of
1436 			 * the compressed file -- the size of this
1437 			 * segment *may not* be the same as the
1438 			 * segment size for the file
1439 			 */
1440 			eblkoff = (offset + bp->b_bcount) &
1441 			    (lsp->ls_uncomp_last_seg_sz - 1);
1442 			ealign = lsp->ls_vp_comp_size;
1443 		} else {
1444 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1445 		}
1446 
1447 		/*
1448 		 * Preserve original request paramaters
1449 		 */
1450 		oblkcount = bp->b_bcount;
1451 
1452 		/*
1453 		 * Assign the calculated parameters
1454 		 */
1455 		comp_data_sz = ealign - salign;
1456 		bp->b_bcount = comp_data_sz;
1457 
1458 		/*
1459 		 * Buffers to hold compressed segments are pre-allocated
1460 		 * on a per-thread basis. Find a pre-allocated buffer
1461 		 * that is not currently in use and mark it for use.
1462 		 */
1463 		mutex_enter(&lsp->ls_comp_bufs_lock);
1464 		for (j = 0; j < lofi_taskq_nthreads; j++) {
1465 			if (lsp->ls_comp_bufs[j].inuse == 0) {
1466 				lsp->ls_comp_bufs[j].inuse = 1;
1467 				break;
1468 			}
1469 		}
1470 
1471 		mutex_exit(&lsp->ls_comp_bufs_lock);
1472 		ASSERT(j < lofi_taskq_nthreads);
1473 
1474 		/*
1475 		 * If the pre-allocated buffer size does not match
1476 		 * the size of the I/O request, re-allocate it with
1477 		 * the appropriate size
1478 		 */
1479 		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1480 			if (lsp->ls_comp_bufs[j].bufsize > 0)
1481 				kmem_free(lsp->ls_comp_bufs[j].buf,
1482 				    lsp->ls_comp_bufs[j].bufsize);
1483 			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1484 			    KM_SLEEP);
1485 			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1486 		}
1487 		compressed_seg = lsp->ls_comp_bufs[j].buf;
1488 
1489 		/*
1490 		 * Map in the calculated number of blocks
1491 		 */
1492 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1493 		    bp, lsp);
1494 
1495 		bp->b_bcount = oblkcount;
1496 		bp->b_resid = oblkcount;
1497 		if (error != 0)
1498 			goto done;
1499 
1500 		/*
1501 		 * decompress compressed blocks start
1502 		 */
1503 		cmpbuf = compressed_seg + sdiff;
1504 		for (i = sblkno; i <= eblkno; i++) {
1505 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1506 			uchar_t *useg;
1507 
1508 			/*
1509 			 * The last segment is special in that it is
1510 			 * most likely not going to be the same
1511 			 * (uncompressed) size as the other segments.
1512 			 */
1513 			if (i == (lsp->ls_comp_index_sz - 2)) {
1514 				seglen = lsp->ls_uncomp_last_seg_sz;
1515 			} else {
1516 				seglen = lsp->ls_uncomp_seg_sz;
1517 			}
1518 
1519 			/*
1520 			 * Each of the segment index entries contains
1521 			 * the starting block number for that segment.
1522 			 * The number of compressed bytes in a segment
1523 			 * is thus the difference between the starting
1524 			 * block number of this segment and the starting
1525 			 * block number of the next segment.
1526 			 */
1527 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1528 			    lsp->ls_comp_seg_index[i];
1529 
1530 			/*
1531 			 * The first byte in a compressed segment is a flag
1532 			 * that indicates whether this segment is compressed
1533 			 * at all.
1534 			 *
1535 			 * The variable 'useg' is used (instead of
1536 			 * uncompressed_seg) in this loop to keep a
1537 			 * reference to the uncompressed segment.
1538 			 *
1539 			 * N.B. If 'useg' is replaced with uncompressed_seg,
1540 			 * it leads to memory leaks and heap corruption in
1541 			 * corner cases where compressed segments lie
1542 			 * adjacent to uncompressed segments.
1543 			 */
1544 			if (*cmpbuf == UNCOMPRESSED) {
1545 				useg = cmpbuf + SEGHDR;
1546 			} else {
1547 				if (uncompressed_seg == NULL)
1548 					uncompressed_seg =
1549 					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1550 					    KM_SLEEP);
1551 				useg = uncompressed_seg;
1552 				uncompressed_seg_index = i;
1553 
1554 				if (li->l_decompress((cmpbuf + SEGHDR),
1555 				    (cmpbytes - SEGHDR), uncompressed_seg,
1556 				    &seglen, li->l_level) != 0) {
1557 					error = EIO;
1558 					goto done;
1559 				}
1560 			}
1561 
1562 			/*
1563 			 * Determine how much uncompressed data we
1564 			 * have to copy and copy it
1565 			 */
1566 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1567 			if (i == eblkno)
1568 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1569 
1570 			bcopy((useg + sblkoff), bufaddr, xfersize);
1571 
1572 			cmpbuf += cmpbytes;
1573 			bufaddr += xfersize;
1574 			bp->b_resid -= xfersize;
1575 			sblkoff = 0;
1576 
1577 			if (bp->b_resid == 0)
1578 				break;
1579 		} /* decompress compressed blocks ends */
1580 
1581 		/*
1582 		 * Skip to done if there is no uncompressed data to cache
1583 		 */
1584 		if (uncompressed_seg == NULL)
1585 			goto done;
1586 
1587 		/*
1588 		 * Add the data for the last decompressed segment to
1589 		 * the cache.
1590 		 *
1591 		 * In case the uncompressed segment data was added to (and
1592 		 * is referenced by) the cache, make sure we don't free it
1593 		 * here.
1594 		 */
1595 		mutex_enter(&lsp->ls_comp_cache_lock);
1596 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1597 		    uncompressed_seg)) != NULL) {
1598 			uncompressed_seg = NULL;
1599 		}
1600 		mutex_exit(&lsp->ls_comp_cache_lock);
1601 
1602 done:
1603 		if (compressed_seg != NULL) {
1604 			mutex_enter(&lsp->ls_comp_bufs_lock);
1605 			lsp->ls_comp_bufs[j].inuse = 0;
1606 			mutex_exit(&lsp->ls_comp_bufs_lock);
1607 		}
1608 		if (uncompressed_seg != NULL)
1609 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1610 	} /* end of handling compressed files */
1611 
1612 	if ((error == 0) && (syncflag != 0))
1613 		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1614 
1615 errout:
1616 	if (bufinited && lsp->ls_kstat) {
1617 		size_t n_done = bp->b_bcount - bp->b_resid;
1618 		kstat_io_t *kioptr;
1619 
1620 		mutex_enter(lsp->ls_kstat->ks_lock);
1621 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1622 		if (bp->b_flags & B_READ) {
1623 			kioptr->nread += n_done;
1624 			kioptr->reads++;
1625 		} else {
1626 			kioptr->nwritten += n_done;
1627 			kioptr->writes++;
1628 		}
1629 		kstat_runq_exit(kioptr);
1630 		mutex_exit(lsp->ls_kstat->ks_lock);
1631 	}
1632 
1633 	mutex_enter(&lsp->ls_vp_lock);
1634 	if (--lsp->ls_vp_iocount == 0)
1635 		cv_broadcast(&lsp->ls_vp_cv);
1636 	mutex_exit(&lsp->ls_vp_lock);
1637 
1638 	bioerror(bp, error);
1639 	biodone(bp);
1640 }
1641 
1642 static int
1643 lofi_strategy(struct buf *bp)
1644 {
1645 	struct lofi_state *lsp;
1646 	offset_t	offset;
1647 	minor_t		part;
1648 	diskaddr_t	p_lba;
1649 	diskaddr_t	p_nblks;
1650 	int		shift;
1651 
1652 	/*
1653 	 * We cannot just do I/O here, because the current thread
1654 	 * _might_ end up back in here because the underlying filesystem
1655 	 * wants a buffer, which eventually gets into bio_recycle and
1656 	 * might call into lofi to write out a delayed-write buffer.
1657 	 * This is bad if the filesystem above lofi is the same as below.
1658 	 *
1659 	 * We could come up with a complex strategy using threads to
1660 	 * do the I/O asynchronously, or we could use task queues. task
1661 	 * queues were incredibly easy so they win.
1662 	 */
1663 
1664 	lsp = ddi_get_soft_state(lofi_statep,
1665 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1666 	part = LOFI_PART(getminor(bp->b_edev));
1667 
1668 	if (lsp == NULL) {
1669 		bioerror(bp, ENXIO);
1670 		biodone(bp);
1671 		return (0);
1672 	}
1673 
1674 	/* Check if we are closing. */
1675 	mutex_enter(&lsp->ls_vp_lock);
1676 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1677 		mutex_exit(&lsp->ls_vp_lock);
1678 		bioerror(bp, EIO);
1679 		biodone(bp);
1680 		return (0);
1681 	}
1682 	mutex_exit(&lsp->ls_vp_lock);
1683 
1684 	shift = lsp->ls_lbshift;
1685 	p_lba = 0;
1686 	p_nblks = lsp->ls_vp_size >> shift;
1687 
1688 	if (lsp->ls_cmlbhandle != NULL) {
1689 		if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1690 		    NULL, NULL, 0)) {
1691 			bioerror(bp, ENXIO);
1692 			biodone(bp);
1693 			return (0);
1694 		}
1695 	}
1696 
1697 	/* start block past partition end? */
1698 	if (bp->b_lblkno > p_nblks) {
1699 		bioerror(bp, ENXIO);
1700 		biodone(bp);
1701 		return (0);
1702 	}
1703 
1704 	offset = (bp->b_lblkno+p_lba) << shift;	/* offset within file */
1705 
1706 	mutex_enter(&lsp->ls_vp_lock);
1707 	if (lsp->ls_crypto_enabled) {
1708 		/* encrypted data really begins after crypto header */
1709 		offset += lsp->ls_crypto_offset;
1710 	}
1711 
1712 	/* make sure we will not pass the file or partition size */
1713 	if (offset == lsp->ls_vp_size ||
1714 	    offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1715 		/* EOF */
1716 		if ((bp->b_flags & B_READ) != 0) {
1717 			bp->b_resid = bp->b_bcount;
1718 			bioerror(bp, 0);
1719 		} else {
1720 			/* writes should fail */
1721 			bioerror(bp, ENXIO);
1722 		}
1723 		biodone(bp);
1724 		mutex_exit(&lsp->ls_vp_lock);
1725 		return (0);
1726 	}
1727 	if ((offset > lsp->ls_vp_size) ||
1728 	    (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1729 	    ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1730 		bioerror(bp, ENXIO);
1731 		biodone(bp);
1732 		mutex_exit(&lsp->ls_vp_lock);
1733 		return (0);
1734 	}
1735 
1736 	mutex_exit(&lsp->ls_vp_lock);
1737 
1738 	if (lsp->ls_kstat) {
1739 		mutex_enter(lsp->ls_kstat->ks_lock);
1740 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1741 		mutex_exit(lsp->ls_kstat->ks_lock);
1742 	}
1743 	bp->b_private = (void *)(uintptr_t)p_lba;	/* partition start */
1744 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1745 	return (0);
1746 }
1747 
1748 static int
1749 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1750 {
1751 	_NOTE(ARGUNUSED(credp));
1752 
1753 	if (getminor(dev) == 0)
1754 		return (EINVAL);
1755 	UIO_CHECK(uio);
1756 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1757 }
1758 
1759 static int
1760 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1761 {
1762 	_NOTE(ARGUNUSED(credp));
1763 
1764 	if (getminor(dev) == 0)
1765 		return (EINVAL);
1766 	UIO_CHECK(uio);
1767 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1768 }
1769 
1770 static int
1771 lofi_urw(struct lofi_state *lsp, uint16_t fmode, diskaddr_t off, size_t size,
1772     intptr_t arg, int flag, cred_t *credp)
1773 {
1774 	struct uio uio;
1775 	iovec_t iov;
1776 
1777 	/*
1778 	 * 1024 * 1024 apes cmlb_tg_max_efi_xfer as a reasonable max.
1779 	 */
1780 	if (size == 0 || size > 1024 * 1024 ||
1781 	    (size % (1 << lsp->ls_lbshift)) != 0)
1782 		return (EINVAL);
1783 
1784 	iov.iov_base = (void *)arg;
1785 	iov.iov_len = size;
1786 	uio.uio_iov = &iov;
1787 	uio.uio_iovcnt = 1;
1788 	uio.uio_loffset = off;
1789 	uio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
1790 	uio.uio_llimit = MAXOFFSET_T;
1791 	uio.uio_resid = size;
1792 	uio.uio_fmode = fmode;
1793 	uio.uio_extflg = 0;
1794 
1795 	return (fmode == FREAD ?
1796 	    lofi_read(lsp->ls_dev, &uio, credp) :
1797 	    lofi_write(lsp->ls_dev, &uio, credp));
1798 }
1799 
1800 /*ARGSUSED2*/
1801 static int
1802 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1803 {
1804 	if (getminor(dev) == 0)
1805 		return (EINVAL);
1806 	UIO_CHECK(aio->aio_uio);
1807 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1808 }
1809 
1810 /*ARGSUSED2*/
1811 static int
1812 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1813 {
1814 	if (getminor(dev) == 0)
1815 		return (EINVAL);
1816 	UIO_CHECK(aio->aio_uio);
1817 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1818 }
1819 
1820 /*ARGSUSED*/
1821 static int
1822 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1823 {
1824 	struct lofi_state *lsp;
1825 	dev_t	dev = (dev_t)arg;
1826 	int instance;
1827 
1828 	instance = LOFI_MINOR2ID(getminor(dev));
1829 	switch (infocmd) {
1830 	case DDI_INFO_DEVT2DEVINFO:
1831 		lsp = ddi_get_soft_state(lofi_statep, instance);
1832 		if (lsp == NULL)
1833 			return (DDI_FAILURE);
1834 		*result = lsp->ls_dip;
1835 		return (DDI_SUCCESS);
1836 	case DDI_INFO_DEVT2INSTANCE:
1837 		*result = (void *) (intptr_t)instance;
1838 		return (DDI_SUCCESS);
1839 	}
1840 	return (DDI_FAILURE);
1841 }
1842 
1843 static int
1844 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
1845 {
1846 	int error = 0;
1847 	int instance = ddi_get_instance(lsp->ls_dip);
1848 
1849 	if (labeled == B_TRUE) {
1850 		cmlb_alloc_handle(&lsp->ls_cmlbhandle);
1851 		error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
1852 		    B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
1853 		    CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
1854 
1855 		if (error != DDI_SUCCESS) {
1856 			cmlb_free_handle(&lsp->ls_cmlbhandle);
1857 			lsp->ls_cmlbhandle = NULL;
1858 			error = ENXIO;
1859 		}
1860 	} else {
1861 		/* create minor nodes */
1862 		error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
1863 		    S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
1864 		if (error == DDI_SUCCESS) {
1865 			error = ddi_create_minor_node(lsp->ls_dip,
1866 			    LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
1867 			    DDI_PSEUDO, 0);
1868 			if (error != DDI_SUCCESS) {
1869 				ddi_remove_minor_node(lsp->ls_dip,
1870 				    LOFI_BLOCK_NODE);
1871 				error = ENXIO;
1872 			}
1873 		} else
1874 			error = ENXIO;
1875 	}
1876 	return (error);
1877 }
1878 
1879 static int
1880 lofi_zone_bind(struct lofi_state *lsp)
1881 {
1882 	int error = 0;
1883 
1884 	mutex_enter(&curproc->p_lock);
1885 	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
1886 		mutex_exit(&curproc->p_lock);
1887 		return (error);
1888 	}
1889 	mutex_exit(&curproc->p_lock);
1890 
1891 	if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME,
1892 	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
1893 		rctl_decr_lofi(curproc->p_zone, 1);
1894 		error = EINVAL;
1895 	} else {
1896 		zone_init_ref(&lsp->ls_zone);
1897 		zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
1898 	}
1899 	return (error);
1900 }
1901 
1902 static void
1903 lofi_zone_unbind(struct lofi_state *lsp)
1904 {
1905 	(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
1906 	rctl_decr_lofi(curproc->p_zone, 1);
1907 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
1908 }
1909 
1910 static int
1911 lofi_online_dev(dev_info_t *dip)
1912 {
1913 	boolean_t labeled;
1914 	int	error;
1915 	int	instance = ddi_get_instance(dip);
1916 	struct lofi_state *lsp;
1917 
1918 	labeled = B_FALSE;
1919 	if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
1920 		labeled = B_TRUE;
1921 
1922 	/* lsp alloc+init, soft state is freed in lofi_detach */
1923 	error = ddi_soft_state_zalloc(lofi_statep, instance);
1924 	if (error == DDI_FAILURE) {
1925 		return (ENOMEM);
1926 	}
1927 
1928 	lsp = ddi_get_soft_state(lofi_statep, instance);
1929 	lsp->ls_dip = dip;
1930 
1931 	if ((error = lofi_zone_bind(lsp)) != 0)
1932 		goto err;
1933 
1934 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1935 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1936 	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
1937 	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1938 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1939 
1940 	if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
1941 		lofi_zone_unbind(lsp);
1942 		goto lerr;
1943 	}
1944 
1945 	/* driver handles kernel-issued IOCTLs */
1946 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1947 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1948 		error = DDI_FAILURE;
1949 		goto merr;
1950 	}
1951 
1952 	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
1953 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
1954 	if (lsp->ls_kstat == NULL) {
1955 		(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
1956 		    DDI_KERNEL_IOCTL);
1957 		error = ENOMEM;
1958 		goto merr;
1959 	}
1960 
1961 	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1962 	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
1963 	kstat_install(lsp->ls_kstat);
1964 	return (DDI_SUCCESS);
1965 merr:
1966 	if (lsp->ls_cmlbhandle != NULL) {
1967 		cmlb_detach(lsp->ls_cmlbhandle, 0);
1968 		cmlb_free_handle(&lsp->ls_cmlbhandle);
1969 	}
1970 	ddi_remove_minor_node(dip, NULL);
1971 	lofi_zone_unbind(lsp);
1972 lerr:
1973 	mutex_destroy(&lsp->ls_comp_cache_lock);
1974 	mutex_destroy(&lsp->ls_comp_bufs_lock);
1975 	mutex_destroy(&lsp->ls_kstat_lock);
1976 	mutex_destroy(&lsp->ls_vp_lock);
1977 	cv_destroy(&lsp->ls_vp_cv);
1978 err:
1979 	ddi_soft_state_free(lofi_statep, instance);
1980 	return (error);
1981 }
1982 
1983 static int
1984 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1985 {
1986 	int	rv;
1987 	int	instance = ddi_get_instance(dip);
1988 	struct lofi_state *lsp;
1989 
1990 	if (cmd != DDI_ATTACH)
1991 		return (DDI_FAILURE);
1992 
1993 	/*
1994 	 * Instance 0 is control instance, attaching control instance
1995 	 * will set the lofi up and ready.
1996 	 */
1997 	if (instance == 0) {
1998 		rv = ddi_soft_state_zalloc(lofi_statep, 0);
1999 		if (rv == DDI_FAILURE) {
2000 			return (DDI_FAILURE);
2001 		}
2002 		lsp = ddi_get_soft_state(lofi_statep, instance);
2003 		rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
2004 		    DDI_PSEUDO, 0);
2005 		if (rv == DDI_FAILURE) {
2006 			ddi_soft_state_free(lofi_statep, 0);
2007 			return (DDI_FAILURE);
2008 		}
2009 		/* driver handles kernel-issued IOCTLs */
2010 		if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
2011 		    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
2012 			ddi_remove_minor_node(dip, NULL);
2013 			ddi_soft_state_free(lofi_statep, 0);
2014 			return (DDI_FAILURE);
2015 		}
2016 
2017 		zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
2018 
2019 		lsp->ls_dip = dip;
2020 	} else {
2021 		if (lofi_online_dev(dip) == DDI_FAILURE)
2022 			return (DDI_FAILURE);
2023 	}
2024 
2025 	ddi_report_dev(dip);
2026 	return (DDI_SUCCESS);
2027 }
2028 
2029 static int
2030 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2031 {
2032 	struct lofi_state *lsp;
2033 	int instance = ddi_get_instance(dip);
2034 
2035 	if (cmd != DDI_DETACH)
2036 		return (DDI_FAILURE);
2037 
2038 	/*
2039 	 * If the instance is not 0, release state.
2040 	 * The instance 0 is control device, we can not detach it
2041 	 * before other instances are detached.
2042 	 */
2043 	if (instance != 0) {
2044 		lsp = ddi_get_soft_state(lofi_statep, instance);
2045 		if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
2046 			ddi_soft_state_free(lofi_statep, instance);
2047 			return (DDI_SUCCESS);
2048 		} else
2049 			return (DDI_FAILURE);
2050 	}
2051 	mutex_enter(&lofi_lock);
2052 
2053 	if (!list_is_empty(&lofi_list)) {
2054 		mutex_exit(&lofi_lock);
2055 		return (DDI_FAILURE);
2056 	}
2057 
2058 	ddi_remove_minor_node(dip, NULL);
2059 	ddi_prop_remove_all(dip);
2060 
2061 	mutex_exit(&lofi_lock);
2062 
2063 	if (zone_key_delete(lofi_zone_key) != 0)
2064 		cmn_err(CE_WARN, "failed to delete zone key");
2065 
2066 	ddi_soft_state_free(lofi_statep, 0);
2067 
2068 	return (DDI_SUCCESS);
2069 }
2070 
2071 /*
2072  * With the addition of encryption, we must be careful that encryption key is
2073  * wiped before kernel's data structures are freed so it cannot accidentally
2074  * slip out to userland through uninitialized data elsewhere.
2075  */
2076 static void
2077 free_lofi_ioctl(struct lofi_ioctl *klip)
2078 {
2079 	/* Make sure this encryption key doesn't stick around */
2080 	bzero(klip->li_key, sizeof (klip->li_key));
2081 	kmem_free(klip, sizeof (struct lofi_ioctl));
2082 }
2083 
2084 /*
2085  * These two functions simplify the rest of the ioctls that need to copyin/out
2086  * the lofi_ioctl structure.
2087  */
2088 int
2089 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2090     int flag)
2091 {
2092 	struct lofi_ioctl *klip;
2093 	int	error;
2094 
2095 	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2096 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2097 	if (error)
2098 		goto err;
2099 
2100 	/* ensure NULL termination */
2101 	klip->li_filename[MAXPATHLEN-1] = '\0';
2102 	klip->li_devpath[MAXPATHLEN-1] = '\0';
2103 	klip->li_algorithm[MAXALGLEN-1] = '\0';
2104 	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2105 	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2106 
2107 	if (klip->li_id > L_MAXMIN32) {
2108 		error = EINVAL;
2109 		goto err;
2110 	}
2111 
2112 	return (0);
2113 
2114 err:
2115 	free_lofi_ioctl(klip);
2116 	return (error);
2117 }
2118 
2119 int
2120 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2121     int flag)
2122 {
2123 	int	error;
2124 
2125 	/*
2126 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2127 	 * This ensures that an attacker can't trivially find the
2128 	 * key for a mapping just by issuing the ioctl.
2129 	 *
2130 	 * It can still be found by poking around in kmem with mdb(1),
2131 	 * but there is no point in making it easy when the info isn't
2132 	 * of any use in this direction anyway.
2133 	 *
2134 	 * Either way we don't actually have the raw key stored in
2135 	 * a form that we can get it anyway, since we just used it
2136 	 * to create a ctx template and didn't keep "the original".
2137 	 */
2138 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2139 	if (error)
2140 		return (EFAULT);
2141 	return (0);
2142 }
2143 
2144 static int
2145 lofi_access(struct lofi_state *lsp)
2146 {
2147 	ASSERT(MUTEX_HELD(&lofi_lock));
2148 	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2149 		return (0);
2150 	return (EPERM);
2151 }
2152 
2153 /*
2154  * Find the lofi state for the given filename. We compare by vnode to
2155  * allow the global zone visibility into NGZ lofi nodes.
2156  */
2157 static int
2158 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2159     struct lofi_state **lspp)
2160 {
2161 	struct lofi_state *lsp;
2162 	vnode_t *vp = NULL;
2163 	int err = 0;
2164 	int rdfiles = 0;
2165 
2166 	ASSERT(MUTEX_HELD(&lofi_lock));
2167 
2168 	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2169 	    NULLVPP, &vp)) != 0)
2170 		goto out;
2171 
2172 	if (vp->v_type == VREG) {
2173 		vnode_t *realvp;
2174 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2175 			VN_HOLD(realvp);
2176 			VN_RELE(vp);
2177 			vp = realvp;
2178 		}
2179 	}
2180 
2181 	for (lsp = list_head(&lofi_list); lsp != NULL;
2182 	    lsp = list_next(&lofi_list, lsp)) {
2183 		if (lsp->ls_vp == vp) {
2184 			if (lspp != NULL)
2185 				*lspp = lsp;
2186 			if (lsp->ls_readonly) {
2187 				rdfiles++;
2188 				/* Skip if '-r' is specified */
2189 				if (readonly)
2190 					continue;
2191 			}
2192 			goto out;
2193 		}
2194 	}
2195 
2196 	err = ENOENT;
2197 
2198 	/*
2199 	 * If a filename is given as an argument for lofi_unmap, we shouldn't
2200 	 * allow unmap if there are multiple read-only lofi devices associated
2201 	 * with this file.
2202 	 */
2203 	if (lspp != NULL) {
2204 		if (rdfiles == 1)
2205 			err = 0;
2206 		else if (rdfiles > 1)
2207 			err = EBUSY;
2208 	}
2209 
2210 out:
2211 	if (vp != NULL)
2212 		VN_RELE(vp);
2213 	return (err);
2214 }
2215 
2216 /*
2217  * Find the minor for the given filename, checking the zone can access
2218  * it.
2219  */
2220 static int
2221 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2222 {
2223 	int err = 0;
2224 
2225 	ASSERT(MUTEX_HELD(&lofi_lock));
2226 
2227 	if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2228 		return (err);
2229 
2230 	if ((err = lofi_access(*lspp)) != 0)
2231 		return (err);
2232 
2233 	return (0);
2234 }
2235 
2236 /*
2237  * Fakes up a disk geometry based on the size of the file. This is needed
2238  * to support newfs on traditional lofi device, but also will provide
2239  * geometry hint for cmlb.
2240  */
2241 static void
2242 fake_disk_geometry(struct lofi_state *lsp)
2243 {
2244 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2245 
2246 	/* dk_geom - see dkio(7I) */
2247 	/*
2248 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2249 	 * of sectors), but that breaks programs like fdisk which want to
2250 	 * partition a disk by cylinder. With one cylinder, you can't create
2251 	 * an fdisk partition and put pcfs on it for testing (hard to pick
2252 	 * a number between one and one).
2253 	 *
2254 	 * The cheezy floppy test is an attempt to not have too few cylinders
2255 	 * for a small file, or so many on a big file that you waste space
2256 	 * for backup superblocks or cylinder group structures.
2257 	 */
2258 	bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2259 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
2260 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2261 	else
2262 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2263 	/* in case file file is < 100k */
2264 	if (lsp->ls_dkg.dkg_ncyl == 0)
2265 		lsp->ls_dkg.dkg_ncyl = 1;
2266 
2267 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2268 	lsp->ls_dkg.dkg_nhead = 1;
2269 	lsp->ls_dkg.dkg_rpm = 7200;
2270 
2271 	lsp->ls_dkg.dkg_nsect = dsize /
2272 	    (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2273 }
2274 
2275 /*
2276  * build vtoc - see dkio(7I)
2277  *
2278  * Fakes one big partition based on the size of the file. This is needed
2279  * because we allow newfs'ing the traditional lofi device and newfs will
2280  * do several disk ioctls to figure out the geometry and partition information.
2281  * It uses that information to determine the parameters to pass to mkfs.
2282  */
2283 static void
2284 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2285 {
2286 	bzero(vt, sizeof (struct vtoc));
2287 	vt->v_sanity = VTOC_SANE;
2288 	vt->v_version = V_VERSION;
2289 	(void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2290 	    sizeof (vt->v_volume));
2291 	vt->v_sectorsz = 1 << lsp->ls_pbshift;
2292 	vt->v_nparts = 1;
2293 	vt->v_part[0].p_tag = V_UNASSIGNED;
2294 
2295 	/*
2296 	 * A compressed file is read-only, other files can
2297 	 * be read-write
2298 	 */
2299 	if (lsp->ls_uncomp_seg_sz > 0) {
2300 		vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2301 	} else {
2302 		vt->v_part[0].p_flag = V_UNMNT;
2303 	}
2304 	vt->v_part[0].p_start = (daddr_t)0;
2305 	/*
2306 	 * The partition size cannot just be the number of sectors, because
2307 	 * that might not end on a cylinder boundary. And if that's the case,
2308 	 * newfs/mkfs will print a scary warning. So just figure the size
2309 	 * based on the number of cylinders and sectors/cylinder.
2310 	 */
2311 	vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2312 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2313 }
2314 
2315 /*
2316  * build dk_cinfo - see dkio(7I)
2317  */
2318 static void
2319 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2320 {
2321 	bzero(ci, sizeof (struct dk_cinfo));
2322 	(void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2323 	ci->dki_ctype = DKC_SCSI_CCS;
2324 	(void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2325 	ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2326 	ci->dki_partition = LOFI_PART(getminor(dev));
2327 	/*
2328 	 * newfs uses this to set maxcontig. Must not be < 16, or it
2329 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2330 	 * it by the block size. Then tunefs doesn't work because
2331 	 * maxcontig is 0.
2332 	 */
2333 	ci->dki_maxtransfer = 16;
2334 }
2335 
2336 /*
2337  * map in a compressed file
2338  *
2339  * Read in the header and the index that follows.
2340  *
2341  * The header is as follows -
2342  *
2343  * Signature (name of the compression algorithm)
2344  * Compression segment size (a multiple of 512)
2345  * Number of index entries
2346  * Size of the last block
2347  * The array containing the index entries
2348  *
2349  * The header information is always stored in
2350  * network byte order on disk.
2351  */
2352 static int
2353 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2354 {
2355 	uint32_t index_sz, header_len, i;
2356 	ssize_t	resid;
2357 	enum uio_rw rw;
2358 	char *tbuf = buf;
2359 	int error;
2360 
2361 	/* The signature has already been read */
2362 	tbuf += sizeof (lsp->ls_comp_algorithm);
2363 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2364 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2365 
2366 	/*
2367 	 * The compressed segment size must be a power of 2
2368 	 */
2369 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2370 	    !ISP2(lsp->ls_uncomp_seg_sz))
2371 		return (EINVAL);
2372 
2373 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2374 		;
2375 
2376 	lsp->ls_comp_seg_shift = i;
2377 
2378 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2379 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2380 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2381 
2382 	tbuf += sizeof (lsp->ls_comp_index_sz);
2383 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2384 	    sizeof (lsp->ls_uncomp_last_seg_sz));
2385 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2386 
2387 	/*
2388 	 * Compute the total size of the uncompressed data
2389 	 * for use in fake_disk_geometry and other calculations.
2390 	 * Disk geometry has to be faked with respect to the
2391 	 * actual uncompressed data size rather than the
2392 	 * compressed file size.
2393 	 */
2394 	lsp->ls_vp_size =
2395 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2396 	    + lsp->ls_uncomp_last_seg_sz;
2397 
2398 	/*
2399 	 * Index size is rounded up to DEV_BSIZE for ease
2400 	 * of segmapping
2401 	 */
2402 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2403 	header_len = sizeof (lsp->ls_comp_algorithm) +
2404 	    sizeof (lsp->ls_uncomp_seg_sz) +
2405 	    sizeof (lsp->ls_comp_index_sz) +
2406 	    sizeof (lsp->ls_uncomp_last_seg_sz);
2407 	lsp->ls_comp_offbase = header_len + index_sz;
2408 
2409 	index_sz += header_len;
2410 	index_sz = roundup(index_sz, DEV_BSIZE);
2411 
2412 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2413 	lsp->ls_comp_index_data_sz = index_sz;
2414 
2415 	/*
2416 	 * Read in the index -- this has a side-effect
2417 	 * of reading in the header as well
2418 	 */
2419 	rw = UIO_READ;
2420 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2421 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2422 
2423 	if (error != 0)
2424 		return (error);
2425 
2426 	/* Skip the header, this is where the index really begins */
2427 	lsp->ls_comp_seg_index =
2428 	    /*LINTED*/
2429 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
2430 
2431 	/*
2432 	 * Now recompute offsets in the index to account for
2433 	 * the header length
2434 	 */
2435 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2436 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2437 		    BE_64(lsp->ls_comp_seg_index[i]);
2438 	}
2439 
2440 	return (error);
2441 }
2442 
2443 static int
2444 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2445 {
2446 	struct crypto_meta chead;
2447 	char buf[DEV_BSIZE];
2448 	ssize_t	resid;
2449 	char *marker;
2450 	int error;
2451 	int ret;
2452 	int i;
2453 
2454 	if (!klip->li_crypto_enabled)
2455 		return (0);
2456 
2457 	/*
2458 	 * All current algorithms have a max of 448 bits.
2459 	 */
2460 	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2461 		return (EINVAL);
2462 
2463 	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2464 		return (EINVAL);
2465 
2466 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2467 
2468 	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2469 
2470 	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2471 	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2472 		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2473 		    klip->li_cipher, klip->li_filename);
2474 		return (EINVAL);
2475 	}
2476 
2477 	/* this is just initialization here */
2478 	lsp->ls_mech.cm_param = NULL;
2479 	lsp->ls_mech.cm_param_len = 0;
2480 
2481 	lsp->ls_iv_type = klip->li_iv_type;
2482 	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2483 	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2484 		cmn_err(CE_WARN, "invalid iv cipher %s requested"
2485 		    " for %s", klip->li_iv_cipher, klip->li_filename);
2486 		return (EINVAL);
2487 	}
2488 
2489 	/* iv mech must itself take a null iv */
2490 	lsp->ls_iv_mech.cm_param = NULL;
2491 	lsp->ls_iv_mech.cm_param_len = 0;
2492 	lsp->ls_iv_len = klip->li_iv_len;
2493 
2494 	/*
2495 	 * Create ctx using li_cipher & the raw li_key after checking
2496 	 * that it isn't a weak key.
2497 	 */
2498 	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2499 	lsp->ls_key.ck_length = klip->li_key_len;
2500 	lsp->ls_key.ck_data = kmem_alloc(
2501 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2502 	bcopy(klip->li_key, lsp->ls_key.ck_data,
2503 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2504 
2505 	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2506 	if (ret != CRYPTO_SUCCESS) {
2507 		cmn_err(CE_WARN, "weak key check failed for cipher "
2508 		    "%s on file %s (0x%x)", klip->li_cipher,
2509 		    klip->li_filename, ret);
2510 		return (EINVAL);
2511 	}
2512 
2513 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2514 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2515 	if (error != 0)
2516 		return (error);
2517 
2518 	/*
2519 	 * This is the case where the header in the lofi image is already
2520 	 * initialized to indicate it is encrypted.
2521 	 */
2522 	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2523 		/*
2524 		 * The encryption header information is laid out this way:
2525 		 *	6 bytes:	hex "CFLOFI"
2526 		 *	2 bytes:	version = 0 ... for now
2527 		 *	96 bytes:	reserved1 (not implemented yet)
2528 		 *	4 bytes:	data_sector = 2 ... for now
2529 		 *	more...		not implemented yet
2530 		 */
2531 
2532 		marker = buf;
2533 
2534 		/* copy the magic */
2535 		bcopy(marker, lsp->ls_crypto.magic,
2536 		    sizeof (lsp->ls_crypto.magic));
2537 		marker += sizeof (lsp->ls_crypto.magic);
2538 
2539 		/* read the encryption version number */
2540 		bcopy(marker, &(lsp->ls_crypto.version),
2541 		    sizeof (lsp->ls_crypto.version));
2542 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2543 		marker += sizeof (lsp->ls_crypto.version);
2544 
2545 		/* read a chunk of reserved data */
2546 		bcopy(marker, lsp->ls_crypto.reserved1,
2547 		    sizeof (lsp->ls_crypto.reserved1));
2548 		marker += sizeof (lsp->ls_crypto.reserved1);
2549 
2550 		/* read block number where encrypted data begins */
2551 		bcopy(marker, &(lsp->ls_crypto.data_sector),
2552 		    sizeof (lsp->ls_crypto.data_sector));
2553 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2554 		marker += sizeof (lsp->ls_crypto.data_sector);
2555 
2556 		/* and ignore the rest until it is implemented */
2557 
2558 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2559 		return (0);
2560 	}
2561 
2562 	/*
2563 	 * We've requested encryption, but no magic was found, so it must be
2564 	 * a new image.
2565 	 */
2566 
2567 	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2568 		if (buf[i] != '\0')
2569 			return (EINVAL);
2570 	}
2571 
2572 	marker = buf;
2573 	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2574 	marker += sizeof (lofi_crypto_magic);
2575 	chead.version = htons(LOFI_CRYPTO_VERSION);
2576 	bcopy(&(chead.version), marker, sizeof (chead.version));
2577 	marker += sizeof (chead.version);
2578 	marker += sizeof (chead.reserved1);
2579 	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2580 	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2581 
2582 	/* write the header */
2583 	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2584 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2585 	if (error != 0)
2586 		return (error);
2587 
2588 	/* fix things up so it looks like we read this info */
2589 	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2590 	    sizeof (lofi_crypto_magic));
2591 	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2592 	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2593 	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2594 	return (0);
2595 }
2596 
2597 /*
2598  * Check to see if the passed in signature is a valid one.  If it is
2599  * valid, return the index into lofi_compress_table.
2600  *
2601  * Return -1 if it is invalid
2602  */
2603 static int
2604 lofi_compress_select(const char *signature)
2605 {
2606 	int i;
2607 
2608 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2609 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2610 			return (i);
2611 	}
2612 
2613 	return (-1);
2614 }
2615 
2616 static int
2617 lofi_init_compress(struct lofi_state *lsp)
2618 {
2619 	char buf[DEV_BSIZE];
2620 	int compress_index;
2621 	ssize_t	resid;
2622 	int error;
2623 
2624 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2625 	    0, RLIM64_INFINITY, kcred, &resid);
2626 
2627 	if (error != 0)
2628 		return (error);
2629 
2630 	if ((compress_index = lofi_compress_select(buf)) == -1)
2631 		return (0);
2632 
2633 	/* compression and encryption are mutually exclusive */
2634 	if (lsp->ls_crypto_enabled)
2635 		return (ENOTSUP);
2636 
2637 	/* initialize compression info for compressed lofi */
2638 	lsp->ls_comp_algorithm_index = compress_index;
2639 	(void) strlcpy(lsp->ls_comp_algorithm,
2640 	    lofi_compress_table[compress_index].l_name,
2641 	    sizeof (lsp->ls_comp_algorithm));
2642 
2643 	/* Finally setup per-thread pre-allocated buffers */
2644 	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2645 	    sizeof (struct compbuf), KM_SLEEP);
2646 
2647 	return (lofi_map_compressed_file(lsp, buf));
2648 }
2649 
2650 /*
2651  * Allocate new or proposed id from lofi_id.
2652  *
2653  * Special cases for proposed id:
2654  * 0: not allowed, 0 is id for control device.
2655  * -1: allocate first usable id from lofi_id.
2656  * any other value is proposed value from userland
2657  *
2658  * returns DDI_SUCCESS or errno.
2659  */
2660 static int
2661 lofi_alloc_id(int *idp)
2662 {
2663 	int id, error = DDI_SUCCESS;
2664 
2665 	if (*idp == -1) {
2666 		id = id_allocff_nosleep(lofi_id);
2667 		if (id == -1) {
2668 			error = EAGAIN;
2669 			goto err;
2670 		}
2671 	} else if (*idp == 0) {
2672 		error = EINVAL;
2673 		goto err;
2674 	} else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2675 		error = ERANGE;
2676 		goto err;
2677 	} else {
2678 		if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2679 			error = EEXIST;
2680 			goto err;
2681 		}
2682 
2683 		id = id_alloc_specific_nosleep(lofi_id, *idp);
2684 		if (id == -1) {
2685 			error = EAGAIN;
2686 			goto err;
2687 		}
2688 	}
2689 	*idp = id;
2690 err:
2691 	return (error);
2692 }
2693 
2694 static int
2695 lofi_create_dev(struct lofi_ioctl *klip)
2696 {
2697 	dev_info_t *parent, *child;
2698 	struct lofi_state *lsp = NULL;
2699 	char namebuf[MAXNAMELEN];
2700 	int error, circ;
2701 
2702 	/* get control device */
2703 	lsp = ddi_get_soft_state(lofi_statep, 0);
2704 	parent = ddi_get_parent(lsp->ls_dip);
2705 
2706 	if ((error = lofi_alloc_id((int *)&klip->li_id)))
2707 		return (error);
2708 
2709 	(void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2710 	    klip->li_id);
2711 
2712 	ndi_devi_enter(parent, &circ);
2713 	child = ndi_devi_findchild(parent, namebuf);
2714 	ndi_devi_exit(parent, circ);
2715 
2716 	if (child == NULL) {
2717 		child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2718 		    (pnode_t)DEVI_SID_NODEID, klip->li_id);
2719 		if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2720 		    "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2721 			goto err;
2722 
2723 		if (klip->li_labeled == B_TRUE) {
2724 			if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2725 			    DDI_PROP_CANSLEEP, "labeled", 0, 0))
2726 			    != DDI_PROP_SUCCESS)
2727 				goto err;
2728 		}
2729 
2730 		if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2731 		    != NDI_SUCCESS)
2732 			goto err;
2733 	} else {
2734 		id_free(lofi_id, klip->li_id);
2735 		error = EEXIST;
2736 		return (error);
2737 	}
2738 
2739 	goto done;
2740 
2741 err:
2742 	ddi_prop_remove_all(child);
2743 	(void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2744 	id_free(lofi_id, klip->li_id);
2745 done:
2746 
2747 	return (error);
2748 }
2749 
2750 static void
2751 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2752 {
2753 	char *p = NULL;
2754 
2755 	(void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2756 
2757 	mutex_enter(&lsp->ls_vp_lock);
2758 	if (lsp->ls_vp != NULL)
2759 		p = strrchr(lsp->ls_vp->v_path, '/');
2760 	if (p != NULL)
2761 		(void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2762 	mutex_exit(&lsp->ls_vp_lock);
2763 	(void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2764 }
2765 
2766 /*
2767  * copy devlink name from event cache
2768  */
2769 static void
2770 lofi_copy_devpath(struct lofi_ioctl *klip)
2771 {
2772 	int	error;
2773 	char	namebuf[MAXNAMELEN], *str;
2774 	clock_t ticks;
2775 	nvlist_t *nvl = NULL;
2776 
2777 	if (klip->li_labeled == B_TRUE)
2778 		klip->li_devpath[0] = '\0';
2779 	else {
2780 		/* no need to wait for messages */
2781 		(void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2782 		    "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2783 		return;
2784 	}
2785 
2786 	(void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2787 
2788 	mutex_enter(&lofi_devlink_cache.ln_lock);
2789 	for (;;) {
2790 		error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data,
2791 		    namebuf, &nvl);
2792 
2793 		if (error == 0 &&
2794 		    nvlist_lookup_string(nvl, DEV_NAME, &str) == 0 &&
2795 		    strncmp(str, "/dev/" LOFI_CHAR_NAME,
2796 		    sizeof ("/dev/" LOFI_CHAR_NAME) - 1) != 0) {
2797 			(void) strlcpy(klip->li_devpath, str,
2798 			    sizeof (klip->li_devpath));
2799 			break;
2800 		}
2801 		/*
2802 		 * Either there is no data in the cache, or the
2803 		 * cache entry still has the wrong device name.
2804 		 */
2805 		ticks = ddi_get_lbolt() + lofi_timeout * drv_usectohz(1000000);
2806 		error = cv_timedwait(&lofi_devlink_cache.ln_cv,
2807 		    &lofi_devlink_cache.ln_lock, ticks);
2808 		if (error == -1)
2809 			break;	/* timeout */
2810 	}
2811 	mutex_exit(&lofi_devlink_cache.ln_lock);
2812 }
2813 
2814 /*
2815  * map a file to a minor number. Return the minor number.
2816  */
2817 static int
2818 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2819     int *rvalp, struct cred *credp, int ioctl_flag)
2820 {
2821 	int	id = -1;
2822 	struct lofi_state *lsp = NULL;
2823 	struct lofi_ioctl *klip;
2824 	int	error;
2825 	struct vnode *vp = NULL;
2826 	vattr_t	vattr;
2827 	int	flag;
2828 	char	namebuf[MAXNAMELEN];
2829 
2830 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2831 	if (error != 0)
2832 		return (error);
2833 
2834 	mutex_enter(&lofi_lock);
2835 
2836 	if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2837 	    NULL) == 0) {
2838 		error = EBUSY;
2839 		goto err;
2840 	}
2841 
2842 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2843 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2844 	if (error) {
2845 		/* try read-only */
2846 		flag &= ~FWRITE;
2847 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2848 		    &vp, 0, 0);
2849 		if (error)
2850 			goto err;
2851 	}
2852 
2853 	if (!V_ISLOFIABLE(vp->v_type)) {
2854 		error = EINVAL;
2855 		goto err;
2856 	}
2857 
2858 	vattr.va_mask = AT_SIZE;
2859 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2860 	if (error)
2861 		goto err;
2862 
2863 	/* the file needs to be a multiple of the block size */
2864 	if ((vattr.va_size % DEV_BSIZE) != 0) {
2865 		error = EINVAL;
2866 		goto err;
2867 	}
2868 
2869 	if (pickminor) {
2870 		klip->li_id = (uint32_t)-1;
2871 	}
2872 	if ((error = lofi_create_dev(klip)) != 0)
2873 		goto err;
2874 
2875 	id = klip->li_id;
2876 	lsp = ddi_get_soft_state(lofi_statep, id);
2877 	if (lsp == NULL)
2878 		goto err;
2879 
2880 	/*
2881 	 * from this point lofi_destroy() is used to clean up on error
2882 	 * make sure the basic data is set
2883 	 */
2884 	list_insert_tail(&lofi_list, lsp);
2885 	lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
2886 
2887 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2888 	    offsetof(struct lofi_comp_cache, lc_list));
2889 
2890 	/*
2891 	 * save open mode so file can be closed properly and vnode counts
2892 	 * updated correctly.
2893 	 */
2894 	lsp->ls_openflag = flag;
2895 
2896 	lsp->ls_vp = vp;
2897 	lsp->ls_stacked_vp = vp;
2898 
2899 	lsp->ls_vp_size = vattr.va_size;
2900 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2901 
2902 	/*
2903 	 * Try to handle stacked lofs vnodes.
2904 	 */
2905 	if (vp->v_type == VREG) {
2906 		vnode_t *realvp;
2907 
2908 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2909 			/*
2910 			 * We need to use the realvp for uniqueness
2911 			 * checking, but keep the stacked vp for
2912 			 * LOFI_GET_FILENAME display.
2913 			 */
2914 			VN_HOLD(realvp);
2915 			lsp->ls_vp = realvp;
2916 		}
2917 	}
2918 
2919 	lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
2920 	lsp->ls_pbshift = lsp->ls_lbshift;
2921 
2922 	lsp->ls_readonly = klip->li_readonly;
2923 	lsp->ls_uncomp_seg_sz = 0;
2924 	lsp->ls_comp_algorithm[0] = '\0';
2925 	lsp->ls_crypto_offset = 0;
2926 
2927 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2928 	    LOFI_DRIVER_NAME, id);
2929 	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2930 	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2931 
2932 	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2933 		goto err;
2934 
2935 	if ((error = lofi_init_compress(lsp)) != 0)
2936 		goto err;
2937 
2938 	fake_disk_geometry(lsp);
2939 
2940 	/* For unlabeled lofi add Nblocks and Size */
2941 	if (klip->li_labeled == B_FALSE) {
2942 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2943 		    SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset);
2944 		if (error != DDI_PROP_SUCCESS) {
2945 			error = EINVAL;
2946 			goto err;
2947 		}
2948 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2949 		    NBLOCKS_PROP_NAME,
2950 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE);
2951 		if (error != DDI_PROP_SUCCESS) {
2952 			error = EINVAL;
2953 			goto err;
2954 		}
2955 	}
2956 
2957 	/*
2958 	 * Notify we are ready to rock.
2959 	 */
2960 	mutex_enter(&lsp->ls_vp_lock);
2961 	lsp->ls_vp_ready = B_TRUE;
2962 	cv_broadcast(&lsp->ls_vp_cv);
2963 	mutex_exit(&lsp->ls_vp_lock);
2964 	mutex_exit(&lofi_lock);
2965 
2966 	lofi_copy_devpath(klip);
2967 
2968 	if (rvalp)
2969 		*rvalp = id;
2970 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2971 	free_lofi_ioctl(klip);
2972 	return (0);
2973 
2974 err:
2975 	if (lsp != NULL) {
2976 		lofi_destroy(lsp, credp);
2977 	} else {
2978 		if (vp != NULL) {
2979 			(void) VOP_PUTPAGE(vp, 0, 0, B_FREE, credp, NULL);
2980 			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2981 			VN_RELE(vp);
2982 		}
2983 	}
2984 
2985 	mutex_exit(&lofi_lock);
2986 	free_lofi_ioctl(klip);
2987 	return (error);
2988 }
2989 
2990 /*
2991  * unmap a file.
2992  */
2993 static int
2994 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2995     struct cred *credp, int ioctl_flag)
2996 {
2997 	struct lofi_state *lsp;
2998 	struct lofi_ioctl *klip;
2999 	char namebuf[MAXNAMELEN];
3000 	int err;
3001 
3002 	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3003 	if (err != 0)
3004 		return (err);
3005 
3006 	mutex_enter(&lofi_lock);
3007 	if (byfilename) {
3008 		if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
3009 		    &lsp)) != 0) {
3010 			goto done;
3011 		}
3012 	} else if (klip->li_id == 0) {
3013 		err = ENXIO;
3014 		goto done;
3015 	} else {
3016 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3017 	}
3018 
3019 	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
3020 		err = ENXIO;
3021 		goto done;
3022 	}
3023 
3024 	klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3025 	(void) snprintf(namebuf, sizeof (namebuf), "%u", klip->li_id);
3026 
3027 	/*
3028 	 * If it's still held open, we'll do one of three things:
3029 	 *
3030 	 * If no flag is set, just return EBUSY.
3031 	 *
3032 	 * If the 'cleanup' flag is set, unmap and remove the device when
3033 	 * the last user finishes.
3034 	 *
3035 	 * If the 'force' flag is set, then we forcibly close the underlying
3036 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
3037 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
3038 	 * device will be cleaned up appropriately.
3039 	 *
3040 	 * This is complicated by the fact that we may have outstanding
3041 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
3042 	 * I/O, we keep a count of the number of outstanding I/O requests
3043 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
3044 	 * should be dispatched (ls_vp_closereq).
3045 	 *
3046 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
3047 	 * and then close the underlying vnode.
3048 	 */
3049 	if (is_opened(lsp)) {
3050 		if (klip->li_force) {
3051 			/* Mark the device for cleanup. */
3052 			lofi_set_cleanup(lsp);
3053 			mutex_enter(&lsp->ls_vp_lock);
3054 			lsp->ls_vp_closereq = B_TRUE;
3055 			/* Wake up any threads waiting on dkiocstate. */
3056 			cv_broadcast(&lsp->ls_vp_cv);
3057 			while (lsp->ls_vp_iocount > 0)
3058 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
3059 			mutex_exit(&lsp->ls_vp_lock);
3060 		} else if (klip->li_cleanup) {
3061 			lofi_set_cleanup(lsp);
3062 		} else {
3063 			err = EBUSY;
3064 		}
3065 	} else {
3066 		lofi_free_dev(lsp);
3067 		lofi_destroy(lsp, credp);
3068 	}
3069 
3070 	/* Remove name from devlink cache */
3071 	mutex_enter(&lofi_devlink_cache.ln_lock);
3072 	(void) nvlist_remove_all(lofi_devlink_cache.ln_data, namebuf);
3073 	cv_broadcast(&lofi_devlink_cache.ln_cv);
3074 	mutex_exit(&lofi_devlink_cache.ln_lock);
3075 done:
3076 	mutex_exit(&lofi_lock);
3077 	if (err == 0)
3078 		(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3079 	free_lofi_ioctl(klip);
3080 	return (err);
3081 }
3082 
3083 /*
3084  * get the filename given the minor number, or the minor number given
3085  * the name.
3086  */
3087 /*ARGSUSED*/
3088 static int
3089 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
3090     struct cred *credp, int ioctl_flag)
3091 {
3092 	struct lofi_ioctl *klip;
3093 	struct lofi_state *lsp;
3094 	int	error;
3095 
3096 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3097 	if (error != 0)
3098 		return (error);
3099 
3100 	switch (which) {
3101 	case LOFI_GET_FILENAME:
3102 		if (klip->li_id == 0) {
3103 			free_lofi_ioctl(klip);
3104 			return (EINVAL);
3105 		}
3106 
3107 		mutex_enter(&lofi_lock);
3108 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3109 		if (lsp == NULL || lofi_access(lsp) != 0) {
3110 			mutex_exit(&lofi_lock);
3111 			free_lofi_ioctl(klip);
3112 			return (ENXIO);
3113 		}
3114 
3115 		/*
3116 		 * This may fail if, for example, we're trying to look
3117 		 * up a zoned NFS path from the global zone.
3118 		 */
3119 		if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3120 		    sizeof (klip->li_filename), CRED()) != 0) {
3121 			(void) strlcpy(klip->li_filename, "?",
3122 			    sizeof (klip->li_filename));
3123 		}
3124 
3125 		klip->li_readonly = lsp->ls_readonly;
3126 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3127 
3128 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3129 		    sizeof (klip->li_algorithm));
3130 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3131 		mutex_exit(&lofi_lock);
3132 
3133 		lofi_copy_devpath(klip);
3134 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3135 		free_lofi_ioctl(klip);
3136 		return (error);
3137 	case LOFI_GET_MINOR:
3138 		mutex_enter(&lofi_lock);
3139 		error = file_to_lofi(klip->li_filename,
3140 		    klip->li_readonly, &lsp);
3141 		if (error != 0) {
3142 			mutex_exit(&lofi_lock);
3143 			free_lofi_ioctl(klip);
3144 			return (error);
3145 		}
3146 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3147 
3148 		klip->li_readonly = lsp->ls_readonly;
3149 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3150 		mutex_exit(&lofi_lock);
3151 
3152 		lofi_copy_devpath(klip);
3153 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3154 
3155 		free_lofi_ioctl(klip);
3156 		return (error);
3157 	case LOFI_CHECK_COMPRESSED:
3158 		mutex_enter(&lofi_lock);
3159 		error = file_to_lofi(klip->li_filename,
3160 		    klip->li_readonly, &lsp);
3161 		if (error != 0) {
3162 			mutex_exit(&lofi_lock);
3163 			free_lofi_ioctl(klip);
3164 			return (error);
3165 		}
3166 
3167 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3168 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3169 		    sizeof (klip->li_algorithm));
3170 
3171 		mutex_exit(&lofi_lock);
3172 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3173 		free_lofi_ioctl(klip);
3174 		return (error);
3175 	default:
3176 		free_lofi_ioctl(klip);
3177 		return (EINVAL);
3178 	}
3179 }
3180 
3181 static int
3182 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3183     struct uscsi_cmd *uscmd)
3184 {
3185 	int rval;
3186 
3187 #ifdef	_MULTI_DATAMODEL
3188 	switch (ddi_model_convert_from(flag & FMODELS)) {
3189 	case DDI_MODEL_ILP32: {
3190 		struct uscsi_cmd32 ucmd32;
3191 
3192 		if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3193 			rval = EFAULT;
3194 			goto err;
3195 		}
3196 		uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3197 		break;
3198 	}
3199 	case DDI_MODEL_NONE:
3200 		if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3201 			rval = EFAULT;
3202 			goto err;
3203 		}
3204 		break;
3205 	default:
3206 		rval = EFAULT;
3207 		goto err;
3208 	}
3209 #else
3210 	if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3211 		rval = EFAULT;
3212 		goto err;
3213 	}
3214 #endif	/* _MULTI_DATAMODEL */
3215 	if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3216 		rval = EFAULT;
3217 		goto err;
3218 	}
3219 	if (cdb->scc_cmd == SCMD_INQUIRY) {
3220 		return (0);
3221 	}
3222 err:
3223 	return (rval);
3224 }
3225 
3226 static int
3227 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3228     int *rvalp)
3229 {
3230 	int error;
3231 	enum dkio_state dkstate;
3232 	struct lofi_state *lsp;
3233 	dk_efi_t user_efi;
3234 	int id;
3235 
3236 	id = LOFI_MINOR2ID(getminor(dev));
3237 
3238 	/* lofi ioctls only apply to the master device */
3239 	if (id == 0) {
3240 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3241 
3242 		/*
3243 		 * the query command only need read-access - i.e., normal
3244 		 * users are allowed to do those on the ctl device as
3245 		 * long as they can open it read-only.
3246 		 */
3247 		switch (cmd) {
3248 		case LOFI_MAP_FILE:
3249 			if ((flag & FWRITE) == 0)
3250 				return (EPERM);
3251 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3252 		case LOFI_MAP_FILE_MINOR:
3253 			if ((flag & FWRITE) == 0)
3254 				return (EPERM);
3255 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3256 		case LOFI_UNMAP_FILE:
3257 			if ((flag & FWRITE) == 0)
3258 				return (EPERM);
3259 			return (lofi_unmap_file(lip, 1, credp, flag));
3260 		case LOFI_UNMAP_FILE_MINOR:
3261 			if ((flag & FWRITE) == 0)
3262 				return (EPERM);
3263 			return (lofi_unmap_file(lip, 0, credp, flag));
3264 		case LOFI_GET_FILENAME:
3265 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3266 			    credp, flag));
3267 		case LOFI_GET_MINOR:
3268 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3269 			    credp, flag));
3270 
3271 		/*
3272 		 * This API made limited sense when this value was fixed
3273 		 * at LOFI_MAX_FILES.  However, its use to iterate
3274 		 * across all possible devices in lofiadm means we don't
3275 		 * want to return L_MAXMIN, but the highest
3276 		 * *allocated* id.
3277 		 */
3278 		case LOFI_GET_MAXMINOR:
3279 			id = 0;
3280 
3281 			mutex_enter(&lofi_lock);
3282 
3283 			for (lsp = list_head(&lofi_list); lsp != NULL;
3284 			    lsp = list_next(&lofi_list, lsp)) {
3285 				int i;
3286 				if (lofi_access(lsp) != 0)
3287 					continue;
3288 
3289 				i = ddi_get_instance(lsp->ls_dip);
3290 				if (i > id)
3291 					id = i;
3292 			}
3293 
3294 			mutex_exit(&lofi_lock);
3295 
3296 			error = ddi_copyout(&id, &lip->li_id,
3297 			    sizeof (id), flag);
3298 			if (error)
3299 				return (EFAULT);
3300 			return (0);
3301 
3302 		case LOFI_CHECK_COMPRESSED:
3303 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3304 			    credp, flag));
3305 		default:
3306 			return (EINVAL);
3307 		}
3308 	}
3309 
3310 	mutex_enter(&lofi_lock);
3311 	lsp = ddi_get_soft_state(lofi_statep, id);
3312 	if (lsp == NULL || lsp->ls_cleanup) {
3313 		mutex_exit(&lofi_lock);
3314 		return (ENXIO);
3315 	}
3316 	mutex_exit(&lofi_lock);
3317 
3318 	if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3319 	    "labeled") == 1) {
3320 		error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3321 		    credp, rvalp, 0);
3322 		if (error != ENOTTY)
3323 			return (error);
3324 	}
3325 
3326 	/*
3327 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3328 	 * EIO as if the device was no longer present.
3329 	 */
3330 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3331 		return (EIO);
3332 
3333 	/* these are for faking out utilities like newfs */
3334 	switch (cmd) {
3335 	case DKIOCGMEDIAINFO:
3336 	case DKIOCGMEDIAINFOEXT: {
3337 		struct dk_minfo_ext media_info;
3338 		int shift = lsp->ls_lbshift;
3339 		int size;
3340 
3341 		if (cmd == DKIOCGMEDIAINFOEXT) {
3342 			media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3343 			size = sizeof (struct dk_minfo_ext);
3344 		} else {
3345 			size = sizeof (struct dk_minfo);
3346 		}
3347 
3348 		media_info.dki_media_type = DK_FIXED_DISK;
3349 		media_info.dki_lbsize = 1U << shift;
3350 		media_info.dki_capacity =
3351 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3352 
3353 		if (ddi_copyout(&media_info, (void *)arg, size, flag))
3354 			return (EFAULT);
3355 		return (0);
3356 	}
3357 	case DKIOCREMOVABLE: {
3358 		int i = 0;
3359 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3360 			return (EFAULT);
3361 		return (0);
3362 	}
3363 
3364 	case DKIOCGVTOC: {
3365 		struct vtoc vt;
3366 		fake_disk_vtoc(lsp, &vt);
3367 
3368 		switch (ddi_model_convert_from(flag & FMODELS)) {
3369 		case DDI_MODEL_ILP32: {
3370 			struct vtoc32 vtoc32;
3371 
3372 			vtoctovtoc32(vt, vtoc32);
3373 			if (ddi_copyout(&vtoc32, (void *)arg,
3374 			    sizeof (struct vtoc32), flag))
3375 				return (EFAULT);
3376 			break;
3377 			}
3378 
3379 		case DDI_MODEL_NONE:
3380 			if (ddi_copyout(&vt, (void *)arg,
3381 			    sizeof (struct vtoc), flag))
3382 				return (EFAULT);
3383 			break;
3384 		}
3385 		return (0);
3386 	}
3387 	case DKIOCINFO: {
3388 		struct dk_cinfo ci;
3389 		fake_disk_info(dev, &ci);
3390 		if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3391 			return (EFAULT);
3392 		return (0);
3393 	}
3394 	case DKIOCG_VIRTGEOM:
3395 	case DKIOCG_PHYGEOM:
3396 	case DKIOCGGEOM:
3397 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3398 		    sizeof (struct dk_geom), flag);
3399 		if (error)
3400 			return (EFAULT);
3401 		return (0);
3402 	case DKIOCSTATE:
3403 		/*
3404 		 * Normally, lofi devices are always in the INSERTED state.  If
3405 		 * a device is forcefully unmapped, then the device transitions
3406 		 * to the DKIO_DEV_GONE state.
3407 		 */
3408 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3409 		    flag) != 0)
3410 			return (EFAULT);
3411 
3412 		mutex_enter(&lsp->ls_vp_lock);
3413 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3414 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3415 		    !lsp->ls_cleanup) {
3416 			/*
3417 			 * By virtue of having the device open, we know that
3418 			 * 'lsp' will remain valid when we return.
3419 			 */
3420 			if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) {
3421 				mutex_exit(&lsp->ls_vp_lock);
3422 				return (EINTR);
3423 			}
3424 		}
3425 
3426 		dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ?
3427 		    DKIO_INSERTED : DKIO_DEV_GONE);
3428 		mutex_exit(&lsp->ls_vp_lock);
3429 
3430 		if (ddi_copyout(&dkstate, (void *)arg,
3431 		    sizeof (dkstate), flag) != 0)
3432 			return (EFAULT);
3433 		return (0);
3434 	case USCSICMD: {
3435 		struct uscsi_cmd uscmd;
3436 		union scsi_cdb cdb;
3437 
3438 		if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3439 			struct scsi_inquiry inq = {0};
3440 
3441 			lofi_create_inquiry(lsp, &inq);
3442 			if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3443 			    uscmd.uscsi_buflen, flag) != 0)
3444 				return (EFAULT);
3445 			return (0);
3446 		} else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3447 			struct scsi_capacity capacity;
3448 
3449 			capacity.capacity =
3450 			    BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3451 			    lsp->ls_lbshift);
3452 			capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3453 			if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3454 			    uscmd.uscsi_buflen, flag) != 0)
3455 				return (EFAULT);
3456 			return (0);
3457 		}
3458 
3459 		uscmd.uscsi_rqstatus = 0xff;
3460 #ifdef	_MULTI_DATAMODEL
3461 		switch (ddi_model_convert_from(flag & FMODELS)) {
3462 		case DDI_MODEL_ILP32: {
3463 			struct uscsi_cmd32 ucmd32;
3464 			uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3465 			if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3466 			    flag) != 0)
3467 				return (EFAULT);
3468 			break;
3469 		}
3470 		case DDI_MODEL_NONE:
3471 			if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3472 			    flag) != 0)
3473 				return (EFAULT);
3474 			break;
3475 		default:
3476 			return (EFAULT);
3477 		}
3478 #else
3479 		if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3480 			return (EFAULT);
3481 #endif	/* _MULTI_DATAMODEL */
3482 		return (0);
3483 	}
3484 
3485 	case DKIOCGMBOOT:
3486 		return (lofi_urw(lsp, FREAD, 0, 1 << lsp->ls_lbshift,
3487 		    arg, flag, credp));
3488 
3489 	case DKIOCSMBOOT:
3490 		return (lofi_urw(lsp, FWRITE, 0, 1 << lsp->ls_lbshift,
3491 		    arg, flag, credp));
3492 
3493 	case DKIOCGETEFI:
3494 		if (ddi_copyin((void *)arg, &user_efi,
3495 		    sizeof (dk_efi_t), flag) != 0)
3496 			return (EFAULT);
3497 
3498 		return (lofi_urw(lsp, FREAD,
3499 		    user_efi.dki_lba * (1 << lsp->ls_lbshift),
3500 		    user_efi.dki_length, (intptr_t)user_efi.dki_data,
3501 		    flag, credp));
3502 
3503 	case DKIOCSETEFI:
3504 		if (ddi_copyin((void *)arg, &user_efi,
3505 		    sizeof (dk_efi_t), flag) != 0)
3506 			return (EFAULT);
3507 
3508 		return (lofi_urw(lsp, FWRITE,
3509 		    user_efi.dki_lba * (1 << lsp->ls_lbshift),
3510 		    user_efi.dki_length, (intptr_t)user_efi.dki_data,
3511 		    flag, credp));
3512 
3513 	default:
3514 #ifdef DEBUG
3515 		cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3516 #endif	/* DEBUG */
3517 		return (ENOTTY);
3518 	}
3519 }
3520 
3521 static int
3522 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3523     char *name, caddr_t valuep, int *lengthp)
3524 {
3525 	struct lofi_state *lsp;
3526 	int rc;
3527 
3528 	lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3529 	if (lsp == NULL) {
3530 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3531 		    name, valuep, lengthp));
3532 	}
3533 
3534 	rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3535 	    name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL);
3536 	if (rc == DDI_PROP_SUCCESS)
3537 		return (rc);
3538 
3539 	return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags,
3540 	    name, valuep, lengthp));
3541 }
3542 
3543 static struct cb_ops lofi_cb_ops = {
3544 	lofi_open,		/* open */
3545 	lofi_close,		/* close */
3546 	lofi_strategy,		/* strategy */
3547 	nodev,			/* print */
3548 	nodev,			/* dump */
3549 	lofi_read,		/* read */
3550 	lofi_write,		/* write */
3551 	lofi_ioctl,		/* ioctl */
3552 	nodev,			/* devmap */
3553 	nodev,			/* mmap */
3554 	nodev,			/* segmap */
3555 	nochpoll,		/* poll */
3556 	lofi_prop_op,		/* prop_op */
3557 	0,			/* streamtab  */
3558 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
3559 	CB_REV,
3560 	lofi_aread,
3561 	lofi_awrite
3562 };
3563 
3564 static struct dev_ops lofi_ops = {
3565 	DEVO_REV,		/* devo_rev, */
3566 	0,			/* refcnt  */
3567 	lofi_info,		/* info */
3568 	nulldev,		/* identify */
3569 	nulldev,		/* probe */
3570 	lofi_attach,		/* attach */
3571 	lofi_detach,		/* detach */
3572 	nodev,			/* reset */
3573 	&lofi_cb_ops,		/* driver operations */
3574 	NULL,			/* no bus operations */
3575 	NULL,			/* power */
3576 	ddi_quiesce_not_needed,	/* quiesce */
3577 };
3578 
3579 static struct modldrv modldrv = {
3580 	&mod_driverops,
3581 	"loopback file driver",
3582 	&lofi_ops,
3583 };
3584 
3585 static struct modlinkage modlinkage = {
3586 	MODREV_1,
3587 	&modldrv,
3588 	NULL
3589 };
3590 
3591 int
3592 _init(void)
3593 {
3594 	int error;
3595 
3596 	list_create(&lofi_list, sizeof (struct lofi_state),
3597 	    offsetof(struct lofi_state, ls_list));
3598 
3599 	error = ddi_soft_state_init((void **)&lofi_statep,
3600 	    sizeof (struct lofi_state), 0);
3601 	if (error) {
3602 		list_destroy(&lofi_list);
3603 		return (error);
3604 	}
3605 
3606 	/*
3607 	 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3608 	 * we need to reserve space for cmlb minor numbers.
3609 	 * This will leave out 4096 id values on 32bit kernel, which should
3610 	 * still suffice.
3611 	 */
3612 	lofi_id = id_space_create("lofi_id", 1,
3613 	    (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3614 
3615 	if (lofi_id == NULL) {
3616 		ddi_soft_state_fini((void **)&lofi_statep);
3617 		list_destroy(&lofi_list);
3618 		return (DDI_FAILURE);
3619 	}
3620 
3621 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3622 
3623 	error = mod_install(&modlinkage);
3624 
3625 	if (error) {
3626 		id_space_destroy(lofi_id);
3627 		mutex_destroy(&lofi_lock);
3628 		ddi_soft_state_fini((void **)&lofi_statep);
3629 		list_destroy(&lofi_list);
3630 	}
3631 
3632 	return (error);
3633 }
3634 
3635 int
3636 _fini(void)
3637 {
3638 	int	error;
3639 
3640 	mutex_enter(&lofi_lock);
3641 
3642 	if (!list_is_empty(&lofi_list)) {
3643 		mutex_exit(&lofi_lock);
3644 		return (EBUSY);
3645 	}
3646 
3647 	mutex_exit(&lofi_lock);
3648 
3649 	error = mod_remove(&modlinkage);
3650 	if (error)
3651 		return (error);
3652 
3653 	mutex_destroy(&lofi_lock);
3654 	id_space_destroy(lofi_id);
3655 	ddi_soft_state_fini((void **)&lofi_statep);
3656 	list_destroy(&lofi_list);
3657 
3658 	return (error);
3659 }
3660 
3661 int
3662 _info(struct modinfo *modinfop)
3663 {
3664 	return (mod_info(&modlinkage, modinfop));
3665 }
3666