xref: /illumos-gate/usr/src/uts/common/io/lofi.c (revision 49b15c9654f0f3e95f830826ef472efdaf5d5deb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  *
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 Andrey Sokolov
26  * Copyright 2016 Toomas Soome <tsoome@me.com>
27  */
28 
29 /*
30  * lofi (loopback file) driver - allows you to attach a file to a device,
31  * which can then be accessed through that device. The simple model is that
32  * you tell lofi to open a file, and then use the block device you get as
33  * you would any block device. lofi translates access to the block device
34  * into I/O on the underlying file. This is mostly useful for
35  * mounting images of filesystems.
36  *
37  * lofi is controlled through /dev/lofictl - this is the only device exported
38  * during attach, and is instance number 0. lofiadm communicates with lofi
39  * through ioctls on this device. When a file is attached to lofi, block and
40  * character devices are exported in /dev/lofi and /dev/rlofi. These devices
41  * are identified by lofi instance number, and the instance number is also used
42  * as the name in /dev/lofi.
43  *
44  * Virtual disks, or, labeled lofi, implements virtual disk support to
45  * support partition table and related tools. Such mappings will cause
46  * block and character devices to be exported in /dev/dsk and /dev/rdsk
47  * directories.
48  *
49  * To support virtual disks, the instance number space is divided to two
50  * parts, upper part for instance number and lower part for minor number
51  * space to identify partitions and slices. The virtual disk support is
52  * implemented by stacking cmlb module. For virtual disks, the partition
53  * related ioctl calls are routed to cmlb module. Compression and encryption
54  * is not supported for virtual disks.
55  *
56  * Mapped devices are tracked with state structures handled with
57  * ddi_soft_state(9F) for simplicity.
58  *
59  * A file attached to lofi is opened when attached and not closed until
60  * explicitly detached from lofi. This seems more sensible than deferring
61  * the open until the /dev/lofi device is opened, for a number of reasons.
62  * One is that any failure is likely to be noticed by the person (or script)
63  * running lofiadm. Another is that it would be a security problem if the
64  * file was replaced by another one after being added but before being opened.
65  *
66  * The only hard part about lofi is the ioctls. In order to support things
67  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
68  * So it has to fake disk geometry and partition information. More may need
69  * to be faked if your favorite utility doesn't work and you think it should
70  * (fdformat doesn't work because it really wants to know the type of floppy
71  * controller to talk to, and that didn't seem easy to fake. Or possibly even
72  * necessary, since we have mkfs_pcfs now).
73  *
74  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
75  * support simulation of hotplug events, an optional force flag is provided.
76  * If a lofi device is open when a force detach is requested, then the
77  * underlying file is closed and any subsequent operations return EIO.  When the
78  * device is closed for the last time, it will be cleaned up at that time.  In
79  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
80  * detached but not removed.
81  *
82  * Known problems:
83  *
84  *	UFS logging. Mounting a UFS filesystem image "logging"
85  *	works for basic copy testing but wedges during a build of ON through
86  *	that image. Some deadlock in lufs holding the log mutex and then
87  *	getting stuck on a buf. So for now, don't do that.
88  *
89  *	Direct I/O. Since the filesystem data is being cached in the buffer
90  *	cache, _and_ again in the underlying filesystem, it's tempting to
91  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
92  *	I think to fix the cache-twice problem we might need filesystem support.
93  *
94  * Interesting things to do:
95  *
96  *	Allow multiple files for each device. A poor-man's metadisk, basically.
97  *
98  *	Pass-through ioctls on block devices. You can (though it's not
99  *	documented), give lofi a block device as a file name. Then we shouldn't
100  *	need to fake a geometry, however, it may be relevant if you're replacing
101  *	metadisk, or using lofi to get crypto.
102  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
103  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
104  *	In fact this even makes sense if you have lofi "above" metadisk.
105  *
106  * Encryption:
107  *	Each lofi device can have its own symmetric key and cipher.
108  *	They are passed to us by lofiadm(1m) in the correct format for use
109  *	with the misc/kcf crypto_* routines.
110  *
111  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
112  *	on the "master" key held in the lsp and the block number of the buffer.
113  */
114 
115 #include <sys/types.h>
116 #include <netinet/in.h>
117 #include <sys/sysmacros.h>
118 #include <sys/uio.h>
119 #include <sys/kmem.h>
120 #include <sys/cred.h>
121 #include <sys/mman.h>
122 #include <sys/errno.h>
123 #include <sys/aio_req.h>
124 #include <sys/stat.h>
125 #include <sys/file.h>
126 #include <sys/modctl.h>
127 #include <sys/conf.h>
128 #include <sys/debug.h>
129 #include <sys/vnode.h>
130 #include <sys/lofi.h>
131 #include <sys/lofi_impl.h>	/* for cache structure */
132 #include <sys/fcntl.h>
133 #include <sys/pathname.h>
134 #include <sys/filio.h>
135 #include <sys/fdio.h>
136 #include <sys/open.h>
137 #include <sys/disp.h>
138 #include <vm/seg_map.h>
139 #include <sys/ddi.h>
140 #include <sys/sunddi.h>
141 #include <sys/zmod.h>
142 #include <sys/id_space.h>
143 #include <sys/mkdev.h>
144 #include <sys/crypto/common.h>
145 #include <sys/crypto/api.h>
146 #include <sys/rctl.h>
147 #include <sys/vtoc.h>
148 #include <sys/scsi/scsi.h>	/* for DTYPE_DIRECT */
149 #include <sys/scsi/impl/uscsi.h>
150 #include <sys/sysevent/dev.h>
151 #include <LzmaDec.h>
152 
153 #define	NBLOCKS_PROP_NAME	"Nblocks"
154 #define	SIZE_PROP_NAME		"Size"
155 #define	ZONE_PROP_NAME		"zone"
156 
157 #define	SETUP_C_DATA(cd, buf, len) 		\
158 	(cd).cd_format = CRYPTO_DATA_RAW;	\
159 	(cd).cd_offset = 0;			\
160 	(cd).cd_miscdata = NULL;		\
161 	(cd).cd_length = (len);			\
162 	(cd).cd_raw.iov_base = (buf);		\
163 	(cd).cd_raw.iov_len = (len);
164 
165 #define	UIO_CHECK(uio)	\
166 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
167 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
168 		return (EINVAL); \
169 	}
170 
171 #define	LOFI_TIMEOUT	30
172 
173 static void *lofi_statep;
174 static kmutex_t lofi_lock;		/* state lock */
175 static id_space_t *lofi_id;		/* lofi ID values */
176 static list_t lofi_list;
177 static zone_key_t lofi_zone_key;
178 
179 /*
180  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
181  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
182  * high.  If we want to be assured that the underlying device is always busy,
183  * we must be sure that the number of bytes enqueued when the number of
184  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
185  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
186  * set maxalloc to be the maximum throughput (in bytes per second) of the
187  * underlying device divided by the minimum I/O size.  We assume a realistic
188  * maximum throughput of one hundred megabytes per second; we set maxalloc on
189  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
190  */
191 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
192 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
193 
194 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
195 
196 /*
197  * To avoid decompressing data in a compressed segment multiple times
198  * when accessing small parts of a segment's data, we cache and reuse
199  * the uncompressed segment's data.
200  *
201  * A single cached segment is sufficient to avoid lots of duplicate
202  * segment decompress operations. A small cache size also reduces the
203  * memory footprint.
204  *
205  * lofi_max_comp_cache is the maximum number of decompressed data segments
206  * cached for each compressed lofi image. It can be set to 0 to disable
207  * caching.
208  */
209 
210 uint32_t lofi_max_comp_cache = 1;
211 
212 static int gzip_decompress(void *src, size_t srclen, void *dst,
213 	size_t *destlen, int level);
214 
215 static int lzma_decompress(void *src, size_t srclen, void *dst,
216 	size_t *dstlen, int level);
217 
218 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
219 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
220 	{gzip_decompress,	NULL,	6,	"gzip-6"},
221 	{gzip_decompress,	NULL,	9,	"gzip-9"},
222 	{lzma_decompress,	NULL,	0,	"lzma"}
223 };
224 
225 static void lofi_strategy_task(void *);
226 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
227     size_t, void *);
228 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
229 
230 struct cmlb_tg_ops lofi_tg_ops = {
231 	TG_DK_OPS_VERSION_1,
232 	lofi_tg_rdwr,
233 	lofi_tg_getinfo
234 };
235 
236 /*ARGSUSED*/
237 static void
238 *SzAlloc(void *p, size_t size)
239 {
240 	return (kmem_alloc(size, KM_SLEEP));
241 }
242 
243 /*ARGSUSED*/
244 static void
245 SzFree(void *p, void *address, size_t size)
246 {
247 	kmem_free(address, size);
248 }
249 
250 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
251 
252 /*
253  * Free data referenced by the linked list of cached uncompressed
254  * segments.
255  */
256 static void
257 lofi_free_comp_cache(struct lofi_state *lsp)
258 {
259 	struct lofi_comp_cache *lc;
260 
261 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
262 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
263 		kmem_free(lc, sizeof (struct lofi_comp_cache));
264 		lsp->ls_comp_cache_count--;
265 	}
266 	ASSERT(lsp->ls_comp_cache_count == 0);
267 }
268 
269 static int
270 is_opened(struct lofi_state *lsp)
271 {
272 	int i;
273 	boolean_t last = B_TRUE;
274 
275 	ASSERT(MUTEX_HELD(&lofi_lock));
276 	for (i = 0; i < LOFI_PART_MAX; i++) {
277 		if (lsp->ls_open_lyr[i]) {
278 			last = B_FALSE;
279 			break;
280 		}
281 	}
282 
283 	for (i = 0; last && (i < OTYP_LYR); i++) {
284 		if (lsp->ls_open_reg[i]) {
285 			last = B_FALSE;
286 		}
287 	}
288 
289 	return (!last);
290 }
291 
292 static void
293 lofi_free_crypto(struct lofi_state *lsp)
294 {
295 	ASSERT(MUTEX_HELD(&lofi_lock));
296 
297 	if (lsp->ls_crypto_enabled) {
298 		/*
299 		 * Clean up the crypto state so that it doesn't hang around
300 		 * in memory after we are done with it.
301 		 */
302 		if (lsp->ls_key.ck_data != NULL) {
303 			bzero(lsp->ls_key.ck_data,
304 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
305 			kmem_free(lsp->ls_key.ck_data,
306 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
307 			lsp->ls_key.ck_data = NULL;
308 			lsp->ls_key.ck_length = 0;
309 		}
310 
311 		if (lsp->ls_mech.cm_param != NULL) {
312 			kmem_free(lsp->ls_mech.cm_param,
313 			    lsp->ls_mech.cm_param_len);
314 			lsp->ls_mech.cm_param = NULL;
315 			lsp->ls_mech.cm_param_len = 0;
316 		}
317 
318 		if (lsp->ls_iv_mech.cm_param != NULL) {
319 			kmem_free(lsp->ls_iv_mech.cm_param,
320 			    lsp->ls_iv_mech.cm_param_len);
321 			lsp->ls_iv_mech.cm_param = NULL;
322 			lsp->ls_iv_mech.cm_param_len = 0;
323 		}
324 
325 		mutex_destroy(&lsp->ls_crypto_lock);
326 	}
327 }
328 
329 /* ARGSUSED */
330 static int
331 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
332     size_t length, void *tg_cookie)
333 {
334 	struct lofi_state *lsp;
335 	buf_t	*bp;
336 	int	instance;
337 	int	rv = 0;
338 
339 	instance = ddi_get_instance(dip);
340 	if (instance == 0)	/* control node does not have disk */
341 		return (ENXIO);
342 
343 	lsp = ddi_get_soft_state(lofi_statep, instance);
344 
345 	if (lsp == NULL)
346 		return (ENXIO);
347 
348 	if (cmd != TG_READ && cmd != TG_WRITE)
349 		return (EINVAL);
350 
351 	/*
352 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
353 	 */
354 	mutex_enter(&lsp->ls_vp_lock);
355 	while (lsp->ls_vp_ready == B_FALSE)
356 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
357 	mutex_exit(&lsp->ls_vp_lock);
358 
359 	if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
360 		/* We can only transfer whole blocks at a time! */
361 		return (EINVAL);
362 	}
363 
364 	bp = getrbuf(KM_SLEEP);
365 
366 	if (cmd == TG_READ) {
367 		bp->b_flags = B_READ;
368 	} else {
369 		if (lsp->ls_readonly == B_TRUE) {
370 			freerbuf(bp);
371 			return (EROFS);
372 		}
373 		bp->b_flags = B_WRITE;
374 	}
375 
376 	bp->b_un.b_addr = bufaddr;
377 	bp->b_bcount = length;
378 	bp->b_lblkno = start;
379 	bp->b_private = NULL;
380 	bp->b_edev = lsp->ls_dev;
381 
382 	if (lsp->ls_kstat) {
383 		mutex_enter(lsp->ls_kstat->ks_lock);
384 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
385 		mutex_exit(lsp->ls_kstat->ks_lock);
386 	}
387 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
388 	(void) biowait(bp);
389 
390 	rv = geterror(bp);
391 	freerbuf(bp);
392 	return (rv);
393 }
394 
395 /*
396  * Get device geometry info for cmlb.
397  *
398  * We have mapped disk image as virtual block device and have to report
399  * physical/virtual geometry to cmlb.
400  *
401  * So we have two principal cases:
402  * 1. Uninitialised image without any existing labels,
403  *    for this case we fabricate the data based on mapped image.
404  * 2. Image with existing label information.
405  *    Since we have no information how the image was created (it may be
406  *    dump from some physical device), we need to rely on label information
407  *    from image, or we get "corrupted label" errors.
408  *    NOTE: label can be MBR, MBR+SMI, GPT
409  */
410 static int
411 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
412 {
413 	struct lofi_state *lsp;
414 	int instance;
415 	int ashift;
416 
417 	_NOTE(ARGUNUSED(tg_cookie));
418 	instance = ddi_get_instance(dip);
419 	if (instance == 0)		/* control device has no storage */
420 		return (ENXIO);
421 
422 	lsp = ddi_get_soft_state(lofi_statep, instance);
423 
424 	if (lsp == NULL)
425 		return (ENXIO);
426 
427 	/*
428 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
429 	 *
430 	 * When mapping is created, new lofi instance is created and
431 	 * lofi_attach() will call cmlb_attach() as part of the procedure
432 	 * to set the mapping up. This chain of events will happen in
433 	 * the same thread.
434 	 * Since cmlb_attach() will call lofi_tg_getinfo to get
435 	 * capacity, we return error on that call if cookie is set,
436 	 * otherwise lofi_attach will be stuck as the mapping is not yet
437 	 * finalized and lofi is not yet ready.
438 	 * Note, such error is not fatal for cmlb, as the label setup
439 	 * will be finalized when cmlb_validate() is called.
440 	 */
441 	mutex_enter(&lsp->ls_vp_lock);
442 	if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
443 		mutex_exit(&lsp->ls_vp_lock);
444 		return (ENXIO);
445 	}
446 	while (lsp->ls_vp_ready == B_FALSE)
447 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
448 	mutex_exit(&lsp->ls_vp_lock);
449 
450 	ashift = lsp->ls_lbshift;
451 
452 	switch (cmd) {
453 	case TG_GETPHYGEOM: {
454 		cmlb_geom_t *geomp = arg;
455 
456 		geomp->g_capacity	=
457 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
458 		geomp->g_nsect		= lsp->ls_dkg.dkg_nsect;
459 		geomp->g_nhead		= lsp->ls_dkg.dkg_nhead;
460 		geomp->g_acyl		= lsp->ls_dkg.dkg_acyl;
461 		geomp->g_ncyl		= lsp->ls_dkg.dkg_ncyl;
462 		geomp->g_secsize	= (1U << ashift);
463 		geomp->g_intrlv		= lsp->ls_dkg.dkg_intrlv;
464 		geomp->g_rpm		= lsp->ls_dkg.dkg_rpm;
465 		return (0);
466 	}
467 
468 	case TG_GETCAPACITY:
469 		*(diskaddr_t *)arg =
470 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
471 		return (0);
472 
473 	case TG_GETBLOCKSIZE:
474 		*(uint32_t *)arg = (1U << ashift);
475 		return (0);
476 
477 	case TG_GETATTR: {
478 		tg_attribute_t *tgattr = arg;
479 
480 		tgattr->media_is_writable = !lsp->ls_readonly;
481 		tgattr->media_is_solid_state = B_FALSE;
482 		return (0);
483 	}
484 
485 	default:
486 		return (EINVAL);
487 	}
488 }
489 
490 static void
491 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
492 {
493 	int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
494 	int i;
495 
496 	ASSERT(MUTEX_HELD(&lofi_lock));
497 
498 	list_remove(&lofi_list, lsp);
499 
500 	lofi_free_crypto(lsp);
501 
502 	/*
503 	 * Free pre-allocated compressed buffers
504 	 */
505 	if (lsp->ls_comp_bufs != NULL) {
506 		for (i = 0; i < lofi_taskq_nthreads; i++) {
507 			if (lsp->ls_comp_bufs[i].bufsize > 0)
508 				kmem_free(lsp->ls_comp_bufs[i].buf,
509 				    lsp->ls_comp_bufs[i].bufsize);
510 		}
511 		kmem_free(lsp->ls_comp_bufs,
512 		    sizeof (struct compbuf) * lofi_taskq_nthreads);
513 	}
514 
515 	if (lsp->ls_vp != NULL) {
516 		(void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_INVAL, credp, NULL);
517 		(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
518 		    1, 0, credp, NULL);
519 		VN_RELE(lsp->ls_vp);
520 	}
521 	if (lsp->ls_stacked_vp != lsp->ls_vp)
522 		VN_RELE(lsp->ls_stacked_vp);
523 
524 	if (lsp->ls_taskq != NULL)
525 		taskq_destroy(lsp->ls_taskq);
526 
527 	if (lsp->ls_kstat != NULL)
528 		kstat_delete(lsp->ls_kstat);
529 
530 	/*
531 	 * Free cached decompressed segment data
532 	 */
533 	lofi_free_comp_cache(lsp);
534 	list_destroy(&lsp->ls_comp_cache);
535 
536 	if (lsp->ls_uncomp_seg_sz > 0) {
537 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
538 		lsp->ls_uncomp_seg_sz = 0;
539 	}
540 
541 	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
542 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
543 
544 	mutex_destroy(&lsp->ls_comp_cache_lock);
545 	mutex_destroy(&lsp->ls_comp_bufs_lock);
546 	mutex_destroy(&lsp->ls_kstat_lock);
547 	mutex_destroy(&lsp->ls_vp_lock);
548 	cv_destroy(&lsp->ls_vp_cv);
549 	lsp->ls_vp_ready = B_FALSE;
550 
551 	ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
552 	(void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE);
553 	id_free(lofi_id, id);
554 }
555 
556 static void
557 lofi_free_dev(struct lofi_state *lsp)
558 {
559 	ASSERT(MUTEX_HELD(&lofi_lock));
560 
561 	if (lsp->ls_cmlbhandle != NULL) {
562 		cmlb_invalidate(lsp->ls_cmlbhandle, 0);
563 		cmlb_detach(lsp->ls_cmlbhandle, 0);
564 		cmlb_free_handle(&lsp->ls_cmlbhandle);
565 		lsp->ls_cmlbhandle = NULL;
566 	}
567 	(void) ddi_prop_remove_all(lsp->ls_dip);
568 	ddi_remove_minor_node(lsp->ls_dip, NULL);
569 }
570 
571 /*ARGSUSED*/
572 static void
573 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
574 {
575 	struct lofi_state *lsp;
576 	struct lofi_state *next;
577 
578 	mutex_enter(&lofi_lock);
579 
580 	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
581 
582 		/* lofi_destroy() frees lsp */
583 		next = list_next(&lofi_list, lsp);
584 
585 		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
586 			continue;
587 
588 		/*
589 		 * No in-zone processes are running, but something has this
590 		 * open.  It's either a global zone process, or a lofi
591 		 * mount.  In either case we set ls_cleanup so the last
592 		 * user destroys the device.
593 		 */
594 		if (is_opened(lsp)) {
595 			lsp->ls_cleanup = 1;
596 		} else {
597 			lofi_free_dev(lsp);
598 			lofi_destroy(lsp, kcred);
599 		}
600 	}
601 
602 	mutex_exit(&lofi_lock);
603 }
604 
605 /*ARGSUSED*/
606 static int
607 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
608 {
609 	int id;
610 	minor_t	part;
611 	uint64_t mask;
612 	diskaddr_t nblks;
613 	diskaddr_t lba;
614 	boolean_t ndelay;
615 
616 	struct lofi_state *lsp;
617 
618 	if (otyp >= OTYPCNT)
619 		return (EINVAL);
620 
621 	ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
622 
623 	/*
624 	 * lofiadm -a /dev/lofi/1 gets us here.
625 	 */
626 	if (mutex_owner(&lofi_lock) == curthread)
627 		return (EINVAL);
628 
629 	mutex_enter(&lofi_lock);
630 
631 	id = LOFI_MINOR2ID(getminor(*devp));
632 	part = LOFI_PART(getminor(*devp));
633 	mask = (1U << part);
634 
635 	/* master control device */
636 	if (id == 0) {
637 		mutex_exit(&lofi_lock);
638 		return (0);
639 	}
640 
641 	/* otherwise, the mapping should already exist */
642 	lsp = ddi_get_soft_state(lofi_statep, id);
643 	if (lsp == NULL) {
644 		mutex_exit(&lofi_lock);
645 		return (EINVAL);
646 	}
647 
648 	if (lsp->ls_vp == NULL) {
649 		mutex_exit(&lofi_lock);
650 		return (ENXIO);
651 	}
652 
653 	if (lsp->ls_readonly && (flag & FWRITE)) {
654 		mutex_exit(&lofi_lock);
655 		return (EROFS);
656 	}
657 
658 	if ((lsp->ls_open_excl) & (mask)) {
659 		mutex_exit(&lofi_lock);
660 		return (EBUSY);
661 	}
662 
663 	if (flag & FEXCL) {
664 		if (lsp->ls_open_lyr[part]) {
665 			mutex_exit(&lofi_lock);
666 			return (EBUSY);
667 		}
668 		for (int i = 0; i < OTYP_LYR; i++) {
669 			if (lsp->ls_open_reg[i] & mask) {
670 				mutex_exit(&lofi_lock);
671 				return (EBUSY);
672 			}
673 		}
674 	}
675 
676 	if (lsp->ls_cmlbhandle != NULL) {
677 		if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
678 			/*
679 			 * non-blocking opens are allowed to succeed to
680 			 * support format and fdisk to create partitioning.
681 			 */
682 			if (!ndelay) {
683 				mutex_exit(&lofi_lock);
684 				return (ENXIO);
685 			}
686 		} else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
687 		    NULL, NULL, 0) == 0) {
688 			if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
689 				mutex_exit(&lofi_lock);
690 				return (ENXIO);
691 			}
692 		} else if (!ndelay) {
693 			mutex_exit(&lofi_lock);
694 			return (ENXIO);
695 		}
696 	}
697 
698 	if (otyp == OTYP_LYR) {
699 		lsp->ls_open_lyr[part]++;
700 	} else {
701 		lsp->ls_open_reg[otyp] |= mask;
702 	}
703 	if (flag & FEXCL) {
704 		lsp->ls_open_excl |= mask;
705 	}
706 
707 	mutex_exit(&lofi_lock);
708 	return (0);
709 }
710 
711 /*ARGSUSED*/
712 static int
713 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
714 {
715 	minor_t	part;
716 	int id;
717 	uint64_t mask;
718 	struct lofi_state *lsp;
719 
720 	id = LOFI_MINOR2ID(getminor(dev));
721 	part = LOFI_PART(getminor(dev));
722 	mask = (1U << part);
723 
724 	mutex_enter(&lofi_lock);
725 	lsp = ddi_get_soft_state(lofi_statep, id);
726 	if (lsp == NULL) {
727 		mutex_exit(&lofi_lock);
728 		return (EINVAL);
729 	}
730 
731 	if (id == 0) {
732 		mutex_exit(&lofi_lock);
733 		return (0);
734 	}
735 
736 	if (lsp->ls_open_excl & mask)
737 		lsp->ls_open_excl &= ~mask;
738 
739 	if (otyp == OTYP_LYR) {
740 		lsp->ls_open_lyr[part]--;
741 	} else {
742 		lsp->ls_open_reg[otyp] &= ~mask;
743 	}
744 
745 	/*
746 	 * If we forcibly closed the underlying device (li_force), or
747 	 * asked for cleanup (li_cleanup), finish up if we're the last
748 	 * out of the door.
749 	 */
750 	if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
751 		lofi_free_dev(lsp);
752 		lofi_destroy(lsp, credp);
753 	}
754 
755 	mutex_exit(&lofi_lock);
756 	return (0);
757 }
758 
759 /*
760  * Sets the mechanism's initialization vector (IV) if one is needed.
761  * The IV is computed from the data block number.  lsp->ls_mech is
762  * altered so that:
763  *	lsp->ls_mech.cm_param_len is set to the IV len.
764  *	lsp->ls_mech.cm_param is set to the IV.
765  */
766 static int
767 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
768 {
769 	int	ret;
770 	crypto_data_t cdata;
771 	char	*iv;
772 	size_t	iv_len;
773 	size_t	min;
774 	void	*data;
775 	size_t	datasz;
776 
777 	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
778 
779 	if (lsp == NULL)
780 		return (CRYPTO_DEVICE_ERROR);
781 
782 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
783 	if (lsp->ls_iv_type == IVM_NONE) {
784 		return (CRYPTO_SUCCESS);
785 	}
786 
787 	/*
788 	 * if kmem already alloced from previous call and it's the same size
789 	 * we need now, just recycle it; allocate new kmem only if we have to
790 	 */
791 	if (lsp->ls_mech.cm_param == NULL ||
792 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
793 		iv_len = lsp->ls_iv_len;
794 		iv = kmem_zalloc(iv_len, KM_SLEEP);
795 	} else {
796 		iv_len = lsp->ls_mech.cm_param_len;
797 		iv = lsp->ls_mech.cm_param;
798 		bzero(iv, iv_len);
799 	}
800 
801 	switch (lsp->ls_iv_type) {
802 	case IVM_ENC_BLKNO:
803 		/* iv is not static, lblkno changes each time */
804 		data = &lblkno;
805 		datasz = sizeof (lblkno);
806 		break;
807 	default:
808 		data = 0;
809 		datasz = 0;
810 		break;
811 	}
812 
813 	/*
814 	 * write blkno into the iv buffer padded on the left in case
815 	 * blkno ever grows bigger than its current longlong_t size
816 	 * or a variation other than blkno is used for the iv data
817 	 */
818 	min = MIN(datasz, iv_len);
819 	bcopy(data, iv + (iv_len - min), min);
820 
821 	/* encrypt the data in-place to get the IV */
822 	SETUP_C_DATA(cdata, iv, iv_len);
823 
824 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
825 	    NULL, NULL, NULL);
826 	if (ret != CRYPTO_SUCCESS) {
827 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
828 		    lblkno, ret);
829 		if (lsp->ls_mech.cm_param != iv)
830 			kmem_free(iv, iv_len);
831 
832 		return (ret);
833 	}
834 
835 	/* clean up the iv from the last computation */
836 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
837 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
838 
839 	lsp->ls_mech.cm_param_len = iv_len;
840 	lsp->ls_mech.cm_param = iv;
841 
842 	return (CRYPTO_SUCCESS);
843 }
844 
845 /*
846  * Performs encryption and decryption of a chunk of data of size "len",
847  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
848  * DEV_BSIZE.
849  */
850 static int
851 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
852     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
853 {
854 	crypto_data_t cdata;
855 	crypto_data_t wdata;
856 	int ret;
857 	longlong_t lblkno = bp->b_lblkno;
858 
859 	mutex_enter(&lsp->ls_crypto_lock);
860 
861 	/*
862 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
863 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
864 	 */
865 	SETUP_C_DATA(cdata, plaintext, len);
866 	cdata.cd_length = DEV_BSIZE;
867 	if (ciphertext != NULL) {		/* not in-place crypto */
868 		SETUP_C_DATA(wdata, ciphertext, len);
869 		wdata.cd_length = DEV_BSIZE;
870 	}
871 
872 	do {
873 		ret = lofi_blk_mech(lsp, lblkno);
874 		if (ret != CRYPTO_SUCCESS)
875 			continue;
876 
877 		if (op_encrypt) {
878 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
879 			    &lsp->ls_key, NULL,
880 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
881 		} else {
882 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
883 			    &lsp->ls_key, NULL,
884 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
885 		}
886 
887 		cdata.cd_offset += DEV_BSIZE;
888 		if (ciphertext != NULL)
889 			wdata.cd_offset += DEV_BSIZE;
890 		lblkno++;
891 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
892 
893 	mutex_exit(&lsp->ls_crypto_lock);
894 
895 	if (ret != CRYPTO_SUCCESS) {
896 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
897 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
898 		    lblkno, ret);
899 	}
900 
901 	return (ret);
902 }
903 
904 #define	RDWR_RAW	1
905 #define	RDWR_BCOPY	2
906 
907 static int
908 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
909     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
910 {
911 	ssize_t resid;
912 	int isread;
913 	int error;
914 
915 	/*
916 	 * Handles reads/writes for both plain and encrypted lofi
917 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
918 	 * when it gets here.
919 	 */
920 
921 	isread = bp->b_flags & B_READ;
922 	if (isread) {
923 		if (method == RDWR_BCOPY) {
924 			/* DO NOT update bp->b_resid for bcopy */
925 			bcopy(bcopy_locn, bufaddr, len);
926 			error = 0;
927 		} else {		/* RDWR_RAW */
928 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
929 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
930 			    &resid);
931 			bp->b_resid = resid;
932 		}
933 		if (lsp->ls_crypto_enabled && error == 0) {
934 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
935 			    B_FALSE) != CRYPTO_SUCCESS) {
936 				/*
937 				 * XXX: original code didn't set residual
938 				 * back to len because no error was expected
939 				 * from bcopy() if encryption is not enabled
940 				 */
941 				if (method != RDWR_BCOPY)
942 					bp->b_resid = len;
943 				error = EIO;
944 			}
945 		}
946 		return (error);
947 	} else {
948 		void *iobuf = bufaddr;
949 
950 		if (lsp->ls_crypto_enabled) {
951 			/* don't do in-place crypto to keep bufaddr intact */
952 			iobuf = kmem_alloc(len, KM_SLEEP);
953 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
954 			    B_TRUE) != CRYPTO_SUCCESS) {
955 				kmem_free(iobuf, len);
956 				if (method != RDWR_BCOPY)
957 					bp->b_resid = len;
958 				return (EIO);
959 			}
960 		}
961 		if (method == RDWR_BCOPY) {
962 			/* DO NOT update bp->b_resid for bcopy */
963 			bcopy(iobuf, bcopy_locn, len);
964 			error = 0;
965 		} else {		/* RDWR_RAW */
966 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
967 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
968 			    &resid);
969 			bp->b_resid = resid;
970 		}
971 		if (lsp->ls_crypto_enabled) {
972 			kmem_free(iobuf, len);
973 		}
974 		return (error);
975 	}
976 }
977 
978 static int
979 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
980     struct lofi_state *lsp)
981 {
982 	int error;
983 	offset_t alignedoffset, mapoffset;
984 	size_t	xfersize;
985 	int	isread;
986 	int	smflags;
987 	caddr_t	mapaddr;
988 	size_t	len;
989 	enum seg_rw srw;
990 	int	save_error;
991 
992 	/*
993 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
994 	 * when it gets here.
995 	 */
996 	if (lsp->ls_crypto_enabled)
997 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
998 
999 	/*
1000 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1001 	 * an 8K boundary, but the buf transfer address may not be
1002 	 * aligned on more than a 512-byte boundary (we don't enforce
1003 	 * that even though we could). This matters since the initial
1004 	 * part of the transfer may not start at offset 0 within the
1005 	 * segmap'd chunk. So we have to compensate for that with
1006 	 * 'mapoffset'. Subsequent chunks always start off at the
1007 	 * beginning, and the last is capped by b_resid
1008 	 *
1009 	 * Visually, where "|" represents page map boundaries:
1010 	 *   alignedoffset (mapaddr begins at this segmap boundary)
1011 	 *    |   offset (from beginning of file)
1012 	 *    |    |	   len
1013 	 *    v    v	    v
1014 	 * ===|====X========|====...======|========X====|====
1015 	 *	   /-------------...---------------/
1016 	 *		^ bp->b_bcount/bp->b_resid at start
1017 	 *    /----/--------/----...------/--------/
1018 	 *	^	^	^   ^		^
1019 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
1020 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
1021 	 *	|	1st xfersize (<= MAXBSIZE)
1022 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1023 	 *
1024 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
1025 	 * MAXBSIZE boundary.  "len" is next page boundary of size
1026 	 * PAGESIZE after "alignedoffset".
1027 	 */
1028 	mapoffset = offset & MAXBOFFSET;
1029 	alignedoffset = offset - mapoffset;
1030 	bp->b_resid = bp->b_bcount;
1031 	isread = bp->b_flags & B_READ;
1032 	srw = isread ? S_READ : S_WRITE;
1033 	do {
1034 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
1035 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
1036 		len = roundup(mapoffset + xfersize, PAGESIZE);
1037 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1038 		    alignedoffset, MAXBSIZE, 1, srw);
1039 		/*
1040 		 * Now fault in the pages. This lets us check
1041 		 * for errors before we reference mapaddr and
1042 		 * try to resolve the fault in bcopy (which would
1043 		 * panic instead). And this can easily happen,
1044 		 * particularly if you've lofi'd a file over NFS
1045 		 * and someone deletes the file on the server.
1046 		 */
1047 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1048 		    len, F_SOFTLOCK, srw);
1049 		if (error) {
1050 			(void) segmap_release(segkmap, mapaddr, 0);
1051 			if (FC_CODE(error) == FC_OBJERR)
1052 				error = FC_ERRNO(error);
1053 			else
1054 				error = EIO;
1055 			break;
1056 		}
1057 		/* error may be non-zero for encrypted lofi */
1058 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1059 		    RDWR_BCOPY, mapaddr + mapoffset);
1060 		if (error == 0) {
1061 			bp->b_resid -= xfersize;
1062 			bufaddr += xfersize;
1063 			offset += xfersize;
1064 		}
1065 		smflags = 0;
1066 		if (isread) {
1067 			smflags |= SM_FREE;
1068 			/*
1069 			 * If we're reading an entire page starting
1070 			 * at a page boundary, there's a good chance
1071 			 * we won't need it again. Put it on the
1072 			 * head of the freelist.
1073 			 */
1074 			if (mapoffset == 0 && xfersize == MAXBSIZE)
1075 				smflags |= SM_DONTNEED;
1076 		} else {
1077 			/*
1078 			 * Write back good pages, it is okay to
1079 			 * always release asynchronous here as we'll
1080 			 * follow with VOP_FSYNC for B_SYNC buffers.
1081 			 */
1082 			if (error == 0)
1083 				smflags |= SM_WRITE | SM_ASYNC;
1084 		}
1085 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1086 		    len, F_SOFTUNLOCK, srw);
1087 		save_error = segmap_release(segkmap, mapaddr, smflags);
1088 		if (error == 0)
1089 			error = save_error;
1090 		/* only the first map may start partial */
1091 		mapoffset = 0;
1092 		alignedoffset += MAXBSIZE;
1093 	} while ((error == 0) && (bp->b_resid > 0) &&
1094 	    (offset < lsp->ls_vp_comp_size));
1095 
1096 	return (error);
1097 }
1098 
1099 /*
1100  * Check if segment seg_index is present in the decompressed segment
1101  * data cache.
1102  *
1103  * Returns a pointer to the decompressed segment data cache entry if
1104  * found, and NULL when decompressed data for this segment is not yet
1105  * cached.
1106  */
1107 static struct lofi_comp_cache *
1108 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1109 {
1110 	struct lofi_comp_cache *lc;
1111 
1112 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1113 
1114 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1115 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
1116 		if (lc->lc_index == seg_index) {
1117 			/*
1118 			 * Decompressed segment data was found in the
1119 			 * cache.
1120 			 *
1121 			 * The cache uses an LRU replacement strategy;
1122 			 * move the entry to head of list.
1123 			 */
1124 			list_remove(&lsp->ls_comp_cache, lc);
1125 			list_insert_head(&lsp->ls_comp_cache, lc);
1126 			return (lc);
1127 		}
1128 	}
1129 	return (NULL);
1130 }
1131 
1132 /*
1133  * Add the data for a decompressed segment at segment index
1134  * seg_index to the cache of the decompressed segments.
1135  *
1136  * Returns a pointer to the cache element structure in case
1137  * the data was added to the cache; returns NULL when the data
1138  * wasn't cached.
1139  */
1140 static struct lofi_comp_cache *
1141 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1142     uchar_t *data)
1143 {
1144 	struct lofi_comp_cache *lc;
1145 
1146 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1147 
1148 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1149 		lc = list_remove_tail(&lsp->ls_comp_cache);
1150 		ASSERT(lc != NULL);
1151 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1152 		kmem_free(lc, sizeof (struct lofi_comp_cache));
1153 		lsp->ls_comp_cache_count--;
1154 	}
1155 
1156 	/*
1157 	 * Do not cache when disabled by tunable variable
1158 	 */
1159 	if (lofi_max_comp_cache == 0)
1160 		return (NULL);
1161 
1162 	/*
1163 	 * When the cache has not yet reached the maximum allowed
1164 	 * number of segments, allocate a new cache element.
1165 	 * Otherwise the cache is full; reuse the last list element
1166 	 * (LRU) for caching the decompressed segment data.
1167 	 *
1168 	 * The cache element for the new decompressed segment data is
1169 	 * added to the head of the list.
1170 	 */
1171 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1172 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1173 		lc->lc_data = NULL;
1174 		list_insert_head(&lsp->ls_comp_cache, lc);
1175 		lsp->ls_comp_cache_count++;
1176 	} else {
1177 		lc = list_remove_tail(&lsp->ls_comp_cache);
1178 		if (lc == NULL)
1179 			return (NULL);
1180 		list_insert_head(&lsp->ls_comp_cache, lc);
1181 	}
1182 
1183 	/*
1184 	 * Free old uncompressed segment data when reusing a cache
1185 	 * entry.
1186 	 */
1187 	if (lc->lc_data != NULL)
1188 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1189 
1190 	lc->lc_data = data;
1191 	lc->lc_index = seg_index;
1192 	return (lc);
1193 }
1194 
1195 
1196 /*ARGSUSED*/
1197 static int
1198 gzip_decompress(void *src, size_t srclen, void *dst,
1199     size_t *dstlen, int level)
1200 {
1201 	ASSERT(*dstlen >= srclen);
1202 
1203 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1204 		return (-1);
1205 	return (0);
1206 }
1207 
1208 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
1209 /*ARGSUSED*/
1210 static int
1211 lzma_decompress(void *src, size_t srclen, void *dst,
1212     size_t *dstlen, int level)
1213 {
1214 	size_t insizepure;
1215 	void *actual_src;
1216 	ELzmaStatus status;
1217 
1218 	insizepure = srclen - LZMA_HEADER_SIZE;
1219 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1220 
1221 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1222 	    (const Byte *)actual_src, &insizepure,
1223 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1224 	    &g_Alloc) != SZ_OK) {
1225 		return (-1);
1226 	}
1227 	return (0);
1228 }
1229 
1230 /*
1231  * This is basically what strategy used to be before we found we
1232  * needed task queues.
1233  */
1234 static void
1235 lofi_strategy_task(void *arg)
1236 {
1237 	struct buf *bp = (struct buf *)arg;
1238 	int error;
1239 	int syncflag = 0;
1240 	struct lofi_state *lsp;
1241 	offset_t offset;
1242 	caddr_t	bufaddr;
1243 	size_t	len;
1244 	size_t	xfersize;
1245 	boolean_t bufinited = B_FALSE;
1246 
1247 	lsp = ddi_get_soft_state(lofi_statep,
1248 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1249 
1250 	if (lsp == NULL) {
1251 		error = ENXIO;
1252 		goto errout;
1253 	}
1254 	if (lsp->ls_kstat) {
1255 		mutex_enter(lsp->ls_kstat->ks_lock);
1256 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1257 		mutex_exit(lsp->ls_kstat->ks_lock);
1258 	}
1259 
1260 	mutex_enter(&lsp->ls_vp_lock);
1261 	lsp->ls_vp_iocount++;
1262 	mutex_exit(&lsp->ls_vp_lock);
1263 
1264 	bp_mapin(bp);
1265 	bufaddr = bp->b_un.b_addr;
1266 	offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private)
1267 	    << lsp->ls_lbshift;	/* offset within file */
1268 	if (lsp->ls_crypto_enabled) {
1269 		/* encrypted data really begins after crypto header */
1270 		offset += lsp->ls_crypto_offset;
1271 	}
1272 	len = bp->b_bcount;
1273 	bufinited = B_TRUE;
1274 
1275 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1276 		error = EIO;
1277 		goto errout;
1278 	}
1279 
1280 	/*
1281 	 * If we're writing and the buffer was not B_ASYNC
1282 	 * we'll follow up with a VOP_FSYNC() to force any
1283 	 * asynchronous I/O to stable storage.
1284 	 */
1285 	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1286 		syncflag = FSYNC;
1287 
1288 	/*
1289 	 * We used to always use vn_rdwr here, but we cannot do that because
1290 	 * we might decide to read or write from the the underlying
1291 	 * file during this call, which would be a deadlock because
1292 	 * we have the rw_lock. So instead we page, unless it's not
1293 	 * mapable or it's a character device or it's an encrypted lofi.
1294 	 */
1295 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1296 	    lsp->ls_crypto_enabled) {
1297 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1298 		    NULL);
1299 	} else if (lsp->ls_uncomp_seg_sz == 0) {
1300 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1301 	} else {
1302 		uchar_t *compressed_seg = NULL, *cmpbuf;
1303 		uchar_t *uncompressed_seg = NULL;
1304 		lofi_compress_info_t *li;
1305 		size_t oblkcount;
1306 		ulong_t seglen;
1307 		uint64_t sblkno, eblkno, cmpbytes;
1308 		uint64_t uncompressed_seg_index;
1309 		struct lofi_comp_cache *lc;
1310 		offset_t sblkoff, eblkoff;
1311 		u_offset_t salign, ealign;
1312 		u_offset_t sdiff;
1313 		uint32_t comp_data_sz;
1314 		uint64_t i;
1315 		int j;
1316 
1317 		/*
1318 		 * From here on we're dealing primarily with compressed files
1319 		 */
1320 		ASSERT(!lsp->ls_crypto_enabled);
1321 
1322 		/*
1323 		 * Compressed files can only be read from and
1324 		 * not written to
1325 		 */
1326 		if (!(bp->b_flags & B_READ)) {
1327 			bp->b_resid = bp->b_bcount;
1328 			error = EROFS;
1329 			goto done;
1330 		}
1331 
1332 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1333 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1334 		/*
1335 		 * Compute starting and ending compressed segment numbers
1336 		 * We use only bitwise operations avoiding division and
1337 		 * modulus because we enforce the compression segment size
1338 		 * to a power of 2
1339 		 */
1340 		sblkno = offset >> lsp->ls_comp_seg_shift;
1341 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1342 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1343 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1344 
1345 		/*
1346 		 * Check the decompressed segment cache.
1347 		 *
1348 		 * The cache is used only when the requested data
1349 		 * is within a segment. Requests that cross
1350 		 * segment boundaries bypass the cache.
1351 		 */
1352 		if (sblkno == eblkno ||
1353 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1354 			/*
1355 			 * Request doesn't cross a segment boundary,
1356 			 * now check the cache.
1357 			 */
1358 			mutex_enter(&lsp->ls_comp_cache_lock);
1359 			lc = lofi_find_comp_data(lsp, sblkno);
1360 			if (lc != NULL) {
1361 				/*
1362 				 * We've found the decompressed segment
1363 				 * data in the cache; reuse it.
1364 				 */
1365 				bcopy(lc->lc_data + sblkoff, bufaddr,
1366 				    bp->b_bcount);
1367 				mutex_exit(&lsp->ls_comp_cache_lock);
1368 				bp->b_resid = 0;
1369 				error = 0;
1370 				goto done;
1371 			}
1372 			mutex_exit(&lsp->ls_comp_cache_lock);
1373 		}
1374 
1375 		/*
1376 		 * Align start offset to block boundary for segmap
1377 		 */
1378 		salign = lsp->ls_comp_seg_index[sblkno];
1379 		sdiff = salign & (DEV_BSIZE - 1);
1380 		salign -= sdiff;
1381 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1382 			/*
1383 			 * We're dealing with the last segment of
1384 			 * the compressed file -- the size of this
1385 			 * segment *may not* be the same as the
1386 			 * segment size for the file
1387 			 */
1388 			eblkoff = (offset + bp->b_bcount) &
1389 			    (lsp->ls_uncomp_last_seg_sz - 1);
1390 			ealign = lsp->ls_vp_comp_size;
1391 		} else {
1392 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1393 		}
1394 
1395 		/*
1396 		 * Preserve original request paramaters
1397 		 */
1398 		oblkcount = bp->b_bcount;
1399 
1400 		/*
1401 		 * Assign the calculated parameters
1402 		 */
1403 		comp_data_sz = ealign - salign;
1404 		bp->b_bcount = comp_data_sz;
1405 
1406 		/*
1407 		 * Buffers to hold compressed segments are pre-allocated
1408 		 * on a per-thread basis. Find a pre-allocated buffer
1409 		 * that is not currently in use and mark it for use.
1410 		 */
1411 		mutex_enter(&lsp->ls_comp_bufs_lock);
1412 		for (j = 0; j < lofi_taskq_nthreads; j++) {
1413 			if (lsp->ls_comp_bufs[j].inuse == 0) {
1414 				lsp->ls_comp_bufs[j].inuse = 1;
1415 				break;
1416 			}
1417 		}
1418 
1419 		mutex_exit(&lsp->ls_comp_bufs_lock);
1420 		ASSERT(j < lofi_taskq_nthreads);
1421 
1422 		/*
1423 		 * If the pre-allocated buffer size does not match
1424 		 * the size of the I/O request, re-allocate it with
1425 		 * the appropriate size
1426 		 */
1427 		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1428 			if (lsp->ls_comp_bufs[j].bufsize > 0)
1429 				kmem_free(lsp->ls_comp_bufs[j].buf,
1430 				    lsp->ls_comp_bufs[j].bufsize);
1431 			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1432 			    KM_SLEEP);
1433 			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1434 		}
1435 		compressed_seg = lsp->ls_comp_bufs[j].buf;
1436 
1437 		/*
1438 		 * Map in the calculated number of blocks
1439 		 */
1440 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1441 		    bp, lsp);
1442 
1443 		bp->b_bcount = oblkcount;
1444 		bp->b_resid = oblkcount;
1445 		if (error != 0)
1446 			goto done;
1447 
1448 		/*
1449 		 * decompress compressed blocks start
1450 		 */
1451 		cmpbuf = compressed_seg + sdiff;
1452 		for (i = sblkno; i <= eblkno; i++) {
1453 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1454 			uchar_t *useg;
1455 
1456 			/*
1457 			 * The last segment is special in that it is
1458 			 * most likely not going to be the same
1459 			 * (uncompressed) size as the other segments.
1460 			 */
1461 			if (i == (lsp->ls_comp_index_sz - 2)) {
1462 				seglen = lsp->ls_uncomp_last_seg_sz;
1463 			} else {
1464 				seglen = lsp->ls_uncomp_seg_sz;
1465 			}
1466 
1467 			/*
1468 			 * Each of the segment index entries contains
1469 			 * the starting block number for that segment.
1470 			 * The number of compressed bytes in a segment
1471 			 * is thus the difference between the starting
1472 			 * block number of this segment and the starting
1473 			 * block number of the next segment.
1474 			 */
1475 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1476 			    lsp->ls_comp_seg_index[i];
1477 
1478 			/*
1479 			 * The first byte in a compressed segment is a flag
1480 			 * that indicates whether this segment is compressed
1481 			 * at all.
1482 			 *
1483 			 * The variable 'useg' is used (instead of
1484 			 * uncompressed_seg) in this loop to keep a
1485 			 * reference to the uncompressed segment.
1486 			 *
1487 			 * N.B. If 'useg' is replaced with uncompressed_seg,
1488 			 * it leads to memory leaks and heap corruption in
1489 			 * corner cases where compressed segments lie
1490 			 * adjacent to uncompressed segments.
1491 			 */
1492 			if (*cmpbuf == UNCOMPRESSED) {
1493 				useg = cmpbuf + SEGHDR;
1494 			} else {
1495 				if (uncompressed_seg == NULL)
1496 					uncompressed_seg =
1497 					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1498 					    KM_SLEEP);
1499 				useg = uncompressed_seg;
1500 				uncompressed_seg_index = i;
1501 
1502 				if (li->l_decompress((cmpbuf + SEGHDR),
1503 				    (cmpbytes - SEGHDR), uncompressed_seg,
1504 				    &seglen, li->l_level) != 0) {
1505 					error = EIO;
1506 					goto done;
1507 				}
1508 			}
1509 
1510 			/*
1511 			 * Determine how much uncompressed data we
1512 			 * have to copy and copy it
1513 			 */
1514 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1515 			if (i == eblkno)
1516 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1517 
1518 			bcopy((useg + sblkoff), bufaddr, xfersize);
1519 
1520 			cmpbuf += cmpbytes;
1521 			bufaddr += xfersize;
1522 			bp->b_resid -= xfersize;
1523 			sblkoff = 0;
1524 
1525 			if (bp->b_resid == 0)
1526 				break;
1527 		} /* decompress compressed blocks ends */
1528 
1529 		/*
1530 		 * Skip to done if there is no uncompressed data to cache
1531 		 */
1532 		if (uncompressed_seg == NULL)
1533 			goto done;
1534 
1535 		/*
1536 		 * Add the data for the last decompressed segment to
1537 		 * the cache.
1538 		 *
1539 		 * In case the uncompressed segment data was added to (and
1540 		 * is referenced by) the cache, make sure we don't free it
1541 		 * here.
1542 		 */
1543 		mutex_enter(&lsp->ls_comp_cache_lock);
1544 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1545 		    uncompressed_seg)) != NULL) {
1546 			uncompressed_seg = NULL;
1547 		}
1548 		mutex_exit(&lsp->ls_comp_cache_lock);
1549 
1550 done:
1551 		if (compressed_seg != NULL) {
1552 			mutex_enter(&lsp->ls_comp_bufs_lock);
1553 			lsp->ls_comp_bufs[j].inuse = 0;
1554 			mutex_exit(&lsp->ls_comp_bufs_lock);
1555 		}
1556 		if (uncompressed_seg != NULL)
1557 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1558 	} /* end of handling compressed files */
1559 
1560 	if ((error == 0) && (syncflag != 0))
1561 		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1562 
1563 errout:
1564 	if (bufinited && lsp->ls_kstat) {
1565 		size_t n_done = bp->b_bcount - bp->b_resid;
1566 		kstat_io_t *kioptr;
1567 
1568 		mutex_enter(lsp->ls_kstat->ks_lock);
1569 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1570 		if (bp->b_flags & B_READ) {
1571 			kioptr->nread += n_done;
1572 			kioptr->reads++;
1573 		} else {
1574 			kioptr->nwritten += n_done;
1575 			kioptr->writes++;
1576 		}
1577 		kstat_runq_exit(kioptr);
1578 		mutex_exit(lsp->ls_kstat->ks_lock);
1579 	}
1580 
1581 	mutex_enter(&lsp->ls_vp_lock);
1582 	if (--lsp->ls_vp_iocount == 0)
1583 		cv_broadcast(&lsp->ls_vp_cv);
1584 	mutex_exit(&lsp->ls_vp_lock);
1585 
1586 	bioerror(bp, error);
1587 	biodone(bp);
1588 }
1589 
1590 static int
1591 lofi_strategy(struct buf *bp)
1592 {
1593 	struct lofi_state *lsp;
1594 	offset_t	offset;
1595 	minor_t		part;
1596 	diskaddr_t	p_lba;
1597 	diskaddr_t	p_nblks;
1598 	int		shift;
1599 
1600 	/*
1601 	 * We cannot just do I/O here, because the current thread
1602 	 * _might_ end up back in here because the underlying filesystem
1603 	 * wants a buffer, which eventually gets into bio_recycle and
1604 	 * might call into lofi to write out a delayed-write buffer.
1605 	 * This is bad if the filesystem above lofi is the same as below.
1606 	 *
1607 	 * We could come up with a complex strategy using threads to
1608 	 * do the I/O asynchronously, or we could use task queues. task
1609 	 * queues were incredibly easy so they win.
1610 	 */
1611 
1612 	lsp = ddi_get_soft_state(lofi_statep,
1613 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1614 	part = LOFI_PART(getminor(bp->b_edev));
1615 
1616 	if (lsp == NULL) {
1617 		bioerror(bp, ENXIO);
1618 		biodone(bp);
1619 		return (0);
1620 	}
1621 	shift = lsp->ls_lbshift;
1622 
1623 	p_lba = 0;
1624 	p_nblks = lsp->ls_vp_size >> shift;
1625 
1626 	if (lsp->ls_cmlbhandle != NULL) {
1627 		if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1628 		    NULL, NULL, 0)) {
1629 			bioerror(bp, ENXIO);
1630 			biodone(bp);
1631 			return (0);
1632 		}
1633 	}
1634 
1635 	/* start block past partition end? */
1636 	if (bp->b_lblkno > p_nblks) {
1637 		bioerror(bp, ENXIO);
1638 		biodone(bp);
1639 		return (0);
1640 	}
1641 
1642 	offset = (bp->b_lblkno+p_lba) << shift;	/* offset within file */
1643 
1644 	mutex_enter(&lsp->ls_vp_lock);
1645 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1646 		bioerror(bp, EIO);
1647 		biodone(bp);
1648 		mutex_exit(&lsp->ls_vp_lock);
1649 		return (0);
1650 	}
1651 
1652 	if (lsp->ls_crypto_enabled) {
1653 		/* encrypted data really begins after crypto header */
1654 		offset += lsp->ls_crypto_offset;
1655 	}
1656 
1657 	/* make sure we will not pass the file or partition size */
1658 	if (offset == lsp->ls_vp_size ||
1659 	    offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1660 		/* EOF */
1661 		if ((bp->b_flags & B_READ) != 0) {
1662 			bp->b_resid = bp->b_bcount;
1663 			bioerror(bp, 0);
1664 		} else {
1665 			/* writes should fail */
1666 			bioerror(bp, ENXIO);
1667 		}
1668 		biodone(bp);
1669 		mutex_exit(&lsp->ls_vp_lock);
1670 		return (0);
1671 	}
1672 	if ((offset > lsp->ls_vp_size) ||
1673 	    (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1674 	    ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1675 		bioerror(bp, ENXIO);
1676 		biodone(bp);
1677 		mutex_exit(&lsp->ls_vp_lock);
1678 		return (0);
1679 	}
1680 
1681 	mutex_exit(&lsp->ls_vp_lock);
1682 
1683 	if (lsp->ls_kstat) {
1684 		mutex_enter(lsp->ls_kstat->ks_lock);
1685 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1686 		mutex_exit(lsp->ls_kstat->ks_lock);
1687 	}
1688 	bp->b_private = (void *)(uintptr_t)p_lba;	/* partition start */
1689 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1690 	return (0);
1691 }
1692 
1693 /*ARGSUSED2*/
1694 static int
1695 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1696 {
1697 	if (getminor(dev) == 0)
1698 		return (EINVAL);
1699 	UIO_CHECK(uio);
1700 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1701 }
1702 
1703 /*ARGSUSED2*/
1704 static int
1705 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1706 {
1707 	if (getminor(dev) == 0)
1708 		return (EINVAL);
1709 	UIO_CHECK(uio);
1710 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1711 }
1712 
1713 /*ARGSUSED2*/
1714 static int
1715 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1716 {
1717 	if (getminor(dev) == 0)
1718 		return (EINVAL);
1719 	UIO_CHECK(aio->aio_uio);
1720 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1721 }
1722 
1723 /*ARGSUSED2*/
1724 static int
1725 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1726 {
1727 	if (getminor(dev) == 0)
1728 		return (EINVAL);
1729 	UIO_CHECK(aio->aio_uio);
1730 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1731 }
1732 
1733 /*ARGSUSED*/
1734 static int
1735 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1736 {
1737 	struct lofi_state *lsp;
1738 	dev_t	dev = (dev_t)arg;
1739 	int instance;
1740 
1741 	instance = LOFI_MINOR2ID(getminor(dev));
1742 	switch (infocmd) {
1743 	case DDI_INFO_DEVT2DEVINFO:
1744 		lsp = ddi_get_soft_state(lofi_statep, instance);
1745 		if (lsp == NULL)
1746 			return (DDI_FAILURE);
1747 		*result = lsp->ls_dip;
1748 		return (DDI_SUCCESS);
1749 	case DDI_INFO_DEVT2INSTANCE:
1750 		*result = (void *) (intptr_t)instance;
1751 		return (DDI_SUCCESS);
1752 	}
1753 	return (DDI_FAILURE);
1754 }
1755 
1756 static int
1757 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
1758 {
1759 	int error = 0;
1760 	int instance = ddi_get_instance(lsp->ls_dip);
1761 
1762 	if (labeled == B_TRUE) {
1763 		cmlb_alloc_handle(&lsp->ls_cmlbhandle);
1764 		error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
1765 		    B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
1766 		    CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
1767 
1768 		if (error != DDI_SUCCESS) {
1769 			cmlb_free_handle(&lsp->ls_cmlbhandle);
1770 			lsp->ls_cmlbhandle = NULL;
1771 			error = ENXIO;
1772 		}
1773 	} else {
1774 		/* create minor nodes */
1775 		error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
1776 		    S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
1777 		if (error == DDI_SUCCESS) {
1778 			error = ddi_create_minor_node(lsp->ls_dip,
1779 			    LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
1780 			    DDI_PSEUDO, 0);
1781 			if (error != DDI_SUCCESS) {
1782 				ddi_remove_minor_node(lsp->ls_dip,
1783 				    LOFI_BLOCK_NODE);
1784 				error = ENXIO;
1785 			}
1786 		} else
1787 			error = ENXIO;
1788 	}
1789 	return (error);
1790 }
1791 
1792 static int
1793 lofi_zone_bind(struct lofi_state *lsp)
1794 {
1795 	int error = 0;
1796 
1797 	mutex_enter(&curproc->p_lock);
1798 	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
1799 		mutex_exit(&curproc->p_lock);
1800 		return (error);
1801 	}
1802 	mutex_exit(&curproc->p_lock);
1803 
1804 	if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME,
1805 	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
1806 		rctl_decr_lofi(curproc->p_zone, 1);
1807 		error = EINVAL;
1808 	} else {
1809 		zone_init_ref(&lsp->ls_zone);
1810 		zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
1811 	}
1812 	return (error);
1813 }
1814 
1815 static void
1816 lofi_zone_unbind(struct lofi_state *lsp)
1817 {
1818 	(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
1819 	rctl_decr_lofi(curproc->p_zone, 1);
1820 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
1821 }
1822 
1823 static int
1824 lofi_online_dev(dev_info_t *dip)
1825 {
1826 	boolean_t labeled;
1827 	int	error;
1828 	int	instance = ddi_get_instance(dip);
1829 	struct lofi_state *lsp;
1830 
1831 	labeled = B_FALSE;
1832 	if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
1833 		labeled = B_TRUE;
1834 
1835 	/* lsp alloc+init, soft state is freed in lofi_detach */
1836 	error = ddi_soft_state_zalloc(lofi_statep, instance);
1837 	if (error == DDI_FAILURE) {
1838 		return (ENOMEM);
1839 	}
1840 
1841 	lsp = ddi_get_soft_state(lofi_statep, instance);
1842 	lsp->ls_dip = dip;
1843 
1844 	if ((error = lofi_zone_bind(lsp)) != 0)
1845 		goto err;
1846 
1847 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1848 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1849 	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
1850 	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1851 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1852 
1853 	if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
1854 		lofi_zone_unbind(lsp);
1855 		goto lerr;
1856 	}
1857 
1858 	/* driver handles kernel-issued IOCTLs */
1859 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1860 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1861 		error = DDI_FAILURE;
1862 		goto merr;
1863 	}
1864 
1865 	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
1866 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
1867 	if (lsp->ls_kstat == NULL) {
1868 		(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
1869 		    DDI_KERNEL_IOCTL);
1870 		error = ENOMEM;
1871 		goto merr;
1872 	}
1873 
1874 	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1875 	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
1876 	kstat_install(lsp->ls_kstat);
1877 	return (DDI_SUCCESS);
1878 merr:
1879 	if (lsp->ls_cmlbhandle != NULL) {
1880 		cmlb_detach(lsp->ls_cmlbhandle, 0);
1881 		cmlb_free_handle(&lsp->ls_cmlbhandle);
1882 	}
1883 	ddi_remove_minor_node(dip, NULL);
1884 	lofi_zone_unbind(lsp);
1885 lerr:
1886 	mutex_destroy(&lsp->ls_comp_cache_lock);
1887 	mutex_destroy(&lsp->ls_comp_bufs_lock);
1888 	mutex_destroy(&lsp->ls_kstat_lock);
1889 	mutex_destroy(&lsp->ls_vp_lock);
1890 	cv_destroy(&lsp->ls_vp_cv);
1891 err:
1892 	ddi_soft_state_free(lofi_statep, instance);
1893 	return (error);
1894 }
1895 
1896 static int
1897 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1898 {
1899 	int	rv;
1900 	int	instance = ddi_get_instance(dip);
1901 	struct lofi_state *lsp;
1902 
1903 	if (cmd != DDI_ATTACH)
1904 		return (DDI_FAILURE);
1905 
1906 	/*
1907 	 * Instance 0 is control instance, attaching control instance
1908 	 * will set the lofi up and ready.
1909 	 */
1910 	if (instance == 0) {
1911 		rv = ddi_soft_state_zalloc(lofi_statep, 0);
1912 		if (rv == DDI_FAILURE) {
1913 			return (DDI_FAILURE);
1914 		}
1915 		lsp = ddi_get_soft_state(lofi_statep, instance);
1916 		rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1917 		    DDI_PSEUDO, 0);
1918 		if (rv == DDI_FAILURE) {
1919 			ddi_soft_state_free(lofi_statep, 0);
1920 			return (DDI_FAILURE);
1921 		}
1922 		/* driver handles kernel-issued IOCTLs */
1923 		if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1924 		    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1925 			ddi_remove_minor_node(dip, NULL);
1926 			ddi_soft_state_free(lofi_statep, 0);
1927 			return (DDI_FAILURE);
1928 		}
1929 
1930 		zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1931 
1932 		lsp->ls_dip = dip;
1933 	} else {
1934 		if (lofi_online_dev(dip) == DDI_FAILURE)
1935 			return (DDI_FAILURE);
1936 	}
1937 
1938 	ddi_report_dev(dip);
1939 	return (DDI_SUCCESS);
1940 }
1941 
1942 static int
1943 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1944 {
1945 	struct lofi_state *lsp;
1946 	int instance = ddi_get_instance(dip);
1947 
1948 	if (cmd != DDI_DETACH)
1949 		return (DDI_FAILURE);
1950 
1951 	/*
1952 	 * If the instance is not 0, release state.
1953 	 * The instance 0 is control device, we can not detach it
1954 	 * before other instances are detached.
1955 	 */
1956 	if (instance != 0) {
1957 		lsp = ddi_get_soft_state(lofi_statep, instance);
1958 		if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
1959 			ddi_soft_state_free(lofi_statep, instance);
1960 			return (DDI_SUCCESS);
1961 		} else
1962 			return (DDI_FAILURE);
1963 	}
1964 	mutex_enter(&lofi_lock);
1965 
1966 	if (!list_is_empty(&lofi_list)) {
1967 		mutex_exit(&lofi_lock);
1968 		return (DDI_FAILURE);
1969 	}
1970 
1971 	ddi_remove_minor_node(dip, NULL);
1972 	ddi_prop_remove_all(dip);
1973 
1974 	mutex_exit(&lofi_lock);
1975 
1976 	if (zone_key_delete(lofi_zone_key) != 0)
1977 		cmn_err(CE_WARN, "failed to delete zone key");
1978 
1979 	ddi_soft_state_free(lofi_statep, 0);
1980 
1981 	return (DDI_SUCCESS);
1982 }
1983 
1984 /*
1985  * With the addition of encryption, we must be careful that encryption key is
1986  * wiped before kernel's data structures are freed so it cannot accidentally
1987  * slip out to userland through uninitialized data elsewhere.
1988  */
1989 static void
1990 free_lofi_ioctl(struct lofi_ioctl *klip)
1991 {
1992 	/* Make sure this encryption key doesn't stick around */
1993 	bzero(klip->li_key, sizeof (klip->li_key));
1994 	kmem_free(klip, sizeof (struct lofi_ioctl));
1995 }
1996 
1997 /*
1998  * These two functions simplify the rest of the ioctls that need to copyin/out
1999  * the lofi_ioctl structure.
2000  */
2001 int
2002 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2003     int flag)
2004 {
2005 	struct lofi_ioctl *klip;
2006 	int	error;
2007 
2008 	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2009 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2010 	if (error)
2011 		goto err;
2012 
2013 	/* ensure NULL termination */
2014 	klip->li_filename[MAXPATHLEN-1] = '\0';
2015 	klip->li_devpath[MAXPATHLEN-1] = '\0';
2016 	klip->li_algorithm[MAXALGLEN-1] = '\0';
2017 	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2018 	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2019 
2020 	if (klip->li_id > L_MAXMIN32) {
2021 		error = EINVAL;
2022 		goto err;
2023 	}
2024 
2025 	return (0);
2026 
2027 err:
2028 	free_lofi_ioctl(klip);
2029 	return (error);
2030 }
2031 
2032 int
2033 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2034     int flag)
2035 {
2036 	int	error;
2037 
2038 	/*
2039 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2040 	 * This ensures that an attacker can't trivially find the
2041 	 * key for a mapping just by issuing the ioctl.
2042 	 *
2043 	 * It can still be found by poking around in kmem with mdb(1),
2044 	 * but there is no point in making it easy when the info isn't
2045 	 * of any use in this direction anyway.
2046 	 *
2047 	 * Either way we don't actually have the raw key stored in
2048 	 * a form that we can get it anyway, since we just used it
2049 	 * to create a ctx template and didn't keep "the original".
2050 	 */
2051 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2052 	if (error)
2053 		return (EFAULT);
2054 	return (0);
2055 }
2056 
2057 static int
2058 lofi_access(struct lofi_state *lsp)
2059 {
2060 	ASSERT(MUTEX_HELD(&lofi_lock));
2061 	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2062 		return (0);
2063 	return (EPERM);
2064 }
2065 
2066 /*
2067  * Find the lofi state for the given filename. We compare by vnode to
2068  * allow the global zone visibility into NGZ lofi nodes.
2069  */
2070 static int
2071 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2072     struct lofi_state **lspp)
2073 {
2074 	struct lofi_state *lsp;
2075 	vnode_t *vp = NULL;
2076 	int err = 0;
2077 	int rdfiles = 0;
2078 
2079 	ASSERT(MUTEX_HELD(&lofi_lock));
2080 
2081 	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2082 	    NULLVPP, &vp)) != 0)
2083 		goto out;
2084 
2085 	if (vp->v_type == VREG) {
2086 		vnode_t *realvp;
2087 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2088 			VN_HOLD(realvp);
2089 			VN_RELE(vp);
2090 			vp = realvp;
2091 		}
2092 	}
2093 
2094 	for (lsp = list_head(&lofi_list); lsp != NULL;
2095 	    lsp = list_next(&lofi_list, lsp)) {
2096 		if (lsp->ls_vp == vp) {
2097 			if (lspp != NULL)
2098 				*lspp = lsp;
2099 			if (lsp->ls_readonly) {
2100 				rdfiles++;
2101 				/* Skip if '-r' is specified */
2102 				if (readonly)
2103 					continue;
2104 			}
2105 			goto out;
2106 		}
2107 	}
2108 
2109 	err = ENOENT;
2110 
2111 	/*
2112 	 * If a filename is given as an argument for lofi_unmap, we shouldn't
2113 	 * allow unmap if there are multiple read-only lofi devices associated
2114 	 * with this file.
2115 	 */
2116 	if (lspp != NULL) {
2117 		if (rdfiles == 1)
2118 			err = 0;
2119 		else if (rdfiles > 1)
2120 			err = EBUSY;
2121 	}
2122 
2123 out:
2124 	if (vp != NULL)
2125 		VN_RELE(vp);
2126 	return (err);
2127 }
2128 
2129 /*
2130  * Find the minor for the given filename, checking the zone can access
2131  * it.
2132  */
2133 static int
2134 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2135 {
2136 	int err = 0;
2137 
2138 	ASSERT(MUTEX_HELD(&lofi_lock));
2139 
2140 	if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2141 		return (err);
2142 
2143 	if ((err = lofi_access(*lspp)) != 0)
2144 		return (err);
2145 
2146 	return (0);
2147 }
2148 
2149 /*
2150  * Fakes up a disk geometry based on the size of the file. This is needed
2151  * to support newfs on traditional lofi device, but also will provide
2152  * geometry hint for cmlb.
2153  */
2154 static void
2155 fake_disk_geometry(struct lofi_state *lsp)
2156 {
2157 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2158 
2159 	/* dk_geom - see dkio(7I) */
2160 	/*
2161 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2162 	 * of sectors), but that breaks programs like fdisk which want to
2163 	 * partition a disk by cylinder. With one cylinder, you can't create
2164 	 * an fdisk partition and put pcfs on it for testing (hard to pick
2165 	 * a number between one and one).
2166 	 *
2167 	 * The cheezy floppy test is an attempt to not have too few cylinders
2168 	 * for a small file, or so many on a big file that you waste space
2169 	 * for backup superblocks or cylinder group structures.
2170 	 */
2171 	bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2172 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
2173 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2174 	else
2175 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2176 	/* in case file file is < 100k */
2177 	if (lsp->ls_dkg.dkg_ncyl == 0)
2178 		lsp->ls_dkg.dkg_ncyl = 1;
2179 
2180 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2181 	lsp->ls_dkg.dkg_nhead = 1;
2182 	lsp->ls_dkg.dkg_rpm = 7200;
2183 
2184 	lsp->ls_dkg.dkg_nsect = dsize /
2185 	    (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2186 }
2187 
2188 /*
2189  * build vtoc - see dkio(7I)
2190  *
2191  * Fakes one big partition based on the size of the file. This is needed
2192  * because we allow newfs'ing the traditional lofi device and newfs will
2193  * do several disk ioctls to figure out the geometry and partition information.
2194  * It uses that information to determine the parameters to pass to mkfs.
2195  */
2196 static void
2197 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2198 {
2199 	bzero(vt, sizeof (struct vtoc));
2200 	vt->v_sanity = VTOC_SANE;
2201 	vt->v_version = V_VERSION;
2202 	(void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2203 	    sizeof (vt->v_volume));
2204 	vt->v_sectorsz = 1 << lsp->ls_pbshift;
2205 	vt->v_nparts = 1;
2206 	vt->v_part[0].p_tag = V_UNASSIGNED;
2207 
2208 	/*
2209 	 * A compressed file is read-only, other files can
2210 	 * be read-write
2211 	 */
2212 	if (lsp->ls_uncomp_seg_sz > 0) {
2213 		vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2214 	} else {
2215 		vt->v_part[0].p_flag = V_UNMNT;
2216 	}
2217 	vt->v_part[0].p_start = (daddr_t)0;
2218 	/*
2219 	 * The partition size cannot just be the number of sectors, because
2220 	 * that might not end on a cylinder boundary. And if that's the case,
2221 	 * newfs/mkfs will print a scary warning. So just figure the size
2222 	 * based on the number of cylinders and sectors/cylinder.
2223 	 */
2224 	vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2225 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2226 }
2227 
2228 /*
2229  * build dk_cinfo - see dkio(7I)
2230  */
2231 static void
2232 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2233 {
2234 	bzero(ci, sizeof (struct dk_cinfo));
2235 	(void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2236 	ci->dki_ctype = DKC_SCSI_CCS;
2237 	(void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2238 	ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2239 	ci->dki_partition = LOFI_PART(getminor(dev));
2240 	/*
2241 	 * newfs uses this to set maxcontig. Must not be < 16, or it
2242 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2243 	 * it by the block size. Then tunefs doesn't work because
2244 	 * maxcontig is 0.
2245 	 */
2246 	ci->dki_maxtransfer = 16;
2247 }
2248 
2249 /*
2250  * map in a compressed file
2251  *
2252  * Read in the header and the index that follows.
2253  *
2254  * The header is as follows -
2255  *
2256  * Signature (name of the compression algorithm)
2257  * Compression segment size (a multiple of 512)
2258  * Number of index entries
2259  * Size of the last block
2260  * The array containing the index entries
2261  *
2262  * The header information is always stored in
2263  * network byte order on disk.
2264  */
2265 static int
2266 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2267 {
2268 	uint32_t index_sz, header_len, i;
2269 	ssize_t	resid;
2270 	enum uio_rw rw;
2271 	char *tbuf = buf;
2272 	int error;
2273 
2274 	/* The signature has already been read */
2275 	tbuf += sizeof (lsp->ls_comp_algorithm);
2276 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2277 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2278 
2279 	/*
2280 	 * The compressed segment size must be a power of 2
2281 	 */
2282 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2283 	    !ISP2(lsp->ls_uncomp_seg_sz))
2284 		return (EINVAL);
2285 
2286 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2287 		;
2288 
2289 	lsp->ls_comp_seg_shift = i;
2290 
2291 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2292 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2293 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2294 
2295 	tbuf += sizeof (lsp->ls_comp_index_sz);
2296 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2297 	    sizeof (lsp->ls_uncomp_last_seg_sz));
2298 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2299 
2300 	/*
2301 	 * Compute the total size of the uncompressed data
2302 	 * for use in fake_disk_geometry and other calculations.
2303 	 * Disk geometry has to be faked with respect to the
2304 	 * actual uncompressed data size rather than the
2305 	 * compressed file size.
2306 	 */
2307 	lsp->ls_vp_size =
2308 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2309 	    + lsp->ls_uncomp_last_seg_sz;
2310 
2311 	/*
2312 	 * Index size is rounded up to DEV_BSIZE for ease
2313 	 * of segmapping
2314 	 */
2315 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2316 	header_len = sizeof (lsp->ls_comp_algorithm) +
2317 	    sizeof (lsp->ls_uncomp_seg_sz) +
2318 	    sizeof (lsp->ls_comp_index_sz) +
2319 	    sizeof (lsp->ls_uncomp_last_seg_sz);
2320 	lsp->ls_comp_offbase = header_len + index_sz;
2321 
2322 	index_sz += header_len;
2323 	index_sz = roundup(index_sz, DEV_BSIZE);
2324 
2325 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2326 	lsp->ls_comp_index_data_sz = index_sz;
2327 
2328 	/*
2329 	 * Read in the index -- this has a side-effect
2330 	 * of reading in the header as well
2331 	 */
2332 	rw = UIO_READ;
2333 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2334 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2335 
2336 	if (error != 0)
2337 		return (error);
2338 
2339 	/* Skip the header, this is where the index really begins */
2340 	lsp->ls_comp_seg_index =
2341 	    /*LINTED*/
2342 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
2343 
2344 	/*
2345 	 * Now recompute offsets in the index to account for
2346 	 * the header length
2347 	 */
2348 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2349 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2350 		    BE_64(lsp->ls_comp_seg_index[i]);
2351 	}
2352 
2353 	return (error);
2354 }
2355 
2356 static int
2357 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2358 {
2359 	struct crypto_meta chead;
2360 	char buf[DEV_BSIZE];
2361 	ssize_t	resid;
2362 	char *marker;
2363 	int error;
2364 	int ret;
2365 	int i;
2366 
2367 	if (!klip->li_crypto_enabled)
2368 		return (0);
2369 
2370 	/*
2371 	 * All current algorithms have a max of 448 bits.
2372 	 */
2373 	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2374 		return (EINVAL);
2375 
2376 	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2377 		return (EINVAL);
2378 
2379 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2380 
2381 	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2382 
2383 	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2384 	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2385 		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2386 		    klip->li_cipher, klip->li_filename);
2387 		return (EINVAL);
2388 	}
2389 
2390 	/* this is just initialization here */
2391 	lsp->ls_mech.cm_param = NULL;
2392 	lsp->ls_mech.cm_param_len = 0;
2393 
2394 	lsp->ls_iv_type = klip->li_iv_type;
2395 	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2396 	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2397 		cmn_err(CE_WARN, "invalid iv cipher %s requested"
2398 		    " for %s", klip->li_iv_cipher, klip->li_filename);
2399 		return (EINVAL);
2400 	}
2401 
2402 	/* iv mech must itself take a null iv */
2403 	lsp->ls_iv_mech.cm_param = NULL;
2404 	lsp->ls_iv_mech.cm_param_len = 0;
2405 	lsp->ls_iv_len = klip->li_iv_len;
2406 
2407 	/*
2408 	 * Create ctx using li_cipher & the raw li_key after checking
2409 	 * that it isn't a weak key.
2410 	 */
2411 	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2412 	lsp->ls_key.ck_length = klip->li_key_len;
2413 	lsp->ls_key.ck_data = kmem_alloc(
2414 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2415 	bcopy(klip->li_key, lsp->ls_key.ck_data,
2416 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2417 
2418 	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2419 	if (ret != CRYPTO_SUCCESS) {
2420 		cmn_err(CE_WARN, "weak key check failed for cipher "
2421 		    "%s on file %s (0x%x)", klip->li_cipher,
2422 		    klip->li_filename, ret);
2423 		return (EINVAL);
2424 	}
2425 
2426 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2427 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2428 	if (error != 0)
2429 		return (error);
2430 
2431 	/*
2432 	 * This is the case where the header in the lofi image is already
2433 	 * initialized to indicate it is encrypted.
2434 	 */
2435 	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2436 		/*
2437 		 * The encryption header information is laid out this way:
2438 		 *	6 bytes:	hex "CFLOFI"
2439 		 *	2 bytes:	version = 0 ... for now
2440 		 *	96 bytes:	reserved1 (not implemented yet)
2441 		 *	4 bytes:	data_sector = 2 ... for now
2442 		 *	more...		not implemented yet
2443 		 */
2444 
2445 		marker = buf;
2446 
2447 		/* copy the magic */
2448 		bcopy(marker, lsp->ls_crypto.magic,
2449 		    sizeof (lsp->ls_crypto.magic));
2450 		marker += sizeof (lsp->ls_crypto.magic);
2451 
2452 		/* read the encryption version number */
2453 		bcopy(marker, &(lsp->ls_crypto.version),
2454 		    sizeof (lsp->ls_crypto.version));
2455 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2456 		marker += sizeof (lsp->ls_crypto.version);
2457 
2458 		/* read a chunk of reserved data */
2459 		bcopy(marker, lsp->ls_crypto.reserved1,
2460 		    sizeof (lsp->ls_crypto.reserved1));
2461 		marker += sizeof (lsp->ls_crypto.reserved1);
2462 
2463 		/* read block number where encrypted data begins */
2464 		bcopy(marker, &(lsp->ls_crypto.data_sector),
2465 		    sizeof (lsp->ls_crypto.data_sector));
2466 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2467 		marker += sizeof (lsp->ls_crypto.data_sector);
2468 
2469 		/* and ignore the rest until it is implemented */
2470 
2471 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2472 		return (0);
2473 	}
2474 
2475 	/*
2476 	 * We've requested encryption, but no magic was found, so it must be
2477 	 * a new image.
2478 	 */
2479 
2480 	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2481 		if (buf[i] != '\0')
2482 			return (EINVAL);
2483 	}
2484 
2485 	marker = buf;
2486 	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2487 	marker += sizeof (lofi_crypto_magic);
2488 	chead.version = htons(LOFI_CRYPTO_VERSION);
2489 	bcopy(&(chead.version), marker, sizeof (chead.version));
2490 	marker += sizeof (chead.version);
2491 	marker += sizeof (chead.reserved1);
2492 	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2493 	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2494 
2495 	/* write the header */
2496 	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2497 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2498 	if (error != 0)
2499 		return (error);
2500 
2501 	/* fix things up so it looks like we read this info */
2502 	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2503 	    sizeof (lofi_crypto_magic));
2504 	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2505 	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2506 	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2507 	return (0);
2508 }
2509 
2510 /*
2511  * Check to see if the passed in signature is a valid one.  If it is
2512  * valid, return the index into lofi_compress_table.
2513  *
2514  * Return -1 if it is invalid
2515  */
2516 static int
2517 lofi_compress_select(const char *signature)
2518 {
2519 	int i;
2520 
2521 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2522 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2523 			return (i);
2524 	}
2525 
2526 	return (-1);
2527 }
2528 
2529 static int
2530 lofi_init_compress(struct lofi_state *lsp)
2531 {
2532 	char buf[DEV_BSIZE];
2533 	int compress_index;
2534 	ssize_t	resid;
2535 	int error;
2536 
2537 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2538 	    0, RLIM64_INFINITY, kcred, &resid);
2539 
2540 	if (error != 0)
2541 		return (error);
2542 
2543 	if ((compress_index = lofi_compress_select(buf)) == -1)
2544 		return (0);
2545 
2546 	/* compression and encryption are mutually exclusive */
2547 	if (lsp->ls_crypto_enabled)
2548 		return (ENOTSUP);
2549 
2550 	/* initialize compression info for compressed lofi */
2551 	lsp->ls_comp_algorithm_index = compress_index;
2552 	(void) strlcpy(lsp->ls_comp_algorithm,
2553 	    lofi_compress_table[compress_index].l_name,
2554 	    sizeof (lsp->ls_comp_algorithm));
2555 
2556 	/* Finally setup per-thread pre-allocated buffers */
2557 	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2558 	    sizeof (struct compbuf), KM_SLEEP);
2559 
2560 	return (lofi_map_compressed_file(lsp, buf));
2561 }
2562 
2563 /*
2564  * Allocate new or proposed id from lofi_id.
2565  *
2566  * Special cases for proposed id:
2567  * 0: not allowed, 0 is id for control device.
2568  * -1: allocate first usable id from lofi_id.
2569  * any other value is proposed value from userland
2570  *
2571  * returns DDI_SUCCESS or errno.
2572  */
2573 static int
2574 lofi_alloc_id(int *idp)
2575 {
2576 	int id, error = DDI_SUCCESS;
2577 
2578 	if (*idp == -1) {
2579 		id = id_allocff_nosleep(lofi_id);
2580 		if (id == -1) {
2581 			error = EAGAIN;
2582 			goto err;
2583 		}
2584 	} else if (*idp == 0) {
2585 		error = EINVAL;
2586 		goto err;
2587 	} else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2588 		error = ERANGE;
2589 		goto err;
2590 	} else {
2591 		if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2592 			error = EEXIST;
2593 			goto err;
2594 		}
2595 
2596 		id = id_alloc_specific_nosleep(lofi_id, *idp);
2597 		if (id == -1) {
2598 			error = EAGAIN;
2599 			goto err;
2600 		}
2601 	}
2602 	*idp = id;
2603 err:
2604 	return (error);
2605 }
2606 
2607 static int
2608 lofi_create_dev(struct lofi_ioctl *klip)
2609 {
2610 	dev_info_t *parent, *child;
2611 	struct lofi_state *lsp = NULL;
2612 	char namebuf[MAXNAMELEN];
2613 	int error, circ;
2614 
2615 	/* get control device */
2616 	lsp = ddi_get_soft_state(lofi_statep, 0);
2617 	parent = ddi_get_parent(lsp->ls_dip);
2618 
2619 	if ((error = lofi_alloc_id((int *)&klip->li_id)))
2620 		return (error);
2621 
2622 	(void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2623 	    klip->li_id);
2624 
2625 	ndi_devi_enter(parent, &circ);
2626 	child = ndi_devi_findchild(parent, namebuf);
2627 	ndi_devi_exit(parent, circ);
2628 
2629 	if (child == NULL) {
2630 		child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2631 		    (pnode_t)DEVI_SID_NODEID, klip->li_id);
2632 		if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2633 		    "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2634 			goto err;
2635 
2636 		if (klip->li_labeled == B_TRUE) {
2637 			if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2638 			    DDI_PROP_CANSLEEP, "labeled", 0, 0))
2639 			    != DDI_PROP_SUCCESS)
2640 				goto err;
2641 		}
2642 
2643 		if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2644 		    != NDI_SUCCESS)
2645 			goto err;
2646 	} else {
2647 		id_free(lofi_id, klip->li_id);
2648 		error = EEXIST;
2649 		return (error);
2650 	}
2651 
2652 	goto done;
2653 
2654 err:
2655 	ddi_prop_remove_all(child);
2656 	(void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2657 	id_free(lofi_id, klip->li_id);
2658 done:
2659 
2660 	return (error);
2661 }
2662 
2663 static void
2664 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2665 {
2666 	char *p = NULL;
2667 
2668 	(void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2669 
2670 	mutex_enter(&lsp->ls_vp_lock);
2671 	if (lsp->ls_vp != NULL)
2672 		p = strrchr(lsp->ls_vp->v_path, '/');
2673 	if (p != NULL)
2674 		(void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2675 	mutex_exit(&lsp->ls_vp_lock);
2676 	(void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2677 }
2678 
2679 /*
2680  * copy devlink name from event cache
2681  */
2682 static void
2683 lofi_copy_devpath(struct lofi_ioctl *klip)
2684 {
2685 	int	error;
2686 	char	namebuf[MAXNAMELEN], *str;
2687 	clock_t ticks;
2688 	nvlist_t *nvl = NULL;
2689 
2690 	if (klip->li_labeled == B_TRUE)
2691 		klip->li_devpath[0] = '\0';
2692 	else {
2693 		/* no need to wait for messages */
2694 		(void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2695 		    "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2696 		return;
2697 	}
2698 
2699 	(void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2700 	ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
2701 
2702 	mutex_enter(&lofi_devlink_cache.ln_lock);
2703 	error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data, namebuf, &nvl);
2704 	while (error != 0) {
2705 		error = cv_timedwait(&lofi_devlink_cache.ln_cv,
2706 		    &lofi_devlink_cache.ln_lock, ticks);
2707 		if (error == -1)
2708 			break;
2709 		error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data,
2710 		    namebuf, &nvl);
2711 	}
2712 
2713 	if (nvl != NULL) {
2714 		if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) {
2715 			(void) strlcpy(klip->li_devpath, str,
2716 			    sizeof (klip->li_devpath));
2717 		}
2718 	}
2719 	mutex_exit(&lofi_devlink_cache.ln_lock);
2720 }
2721 
2722 /*
2723  * map a file to a minor number. Return the minor number.
2724  */
2725 static int
2726 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2727     int *rvalp, struct cred *credp, int ioctl_flag)
2728 {
2729 	int	id = -1;
2730 	struct lofi_state *lsp = NULL;
2731 	struct lofi_ioctl *klip;
2732 	int	error;
2733 	struct vnode *vp = NULL;
2734 	vattr_t	vattr;
2735 	int	flag;
2736 	char	namebuf[MAXNAMELEN];
2737 
2738 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2739 	if (error != 0)
2740 		return (error);
2741 
2742 	mutex_enter(&lofi_lock);
2743 
2744 	if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2745 	    NULL) == 0) {
2746 		error = EBUSY;
2747 		goto err;
2748 	}
2749 
2750 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2751 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2752 	if (error) {
2753 		/* try read-only */
2754 		flag &= ~FWRITE;
2755 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2756 		    &vp, 0, 0);
2757 		if (error)
2758 			goto err;
2759 	}
2760 
2761 	if (!V_ISLOFIABLE(vp->v_type)) {
2762 		error = EINVAL;
2763 		goto err;
2764 	}
2765 
2766 	vattr.va_mask = AT_SIZE;
2767 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2768 	if (error)
2769 		goto err;
2770 
2771 	/* the file needs to be a multiple of the block size */
2772 	if ((vattr.va_size % DEV_BSIZE) != 0) {
2773 		error = EINVAL;
2774 		goto err;
2775 	}
2776 
2777 	if (pickminor) {
2778 		klip->li_id = (uint32_t)-1;
2779 	}
2780 	if ((error = lofi_create_dev(klip)) != 0)
2781 		goto err;
2782 
2783 	id = klip->li_id;
2784 	lsp = ddi_get_soft_state(lofi_statep, id);
2785 	if (lsp == NULL)
2786 		goto err;
2787 
2788 	/*
2789 	 * from this point lofi_destroy() is used to clean up on error
2790 	 * make sure the basic data is set
2791 	 */
2792 	lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
2793 
2794 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2795 	    offsetof(struct lofi_comp_cache, lc_list));
2796 
2797 	/*
2798 	 * save open mode so file can be closed properly and vnode counts
2799 	 * updated correctly.
2800 	 */
2801 	lsp->ls_openflag = flag;
2802 
2803 	lsp->ls_vp = vp;
2804 	lsp->ls_stacked_vp = vp;
2805 
2806 	lsp->ls_vp_size = vattr.va_size;
2807 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2808 
2809 	/*
2810 	 * Try to handle stacked lofs vnodes.
2811 	 */
2812 	if (vp->v_type == VREG) {
2813 		vnode_t *realvp;
2814 
2815 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2816 			/*
2817 			 * We need to use the realvp for uniqueness
2818 			 * checking, but keep the stacked vp for
2819 			 * LOFI_GET_FILENAME display.
2820 			 */
2821 			VN_HOLD(realvp);
2822 			lsp->ls_vp = realvp;
2823 		}
2824 	}
2825 
2826 	lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
2827 	lsp->ls_pbshift = lsp->ls_lbshift;
2828 
2829 	lsp->ls_readonly = klip->li_readonly;
2830 	lsp->ls_uncomp_seg_sz = 0;
2831 	lsp->ls_comp_algorithm[0] = '\0';
2832 	lsp->ls_crypto_offset = 0;
2833 
2834 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2835 	    LOFI_DRIVER_NAME, id);
2836 	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2837 	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2838 
2839 	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2840 		goto err;
2841 
2842 	if ((error = lofi_init_compress(lsp)) != 0)
2843 		goto err;
2844 
2845 	fake_disk_geometry(lsp);
2846 
2847 	/* For unlabeled lofi add Nblocks and Size */
2848 	if (klip->li_labeled == B_FALSE) {
2849 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2850 		    SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset);
2851 		if (error != DDI_PROP_SUCCESS) {
2852 			error = EINVAL;
2853 			goto err;
2854 		}
2855 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2856 		    NBLOCKS_PROP_NAME,
2857 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE);
2858 		if (error != DDI_PROP_SUCCESS) {
2859 			error = EINVAL;
2860 			goto err;
2861 		}
2862 	}
2863 
2864 	list_insert_tail(&lofi_list, lsp);
2865 	/*
2866 	 * Notify we are ready to rock.
2867 	 */
2868 	mutex_enter(&lsp->ls_vp_lock);
2869 	lsp->ls_vp_ready = B_TRUE;
2870 	cv_broadcast(&lsp->ls_vp_cv);
2871 	mutex_exit(&lsp->ls_vp_lock);
2872 	mutex_exit(&lofi_lock);
2873 
2874 	lofi_copy_devpath(klip);
2875 
2876 	if (rvalp)
2877 		*rvalp = id;
2878 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2879 	free_lofi_ioctl(klip);
2880 	return (0);
2881 
2882 err:
2883 	if (lsp != NULL) {
2884 		lofi_destroy(lsp, credp);
2885 	} else {
2886 		if (vp != NULL) {
2887 			(void) VOP_PUTPAGE(vp, 0, 0, B_INVAL, credp, NULL);
2888 			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2889 			VN_RELE(vp);
2890 		}
2891 	}
2892 
2893 	mutex_exit(&lofi_lock);
2894 	free_lofi_ioctl(klip);
2895 	return (error);
2896 }
2897 
2898 /*
2899  * unmap a file.
2900  */
2901 static int
2902 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2903     struct cred *credp, int ioctl_flag)
2904 {
2905 	struct lofi_state *lsp;
2906 	struct lofi_ioctl *klip;
2907 	nvlist_t *nvl = NULL;
2908 	clock_t ticks;
2909 	char name[MAXNAMELEN];
2910 	int err;
2911 
2912 	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2913 	if (err != 0)
2914 		return (err);
2915 
2916 	mutex_enter(&lofi_lock);
2917 	if (byfilename) {
2918 		if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
2919 		    &lsp)) != 0) {
2920 			mutex_exit(&lofi_lock);
2921 			return (err);
2922 		}
2923 	} else if (klip->li_id == 0) {
2924 		mutex_exit(&lofi_lock);
2925 		free_lofi_ioctl(klip);
2926 		return (ENXIO);
2927 	} else {
2928 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
2929 	}
2930 
2931 	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2932 		mutex_exit(&lofi_lock);
2933 		free_lofi_ioctl(klip);
2934 		return (ENXIO);
2935 	}
2936 
2937 	klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
2938 
2939 	/*
2940 	 * If it's still held open, we'll do one of three things:
2941 	 *
2942 	 * If no flag is set, just return EBUSY.
2943 	 *
2944 	 * If the 'cleanup' flag is set, unmap and remove the device when
2945 	 * the last user finishes.
2946 	 *
2947 	 * If the 'force' flag is set, then we forcibly close the underlying
2948 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
2949 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
2950 	 * device will be cleaned up appropriately.
2951 	 *
2952 	 * This is complicated by the fact that we may have outstanding
2953 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
2954 	 * I/O, we keep a count of the number of outstanding I/O requests
2955 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2956 	 * should be dispatched (ls_vp_closereq).
2957 	 *
2958 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
2959 	 * and then close the underlying vnode.
2960 	 */
2961 	if (is_opened(lsp)) {
2962 		if (klip->li_force) {
2963 			mutex_enter(&lsp->ls_vp_lock);
2964 			lsp->ls_vp_closereq = B_TRUE;
2965 			/* wake up any threads waiting on dkiocstate */
2966 			cv_broadcast(&lsp->ls_vp_cv);
2967 			while (lsp->ls_vp_iocount > 0)
2968 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2969 			mutex_exit(&lsp->ls_vp_lock);
2970 
2971 			goto out;
2972 		} else if (klip->li_cleanup) {
2973 			lsp->ls_cleanup = 1;
2974 			mutex_exit(&lofi_lock);
2975 			free_lofi_ioctl(klip);
2976 			return (0);
2977 		}
2978 
2979 		mutex_exit(&lofi_lock);
2980 		free_lofi_ioctl(klip);
2981 		return (EBUSY);
2982 	}
2983 
2984 out:
2985 	lofi_free_dev(lsp);
2986 	lofi_destroy(lsp, credp);
2987 
2988 	/*
2989 	 * check the lofi_devlink_cache if device is really gone.
2990 	 * note: we just wait for timeout here and dont give error if
2991 	 * timer will expire. This check is to try to ensure the unmap is
2992 	 * really done when lofiadm -d completes.
2993 	 * Since lofi_lock is held, also hopefully the lofiadm -a calls
2994 	 * wont interfere the the unmap.
2995 	 */
2996 	(void) snprintf(name, sizeof (name), "%d", klip->li_id);
2997 	ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
2998 	mutex_enter(&lofi_devlink_cache.ln_lock);
2999 	err = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data, name, &nvl);
3000 	while (err == 0) {
3001 		err = cv_timedwait(&lofi_devlink_cache.ln_cv,
3002 		    &lofi_devlink_cache.ln_lock, ticks);
3003 		if (err == -1)
3004 			break;
3005 		err = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data,
3006 		    name, &nvl);
3007 	}
3008 	mutex_exit(&lofi_devlink_cache.ln_lock);
3009 
3010 	mutex_exit(&lofi_lock);
3011 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3012 	free_lofi_ioctl(klip);
3013 	return (0);
3014 }
3015 
3016 /*
3017  * get the filename given the minor number, or the minor number given
3018  * the name.
3019  */
3020 /*ARGSUSED*/
3021 static int
3022 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
3023     struct cred *credp, int ioctl_flag)
3024 {
3025 	struct lofi_ioctl *klip;
3026 	struct lofi_state *lsp;
3027 	int	error;
3028 
3029 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3030 	if (error != 0)
3031 		return (error);
3032 
3033 	switch (which) {
3034 	case LOFI_GET_FILENAME:
3035 		if (klip->li_id == 0) {
3036 			free_lofi_ioctl(klip);
3037 			return (EINVAL);
3038 		}
3039 
3040 		mutex_enter(&lofi_lock);
3041 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3042 		if (lsp == NULL || lofi_access(lsp) != 0) {
3043 			mutex_exit(&lofi_lock);
3044 			free_lofi_ioctl(klip);
3045 			return (ENXIO);
3046 		}
3047 
3048 		/*
3049 		 * This may fail if, for example, we're trying to look
3050 		 * up a zoned NFS path from the global zone.
3051 		 */
3052 		if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3053 		    sizeof (klip->li_filename), CRED()) != 0) {
3054 			(void) strlcpy(klip->li_filename, "?",
3055 			    sizeof (klip->li_filename));
3056 		}
3057 
3058 		klip->li_readonly = lsp->ls_readonly;
3059 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3060 
3061 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3062 		    sizeof (klip->li_algorithm));
3063 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3064 		mutex_exit(&lofi_lock);
3065 
3066 		lofi_copy_devpath(klip);
3067 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3068 		free_lofi_ioctl(klip);
3069 		return (error);
3070 	case LOFI_GET_MINOR:
3071 		mutex_enter(&lofi_lock);
3072 		error = file_to_lofi(klip->li_filename,
3073 		    klip->li_readonly, &lsp);
3074 		if (error != 0) {
3075 			mutex_exit(&lofi_lock);
3076 			free_lofi_ioctl(klip);
3077 			return (error);
3078 		}
3079 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3080 
3081 		klip->li_readonly = lsp->ls_readonly;
3082 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3083 		mutex_exit(&lofi_lock);
3084 
3085 		lofi_copy_devpath(klip);
3086 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3087 
3088 		free_lofi_ioctl(klip);
3089 		return (error);
3090 	case LOFI_CHECK_COMPRESSED:
3091 		mutex_enter(&lofi_lock);
3092 		error = file_to_lofi(klip->li_filename,
3093 		    klip->li_readonly, &lsp);
3094 		if (error != 0) {
3095 			mutex_exit(&lofi_lock);
3096 			free_lofi_ioctl(klip);
3097 			return (error);
3098 		}
3099 
3100 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3101 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3102 		    sizeof (klip->li_algorithm));
3103 
3104 		mutex_exit(&lofi_lock);
3105 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3106 		free_lofi_ioctl(klip);
3107 		return (error);
3108 	default:
3109 		free_lofi_ioctl(klip);
3110 		return (EINVAL);
3111 	}
3112 }
3113 
3114 static int
3115 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3116     struct uscsi_cmd *uscmd)
3117 {
3118 	int rval;
3119 
3120 #ifdef	_MULTI_DATAMODEL
3121 	switch (ddi_model_convert_from(flag & FMODELS)) {
3122 	case DDI_MODEL_ILP32: {
3123 		struct uscsi_cmd32 ucmd32;
3124 
3125 		if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3126 			rval = EFAULT;
3127 			goto err;
3128 		}
3129 		uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3130 		break;
3131 	}
3132 	case DDI_MODEL_NONE:
3133 		if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3134 			rval = EFAULT;
3135 			goto err;
3136 		}
3137 		break;
3138 	default:
3139 		rval = EFAULT;
3140 		goto err;
3141 	}
3142 #else
3143 	if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3144 		rval = EFAULT;
3145 		goto err;
3146 	}
3147 #endif	/* _MULTI_DATAMODEL */
3148 	if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3149 		rval = EFAULT;
3150 		goto err;
3151 	}
3152 	if (cdb->scc_cmd == SCMD_INQUIRY) {
3153 		return (0);
3154 	}
3155 err:
3156 	return (rval);
3157 }
3158 
3159 static int
3160 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3161     int *rvalp)
3162 {
3163 	int	error;
3164 	enum dkio_state dkstate;
3165 	struct lofi_state *lsp;
3166 	int	id;
3167 
3168 	id = LOFI_MINOR2ID(getminor(dev));
3169 
3170 	/* lofi ioctls only apply to the master device */
3171 	if (id == 0) {
3172 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3173 
3174 		/*
3175 		 * the query command only need read-access - i.e., normal
3176 		 * users are allowed to do those on the ctl device as
3177 		 * long as they can open it read-only.
3178 		 */
3179 		switch (cmd) {
3180 		case LOFI_MAP_FILE:
3181 			if ((flag & FWRITE) == 0)
3182 				return (EPERM);
3183 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3184 		case LOFI_MAP_FILE_MINOR:
3185 			if ((flag & FWRITE) == 0)
3186 				return (EPERM);
3187 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3188 		case LOFI_UNMAP_FILE:
3189 			if ((flag & FWRITE) == 0)
3190 				return (EPERM);
3191 			return (lofi_unmap_file(lip, 1, credp, flag));
3192 		case LOFI_UNMAP_FILE_MINOR:
3193 			if ((flag & FWRITE) == 0)
3194 				return (EPERM);
3195 			return (lofi_unmap_file(lip, 0, credp, flag));
3196 		case LOFI_GET_FILENAME:
3197 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3198 			    credp, flag));
3199 		case LOFI_GET_MINOR:
3200 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3201 			    credp, flag));
3202 
3203 		/*
3204 		 * This API made limited sense when this value was fixed
3205 		 * at LOFI_MAX_FILES.  However, its use to iterate
3206 		 * across all possible devices in lofiadm means we don't
3207 		 * want to return L_MAXMIN, but the highest
3208 		 * *allocated* id.
3209 		 */
3210 		case LOFI_GET_MAXMINOR:
3211 			id = 0;
3212 
3213 			mutex_enter(&lofi_lock);
3214 
3215 			for (lsp = list_head(&lofi_list); lsp != NULL;
3216 			    lsp = list_next(&lofi_list, lsp)) {
3217 				int i;
3218 				if (lofi_access(lsp) != 0)
3219 					continue;
3220 
3221 				i = ddi_get_instance(lsp->ls_dip);
3222 				if (i > id)
3223 					id = i;
3224 			}
3225 
3226 			mutex_exit(&lofi_lock);
3227 
3228 			error = ddi_copyout(&id, &lip->li_id,
3229 			    sizeof (id), flag);
3230 			if (error)
3231 				return (EFAULT);
3232 			return (0);
3233 
3234 		case LOFI_CHECK_COMPRESSED:
3235 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3236 			    credp, flag));
3237 		default:
3238 			return (EINVAL);
3239 		}
3240 	}
3241 
3242 	mutex_enter(&lofi_lock);
3243 	lsp = ddi_get_soft_state(lofi_statep, id);
3244 	if (lsp == NULL || lsp->ls_vp_closereq) {
3245 		mutex_exit(&lofi_lock);
3246 		return (ENXIO);
3247 	}
3248 	mutex_exit(&lofi_lock);
3249 
3250 	if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3251 	    "labeled") == 1) {
3252 		error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3253 		    credp, rvalp, 0);
3254 		if (error != ENOTTY)
3255 			return (error);
3256 	}
3257 
3258 	/*
3259 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3260 	 * EIO as if the device was no longer present.
3261 	 */
3262 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3263 		return (EIO);
3264 
3265 	/* these are for faking out utilities like newfs */
3266 	switch (cmd) {
3267 	case DKIOCGMEDIAINFO:
3268 	case DKIOCGMEDIAINFOEXT: {
3269 		struct dk_minfo_ext media_info;
3270 		int shift = lsp->ls_lbshift;
3271 		int size;
3272 
3273 		if (cmd == DKIOCGMEDIAINFOEXT) {
3274 			media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3275 			size = sizeof (struct dk_minfo_ext);
3276 		} else {
3277 			size = sizeof (struct dk_minfo);
3278 		}
3279 
3280 		media_info.dki_media_type = DK_FIXED_DISK;
3281 		media_info.dki_lbsize = 1U << shift;
3282 		media_info.dki_capacity =
3283 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3284 
3285 		if (ddi_copyout(&media_info, (void *)arg, size, flag))
3286 			return (EFAULT);
3287 		return (0);
3288 	}
3289 	case DKIOCREMOVABLE: {
3290 		int i = 0;
3291 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3292 			return (EFAULT);
3293 		return (0);
3294 	}
3295 
3296 	case DKIOCGVTOC: {
3297 		struct vtoc vt;
3298 		fake_disk_vtoc(lsp, &vt);
3299 
3300 		switch (ddi_model_convert_from(flag & FMODELS)) {
3301 		case DDI_MODEL_ILP32: {
3302 			struct vtoc32 vtoc32;
3303 
3304 			vtoctovtoc32(vt, vtoc32);
3305 			if (ddi_copyout(&vtoc32, (void *)arg,
3306 			    sizeof (struct vtoc32), flag))
3307 				return (EFAULT);
3308 			break;
3309 			}
3310 
3311 		case DDI_MODEL_NONE:
3312 			if (ddi_copyout(&vt, (void *)arg,
3313 			    sizeof (struct vtoc), flag))
3314 				return (EFAULT);
3315 			break;
3316 		}
3317 		return (0);
3318 	}
3319 	case DKIOCINFO: {
3320 		struct dk_cinfo ci;
3321 		fake_disk_info(dev, &ci);
3322 		if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3323 			return (EFAULT);
3324 		return (0);
3325 	}
3326 	case DKIOCG_VIRTGEOM:
3327 	case DKIOCG_PHYGEOM:
3328 	case DKIOCGGEOM:
3329 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3330 		    sizeof (struct dk_geom), flag);
3331 		if (error)
3332 			return (EFAULT);
3333 		return (0);
3334 	case DKIOCSTATE:
3335 		/*
3336 		 * Normally, lofi devices are always in the INSERTED state.  If
3337 		 * a device is forcefully unmapped, then the device transitions
3338 		 * to the DKIO_DEV_GONE state.
3339 		 */
3340 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3341 		    flag) != 0)
3342 			return (EFAULT);
3343 
3344 		mutex_enter(&lsp->ls_vp_lock);
3345 		lsp->ls_vp_iocount++;
3346 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3347 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3348 		    !lsp->ls_vp_closereq) {
3349 			/*
3350 			 * By virtue of having the device open, we know that
3351 			 * 'lsp' will remain valid when we return.
3352 			 */
3353 			if (!cv_wait_sig(&lsp->ls_vp_cv,
3354 			    &lsp->ls_vp_lock)) {
3355 				lsp->ls_vp_iocount--;
3356 				cv_broadcast(&lsp->ls_vp_cv);
3357 				mutex_exit(&lsp->ls_vp_lock);
3358 				return (EINTR);
3359 			}
3360 		}
3361 
3362 		dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
3363 		    DKIO_INSERTED : DKIO_DEV_GONE);
3364 		lsp->ls_vp_iocount--;
3365 		cv_broadcast(&lsp->ls_vp_cv);
3366 		mutex_exit(&lsp->ls_vp_lock);
3367 
3368 		if (ddi_copyout(&dkstate, (void *)arg,
3369 		    sizeof (dkstate), flag) != 0)
3370 			return (EFAULT);
3371 		return (0);
3372 	case USCSICMD: {
3373 		struct uscsi_cmd uscmd;
3374 		union scsi_cdb cdb;
3375 
3376 		if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3377 			struct scsi_inquiry inq = {0};
3378 
3379 			lofi_create_inquiry(lsp, &inq);
3380 			if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3381 			    uscmd.uscsi_buflen, flag) != 0)
3382 				return (EFAULT);
3383 			return (0);
3384 		} else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3385 			struct scsi_capacity capacity;
3386 
3387 			capacity.capacity =
3388 			    BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3389 			    lsp->ls_lbshift);
3390 			capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3391 			if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3392 			    uscmd.uscsi_buflen, flag) != 0)
3393 				return (EFAULT);
3394 			return (0);
3395 		}
3396 
3397 		uscmd.uscsi_rqstatus = 0xff;
3398 #ifdef	_MULTI_DATAMODEL
3399 		switch (ddi_model_convert_from(flag & FMODELS)) {
3400 		case DDI_MODEL_ILP32: {
3401 			struct uscsi_cmd32 ucmd32;
3402 			uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3403 			if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3404 			    flag) != 0)
3405 				return (EFAULT);
3406 			break;
3407 		}
3408 		case DDI_MODEL_NONE:
3409 			if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3410 			    flag) != 0)
3411 				return (EFAULT);
3412 			break;
3413 		default:
3414 			return (EFAULT);
3415 		}
3416 #else
3417 		if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3418 			return (EFAULT);
3419 #endif	/* _MULTI_DATAMODEL */
3420 		return (0);
3421 	}
3422 	default:
3423 #ifdef DEBUG
3424 		cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3425 #endif	/* DEBUG */
3426 		return (ENOTTY);
3427 	}
3428 }
3429 
3430 static int
3431 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3432     char *name, caddr_t valuep, int *lengthp)
3433 {
3434 	struct lofi_state *lsp;
3435 	int rc;
3436 
3437 	lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3438 	if (lsp == NULL) {
3439 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3440 		    name, valuep, lengthp));
3441 	}
3442 
3443 	rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3444 	    name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL);
3445 	if (rc == DDI_PROP_SUCCESS)
3446 		return (rc);
3447 
3448 	return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags,
3449 	    name, valuep, lengthp));
3450 }
3451 
3452 static struct cb_ops lofi_cb_ops = {
3453 	lofi_open,		/* open */
3454 	lofi_close,		/* close */
3455 	lofi_strategy,		/* strategy */
3456 	nodev,			/* print */
3457 	nodev,			/* dump */
3458 	lofi_read,		/* read */
3459 	lofi_write,		/* write */
3460 	lofi_ioctl,		/* ioctl */
3461 	nodev,			/* devmap */
3462 	nodev,			/* mmap */
3463 	nodev,			/* segmap */
3464 	nochpoll,		/* poll */
3465 	lofi_prop_op,		/* prop_op */
3466 	0,			/* streamtab  */
3467 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
3468 	CB_REV,
3469 	lofi_aread,
3470 	lofi_awrite
3471 };
3472 
3473 static struct dev_ops lofi_ops = {
3474 	DEVO_REV,		/* devo_rev, */
3475 	0,			/* refcnt  */
3476 	lofi_info,		/* info */
3477 	nulldev,		/* identify */
3478 	nulldev,		/* probe */
3479 	lofi_attach,		/* attach */
3480 	lofi_detach,		/* detach */
3481 	nodev,			/* reset */
3482 	&lofi_cb_ops,		/* driver operations */
3483 	NULL,			/* no bus operations */
3484 	NULL,			/* power */
3485 	ddi_quiesce_not_needed,	/* quiesce */
3486 };
3487 
3488 static struct modldrv modldrv = {
3489 	&mod_driverops,
3490 	"loopback file driver",
3491 	&lofi_ops,
3492 };
3493 
3494 static struct modlinkage modlinkage = {
3495 	MODREV_1,
3496 	&modldrv,
3497 	NULL
3498 };
3499 
3500 int
3501 _init(void)
3502 {
3503 	int error;
3504 
3505 	list_create(&lofi_list, sizeof (struct lofi_state),
3506 	    offsetof(struct lofi_state, ls_list));
3507 
3508 	error = ddi_soft_state_init((void **)&lofi_statep,
3509 	    sizeof (struct lofi_state), 0);
3510 	if (error) {
3511 		list_destroy(&lofi_list);
3512 		return (error);
3513 	}
3514 
3515 	/*
3516 	 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3517 	 * we need to reserve space for cmlb minor numbers.
3518 	 * This will leave out 4096 id values on 32bit kernel, which should
3519 	 * still suffice.
3520 	 */
3521 	lofi_id = id_space_create("lofi_id", 1,
3522 	    (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3523 
3524 	if (lofi_id == NULL) {
3525 		ddi_soft_state_fini((void **)&lofi_statep);
3526 		list_destroy(&lofi_list);
3527 		return (DDI_FAILURE);
3528 	}
3529 
3530 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3531 
3532 	error = mod_install(&modlinkage);
3533 
3534 	if (error) {
3535 		id_space_destroy(lofi_id);
3536 		mutex_destroy(&lofi_lock);
3537 		ddi_soft_state_fini((void **)&lofi_statep);
3538 		list_destroy(&lofi_list);
3539 	}
3540 
3541 	return (error);
3542 }
3543 
3544 int
3545 _fini(void)
3546 {
3547 	int	error;
3548 
3549 	mutex_enter(&lofi_lock);
3550 
3551 	if (!list_is_empty(&lofi_list)) {
3552 		mutex_exit(&lofi_lock);
3553 		return (EBUSY);
3554 	}
3555 
3556 	mutex_exit(&lofi_lock);
3557 
3558 	error = mod_remove(&modlinkage);
3559 	if (error)
3560 		return (error);
3561 
3562 	mutex_destroy(&lofi_lock);
3563 	id_space_destroy(lofi_id);
3564 	ddi_soft_state_fini((void **)&lofi_statep);
3565 	list_destroy(&lofi_list);
3566 
3567 	return (error);
3568 }
3569 
3570 int
3571 _info(struct modinfo *modinfop)
3572 {
3573 	return (mod_info(&modlinkage, modinfop));
3574 }
3575