1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016 Andrey Sokolov 26 * Copyright 2016 Toomas Soome <tsoome@me.com> 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 /* 31 * lofi (loopback file) driver - allows you to attach a file to a device, 32 * which can then be accessed through that device. The simple model is that 33 * you tell lofi to open a file, and then use the block device you get as 34 * you would any block device. lofi translates access to the block device 35 * into I/O on the underlying file. This is mostly useful for 36 * mounting images of filesystems. 37 * 38 * lofi is controlled through /dev/lofictl - this is the only device exported 39 * during attach, and is instance number 0. lofiadm communicates with lofi 40 * through ioctls on this device. When a file is attached to lofi, block and 41 * character devices are exported in /dev/lofi and /dev/rlofi. These devices 42 * are identified by lofi instance number, and the instance number is also used 43 * as the name in /dev/lofi. 44 * 45 * Virtual disks, or, labeled lofi, implements virtual disk support to 46 * support partition table and related tools. Such mappings will cause 47 * block and character devices to be exported in /dev/dsk and /dev/rdsk 48 * directories. 49 * 50 * To support virtual disks, the instance number space is divided to two 51 * parts, upper part for instance number and lower part for minor number 52 * space to identify partitions and slices. The virtual disk support is 53 * implemented by stacking cmlb module. For virtual disks, the partition 54 * related ioctl calls are routed to cmlb module. Compression and encryption 55 * is not supported for virtual disks. 56 * 57 * Mapped devices are tracked with state structures handled with 58 * ddi_soft_state(9F) for simplicity. 59 * 60 * A file attached to lofi is opened when attached and not closed until 61 * explicitly detached from lofi. This seems more sensible than deferring 62 * the open until the /dev/lofi device is opened, for a number of reasons. 63 * One is that any failure is likely to be noticed by the person (or script) 64 * running lofiadm. Another is that it would be a security problem if the 65 * file was replaced by another one after being added but before being opened. 66 * 67 * The only hard part about lofi is the ioctls. In order to support things 68 * like 'newfs' on a lofi device, it needs to support certain disk ioctls. 69 * So it has to fake disk geometry and partition information. More may need 70 * to be faked if your favorite utility doesn't work and you think it should 71 * (fdformat doesn't work because it really wants to know the type of floppy 72 * controller to talk to, and that didn't seem easy to fake. Or possibly even 73 * necessary, since we have mkfs_pcfs now). 74 * 75 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To 76 * support simulation of hotplug events, an optional force flag is provided. 77 * If a lofi device is open when a force detach is requested, then the 78 * underlying file is closed and any subsequent operations return EIO. When the 79 * device is closed for the last time, it will be cleaned up at that time. In 80 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is 81 * detached but not removed. 82 * 83 * If detach was requested and lofi device is not open, we will perform 84 * unmap and remove the lofi instance. 85 * 86 * If the lofi device is open and the li_cleanup is set on ioctl request, 87 * we set ls_cleanup flag to notify the cleanup is requested, and the 88 * last lofi_close will perform the unmapping and this lofi instance will be 89 * removed. 90 * 91 * If the lofi device is open and the li_force is set on ioctl request, 92 * we set ls_cleanup flag to notify the cleanup is requested, 93 * we also set ls_vp_closereq to notify IO tasks to return EIO on new 94 * IO requests and wait in process IO count to become 0, indicating there 95 * are no more IO requests. Since ls_cleanup is set, the last lofi_close 96 * will perform unmap and this lofi instance will be removed. 97 * See also lofi_unmap_file() for details. 98 * 99 * Once ls_cleanup is set for the instance, we do not allow lofi_open() 100 * calls to succeed and can have last lofi_close() to remove the instance. 101 * 102 * Known problems: 103 * 104 * UFS logging. Mounting a UFS filesystem image "logging" 105 * works for basic copy testing but wedges during a build of ON through 106 * that image. Some deadlock in lufs holding the log mutex and then 107 * getting stuck on a buf. So for now, don't do that. 108 * 109 * Direct I/O. Since the filesystem data is being cached in the buffer 110 * cache, _and_ again in the underlying filesystem, it's tempting to 111 * enable direct I/O on the underlying file. Don't, because that deadlocks. 112 * I think to fix the cache-twice problem we might need filesystem support. 113 * 114 * Interesting things to do: 115 * 116 * Allow multiple files for each device. A poor-man's metadisk, basically. 117 * 118 * Pass-through ioctls on block devices. You can (though it's not 119 * documented), give lofi a block device as a file name. Then we shouldn't 120 * need to fake a geometry, however, it may be relevant if you're replacing 121 * metadisk, or using lofi to get crypto. 122 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 123 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. 124 * In fact this even makes sense if you have lofi "above" metadisk. 125 * 126 * Encryption: 127 * Each lofi device can have its own symmetric key and cipher. 128 * They are passed to us by lofiadm(1m) in the correct format for use 129 * with the misc/kcf crypto_* routines. 130 * 131 * Each block has its own IV, that is calculated in lofi_blk_mech(), based 132 * on the "master" key held in the lsp and the block number of the buffer. 133 */ 134 135 #include <sys/types.h> 136 #include <netinet/in.h> 137 #include <sys/sysmacros.h> 138 #include <sys/uio.h> 139 #include <sys/kmem.h> 140 #include <sys/cred.h> 141 #include <sys/mman.h> 142 #include <sys/errno.h> 143 #include <sys/aio_req.h> 144 #include <sys/stat.h> 145 #include <sys/file.h> 146 #include <sys/modctl.h> 147 #include <sys/conf.h> 148 #include <sys/debug.h> 149 #include <sys/vnode.h> 150 #include <sys/lofi.h> 151 #include <sys/lofi_impl.h> /* for cache structure */ 152 #include <sys/fcntl.h> 153 #include <sys/pathname.h> 154 #include <sys/filio.h> 155 #include <sys/fdio.h> 156 #include <sys/open.h> 157 #include <sys/disp.h> 158 #include <vm/seg_map.h> 159 #include <sys/ddi.h> 160 #include <sys/sunddi.h> 161 #include <sys/zmod.h> 162 #include <sys/id_space.h> 163 #include <sys/mkdev.h> 164 #include <sys/crypto/common.h> 165 #include <sys/crypto/api.h> 166 #include <sys/rctl.h> 167 #include <sys/vtoc.h> 168 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */ 169 #include <sys/scsi/impl/uscsi.h> 170 #include <sys/sysevent/dev.h> 171 #include <LzmaDec.h> 172 173 #define NBLOCKS_PROP_NAME "Nblocks" 174 #define SIZE_PROP_NAME "Size" 175 #define ZONE_PROP_NAME "zone" 176 177 #define SETUP_C_DATA(cd, buf, len) \ 178 (cd).cd_format = CRYPTO_DATA_RAW; \ 179 (cd).cd_offset = 0; \ 180 (cd).cd_miscdata = NULL; \ 181 (cd).cd_length = (len); \ 182 (cd).cd_raw.iov_base = (buf); \ 183 (cd).cd_raw.iov_len = (len); 184 185 #define UIO_CHECK(uio) \ 186 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ 187 ((uio)->uio_resid % DEV_BSIZE) != 0) { \ 188 return (EINVAL); \ 189 } 190 191 #define LOFI_TIMEOUT 30 192 193 static void *lofi_statep; 194 static kmutex_t lofi_lock; /* state lock */ 195 static id_space_t *lofi_id; /* lofi ID values */ 196 static list_t lofi_list; 197 static zone_key_t lofi_zone_key; 198 199 /* 200 * Because lofi_taskq_nthreads limits the actual swamping of the device, the 201 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively 202 * high. If we want to be assured that the underlying device is always busy, 203 * we must be sure that the number of bytes enqueued when the number of 204 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for 205 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should 206 * set maxalloc to be the maximum throughput (in bytes per second) of the 207 * underlying device divided by the minimum I/O size. We assume a realistic 208 * maximum throughput of one hundred megabytes per second; we set maxalloc on 209 * the lofi task queue to be 104857600 divided by DEV_BSIZE. 210 */ 211 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; 212 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ 213 214 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; 215 216 /* 217 * To avoid decompressing data in a compressed segment multiple times 218 * when accessing small parts of a segment's data, we cache and reuse 219 * the uncompressed segment's data. 220 * 221 * A single cached segment is sufficient to avoid lots of duplicate 222 * segment decompress operations. A small cache size also reduces the 223 * memory footprint. 224 * 225 * lofi_max_comp_cache is the maximum number of decompressed data segments 226 * cached for each compressed lofi image. It can be set to 0 to disable 227 * caching. 228 */ 229 230 uint32_t lofi_max_comp_cache = 1; 231 232 static int gzip_decompress(void *src, size_t srclen, void *dst, 233 size_t *destlen, int level); 234 235 static int lzma_decompress(void *src, size_t srclen, void *dst, 236 size_t *dstlen, int level); 237 238 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { 239 {gzip_decompress, NULL, 6, "gzip"}, /* default */ 240 {gzip_decompress, NULL, 6, "gzip-6"}, 241 {gzip_decompress, NULL, 9, "gzip-9"}, 242 {lzma_decompress, NULL, 0, "lzma"} 243 }; 244 245 static void lofi_strategy_task(void *); 246 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, 247 size_t, void *); 248 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *); 249 250 struct cmlb_tg_ops lofi_tg_ops = { 251 TG_DK_OPS_VERSION_1, 252 lofi_tg_rdwr, 253 lofi_tg_getinfo 254 }; 255 256 /*ARGSUSED*/ 257 static void 258 *SzAlloc(void *p, size_t size) 259 { 260 return (kmem_alloc(size, KM_SLEEP)); 261 } 262 263 /*ARGSUSED*/ 264 static void 265 SzFree(void *p, void *address, size_t size) 266 { 267 kmem_free(address, size); 268 } 269 270 static ISzAlloc g_Alloc = { SzAlloc, SzFree }; 271 272 /* 273 * Free data referenced by the linked list of cached uncompressed 274 * segments. 275 */ 276 static void 277 lofi_free_comp_cache(struct lofi_state *lsp) 278 { 279 struct lofi_comp_cache *lc; 280 281 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { 282 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 283 kmem_free(lc, sizeof (struct lofi_comp_cache)); 284 lsp->ls_comp_cache_count--; 285 } 286 ASSERT(lsp->ls_comp_cache_count == 0); 287 } 288 289 static int 290 is_opened(struct lofi_state *lsp) 291 { 292 int i; 293 boolean_t last = B_TRUE; 294 295 ASSERT(MUTEX_HELD(&lofi_lock)); 296 for (i = 0; i < LOFI_PART_MAX; i++) { 297 if (lsp->ls_open_lyr[i]) { 298 last = B_FALSE; 299 break; 300 } 301 } 302 303 for (i = 0; last && (i < OTYP_LYR); i++) { 304 if (lsp->ls_open_reg[i]) { 305 last = B_FALSE; 306 } 307 } 308 309 return (!last); 310 } 311 312 static void 313 lofi_set_cleanup(struct lofi_state *lsp) 314 { 315 ASSERT(MUTEX_HELD(&lofi_lock)); 316 317 lsp->ls_cleanup = B_TRUE; 318 319 /* wake up any threads waiting on dkiocstate */ 320 cv_broadcast(&lsp->ls_vp_cv); 321 } 322 323 static void 324 lofi_free_crypto(struct lofi_state *lsp) 325 { 326 ASSERT(MUTEX_HELD(&lofi_lock)); 327 328 if (lsp->ls_crypto_enabled) { 329 /* 330 * Clean up the crypto state so that it doesn't hang around 331 * in memory after we are done with it. 332 */ 333 if (lsp->ls_key.ck_data != NULL) { 334 bzero(lsp->ls_key.ck_data, 335 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 336 kmem_free(lsp->ls_key.ck_data, 337 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 338 lsp->ls_key.ck_data = NULL; 339 lsp->ls_key.ck_length = 0; 340 } 341 342 if (lsp->ls_mech.cm_param != NULL) { 343 kmem_free(lsp->ls_mech.cm_param, 344 lsp->ls_mech.cm_param_len); 345 lsp->ls_mech.cm_param = NULL; 346 lsp->ls_mech.cm_param_len = 0; 347 } 348 349 if (lsp->ls_iv_mech.cm_param != NULL) { 350 kmem_free(lsp->ls_iv_mech.cm_param, 351 lsp->ls_iv_mech.cm_param_len); 352 lsp->ls_iv_mech.cm_param = NULL; 353 lsp->ls_iv_mech.cm_param_len = 0; 354 } 355 356 mutex_destroy(&lsp->ls_crypto_lock); 357 } 358 } 359 360 /* ARGSUSED */ 361 static int 362 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start, 363 size_t length, void *tg_cookie) 364 { 365 struct lofi_state *lsp; 366 buf_t *bp; 367 int instance; 368 int rv = 0; 369 370 instance = ddi_get_instance(dip); 371 if (instance == 0) /* control node does not have disk */ 372 return (ENXIO); 373 374 lsp = ddi_get_soft_state(lofi_statep, instance); 375 376 if (lsp == NULL) 377 return (ENXIO); 378 379 if (cmd != TG_READ && cmd != TG_WRITE) 380 return (EINVAL); 381 382 /* 383 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 384 */ 385 mutex_enter(&lsp->ls_vp_lock); 386 while (lsp->ls_vp_ready == B_FALSE) 387 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 388 mutex_exit(&lsp->ls_vp_lock); 389 390 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) { 391 /* We can only transfer whole blocks at a time! */ 392 return (EINVAL); 393 } 394 395 bp = getrbuf(KM_SLEEP); 396 397 if (cmd == TG_READ) { 398 bp->b_flags = B_READ; 399 } else { 400 if (lsp->ls_readonly == B_TRUE) { 401 freerbuf(bp); 402 return (EROFS); 403 } 404 bp->b_flags = B_WRITE; 405 } 406 407 bp->b_un.b_addr = bufaddr; 408 bp->b_bcount = length; 409 bp->b_lblkno = start; 410 bp->b_private = NULL; 411 bp->b_edev = lsp->ls_dev; 412 413 if (lsp->ls_kstat) { 414 mutex_enter(lsp->ls_kstat->ks_lock); 415 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 416 mutex_exit(lsp->ls_kstat->ks_lock); 417 } 418 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 419 (void) biowait(bp); 420 421 rv = geterror(bp); 422 freerbuf(bp); 423 return (rv); 424 } 425 426 /* 427 * Get device geometry info for cmlb. 428 * 429 * We have mapped disk image as virtual block device and have to report 430 * physical/virtual geometry to cmlb. 431 * 432 * So we have two principal cases: 433 * 1. Uninitialised image without any existing labels, 434 * for this case we fabricate the data based on mapped image. 435 * 2. Image with existing label information. 436 * Since we have no information how the image was created (it may be 437 * dump from some physical device), we need to rely on label information 438 * from image, or we get "corrupted label" errors. 439 * NOTE: label can be MBR, MBR+SMI, GPT 440 */ 441 static int 442 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie) 443 { 444 struct lofi_state *lsp; 445 int instance; 446 int ashift; 447 448 _NOTE(ARGUNUSED(tg_cookie)); 449 instance = ddi_get_instance(dip); 450 if (instance == 0) /* control device has no storage */ 451 return (ENXIO); 452 453 lsp = ddi_get_soft_state(lofi_statep, instance); 454 455 if (lsp == NULL) 456 return (ENXIO); 457 458 /* 459 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 460 * 461 * When mapping is created, new lofi instance is created and 462 * lofi_attach() will call cmlb_attach() as part of the procedure 463 * to set the mapping up. This chain of events will happen in 464 * the same thread. 465 * Since cmlb_attach() will call lofi_tg_getinfo to get 466 * capacity, we return error on that call if cookie is set, 467 * otherwise lofi_attach will be stuck as the mapping is not yet 468 * finalized and lofi is not yet ready. 469 * Note, such error is not fatal for cmlb, as the label setup 470 * will be finalized when cmlb_validate() is called. 471 */ 472 mutex_enter(&lsp->ls_vp_lock); 473 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) { 474 mutex_exit(&lsp->ls_vp_lock); 475 return (ENXIO); 476 } 477 while (lsp->ls_vp_ready == B_FALSE) 478 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 479 mutex_exit(&lsp->ls_vp_lock); 480 481 ashift = lsp->ls_lbshift; 482 483 switch (cmd) { 484 case TG_GETPHYGEOM: { 485 cmlb_geom_t *geomp = arg; 486 487 geomp->g_capacity = 488 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 489 geomp->g_nsect = lsp->ls_dkg.dkg_nsect; 490 geomp->g_nhead = lsp->ls_dkg.dkg_nhead; 491 geomp->g_acyl = lsp->ls_dkg.dkg_acyl; 492 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl; 493 geomp->g_secsize = (1U << ashift); 494 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv; 495 geomp->g_rpm = lsp->ls_dkg.dkg_rpm; 496 return (0); 497 } 498 499 case TG_GETCAPACITY: 500 *(diskaddr_t *)arg = 501 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 502 return (0); 503 504 case TG_GETBLOCKSIZE: 505 *(uint32_t *)arg = (1U << ashift); 506 return (0); 507 508 case TG_GETATTR: { 509 tg_attribute_t *tgattr = arg; 510 511 tgattr->media_is_writable = !lsp->ls_readonly; 512 tgattr->media_is_solid_state = B_FALSE; 513 tgattr->media_is_rotational = B_FALSE; 514 return (0); 515 } 516 517 default: 518 return (EINVAL); 519 } 520 } 521 522 static void 523 lofi_destroy(struct lofi_state *lsp, cred_t *credp) 524 { 525 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 526 int i; 527 528 ASSERT(MUTEX_HELD(&lofi_lock)); 529 530 /* 531 * Before we can start to release the other resources, 532 * make sure we have all tasks completed and taskq removed. 533 */ 534 if (lsp->ls_taskq != NULL) { 535 taskq_destroy(lsp->ls_taskq); 536 lsp->ls_taskq = NULL; 537 } 538 539 list_remove(&lofi_list, lsp); 540 541 lofi_free_crypto(lsp); 542 543 /* 544 * Free pre-allocated compressed buffers 545 */ 546 if (lsp->ls_comp_bufs != NULL) { 547 for (i = 0; i < lofi_taskq_nthreads; i++) { 548 if (lsp->ls_comp_bufs[i].bufsize > 0) 549 kmem_free(lsp->ls_comp_bufs[i].buf, 550 lsp->ls_comp_bufs[i].bufsize); 551 } 552 kmem_free(lsp->ls_comp_bufs, 553 sizeof (struct compbuf) * lofi_taskq_nthreads); 554 } 555 556 if (lsp->ls_vp != NULL) { 557 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_FREE, credp, NULL); 558 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 559 1, 0, credp, NULL); 560 VN_RELE(lsp->ls_vp); 561 } 562 if (lsp->ls_stacked_vp != lsp->ls_vp) 563 VN_RELE(lsp->ls_stacked_vp); 564 lsp->ls_vp = lsp->ls_stacked_vp = NULL; 565 566 if (lsp->ls_kstat != NULL) { 567 kstat_delete(lsp->ls_kstat); 568 lsp->ls_kstat = NULL; 569 } 570 571 /* 572 * Free cached decompressed segment data 573 */ 574 lofi_free_comp_cache(lsp); 575 list_destroy(&lsp->ls_comp_cache); 576 577 if (lsp->ls_uncomp_seg_sz > 0) { 578 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); 579 lsp->ls_uncomp_seg_sz = 0; 580 } 581 582 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1); 583 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 584 585 mutex_destroy(&lsp->ls_comp_cache_lock); 586 mutex_destroy(&lsp->ls_comp_bufs_lock); 587 mutex_destroy(&lsp->ls_kstat_lock); 588 mutex_destroy(&lsp->ls_vp_lock); 589 cv_destroy(&lsp->ls_vp_cv); 590 lsp->ls_vp_ready = B_FALSE; 591 lsp->ls_vp_closereq = B_FALSE; 592 593 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp); 594 (void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE); 595 id_free(lofi_id, id); 596 } 597 598 static void 599 lofi_free_dev(struct lofi_state *lsp) 600 { 601 ASSERT(MUTEX_HELD(&lofi_lock)); 602 603 if (lsp->ls_cmlbhandle != NULL) { 604 cmlb_invalidate(lsp->ls_cmlbhandle, 0); 605 cmlb_detach(lsp->ls_cmlbhandle, 0); 606 cmlb_free_handle(&lsp->ls_cmlbhandle); 607 lsp->ls_cmlbhandle = NULL; 608 } 609 (void) ddi_prop_remove_all(lsp->ls_dip); 610 ddi_remove_minor_node(lsp->ls_dip, NULL); 611 } 612 613 /*ARGSUSED*/ 614 static void 615 lofi_zone_shutdown(zoneid_t zoneid, void *arg) 616 { 617 struct lofi_state *lsp; 618 struct lofi_state *next; 619 620 mutex_enter(&lofi_lock); 621 622 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) { 623 624 /* lofi_destroy() frees lsp */ 625 next = list_next(&lofi_list, lsp); 626 627 if (lsp->ls_zone.zref_zone->zone_id != zoneid) 628 continue; 629 630 /* 631 * No in-zone processes are running, but something has this 632 * open. It's either a global zone process, or a lofi 633 * mount. In either case we set ls_cleanup so the last 634 * user destroys the device. 635 */ 636 if (is_opened(lsp)) { 637 lofi_set_cleanup(lsp); 638 } else { 639 lofi_free_dev(lsp); 640 lofi_destroy(lsp, kcred); 641 } 642 } 643 644 mutex_exit(&lofi_lock); 645 } 646 647 /*ARGSUSED*/ 648 static int 649 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) 650 { 651 int id; 652 minor_t part; 653 uint64_t mask; 654 diskaddr_t nblks; 655 diskaddr_t lba; 656 boolean_t ndelay; 657 658 struct lofi_state *lsp; 659 660 if (otyp >= OTYPCNT) 661 return (EINVAL); 662 663 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE; 664 665 /* 666 * lofiadm -a /dev/lofi/1 gets us here. 667 */ 668 if (mutex_owner(&lofi_lock) == curthread) 669 return (EINVAL); 670 671 mutex_enter(&lofi_lock); 672 673 id = LOFI_MINOR2ID(getminor(*devp)); 674 part = LOFI_PART(getminor(*devp)); 675 mask = (1U << part); 676 677 /* master control device */ 678 if (id == 0) { 679 mutex_exit(&lofi_lock); 680 return (0); 681 } 682 683 /* otherwise, the mapping should already exist */ 684 lsp = ddi_get_soft_state(lofi_statep, id); 685 if (lsp == NULL) { 686 mutex_exit(&lofi_lock); 687 return (EINVAL); 688 } 689 690 if (lsp->ls_cleanup == B_TRUE) { 691 mutex_exit(&lofi_lock); 692 return (ENXIO); 693 } 694 695 if (lsp->ls_vp == NULL) { 696 mutex_exit(&lofi_lock); 697 return (ENXIO); 698 } 699 700 if (lsp->ls_readonly && (flag & FWRITE)) { 701 mutex_exit(&lofi_lock); 702 return (EROFS); 703 } 704 705 if ((lsp->ls_open_excl) & (mask)) { 706 mutex_exit(&lofi_lock); 707 return (EBUSY); 708 } 709 710 if (flag & FEXCL) { 711 if (lsp->ls_open_lyr[part]) { 712 mutex_exit(&lofi_lock); 713 return (EBUSY); 714 } 715 for (int i = 0; i < OTYP_LYR; i++) { 716 if (lsp->ls_open_reg[i] & mask) { 717 mutex_exit(&lofi_lock); 718 return (EBUSY); 719 } 720 } 721 } 722 723 if (lsp->ls_cmlbhandle != NULL) { 724 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) { 725 /* 726 * non-blocking opens are allowed to succeed to 727 * support format and fdisk to create partitioning. 728 */ 729 if (!ndelay) { 730 mutex_exit(&lofi_lock); 731 return (ENXIO); 732 } 733 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba, 734 NULL, NULL, 0) == 0) { 735 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) { 736 mutex_exit(&lofi_lock); 737 return (ENXIO); 738 } 739 } else if (!ndelay) { 740 mutex_exit(&lofi_lock); 741 return (ENXIO); 742 } 743 } 744 745 if (otyp == OTYP_LYR) { 746 lsp->ls_open_lyr[part]++; 747 } else { 748 lsp->ls_open_reg[otyp] |= mask; 749 } 750 if (flag & FEXCL) { 751 lsp->ls_open_excl |= mask; 752 } 753 754 mutex_exit(&lofi_lock); 755 return (0); 756 } 757 758 /*ARGSUSED*/ 759 static int 760 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) 761 { 762 minor_t part; 763 int id; 764 uint64_t mask; 765 struct lofi_state *lsp; 766 767 id = LOFI_MINOR2ID(getminor(dev)); 768 part = LOFI_PART(getminor(dev)); 769 mask = (1U << part); 770 771 mutex_enter(&lofi_lock); 772 lsp = ddi_get_soft_state(lofi_statep, id); 773 if (lsp == NULL) { 774 mutex_exit(&lofi_lock); 775 return (EINVAL); 776 } 777 778 if (id == 0) { 779 mutex_exit(&lofi_lock); 780 return (0); 781 } 782 783 if (lsp->ls_open_excl & mask) 784 lsp->ls_open_excl &= ~mask; 785 786 if (otyp == OTYP_LYR) { 787 lsp->ls_open_lyr[part]--; 788 } else { 789 lsp->ls_open_reg[otyp] &= ~mask; 790 } 791 792 /* 793 * If we forcibly closed the underlying device (li_force), or 794 * asked for cleanup (li_cleanup), finish up if we're the last 795 * out of the door. 796 */ 797 if (!is_opened(lsp) && 798 (lsp->ls_cleanup == B_TRUE || lsp->ls_vp == NULL)) { 799 lofi_free_dev(lsp); 800 lofi_destroy(lsp, credp); 801 } 802 803 mutex_exit(&lofi_lock); 804 return (0); 805 } 806 807 /* 808 * Sets the mechanism's initialization vector (IV) if one is needed. 809 * The IV is computed from the data block number. lsp->ls_mech is 810 * altered so that: 811 * lsp->ls_mech.cm_param_len is set to the IV len. 812 * lsp->ls_mech.cm_param is set to the IV. 813 */ 814 static int 815 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) 816 { 817 int ret; 818 crypto_data_t cdata; 819 char *iv; 820 size_t iv_len; 821 size_t min; 822 void *data; 823 size_t datasz; 824 825 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock)); 826 827 if (lsp == NULL) 828 return (CRYPTO_DEVICE_ERROR); 829 830 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ 831 if (lsp->ls_iv_type == IVM_NONE) { 832 return (CRYPTO_SUCCESS); 833 } 834 835 /* 836 * if kmem already alloced from previous call and it's the same size 837 * we need now, just recycle it; allocate new kmem only if we have to 838 */ 839 if (lsp->ls_mech.cm_param == NULL || 840 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { 841 iv_len = lsp->ls_iv_len; 842 iv = kmem_zalloc(iv_len, KM_SLEEP); 843 } else { 844 iv_len = lsp->ls_mech.cm_param_len; 845 iv = lsp->ls_mech.cm_param; 846 bzero(iv, iv_len); 847 } 848 849 switch (lsp->ls_iv_type) { 850 case IVM_ENC_BLKNO: 851 /* iv is not static, lblkno changes each time */ 852 data = &lblkno; 853 datasz = sizeof (lblkno); 854 break; 855 default: 856 data = 0; 857 datasz = 0; 858 break; 859 } 860 861 /* 862 * write blkno into the iv buffer padded on the left in case 863 * blkno ever grows bigger than its current longlong_t size 864 * or a variation other than blkno is used for the iv data 865 */ 866 min = MIN(datasz, iv_len); 867 bcopy(data, iv + (iv_len - min), min); 868 869 /* encrypt the data in-place to get the IV */ 870 SETUP_C_DATA(cdata, iv, iv_len); 871 872 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, 873 NULL, NULL, NULL); 874 if (ret != CRYPTO_SUCCESS) { 875 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", 876 lblkno, ret); 877 if (lsp->ls_mech.cm_param != iv) 878 kmem_free(iv, iv_len); 879 880 return (ret); 881 } 882 883 /* clean up the iv from the last computation */ 884 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) 885 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); 886 887 lsp->ls_mech.cm_param_len = iv_len; 888 lsp->ls_mech.cm_param = iv; 889 890 return (CRYPTO_SUCCESS); 891 } 892 893 /* 894 * Performs encryption and decryption of a chunk of data of size "len", 895 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of 896 * DEV_BSIZE. 897 */ 898 static int 899 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, 900 caddr_t ciphertext, size_t len, boolean_t op_encrypt) 901 { 902 crypto_data_t cdata; 903 crypto_data_t wdata; 904 int ret; 905 longlong_t lblkno = bp->b_lblkno; 906 907 mutex_enter(&lsp->ls_crypto_lock); 908 909 /* 910 * though we could encrypt/decrypt entire "len" chunk of data, we need 911 * to break it into DEV_BSIZE pieces to capture blkno incrementing 912 */ 913 SETUP_C_DATA(cdata, plaintext, len); 914 cdata.cd_length = DEV_BSIZE; 915 if (ciphertext != NULL) { /* not in-place crypto */ 916 SETUP_C_DATA(wdata, ciphertext, len); 917 wdata.cd_length = DEV_BSIZE; 918 } 919 920 do { 921 ret = lofi_blk_mech(lsp, lblkno); 922 if (ret != CRYPTO_SUCCESS) 923 continue; 924 925 if (op_encrypt) { 926 ret = crypto_encrypt(&lsp->ls_mech, &cdata, 927 &lsp->ls_key, NULL, 928 ((ciphertext != NULL) ? &wdata : NULL), NULL); 929 } else { 930 ret = crypto_decrypt(&lsp->ls_mech, &cdata, 931 &lsp->ls_key, NULL, 932 ((ciphertext != NULL) ? &wdata : NULL), NULL); 933 } 934 935 cdata.cd_offset += DEV_BSIZE; 936 if (ciphertext != NULL) 937 wdata.cd_offset += DEV_BSIZE; 938 lblkno++; 939 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); 940 941 mutex_exit(&lsp->ls_crypto_lock); 942 943 if (ret != CRYPTO_SUCCESS) { 944 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", 945 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", 946 lblkno, ret); 947 } 948 949 return (ret); 950 } 951 952 #define RDWR_RAW 1 953 #define RDWR_BCOPY 2 954 955 static int 956 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 957 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) 958 { 959 ssize_t resid; 960 int isread; 961 int error; 962 963 /* 964 * Handles reads/writes for both plain and encrypted lofi 965 * Note: offset is already shifted by lsp->ls_crypto_offset 966 * when it gets here. 967 */ 968 969 isread = bp->b_flags & B_READ; 970 if (isread) { 971 if (method == RDWR_BCOPY) { 972 /* DO NOT update bp->b_resid for bcopy */ 973 bcopy(bcopy_locn, bufaddr, len); 974 error = 0; 975 } else { /* RDWR_RAW */ 976 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, 977 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 978 &resid); 979 bp->b_resid = resid; 980 } 981 if (lsp->ls_crypto_enabled && error == 0) { 982 if (lofi_crypto(lsp, bp, bufaddr, NULL, len, 983 B_FALSE) != CRYPTO_SUCCESS) { 984 /* 985 * XXX: original code didn't set residual 986 * back to len because no error was expected 987 * from bcopy() if encryption is not enabled 988 */ 989 if (method != RDWR_BCOPY) 990 bp->b_resid = len; 991 error = EIO; 992 } 993 } 994 return (error); 995 } else { 996 void *iobuf = bufaddr; 997 998 if (lsp->ls_crypto_enabled) { 999 /* don't do in-place crypto to keep bufaddr intact */ 1000 iobuf = kmem_alloc(len, KM_SLEEP); 1001 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, 1002 B_TRUE) != CRYPTO_SUCCESS) { 1003 kmem_free(iobuf, len); 1004 if (method != RDWR_BCOPY) 1005 bp->b_resid = len; 1006 return (EIO); 1007 } 1008 } 1009 if (method == RDWR_BCOPY) { 1010 /* DO NOT update bp->b_resid for bcopy */ 1011 bcopy(iobuf, bcopy_locn, len); 1012 error = 0; 1013 } else { /* RDWR_RAW */ 1014 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, 1015 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 1016 &resid); 1017 bp->b_resid = resid; 1018 } 1019 if (lsp->ls_crypto_enabled) { 1020 kmem_free(iobuf, len); 1021 } 1022 return (error); 1023 } 1024 } 1025 1026 static int 1027 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 1028 struct lofi_state *lsp) 1029 { 1030 int error; 1031 offset_t alignedoffset, mapoffset; 1032 size_t xfersize; 1033 int isread; 1034 int smflags; 1035 caddr_t mapaddr; 1036 size_t len; 1037 enum seg_rw srw; 1038 int save_error; 1039 1040 /* 1041 * Note: offset is already shifted by lsp->ls_crypto_offset 1042 * when it gets here. 1043 */ 1044 if (lsp->ls_crypto_enabled) 1045 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); 1046 1047 /* 1048 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on 1049 * an 8K boundary, but the buf transfer address may not be 1050 * aligned on more than a 512-byte boundary (we don't enforce 1051 * that even though we could). This matters since the initial 1052 * part of the transfer may not start at offset 0 within the 1053 * segmap'd chunk. So we have to compensate for that with 1054 * 'mapoffset'. Subsequent chunks always start off at the 1055 * beginning, and the last is capped by b_resid 1056 * 1057 * Visually, where "|" represents page map boundaries: 1058 * alignedoffset (mapaddr begins at this segmap boundary) 1059 * | offset (from beginning of file) 1060 * | | len 1061 * v v v 1062 * ===|====X========|====...======|========X====|==== 1063 * /-------------...---------------/ 1064 * ^ bp->b_bcount/bp->b_resid at start 1065 * /----/--------/----...------/--------/ 1066 * ^ ^ ^ ^ ^ 1067 * | | | | nth xfersize (<= MAXBSIZE) 1068 * | | 2nd thru n-1st xfersize (= MAXBSIZE) 1069 * | 1st xfersize (<= MAXBSIZE) 1070 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) 1071 * 1072 * Notes: "alignedoffset" is "offset" rounded down to nearest 1073 * MAXBSIZE boundary. "len" is next page boundary of size 1074 * PAGESIZE after "alignedoffset". 1075 */ 1076 mapoffset = offset & MAXBOFFSET; 1077 alignedoffset = offset - mapoffset; 1078 bp->b_resid = bp->b_bcount; 1079 isread = bp->b_flags & B_READ; 1080 srw = isread ? S_READ : S_WRITE; 1081 do { 1082 xfersize = MIN(lsp->ls_vp_comp_size - offset, 1083 MIN(MAXBSIZE - mapoffset, bp->b_resid)); 1084 len = roundup(mapoffset + xfersize, PAGESIZE); 1085 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, 1086 alignedoffset, MAXBSIZE, 1, srw); 1087 /* 1088 * Now fault in the pages. This lets us check 1089 * for errors before we reference mapaddr and 1090 * try to resolve the fault in bcopy (which would 1091 * panic instead). And this can easily happen, 1092 * particularly if you've lofi'd a file over NFS 1093 * and someone deletes the file on the server. 1094 */ 1095 error = segmap_fault(kas.a_hat, segkmap, mapaddr, 1096 len, F_SOFTLOCK, srw); 1097 if (error) { 1098 (void) segmap_release(segkmap, mapaddr, 0); 1099 if (FC_CODE(error) == FC_OBJERR) 1100 error = FC_ERRNO(error); 1101 else 1102 error = EIO; 1103 break; 1104 } 1105 /* error may be non-zero for encrypted lofi */ 1106 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, 1107 RDWR_BCOPY, mapaddr + mapoffset); 1108 if (error == 0) { 1109 bp->b_resid -= xfersize; 1110 bufaddr += xfersize; 1111 offset += xfersize; 1112 } 1113 smflags = 0; 1114 if (isread) { 1115 smflags |= SM_FREE; 1116 /* 1117 * If we're reading an entire page starting 1118 * at a page boundary, there's a good chance 1119 * we won't need it again. Put it on the 1120 * head of the freelist. 1121 */ 1122 if (mapoffset == 0 && xfersize == MAXBSIZE) 1123 smflags |= SM_DONTNEED; 1124 } else { 1125 /* 1126 * Write back good pages, it is okay to 1127 * always release asynchronous here as we'll 1128 * follow with VOP_FSYNC for B_SYNC buffers. 1129 */ 1130 if (error == 0) 1131 smflags |= SM_WRITE | SM_ASYNC; 1132 } 1133 (void) segmap_fault(kas.a_hat, segkmap, mapaddr, 1134 len, F_SOFTUNLOCK, srw); 1135 save_error = segmap_release(segkmap, mapaddr, smflags); 1136 if (error == 0) 1137 error = save_error; 1138 /* only the first map may start partial */ 1139 mapoffset = 0; 1140 alignedoffset += MAXBSIZE; 1141 } while ((error == 0) && (bp->b_resid > 0) && 1142 (offset < lsp->ls_vp_comp_size)); 1143 1144 return (error); 1145 } 1146 1147 /* 1148 * Check if segment seg_index is present in the decompressed segment 1149 * data cache. 1150 * 1151 * Returns a pointer to the decompressed segment data cache entry if 1152 * found, and NULL when decompressed data for this segment is not yet 1153 * cached. 1154 */ 1155 static struct lofi_comp_cache * 1156 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) 1157 { 1158 struct lofi_comp_cache *lc; 1159 1160 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1161 1162 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; 1163 lc = list_next(&lsp->ls_comp_cache, lc)) { 1164 if (lc->lc_index == seg_index) { 1165 /* 1166 * Decompressed segment data was found in the 1167 * cache. 1168 * 1169 * The cache uses an LRU replacement strategy; 1170 * move the entry to head of list. 1171 */ 1172 list_remove(&lsp->ls_comp_cache, lc); 1173 list_insert_head(&lsp->ls_comp_cache, lc); 1174 return (lc); 1175 } 1176 } 1177 return (NULL); 1178 } 1179 1180 /* 1181 * Add the data for a decompressed segment at segment index 1182 * seg_index to the cache of the decompressed segments. 1183 * 1184 * Returns a pointer to the cache element structure in case 1185 * the data was added to the cache; returns NULL when the data 1186 * wasn't cached. 1187 */ 1188 static struct lofi_comp_cache * 1189 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, 1190 uchar_t *data) 1191 { 1192 struct lofi_comp_cache *lc; 1193 1194 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1195 1196 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { 1197 lc = list_remove_tail(&lsp->ls_comp_cache); 1198 ASSERT(lc != NULL); 1199 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1200 kmem_free(lc, sizeof (struct lofi_comp_cache)); 1201 lsp->ls_comp_cache_count--; 1202 } 1203 1204 /* 1205 * Do not cache when disabled by tunable variable 1206 */ 1207 if (lofi_max_comp_cache == 0) 1208 return (NULL); 1209 1210 /* 1211 * When the cache has not yet reached the maximum allowed 1212 * number of segments, allocate a new cache element. 1213 * Otherwise the cache is full; reuse the last list element 1214 * (LRU) for caching the decompressed segment data. 1215 * 1216 * The cache element for the new decompressed segment data is 1217 * added to the head of the list. 1218 */ 1219 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { 1220 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); 1221 lc->lc_data = NULL; 1222 list_insert_head(&lsp->ls_comp_cache, lc); 1223 lsp->ls_comp_cache_count++; 1224 } else { 1225 lc = list_remove_tail(&lsp->ls_comp_cache); 1226 if (lc == NULL) 1227 return (NULL); 1228 list_insert_head(&lsp->ls_comp_cache, lc); 1229 } 1230 1231 /* 1232 * Free old uncompressed segment data when reusing a cache 1233 * entry. 1234 */ 1235 if (lc->lc_data != NULL) 1236 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1237 1238 lc->lc_data = data; 1239 lc->lc_index = seg_index; 1240 return (lc); 1241 } 1242 1243 1244 /*ARGSUSED*/ 1245 static int 1246 gzip_decompress(void *src, size_t srclen, void *dst, 1247 size_t *dstlen, int level) 1248 { 1249 ASSERT(*dstlen >= srclen); 1250 1251 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) 1252 return (-1); 1253 return (0); 1254 } 1255 1256 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) 1257 /*ARGSUSED*/ 1258 static int 1259 lzma_decompress(void *src, size_t srclen, void *dst, 1260 size_t *dstlen, int level) 1261 { 1262 size_t insizepure; 1263 void *actual_src; 1264 ELzmaStatus status; 1265 1266 insizepure = srclen - LZMA_HEADER_SIZE; 1267 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); 1268 1269 if (LzmaDecode((Byte *)dst, (size_t *)dstlen, 1270 (const Byte *)actual_src, &insizepure, 1271 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, 1272 &g_Alloc) != SZ_OK) { 1273 return (-1); 1274 } 1275 return (0); 1276 } 1277 1278 /* 1279 * This is basically what strategy used to be before we found we 1280 * needed task queues. 1281 */ 1282 static void 1283 lofi_strategy_task(void *arg) 1284 { 1285 struct buf *bp = (struct buf *)arg; 1286 int error; 1287 int syncflag = 0; 1288 struct lofi_state *lsp; 1289 offset_t offset; 1290 caddr_t bufaddr; 1291 size_t len; 1292 size_t xfersize; 1293 boolean_t bufinited = B_FALSE; 1294 1295 lsp = ddi_get_soft_state(lofi_statep, 1296 LOFI_MINOR2ID(getminor(bp->b_edev))); 1297 1298 if (lsp == NULL) { 1299 error = ENXIO; 1300 goto errout; 1301 } 1302 if (lsp->ls_kstat) { 1303 mutex_enter(lsp->ls_kstat->ks_lock); 1304 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); 1305 mutex_exit(lsp->ls_kstat->ks_lock); 1306 } 1307 1308 mutex_enter(&lsp->ls_vp_lock); 1309 lsp->ls_vp_iocount++; 1310 mutex_exit(&lsp->ls_vp_lock); 1311 1312 bp_mapin(bp); 1313 bufaddr = bp->b_un.b_addr; 1314 offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private) 1315 << lsp->ls_lbshift; /* offset within file */ 1316 if (lsp->ls_crypto_enabled) { 1317 /* encrypted data really begins after crypto header */ 1318 offset += lsp->ls_crypto_offset; 1319 } 1320 len = bp->b_bcount; 1321 bufinited = B_TRUE; 1322 1323 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1324 error = EIO; 1325 goto errout; 1326 } 1327 1328 /* 1329 * If we're writing and the buffer was not B_ASYNC 1330 * we'll follow up with a VOP_FSYNC() to force any 1331 * asynchronous I/O to stable storage. 1332 */ 1333 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) 1334 syncflag = FSYNC; 1335 1336 /* 1337 * We used to always use vn_rdwr here, but we cannot do that because 1338 * we might decide to read or write from the the underlying 1339 * file during this call, which would be a deadlock because 1340 * we have the rw_lock. So instead we page, unless it's not 1341 * mapable or it's a character device or it's an encrypted lofi. 1342 */ 1343 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || 1344 lsp->ls_crypto_enabled) { 1345 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, 1346 NULL); 1347 } else if (lsp->ls_uncomp_seg_sz == 0) { 1348 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); 1349 } else { 1350 uchar_t *compressed_seg = NULL, *cmpbuf; 1351 uchar_t *uncompressed_seg = NULL; 1352 lofi_compress_info_t *li; 1353 size_t oblkcount; 1354 ulong_t seglen; 1355 uint64_t sblkno, eblkno, cmpbytes; 1356 uint64_t uncompressed_seg_index; 1357 struct lofi_comp_cache *lc; 1358 offset_t sblkoff, eblkoff; 1359 u_offset_t salign, ealign; 1360 u_offset_t sdiff; 1361 uint32_t comp_data_sz; 1362 uint64_t i; 1363 int j; 1364 1365 /* 1366 * From here on we're dealing primarily with compressed files 1367 */ 1368 ASSERT(!lsp->ls_crypto_enabled); 1369 1370 /* 1371 * Compressed files can only be read from and 1372 * not written to 1373 */ 1374 if (!(bp->b_flags & B_READ)) { 1375 bp->b_resid = bp->b_bcount; 1376 error = EROFS; 1377 goto done; 1378 } 1379 1380 ASSERT(lsp->ls_comp_algorithm_index >= 0); 1381 li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; 1382 /* 1383 * Compute starting and ending compressed segment numbers 1384 * We use only bitwise operations avoiding division and 1385 * modulus because we enforce the compression segment size 1386 * to a power of 2 1387 */ 1388 sblkno = offset >> lsp->ls_comp_seg_shift; 1389 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); 1390 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; 1391 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); 1392 1393 /* 1394 * Check the decompressed segment cache. 1395 * 1396 * The cache is used only when the requested data 1397 * is within a segment. Requests that cross 1398 * segment boundaries bypass the cache. 1399 */ 1400 if (sblkno == eblkno || 1401 (sblkno + 1 == eblkno && eblkoff == 0)) { 1402 /* 1403 * Request doesn't cross a segment boundary, 1404 * now check the cache. 1405 */ 1406 mutex_enter(&lsp->ls_comp_cache_lock); 1407 lc = lofi_find_comp_data(lsp, sblkno); 1408 if (lc != NULL) { 1409 /* 1410 * We've found the decompressed segment 1411 * data in the cache; reuse it. 1412 */ 1413 bcopy(lc->lc_data + sblkoff, bufaddr, 1414 bp->b_bcount); 1415 mutex_exit(&lsp->ls_comp_cache_lock); 1416 bp->b_resid = 0; 1417 error = 0; 1418 goto done; 1419 } 1420 mutex_exit(&lsp->ls_comp_cache_lock); 1421 } 1422 1423 /* 1424 * Align start offset to block boundary for segmap 1425 */ 1426 salign = lsp->ls_comp_seg_index[sblkno]; 1427 sdiff = salign & (DEV_BSIZE - 1); 1428 salign -= sdiff; 1429 if (eblkno >= (lsp->ls_comp_index_sz - 1)) { 1430 /* 1431 * We're dealing with the last segment of 1432 * the compressed file -- the size of this 1433 * segment *may not* be the same as the 1434 * segment size for the file 1435 */ 1436 eblkoff = (offset + bp->b_bcount) & 1437 (lsp->ls_uncomp_last_seg_sz - 1); 1438 ealign = lsp->ls_vp_comp_size; 1439 } else { 1440 ealign = lsp->ls_comp_seg_index[eblkno + 1]; 1441 } 1442 1443 /* 1444 * Preserve original request paramaters 1445 */ 1446 oblkcount = bp->b_bcount; 1447 1448 /* 1449 * Assign the calculated parameters 1450 */ 1451 comp_data_sz = ealign - salign; 1452 bp->b_bcount = comp_data_sz; 1453 1454 /* 1455 * Buffers to hold compressed segments are pre-allocated 1456 * on a per-thread basis. Find a pre-allocated buffer 1457 * that is not currently in use and mark it for use. 1458 */ 1459 mutex_enter(&lsp->ls_comp_bufs_lock); 1460 for (j = 0; j < lofi_taskq_nthreads; j++) { 1461 if (lsp->ls_comp_bufs[j].inuse == 0) { 1462 lsp->ls_comp_bufs[j].inuse = 1; 1463 break; 1464 } 1465 } 1466 1467 mutex_exit(&lsp->ls_comp_bufs_lock); 1468 ASSERT(j < lofi_taskq_nthreads); 1469 1470 /* 1471 * If the pre-allocated buffer size does not match 1472 * the size of the I/O request, re-allocate it with 1473 * the appropriate size 1474 */ 1475 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) { 1476 if (lsp->ls_comp_bufs[j].bufsize > 0) 1477 kmem_free(lsp->ls_comp_bufs[j].buf, 1478 lsp->ls_comp_bufs[j].bufsize); 1479 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount, 1480 KM_SLEEP); 1481 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount; 1482 } 1483 compressed_seg = lsp->ls_comp_bufs[j].buf; 1484 1485 /* 1486 * Map in the calculated number of blocks 1487 */ 1488 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, 1489 bp, lsp); 1490 1491 bp->b_bcount = oblkcount; 1492 bp->b_resid = oblkcount; 1493 if (error != 0) 1494 goto done; 1495 1496 /* 1497 * decompress compressed blocks start 1498 */ 1499 cmpbuf = compressed_seg + sdiff; 1500 for (i = sblkno; i <= eblkno; i++) { 1501 ASSERT(i < lsp->ls_comp_index_sz - 1); 1502 uchar_t *useg; 1503 1504 /* 1505 * The last segment is special in that it is 1506 * most likely not going to be the same 1507 * (uncompressed) size as the other segments. 1508 */ 1509 if (i == (lsp->ls_comp_index_sz - 2)) { 1510 seglen = lsp->ls_uncomp_last_seg_sz; 1511 } else { 1512 seglen = lsp->ls_uncomp_seg_sz; 1513 } 1514 1515 /* 1516 * Each of the segment index entries contains 1517 * the starting block number for that segment. 1518 * The number of compressed bytes in a segment 1519 * is thus the difference between the starting 1520 * block number of this segment and the starting 1521 * block number of the next segment. 1522 */ 1523 cmpbytes = lsp->ls_comp_seg_index[i + 1] - 1524 lsp->ls_comp_seg_index[i]; 1525 1526 /* 1527 * The first byte in a compressed segment is a flag 1528 * that indicates whether this segment is compressed 1529 * at all. 1530 * 1531 * The variable 'useg' is used (instead of 1532 * uncompressed_seg) in this loop to keep a 1533 * reference to the uncompressed segment. 1534 * 1535 * N.B. If 'useg' is replaced with uncompressed_seg, 1536 * it leads to memory leaks and heap corruption in 1537 * corner cases where compressed segments lie 1538 * adjacent to uncompressed segments. 1539 */ 1540 if (*cmpbuf == UNCOMPRESSED) { 1541 useg = cmpbuf + SEGHDR; 1542 } else { 1543 if (uncompressed_seg == NULL) 1544 uncompressed_seg = 1545 kmem_alloc(lsp->ls_uncomp_seg_sz, 1546 KM_SLEEP); 1547 useg = uncompressed_seg; 1548 uncompressed_seg_index = i; 1549 1550 if (li->l_decompress((cmpbuf + SEGHDR), 1551 (cmpbytes - SEGHDR), uncompressed_seg, 1552 &seglen, li->l_level) != 0) { 1553 error = EIO; 1554 goto done; 1555 } 1556 } 1557 1558 /* 1559 * Determine how much uncompressed data we 1560 * have to copy and copy it 1561 */ 1562 xfersize = lsp->ls_uncomp_seg_sz - sblkoff; 1563 if (i == eblkno) 1564 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); 1565 1566 bcopy((useg + sblkoff), bufaddr, xfersize); 1567 1568 cmpbuf += cmpbytes; 1569 bufaddr += xfersize; 1570 bp->b_resid -= xfersize; 1571 sblkoff = 0; 1572 1573 if (bp->b_resid == 0) 1574 break; 1575 } /* decompress compressed blocks ends */ 1576 1577 /* 1578 * Skip to done if there is no uncompressed data to cache 1579 */ 1580 if (uncompressed_seg == NULL) 1581 goto done; 1582 1583 /* 1584 * Add the data for the last decompressed segment to 1585 * the cache. 1586 * 1587 * In case the uncompressed segment data was added to (and 1588 * is referenced by) the cache, make sure we don't free it 1589 * here. 1590 */ 1591 mutex_enter(&lsp->ls_comp_cache_lock); 1592 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, 1593 uncompressed_seg)) != NULL) { 1594 uncompressed_seg = NULL; 1595 } 1596 mutex_exit(&lsp->ls_comp_cache_lock); 1597 1598 done: 1599 if (compressed_seg != NULL) { 1600 mutex_enter(&lsp->ls_comp_bufs_lock); 1601 lsp->ls_comp_bufs[j].inuse = 0; 1602 mutex_exit(&lsp->ls_comp_bufs_lock); 1603 } 1604 if (uncompressed_seg != NULL) 1605 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); 1606 } /* end of handling compressed files */ 1607 1608 if ((error == 0) && (syncflag != 0)) 1609 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); 1610 1611 errout: 1612 if (bufinited && lsp->ls_kstat) { 1613 size_t n_done = bp->b_bcount - bp->b_resid; 1614 kstat_io_t *kioptr; 1615 1616 mutex_enter(lsp->ls_kstat->ks_lock); 1617 kioptr = KSTAT_IO_PTR(lsp->ls_kstat); 1618 if (bp->b_flags & B_READ) { 1619 kioptr->nread += n_done; 1620 kioptr->reads++; 1621 } else { 1622 kioptr->nwritten += n_done; 1623 kioptr->writes++; 1624 } 1625 kstat_runq_exit(kioptr); 1626 mutex_exit(lsp->ls_kstat->ks_lock); 1627 } 1628 1629 mutex_enter(&lsp->ls_vp_lock); 1630 if (--lsp->ls_vp_iocount == 0) 1631 cv_broadcast(&lsp->ls_vp_cv); 1632 mutex_exit(&lsp->ls_vp_lock); 1633 1634 bioerror(bp, error); 1635 biodone(bp); 1636 } 1637 1638 static int 1639 lofi_strategy(struct buf *bp) 1640 { 1641 struct lofi_state *lsp; 1642 offset_t offset; 1643 minor_t part; 1644 diskaddr_t p_lba; 1645 diskaddr_t p_nblks; 1646 int shift; 1647 1648 /* 1649 * We cannot just do I/O here, because the current thread 1650 * _might_ end up back in here because the underlying filesystem 1651 * wants a buffer, which eventually gets into bio_recycle and 1652 * might call into lofi to write out a delayed-write buffer. 1653 * This is bad if the filesystem above lofi is the same as below. 1654 * 1655 * We could come up with a complex strategy using threads to 1656 * do the I/O asynchronously, or we could use task queues. task 1657 * queues were incredibly easy so they win. 1658 */ 1659 1660 lsp = ddi_get_soft_state(lofi_statep, 1661 LOFI_MINOR2ID(getminor(bp->b_edev))); 1662 part = LOFI_PART(getminor(bp->b_edev)); 1663 1664 if (lsp == NULL) { 1665 bioerror(bp, ENXIO); 1666 biodone(bp); 1667 return (0); 1668 } 1669 1670 /* Check if we are closing. */ 1671 mutex_enter(&lsp->ls_vp_lock); 1672 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1673 mutex_exit(&lsp->ls_vp_lock); 1674 bioerror(bp, EIO); 1675 biodone(bp); 1676 return (0); 1677 } 1678 mutex_exit(&lsp->ls_vp_lock); 1679 1680 shift = lsp->ls_lbshift; 1681 p_lba = 0; 1682 p_nblks = lsp->ls_vp_size >> shift; 1683 1684 if (lsp->ls_cmlbhandle != NULL) { 1685 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba, 1686 NULL, NULL, 0)) { 1687 bioerror(bp, ENXIO); 1688 biodone(bp); 1689 return (0); 1690 } 1691 } 1692 1693 /* start block past partition end? */ 1694 if (bp->b_lblkno > p_nblks) { 1695 bioerror(bp, ENXIO); 1696 biodone(bp); 1697 return (0); 1698 } 1699 1700 offset = (bp->b_lblkno+p_lba) << shift; /* offset within file */ 1701 1702 mutex_enter(&lsp->ls_vp_lock); 1703 if (lsp->ls_crypto_enabled) { 1704 /* encrypted data really begins after crypto header */ 1705 offset += lsp->ls_crypto_offset; 1706 } 1707 1708 /* make sure we will not pass the file or partition size */ 1709 if (offset == lsp->ls_vp_size || 1710 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) { 1711 /* EOF */ 1712 if ((bp->b_flags & B_READ) != 0) { 1713 bp->b_resid = bp->b_bcount; 1714 bioerror(bp, 0); 1715 } else { 1716 /* writes should fail */ 1717 bioerror(bp, ENXIO); 1718 } 1719 biodone(bp); 1720 mutex_exit(&lsp->ls_vp_lock); 1721 return (0); 1722 } 1723 if ((offset > lsp->ls_vp_size) || 1724 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) || 1725 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) { 1726 bioerror(bp, ENXIO); 1727 biodone(bp); 1728 mutex_exit(&lsp->ls_vp_lock); 1729 return (0); 1730 } 1731 1732 mutex_exit(&lsp->ls_vp_lock); 1733 1734 if (lsp->ls_kstat) { 1735 mutex_enter(lsp->ls_kstat->ks_lock); 1736 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 1737 mutex_exit(lsp->ls_kstat->ks_lock); 1738 } 1739 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */ 1740 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 1741 return (0); 1742 } 1743 1744 /*ARGSUSED2*/ 1745 static int 1746 lofi_read(dev_t dev, struct uio *uio, struct cred *credp) 1747 { 1748 if (getminor(dev) == 0) 1749 return (EINVAL); 1750 UIO_CHECK(uio); 1751 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); 1752 } 1753 1754 /*ARGSUSED2*/ 1755 static int 1756 lofi_write(dev_t dev, struct uio *uio, struct cred *credp) 1757 { 1758 if (getminor(dev) == 0) 1759 return (EINVAL); 1760 UIO_CHECK(uio); 1761 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); 1762 } 1763 1764 /*ARGSUSED2*/ 1765 static int 1766 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) 1767 { 1768 if (getminor(dev) == 0) 1769 return (EINVAL); 1770 UIO_CHECK(aio->aio_uio); 1771 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); 1772 } 1773 1774 /*ARGSUSED2*/ 1775 static int 1776 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) 1777 { 1778 if (getminor(dev) == 0) 1779 return (EINVAL); 1780 UIO_CHECK(aio->aio_uio); 1781 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); 1782 } 1783 1784 /*ARGSUSED*/ 1785 static int 1786 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1787 { 1788 struct lofi_state *lsp; 1789 dev_t dev = (dev_t)arg; 1790 int instance; 1791 1792 instance = LOFI_MINOR2ID(getminor(dev)); 1793 switch (infocmd) { 1794 case DDI_INFO_DEVT2DEVINFO: 1795 lsp = ddi_get_soft_state(lofi_statep, instance); 1796 if (lsp == NULL) 1797 return (DDI_FAILURE); 1798 *result = lsp->ls_dip; 1799 return (DDI_SUCCESS); 1800 case DDI_INFO_DEVT2INSTANCE: 1801 *result = (void *) (intptr_t)instance; 1802 return (DDI_SUCCESS); 1803 } 1804 return (DDI_FAILURE); 1805 } 1806 1807 static int 1808 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled) 1809 { 1810 int error = 0; 1811 int instance = ddi_get_instance(lsp->ls_dip); 1812 1813 if (labeled == B_TRUE) { 1814 cmlb_alloc_handle(&lsp->ls_cmlbhandle); 1815 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT, 1816 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN, 1817 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1); 1818 1819 if (error != DDI_SUCCESS) { 1820 cmlb_free_handle(&lsp->ls_cmlbhandle); 1821 lsp->ls_cmlbhandle = NULL; 1822 error = ENXIO; 1823 } 1824 } else { 1825 /* create minor nodes */ 1826 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE, 1827 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0); 1828 if (error == DDI_SUCCESS) { 1829 error = ddi_create_minor_node(lsp->ls_dip, 1830 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance), 1831 DDI_PSEUDO, 0); 1832 if (error != DDI_SUCCESS) { 1833 ddi_remove_minor_node(lsp->ls_dip, 1834 LOFI_BLOCK_NODE); 1835 error = ENXIO; 1836 } 1837 } else 1838 error = ENXIO; 1839 } 1840 return (error); 1841 } 1842 1843 static int 1844 lofi_zone_bind(struct lofi_state *lsp) 1845 { 1846 int error = 0; 1847 1848 mutex_enter(&curproc->p_lock); 1849 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) { 1850 mutex_exit(&curproc->p_lock); 1851 return (error); 1852 } 1853 mutex_exit(&curproc->p_lock); 1854 1855 if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME, 1856 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) { 1857 rctl_decr_lofi(curproc->p_zone, 1); 1858 error = EINVAL; 1859 } else { 1860 zone_init_ref(&lsp->ls_zone); 1861 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI); 1862 } 1863 return (error); 1864 } 1865 1866 static void 1867 lofi_zone_unbind(struct lofi_state *lsp) 1868 { 1869 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME); 1870 rctl_decr_lofi(curproc->p_zone, 1); 1871 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 1872 } 1873 1874 static int 1875 lofi_online_dev(dev_info_t *dip) 1876 { 1877 boolean_t labeled; 1878 int error; 1879 int instance = ddi_get_instance(dip); 1880 struct lofi_state *lsp; 1881 1882 labeled = B_FALSE; 1883 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled")) 1884 labeled = B_TRUE; 1885 1886 /* lsp alloc+init, soft state is freed in lofi_detach */ 1887 error = ddi_soft_state_zalloc(lofi_statep, instance); 1888 if (error == DDI_FAILURE) { 1889 return (ENOMEM); 1890 } 1891 1892 lsp = ddi_get_soft_state(lofi_statep, instance); 1893 lsp->ls_dip = dip; 1894 1895 if ((error = lofi_zone_bind(lsp)) != 0) 1896 goto err; 1897 1898 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); 1899 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); 1900 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL); 1901 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); 1902 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); 1903 1904 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) { 1905 lofi_zone_unbind(lsp); 1906 goto lerr; 1907 } 1908 1909 /* driver handles kernel-issued IOCTLs */ 1910 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1911 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1912 error = DDI_FAILURE; 1913 goto merr; 1914 } 1915 1916 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance, 1917 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid()); 1918 if (lsp->ls_kstat == NULL) { 1919 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, 1920 DDI_KERNEL_IOCTL); 1921 error = ENOMEM; 1922 goto merr; 1923 } 1924 1925 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; 1926 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID); 1927 kstat_install(lsp->ls_kstat); 1928 return (DDI_SUCCESS); 1929 merr: 1930 if (lsp->ls_cmlbhandle != NULL) { 1931 cmlb_detach(lsp->ls_cmlbhandle, 0); 1932 cmlb_free_handle(&lsp->ls_cmlbhandle); 1933 } 1934 ddi_remove_minor_node(dip, NULL); 1935 lofi_zone_unbind(lsp); 1936 lerr: 1937 mutex_destroy(&lsp->ls_comp_cache_lock); 1938 mutex_destroy(&lsp->ls_comp_bufs_lock); 1939 mutex_destroy(&lsp->ls_kstat_lock); 1940 mutex_destroy(&lsp->ls_vp_lock); 1941 cv_destroy(&lsp->ls_vp_cv); 1942 err: 1943 ddi_soft_state_free(lofi_statep, instance); 1944 return (error); 1945 } 1946 1947 static int 1948 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1949 { 1950 int rv; 1951 int instance = ddi_get_instance(dip); 1952 struct lofi_state *lsp; 1953 1954 if (cmd != DDI_ATTACH) 1955 return (DDI_FAILURE); 1956 1957 /* 1958 * Instance 0 is control instance, attaching control instance 1959 * will set the lofi up and ready. 1960 */ 1961 if (instance == 0) { 1962 rv = ddi_soft_state_zalloc(lofi_statep, 0); 1963 if (rv == DDI_FAILURE) { 1964 return (DDI_FAILURE); 1965 } 1966 lsp = ddi_get_soft_state(lofi_statep, instance); 1967 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, 1968 DDI_PSEUDO, 0); 1969 if (rv == DDI_FAILURE) { 1970 ddi_soft_state_free(lofi_statep, 0); 1971 return (DDI_FAILURE); 1972 } 1973 /* driver handles kernel-issued IOCTLs */ 1974 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1975 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1976 ddi_remove_minor_node(dip, NULL); 1977 ddi_soft_state_free(lofi_statep, 0); 1978 return (DDI_FAILURE); 1979 } 1980 1981 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL); 1982 1983 lsp->ls_dip = dip; 1984 } else { 1985 if (lofi_online_dev(dip) == DDI_FAILURE) 1986 return (DDI_FAILURE); 1987 } 1988 1989 ddi_report_dev(dip); 1990 return (DDI_SUCCESS); 1991 } 1992 1993 static int 1994 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1995 { 1996 struct lofi_state *lsp; 1997 int instance = ddi_get_instance(dip); 1998 1999 if (cmd != DDI_DETACH) 2000 return (DDI_FAILURE); 2001 2002 /* 2003 * If the instance is not 0, release state. 2004 * The instance 0 is control device, we can not detach it 2005 * before other instances are detached. 2006 */ 2007 if (instance != 0) { 2008 lsp = ddi_get_soft_state(lofi_statep, instance); 2009 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) { 2010 ddi_soft_state_free(lofi_statep, instance); 2011 return (DDI_SUCCESS); 2012 } else 2013 return (DDI_FAILURE); 2014 } 2015 mutex_enter(&lofi_lock); 2016 2017 if (!list_is_empty(&lofi_list)) { 2018 mutex_exit(&lofi_lock); 2019 return (DDI_FAILURE); 2020 } 2021 2022 ddi_remove_minor_node(dip, NULL); 2023 ddi_prop_remove_all(dip); 2024 2025 mutex_exit(&lofi_lock); 2026 2027 if (zone_key_delete(lofi_zone_key) != 0) 2028 cmn_err(CE_WARN, "failed to delete zone key"); 2029 2030 ddi_soft_state_free(lofi_statep, 0); 2031 2032 return (DDI_SUCCESS); 2033 } 2034 2035 /* 2036 * With the addition of encryption, we must be careful that encryption key is 2037 * wiped before kernel's data structures are freed so it cannot accidentally 2038 * slip out to userland through uninitialized data elsewhere. 2039 */ 2040 static void 2041 free_lofi_ioctl(struct lofi_ioctl *klip) 2042 { 2043 /* Make sure this encryption key doesn't stick around */ 2044 bzero(klip->li_key, sizeof (klip->li_key)); 2045 kmem_free(klip, sizeof (struct lofi_ioctl)); 2046 } 2047 2048 /* 2049 * These two functions simplify the rest of the ioctls that need to copyin/out 2050 * the lofi_ioctl structure. 2051 */ 2052 int 2053 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp, 2054 int flag) 2055 { 2056 struct lofi_ioctl *klip; 2057 int error; 2058 2059 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); 2060 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); 2061 if (error) 2062 goto err; 2063 2064 /* ensure NULL termination */ 2065 klip->li_filename[MAXPATHLEN-1] = '\0'; 2066 klip->li_devpath[MAXPATHLEN-1] = '\0'; 2067 klip->li_algorithm[MAXALGLEN-1] = '\0'; 2068 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2069 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2070 2071 if (klip->li_id > L_MAXMIN32) { 2072 error = EINVAL; 2073 goto err; 2074 } 2075 2076 return (0); 2077 2078 err: 2079 free_lofi_ioctl(klip); 2080 return (error); 2081 } 2082 2083 int 2084 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, 2085 int flag) 2086 { 2087 int error; 2088 2089 /* 2090 * NOTE: Do NOT copy the crypto_key_t "back" to userland. 2091 * This ensures that an attacker can't trivially find the 2092 * key for a mapping just by issuing the ioctl. 2093 * 2094 * It can still be found by poking around in kmem with mdb(1), 2095 * but there is no point in making it easy when the info isn't 2096 * of any use in this direction anyway. 2097 * 2098 * Either way we don't actually have the raw key stored in 2099 * a form that we can get it anyway, since we just used it 2100 * to create a ctx template and didn't keep "the original". 2101 */ 2102 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); 2103 if (error) 2104 return (EFAULT); 2105 return (0); 2106 } 2107 2108 static int 2109 lofi_access(struct lofi_state *lsp) 2110 { 2111 ASSERT(MUTEX_HELD(&lofi_lock)); 2112 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone) 2113 return (0); 2114 return (EPERM); 2115 } 2116 2117 /* 2118 * Find the lofi state for the given filename. We compare by vnode to 2119 * allow the global zone visibility into NGZ lofi nodes. 2120 */ 2121 static int 2122 file_to_lofi_nocheck(char *filename, boolean_t readonly, 2123 struct lofi_state **lspp) 2124 { 2125 struct lofi_state *lsp; 2126 vnode_t *vp = NULL; 2127 int err = 0; 2128 int rdfiles = 0; 2129 2130 ASSERT(MUTEX_HELD(&lofi_lock)); 2131 2132 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW, 2133 NULLVPP, &vp)) != 0) 2134 goto out; 2135 2136 if (vp->v_type == VREG) { 2137 vnode_t *realvp; 2138 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2139 VN_HOLD(realvp); 2140 VN_RELE(vp); 2141 vp = realvp; 2142 } 2143 } 2144 2145 for (lsp = list_head(&lofi_list); lsp != NULL; 2146 lsp = list_next(&lofi_list, lsp)) { 2147 if (lsp->ls_vp == vp) { 2148 if (lspp != NULL) 2149 *lspp = lsp; 2150 if (lsp->ls_readonly) { 2151 rdfiles++; 2152 /* Skip if '-r' is specified */ 2153 if (readonly) 2154 continue; 2155 } 2156 goto out; 2157 } 2158 } 2159 2160 err = ENOENT; 2161 2162 /* 2163 * If a filename is given as an argument for lofi_unmap, we shouldn't 2164 * allow unmap if there are multiple read-only lofi devices associated 2165 * with this file. 2166 */ 2167 if (lspp != NULL) { 2168 if (rdfiles == 1) 2169 err = 0; 2170 else if (rdfiles > 1) 2171 err = EBUSY; 2172 } 2173 2174 out: 2175 if (vp != NULL) 2176 VN_RELE(vp); 2177 return (err); 2178 } 2179 2180 /* 2181 * Find the minor for the given filename, checking the zone can access 2182 * it. 2183 */ 2184 static int 2185 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp) 2186 { 2187 int err = 0; 2188 2189 ASSERT(MUTEX_HELD(&lofi_lock)); 2190 2191 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0) 2192 return (err); 2193 2194 if ((err = lofi_access(*lspp)) != 0) 2195 return (err); 2196 2197 return (0); 2198 } 2199 2200 /* 2201 * Fakes up a disk geometry based on the size of the file. This is needed 2202 * to support newfs on traditional lofi device, but also will provide 2203 * geometry hint for cmlb. 2204 */ 2205 static void 2206 fake_disk_geometry(struct lofi_state *lsp) 2207 { 2208 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; 2209 2210 /* dk_geom - see dkio(7I) */ 2211 /* 2212 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs 2213 * of sectors), but that breaks programs like fdisk which want to 2214 * partition a disk by cylinder. With one cylinder, you can't create 2215 * an fdisk partition and put pcfs on it for testing (hard to pick 2216 * a number between one and one). 2217 * 2218 * The cheezy floppy test is an attempt to not have too few cylinders 2219 * for a small file, or so many on a big file that you waste space 2220 * for backup superblocks or cylinder group structures. 2221 */ 2222 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg)); 2223 if (dsize < (2 * 1024 * 1024)) /* floppy? */ 2224 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); 2225 else 2226 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); 2227 /* in case file file is < 100k */ 2228 if (lsp->ls_dkg.dkg_ncyl == 0) 2229 lsp->ls_dkg.dkg_ncyl = 1; 2230 2231 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl; 2232 lsp->ls_dkg.dkg_nhead = 1; 2233 lsp->ls_dkg.dkg_rpm = 7200; 2234 2235 lsp->ls_dkg.dkg_nsect = dsize / 2236 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift); 2237 } 2238 2239 /* 2240 * build vtoc - see dkio(7I) 2241 * 2242 * Fakes one big partition based on the size of the file. This is needed 2243 * because we allow newfs'ing the traditional lofi device and newfs will 2244 * do several disk ioctls to figure out the geometry and partition information. 2245 * It uses that information to determine the parameters to pass to mkfs. 2246 */ 2247 static void 2248 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt) 2249 { 2250 bzero(vt, sizeof (struct vtoc)); 2251 vt->v_sanity = VTOC_SANE; 2252 vt->v_version = V_VERSION; 2253 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME, 2254 sizeof (vt->v_volume)); 2255 vt->v_sectorsz = 1 << lsp->ls_pbshift; 2256 vt->v_nparts = 1; 2257 vt->v_part[0].p_tag = V_UNASSIGNED; 2258 2259 /* 2260 * A compressed file is read-only, other files can 2261 * be read-write 2262 */ 2263 if (lsp->ls_uncomp_seg_sz > 0) { 2264 vt->v_part[0].p_flag = V_UNMNT | V_RONLY; 2265 } else { 2266 vt->v_part[0].p_flag = V_UNMNT; 2267 } 2268 vt->v_part[0].p_start = (daddr_t)0; 2269 /* 2270 * The partition size cannot just be the number of sectors, because 2271 * that might not end on a cylinder boundary. And if that's the case, 2272 * newfs/mkfs will print a scary warning. So just figure the size 2273 * based on the number of cylinders and sectors/cylinder. 2274 */ 2275 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * 2276 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; 2277 } 2278 2279 /* 2280 * build dk_cinfo - see dkio(7I) 2281 */ 2282 static void 2283 fake_disk_info(dev_t dev, struct dk_cinfo *ci) 2284 { 2285 bzero(ci, sizeof (struct dk_cinfo)); 2286 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname)); 2287 ci->dki_ctype = DKC_SCSI_CCS; 2288 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname)); 2289 ci->dki_unit = LOFI_MINOR2ID(getminor(dev)); 2290 ci->dki_partition = LOFI_PART(getminor(dev)); 2291 /* 2292 * newfs uses this to set maxcontig. Must not be < 16, or it 2293 * will be 0 when newfs multiplies it by DEV_BSIZE and divides 2294 * it by the block size. Then tunefs doesn't work because 2295 * maxcontig is 0. 2296 */ 2297 ci->dki_maxtransfer = 16; 2298 } 2299 2300 /* 2301 * map in a compressed file 2302 * 2303 * Read in the header and the index that follows. 2304 * 2305 * The header is as follows - 2306 * 2307 * Signature (name of the compression algorithm) 2308 * Compression segment size (a multiple of 512) 2309 * Number of index entries 2310 * Size of the last block 2311 * The array containing the index entries 2312 * 2313 * The header information is always stored in 2314 * network byte order on disk. 2315 */ 2316 static int 2317 lofi_map_compressed_file(struct lofi_state *lsp, char *buf) 2318 { 2319 uint32_t index_sz, header_len, i; 2320 ssize_t resid; 2321 enum uio_rw rw; 2322 char *tbuf = buf; 2323 int error; 2324 2325 /* The signature has already been read */ 2326 tbuf += sizeof (lsp->ls_comp_algorithm); 2327 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); 2328 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); 2329 2330 /* 2331 * The compressed segment size must be a power of 2 2332 */ 2333 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || 2334 !ISP2(lsp->ls_uncomp_seg_sz)) 2335 return (EINVAL); 2336 2337 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) 2338 ; 2339 2340 lsp->ls_comp_seg_shift = i; 2341 2342 tbuf += sizeof (lsp->ls_uncomp_seg_sz); 2343 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); 2344 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); 2345 2346 tbuf += sizeof (lsp->ls_comp_index_sz); 2347 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), 2348 sizeof (lsp->ls_uncomp_last_seg_sz)); 2349 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); 2350 2351 /* 2352 * Compute the total size of the uncompressed data 2353 * for use in fake_disk_geometry and other calculations. 2354 * Disk geometry has to be faked with respect to the 2355 * actual uncompressed data size rather than the 2356 * compressed file size. 2357 */ 2358 lsp->ls_vp_size = 2359 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz 2360 + lsp->ls_uncomp_last_seg_sz; 2361 2362 /* 2363 * Index size is rounded up to DEV_BSIZE for ease 2364 * of segmapping 2365 */ 2366 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; 2367 header_len = sizeof (lsp->ls_comp_algorithm) + 2368 sizeof (lsp->ls_uncomp_seg_sz) + 2369 sizeof (lsp->ls_comp_index_sz) + 2370 sizeof (lsp->ls_uncomp_last_seg_sz); 2371 lsp->ls_comp_offbase = header_len + index_sz; 2372 2373 index_sz += header_len; 2374 index_sz = roundup(index_sz, DEV_BSIZE); 2375 2376 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); 2377 lsp->ls_comp_index_data_sz = index_sz; 2378 2379 /* 2380 * Read in the index -- this has a side-effect 2381 * of reading in the header as well 2382 */ 2383 rw = UIO_READ; 2384 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 2385 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2386 2387 if (error != 0) 2388 return (error); 2389 2390 /* Skip the header, this is where the index really begins */ 2391 lsp->ls_comp_seg_index = 2392 /*LINTED*/ 2393 (uint64_t *)(lsp->ls_comp_index_data + header_len); 2394 2395 /* 2396 * Now recompute offsets in the index to account for 2397 * the header length 2398 */ 2399 for (i = 0; i < lsp->ls_comp_index_sz; i++) { 2400 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + 2401 BE_64(lsp->ls_comp_seg_index[i]); 2402 } 2403 2404 return (error); 2405 } 2406 2407 static int 2408 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip) 2409 { 2410 struct crypto_meta chead; 2411 char buf[DEV_BSIZE]; 2412 ssize_t resid; 2413 char *marker; 2414 int error; 2415 int ret; 2416 int i; 2417 2418 if (!klip->li_crypto_enabled) 2419 return (0); 2420 2421 /* 2422 * All current algorithms have a max of 448 bits. 2423 */ 2424 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512)) 2425 return (EINVAL); 2426 2427 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key)) 2428 return (EINVAL); 2429 2430 lsp->ls_crypto_enabled = klip->li_crypto_enabled; 2431 2432 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); 2433 2434 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); 2435 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { 2436 cmn_err(CE_WARN, "invalid cipher %s requested for %s", 2437 klip->li_cipher, klip->li_filename); 2438 return (EINVAL); 2439 } 2440 2441 /* this is just initialization here */ 2442 lsp->ls_mech.cm_param = NULL; 2443 lsp->ls_mech.cm_param_len = 0; 2444 2445 lsp->ls_iv_type = klip->li_iv_type; 2446 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); 2447 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { 2448 cmn_err(CE_WARN, "invalid iv cipher %s requested" 2449 " for %s", klip->li_iv_cipher, klip->li_filename); 2450 return (EINVAL); 2451 } 2452 2453 /* iv mech must itself take a null iv */ 2454 lsp->ls_iv_mech.cm_param = NULL; 2455 lsp->ls_iv_mech.cm_param_len = 0; 2456 lsp->ls_iv_len = klip->li_iv_len; 2457 2458 /* 2459 * Create ctx using li_cipher & the raw li_key after checking 2460 * that it isn't a weak key. 2461 */ 2462 lsp->ls_key.ck_format = CRYPTO_KEY_RAW; 2463 lsp->ls_key.ck_length = klip->li_key_len; 2464 lsp->ls_key.ck_data = kmem_alloc( 2465 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); 2466 bcopy(klip->li_key, lsp->ls_key.ck_data, 2467 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2468 2469 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); 2470 if (ret != CRYPTO_SUCCESS) { 2471 cmn_err(CE_WARN, "weak key check failed for cipher " 2472 "%s on file %s (0x%x)", klip->li_cipher, 2473 klip->li_filename, ret); 2474 return (EINVAL); 2475 } 2476 2477 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 2478 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2479 if (error != 0) 2480 return (error); 2481 2482 /* 2483 * This is the case where the header in the lofi image is already 2484 * initialized to indicate it is encrypted. 2485 */ 2486 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) { 2487 /* 2488 * The encryption header information is laid out this way: 2489 * 6 bytes: hex "CFLOFI" 2490 * 2 bytes: version = 0 ... for now 2491 * 96 bytes: reserved1 (not implemented yet) 2492 * 4 bytes: data_sector = 2 ... for now 2493 * more... not implemented yet 2494 */ 2495 2496 marker = buf; 2497 2498 /* copy the magic */ 2499 bcopy(marker, lsp->ls_crypto.magic, 2500 sizeof (lsp->ls_crypto.magic)); 2501 marker += sizeof (lsp->ls_crypto.magic); 2502 2503 /* read the encryption version number */ 2504 bcopy(marker, &(lsp->ls_crypto.version), 2505 sizeof (lsp->ls_crypto.version)); 2506 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); 2507 marker += sizeof (lsp->ls_crypto.version); 2508 2509 /* read a chunk of reserved data */ 2510 bcopy(marker, lsp->ls_crypto.reserved1, 2511 sizeof (lsp->ls_crypto.reserved1)); 2512 marker += sizeof (lsp->ls_crypto.reserved1); 2513 2514 /* read block number where encrypted data begins */ 2515 bcopy(marker, &(lsp->ls_crypto.data_sector), 2516 sizeof (lsp->ls_crypto.data_sector)); 2517 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); 2518 marker += sizeof (lsp->ls_crypto.data_sector); 2519 2520 /* and ignore the rest until it is implemented */ 2521 2522 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2523 return (0); 2524 } 2525 2526 /* 2527 * We've requested encryption, but no magic was found, so it must be 2528 * a new image. 2529 */ 2530 2531 for (i = 0; i < sizeof (struct crypto_meta); i++) { 2532 if (buf[i] != '\0') 2533 return (EINVAL); 2534 } 2535 2536 marker = buf; 2537 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); 2538 marker += sizeof (lofi_crypto_magic); 2539 chead.version = htons(LOFI_CRYPTO_VERSION); 2540 bcopy(&(chead.version), marker, sizeof (chead.version)); 2541 marker += sizeof (chead.version); 2542 marker += sizeof (chead.reserved1); 2543 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); 2544 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); 2545 2546 /* write the header */ 2547 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE, 2548 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2549 if (error != 0) 2550 return (error); 2551 2552 /* fix things up so it looks like we read this info */ 2553 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, 2554 sizeof (lofi_crypto_magic)); 2555 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; 2556 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; 2557 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2558 return (0); 2559 } 2560 2561 /* 2562 * Check to see if the passed in signature is a valid one. If it is 2563 * valid, return the index into lofi_compress_table. 2564 * 2565 * Return -1 if it is invalid 2566 */ 2567 static int 2568 lofi_compress_select(const char *signature) 2569 { 2570 int i; 2571 2572 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { 2573 if (strcmp(lofi_compress_table[i].l_name, signature) == 0) 2574 return (i); 2575 } 2576 2577 return (-1); 2578 } 2579 2580 static int 2581 lofi_init_compress(struct lofi_state *lsp) 2582 { 2583 char buf[DEV_BSIZE]; 2584 int compress_index; 2585 ssize_t resid; 2586 int error; 2587 2588 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 2589 0, RLIM64_INFINITY, kcred, &resid); 2590 2591 if (error != 0) 2592 return (error); 2593 2594 if ((compress_index = lofi_compress_select(buf)) == -1) 2595 return (0); 2596 2597 /* compression and encryption are mutually exclusive */ 2598 if (lsp->ls_crypto_enabled) 2599 return (ENOTSUP); 2600 2601 /* initialize compression info for compressed lofi */ 2602 lsp->ls_comp_algorithm_index = compress_index; 2603 (void) strlcpy(lsp->ls_comp_algorithm, 2604 lofi_compress_table[compress_index].l_name, 2605 sizeof (lsp->ls_comp_algorithm)); 2606 2607 /* Finally setup per-thread pre-allocated buffers */ 2608 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads * 2609 sizeof (struct compbuf), KM_SLEEP); 2610 2611 return (lofi_map_compressed_file(lsp, buf)); 2612 } 2613 2614 /* 2615 * Allocate new or proposed id from lofi_id. 2616 * 2617 * Special cases for proposed id: 2618 * 0: not allowed, 0 is id for control device. 2619 * -1: allocate first usable id from lofi_id. 2620 * any other value is proposed value from userland 2621 * 2622 * returns DDI_SUCCESS or errno. 2623 */ 2624 static int 2625 lofi_alloc_id(int *idp) 2626 { 2627 int id, error = DDI_SUCCESS; 2628 2629 if (*idp == -1) { 2630 id = id_allocff_nosleep(lofi_id); 2631 if (id == -1) { 2632 error = EAGAIN; 2633 goto err; 2634 } 2635 } else if (*idp == 0) { 2636 error = EINVAL; 2637 goto err; 2638 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) { 2639 error = ERANGE; 2640 goto err; 2641 } else { 2642 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) { 2643 error = EEXIST; 2644 goto err; 2645 } 2646 2647 id = id_alloc_specific_nosleep(lofi_id, *idp); 2648 if (id == -1) { 2649 error = EAGAIN; 2650 goto err; 2651 } 2652 } 2653 *idp = id; 2654 err: 2655 return (error); 2656 } 2657 2658 static int 2659 lofi_create_dev(struct lofi_ioctl *klip) 2660 { 2661 dev_info_t *parent, *child; 2662 struct lofi_state *lsp = NULL; 2663 char namebuf[MAXNAMELEN]; 2664 int error, circ; 2665 2666 /* get control device */ 2667 lsp = ddi_get_soft_state(lofi_statep, 0); 2668 parent = ddi_get_parent(lsp->ls_dip); 2669 2670 if ((error = lofi_alloc_id((int *)&klip->li_id))) 2671 return (error); 2672 2673 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d", 2674 klip->li_id); 2675 2676 ndi_devi_enter(parent, &circ); 2677 child = ndi_devi_findchild(parent, namebuf); 2678 ndi_devi_exit(parent, circ); 2679 2680 if (child == NULL) { 2681 child = ddi_add_child(parent, LOFI_DRIVER_NAME, 2682 (pnode_t)DEVI_SID_NODEID, klip->li_id); 2683 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child, 2684 "instance", klip->li_id)) != DDI_PROP_SUCCESS) 2685 goto err; 2686 2687 if (klip->li_labeled == B_TRUE) { 2688 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child, 2689 DDI_PROP_CANSLEEP, "labeled", 0, 0)) 2690 != DDI_PROP_SUCCESS) 2691 goto err; 2692 } 2693 2694 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH)) 2695 != NDI_SUCCESS) 2696 goto err; 2697 } else { 2698 id_free(lofi_id, klip->li_id); 2699 error = EEXIST; 2700 return (error); 2701 } 2702 2703 goto done; 2704 2705 err: 2706 ddi_prop_remove_all(child); 2707 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE); 2708 id_free(lofi_id, klip->li_id); 2709 done: 2710 2711 return (error); 2712 } 2713 2714 static void 2715 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq) 2716 { 2717 char *p = NULL; 2718 2719 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid)); 2720 2721 mutex_enter(&lsp->ls_vp_lock); 2722 if (lsp->ls_vp != NULL) 2723 p = strrchr(lsp->ls_vp->v_path, '/'); 2724 if (p != NULL) 2725 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid)); 2726 mutex_exit(&lsp->ls_vp_lock); 2727 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision)); 2728 } 2729 2730 /* 2731 * copy devlink name from event cache 2732 */ 2733 static void 2734 lofi_copy_devpath(struct lofi_ioctl *klip) 2735 { 2736 int error; 2737 char namebuf[MAXNAMELEN], *str; 2738 clock_t ticks; 2739 nvlist_t *nvl = NULL; 2740 2741 if (klip->li_labeled == B_TRUE) 2742 klip->li_devpath[0] = '\0'; 2743 else { 2744 /* no need to wait for messages */ 2745 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath), 2746 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id); 2747 return; 2748 } 2749 2750 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id); 2751 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000); 2752 2753 mutex_enter(&lofi_devlink_cache.ln_lock); 2754 error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data, namebuf, &nvl); 2755 while (error != 0) { 2756 error = cv_timedwait(&lofi_devlink_cache.ln_cv, 2757 &lofi_devlink_cache.ln_lock, ticks); 2758 if (error == -1) 2759 break; 2760 error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data, 2761 namebuf, &nvl); 2762 } 2763 2764 if (nvl != NULL) { 2765 if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) { 2766 (void) strlcpy(klip->li_devpath, str, 2767 sizeof (klip->li_devpath)); 2768 } 2769 } 2770 mutex_exit(&lofi_devlink_cache.ln_lock); 2771 } 2772 2773 /* 2774 * map a file to a minor number. Return the minor number. 2775 */ 2776 static int 2777 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, 2778 int *rvalp, struct cred *credp, int ioctl_flag) 2779 { 2780 int id = -1; 2781 struct lofi_state *lsp = NULL; 2782 struct lofi_ioctl *klip; 2783 int error; 2784 struct vnode *vp = NULL; 2785 vattr_t vattr; 2786 int flag; 2787 char namebuf[MAXNAMELEN]; 2788 2789 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2790 if (error != 0) 2791 return (error); 2792 2793 mutex_enter(&lofi_lock); 2794 2795 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly, 2796 NULL) == 0) { 2797 error = EBUSY; 2798 goto err; 2799 } 2800 2801 flag = FREAD | FWRITE | FOFFMAX | FEXCL; 2802 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); 2803 if (error) { 2804 /* try read-only */ 2805 flag &= ~FWRITE; 2806 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, 2807 &vp, 0, 0); 2808 if (error) 2809 goto err; 2810 } 2811 2812 if (!V_ISLOFIABLE(vp->v_type)) { 2813 error = EINVAL; 2814 goto err; 2815 } 2816 2817 vattr.va_mask = AT_SIZE; 2818 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); 2819 if (error) 2820 goto err; 2821 2822 /* the file needs to be a multiple of the block size */ 2823 if ((vattr.va_size % DEV_BSIZE) != 0) { 2824 error = EINVAL; 2825 goto err; 2826 } 2827 2828 if (pickminor) { 2829 klip->li_id = (uint32_t)-1; 2830 } 2831 if ((error = lofi_create_dev(klip)) != 0) 2832 goto err; 2833 2834 id = klip->li_id; 2835 lsp = ddi_get_soft_state(lofi_statep, id); 2836 if (lsp == NULL) 2837 goto err; 2838 2839 /* 2840 * from this point lofi_destroy() is used to clean up on error 2841 * make sure the basic data is set 2842 */ 2843 list_insert_tail(&lofi_list, lsp); 2844 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id)); 2845 2846 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), 2847 offsetof(struct lofi_comp_cache, lc_list)); 2848 2849 /* 2850 * save open mode so file can be closed properly and vnode counts 2851 * updated correctly. 2852 */ 2853 lsp->ls_openflag = flag; 2854 2855 lsp->ls_vp = vp; 2856 lsp->ls_stacked_vp = vp; 2857 2858 lsp->ls_vp_size = vattr.va_size; 2859 lsp->ls_vp_comp_size = lsp->ls_vp_size; 2860 2861 /* 2862 * Try to handle stacked lofs vnodes. 2863 */ 2864 if (vp->v_type == VREG) { 2865 vnode_t *realvp; 2866 2867 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2868 /* 2869 * We need to use the realvp for uniqueness 2870 * checking, but keep the stacked vp for 2871 * LOFI_GET_FILENAME display. 2872 */ 2873 VN_HOLD(realvp); 2874 lsp->ls_vp = realvp; 2875 } 2876 } 2877 2878 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1; 2879 lsp->ls_pbshift = lsp->ls_lbshift; 2880 2881 lsp->ls_readonly = klip->li_readonly; 2882 lsp->ls_uncomp_seg_sz = 0; 2883 lsp->ls_comp_algorithm[0] = '\0'; 2884 lsp->ls_crypto_offset = 0; 2885 2886 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", 2887 LOFI_DRIVER_NAME, id); 2888 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads, 2889 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0); 2890 2891 if ((error = lofi_init_crypto(lsp, klip)) != 0) 2892 goto err; 2893 2894 if ((error = lofi_init_compress(lsp)) != 0) 2895 goto err; 2896 2897 fake_disk_geometry(lsp); 2898 2899 /* For unlabeled lofi add Nblocks and Size */ 2900 if (klip->li_labeled == B_FALSE) { 2901 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, 2902 SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset); 2903 if (error != DDI_PROP_SUCCESS) { 2904 error = EINVAL; 2905 goto err; 2906 } 2907 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, 2908 NBLOCKS_PROP_NAME, 2909 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE); 2910 if (error != DDI_PROP_SUCCESS) { 2911 error = EINVAL; 2912 goto err; 2913 } 2914 } 2915 2916 /* 2917 * Notify we are ready to rock. 2918 */ 2919 mutex_enter(&lsp->ls_vp_lock); 2920 lsp->ls_vp_ready = B_TRUE; 2921 cv_broadcast(&lsp->ls_vp_cv); 2922 mutex_exit(&lsp->ls_vp_lock); 2923 mutex_exit(&lofi_lock); 2924 2925 lofi_copy_devpath(klip); 2926 2927 if (rvalp) 2928 *rvalp = id; 2929 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2930 free_lofi_ioctl(klip); 2931 return (0); 2932 2933 err: 2934 if (lsp != NULL) { 2935 lofi_destroy(lsp, credp); 2936 } else { 2937 if (vp != NULL) { 2938 (void) VOP_PUTPAGE(vp, 0, 0, B_FREE, credp, NULL); 2939 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); 2940 VN_RELE(vp); 2941 } 2942 } 2943 2944 mutex_exit(&lofi_lock); 2945 free_lofi_ioctl(klip); 2946 return (error); 2947 } 2948 2949 /* 2950 * unmap a file. 2951 */ 2952 static int 2953 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename, 2954 struct cred *credp, int ioctl_flag) 2955 { 2956 struct lofi_state *lsp; 2957 struct lofi_ioctl *klip; 2958 char namebuf[MAXNAMELEN]; 2959 int err; 2960 2961 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2962 if (err != 0) 2963 return (err); 2964 2965 mutex_enter(&lofi_lock); 2966 if (byfilename) { 2967 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly, 2968 &lsp)) != 0) { 2969 goto done; 2970 } 2971 } else if (klip->li_id == 0) { 2972 err = ENXIO; 2973 goto done; 2974 } else { 2975 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 2976 } 2977 2978 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) { 2979 err = ENXIO; 2980 goto done; 2981 } 2982 2983 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 2984 (void) snprintf(namebuf, sizeof (namebuf), "%u", klip->li_id); 2985 2986 /* 2987 * If it's still held open, we'll do one of three things: 2988 * 2989 * If no flag is set, just return EBUSY. 2990 * 2991 * If the 'cleanup' flag is set, unmap and remove the device when 2992 * the last user finishes. 2993 * 2994 * If the 'force' flag is set, then we forcibly close the underlying 2995 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl 2996 * will return DKIO_DEV_GONE. When the device is last closed, the 2997 * device will be cleaned up appropriately. 2998 * 2999 * This is complicated by the fact that we may have outstanding 3000 * dispatched I/Os. Rather than having a single mutex to serialize all 3001 * I/O, we keep a count of the number of outstanding I/O requests 3002 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os 3003 * should be dispatched (ls_vp_closereq). 3004 * 3005 * We set the flag, wait for the number of outstanding I/Os to reach 0, 3006 * and then close the underlying vnode. 3007 */ 3008 if (is_opened(lsp)) { 3009 if (klip->li_force) { 3010 /* Mark the device for cleanup. */ 3011 lofi_set_cleanup(lsp); 3012 mutex_enter(&lsp->ls_vp_lock); 3013 lsp->ls_vp_closereq = B_TRUE; 3014 /* Wake up any threads waiting on dkiocstate. */ 3015 cv_broadcast(&lsp->ls_vp_cv); 3016 while (lsp->ls_vp_iocount > 0) 3017 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 3018 mutex_exit(&lsp->ls_vp_lock); 3019 } else if (klip->li_cleanup) { 3020 lofi_set_cleanup(lsp); 3021 } else { 3022 err = EBUSY; 3023 } 3024 } else { 3025 lofi_free_dev(lsp); 3026 lofi_destroy(lsp, credp); 3027 } 3028 3029 /* Remove name from devlink cache */ 3030 mutex_enter(&lofi_devlink_cache.ln_lock); 3031 (void) nvlist_remove_all(lofi_devlink_cache.ln_data, namebuf); 3032 mutex_exit(&lofi_devlink_cache.ln_lock); 3033 done: 3034 mutex_exit(&lofi_lock); 3035 if (err == 0) 3036 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3037 free_lofi_ioctl(klip); 3038 return (err); 3039 } 3040 3041 /* 3042 * get the filename given the minor number, or the minor number given 3043 * the name. 3044 */ 3045 /*ARGSUSED*/ 3046 static int 3047 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, 3048 struct cred *credp, int ioctl_flag) 3049 { 3050 struct lofi_ioctl *klip; 3051 struct lofi_state *lsp; 3052 int error; 3053 3054 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 3055 if (error != 0) 3056 return (error); 3057 3058 switch (which) { 3059 case LOFI_GET_FILENAME: 3060 if (klip->li_id == 0) { 3061 free_lofi_ioctl(klip); 3062 return (EINVAL); 3063 } 3064 3065 mutex_enter(&lofi_lock); 3066 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 3067 if (lsp == NULL || lofi_access(lsp) != 0) { 3068 mutex_exit(&lofi_lock); 3069 free_lofi_ioctl(klip); 3070 return (ENXIO); 3071 } 3072 3073 /* 3074 * This may fail if, for example, we're trying to look 3075 * up a zoned NFS path from the global zone. 3076 */ 3077 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename, 3078 sizeof (klip->li_filename), CRED()) != 0) { 3079 (void) strlcpy(klip->li_filename, "?", 3080 sizeof (klip->li_filename)); 3081 } 3082 3083 klip->li_readonly = lsp->ls_readonly; 3084 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3085 3086 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3087 sizeof (klip->li_algorithm)); 3088 klip->li_crypto_enabled = lsp->ls_crypto_enabled; 3089 mutex_exit(&lofi_lock); 3090 3091 lofi_copy_devpath(klip); 3092 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3093 free_lofi_ioctl(klip); 3094 return (error); 3095 case LOFI_GET_MINOR: 3096 mutex_enter(&lofi_lock); 3097 error = file_to_lofi(klip->li_filename, 3098 klip->li_readonly, &lsp); 3099 if (error != 0) { 3100 mutex_exit(&lofi_lock); 3101 free_lofi_ioctl(klip); 3102 return (error); 3103 } 3104 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3105 3106 klip->li_readonly = lsp->ls_readonly; 3107 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3108 mutex_exit(&lofi_lock); 3109 3110 lofi_copy_devpath(klip); 3111 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3112 3113 free_lofi_ioctl(klip); 3114 return (error); 3115 case LOFI_CHECK_COMPRESSED: 3116 mutex_enter(&lofi_lock); 3117 error = file_to_lofi(klip->li_filename, 3118 klip->li_readonly, &lsp); 3119 if (error != 0) { 3120 mutex_exit(&lofi_lock); 3121 free_lofi_ioctl(klip); 3122 return (error); 3123 } 3124 3125 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3126 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3127 sizeof (klip->li_algorithm)); 3128 3129 mutex_exit(&lofi_lock); 3130 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3131 free_lofi_ioctl(klip); 3132 return (error); 3133 default: 3134 free_lofi_ioctl(klip); 3135 return (EINVAL); 3136 } 3137 } 3138 3139 static int 3140 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb, 3141 struct uscsi_cmd *uscmd) 3142 { 3143 int rval; 3144 3145 #ifdef _MULTI_DATAMODEL 3146 switch (ddi_model_convert_from(flag & FMODELS)) { 3147 case DDI_MODEL_ILP32: { 3148 struct uscsi_cmd32 ucmd32; 3149 3150 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) { 3151 rval = EFAULT; 3152 goto err; 3153 } 3154 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd); 3155 break; 3156 } 3157 case DDI_MODEL_NONE: 3158 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3159 rval = EFAULT; 3160 goto err; 3161 } 3162 break; 3163 default: 3164 rval = EFAULT; 3165 goto err; 3166 } 3167 #else 3168 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3169 rval = EFAULT; 3170 goto err; 3171 } 3172 #endif /* _MULTI_DATAMODEL */ 3173 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) { 3174 rval = EFAULT; 3175 goto err; 3176 } 3177 if (cdb->scc_cmd == SCMD_INQUIRY) { 3178 return (0); 3179 } 3180 err: 3181 return (rval); 3182 } 3183 3184 static int 3185 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, 3186 int *rvalp) 3187 { 3188 int error; 3189 enum dkio_state dkstate; 3190 struct lofi_state *lsp; 3191 int id; 3192 3193 id = LOFI_MINOR2ID(getminor(dev)); 3194 3195 /* lofi ioctls only apply to the master device */ 3196 if (id == 0) { 3197 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; 3198 3199 /* 3200 * the query command only need read-access - i.e., normal 3201 * users are allowed to do those on the ctl device as 3202 * long as they can open it read-only. 3203 */ 3204 switch (cmd) { 3205 case LOFI_MAP_FILE: 3206 if ((flag & FWRITE) == 0) 3207 return (EPERM); 3208 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); 3209 case LOFI_MAP_FILE_MINOR: 3210 if ((flag & FWRITE) == 0) 3211 return (EPERM); 3212 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); 3213 case LOFI_UNMAP_FILE: 3214 if ((flag & FWRITE) == 0) 3215 return (EPERM); 3216 return (lofi_unmap_file(lip, 1, credp, flag)); 3217 case LOFI_UNMAP_FILE_MINOR: 3218 if ((flag & FWRITE) == 0) 3219 return (EPERM); 3220 return (lofi_unmap_file(lip, 0, credp, flag)); 3221 case LOFI_GET_FILENAME: 3222 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, 3223 credp, flag)); 3224 case LOFI_GET_MINOR: 3225 return (lofi_get_info(dev, lip, LOFI_GET_MINOR, 3226 credp, flag)); 3227 3228 /* 3229 * This API made limited sense when this value was fixed 3230 * at LOFI_MAX_FILES. However, its use to iterate 3231 * across all possible devices in lofiadm means we don't 3232 * want to return L_MAXMIN, but the highest 3233 * *allocated* id. 3234 */ 3235 case LOFI_GET_MAXMINOR: 3236 id = 0; 3237 3238 mutex_enter(&lofi_lock); 3239 3240 for (lsp = list_head(&lofi_list); lsp != NULL; 3241 lsp = list_next(&lofi_list, lsp)) { 3242 int i; 3243 if (lofi_access(lsp) != 0) 3244 continue; 3245 3246 i = ddi_get_instance(lsp->ls_dip); 3247 if (i > id) 3248 id = i; 3249 } 3250 3251 mutex_exit(&lofi_lock); 3252 3253 error = ddi_copyout(&id, &lip->li_id, 3254 sizeof (id), flag); 3255 if (error) 3256 return (EFAULT); 3257 return (0); 3258 3259 case LOFI_CHECK_COMPRESSED: 3260 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, 3261 credp, flag)); 3262 default: 3263 return (EINVAL); 3264 } 3265 } 3266 3267 mutex_enter(&lofi_lock); 3268 lsp = ddi_get_soft_state(lofi_statep, id); 3269 if (lsp == NULL || lsp->ls_cleanup) { 3270 mutex_exit(&lofi_lock); 3271 return (ENXIO); 3272 } 3273 mutex_exit(&lofi_lock); 3274 3275 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS, 3276 "labeled") == 1) { 3277 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag, 3278 credp, rvalp, 0); 3279 if (error != ENOTTY) 3280 return (error); 3281 } 3282 3283 /* 3284 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with 3285 * EIO as if the device was no longer present. 3286 */ 3287 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) 3288 return (EIO); 3289 3290 /* these are for faking out utilities like newfs */ 3291 switch (cmd) { 3292 case DKIOCGMEDIAINFO: 3293 case DKIOCGMEDIAINFOEXT: { 3294 struct dk_minfo_ext media_info; 3295 int shift = lsp->ls_lbshift; 3296 int size; 3297 3298 if (cmd == DKIOCGMEDIAINFOEXT) { 3299 media_info.dki_pbsize = 1U << lsp->ls_pbshift; 3300 size = sizeof (struct dk_minfo_ext); 3301 } else { 3302 size = sizeof (struct dk_minfo); 3303 } 3304 3305 media_info.dki_media_type = DK_FIXED_DISK; 3306 media_info.dki_lbsize = 1U << shift; 3307 media_info.dki_capacity = 3308 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift; 3309 3310 if (ddi_copyout(&media_info, (void *)arg, size, flag)) 3311 return (EFAULT); 3312 return (0); 3313 } 3314 case DKIOCREMOVABLE: { 3315 int i = 0; 3316 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag)) 3317 return (EFAULT); 3318 return (0); 3319 } 3320 3321 case DKIOCGVTOC: { 3322 struct vtoc vt; 3323 fake_disk_vtoc(lsp, &vt); 3324 3325 switch (ddi_model_convert_from(flag & FMODELS)) { 3326 case DDI_MODEL_ILP32: { 3327 struct vtoc32 vtoc32; 3328 3329 vtoctovtoc32(vt, vtoc32); 3330 if (ddi_copyout(&vtoc32, (void *)arg, 3331 sizeof (struct vtoc32), flag)) 3332 return (EFAULT); 3333 break; 3334 } 3335 3336 case DDI_MODEL_NONE: 3337 if (ddi_copyout(&vt, (void *)arg, 3338 sizeof (struct vtoc), flag)) 3339 return (EFAULT); 3340 break; 3341 } 3342 return (0); 3343 } 3344 case DKIOCINFO: { 3345 struct dk_cinfo ci; 3346 fake_disk_info(dev, &ci); 3347 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag)) 3348 return (EFAULT); 3349 return (0); 3350 } 3351 case DKIOCG_VIRTGEOM: 3352 case DKIOCG_PHYGEOM: 3353 case DKIOCGGEOM: 3354 error = ddi_copyout(&lsp->ls_dkg, (void *)arg, 3355 sizeof (struct dk_geom), flag); 3356 if (error) 3357 return (EFAULT); 3358 return (0); 3359 case DKIOCSTATE: 3360 /* 3361 * Normally, lofi devices are always in the INSERTED state. If 3362 * a device is forcefully unmapped, then the device transitions 3363 * to the DKIO_DEV_GONE state. 3364 */ 3365 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), 3366 flag) != 0) 3367 return (EFAULT); 3368 3369 mutex_enter(&lsp->ls_vp_lock); 3370 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || 3371 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && 3372 !lsp->ls_cleanup) { 3373 /* 3374 * By virtue of having the device open, we know that 3375 * 'lsp' will remain valid when we return. 3376 */ 3377 if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) { 3378 mutex_exit(&lsp->ls_vp_lock); 3379 return (EINTR); 3380 } 3381 } 3382 3383 dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ? 3384 DKIO_INSERTED : DKIO_DEV_GONE); 3385 mutex_exit(&lsp->ls_vp_lock); 3386 3387 if (ddi_copyout(&dkstate, (void *)arg, 3388 sizeof (dkstate), flag) != 0) 3389 return (EFAULT); 3390 return (0); 3391 case USCSICMD: { 3392 struct uscsi_cmd uscmd; 3393 union scsi_cdb cdb; 3394 3395 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) { 3396 struct scsi_inquiry inq = {0}; 3397 3398 lofi_create_inquiry(lsp, &inq); 3399 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr, 3400 uscmd.uscsi_buflen, flag) != 0) 3401 return (EFAULT); 3402 return (0); 3403 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) { 3404 struct scsi_capacity capacity; 3405 3406 capacity.capacity = 3407 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >> 3408 lsp->ls_lbshift); 3409 capacity.lbasize = BE_32(1 << lsp->ls_lbshift); 3410 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr, 3411 uscmd.uscsi_buflen, flag) != 0) 3412 return (EFAULT); 3413 return (0); 3414 } 3415 3416 uscmd.uscsi_rqstatus = 0xff; 3417 #ifdef _MULTI_DATAMODEL 3418 switch (ddi_model_convert_from(flag & FMODELS)) { 3419 case DDI_MODEL_ILP32: { 3420 struct uscsi_cmd32 ucmd32; 3421 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32)); 3422 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32), 3423 flag) != 0) 3424 return (EFAULT); 3425 break; 3426 } 3427 case DDI_MODEL_NONE: 3428 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), 3429 flag) != 0) 3430 return (EFAULT); 3431 break; 3432 default: 3433 return (EFAULT); 3434 } 3435 #else 3436 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0) 3437 return (EFAULT); 3438 #endif /* _MULTI_DATAMODEL */ 3439 return (0); 3440 } 3441 default: 3442 #ifdef DEBUG 3443 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd); 3444 #endif /* DEBUG */ 3445 return (ENOTTY); 3446 } 3447 } 3448 3449 static int 3450 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 3451 char *name, caddr_t valuep, int *lengthp) 3452 { 3453 struct lofi_state *lsp; 3454 int rc; 3455 3456 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip)); 3457 if (lsp == NULL) { 3458 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 3459 name, valuep, lengthp)); 3460 } 3461 3462 rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags, 3463 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL); 3464 if (rc == DDI_PROP_SUCCESS) 3465 return (rc); 3466 3467 return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags, 3468 name, valuep, lengthp)); 3469 } 3470 3471 static struct cb_ops lofi_cb_ops = { 3472 lofi_open, /* open */ 3473 lofi_close, /* close */ 3474 lofi_strategy, /* strategy */ 3475 nodev, /* print */ 3476 nodev, /* dump */ 3477 lofi_read, /* read */ 3478 lofi_write, /* write */ 3479 lofi_ioctl, /* ioctl */ 3480 nodev, /* devmap */ 3481 nodev, /* mmap */ 3482 nodev, /* segmap */ 3483 nochpoll, /* poll */ 3484 lofi_prop_op, /* prop_op */ 3485 0, /* streamtab */ 3486 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ 3487 CB_REV, 3488 lofi_aread, 3489 lofi_awrite 3490 }; 3491 3492 static struct dev_ops lofi_ops = { 3493 DEVO_REV, /* devo_rev, */ 3494 0, /* refcnt */ 3495 lofi_info, /* info */ 3496 nulldev, /* identify */ 3497 nulldev, /* probe */ 3498 lofi_attach, /* attach */ 3499 lofi_detach, /* detach */ 3500 nodev, /* reset */ 3501 &lofi_cb_ops, /* driver operations */ 3502 NULL, /* no bus operations */ 3503 NULL, /* power */ 3504 ddi_quiesce_not_needed, /* quiesce */ 3505 }; 3506 3507 static struct modldrv modldrv = { 3508 &mod_driverops, 3509 "loopback file driver", 3510 &lofi_ops, 3511 }; 3512 3513 static struct modlinkage modlinkage = { 3514 MODREV_1, 3515 &modldrv, 3516 NULL 3517 }; 3518 3519 int 3520 _init(void) 3521 { 3522 int error; 3523 3524 list_create(&lofi_list, sizeof (struct lofi_state), 3525 offsetof(struct lofi_state, ls_list)); 3526 3527 error = ddi_soft_state_init((void **)&lofi_statep, 3528 sizeof (struct lofi_state), 0); 3529 if (error) { 3530 list_destroy(&lofi_list); 3531 return (error); 3532 } 3533 3534 /* 3535 * The minor number is stored as id << LOFI_CMLB_SHIFT as 3536 * we need to reserve space for cmlb minor numbers. 3537 * This will leave out 4096 id values on 32bit kernel, which should 3538 * still suffice. 3539 */ 3540 lofi_id = id_space_create("lofi_id", 1, 3541 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT))); 3542 3543 if (lofi_id == NULL) { 3544 ddi_soft_state_fini((void **)&lofi_statep); 3545 list_destroy(&lofi_list); 3546 return (DDI_FAILURE); 3547 } 3548 3549 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); 3550 3551 error = mod_install(&modlinkage); 3552 3553 if (error) { 3554 id_space_destroy(lofi_id); 3555 mutex_destroy(&lofi_lock); 3556 ddi_soft_state_fini((void **)&lofi_statep); 3557 list_destroy(&lofi_list); 3558 } 3559 3560 return (error); 3561 } 3562 3563 int 3564 _fini(void) 3565 { 3566 int error; 3567 3568 mutex_enter(&lofi_lock); 3569 3570 if (!list_is_empty(&lofi_list)) { 3571 mutex_exit(&lofi_lock); 3572 return (EBUSY); 3573 } 3574 3575 mutex_exit(&lofi_lock); 3576 3577 error = mod_remove(&modlinkage); 3578 if (error) 3579 return (error); 3580 3581 mutex_destroy(&lofi_lock); 3582 id_space_destroy(lofi_id); 3583 ddi_soft_state_fini((void **)&lofi_statep); 3584 list_destroy(&lofi_list); 3585 3586 return (error); 3587 } 3588 3589 int 3590 _info(struct modinfo *modinfop) 3591 { 3592 return (mod_info(&modlinkage, modinfop)); 3593 } 3594