xref: /illumos-gate/usr/src/uts/common/io/lofi.c (revision 3184921aa9155f2314caa4909eba31a0be558b3d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  *
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 Andrey Sokolov
26  * Copyright 2019 Joyent, Inc.
27  * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2021 Toomas Soome <tsoome@me.com>
29  */
30 
31 /*
32  * lofi (loopback file) driver - allows you to attach a file to a device,
33  * which can then be accessed through that device. The simple model is that
34  * you tell lofi to open a file, and then use the block device you get as
35  * you would any block device. lofi translates access to the block device
36  * into I/O on the underlying file. This is mostly useful for
37  * mounting images of filesystems.
38  *
39  * lofi is controlled through /dev/lofictl - this is the only device exported
40  * during attach, and is instance number 0. lofiadm communicates with lofi
41  * through ioctls on this device. When a file is attached to lofi, block and
42  * character devices are exported in /dev/lofi and /dev/rlofi. These devices
43  * are identified by lofi instance number, and the instance number is also used
44  * as the name in /dev/lofi.
45  *
46  * Virtual disks, or, labeled lofi, implements virtual disk support to
47  * support partition table and related tools. Such mappings will cause
48  * block and character devices to be exported in /dev/dsk and /dev/rdsk
49  * directories.
50  *
51  * To support virtual disks, the instance number space is divided to two
52  * parts, upper part for instance number and lower part for minor number
53  * space to identify partitions and slices. The virtual disk support is
54  * implemented by stacking cmlb module. For virtual disks, the partition
55  * related ioctl calls are routed to cmlb module. Compression and encryption
56  * is not supported for virtual disks.
57  *
58  * Mapped devices are tracked with state structures handled with
59  * ddi_soft_state(9F) for simplicity.
60  *
61  * A file attached to lofi is opened when attached and not closed until
62  * explicitly detached from lofi. This seems more sensible than deferring
63  * the open until the /dev/lofi device is opened, for a number of reasons.
64  * One is that any failure is likely to be noticed by the person (or script)
65  * running lofiadm. Another is that it would be a security problem if the
66  * file was replaced by another one after being added but before being opened.
67  *
68  * The only hard part about lofi is the ioctls. In order to support things
69  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
70  * So it has to fake disk geometry and partition information. More may need
71  * to be faked if your favorite utility doesn't work and you think it should
72  * (fdformat doesn't work because it really wants to know the type of floppy
73  * controller to talk to, and that didn't seem easy to fake. Or possibly even
74  * necessary, since we have mkfs_pcfs now).
75  *
76  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
77  * support simulation of hotplug events, an optional force flag is provided.
78  * If a lofi device is open when a force detach is requested, then the
79  * underlying file is closed and any subsequent operations return EIO.  When the
80  * device is closed for the last time, it will be cleaned up at that time.  In
81  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
82  * detached but not removed.
83  *
84  * If detach was requested and lofi device is not open, we will perform
85  * unmap and remove the lofi instance.
86  *
87  * If the lofi device is open and the li_cleanup is set on ioctl request,
88  * we set ls_cleanup flag to notify the cleanup is requested, and the
89  * last lofi_close will perform the unmapping and this lofi instance will be
90  * removed.
91  *
92  * If the lofi device is open and the li_force is set on ioctl request,
93  * we set ls_cleanup flag to notify the cleanup is requested,
94  * we also set ls_vp_closereq to notify IO tasks to return EIO on new
95  * IO requests and wait in process IO count to become 0, indicating there
96  * are no more IO requests. Since ls_cleanup is set, the last lofi_close
97  * will perform unmap and this lofi instance will be removed.
98  * See also lofi_unmap_file() for details.
99  *
100  * Once ls_cleanup is set for the instance, we do not allow lofi_open()
101  * calls to succeed and can have last lofi_close() to remove the instance.
102  *
103  * Known problems:
104  *
105  *	UFS logging. Mounting a UFS filesystem image "logging"
106  *	works for basic copy testing but wedges during a build of ON through
107  *	that image. Some deadlock in lufs holding the log mutex and then
108  *	getting stuck on a buf. So for now, don't do that.
109  *
110  *	Direct I/O. Since the filesystem data is being cached in the buffer
111  *	cache, _and_ again in the underlying filesystem, it's tempting to
112  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
113  *	I think to fix the cache-twice problem we might need filesystem support.
114  *
115  * Interesting things to do:
116  *
117  *	Allow multiple files for each device. A poor-man's metadisk, basically.
118  *
119  *	Pass-through ioctls on block devices. You can (though it's not
120  *	documented), give lofi a block device as a file name. Then we shouldn't
121  *	need to fake a geometry, however, it may be relevant if you're replacing
122  *	metadisk, or using lofi to get crypto.
123  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
124  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
125  *	In fact this even makes sense if you have lofi "above" metadisk.
126  *
127  * Encryption:
128  *	Each lofi device can have its own symmetric key and cipher.
129  *	They are passed to us by lofiadm(1m) in the correct format for use
130  *	with the misc/kcf crypto_* routines.
131  *
132  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
133  *	on the "master" key held in the lsp and the block number of the buffer.
134  */
135 
136 #include <sys/types.h>
137 #include <netinet/in.h>
138 #include <sys/sysmacros.h>
139 #include <sys/uio.h>
140 #include <sys/kmem.h>
141 #include <sys/cred.h>
142 #include <sys/mman.h>
143 #include <sys/errno.h>
144 #include <sys/aio_req.h>
145 #include <sys/stat.h>
146 #include <sys/file.h>
147 #include <sys/modctl.h>
148 #include <sys/conf.h>
149 #include <sys/debug.h>
150 #include <sys/vnode.h>
151 #include <sys/lofi.h>
152 #include <sys/lofi_impl.h>	/* for cache structure */
153 #include <sys/fcntl.h>
154 #include <sys/pathname.h>
155 #include <sys/filio.h>
156 #include <sys/fdio.h>
157 #include <sys/open.h>
158 #include <sys/disp.h>
159 #include <vm/seg_map.h>
160 #include <sys/ddi.h>
161 #include <sys/sunddi.h>
162 #include <sys/zmod.h>
163 #include <sys/id_space.h>
164 #include <sys/mkdev.h>
165 #include <sys/crypto/common.h>
166 #include <sys/crypto/api.h>
167 #include <sys/rctl.h>
168 #include <sys/vtoc.h>
169 #include <sys/scsi/scsi.h>	/* for DTYPE_DIRECT */
170 #include <sys/scsi/impl/uscsi.h>
171 #include <sys/sysevent/dev.h>
172 #include <sys/efi_partition.h>
173 #include <sys/note.h>
174 #include <LzmaDec.h>
175 
176 #define	NBLOCKS_PROP_NAME	"Nblocks"
177 #define	SIZE_PROP_NAME		"Size"
178 #define	ZONE_PROP_NAME		"zone"
179 
180 #define	SETUP_C_DATA(cd, buf, len)		\
181 	(cd).cd_format = CRYPTO_DATA_RAW;	\
182 	(cd).cd_offset = 0;			\
183 	(cd).cd_miscdata = NULL;		\
184 	(cd).cd_length = (len);			\
185 	(cd).cd_raw.iov_base = (buf);		\
186 	(cd).cd_raw.iov_len = (len);
187 
188 #define	UIO_CHECK(uio)	\
189 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
190 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
191 		return (EINVAL); \
192 	}
193 
194 #define	LOFI_TIMEOUT	120
195 
196 int lofi_timeout = LOFI_TIMEOUT;
197 static void *lofi_statep;
198 static kmutex_t lofi_lock;		/* state lock */
199 static id_space_t *lofi_id;		/* lofi ID values */
200 static list_t lofi_list;
201 static zone_key_t lofi_zone_key;
202 
203 /*
204  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
205  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
206  * high.  If we want to be assured that the underlying device is always busy,
207  * we must be sure that the number of bytes enqueued when the number of
208  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
209  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
210  * set maxalloc to be the maximum throughput (in bytes per second) of the
211  * underlying device divided by the minimum I/O size.  We assume a realistic
212  * maximum throughput of one hundred megabytes per second; we set maxalloc on
213  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
214  */
215 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
216 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
217 
218 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
219 
220 /*
221  * To avoid decompressing data in a compressed segment multiple times
222  * when accessing small parts of a segment's data, we cache and reuse
223  * the uncompressed segment's data.
224  *
225  * A single cached segment is sufficient to avoid lots of duplicate
226  * segment decompress operations. A small cache size also reduces the
227  * memory footprint.
228  *
229  * lofi_max_comp_cache is the maximum number of decompressed data segments
230  * cached for each compressed lofi image. It can be set to 0 to disable
231  * caching.
232  */
233 
234 uint32_t lofi_max_comp_cache = 1;
235 
236 static int gzip_decompress(void *src, size_t srclen, void *dst,
237 	size_t *destlen, int level);
238 
239 static int lzma_decompress(void *src, size_t srclen, void *dst,
240 	size_t *dstlen, int level);
241 
242 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
243 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
244 	{gzip_decompress,	NULL,	6,	"gzip-6"},
245 	{gzip_decompress,	NULL,	9,	"gzip-9"},
246 	{lzma_decompress,	NULL,	0,	"lzma"}
247 };
248 
249 static void lofi_strategy_task(void *);
250 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
251     size_t, void *);
252 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
253 
254 struct cmlb_tg_ops lofi_tg_ops = {
255 	TG_DK_OPS_VERSION_1,
256 	lofi_tg_rdwr,
257 	lofi_tg_getinfo
258 };
259 
260 /*ARGSUSED*/
261 static void
262 *SzAlloc(void *p, size_t size)
263 {
264 	return (kmem_alloc(size, KM_SLEEP));
265 }
266 
267 /*ARGSUSED*/
268 static void
269 SzFree(void *p, void *address, size_t size)
270 {
271 	kmem_free(address, size);
272 }
273 
274 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
275 
276 /*
277  * Free data referenced by the linked list of cached uncompressed
278  * segments.
279  */
280 static void
281 lofi_free_comp_cache(struct lofi_state *lsp)
282 {
283 	struct lofi_comp_cache *lc;
284 
285 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
286 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
287 		kmem_free(lc, sizeof (struct lofi_comp_cache));
288 		lsp->ls_comp_cache_count--;
289 	}
290 	ASSERT(lsp->ls_comp_cache_count == 0);
291 }
292 
293 static int
294 is_opened(struct lofi_state *lsp)
295 {
296 	int i;
297 	boolean_t last = B_TRUE;
298 
299 	ASSERT(MUTEX_HELD(&lofi_lock));
300 	for (i = 0; i < LOFI_PART_MAX; i++) {
301 		if (lsp->ls_open_lyr[i]) {
302 			last = B_FALSE;
303 			break;
304 		}
305 	}
306 
307 	for (i = 0; last && (i < OTYP_LYR); i++) {
308 		if (lsp->ls_open_reg[i]) {
309 			last = B_FALSE;
310 		}
311 	}
312 
313 	return (!last);
314 }
315 
316 static void
317 lofi_set_cleanup(struct lofi_state *lsp)
318 {
319 	ASSERT(MUTEX_HELD(&lofi_lock));
320 
321 	lsp->ls_cleanup = B_TRUE;
322 
323 	/* wake up any threads waiting on dkiocstate */
324 	cv_broadcast(&lsp->ls_vp_cv);
325 }
326 
327 static void
328 lofi_free_crypto(struct lofi_state *lsp)
329 {
330 	ASSERT(MUTEX_HELD(&lofi_lock));
331 
332 	if (lsp->ls_crypto_enabled) {
333 		/*
334 		 * Clean up the crypto state so that it doesn't hang around
335 		 * in memory after we are done with it.
336 		 */
337 		if (lsp->ls_key.ck_data != NULL) {
338 			bzero(lsp->ls_key.ck_data,
339 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
340 			kmem_free(lsp->ls_key.ck_data,
341 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
342 			lsp->ls_key.ck_data = NULL;
343 			lsp->ls_key.ck_length = 0;
344 		}
345 
346 		if (lsp->ls_mech.cm_param != NULL) {
347 			kmem_free(lsp->ls_mech.cm_param,
348 			    lsp->ls_mech.cm_param_len);
349 			lsp->ls_mech.cm_param = NULL;
350 			lsp->ls_mech.cm_param_len = 0;
351 		}
352 
353 		if (lsp->ls_iv_mech.cm_param != NULL) {
354 			kmem_free(lsp->ls_iv_mech.cm_param,
355 			    lsp->ls_iv_mech.cm_param_len);
356 			lsp->ls_iv_mech.cm_param = NULL;
357 			lsp->ls_iv_mech.cm_param_len = 0;
358 		}
359 
360 		mutex_destroy(&lsp->ls_crypto_lock);
361 	}
362 }
363 
364 /* ARGSUSED */
365 static int
366 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
367     size_t length, void *tg_cookie)
368 {
369 	struct lofi_state *lsp;
370 	buf_t	*bp;
371 	int	instance;
372 	int	rv = 0;
373 
374 	instance = ddi_get_instance(dip);
375 	if (instance == 0)	/* control node does not have disk */
376 		return (ENXIO);
377 
378 	lsp = ddi_get_soft_state(lofi_statep, instance);
379 
380 	if (lsp == NULL)
381 		return (ENXIO);
382 
383 	if (cmd != TG_READ && cmd != TG_WRITE)
384 		return (EINVAL);
385 
386 	/*
387 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
388 	 */
389 	mutex_enter(&lsp->ls_vp_lock);
390 	while (lsp->ls_vp_ready == B_FALSE)
391 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
392 	mutex_exit(&lsp->ls_vp_lock);
393 
394 	if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
395 		/* We can only transfer whole blocks at a time! */
396 		return (EINVAL);
397 	}
398 
399 	bp = getrbuf(KM_SLEEP);
400 
401 	if (cmd == TG_READ) {
402 		bp->b_flags = B_READ;
403 	} else {
404 		if (lsp->ls_readonly == B_TRUE) {
405 			freerbuf(bp);
406 			return (EROFS);
407 		}
408 		bp->b_flags = B_WRITE;
409 	}
410 
411 	bp->b_un.b_addr = bufaddr;
412 	bp->b_bcount = length;
413 	bp->b_lblkno = start;
414 	bp->b_private = NULL;
415 	bp->b_edev = lsp->ls_dev;
416 
417 	if (lsp->ls_kstat) {
418 		mutex_enter(lsp->ls_kstat->ks_lock);
419 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
420 		mutex_exit(lsp->ls_kstat->ks_lock);
421 	}
422 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
423 	(void) biowait(bp);
424 
425 	rv = geterror(bp);
426 	freerbuf(bp);
427 	return (rv);
428 }
429 
430 /*
431  * Get device geometry info for cmlb.
432  *
433  * We have mapped disk image as virtual block device and have to report
434  * physical/virtual geometry to cmlb.
435  *
436  * So we have two principal cases:
437  * 1. Uninitialised image without any existing labels,
438  *    for this case we fabricate the data based on mapped image.
439  * 2. Image with existing label information.
440  *    Since we have no information how the image was created (it may be
441  *    dump from some physical device), we need to rely on label information
442  *    from image, or we get "corrupted label" errors.
443  *    NOTE: label can be MBR, MBR+SMI, GPT
444  */
445 static int
446 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
447 {
448 	struct lofi_state *lsp;
449 	int instance;
450 	int ashift;
451 
452 	_NOTE(ARGUNUSED(tg_cookie));
453 	instance = ddi_get_instance(dip);
454 	if (instance == 0)		/* control device has no storage */
455 		return (ENXIO);
456 
457 	lsp = ddi_get_soft_state(lofi_statep, instance);
458 
459 	if (lsp == NULL)
460 		return (ENXIO);
461 
462 	/*
463 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
464 	 *
465 	 * When mapping is created, new lofi instance is created and
466 	 * lofi_attach() will call cmlb_attach() as part of the procedure
467 	 * to set the mapping up. This chain of events will happen in
468 	 * the same thread.
469 	 * Since cmlb_attach() will call lofi_tg_getinfo to get
470 	 * capacity, we return error on that call if cookie is set,
471 	 * otherwise lofi_attach will be stuck as the mapping is not yet
472 	 * finalized and lofi is not yet ready.
473 	 * Note, such error is not fatal for cmlb, as the label setup
474 	 * will be finalized when cmlb_validate() is called.
475 	 */
476 	mutex_enter(&lsp->ls_vp_lock);
477 	if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
478 		mutex_exit(&lsp->ls_vp_lock);
479 		return (ENXIO);
480 	}
481 	while (lsp->ls_vp_ready == B_FALSE)
482 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
483 	mutex_exit(&lsp->ls_vp_lock);
484 
485 	ashift = lsp->ls_lbshift;
486 
487 	switch (cmd) {
488 	case TG_GETPHYGEOM: {
489 		cmlb_geom_t *geomp = arg;
490 
491 		geomp->g_capacity	=
492 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
493 		geomp->g_nsect		= lsp->ls_dkg.dkg_nsect;
494 		geomp->g_nhead		= lsp->ls_dkg.dkg_nhead;
495 		geomp->g_acyl		= lsp->ls_dkg.dkg_acyl;
496 		geomp->g_ncyl		= lsp->ls_dkg.dkg_ncyl;
497 		geomp->g_secsize	= (1U << ashift);
498 		geomp->g_intrlv		= lsp->ls_dkg.dkg_intrlv;
499 		geomp->g_rpm		= lsp->ls_dkg.dkg_rpm;
500 		return (0);
501 	}
502 
503 	case TG_GETCAPACITY:
504 		*(diskaddr_t *)arg =
505 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
506 		return (0);
507 
508 	case TG_GETBLOCKSIZE:
509 		*(uint32_t *)arg = (1U << ashift);
510 		return (0);
511 
512 	case TG_GETATTR: {
513 		tg_attribute_t *tgattr = arg;
514 
515 		tgattr->media_is_writable = !lsp->ls_readonly;
516 		tgattr->media_is_solid_state = B_FALSE;
517 		tgattr->media_is_rotational = B_FALSE;
518 		return (0);
519 	}
520 
521 	default:
522 		return (EINVAL);
523 	}
524 }
525 
526 static void
527 lofi_teardown_task(void *arg)
528 {
529 	struct lofi_state *lsp = arg;
530 	int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
531 
532 	mutex_enter(&lofi_lock);
533 	while (ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE) != NDI_SUCCESS) {
534 		mutex_exit(&lofi_lock);
535 		/* do a sleeping wait for one second */;
536 		delay(drv_usectohz(MICROSEC));
537 		mutex_enter(&lofi_lock);
538 	}
539 	id_free(lofi_id, id);
540 	mutex_exit(&lofi_lock);
541 }
542 
543 static void
544 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
545 {
546 	int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
547 	int i;
548 
549 	ASSERT(MUTEX_HELD(&lofi_lock));
550 
551 	/*
552 	 * Before we can start to release the other resources,
553 	 * make sure we have all tasks completed and taskq removed.
554 	 */
555 	if (lsp->ls_taskq != NULL) {
556 		taskq_destroy(lsp->ls_taskq);
557 		lsp->ls_taskq = NULL;
558 	}
559 
560 	list_remove(&lofi_list, lsp);
561 
562 	lofi_free_crypto(lsp);
563 
564 	/*
565 	 * Free pre-allocated compressed buffers
566 	 */
567 	if (lsp->ls_comp_bufs != NULL) {
568 		for (i = 0; i < lofi_taskq_nthreads; i++) {
569 			if (lsp->ls_comp_bufs[i].bufsize > 0)
570 				kmem_free(lsp->ls_comp_bufs[i].buf,
571 				    lsp->ls_comp_bufs[i].bufsize);
572 		}
573 		kmem_free(lsp->ls_comp_bufs,
574 		    sizeof (struct compbuf) * lofi_taskq_nthreads);
575 	}
576 
577 	if (lsp->ls_vp != NULL) {
578 		(void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_FREE, credp, NULL);
579 		(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
580 		    1, 0, credp, NULL);
581 		VN_RELE(lsp->ls_vp);
582 	}
583 	if (lsp->ls_stacked_vp != lsp->ls_vp)
584 		VN_RELE(lsp->ls_stacked_vp);
585 	lsp->ls_vp = lsp->ls_stacked_vp = NULL;
586 
587 	if (lsp->ls_kstat != NULL) {
588 		kstat_delete(lsp->ls_kstat);
589 		lsp->ls_kstat = NULL;
590 	}
591 
592 	/*
593 	 * Free cached decompressed segment data
594 	 */
595 	lofi_free_comp_cache(lsp);
596 	list_destroy(&lsp->ls_comp_cache);
597 
598 	if (lsp->ls_uncomp_seg_sz > 0) {
599 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
600 		lsp->ls_uncomp_seg_sz = 0;
601 	}
602 
603 	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
604 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
605 
606 	mutex_destroy(&lsp->ls_comp_cache_lock);
607 	mutex_destroy(&lsp->ls_comp_bufs_lock);
608 	mutex_destroy(&lsp->ls_kstat_lock);
609 	mutex_destroy(&lsp->ls_vp_lock);
610 	cv_destroy(&lsp->ls_vp_cv);
611 	lsp->ls_vp_ready = B_FALSE;
612 	lsp->ls_vp_closereq = B_FALSE;
613 
614 	ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
615 	/*
616 	 * Instance state is allocated in lofi_attach() and freed in
617 	 * lofi_detach(). New instance is created when we create new mapping.
618 	 * Instance removal is performed by unmap ioctl on lofi control
619 	 * instance (0).
620 	 *
621 	 * If the unmap is performed with instance which is still in use,
622 	 * we either cancel unmap with error or we can perform delayed unmap
623 	 * by blocking all IO, waiting the consumers to close access to this
624 	 * instance and once there are no more consumers, complete the unmap.
625 	 *
626 	 * Delayed unmap will trigger instance removal on last lofi_close(),
627 	 * but we can not remove device instance while the instance is still
628 	 * in use due to lofi_close() is running.
629 	 * Spawn task to complete device instance offlining in separate thread.
630 	 */
631 	(void) taskq_dispatch(system_taskq, lofi_teardown_task, lsp, KM_SLEEP);
632 }
633 
634 static void
635 lofi_free_dev(struct lofi_state *lsp)
636 {
637 	ASSERT(MUTEX_HELD(&lofi_lock));
638 
639 	if (lsp->ls_cmlbhandle != NULL) {
640 		cmlb_invalidate(lsp->ls_cmlbhandle, 0);
641 		cmlb_detach(lsp->ls_cmlbhandle, 0);
642 		cmlb_free_handle(&lsp->ls_cmlbhandle);
643 		lsp->ls_cmlbhandle = NULL;
644 	}
645 	(void) ddi_prop_remove_all(lsp->ls_dip);
646 	ddi_remove_minor_node(lsp->ls_dip, NULL);
647 }
648 
649 /*ARGSUSED*/
650 static void
651 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
652 {
653 	struct lofi_state *lsp;
654 	struct lofi_state *next;
655 
656 	mutex_enter(&lofi_lock);
657 
658 	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
659 
660 		/* lofi_destroy() frees lsp */
661 		next = list_next(&lofi_list, lsp);
662 
663 		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
664 			continue;
665 
666 		/*
667 		 * No in-zone processes are running, but something has this
668 		 * open.  It's either a global zone process, or a lofi
669 		 * mount.  In either case we set ls_cleanup so the last
670 		 * user destroys the device.
671 		 */
672 		if (is_opened(lsp)) {
673 			lofi_set_cleanup(lsp);
674 		} else {
675 			lofi_free_dev(lsp);
676 			lofi_destroy(lsp, kcred);
677 		}
678 	}
679 
680 	mutex_exit(&lofi_lock);
681 }
682 
683 /*ARGSUSED*/
684 static int
685 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
686 {
687 	int id;
688 	minor_t	part;
689 	uint64_t mask;
690 	diskaddr_t nblks;
691 	diskaddr_t lba;
692 	boolean_t ndelay;
693 
694 	struct lofi_state *lsp;
695 
696 	if (otyp >= OTYPCNT)
697 		return (EINVAL);
698 
699 	ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
700 
701 	/*
702 	 * lofiadm -a /dev/lofi/1 gets us here.
703 	 */
704 	if (mutex_owner(&lofi_lock) == curthread)
705 		return (EINVAL);
706 
707 	mutex_enter(&lofi_lock);
708 
709 	id = LOFI_MINOR2ID(getminor(*devp));
710 	part = LOFI_PART(getminor(*devp));
711 	mask = (1U << part);
712 
713 	/* master control device */
714 	if (id == 0) {
715 		mutex_exit(&lofi_lock);
716 		return (0);
717 	}
718 
719 	/* otherwise, the mapping should already exist */
720 	lsp = ddi_get_soft_state(lofi_statep, id);
721 	if (lsp == NULL) {
722 		mutex_exit(&lofi_lock);
723 		return (EINVAL);
724 	}
725 
726 	if (lsp->ls_cleanup == B_TRUE) {
727 		mutex_exit(&lofi_lock);
728 		return (ENXIO);
729 	}
730 
731 	if (lsp->ls_vp == NULL) {
732 		mutex_exit(&lofi_lock);
733 		return (ENXIO);
734 	}
735 
736 	if (lsp->ls_readonly && (flag & FWRITE)) {
737 		mutex_exit(&lofi_lock);
738 		return (EROFS);
739 	}
740 
741 	if ((lsp->ls_open_excl) & (mask)) {
742 		mutex_exit(&lofi_lock);
743 		return (EBUSY);
744 	}
745 
746 	if (flag & FEXCL) {
747 		if (lsp->ls_open_lyr[part]) {
748 			mutex_exit(&lofi_lock);
749 			return (EBUSY);
750 		}
751 		for (int i = 0; i < OTYP_LYR; i++) {
752 			if (lsp->ls_open_reg[i] & mask) {
753 				mutex_exit(&lofi_lock);
754 				return (EBUSY);
755 			}
756 		}
757 	}
758 
759 	if (lsp->ls_cmlbhandle != NULL) {
760 		if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
761 			/*
762 			 * non-blocking opens are allowed to succeed to
763 			 * support format and fdisk to create partitioning.
764 			 */
765 			if (!ndelay) {
766 				mutex_exit(&lofi_lock);
767 				return (ENXIO);
768 			}
769 		} else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
770 		    NULL, NULL, 0) == 0) {
771 			if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
772 				mutex_exit(&lofi_lock);
773 				return (ENXIO);
774 			}
775 		} else if (!ndelay) {
776 			mutex_exit(&lofi_lock);
777 			return (ENXIO);
778 		}
779 	}
780 
781 	if (otyp == OTYP_LYR) {
782 		lsp->ls_open_lyr[part]++;
783 	} else {
784 		lsp->ls_open_reg[otyp] |= mask;
785 	}
786 	if (flag & FEXCL) {
787 		lsp->ls_open_excl |= mask;
788 	}
789 
790 	mutex_exit(&lofi_lock);
791 	return (0);
792 }
793 
794 /*ARGSUSED*/
795 static int
796 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
797 {
798 	minor_t	part;
799 	int id;
800 	uint64_t mask;
801 	struct lofi_state *lsp;
802 
803 	id = LOFI_MINOR2ID(getminor(dev));
804 	part = LOFI_PART(getminor(dev));
805 	mask = (1U << part);
806 
807 	mutex_enter(&lofi_lock);
808 	lsp = ddi_get_soft_state(lofi_statep, id);
809 	if (lsp == NULL) {
810 		mutex_exit(&lofi_lock);
811 		return (EINVAL);
812 	}
813 
814 	if (id == 0) {
815 		mutex_exit(&lofi_lock);
816 		return (0);
817 	}
818 
819 	if (lsp->ls_open_excl & mask)
820 		lsp->ls_open_excl &= ~mask;
821 
822 	if (otyp == OTYP_LYR) {
823 		lsp->ls_open_lyr[part]--;
824 	} else {
825 		lsp->ls_open_reg[otyp] &= ~mask;
826 	}
827 
828 	/*
829 	 * If we forcibly closed the underlying device (li_force), or
830 	 * asked for cleanup (li_cleanup), finish up if we're the last
831 	 * out of the door.
832 	 */
833 	if (!is_opened(lsp) &&
834 	    (lsp->ls_cleanup == B_TRUE || lsp->ls_vp == NULL)) {
835 		lofi_free_dev(lsp);
836 		lofi_destroy(lsp, credp);
837 	}
838 
839 	mutex_exit(&lofi_lock);
840 	return (0);
841 }
842 
843 /*
844  * Sets the mechanism's initialization vector (IV) if one is needed.
845  * The IV is computed from the data block number.  lsp->ls_mech is
846  * altered so that:
847  *	lsp->ls_mech.cm_param_len is set to the IV len.
848  *	lsp->ls_mech.cm_param is set to the IV.
849  */
850 static int
851 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
852 {
853 	int	ret;
854 	crypto_data_t cdata;
855 	char	*iv;
856 	size_t	iv_len;
857 	size_t	min;
858 	void	*data;
859 	size_t	datasz;
860 
861 	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
862 
863 	if (lsp == NULL)
864 		return (CRYPTO_DEVICE_ERROR);
865 
866 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
867 	if (lsp->ls_iv_type == IVM_NONE) {
868 		return (CRYPTO_SUCCESS);
869 	}
870 
871 	/*
872 	 * if kmem already alloced from previous call and it's the same size
873 	 * we need now, just recycle it; allocate new kmem only if we have to
874 	 */
875 	if (lsp->ls_mech.cm_param == NULL ||
876 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
877 		iv_len = lsp->ls_iv_len;
878 		iv = kmem_zalloc(iv_len, KM_SLEEP);
879 	} else {
880 		iv_len = lsp->ls_mech.cm_param_len;
881 		iv = lsp->ls_mech.cm_param;
882 		bzero(iv, iv_len);
883 	}
884 
885 	switch (lsp->ls_iv_type) {
886 	case IVM_ENC_BLKNO:
887 		/* iv is not static, lblkno changes each time */
888 		data = &lblkno;
889 		datasz = sizeof (lblkno);
890 		break;
891 	default:
892 		data = 0;
893 		datasz = 0;
894 		break;
895 	}
896 
897 	/*
898 	 * write blkno into the iv buffer padded on the left in case
899 	 * blkno ever grows bigger than its current longlong_t size
900 	 * or a variation other than blkno is used for the iv data
901 	 */
902 	min = MIN(datasz, iv_len);
903 	bcopy(data, iv + (iv_len - min), min);
904 
905 	/* encrypt the data in-place to get the IV */
906 	SETUP_C_DATA(cdata, iv, iv_len);
907 
908 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
909 	    NULL, NULL, NULL);
910 	if (ret != CRYPTO_SUCCESS) {
911 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
912 		    lblkno, ret);
913 		if (lsp->ls_mech.cm_param != iv)
914 			kmem_free(iv, iv_len);
915 
916 		return (ret);
917 	}
918 
919 	/* clean up the iv from the last computation */
920 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
921 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
922 
923 	lsp->ls_mech.cm_param_len = iv_len;
924 	lsp->ls_mech.cm_param = iv;
925 
926 	return (CRYPTO_SUCCESS);
927 }
928 
929 /*
930  * Performs encryption and decryption of a chunk of data of size "len",
931  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
932  * DEV_BSIZE.
933  */
934 static int
935 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
936     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
937 {
938 	crypto_data_t cdata;
939 	crypto_data_t wdata;
940 	int ret;
941 	longlong_t lblkno = bp->b_lblkno;
942 
943 	mutex_enter(&lsp->ls_crypto_lock);
944 
945 	/*
946 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
947 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
948 	 */
949 	SETUP_C_DATA(cdata, plaintext, len);
950 	cdata.cd_length = DEV_BSIZE;
951 	if (ciphertext != NULL) {		/* not in-place crypto */
952 		SETUP_C_DATA(wdata, ciphertext, len);
953 		wdata.cd_length = DEV_BSIZE;
954 	}
955 
956 	do {
957 		ret = lofi_blk_mech(lsp, lblkno);
958 		if (ret != CRYPTO_SUCCESS)
959 			continue;
960 
961 		if (op_encrypt) {
962 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
963 			    &lsp->ls_key, NULL,
964 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
965 		} else {
966 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
967 			    &lsp->ls_key, NULL,
968 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
969 		}
970 
971 		cdata.cd_offset += DEV_BSIZE;
972 		if (ciphertext != NULL)
973 			wdata.cd_offset += DEV_BSIZE;
974 		lblkno++;
975 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
976 
977 	mutex_exit(&lsp->ls_crypto_lock);
978 
979 	if (ret != CRYPTO_SUCCESS) {
980 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
981 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
982 		    lblkno, ret);
983 	}
984 
985 	return (ret);
986 }
987 
988 #define	RDWR_RAW	1
989 #define	RDWR_BCOPY	2
990 
991 static int
992 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
993     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
994 {
995 	ssize_t resid;
996 	int isread;
997 	int error;
998 
999 	/*
1000 	 * Handles reads/writes for both plain and encrypted lofi
1001 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
1002 	 * when it gets here.
1003 	 */
1004 
1005 	isread = bp->b_flags & B_READ;
1006 	if (isread) {
1007 		if (method == RDWR_BCOPY) {
1008 			/* DO NOT update bp->b_resid for bcopy */
1009 			bcopy(bcopy_locn, bufaddr, len);
1010 			error = 0;
1011 		} else {		/* RDWR_RAW */
1012 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
1013 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
1014 			    &resid);
1015 			bp->b_resid = resid;
1016 		}
1017 		if (lsp->ls_crypto_enabled && error == 0) {
1018 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
1019 			    B_FALSE) != CRYPTO_SUCCESS) {
1020 				/*
1021 				 * XXX: original code didn't set residual
1022 				 * back to len because no error was expected
1023 				 * from bcopy() if encryption is not enabled
1024 				 */
1025 				if (method != RDWR_BCOPY)
1026 					bp->b_resid = len;
1027 				error = EIO;
1028 			}
1029 		}
1030 		return (error);
1031 	} else {
1032 		void *iobuf = bufaddr;
1033 
1034 		if (lsp->ls_crypto_enabled) {
1035 			/* don't do in-place crypto to keep bufaddr intact */
1036 			iobuf = kmem_alloc(len, KM_SLEEP);
1037 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
1038 			    B_TRUE) != CRYPTO_SUCCESS) {
1039 				kmem_free(iobuf, len);
1040 				if (method != RDWR_BCOPY)
1041 					bp->b_resid = len;
1042 				return (EIO);
1043 			}
1044 		}
1045 		if (method == RDWR_BCOPY) {
1046 			/* DO NOT update bp->b_resid for bcopy */
1047 			bcopy(iobuf, bcopy_locn, len);
1048 			error = 0;
1049 		} else {		/* RDWR_RAW */
1050 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
1051 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
1052 			    &resid);
1053 			bp->b_resid = resid;
1054 		}
1055 		if (lsp->ls_crypto_enabled) {
1056 			kmem_free(iobuf, len);
1057 		}
1058 		return (error);
1059 	}
1060 }
1061 
1062 static int
1063 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
1064     struct lofi_state *lsp)
1065 {
1066 	int error;
1067 	offset_t alignedoffset, mapoffset;
1068 	size_t	xfersize;
1069 	int	isread;
1070 	int	smflags;
1071 	caddr_t	mapaddr;
1072 	size_t	len;
1073 	enum seg_rw srw;
1074 	int	save_error;
1075 
1076 	/*
1077 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
1078 	 * when it gets here.
1079 	 */
1080 	if (lsp->ls_crypto_enabled)
1081 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
1082 
1083 	/*
1084 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1085 	 * an 8K boundary, but the buf transfer address may not be
1086 	 * aligned on more than a 512-byte boundary (we don't enforce
1087 	 * that even though we could). This matters since the initial
1088 	 * part of the transfer may not start at offset 0 within the
1089 	 * segmap'd chunk. So we have to compensate for that with
1090 	 * 'mapoffset'. Subsequent chunks always start off at the
1091 	 * beginning, and the last is capped by b_resid
1092 	 *
1093 	 * Visually, where "|" represents page map boundaries:
1094 	 *   alignedoffset (mapaddr begins at this segmap boundary)
1095 	 *    |   offset (from beginning of file)
1096 	 *    |    |	   len
1097 	 *    v    v	    v
1098 	 * ===|====X========|====...======|========X====|====
1099 	 *	   /-------------...---------------/
1100 	 *		^ bp->b_bcount/bp->b_resid at start
1101 	 *    /----/--------/----...------/--------/
1102 	 *	^	^	^   ^		^
1103 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
1104 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
1105 	 *	|	1st xfersize (<= MAXBSIZE)
1106 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1107 	 *
1108 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
1109 	 * MAXBSIZE boundary.  "len" is next page boundary of size
1110 	 * PAGESIZE after "alignedoffset".
1111 	 */
1112 	mapoffset = offset & MAXBOFFSET;
1113 	alignedoffset = offset - mapoffset;
1114 	bp->b_resid = bp->b_bcount;
1115 	isread = bp->b_flags & B_READ;
1116 	srw = isread ? S_READ : S_WRITE;
1117 	do {
1118 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
1119 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
1120 		len = roundup(mapoffset + xfersize, PAGESIZE);
1121 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1122 		    alignedoffset, MAXBSIZE, 1, srw);
1123 		/*
1124 		 * Now fault in the pages. This lets us check
1125 		 * for errors before we reference mapaddr and
1126 		 * try to resolve the fault in bcopy (which would
1127 		 * panic instead). And this can easily happen,
1128 		 * particularly if you've lofi'd a file over NFS
1129 		 * and someone deletes the file on the server.
1130 		 */
1131 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1132 		    len, F_SOFTLOCK, srw);
1133 		if (error) {
1134 			(void) segmap_release(segkmap, mapaddr, 0);
1135 			if (FC_CODE(error) == FC_OBJERR)
1136 				error = FC_ERRNO(error);
1137 			else
1138 				error = EIO;
1139 			break;
1140 		}
1141 		/* error may be non-zero for encrypted lofi */
1142 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1143 		    RDWR_BCOPY, mapaddr + mapoffset);
1144 		if (error == 0) {
1145 			bp->b_resid -= xfersize;
1146 			bufaddr += xfersize;
1147 			offset += xfersize;
1148 		}
1149 		smflags = 0;
1150 		if (isread) {
1151 			smflags |= SM_FREE;
1152 			/*
1153 			 * If we're reading an entire page starting
1154 			 * at a page boundary, there's a good chance
1155 			 * we won't need it again. Put it on the
1156 			 * head of the freelist.
1157 			 */
1158 			if (mapoffset == 0 && xfersize == MAXBSIZE)
1159 				smflags |= SM_DONTNEED;
1160 		} else {
1161 			/*
1162 			 * Write back good pages, it is okay to
1163 			 * always release asynchronous here as we'll
1164 			 * follow with VOP_FSYNC for B_SYNC buffers.
1165 			 */
1166 			if (error == 0)
1167 				smflags |= SM_WRITE | SM_ASYNC;
1168 		}
1169 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1170 		    len, F_SOFTUNLOCK, srw);
1171 		save_error = segmap_release(segkmap, mapaddr, smflags);
1172 		if (error == 0)
1173 			error = save_error;
1174 		/* only the first map may start partial */
1175 		mapoffset = 0;
1176 		alignedoffset += MAXBSIZE;
1177 	} while ((error == 0) && (bp->b_resid > 0) &&
1178 	    (offset < lsp->ls_vp_comp_size));
1179 
1180 	return (error);
1181 }
1182 
1183 /*
1184  * Check if segment seg_index is present in the decompressed segment
1185  * data cache.
1186  *
1187  * Returns a pointer to the decompressed segment data cache entry if
1188  * found, and NULL when decompressed data for this segment is not yet
1189  * cached.
1190  */
1191 static struct lofi_comp_cache *
1192 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1193 {
1194 	struct lofi_comp_cache *lc;
1195 
1196 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1197 
1198 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1199 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
1200 		if (lc->lc_index == seg_index) {
1201 			/*
1202 			 * Decompressed segment data was found in the
1203 			 * cache.
1204 			 *
1205 			 * The cache uses an LRU replacement strategy;
1206 			 * move the entry to head of list.
1207 			 */
1208 			list_remove(&lsp->ls_comp_cache, lc);
1209 			list_insert_head(&lsp->ls_comp_cache, lc);
1210 			return (lc);
1211 		}
1212 	}
1213 	return (NULL);
1214 }
1215 
1216 /*
1217  * Add the data for a decompressed segment at segment index
1218  * seg_index to the cache of the decompressed segments.
1219  *
1220  * Returns a pointer to the cache element structure in case
1221  * the data was added to the cache; returns NULL when the data
1222  * wasn't cached.
1223  */
1224 static struct lofi_comp_cache *
1225 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1226     uchar_t *data)
1227 {
1228 	struct lofi_comp_cache *lc;
1229 
1230 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1231 
1232 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1233 		lc = list_remove_tail(&lsp->ls_comp_cache);
1234 		ASSERT(lc != NULL);
1235 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1236 		kmem_free(lc, sizeof (struct lofi_comp_cache));
1237 		lsp->ls_comp_cache_count--;
1238 	}
1239 
1240 	/*
1241 	 * Do not cache when disabled by tunable variable
1242 	 */
1243 	if (lofi_max_comp_cache == 0)
1244 		return (NULL);
1245 
1246 	/*
1247 	 * When the cache has not yet reached the maximum allowed
1248 	 * number of segments, allocate a new cache element.
1249 	 * Otherwise the cache is full; reuse the last list element
1250 	 * (LRU) for caching the decompressed segment data.
1251 	 *
1252 	 * The cache element for the new decompressed segment data is
1253 	 * added to the head of the list.
1254 	 */
1255 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1256 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1257 		lc->lc_data = NULL;
1258 		list_insert_head(&lsp->ls_comp_cache, lc);
1259 		lsp->ls_comp_cache_count++;
1260 	} else {
1261 		lc = list_remove_tail(&lsp->ls_comp_cache);
1262 		if (lc == NULL)
1263 			return (NULL);
1264 		list_insert_head(&lsp->ls_comp_cache, lc);
1265 	}
1266 
1267 	/*
1268 	 * Free old uncompressed segment data when reusing a cache
1269 	 * entry.
1270 	 */
1271 	if (lc->lc_data != NULL)
1272 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1273 
1274 	lc->lc_data = data;
1275 	lc->lc_index = seg_index;
1276 	return (lc);
1277 }
1278 
1279 
1280 /*ARGSUSED*/
1281 static int
1282 gzip_decompress(void *src, size_t srclen, void *dst,
1283     size_t *dstlen, int level)
1284 {
1285 	ASSERT(*dstlen >= srclen);
1286 
1287 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1288 		return (-1);
1289 	return (0);
1290 }
1291 
1292 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
1293 /*ARGSUSED*/
1294 static int
1295 lzma_decompress(void *src, size_t srclen, void *dst,
1296     size_t *dstlen, int level)
1297 {
1298 	size_t insizepure;
1299 	void *actual_src;
1300 	ELzmaStatus status;
1301 
1302 	insizepure = srclen - LZMA_HEADER_SIZE;
1303 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1304 
1305 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1306 	    (const Byte *)actual_src, &insizepure,
1307 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1308 	    &g_Alloc) != SZ_OK) {
1309 		return (-1);
1310 	}
1311 	return (0);
1312 }
1313 
1314 /*
1315  * This is basically what strategy used to be before we found we
1316  * needed task queues.
1317  */
1318 static void
1319 lofi_strategy_task(void *arg)
1320 {
1321 	struct buf *bp = (struct buf *)arg;
1322 	int error;
1323 	int syncflag = 0;
1324 	struct lofi_state *lsp;
1325 	offset_t offset;
1326 	caddr_t	bufaddr;
1327 	size_t	len;
1328 	size_t	xfersize;
1329 	boolean_t bufinited = B_FALSE;
1330 
1331 	lsp = ddi_get_soft_state(lofi_statep,
1332 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1333 
1334 	if (lsp == NULL) {
1335 		error = ENXIO;
1336 		goto errout;
1337 	}
1338 	if (lsp->ls_kstat) {
1339 		mutex_enter(lsp->ls_kstat->ks_lock);
1340 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1341 		mutex_exit(lsp->ls_kstat->ks_lock);
1342 	}
1343 
1344 	mutex_enter(&lsp->ls_vp_lock);
1345 	lsp->ls_vp_iocount++;
1346 	mutex_exit(&lsp->ls_vp_lock);
1347 
1348 	bp_mapin(bp);
1349 	bufaddr = bp->b_un.b_addr;
1350 	offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private)
1351 	    << lsp->ls_lbshift;	/* offset within file */
1352 	if (lsp->ls_crypto_enabled) {
1353 		/* encrypted data really begins after crypto header */
1354 		offset += lsp->ls_crypto_offset;
1355 	}
1356 	len = bp->b_bcount;
1357 	bufinited = B_TRUE;
1358 
1359 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1360 		error = EIO;
1361 		goto errout;
1362 	}
1363 
1364 	/*
1365 	 * If we're writing and the buffer was not B_ASYNC
1366 	 * we'll follow up with a VOP_FSYNC() to force any
1367 	 * asynchronous I/O to stable storage.
1368 	 */
1369 	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1370 		syncflag = FSYNC;
1371 
1372 	/*
1373 	 * We used to always use vn_rdwr here, but we cannot do that because
1374 	 * we might decide to read or write from the the underlying
1375 	 * file during this call, which would be a deadlock because
1376 	 * we have the rw_lock. So instead we page, unless it's not
1377 	 * mapable or it's a character device or it's an encrypted lofi.
1378 	 */
1379 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1380 	    lsp->ls_crypto_enabled) {
1381 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1382 		    NULL);
1383 	} else if (lsp->ls_uncomp_seg_sz == 0) {
1384 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1385 	} else {
1386 		uchar_t *compressed_seg = NULL, *cmpbuf;
1387 		uchar_t *uncompressed_seg = NULL;
1388 		lofi_compress_info_t *li;
1389 		size_t oblkcount;
1390 		ulong_t seglen;
1391 		uint64_t sblkno, eblkno, cmpbytes;
1392 		uint64_t uncompressed_seg_index;
1393 		struct lofi_comp_cache *lc;
1394 		offset_t sblkoff, eblkoff;
1395 		u_offset_t salign, ealign;
1396 		u_offset_t sdiff;
1397 		uint32_t comp_data_sz;
1398 		uint64_t i;
1399 		int j;
1400 
1401 		/*
1402 		 * From here on we're dealing primarily with compressed files
1403 		 */
1404 		ASSERT(!lsp->ls_crypto_enabled);
1405 
1406 		/*
1407 		 * Compressed files can only be read from and
1408 		 * not written to
1409 		 */
1410 		if (!(bp->b_flags & B_READ)) {
1411 			bp->b_resid = bp->b_bcount;
1412 			error = EROFS;
1413 			goto done;
1414 		}
1415 
1416 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1417 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1418 		/*
1419 		 * Compute starting and ending compressed segment numbers
1420 		 * We use only bitwise operations avoiding division and
1421 		 * modulus because we enforce the compression segment size
1422 		 * to a power of 2
1423 		 */
1424 		sblkno = offset >> lsp->ls_comp_seg_shift;
1425 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1426 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1427 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1428 
1429 		/*
1430 		 * Check the decompressed segment cache.
1431 		 *
1432 		 * The cache is used only when the requested data
1433 		 * is within a segment. Requests that cross
1434 		 * segment boundaries bypass the cache.
1435 		 */
1436 		if (sblkno == eblkno ||
1437 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1438 			/*
1439 			 * Request doesn't cross a segment boundary,
1440 			 * now check the cache.
1441 			 */
1442 			mutex_enter(&lsp->ls_comp_cache_lock);
1443 			lc = lofi_find_comp_data(lsp, sblkno);
1444 			if (lc != NULL) {
1445 				/*
1446 				 * We've found the decompressed segment
1447 				 * data in the cache; reuse it.
1448 				 */
1449 				bcopy(lc->lc_data + sblkoff, bufaddr,
1450 				    bp->b_bcount);
1451 				mutex_exit(&lsp->ls_comp_cache_lock);
1452 				bp->b_resid = 0;
1453 				error = 0;
1454 				goto done;
1455 			}
1456 			mutex_exit(&lsp->ls_comp_cache_lock);
1457 		}
1458 
1459 		/*
1460 		 * Align start offset to block boundary for segmap
1461 		 */
1462 		salign = lsp->ls_comp_seg_index[sblkno];
1463 		sdiff = salign & (DEV_BSIZE - 1);
1464 		salign -= sdiff;
1465 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1466 			/*
1467 			 * We're dealing with the last segment of
1468 			 * the compressed file -- the size of this
1469 			 * segment *may not* be the same as the
1470 			 * segment size for the file
1471 			 */
1472 			eblkoff = (offset + bp->b_bcount) &
1473 			    (lsp->ls_uncomp_last_seg_sz - 1);
1474 			ealign = lsp->ls_vp_comp_size;
1475 		} else {
1476 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1477 		}
1478 
1479 		/*
1480 		 * Preserve original request paramaters
1481 		 */
1482 		oblkcount = bp->b_bcount;
1483 
1484 		/*
1485 		 * Assign the calculated parameters
1486 		 */
1487 		comp_data_sz = ealign - salign;
1488 		bp->b_bcount = comp_data_sz;
1489 
1490 		/*
1491 		 * Buffers to hold compressed segments are pre-allocated
1492 		 * on a per-thread basis. Find a pre-allocated buffer
1493 		 * that is not currently in use and mark it for use.
1494 		 */
1495 		mutex_enter(&lsp->ls_comp_bufs_lock);
1496 		for (j = 0; j < lofi_taskq_nthreads; j++) {
1497 			if (lsp->ls_comp_bufs[j].inuse == 0) {
1498 				lsp->ls_comp_bufs[j].inuse = 1;
1499 				break;
1500 			}
1501 		}
1502 
1503 		mutex_exit(&lsp->ls_comp_bufs_lock);
1504 		ASSERT(j < lofi_taskq_nthreads);
1505 
1506 		/*
1507 		 * If the pre-allocated buffer size does not match
1508 		 * the size of the I/O request, re-allocate it with
1509 		 * the appropriate size
1510 		 */
1511 		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1512 			if (lsp->ls_comp_bufs[j].bufsize > 0)
1513 				kmem_free(lsp->ls_comp_bufs[j].buf,
1514 				    lsp->ls_comp_bufs[j].bufsize);
1515 			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1516 			    KM_SLEEP);
1517 			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1518 		}
1519 		compressed_seg = lsp->ls_comp_bufs[j].buf;
1520 
1521 		/*
1522 		 * Map in the calculated number of blocks
1523 		 */
1524 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1525 		    bp, lsp);
1526 
1527 		bp->b_bcount = oblkcount;
1528 		bp->b_resid = oblkcount;
1529 		if (error != 0)
1530 			goto done;
1531 
1532 		/*
1533 		 * decompress compressed blocks start
1534 		 */
1535 		cmpbuf = compressed_seg + sdiff;
1536 		for (i = sblkno; i <= eblkno; i++) {
1537 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1538 			uchar_t *useg;
1539 
1540 			/*
1541 			 * The last segment is special in that it is
1542 			 * most likely not going to be the same
1543 			 * (uncompressed) size as the other segments.
1544 			 */
1545 			if (i == (lsp->ls_comp_index_sz - 2)) {
1546 				seglen = lsp->ls_uncomp_last_seg_sz;
1547 			} else {
1548 				seglen = lsp->ls_uncomp_seg_sz;
1549 			}
1550 
1551 			/*
1552 			 * Each of the segment index entries contains
1553 			 * the starting block number for that segment.
1554 			 * The number of compressed bytes in a segment
1555 			 * is thus the difference between the starting
1556 			 * block number of this segment and the starting
1557 			 * block number of the next segment.
1558 			 */
1559 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1560 			    lsp->ls_comp_seg_index[i];
1561 
1562 			/*
1563 			 * The first byte in a compressed segment is a flag
1564 			 * that indicates whether this segment is compressed
1565 			 * at all.
1566 			 *
1567 			 * The variable 'useg' is used (instead of
1568 			 * uncompressed_seg) in this loop to keep a
1569 			 * reference to the uncompressed segment.
1570 			 *
1571 			 * N.B. If 'useg' is replaced with uncompressed_seg,
1572 			 * it leads to memory leaks and heap corruption in
1573 			 * corner cases where compressed segments lie
1574 			 * adjacent to uncompressed segments.
1575 			 */
1576 			if (*cmpbuf == UNCOMPRESSED) {
1577 				useg = cmpbuf + SEGHDR;
1578 			} else {
1579 				if (uncompressed_seg == NULL)
1580 					uncompressed_seg =
1581 					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1582 					    KM_SLEEP);
1583 				useg = uncompressed_seg;
1584 				uncompressed_seg_index = i;
1585 
1586 				if (li->l_decompress((cmpbuf + SEGHDR),
1587 				    (cmpbytes - SEGHDR), uncompressed_seg,
1588 				    &seglen, li->l_level) != 0) {
1589 					error = EIO;
1590 					goto done;
1591 				}
1592 			}
1593 
1594 			/*
1595 			 * Determine how much uncompressed data we
1596 			 * have to copy and copy it
1597 			 */
1598 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1599 			if (i == eblkno)
1600 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1601 
1602 			bcopy((useg + sblkoff), bufaddr, xfersize);
1603 
1604 			cmpbuf += cmpbytes;
1605 			bufaddr += xfersize;
1606 			bp->b_resid -= xfersize;
1607 			sblkoff = 0;
1608 
1609 			if (bp->b_resid == 0)
1610 				break;
1611 		} /* decompress compressed blocks ends */
1612 
1613 		/*
1614 		 * Skip to done if there is no uncompressed data to cache
1615 		 */
1616 		if (uncompressed_seg == NULL)
1617 			goto done;
1618 
1619 		/*
1620 		 * Add the data for the last decompressed segment to
1621 		 * the cache.
1622 		 *
1623 		 * In case the uncompressed segment data was added to (and
1624 		 * is referenced by) the cache, make sure we don't free it
1625 		 * here.
1626 		 */
1627 		mutex_enter(&lsp->ls_comp_cache_lock);
1628 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1629 		    uncompressed_seg)) != NULL) {
1630 			uncompressed_seg = NULL;
1631 		}
1632 		mutex_exit(&lsp->ls_comp_cache_lock);
1633 
1634 done:
1635 		if (compressed_seg != NULL) {
1636 			mutex_enter(&lsp->ls_comp_bufs_lock);
1637 			lsp->ls_comp_bufs[j].inuse = 0;
1638 			mutex_exit(&lsp->ls_comp_bufs_lock);
1639 		}
1640 		if (uncompressed_seg != NULL)
1641 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1642 	} /* end of handling compressed files */
1643 
1644 	if ((error == 0) && (syncflag != 0))
1645 		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1646 
1647 errout:
1648 	if (bufinited && lsp->ls_kstat) {
1649 		size_t n_done = bp->b_bcount - bp->b_resid;
1650 		kstat_io_t *kioptr;
1651 
1652 		mutex_enter(lsp->ls_kstat->ks_lock);
1653 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1654 		if (bp->b_flags & B_READ) {
1655 			kioptr->nread += n_done;
1656 			kioptr->reads++;
1657 		} else {
1658 			kioptr->nwritten += n_done;
1659 			kioptr->writes++;
1660 		}
1661 		kstat_runq_exit(kioptr);
1662 		mutex_exit(lsp->ls_kstat->ks_lock);
1663 	}
1664 
1665 	mutex_enter(&lsp->ls_vp_lock);
1666 	if (--lsp->ls_vp_iocount == 0)
1667 		cv_broadcast(&lsp->ls_vp_cv);
1668 	mutex_exit(&lsp->ls_vp_lock);
1669 
1670 	bioerror(bp, error);
1671 	biodone(bp);
1672 }
1673 
1674 static int
1675 lofi_strategy(struct buf *bp)
1676 {
1677 	struct lofi_state *lsp;
1678 	offset_t	offset;
1679 	minor_t		part;
1680 	diskaddr_t	p_lba;
1681 	diskaddr_t	p_nblks;
1682 	int		shift;
1683 
1684 	/*
1685 	 * We cannot just do I/O here, because the current thread
1686 	 * _might_ end up back in here because the underlying filesystem
1687 	 * wants a buffer, which eventually gets into bio_recycle and
1688 	 * might call into lofi to write out a delayed-write buffer.
1689 	 * This is bad if the filesystem above lofi is the same as below.
1690 	 *
1691 	 * We could come up with a complex strategy using threads to
1692 	 * do the I/O asynchronously, or we could use task queues. task
1693 	 * queues were incredibly easy so they win.
1694 	 */
1695 
1696 	lsp = ddi_get_soft_state(lofi_statep,
1697 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1698 	part = LOFI_PART(getminor(bp->b_edev));
1699 
1700 	if (lsp == NULL) {
1701 		bioerror(bp, ENXIO);
1702 		biodone(bp);
1703 		return (0);
1704 	}
1705 
1706 	/* Check if we are closing. */
1707 	mutex_enter(&lsp->ls_vp_lock);
1708 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1709 		mutex_exit(&lsp->ls_vp_lock);
1710 		bioerror(bp, EIO);
1711 		biodone(bp);
1712 		return (0);
1713 	}
1714 	mutex_exit(&lsp->ls_vp_lock);
1715 
1716 	shift = lsp->ls_lbshift;
1717 	p_lba = 0;
1718 	p_nblks = lsp->ls_vp_size >> shift;
1719 
1720 	if (lsp->ls_cmlbhandle != NULL) {
1721 		if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1722 		    NULL, NULL, 0)) {
1723 			bioerror(bp, ENXIO);
1724 			biodone(bp);
1725 			return (0);
1726 		}
1727 	}
1728 
1729 	/* start block past partition end? */
1730 	if (bp->b_lblkno > p_nblks) {
1731 		bioerror(bp, ENXIO);
1732 		biodone(bp);
1733 		return (0);
1734 	}
1735 
1736 	offset = (bp->b_lblkno+p_lba) << shift;	/* offset within file */
1737 
1738 	mutex_enter(&lsp->ls_vp_lock);
1739 	if (lsp->ls_crypto_enabled) {
1740 		/* encrypted data really begins after crypto header */
1741 		offset += lsp->ls_crypto_offset;
1742 	}
1743 
1744 	/* make sure we will not pass the file or partition size */
1745 	if (offset == lsp->ls_vp_size ||
1746 	    offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1747 		/* EOF */
1748 		if ((bp->b_flags & B_READ) != 0) {
1749 			bp->b_resid = bp->b_bcount;
1750 			bioerror(bp, 0);
1751 		} else {
1752 			/* writes should fail */
1753 			bioerror(bp, ENXIO);
1754 		}
1755 		biodone(bp);
1756 		mutex_exit(&lsp->ls_vp_lock);
1757 		return (0);
1758 	}
1759 	if ((offset > lsp->ls_vp_size) ||
1760 	    (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1761 	    ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1762 		bioerror(bp, ENXIO);
1763 		biodone(bp);
1764 		mutex_exit(&lsp->ls_vp_lock);
1765 		return (0);
1766 	}
1767 
1768 	mutex_exit(&lsp->ls_vp_lock);
1769 
1770 	if (lsp->ls_kstat) {
1771 		mutex_enter(lsp->ls_kstat->ks_lock);
1772 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1773 		mutex_exit(lsp->ls_kstat->ks_lock);
1774 	}
1775 	bp->b_private = (void *)(uintptr_t)p_lba;	/* partition start */
1776 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1777 	return (0);
1778 }
1779 
1780 static int
1781 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1782 {
1783 	_NOTE(ARGUNUSED(credp));
1784 
1785 	if (getminor(dev) == 0)
1786 		return (EINVAL);
1787 	UIO_CHECK(uio);
1788 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1789 }
1790 
1791 static int
1792 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1793 {
1794 	_NOTE(ARGUNUSED(credp));
1795 
1796 	if (getminor(dev) == 0)
1797 		return (EINVAL);
1798 	UIO_CHECK(uio);
1799 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1800 }
1801 
1802 static int
1803 lofi_urw(struct lofi_state *lsp, uint16_t fmode, diskaddr_t off, size_t size,
1804     intptr_t arg, int flag, cred_t *credp)
1805 {
1806 	struct uio uio;
1807 	iovec_t iov;
1808 
1809 	/*
1810 	 * 1024 * 1024 apes cmlb_tg_max_efi_xfer as a reasonable max.
1811 	 */
1812 	if (size == 0 || size > 1024 * 1024 ||
1813 	    (size % (1 << lsp->ls_lbshift)) != 0)
1814 		return (EINVAL);
1815 
1816 	iov.iov_base = (void *)arg;
1817 	iov.iov_len = size;
1818 	uio.uio_iov = &iov;
1819 	uio.uio_iovcnt = 1;
1820 	uio.uio_loffset = off;
1821 	uio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
1822 	uio.uio_llimit = MAXOFFSET_T;
1823 	uio.uio_resid = size;
1824 	uio.uio_fmode = fmode;
1825 	uio.uio_extflg = 0;
1826 
1827 	return (fmode == FREAD ?
1828 	    lofi_read(lsp->ls_dev, &uio, credp) :
1829 	    lofi_write(lsp->ls_dev, &uio, credp));
1830 }
1831 
1832 /*ARGSUSED2*/
1833 static int
1834 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1835 {
1836 	if (getminor(dev) == 0)
1837 		return (EINVAL);
1838 	UIO_CHECK(aio->aio_uio);
1839 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1840 }
1841 
1842 /*ARGSUSED2*/
1843 static int
1844 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1845 {
1846 	if (getminor(dev) == 0)
1847 		return (EINVAL);
1848 	UIO_CHECK(aio->aio_uio);
1849 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1850 }
1851 
1852 /*ARGSUSED*/
1853 static int
1854 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1855 {
1856 	struct lofi_state *lsp;
1857 	dev_t	dev = (dev_t)arg;
1858 	int instance;
1859 
1860 	instance = LOFI_MINOR2ID(getminor(dev));
1861 	switch (infocmd) {
1862 	case DDI_INFO_DEVT2DEVINFO:
1863 		lsp = ddi_get_soft_state(lofi_statep, instance);
1864 		if (lsp == NULL)
1865 			return (DDI_FAILURE);
1866 		*result = lsp->ls_dip;
1867 		return (DDI_SUCCESS);
1868 	case DDI_INFO_DEVT2INSTANCE:
1869 		*result = (void *) (intptr_t)instance;
1870 		return (DDI_SUCCESS);
1871 	}
1872 	return (DDI_FAILURE);
1873 }
1874 
1875 static int
1876 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
1877 {
1878 	int error = 0;
1879 	int instance = ddi_get_instance(lsp->ls_dip);
1880 
1881 	if (labeled == B_TRUE) {
1882 		cmlb_alloc_handle(&lsp->ls_cmlbhandle);
1883 		error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
1884 		    B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
1885 		    CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
1886 
1887 		if (error != DDI_SUCCESS) {
1888 			cmlb_free_handle(&lsp->ls_cmlbhandle);
1889 			lsp->ls_cmlbhandle = NULL;
1890 			error = ENXIO;
1891 		}
1892 	} else {
1893 		/* create minor nodes */
1894 		error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
1895 		    S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
1896 		if (error == DDI_SUCCESS) {
1897 			error = ddi_create_minor_node(lsp->ls_dip,
1898 			    LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
1899 			    DDI_PSEUDO, 0);
1900 			if (error != DDI_SUCCESS) {
1901 				ddi_remove_minor_node(lsp->ls_dip,
1902 				    LOFI_BLOCK_NODE);
1903 				error = ENXIO;
1904 			}
1905 		} else
1906 			error = ENXIO;
1907 	}
1908 	return (error);
1909 }
1910 
1911 static int
1912 lofi_zone_bind(struct lofi_state *lsp)
1913 {
1914 	int error = 0;
1915 
1916 	mutex_enter(&curproc->p_lock);
1917 	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
1918 		mutex_exit(&curproc->p_lock);
1919 		return (error);
1920 	}
1921 	mutex_exit(&curproc->p_lock);
1922 
1923 	if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME,
1924 	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
1925 		rctl_decr_lofi(curproc->p_zone, 1);
1926 		error = EINVAL;
1927 	} else {
1928 		zone_init_ref(&lsp->ls_zone);
1929 		zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
1930 	}
1931 	return (error);
1932 }
1933 
1934 static void
1935 lofi_zone_unbind(struct lofi_state *lsp)
1936 {
1937 	(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
1938 	rctl_decr_lofi(curproc->p_zone, 1);
1939 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
1940 }
1941 
1942 static int
1943 lofi_online_dev(dev_info_t *dip)
1944 {
1945 	boolean_t labeled;
1946 	int	error;
1947 	int	instance = ddi_get_instance(dip);
1948 	struct lofi_state *lsp;
1949 
1950 	labeled = B_FALSE;
1951 	if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
1952 		labeled = B_TRUE;
1953 
1954 	/* lsp alloc+init, soft state is freed in lofi_detach */
1955 	error = ddi_soft_state_zalloc(lofi_statep, instance);
1956 	if (error == DDI_FAILURE) {
1957 		return (ENOMEM);
1958 	}
1959 
1960 	lsp = ddi_get_soft_state(lofi_statep, instance);
1961 	lsp->ls_dip = dip;
1962 
1963 	if ((error = lofi_zone_bind(lsp)) != 0)
1964 		goto err;
1965 
1966 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1967 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1968 	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
1969 	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1970 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1971 
1972 	if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
1973 		lofi_zone_unbind(lsp);
1974 		goto lerr;
1975 	}
1976 
1977 	/* driver handles kernel-issued IOCTLs */
1978 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1979 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1980 		error = DDI_FAILURE;
1981 		goto merr;
1982 	}
1983 
1984 	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
1985 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
1986 	if (lsp->ls_kstat == NULL) {
1987 		(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
1988 		    DDI_KERNEL_IOCTL);
1989 		error = ENOMEM;
1990 		goto merr;
1991 	}
1992 
1993 	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1994 	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
1995 	kstat_install(lsp->ls_kstat);
1996 	return (DDI_SUCCESS);
1997 merr:
1998 	if (lsp->ls_cmlbhandle != NULL) {
1999 		cmlb_detach(lsp->ls_cmlbhandle, 0);
2000 		cmlb_free_handle(&lsp->ls_cmlbhandle);
2001 	}
2002 	ddi_remove_minor_node(dip, NULL);
2003 	lofi_zone_unbind(lsp);
2004 lerr:
2005 	mutex_destroy(&lsp->ls_comp_cache_lock);
2006 	mutex_destroy(&lsp->ls_comp_bufs_lock);
2007 	mutex_destroy(&lsp->ls_kstat_lock);
2008 	mutex_destroy(&lsp->ls_vp_lock);
2009 	cv_destroy(&lsp->ls_vp_cv);
2010 err:
2011 	ddi_soft_state_free(lofi_statep, instance);
2012 	return (error);
2013 }
2014 
2015 static int
2016 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2017 {
2018 	int	rv;
2019 	int	instance = ddi_get_instance(dip);
2020 	struct lofi_state *lsp;
2021 
2022 	if (cmd != DDI_ATTACH)
2023 		return (DDI_FAILURE);
2024 
2025 	/*
2026 	 * Instance 0 is control instance, attaching control instance
2027 	 * will set the lofi up and ready.
2028 	 */
2029 	if (instance == 0) {
2030 		rv = ddi_soft_state_zalloc(lofi_statep, 0);
2031 		if (rv == DDI_FAILURE) {
2032 			return (DDI_FAILURE);
2033 		}
2034 		lsp = ddi_get_soft_state(lofi_statep, instance);
2035 		rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
2036 		    DDI_PSEUDO, 0);
2037 		if (rv == DDI_FAILURE) {
2038 			ddi_soft_state_free(lofi_statep, 0);
2039 			return (DDI_FAILURE);
2040 		}
2041 		/* driver handles kernel-issued IOCTLs */
2042 		if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
2043 		    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
2044 			ddi_remove_minor_node(dip, NULL);
2045 			ddi_soft_state_free(lofi_statep, 0);
2046 			return (DDI_FAILURE);
2047 		}
2048 
2049 		zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
2050 
2051 		lsp->ls_dip = dip;
2052 	} else {
2053 		if (lofi_online_dev(dip) == DDI_FAILURE)
2054 			return (DDI_FAILURE);
2055 	}
2056 
2057 	ddi_report_dev(dip);
2058 	return (DDI_SUCCESS);
2059 }
2060 
2061 static int
2062 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2063 {
2064 	struct lofi_state *lsp;
2065 	int instance = ddi_get_instance(dip);
2066 
2067 	if (cmd != DDI_DETACH)
2068 		return (DDI_FAILURE);
2069 
2070 	/*
2071 	 * If the instance is not 0, release state.
2072 	 * The instance 0 is control device, we can not detach it
2073 	 * before other instances are detached.
2074 	 */
2075 	if (instance != 0) {
2076 		lsp = ddi_get_soft_state(lofi_statep, instance);
2077 		if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
2078 			ddi_soft_state_free(lofi_statep, instance);
2079 			return (DDI_SUCCESS);
2080 		} else
2081 			return (DDI_FAILURE);
2082 	}
2083 	mutex_enter(&lofi_lock);
2084 
2085 	if (!list_is_empty(&lofi_list)) {
2086 		mutex_exit(&lofi_lock);
2087 		return (DDI_FAILURE);
2088 	}
2089 
2090 	ddi_remove_minor_node(dip, NULL);
2091 	ddi_prop_remove_all(dip);
2092 
2093 	mutex_exit(&lofi_lock);
2094 
2095 	if (zone_key_delete(lofi_zone_key) != 0)
2096 		cmn_err(CE_WARN, "failed to delete zone key");
2097 
2098 	ddi_soft_state_free(lofi_statep, 0);
2099 
2100 	return (DDI_SUCCESS);
2101 }
2102 
2103 /*
2104  * With the addition of encryption, we must be careful that encryption key is
2105  * wiped before kernel's data structures are freed so it cannot accidentally
2106  * slip out to userland through uninitialized data elsewhere.
2107  */
2108 static void
2109 free_lofi_ioctl(struct lofi_ioctl *klip)
2110 {
2111 	/* Make sure this encryption key doesn't stick around */
2112 	bzero(klip->li_key, sizeof (klip->li_key));
2113 	kmem_free(klip, sizeof (struct lofi_ioctl));
2114 }
2115 
2116 /*
2117  * These two functions simplify the rest of the ioctls that need to copyin/out
2118  * the lofi_ioctl structure.
2119  */
2120 int
2121 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2122     int flag)
2123 {
2124 	struct lofi_ioctl *klip;
2125 	int	error;
2126 
2127 	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2128 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2129 	if (error)
2130 		goto err;
2131 
2132 	/* ensure NULL termination */
2133 	klip->li_filename[MAXPATHLEN-1] = '\0';
2134 	klip->li_devpath[MAXPATHLEN-1] = '\0';
2135 	klip->li_algorithm[MAXALGLEN-1] = '\0';
2136 	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2137 	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2138 
2139 	if (klip->li_id > L_MAXMIN32) {
2140 		error = EINVAL;
2141 		goto err;
2142 	}
2143 
2144 	return (0);
2145 
2146 err:
2147 	free_lofi_ioctl(klip);
2148 	return (error);
2149 }
2150 
2151 int
2152 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2153     int flag)
2154 {
2155 	int	error;
2156 
2157 	/*
2158 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2159 	 * This ensures that an attacker can't trivially find the
2160 	 * key for a mapping just by issuing the ioctl.
2161 	 *
2162 	 * It can still be found by poking around in kmem with mdb(1),
2163 	 * but there is no point in making it easy when the info isn't
2164 	 * of any use in this direction anyway.
2165 	 *
2166 	 * Either way we don't actually have the raw key stored in
2167 	 * a form that we can get it anyway, since we just used it
2168 	 * to create a ctx template and didn't keep "the original".
2169 	 */
2170 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2171 	if (error)
2172 		return (EFAULT);
2173 	return (0);
2174 }
2175 
2176 static int
2177 lofi_access(struct lofi_state *lsp)
2178 {
2179 	ASSERT(MUTEX_HELD(&lofi_lock));
2180 	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2181 		return (0);
2182 	return (EPERM);
2183 }
2184 
2185 /*
2186  * Find the lofi state for the given filename. We compare by vnode to
2187  * allow the global zone visibility into NGZ lofi nodes.
2188  */
2189 static int
2190 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2191     struct lofi_state **lspp)
2192 {
2193 	struct lofi_state *lsp;
2194 	vnode_t *vp = NULL;
2195 	int err = 0;
2196 	int rdfiles = 0;
2197 
2198 	ASSERT(MUTEX_HELD(&lofi_lock));
2199 
2200 	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2201 	    NULLVPP, &vp)) != 0)
2202 		goto out;
2203 
2204 	if (vp->v_type == VREG) {
2205 		vnode_t *realvp;
2206 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2207 			VN_HOLD(realvp);
2208 			VN_RELE(vp);
2209 			vp = realvp;
2210 		}
2211 	}
2212 
2213 	for (lsp = list_head(&lofi_list); lsp != NULL;
2214 	    lsp = list_next(&lofi_list, lsp)) {
2215 		if (lsp->ls_vp == vp) {
2216 			if (lspp != NULL)
2217 				*lspp = lsp;
2218 			if (lsp->ls_readonly) {
2219 				rdfiles++;
2220 				/* Skip if '-r' is specified */
2221 				if (readonly)
2222 					continue;
2223 			}
2224 			goto out;
2225 		}
2226 	}
2227 
2228 	err = ENOENT;
2229 
2230 	/*
2231 	 * If a filename is given as an argument for lofi_unmap, we shouldn't
2232 	 * allow unmap if there are multiple read-only lofi devices associated
2233 	 * with this file.
2234 	 */
2235 	if (lspp != NULL) {
2236 		if (rdfiles == 1)
2237 			err = 0;
2238 		else if (rdfiles > 1)
2239 			err = EBUSY;
2240 	}
2241 
2242 out:
2243 	if (vp != NULL)
2244 		VN_RELE(vp);
2245 	return (err);
2246 }
2247 
2248 /*
2249  * Find the minor for the given filename, checking the zone can access
2250  * it.
2251  */
2252 static int
2253 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2254 {
2255 	int err = 0;
2256 
2257 	ASSERT(MUTEX_HELD(&lofi_lock));
2258 
2259 	if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2260 		return (err);
2261 
2262 	if ((err = lofi_access(*lspp)) != 0)
2263 		return (err);
2264 
2265 	return (0);
2266 }
2267 
2268 /*
2269  * Fakes up a disk geometry based on the size of the file. This is needed
2270  * to support newfs on traditional lofi device, but also will provide
2271  * geometry hint for cmlb.
2272  */
2273 static void
2274 fake_disk_geometry(struct lofi_state *lsp)
2275 {
2276 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2277 
2278 	/* dk_geom - see dkio(7I) */
2279 	/*
2280 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2281 	 * of sectors), but that breaks programs like fdisk which want to
2282 	 * partition a disk by cylinder. With one cylinder, you can't create
2283 	 * an fdisk partition and put pcfs on it for testing (hard to pick
2284 	 * a number between one and one).
2285 	 *
2286 	 * The cheezy floppy test is an attempt to not have too few cylinders
2287 	 * for a small file, or so many on a big file that you waste space
2288 	 * for backup superblocks or cylinder group structures.
2289 	 */
2290 	bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2291 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
2292 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2293 	else
2294 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2295 	/* in case file file is < 100k */
2296 	if (lsp->ls_dkg.dkg_ncyl == 0)
2297 		lsp->ls_dkg.dkg_ncyl = 1;
2298 
2299 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2300 	lsp->ls_dkg.dkg_nhead = 1;
2301 	lsp->ls_dkg.dkg_rpm = 7200;
2302 
2303 	lsp->ls_dkg.dkg_nsect = dsize /
2304 	    (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2305 }
2306 
2307 /*
2308  * build vtoc - see dkio(7I)
2309  *
2310  * Fakes one big partition based on the size of the file. This is needed
2311  * because we allow newfs'ing the traditional lofi device and newfs will
2312  * do several disk ioctls to figure out the geometry and partition information.
2313  * It uses that information to determine the parameters to pass to mkfs.
2314  */
2315 static void
2316 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2317 {
2318 	bzero(vt, sizeof (struct vtoc));
2319 	vt->v_sanity = VTOC_SANE;
2320 	vt->v_version = V_VERSION;
2321 	(void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2322 	    sizeof (vt->v_volume));
2323 	vt->v_sectorsz = 1 << lsp->ls_pbshift;
2324 	vt->v_nparts = 1;
2325 	vt->v_part[0].p_tag = V_UNASSIGNED;
2326 
2327 	/*
2328 	 * A compressed file is read-only, other files can
2329 	 * be read-write
2330 	 */
2331 	if (lsp->ls_uncomp_seg_sz > 0) {
2332 		vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2333 	} else {
2334 		vt->v_part[0].p_flag = V_UNMNT;
2335 	}
2336 	vt->v_part[0].p_start = (daddr_t)0;
2337 	/*
2338 	 * The partition size cannot just be the number of sectors, because
2339 	 * that might not end on a cylinder boundary. And if that's the case,
2340 	 * newfs/mkfs will print a scary warning. So just figure the size
2341 	 * based on the number of cylinders and sectors/cylinder.
2342 	 */
2343 	vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2344 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2345 }
2346 
2347 /*
2348  * build dk_cinfo - see dkio(7I)
2349  */
2350 static void
2351 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2352 {
2353 	bzero(ci, sizeof (struct dk_cinfo));
2354 	(void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2355 	ci->dki_ctype = DKC_SCSI_CCS;
2356 	(void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2357 	ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2358 	ci->dki_partition = LOFI_PART(getminor(dev));
2359 	/*
2360 	 * newfs uses this to set maxcontig. Must not be < 16, or it
2361 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2362 	 * it by the block size. Then tunefs doesn't work because
2363 	 * maxcontig is 0.
2364 	 */
2365 	ci->dki_maxtransfer = 16;
2366 }
2367 
2368 /*
2369  * map in a compressed file
2370  *
2371  * Read in the header and the index that follows.
2372  *
2373  * The header is as follows -
2374  *
2375  * Signature (name of the compression algorithm)
2376  * Compression segment size (a multiple of 512)
2377  * Number of index entries
2378  * Size of the last block
2379  * The array containing the index entries
2380  *
2381  * The header information is always stored in
2382  * network byte order on disk.
2383  */
2384 static int
2385 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2386 {
2387 	uint32_t index_sz, header_len, i;
2388 	ssize_t	resid;
2389 	enum uio_rw rw;
2390 	char *tbuf = buf;
2391 	int error;
2392 
2393 	/* The signature has already been read */
2394 	tbuf += sizeof (lsp->ls_comp_algorithm);
2395 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2396 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2397 
2398 	/*
2399 	 * The compressed segment size must be a power of 2
2400 	 */
2401 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2402 	    !ISP2(lsp->ls_uncomp_seg_sz))
2403 		return (EINVAL);
2404 
2405 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2406 		;
2407 
2408 	lsp->ls_comp_seg_shift = i;
2409 
2410 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2411 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2412 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2413 
2414 	tbuf += sizeof (lsp->ls_comp_index_sz);
2415 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2416 	    sizeof (lsp->ls_uncomp_last_seg_sz));
2417 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2418 
2419 	/*
2420 	 * Compute the total size of the uncompressed data
2421 	 * for use in fake_disk_geometry and other calculations.
2422 	 * Disk geometry has to be faked with respect to the
2423 	 * actual uncompressed data size rather than the
2424 	 * compressed file size.
2425 	 */
2426 	lsp->ls_vp_size =
2427 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2428 	    + lsp->ls_uncomp_last_seg_sz;
2429 
2430 	/*
2431 	 * Index size is rounded up to DEV_BSIZE for ease
2432 	 * of segmapping
2433 	 */
2434 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2435 	header_len = sizeof (lsp->ls_comp_algorithm) +
2436 	    sizeof (lsp->ls_uncomp_seg_sz) +
2437 	    sizeof (lsp->ls_comp_index_sz) +
2438 	    sizeof (lsp->ls_uncomp_last_seg_sz);
2439 	lsp->ls_comp_offbase = header_len + index_sz;
2440 
2441 	index_sz += header_len;
2442 	index_sz = roundup(index_sz, DEV_BSIZE);
2443 
2444 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2445 	lsp->ls_comp_index_data_sz = index_sz;
2446 
2447 	/*
2448 	 * Read in the index -- this has a side-effect
2449 	 * of reading in the header as well
2450 	 */
2451 	rw = UIO_READ;
2452 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2453 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2454 
2455 	if (error != 0)
2456 		return (error);
2457 
2458 	/* Skip the header, this is where the index really begins */
2459 	lsp->ls_comp_seg_index =
2460 	    /*LINTED*/
2461 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
2462 
2463 	/*
2464 	 * Now recompute offsets in the index to account for
2465 	 * the header length
2466 	 */
2467 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2468 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2469 		    BE_64(lsp->ls_comp_seg_index[i]);
2470 	}
2471 
2472 	return (error);
2473 }
2474 
2475 static int
2476 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2477 {
2478 	struct crypto_meta chead;
2479 	char buf[DEV_BSIZE];
2480 	ssize_t	resid;
2481 	char *marker;
2482 	int error;
2483 	int ret;
2484 	int i;
2485 
2486 	if (!klip->li_crypto_enabled)
2487 		return (0);
2488 
2489 	/*
2490 	 * All current algorithms have a max of 448 bits.
2491 	 */
2492 	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2493 		return (EINVAL);
2494 
2495 	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2496 		return (EINVAL);
2497 
2498 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2499 
2500 	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2501 
2502 	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2503 	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2504 		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2505 		    klip->li_cipher, klip->li_filename);
2506 		return (EINVAL);
2507 	}
2508 
2509 	/* this is just initialization here */
2510 	lsp->ls_mech.cm_param = NULL;
2511 	lsp->ls_mech.cm_param_len = 0;
2512 
2513 	lsp->ls_iv_type = klip->li_iv_type;
2514 	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2515 	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2516 		cmn_err(CE_WARN, "invalid iv cipher %s requested"
2517 		    " for %s", klip->li_iv_cipher, klip->li_filename);
2518 		return (EINVAL);
2519 	}
2520 
2521 	/* iv mech must itself take a null iv */
2522 	lsp->ls_iv_mech.cm_param = NULL;
2523 	lsp->ls_iv_mech.cm_param_len = 0;
2524 	lsp->ls_iv_len = klip->li_iv_len;
2525 
2526 	/*
2527 	 * Create ctx using li_cipher & the raw li_key after checking
2528 	 * that it isn't a weak key.
2529 	 */
2530 	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2531 	lsp->ls_key.ck_length = klip->li_key_len;
2532 	lsp->ls_key.ck_data = kmem_alloc(
2533 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2534 	bcopy(klip->li_key, lsp->ls_key.ck_data,
2535 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2536 
2537 	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2538 	if (ret != CRYPTO_SUCCESS) {
2539 		cmn_err(CE_WARN, "weak key check failed for cipher "
2540 		    "%s on file %s (0x%x)", klip->li_cipher,
2541 		    klip->li_filename, ret);
2542 		return (EINVAL);
2543 	}
2544 
2545 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2546 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2547 	if (error != 0)
2548 		return (error);
2549 
2550 	/*
2551 	 * This is the case where the header in the lofi image is already
2552 	 * initialized to indicate it is encrypted.
2553 	 */
2554 	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2555 		/*
2556 		 * The encryption header information is laid out this way:
2557 		 *	6 bytes:	hex "CFLOFI"
2558 		 *	2 bytes:	version = 0 ... for now
2559 		 *	96 bytes:	reserved1 (not implemented yet)
2560 		 *	4 bytes:	data_sector = 2 ... for now
2561 		 *	more...		not implemented yet
2562 		 */
2563 
2564 		marker = buf;
2565 
2566 		/* copy the magic */
2567 		bcopy(marker, lsp->ls_crypto.magic,
2568 		    sizeof (lsp->ls_crypto.magic));
2569 		marker += sizeof (lsp->ls_crypto.magic);
2570 
2571 		/* read the encryption version number */
2572 		bcopy(marker, &(lsp->ls_crypto.version),
2573 		    sizeof (lsp->ls_crypto.version));
2574 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2575 		marker += sizeof (lsp->ls_crypto.version);
2576 
2577 		/* read a chunk of reserved data */
2578 		bcopy(marker, lsp->ls_crypto.reserved1,
2579 		    sizeof (lsp->ls_crypto.reserved1));
2580 		marker += sizeof (lsp->ls_crypto.reserved1);
2581 
2582 		/* read block number where encrypted data begins */
2583 		bcopy(marker, &(lsp->ls_crypto.data_sector),
2584 		    sizeof (lsp->ls_crypto.data_sector));
2585 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2586 		marker += sizeof (lsp->ls_crypto.data_sector);
2587 
2588 		/* and ignore the rest until it is implemented */
2589 
2590 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2591 		return (0);
2592 	}
2593 
2594 	/*
2595 	 * We've requested encryption, but no magic was found, so it must be
2596 	 * a new image.
2597 	 */
2598 
2599 	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2600 		if (buf[i] != '\0')
2601 			return (EINVAL);
2602 	}
2603 
2604 	marker = buf;
2605 	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2606 	marker += sizeof (lofi_crypto_magic);
2607 	chead.version = htons(LOFI_CRYPTO_VERSION);
2608 	bcopy(&(chead.version), marker, sizeof (chead.version));
2609 	marker += sizeof (chead.version);
2610 	marker += sizeof (chead.reserved1);
2611 	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2612 	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2613 
2614 	/* write the header */
2615 	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2616 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2617 	if (error != 0)
2618 		return (error);
2619 
2620 	/* fix things up so it looks like we read this info */
2621 	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2622 	    sizeof (lofi_crypto_magic));
2623 	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2624 	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2625 	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2626 	return (0);
2627 }
2628 
2629 /*
2630  * Check to see if the passed in signature is a valid one.  If it is
2631  * valid, return the index into lofi_compress_table.
2632  *
2633  * Return -1 if it is invalid
2634  */
2635 static int
2636 lofi_compress_select(const char *signature)
2637 {
2638 	int i;
2639 
2640 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2641 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2642 			return (i);
2643 	}
2644 
2645 	return (-1);
2646 }
2647 
2648 static int
2649 lofi_init_compress(struct lofi_state *lsp)
2650 {
2651 	char buf[DEV_BSIZE];
2652 	int compress_index;
2653 	ssize_t	resid;
2654 	int error;
2655 
2656 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2657 	    0, RLIM64_INFINITY, kcred, &resid);
2658 
2659 	if (error != 0)
2660 		return (error);
2661 
2662 	if ((compress_index = lofi_compress_select(buf)) == -1)
2663 		return (0);
2664 
2665 	/* compression and encryption are mutually exclusive */
2666 	if (lsp->ls_crypto_enabled)
2667 		return (ENOTSUP);
2668 
2669 	/* initialize compression info for compressed lofi */
2670 	lsp->ls_comp_algorithm_index = compress_index;
2671 	(void) strlcpy(lsp->ls_comp_algorithm,
2672 	    lofi_compress_table[compress_index].l_name,
2673 	    sizeof (lsp->ls_comp_algorithm));
2674 
2675 	/* Finally setup per-thread pre-allocated buffers */
2676 	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2677 	    sizeof (struct compbuf), KM_SLEEP);
2678 
2679 	return (lofi_map_compressed_file(lsp, buf));
2680 }
2681 
2682 /*
2683  * Allocate new or proposed id from lofi_id.
2684  *
2685  * Special cases for proposed id:
2686  * 0: not allowed, 0 is id for control device.
2687  * -1: allocate first usable id from lofi_id.
2688  * any other value is proposed value from userland
2689  *
2690  * returns DDI_SUCCESS or errno.
2691  */
2692 static int
2693 lofi_alloc_id(int *idp)
2694 {
2695 	int id, error = DDI_SUCCESS;
2696 
2697 	if (*idp == -1) {
2698 		id = id_allocff_nosleep(lofi_id);
2699 		if (id == -1) {
2700 			error = EAGAIN;
2701 			goto err;
2702 		}
2703 	} else if (*idp == 0) {
2704 		error = EINVAL;
2705 		goto err;
2706 	} else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2707 		error = ERANGE;
2708 		goto err;
2709 	} else {
2710 		if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2711 			error = EEXIST;
2712 			goto err;
2713 		}
2714 
2715 		id = id_alloc_specific_nosleep(lofi_id, *idp);
2716 		if (id == -1) {
2717 			error = EAGAIN;
2718 			goto err;
2719 		}
2720 	}
2721 	*idp = id;
2722 err:
2723 	return (error);
2724 }
2725 
2726 static int
2727 lofi_create_dev(struct lofi_ioctl *klip)
2728 {
2729 	dev_info_t *parent, *child;
2730 	struct lofi_state *lsp = NULL;
2731 	char namebuf[MAXNAMELEN];
2732 	int error, circ;
2733 
2734 	/* get control device */
2735 	lsp = ddi_get_soft_state(lofi_statep, 0);
2736 	parent = ddi_get_parent(lsp->ls_dip);
2737 
2738 	if ((error = lofi_alloc_id((int *)&klip->li_id)))
2739 		return (error);
2740 
2741 	(void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2742 	    klip->li_id);
2743 
2744 	ndi_devi_enter(parent, &circ);
2745 	child = ndi_devi_findchild(parent, namebuf);
2746 	ndi_devi_exit(parent, circ);
2747 
2748 	if (child == NULL) {
2749 		child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2750 		    (pnode_t)DEVI_SID_NODEID, klip->li_id);
2751 		if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2752 		    "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2753 			goto err;
2754 
2755 		if (klip->li_labeled == B_TRUE) {
2756 			if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2757 			    DDI_PROP_CANSLEEP, "labeled", 0, 0))
2758 			    != DDI_PROP_SUCCESS)
2759 				goto err;
2760 		}
2761 
2762 		if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2763 		    != NDI_SUCCESS)
2764 			goto err;
2765 	} else {
2766 		id_free(lofi_id, klip->li_id);
2767 		error = EEXIST;
2768 		return (error);
2769 	}
2770 
2771 	goto done;
2772 
2773 err:
2774 	ddi_prop_remove_all(child);
2775 	(void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2776 	id_free(lofi_id, klip->li_id);
2777 done:
2778 
2779 	return (error);
2780 }
2781 
2782 static void
2783 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2784 {
2785 	char *p = NULL;
2786 
2787 	(void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2788 
2789 	mutex_enter(&lsp->ls_vp_lock);
2790 	if (lsp->ls_vp != NULL)
2791 		p = strrchr(lsp->ls_vp->v_path, '/');
2792 	if (p != NULL)
2793 		(void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2794 	mutex_exit(&lsp->ls_vp_lock);
2795 	(void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2796 }
2797 
2798 /*
2799  * copy devlink name from event cache
2800  */
2801 static void
2802 lofi_copy_devpath(struct lofi_ioctl *klip)
2803 {
2804 	int	error;
2805 	char	namebuf[MAXNAMELEN], *str;
2806 	clock_t ticks;
2807 	nvlist_t *nvl = NULL;
2808 
2809 	if (klip->li_labeled == B_TRUE)
2810 		klip->li_devpath[0] = '\0';
2811 	else {
2812 		/* no need to wait for messages */
2813 		(void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2814 		    "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2815 		return;
2816 	}
2817 
2818 	(void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2819 
2820 	mutex_enter(&lofi_devlink_cache.ln_lock);
2821 	for (;;) {
2822 		error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data,
2823 		    namebuf, &nvl);
2824 
2825 		if (error == 0 &&
2826 		    nvlist_lookup_string(nvl, DEV_NAME, &str) == 0 &&
2827 		    strncmp(str, "/dev/" LOFI_CHAR_NAME,
2828 		    sizeof ("/dev/" LOFI_CHAR_NAME) - 1) != 0) {
2829 			(void) strlcpy(klip->li_devpath, str,
2830 			    sizeof (klip->li_devpath));
2831 			break;
2832 		}
2833 		/*
2834 		 * Either there is no data in the cache, or the
2835 		 * cache entry still has the wrong device name.
2836 		 */
2837 		ticks = ddi_get_lbolt() + lofi_timeout * drv_usectohz(1000000);
2838 		error = cv_timedwait(&lofi_devlink_cache.ln_cv,
2839 		    &lofi_devlink_cache.ln_lock, ticks);
2840 		if (error == -1)
2841 			break;	/* timeout */
2842 	}
2843 	mutex_exit(&lofi_devlink_cache.ln_lock);
2844 }
2845 
2846 /*
2847  * map a file to a minor number. Return the minor number.
2848  */
2849 static int
2850 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2851     int *rvalp, struct cred *credp, int ioctl_flag)
2852 {
2853 	int	id = -1;
2854 	struct lofi_state *lsp = NULL;
2855 	struct lofi_ioctl *klip;
2856 	int	error;
2857 	struct vnode *vp = NULL;
2858 	vattr_t	vattr;
2859 	int	flag;
2860 	char	namebuf[MAXNAMELEN];
2861 
2862 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2863 	if (error != 0)
2864 		return (error);
2865 
2866 	mutex_enter(&lofi_lock);
2867 
2868 	if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2869 	    NULL) == 0) {
2870 		error = EBUSY;
2871 		goto err;
2872 	}
2873 
2874 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2875 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2876 	if (error) {
2877 		/* try read-only */
2878 		flag &= ~FWRITE;
2879 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2880 		    &vp, 0, 0);
2881 		if (error)
2882 			goto err;
2883 	}
2884 
2885 	if (!V_ISLOFIABLE(vp->v_type)) {
2886 		error = EINVAL;
2887 		goto err;
2888 	}
2889 
2890 	vattr.va_mask = AT_SIZE;
2891 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2892 	if (error)
2893 		goto err;
2894 
2895 	/* the file needs to be a multiple of the block size */
2896 	if ((vattr.va_size % DEV_BSIZE) != 0) {
2897 		error = EINVAL;
2898 		goto err;
2899 	}
2900 
2901 	if (pickminor) {
2902 		klip->li_id = (uint32_t)-1;
2903 	}
2904 	if ((error = lofi_create_dev(klip)) != 0)
2905 		goto err;
2906 
2907 	id = klip->li_id;
2908 	lsp = ddi_get_soft_state(lofi_statep, id);
2909 	if (lsp == NULL)
2910 		goto err;
2911 
2912 	/*
2913 	 * from this point lofi_destroy() is used to clean up on error
2914 	 * make sure the basic data is set
2915 	 */
2916 	list_insert_tail(&lofi_list, lsp);
2917 	lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
2918 
2919 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2920 	    offsetof(struct lofi_comp_cache, lc_list));
2921 
2922 	/*
2923 	 * save open mode so file can be closed properly and vnode counts
2924 	 * updated correctly.
2925 	 */
2926 	lsp->ls_openflag = flag;
2927 
2928 	lsp->ls_vp = vp;
2929 	lsp->ls_stacked_vp = vp;
2930 
2931 	lsp->ls_vp_size = vattr.va_size;
2932 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2933 
2934 	/*
2935 	 * Try to handle stacked lofs vnodes.
2936 	 */
2937 	if (vp->v_type == VREG) {
2938 		vnode_t *realvp;
2939 
2940 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2941 			/*
2942 			 * We need to use the realvp for uniqueness
2943 			 * checking, but keep the stacked vp for
2944 			 * LOFI_GET_FILENAME display.
2945 			 */
2946 			VN_HOLD(realvp);
2947 			lsp->ls_vp = realvp;
2948 		}
2949 	}
2950 
2951 	lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
2952 	lsp->ls_pbshift = lsp->ls_lbshift;
2953 
2954 	lsp->ls_readonly = klip->li_readonly;
2955 	lsp->ls_uncomp_seg_sz = 0;
2956 	lsp->ls_comp_algorithm[0] = '\0';
2957 	lsp->ls_crypto_offset = 0;
2958 
2959 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2960 	    LOFI_DRIVER_NAME, id);
2961 	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2962 	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2963 
2964 	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2965 		goto err;
2966 
2967 	if ((error = lofi_init_compress(lsp)) != 0)
2968 		goto err;
2969 
2970 	fake_disk_geometry(lsp);
2971 
2972 	/* For unlabeled lofi add Nblocks and Size */
2973 	if (klip->li_labeled == B_FALSE) {
2974 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2975 		    SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset);
2976 		if (error != DDI_PROP_SUCCESS) {
2977 			error = EINVAL;
2978 			goto err;
2979 		}
2980 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2981 		    NBLOCKS_PROP_NAME,
2982 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE);
2983 		if (error != DDI_PROP_SUCCESS) {
2984 			error = EINVAL;
2985 			goto err;
2986 		}
2987 	}
2988 
2989 	/*
2990 	 * Notify we are ready to rock.
2991 	 */
2992 	mutex_enter(&lsp->ls_vp_lock);
2993 	lsp->ls_vp_ready = B_TRUE;
2994 	cv_broadcast(&lsp->ls_vp_cv);
2995 	mutex_exit(&lsp->ls_vp_lock);
2996 	mutex_exit(&lofi_lock);
2997 
2998 	lofi_copy_devpath(klip);
2999 
3000 	if (rvalp)
3001 		*rvalp = id;
3002 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3003 	free_lofi_ioctl(klip);
3004 	return (0);
3005 
3006 err:
3007 	if (lsp != NULL) {
3008 		lofi_destroy(lsp, credp);
3009 	} else {
3010 		if (vp != NULL) {
3011 			(void) VOP_PUTPAGE(vp, 0, 0, B_FREE, credp, NULL);
3012 			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
3013 			VN_RELE(vp);
3014 		}
3015 	}
3016 
3017 	mutex_exit(&lofi_lock);
3018 	free_lofi_ioctl(klip);
3019 	return (error);
3020 }
3021 
3022 /*
3023  * unmap a file.
3024  */
3025 static int
3026 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
3027     struct cred *credp, int ioctl_flag)
3028 {
3029 	struct lofi_state *lsp;
3030 	struct lofi_ioctl *klip;
3031 	char namebuf[MAXNAMELEN];
3032 	int err;
3033 
3034 	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3035 	if (err != 0)
3036 		return (err);
3037 
3038 	mutex_enter(&lofi_lock);
3039 	if (byfilename) {
3040 		if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
3041 		    &lsp)) != 0) {
3042 			goto done;
3043 		}
3044 	} else if (klip->li_id == 0) {
3045 		err = ENXIO;
3046 		goto done;
3047 	} else {
3048 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3049 	}
3050 
3051 	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
3052 		err = ENXIO;
3053 		goto done;
3054 	}
3055 
3056 	klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3057 	(void) snprintf(namebuf, sizeof (namebuf), "%u", klip->li_id);
3058 
3059 	/*
3060 	 * If it's still held open, we'll do one of three things:
3061 	 *
3062 	 * If no flag is set, just return EBUSY.
3063 	 *
3064 	 * If the 'cleanup' flag is set, unmap and remove the device when
3065 	 * the last user finishes.
3066 	 *
3067 	 * If the 'force' flag is set, then we forcibly close the underlying
3068 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
3069 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
3070 	 * device will be cleaned up appropriately.
3071 	 *
3072 	 * This is complicated by the fact that we may have outstanding
3073 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
3074 	 * I/O, we keep a count of the number of outstanding I/O requests
3075 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
3076 	 * should be dispatched (ls_vp_closereq).
3077 	 *
3078 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
3079 	 * and then close the underlying vnode.
3080 	 */
3081 	if (is_opened(lsp)) {
3082 		if (klip->li_force) {
3083 			/* Mark the device for cleanup. */
3084 			lofi_set_cleanup(lsp);
3085 			mutex_enter(&lsp->ls_vp_lock);
3086 			lsp->ls_vp_closereq = B_TRUE;
3087 			/* Wake up any threads waiting on dkiocstate. */
3088 			cv_broadcast(&lsp->ls_vp_cv);
3089 			while (lsp->ls_vp_iocount > 0)
3090 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
3091 			mutex_exit(&lsp->ls_vp_lock);
3092 		} else if (klip->li_cleanup) {
3093 			lofi_set_cleanup(lsp);
3094 		} else {
3095 			err = EBUSY;
3096 		}
3097 	} else {
3098 		lofi_free_dev(lsp);
3099 		lofi_destroy(lsp, credp);
3100 	}
3101 
3102 	/* Remove name from devlink cache */
3103 	mutex_enter(&lofi_devlink_cache.ln_lock);
3104 	(void) nvlist_remove_all(lofi_devlink_cache.ln_data, namebuf);
3105 	cv_broadcast(&lofi_devlink_cache.ln_cv);
3106 	mutex_exit(&lofi_devlink_cache.ln_lock);
3107 done:
3108 	mutex_exit(&lofi_lock);
3109 	if (err == 0)
3110 		(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3111 	free_lofi_ioctl(klip);
3112 	return (err);
3113 }
3114 
3115 /*
3116  * get the filename given the minor number, or the minor number given
3117  * the name.
3118  */
3119 /*ARGSUSED*/
3120 static int
3121 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
3122     struct cred *credp, int ioctl_flag)
3123 {
3124 	struct lofi_ioctl *klip;
3125 	struct lofi_state *lsp;
3126 	int	error;
3127 
3128 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3129 	if (error != 0)
3130 		return (error);
3131 
3132 	switch (which) {
3133 	case LOFI_GET_FILENAME:
3134 		if (klip->li_id == 0) {
3135 			free_lofi_ioctl(klip);
3136 			return (EINVAL);
3137 		}
3138 
3139 		mutex_enter(&lofi_lock);
3140 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3141 		if (lsp == NULL || lofi_access(lsp) != 0) {
3142 			mutex_exit(&lofi_lock);
3143 			free_lofi_ioctl(klip);
3144 			return (ENXIO);
3145 		}
3146 
3147 		/*
3148 		 * This may fail if, for example, we're trying to look
3149 		 * up a zoned NFS path from the global zone.
3150 		 */
3151 		if (lsp->ls_stacked_vp == NULL ||
3152 		    vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3153 		    sizeof (klip->li_filename), CRED()) != 0) {
3154 			(void) strlcpy(klip->li_filename, "?",
3155 			    sizeof (klip->li_filename));
3156 		}
3157 
3158 		klip->li_readonly = lsp->ls_readonly;
3159 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3160 
3161 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3162 		    sizeof (klip->li_algorithm));
3163 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3164 		mutex_exit(&lofi_lock);
3165 
3166 		lofi_copy_devpath(klip);
3167 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3168 		free_lofi_ioctl(klip);
3169 		return (error);
3170 	case LOFI_GET_MINOR:
3171 		mutex_enter(&lofi_lock);
3172 		error = file_to_lofi(klip->li_filename,
3173 		    klip->li_readonly, &lsp);
3174 		if (error != 0) {
3175 			mutex_exit(&lofi_lock);
3176 			free_lofi_ioctl(klip);
3177 			return (error);
3178 		}
3179 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3180 
3181 		klip->li_readonly = lsp->ls_readonly;
3182 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3183 		mutex_exit(&lofi_lock);
3184 
3185 		lofi_copy_devpath(klip);
3186 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3187 
3188 		free_lofi_ioctl(klip);
3189 		return (error);
3190 	case LOFI_CHECK_COMPRESSED:
3191 		mutex_enter(&lofi_lock);
3192 		error = file_to_lofi(klip->li_filename,
3193 		    klip->li_readonly, &lsp);
3194 		if (error != 0) {
3195 			mutex_exit(&lofi_lock);
3196 			free_lofi_ioctl(klip);
3197 			return (error);
3198 		}
3199 
3200 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3201 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3202 		    sizeof (klip->li_algorithm));
3203 
3204 		mutex_exit(&lofi_lock);
3205 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3206 		free_lofi_ioctl(klip);
3207 		return (error);
3208 	default:
3209 		free_lofi_ioctl(klip);
3210 		return (EINVAL);
3211 	}
3212 }
3213 
3214 static int
3215 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3216     struct uscsi_cmd *uscmd)
3217 {
3218 	int rval;
3219 
3220 #ifdef	_MULTI_DATAMODEL
3221 	switch (ddi_model_convert_from(flag & FMODELS)) {
3222 	case DDI_MODEL_ILP32: {
3223 		struct uscsi_cmd32 ucmd32;
3224 
3225 		if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3226 			rval = EFAULT;
3227 			goto err;
3228 		}
3229 		uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3230 		break;
3231 	}
3232 	case DDI_MODEL_NONE:
3233 		if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3234 			rval = EFAULT;
3235 			goto err;
3236 		}
3237 		break;
3238 	default:
3239 		rval = EFAULT;
3240 		goto err;
3241 	}
3242 #else
3243 	if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3244 		rval = EFAULT;
3245 		goto err;
3246 	}
3247 #endif	/* _MULTI_DATAMODEL */
3248 	if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3249 		rval = EFAULT;
3250 		goto err;
3251 	}
3252 	if (cdb->scc_cmd == SCMD_INQUIRY) {
3253 		return (0);
3254 	}
3255 err:
3256 	return (rval);
3257 }
3258 
3259 static int
3260 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3261     int *rvalp)
3262 {
3263 	int error;
3264 	enum dkio_state dkstate;
3265 	struct lofi_state *lsp;
3266 	dk_efi_t user_efi;
3267 	int id;
3268 
3269 	id = LOFI_MINOR2ID(getminor(dev));
3270 
3271 	/* lofi ioctls only apply to the master device */
3272 	if (id == 0) {
3273 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3274 
3275 		/*
3276 		 * the query command only need read-access - i.e., normal
3277 		 * users are allowed to do those on the ctl device as
3278 		 * long as they can open it read-only.
3279 		 */
3280 		switch (cmd) {
3281 		case LOFI_MAP_FILE:
3282 			if ((flag & FWRITE) == 0)
3283 				return (EPERM);
3284 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3285 		case LOFI_MAP_FILE_MINOR:
3286 			if ((flag & FWRITE) == 0)
3287 				return (EPERM);
3288 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3289 		case LOFI_UNMAP_FILE:
3290 			if ((flag & FWRITE) == 0)
3291 				return (EPERM);
3292 			return (lofi_unmap_file(lip, 1, credp, flag));
3293 		case LOFI_UNMAP_FILE_MINOR:
3294 			if ((flag & FWRITE) == 0)
3295 				return (EPERM);
3296 			return (lofi_unmap_file(lip, 0, credp, flag));
3297 		case LOFI_GET_FILENAME:
3298 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3299 			    credp, flag));
3300 		case LOFI_GET_MINOR:
3301 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3302 			    credp, flag));
3303 
3304 		/*
3305 		 * This API made limited sense when this value was fixed
3306 		 * at LOFI_MAX_FILES.  However, its use to iterate
3307 		 * across all possible devices in lofiadm means we don't
3308 		 * want to return L_MAXMIN, but the highest
3309 		 * *allocated* id.
3310 		 */
3311 		case LOFI_GET_MAXMINOR:
3312 			id = 0;
3313 
3314 			mutex_enter(&lofi_lock);
3315 
3316 			for (lsp = list_head(&lofi_list); lsp != NULL;
3317 			    lsp = list_next(&lofi_list, lsp)) {
3318 				int i;
3319 				if (lofi_access(lsp) != 0)
3320 					continue;
3321 
3322 				i = ddi_get_instance(lsp->ls_dip);
3323 				if (i > id)
3324 					id = i;
3325 			}
3326 
3327 			mutex_exit(&lofi_lock);
3328 
3329 			error = ddi_copyout(&id, &lip->li_id,
3330 			    sizeof (id), flag);
3331 			if (error)
3332 				return (EFAULT);
3333 			return (0);
3334 
3335 		case LOFI_CHECK_COMPRESSED:
3336 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3337 			    credp, flag));
3338 		default:
3339 			return (EINVAL);
3340 		}
3341 	}
3342 
3343 	mutex_enter(&lofi_lock);
3344 	lsp = ddi_get_soft_state(lofi_statep, id);
3345 	if (lsp == NULL || lsp->ls_cleanup) {
3346 		mutex_exit(&lofi_lock);
3347 		return (ENXIO);
3348 	}
3349 	mutex_exit(&lofi_lock);
3350 
3351 	if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3352 	    "labeled") == 1) {
3353 		error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3354 		    credp, rvalp, 0);
3355 		if (error != ENOTTY)
3356 			return (error);
3357 	}
3358 
3359 	/*
3360 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3361 	 * EIO as if the device was no longer present.
3362 	 */
3363 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3364 		return (EIO);
3365 
3366 	/* these are for faking out utilities like newfs */
3367 	switch (cmd) {
3368 	case DKIOCGMEDIAINFO:
3369 	case DKIOCGMEDIAINFOEXT: {
3370 		struct dk_minfo_ext media_info;
3371 		int shift = lsp->ls_lbshift;
3372 		int size;
3373 
3374 		if (cmd == DKIOCGMEDIAINFOEXT) {
3375 			media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3376 			switch (ddi_model_convert_from(flag & FMODELS)) {
3377 			case DDI_MODEL_ILP32:
3378 				size = sizeof (struct dk_minfo_ext32);
3379 				break;
3380 			default:
3381 				size = sizeof (struct dk_minfo_ext);
3382 				break;
3383 			}
3384 		} else {
3385 			size = sizeof (struct dk_minfo);
3386 		}
3387 
3388 		media_info.dki_media_type = DK_FIXED_DISK;
3389 		media_info.dki_lbsize = 1U << shift;
3390 		media_info.dki_capacity =
3391 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3392 
3393 		if (ddi_copyout(&media_info, (void *)arg, size, flag))
3394 			return (EFAULT);
3395 		return (0);
3396 	}
3397 	case DKIOCREMOVABLE: {
3398 		int i = 0;
3399 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3400 			return (EFAULT);
3401 		return (0);
3402 	}
3403 
3404 	case DKIOCGVTOC: {
3405 		struct vtoc vt;
3406 		fake_disk_vtoc(lsp, &vt);
3407 
3408 		switch (ddi_model_convert_from(flag & FMODELS)) {
3409 		case DDI_MODEL_ILP32: {
3410 			struct vtoc32 vtoc32;
3411 
3412 			vtoctovtoc32(vt, vtoc32);
3413 			if (ddi_copyout(&vtoc32, (void *)arg,
3414 			    sizeof (struct vtoc32), flag))
3415 				return (EFAULT);
3416 			break;
3417 			}
3418 
3419 		case DDI_MODEL_NONE:
3420 			if (ddi_copyout(&vt, (void *)arg,
3421 			    sizeof (struct vtoc), flag))
3422 				return (EFAULT);
3423 			break;
3424 		}
3425 		return (0);
3426 	}
3427 	case DKIOCINFO: {
3428 		struct dk_cinfo ci;
3429 		fake_disk_info(dev, &ci);
3430 		if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3431 			return (EFAULT);
3432 		return (0);
3433 	}
3434 	case DKIOCG_VIRTGEOM:
3435 	case DKIOCG_PHYGEOM:
3436 	case DKIOCGGEOM:
3437 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3438 		    sizeof (struct dk_geom), flag);
3439 		if (error)
3440 			return (EFAULT);
3441 		return (0);
3442 	case DKIOCSTATE:
3443 		/*
3444 		 * Normally, lofi devices are always in the INSERTED state.  If
3445 		 * a device is forcefully unmapped, then the device transitions
3446 		 * to the DKIO_DEV_GONE state.
3447 		 */
3448 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3449 		    flag) != 0)
3450 			return (EFAULT);
3451 
3452 		mutex_enter(&lsp->ls_vp_lock);
3453 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3454 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3455 		    !lsp->ls_cleanup) {
3456 			/*
3457 			 * By virtue of having the device open, we know that
3458 			 * 'lsp' will remain valid when we return.
3459 			 */
3460 			if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) {
3461 				mutex_exit(&lsp->ls_vp_lock);
3462 				return (EINTR);
3463 			}
3464 		}
3465 
3466 		dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ?
3467 		    DKIO_INSERTED : DKIO_DEV_GONE);
3468 		mutex_exit(&lsp->ls_vp_lock);
3469 
3470 		if (ddi_copyout(&dkstate, (void *)arg,
3471 		    sizeof (dkstate), flag) != 0)
3472 			return (EFAULT);
3473 		return (0);
3474 	case USCSICMD: {
3475 		struct uscsi_cmd uscmd;
3476 		union scsi_cdb cdb;
3477 
3478 		if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3479 			struct scsi_inquiry inq = {0};
3480 
3481 			lofi_create_inquiry(lsp, &inq);
3482 			if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3483 			    uscmd.uscsi_buflen, flag) != 0)
3484 				return (EFAULT);
3485 			return (0);
3486 		} else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3487 			struct scsi_capacity capacity;
3488 
3489 			capacity.capacity =
3490 			    BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3491 			    lsp->ls_lbshift);
3492 			capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3493 			if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3494 			    uscmd.uscsi_buflen, flag) != 0)
3495 				return (EFAULT);
3496 			return (0);
3497 		}
3498 
3499 		uscmd.uscsi_rqstatus = 0xff;
3500 #ifdef	_MULTI_DATAMODEL
3501 		switch (ddi_model_convert_from(flag & FMODELS)) {
3502 		case DDI_MODEL_ILP32: {
3503 			struct uscsi_cmd32 ucmd32;
3504 			uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3505 			if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3506 			    flag) != 0)
3507 				return (EFAULT);
3508 			break;
3509 		}
3510 		case DDI_MODEL_NONE:
3511 			if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3512 			    flag) != 0)
3513 				return (EFAULT);
3514 			break;
3515 		default:
3516 			return (EFAULT);
3517 		}
3518 #else
3519 		if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3520 			return (EFAULT);
3521 #endif	/* _MULTI_DATAMODEL */
3522 		return (0);
3523 	}
3524 
3525 	case DKIOCGMBOOT:
3526 		return (lofi_urw(lsp, FREAD, 0, 1 << lsp->ls_lbshift,
3527 		    arg, flag, credp));
3528 
3529 	case DKIOCSMBOOT:
3530 		return (lofi_urw(lsp, FWRITE, 0, 1 << lsp->ls_lbshift,
3531 		    arg, flag, credp));
3532 
3533 	case DKIOCGETEFI:
3534 		if (ddi_copyin((void *)arg, &user_efi,
3535 		    sizeof (dk_efi_t), flag) != 0)
3536 			return (EFAULT);
3537 
3538 		return (lofi_urw(lsp, FREAD,
3539 		    user_efi.dki_lba * (1 << lsp->ls_lbshift),
3540 		    user_efi.dki_length, (intptr_t)user_efi.dki_data,
3541 		    flag, credp));
3542 
3543 	case DKIOCSETEFI:
3544 		if (ddi_copyin((void *)arg, &user_efi,
3545 		    sizeof (dk_efi_t), flag) != 0)
3546 			return (EFAULT);
3547 
3548 		return (lofi_urw(lsp, FWRITE,
3549 		    user_efi.dki_lba * (1 << lsp->ls_lbshift),
3550 		    user_efi.dki_length, (intptr_t)user_efi.dki_data,
3551 		    flag, credp));
3552 
3553 	default:
3554 #ifdef DEBUG
3555 		cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3556 #endif	/* DEBUG */
3557 		return (ENOTTY);
3558 	}
3559 }
3560 
3561 static int
3562 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3563     char *name, caddr_t valuep, int *lengthp)
3564 {
3565 	struct lofi_state *lsp;
3566 	int rc;
3567 
3568 	lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3569 	if (lsp == NULL) {
3570 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3571 		    name, valuep, lengthp));
3572 	}
3573 
3574 	rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3575 	    name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL);
3576 	if (rc == DDI_PROP_SUCCESS)
3577 		return (rc);
3578 
3579 	return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags,
3580 	    name, valuep, lengthp));
3581 }
3582 
3583 static struct cb_ops lofi_cb_ops = {
3584 	lofi_open,		/* open */
3585 	lofi_close,		/* close */
3586 	lofi_strategy,		/* strategy */
3587 	nodev,			/* print */
3588 	nodev,			/* dump */
3589 	lofi_read,		/* read */
3590 	lofi_write,		/* write */
3591 	lofi_ioctl,		/* ioctl */
3592 	nodev,			/* devmap */
3593 	nodev,			/* mmap */
3594 	nodev,			/* segmap */
3595 	nochpoll,		/* poll */
3596 	lofi_prop_op,		/* prop_op */
3597 	0,			/* streamtab  */
3598 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
3599 	CB_REV,
3600 	lofi_aread,
3601 	lofi_awrite
3602 };
3603 
3604 static struct dev_ops lofi_ops = {
3605 	DEVO_REV,		/* devo_rev, */
3606 	0,			/* refcnt  */
3607 	lofi_info,		/* info */
3608 	nulldev,		/* identify */
3609 	nulldev,		/* probe */
3610 	lofi_attach,		/* attach */
3611 	lofi_detach,		/* detach */
3612 	nodev,			/* reset */
3613 	&lofi_cb_ops,		/* driver operations */
3614 	NULL,			/* no bus operations */
3615 	NULL,			/* power */
3616 	ddi_quiesce_not_needed,	/* quiesce */
3617 };
3618 
3619 static struct modldrv modldrv = {
3620 	&mod_driverops,
3621 	"loopback file driver",
3622 	&lofi_ops,
3623 };
3624 
3625 static struct modlinkage modlinkage = {
3626 	MODREV_1,
3627 	&modldrv,
3628 	NULL
3629 };
3630 
3631 int
3632 _init(void)
3633 {
3634 	int error;
3635 
3636 	list_create(&lofi_list, sizeof (struct lofi_state),
3637 	    offsetof(struct lofi_state, ls_list));
3638 
3639 	error = ddi_soft_state_init((void **)&lofi_statep,
3640 	    sizeof (struct lofi_state), 0);
3641 	if (error) {
3642 		list_destroy(&lofi_list);
3643 		return (error);
3644 	}
3645 
3646 	/*
3647 	 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3648 	 * we need to reserve space for cmlb minor numbers.
3649 	 * This will leave out 4096 id values on 32bit kernel, which should
3650 	 * still suffice.
3651 	 */
3652 	lofi_id = id_space_create("lofi_id", 1,
3653 	    (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3654 
3655 	if (lofi_id == NULL) {
3656 		ddi_soft_state_fini((void **)&lofi_statep);
3657 		list_destroy(&lofi_list);
3658 		return (DDI_FAILURE);
3659 	}
3660 
3661 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3662 
3663 	error = mod_install(&modlinkage);
3664 
3665 	if (error) {
3666 		id_space_destroy(lofi_id);
3667 		mutex_destroy(&lofi_lock);
3668 		ddi_soft_state_fini((void **)&lofi_statep);
3669 		list_destroy(&lofi_list);
3670 	}
3671 
3672 	return (error);
3673 }
3674 
3675 int
3676 _fini(void)
3677 {
3678 	int	error;
3679 
3680 	mutex_enter(&lofi_lock);
3681 
3682 	if (!list_is_empty(&lofi_list)) {
3683 		mutex_exit(&lofi_lock);
3684 		return (EBUSY);
3685 	}
3686 
3687 	mutex_exit(&lofi_lock);
3688 
3689 	error = mod_remove(&modlinkage);
3690 	if (error)
3691 		return (error);
3692 
3693 	mutex_destroy(&lofi_lock);
3694 	id_space_destroy(lofi_id);
3695 	ddi_soft_state_fini((void **)&lofi_statep);
3696 	list_destroy(&lofi_list);
3697 
3698 	return (error);
3699 }
3700 
3701 int
3702 _info(struct modinfo *modinfop)
3703 {
3704 	return (mod_info(&modlinkage, modinfop));
3705 }
3706