1 /* $NetBSD: if_iwn.c,v 1.78 2016/06/10 13:27:14 ozaki-r Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Copyright 2016 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> 22 */ 23 24 /* 25 * Driver for Intel WiFi Link 4965 and 100/1000/2000/5000/6000 Series 802.11 26 * network adapters. 27 */ 28 29 /* 30 * TODO: 31 * - turn tunables into driver properties 32 */ 33 34 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 35 36 #include <sys/modctl.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/stat.h> 40 41 #include <sys/param.h> 42 #include <sys/sockio.h> 43 #include <sys/proc.h> 44 #include <sys/socket.h> 45 #include <sys/systm.h> 46 #include <sys/mutex.h> 47 #include <sys/conf.h> 48 49 #include <sys/pci.h> 50 #include <sys/pcie.h> 51 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 62 #include <sys/dlpi.h> 63 #include <sys/mac_provider.h> 64 #include <sys/mac_wifi.h> 65 #include <sys/net80211.h> 66 #include <sys/firmload.h> 67 #include <sys/queue.h> 68 #include <sys/strsun.h> 69 #include <sys/strsubr.h> 70 #include <sys/sysmacros.h> 71 #include <sys/types.h> 72 #include <sys/kstat.h> 73 74 #include <sys/sdt.h> 75 76 #include "if_iwncompat.h" 77 #include "if_iwnreg.h" 78 #include "if_iwnvar.h" 79 #include <inet/wifi_ioctl.h> 80 81 #ifdef DEBUG 82 #define IWN_DEBUG 83 #endif 84 85 /* 86 * regs access attributes 87 */ 88 static ddi_device_acc_attr_t iwn_reg_accattr = { 89 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 90 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 91 .devacc_attr_dataorder = DDI_STRICTORDER_ACC, 92 .devacc_attr_access = DDI_DEFAULT_ACC 93 }; 94 95 /* 96 * DMA access attributes for descriptor 97 */ 98 static ddi_device_acc_attr_t iwn_dma_descattr = { 99 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 100 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 101 .devacc_attr_dataorder = DDI_STRICTORDER_ACC, 102 .devacc_attr_access = DDI_DEFAULT_ACC 103 }; 104 105 /* 106 * DMA access attributes 107 */ 108 static ddi_device_acc_attr_t iwn_dma_accattr = { 109 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 110 .devacc_attr_endian_flags = DDI_NEVERSWAP_ACC, 111 .devacc_attr_dataorder = DDI_STRICTORDER_ACC, 112 .devacc_attr_access = DDI_DEFAULT_ACC 113 }; 114 115 116 /* 117 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 118 */ 119 static const struct ieee80211_rateset iwn_rateset_11a = 120 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 121 122 static const struct ieee80211_rateset iwn_rateset_11b = 123 { 4, { 2, 4, 11, 22 } }; 124 125 static const struct ieee80211_rateset iwn_rateset_11g = 126 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 127 128 static void iwn_kstat_create(struct iwn_softc *, const char *, size_t, 129 kstat_t **, void **); 130 static void iwn_kstat_free(kstat_t *, void *, size_t); 131 static void iwn_kstat_init(struct iwn_softc *); 132 static void iwn_kstat_init_2000(struct iwn_softc *); 133 static void iwn_kstat_init_4965(struct iwn_softc *); 134 static void iwn_kstat_init_6000(struct iwn_softc *); 135 static void iwn_intr_teardown(struct iwn_softc *); 136 static int iwn_intr_add(struct iwn_softc *, int); 137 static int iwn_intr_setup(struct iwn_softc *); 138 static int iwn_attach(dev_info_t *, ddi_attach_cmd_t); 139 static int iwn4965_attach(struct iwn_softc *); 140 static int iwn5000_attach(struct iwn_softc *, uint16_t); 141 static int iwn_detach(dev_info_t *, ddi_detach_cmd_t); 142 static int iwn_quiesce(dev_info_t *); 143 static int iwn_nic_lock(struct iwn_softc *); 144 static int iwn_eeprom_lock(struct iwn_softc *); 145 static int iwn_init_otprom(struct iwn_softc *); 146 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 147 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 148 uint_t, uint_t, void **, ddi_device_acc_attr_t *, uint_t); 149 static void iwn_dma_contig_free(struct iwn_dma_info *); 150 static int iwn_alloc_sched(struct iwn_softc *); 151 static void iwn_free_sched(struct iwn_softc *); 152 static int iwn_alloc_kw(struct iwn_softc *); 153 static void iwn_free_kw(struct iwn_softc *); 154 static int iwn_alloc_ict(struct iwn_softc *); 155 static void iwn_free_ict(struct iwn_softc *); 156 static int iwn_alloc_fwmem(struct iwn_softc *); 157 static void iwn_free_fwmem(struct iwn_softc *); 158 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 159 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 160 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 161 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 162 int); 163 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 164 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 165 static void iwn5000_ict_reset(struct iwn_softc *); 166 static int iwn_read_eeprom(struct iwn_softc *); 167 static void iwn4965_read_eeprom(struct iwn_softc *); 168 169 #ifdef IWN_DEBUG 170 static void iwn4965_print_power_group(struct iwn_softc *, int); 171 #endif 172 static void iwn5000_read_eeprom(struct iwn_softc *); 173 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 174 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 175 static struct ieee80211_node *iwn_node_alloc(ieee80211com_t *); 176 static void iwn_node_free(ieee80211_node_t *); 177 static void iwn_newassoc(struct ieee80211_node *, int); 178 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 179 static void iwn_iter_func(void *, struct ieee80211_node *); 180 static void iwn_calib_timeout(void *); 181 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 182 struct iwn_rx_data *); 183 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 184 struct iwn_rx_data *); 185 #ifndef IEEE80211_NO_HT 186 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 187 struct iwn_rx_data *); 188 #endif 189 static void iwn5000_rx_calib_results(struct iwn_softc *, 190 struct iwn_rx_desc *, struct iwn_rx_data *); 191 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 192 struct iwn_rx_data *); 193 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 194 struct iwn_rx_data *); 195 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 196 struct iwn_rx_data *); 197 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 198 uint8_t); 199 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 200 static void iwn_notif_intr(struct iwn_softc *); 201 static void iwn_wakeup_intr(struct iwn_softc *); 202 static void iwn_fatal_intr(struct iwn_softc *); 203 static uint_t iwn_intr(caddr_t, caddr_t); 204 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 205 uint16_t); 206 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 207 uint16_t); 208 #ifdef notyet 209 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 210 #endif 211 static int iwn_send(ieee80211com_t *, mblk_t *, uint8_t); 212 static void iwn_watchdog(void *); 213 static int iwn_cmd(struct iwn_softc *, uint8_t, void *, int, int); 214 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 215 int); 216 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 217 int); 218 static int iwn_set_link_quality(struct iwn_softc *, 219 struct ieee80211_node *); 220 static int iwn_add_broadcast_node(struct iwn_softc *, int); 221 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 222 static int iwn_set_critical_temp(struct iwn_softc *); 223 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 224 static void iwn4965_power_calibration(struct iwn_softc *, int); 225 static int iwn4965_set_txpower(struct iwn_softc *, int); 226 static int iwn5000_set_txpower(struct iwn_softc *, int); 227 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 228 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 229 static int iwn_get_noise(const struct iwn_rx_general_stats *); 230 static int iwn4965_get_temperature(struct iwn_softc *); 231 static int iwn5000_get_temperature(struct iwn_softc *); 232 static int iwn_init_sensitivity(struct iwn_softc *); 233 static void iwn_collect_noise(struct iwn_softc *, 234 const struct iwn_rx_general_stats *); 235 static int iwn4965_init_gains(struct iwn_softc *); 236 static int iwn5000_init_gains(struct iwn_softc *); 237 static int iwn4965_set_gains(struct iwn_softc *); 238 static int iwn5000_set_gains(struct iwn_softc *); 239 static void iwn_tune_sensitivity(struct iwn_softc *, 240 const struct iwn_rx_stats *); 241 static int iwn_send_sensitivity(struct iwn_softc *); 242 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 243 static int iwn5000_runtime_calib(struct iwn_softc *); 244 245 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 246 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 247 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 248 static int iwn_config_bt_coex_adv2(struct iwn_softc *); 249 250 static int iwn_config(struct iwn_softc *); 251 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, 252 uint8_t); 253 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 254 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 255 static int iwn_scan(struct iwn_softc *, uint16_t); 256 static int iwn_auth(struct iwn_softc *); 257 static int iwn_run(struct iwn_softc *); 258 #ifdef IWN_HWCRYPTO 259 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 260 struct ieee80211_key *); 261 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 262 struct ieee80211_key *); 263 #endif 264 static int iwn_wme_update(struct ieee80211com *); 265 #ifndef IEEE80211_NO_HT 266 static int iwn_ampdu_rx_start(struct ieee80211com *, 267 struct ieee80211_node *, uint8_t); 268 static void iwn_ampdu_rx_stop(struct ieee80211com *, 269 struct ieee80211_node *, uint8_t); 270 static int iwn_ampdu_tx_start(struct ieee80211com *, 271 struct ieee80211_node *, uint8_t); 272 static void iwn_ampdu_tx_stop(struct ieee80211com *, 273 struct ieee80211_node *, uint8_t); 274 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 275 struct ieee80211_node *, uint8_t, uint16_t); 276 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 277 uint8_t, uint16_t); 278 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 279 struct ieee80211_node *, uint8_t, uint16_t); 280 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 281 uint8_t, uint16_t); 282 #endif 283 static int iwn5000_query_calibration(struct iwn_softc *); 284 static int iwn5000_send_calibration(struct iwn_softc *); 285 static int iwn5000_send_wimax_coex(struct iwn_softc *); 286 static int iwn6000_temp_offset_calib(struct iwn_softc *); 287 static int iwn2000_temp_offset_calib(struct iwn_softc *); 288 static int iwn4965_post_alive(struct iwn_softc *); 289 static int iwn5000_post_alive(struct iwn_softc *); 290 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 291 int); 292 static int iwn4965_load_firmware(struct iwn_softc *); 293 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 294 const uint8_t *, int); 295 static int iwn5000_load_firmware(struct iwn_softc *); 296 static int iwn_read_firmware_leg(struct iwn_softc *, 297 struct iwn_fw_info *); 298 static int iwn_read_firmware_tlv(struct iwn_softc *, 299 struct iwn_fw_info *, uint16_t); 300 static int iwn_read_firmware(struct iwn_softc *); 301 static int iwn_clock_wait(struct iwn_softc *); 302 static int iwn_apm_init(struct iwn_softc *); 303 static void iwn_apm_stop_master(struct iwn_softc *); 304 static void iwn_apm_stop(struct iwn_softc *); 305 static int iwn4965_nic_config(struct iwn_softc *); 306 static int iwn5000_nic_config(struct iwn_softc *); 307 static int iwn_hw_prepare(struct iwn_softc *); 308 static int iwn_hw_init(struct iwn_softc *); 309 static void iwn_hw_stop(struct iwn_softc *, boolean_t); 310 static int iwn_init(struct iwn_softc *); 311 static void iwn_abort_scan(void *); 312 static void iwn_periodic(void *); 313 static int iwn_fast_recover(struct iwn_softc *); 314 315 static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, uint32_t); 316 static uint8_t *ieee80211_add_rates(uint8_t *, 317 const struct ieee80211_rateset *); 318 static uint8_t *ieee80211_add_xrates(uint8_t *, 319 const struct ieee80211_rateset *); 320 321 static void iwn_fix_channel(struct iwn_softc *, mblk_t *, 322 struct iwn_rx_stat *); 323 324 #ifdef IWN_DEBUG 325 326 #define IWN_DBG(...) iwn_dbg("?" __VA_ARGS__) 327 328 static int iwn_dbg_print = 0; 329 330 static void 331 iwn_dbg(const char *fmt, ...) 332 { 333 va_list ap; 334 335 if (iwn_dbg_print != 0) { 336 va_start(ap, fmt); 337 vcmn_err(CE_CONT, fmt, ap); 338 va_end(ap); 339 } 340 } 341 342 #else 343 #define IWN_DBG(...) 344 #endif 345 346 /* 347 * tunables 348 */ 349 350 /* 351 * enable 5GHz scanning 352 */ 353 int iwn_enable_5ghz = 1; 354 355 /* 356 * If more than 50 consecutive beacons are missed, 357 * we've probably lost our connection. 358 * If more than 5 consecutive beacons are missed, 359 * reinitialize the sensitivity state machine. 360 */ 361 int iwn_beacons_missed_disconnect = 50; 362 int iwn_beacons_missed_sensitivity = 5; 363 364 /* 365 * iwn_periodic interval, in units of msec 366 */ 367 int iwn_periodic_interval = 100; 368 369 /* 370 * scan timeout in sec 371 */ 372 int iwn_scan_timeout = 20; 373 374 static ether_addr_t etherbroadcastaddr = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 375 376 static void *iwn_state = NULL; 377 378 /* 379 * Mac Call Back entries 380 */ 381 static int iwn_m_stat(void *, uint_t, uint64_t *); 382 static int iwn_m_start(void *); 383 static void iwn_m_stop(void *); 384 static int iwn_m_unicst(void *, const uint8_t *); 385 static int iwn_m_multicst(void *, boolean_t, const uint8_t *); 386 static int iwn_m_promisc(void *, boolean_t); 387 static mblk_t *iwn_m_tx(void *, mblk_t *); 388 static void iwn_m_ioctl(void *, queue_t *, mblk_t *); 389 static int iwn_m_setprop(void *, const char *, mac_prop_id_t, uint_t, 390 const void *); 391 static int iwn_m_getprop(void *, const char *, mac_prop_id_t, uint_t, 392 void *); 393 static void iwn_m_propinfo(void *, const char *, mac_prop_id_t, 394 mac_prop_info_handle_t); 395 396 mac_callbacks_t iwn_m_callbacks = { 397 .mc_callbacks = MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO, 398 .mc_getstat = iwn_m_stat, 399 .mc_start = iwn_m_start, 400 .mc_stop = iwn_m_stop, 401 .mc_setpromisc = iwn_m_promisc, 402 .mc_multicst = iwn_m_multicst, 403 .mc_unicst = iwn_m_unicst, 404 .mc_tx = iwn_m_tx, 405 .mc_reserved = NULL, 406 .mc_ioctl = iwn_m_ioctl, 407 .mc_getcapab = NULL, 408 .mc_open = NULL, 409 .mc_close = NULL, 410 .mc_setprop = iwn_m_setprop, 411 .mc_getprop = iwn_m_getprop, 412 .mc_propinfo = iwn_m_propinfo 413 }; 414 415 static inline uint32_t 416 iwn_read(struct iwn_softc *sc, int reg) 417 { 418 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 419 return (ddi_get32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg))); 420 } 421 422 static inline void 423 iwn_write(struct iwn_softc *sc, int reg, uint32_t val) 424 { 425 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 426 ddi_put32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg), val); 427 } 428 429 static inline void 430 iwn_write_1(struct iwn_softc *sc, int reg, uint8_t val) 431 { 432 ddi_put8(sc->sc_regh, (uint8_t *)(sc->sc_base + reg), val); 433 } 434 435 static void 436 iwn_kstat_create(struct iwn_softc *sc, const char *name, size_t size, 437 kstat_t **ks, void **data) 438 { 439 *ks = kstat_create(ddi_driver_name(sc->sc_dip), 440 ddi_get_instance(sc->sc_dip), name, "misc", KSTAT_TYPE_NAMED, 441 size / sizeof (kstat_named_t), 0); 442 if (*ks == NULL) 443 *data = kmem_zalloc(size, KM_SLEEP); 444 else 445 *data = (*ks)->ks_data; 446 } 447 448 static void 449 iwn_kstat_free(kstat_t *ks, void *data, size_t size) 450 { 451 if (ks != NULL) 452 kstat_delete(ks); 453 else if (data != NULL) 454 kmem_free(data, size); 455 } 456 457 static void 458 iwn_kstat_init(struct iwn_softc *sc) 459 { 460 if (sc->sc_ks_misc != NULL) 461 sc->sc_ks_misc->ks_lock = &sc->sc_mtx; 462 if (sc->sc_ks_ant != NULL) 463 sc->sc_ks_ant->ks_lock = &sc->sc_mtx; 464 if (sc->sc_ks_sens != NULL) 465 sc->sc_ks_sens->ks_lock = &sc->sc_mtx; 466 if (sc->sc_ks_timing != NULL) 467 sc->sc_ks_timing->ks_lock = &sc->sc_mtx; 468 if (sc->sc_ks_edca != NULL) 469 sc->sc_ks_edca->ks_lock = &sc->sc_mtx; 470 471 kstat_named_init(&sc->sc_misc->temp, 472 "temperature", KSTAT_DATA_ULONG); 473 kstat_named_init(&sc->sc_misc->crit_temp, 474 "critical temperature", KSTAT_DATA_ULONG); 475 kstat_named_init(&sc->sc_misc->pslevel, 476 "power saving level", KSTAT_DATA_ULONG); 477 kstat_named_init(&sc->sc_misc->noise, 478 "noise", KSTAT_DATA_LONG); 479 480 481 kstat_named_init(&sc->sc_ant->tx_ant, 482 "TX mask", KSTAT_DATA_ULONG); 483 kstat_named_init(&sc->sc_ant->rx_ant, 484 "RX mask", KSTAT_DATA_ULONG); 485 kstat_named_init(&sc->sc_ant->conn_ant, 486 "connected mask", KSTAT_DATA_ULONG); 487 kstat_named_init(&sc->sc_ant->gain[0], 488 "gain A", KSTAT_DATA_ULONG); 489 kstat_named_init(&sc->sc_ant->gain[1], 490 "gain B", KSTAT_DATA_ULONG); 491 kstat_named_init(&sc->sc_ant->gain[2], 492 "gain C", KSTAT_DATA_ULONG); 493 494 kstat_named_init(&sc->sc_sens->ofdm_x1, 495 "OFDM X1", KSTAT_DATA_ULONG); 496 kstat_named_init(&sc->sc_sens->ofdm_mrc_x1, 497 "OFDM MRC X1", KSTAT_DATA_ULONG); 498 kstat_named_init(&sc->sc_sens->ofdm_x4, 499 "OFDM X4", KSTAT_DATA_ULONG); 500 kstat_named_init(&sc->sc_sens->ofdm_mrc_x4, 501 "OFDM MRC X4", KSTAT_DATA_ULONG); 502 kstat_named_init(&sc->sc_sens->cck_x4, 503 "CCK X4", KSTAT_DATA_ULONG); 504 kstat_named_init(&sc->sc_sens->cck_mrc_x4, 505 "CCK MRC X4", KSTAT_DATA_ULONG); 506 kstat_named_init(&sc->sc_sens->energy_cck, 507 "energy CCK", KSTAT_DATA_ULONG); 508 509 kstat_named_init(&sc->sc_timing->bintval, 510 "bintval", KSTAT_DATA_ULONG); 511 kstat_named_init(&sc->sc_timing->tstamp, 512 "timestamp", KSTAT_DATA_ULONGLONG); 513 kstat_named_init(&sc->sc_timing->init, 514 "init", KSTAT_DATA_ULONG); 515 516 kstat_named_init(&sc->sc_edca->ac[0].cwmin, 517 "background cwmin", KSTAT_DATA_ULONG); 518 kstat_named_init(&sc->sc_edca->ac[0].cwmax, 519 "background cwmax", KSTAT_DATA_ULONG); 520 kstat_named_init(&sc->sc_edca->ac[0].aifsn, 521 "background aifsn", KSTAT_DATA_ULONG); 522 kstat_named_init(&sc->sc_edca->ac[0].txop, 523 "background txop", KSTAT_DATA_ULONG); 524 kstat_named_init(&sc->sc_edca->ac[1].cwmin, 525 "best effort cwmin", KSTAT_DATA_ULONG); 526 kstat_named_init(&sc->sc_edca->ac[1].cwmax, 527 "best effort cwmax", KSTAT_DATA_ULONG); 528 kstat_named_init(&sc->sc_edca->ac[1].aifsn, 529 "best effort aifsn", KSTAT_DATA_ULONG); 530 kstat_named_init(&sc->sc_edca->ac[1].txop, 531 "best effort txop", KSTAT_DATA_ULONG); 532 kstat_named_init(&sc->sc_edca->ac[2].cwmin, 533 "video cwmin", KSTAT_DATA_ULONG); 534 kstat_named_init(&sc->sc_edca->ac[2].cwmax, 535 "video cwmax", KSTAT_DATA_ULONG); 536 kstat_named_init(&sc->sc_edca->ac[2].aifsn, 537 "video aifsn", KSTAT_DATA_ULONG); 538 kstat_named_init(&sc->sc_edca->ac[2].txop, 539 "video txop", KSTAT_DATA_ULONG); 540 kstat_named_init(&sc->sc_edca->ac[3].cwmin, 541 "voice cwmin", KSTAT_DATA_ULONG); 542 kstat_named_init(&sc->sc_edca->ac[3].cwmax, 543 "voice cwmax", KSTAT_DATA_ULONG); 544 kstat_named_init(&sc->sc_edca->ac[3].aifsn, 545 "voice aifsn", KSTAT_DATA_ULONG); 546 kstat_named_init(&sc->sc_edca->ac[3].txop, 547 "voice txop", KSTAT_DATA_ULONG); 548 } 549 550 static void 551 iwn_kstat_init_2000(struct iwn_softc *sc) 552 { 553 if (sc->sc_ks_toff != NULL) 554 sc->sc_ks_toff->ks_lock = &sc->sc_mtx; 555 556 kstat_named_init(&sc->sc_toff.t2000->toff_lo, 557 "temperature offset low", KSTAT_DATA_LONG); 558 kstat_named_init(&sc->sc_toff.t2000->toff_hi, 559 "temperature offset high", KSTAT_DATA_LONG); 560 kstat_named_init(&sc->sc_toff.t2000->volt, 561 "reference voltage", KSTAT_DATA_LONG); 562 } 563 564 static void 565 iwn_kstat_init_4965(struct iwn_softc *sc) 566 { 567 int i, r; 568 569 if (sc->sc_ks_txpower != NULL) 570 sc->sc_ks_txpower->ks_lock = &sc->sc_mtx; 571 572 kstat_named_init(&sc->sc_txpower->vdiff, 573 "voltage comp", KSTAT_DATA_LONG); 574 kstat_named_init(&sc->sc_txpower->chan, 575 "channel", KSTAT_DATA_LONG); 576 kstat_named_init(&sc->sc_txpower->group, 577 "attenuation group", KSTAT_DATA_LONG); 578 kstat_named_init(&sc->sc_txpower->subband, 579 "sub-band", KSTAT_DATA_LONG); 580 for (i = 0; i != 2; i++) { 581 char tmp[KSTAT_STRLEN]; 582 583 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d power", i); 584 kstat_named_init(&sc->sc_txpower->txchain[i].power, 585 tmp, KSTAT_DATA_LONG); 586 587 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d gain", i); 588 kstat_named_init(&sc->sc_txpower->txchain[i].gain, 589 tmp, KSTAT_DATA_LONG); 590 591 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d temperature", i); 592 kstat_named_init(&sc->sc_txpower->txchain[i].temp, 593 tmp, KSTAT_DATA_LONG); 594 595 (void) snprintf(tmp, KSTAT_STRLEN - 1, 596 "Ant %d temperature compensation", i); 597 kstat_named_init(&sc->sc_txpower->txchain[i].tcomp, 598 tmp, KSTAT_DATA_LONG); 599 600 for (r = 0; r <= IWN_RIDX_MAX; r++) { 601 (void) snprintf(tmp, KSTAT_STRLEN - 1, 602 "Ant %d Rate %d RF gain", i, r); 603 kstat_named_init( 604 &sc->sc_txpower->txchain[i].rate[r].rf_gain, 605 tmp, KSTAT_DATA_LONG); 606 607 (void) snprintf(tmp, KSTAT_STRLEN - 1, 608 "Ant %d Rate %d DSP gain", i, r); 609 kstat_named_init( 610 &sc->sc_txpower->txchain[0].rate[0].dsp_gain, 611 tmp, KSTAT_DATA_LONG); 612 } 613 } 614 } 615 616 static void 617 iwn_kstat_init_6000(struct iwn_softc *sc) 618 { 619 if (sc->sc_ks_toff != NULL) 620 sc->sc_ks_toff->ks_lock = &sc->sc_mtx; 621 622 kstat_named_init(&sc->sc_toff.t6000->toff, 623 "temperature offset", KSTAT_DATA_LONG); 624 } 625 626 static void 627 iwn_intr_teardown(struct iwn_softc *sc) 628 { 629 if (sc->sc_intr_htable != NULL) { 630 if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) { 631 (void) ddi_intr_block_disable(sc->sc_intr_htable, 632 sc->sc_intr_count); 633 } else { 634 (void) ddi_intr_disable(sc->sc_intr_htable[0]); 635 } 636 (void) ddi_intr_remove_handler(sc->sc_intr_htable[0]); 637 (void) ddi_intr_free(sc->sc_intr_htable[0]); 638 sc->sc_intr_htable[0] = NULL; 639 640 kmem_free(sc->sc_intr_htable, sc->sc_intr_size); 641 sc->sc_intr_size = 0; 642 sc->sc_intr_htable = NULL; 643 } 644 } 645 646 static int 647 iwn_intr_add(struct iwn_softc *sc, int intr_type) 648 { 649 int ni, na; 650 int ret; 651 char *func; 652 653 if (ddi_intr_get_nintrs(sc->sc_dip, intr_type, &ni) != DDI_SUCCESS) 654 return (DDI_FAILURE); 655 656 657 if (ddi_intr_get_navail(sc->sc_dip, intr_type, &na) != DDI_SUCCESS) 658 return (DDI_FAILURE); 659 660 sc->sc_intr_size = sizeof (ddi_intr_handle_t); 661 sc->sc_intr_htable = kmem_zalloc(sc->sc_intr_size, KM_SLEEP); 662 663 ret = ddi_intr_alloc(sc->sc_dip, sc->sc_intr_htable, intr_type, 0, 1, 664 &sc->sc_intr_count, DDI_INTR_ALLOC_STRICT); 665 if (ret != DDI_SUCCESS) { 666 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_alloc() failed"); 667 return (DDI_FAILURE); 668 } 669 670 ret = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri); 671 if (ret != DDI_SUCCESS) { 672 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_pri() failed"); 673 return (DDI_FAILURE); 674 } 675 676 ret = ddi_intr_add_handler(sc->sc_intr_htable[0], iwn_intr, (caddr_t)sc, 677 NULL); 678 if (ret != DDI_SUCCESS) { 679 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_add_handler() failed"); 680 return (DDI_FAILURE); 681 } 682 683 ret = ddi_intr_get_cap(sc->sc_intr_htable[0], &sc->sc_intr_cap); 684 if (ret != DDI_SUCCESS) { 685 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_cap() failed"); 686 return (DDI_FAILURE); 687 } 688 689 if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) { 690 ret = ddi_intr_block_enable(sc->sc_intr_htable, 691 sc->sc_intr_count); 692 func = "ddi_intr_enable_block"; 693 } else { 694 ret = ddi_intr_enable(sc->sc_intr_htable[0]); 695 func = "ddi_intr_enable"; 696 } 697 698 if (ret != DDI_SUCCESS) { 699 dev_err(sc->sc_dip, CE_WARN, "!%s() failed", func); 700 return (DDI_FAILURE); 701 } 702 703 return (DDI_SUCCESS); 704 } 705 706 static int 707 iwn_intr_setup(struct iwn_softc *sc) 708 { 709 int intr_type; 710 int ret; 711 712 ret = ddi_intr_get_supported_types(sc->sc_dip, &intr_type); 713 if (ret != DDI_SUCCESS) { 714 dev_err(sc->sc_dip, CE_WARN, 715 "!ddi_intr_get_supported_types() failed"); 716 return (DDI_FAILURE); 717 } 718 719 if ((intr_type & DDI_INTR_TYPE_MSIX)) { 720 if (iwn_intr_add(sc, DDI_INTR_TYPE_MSIX) == DDI_SUCCESS) 721 return (DDI_SUCCESS); 722 iwn_intr_teardown(sc); 723 } 724 725 if ((intr_type & DDI_INTR_TYPE_MSI)) { 726 if (iwn_intr_add(sc, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) 727 return (DDI_SUCCESS); 728 iwn_intr_teardown(sc); 729 } 730 731 if ((intr_type & DDI_INTR_TYPE_FIXED)) { 732 if (iwn_intr_add(sc, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS) 733 return (DDI_SUCCESS); 734 iwn_intr_teardown(sc); 735 } 736 737 dev_err(sc->sc_dip, CE_WARN, "!iwn_intr_setup() failed"); 738 return (DDI_FAILURE); 739 } 740 741 static int 742 iwn_pci_get_capability(ddi_acc_handle_t pcih, int cap, int *cap_off) 743 { 744 uint8_t ptr; 745 uint8_t val; 746 747 for (ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR); 748 ptr != 0 && ptr != 0xff; 749 ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR)) { 750 val = pci_config_get8(pcih, ptr + PCIE_CAP_ID); 751 if (val == 0xff) 752 return (DDI_FAILURE); 753 754 if (cap != val) 755 continue; 756 757 *cap_off = ptr; 758 return (DDI_SUCCESS); 759 } 760 761 return (DDI_FAILURE); 762 } 763 764 static int 765 iwn_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 766 { 767 int instance; 768 769 struct iwn_softc *sc; 770 struct ieee80211com *ic; 771 char strbuf[32]; 772 wifi_data_t wd = { 0 }; 773 mac_register_t *macp; 774 uint32_t reg; 775 int i, error; 776 777 switch (cmd) { 778 case DDI_ATTACH: 779 break; 780 781 case DDI_RESUME: 782 instance = ddi_get_instance(dip); 783 sc = ddi_get_soft_state(iwn_state, 784 instance); 785 ASSERT(sc != NULL); 786 787 if (sc->sc_flags & IWN_FLAG_RUNNING) { 788 (void) iwn_init(sc); 789 } 790 791 sc->sc_flags &= ~IWN_FLAG_SUSPEND; 792 793 return (DDI_SUCCESS); 794 default: 795 return (DDI_FAILURE); 796 } 797 798 instance = ddi_get_instance(dip); 799 800 if (ddi_soft_state_zalloc(iwn_state, instance) != DDI_SUCCESS) { 801 dev_err(dip, CE_WARN, "!ddi_soft_state_zalloc() failed"); 802 return (DDI_FAILURE); 803 } 804 805 sc = ddi_get_soft_state(iwn_state, instance); 806 ddi_set_driver_private(dip, (caddr_t)sc); 807 808 ic = &sc->sc_ic; 809 810 sc->sc_dip = dip; 811 812 iwn_kstat_create(sc, "hw_state", sizeof (struct iwn_ks_misc), 813 &sc->sc_ks_misc, (void **)&sc->sc_misc); 814 iwn_kstat_create(sc, "antennas", sizeof (struct iwn_ks_ant), 815 &sc->sc_ks_ant, (void **)&sc->sc_ant); 816 iwn_kstat_create(sc, "sensitivity", sizeof (struct iwn_ks_sens), 817 &sc->sc_ks_sens, (void **)&sc->sc_sens); 818 iwn_kstat_create(sc, "timing", sizeof (struct iwn_ks_timing), 819 &sc->sc_ks_timing, (void **)&sc->sc_timing); 820 iwn_kstat_create(sc, "edca", sizeof (struct iwn_ks_edca), 821 &sc->sc_ks_edca, (void **)&sc->sc_edca); 822 823 if (pci_config_setup(dip, &sc->sc_pcih) != DDI_SUCCESS) { 824 dev_err(sc->sc_dip, CE_WARN, "!pci_config_setup() failed"); 825 goto fail_pci_config; 826 } 827 828 /* 829 * Get the offset of the PCI Express Capability Structure in PCI 830 * Configuration Space. 831 */ 832 error = iwn_pci_get_capability(sc->sc_pcih, PCI_CAP_ID_PCI_E, 833 &sc->sc_cap_off); 834 if (error != DDI_SUCCESS) { 835 dev_err(sc->sc_dip, CE_WARN, 836 "!PCIe capability structure not found!"); 837 goto fail_pci_capab; 838 } 839 840 /* Clear device-specific "PCI retry timeout" register (41h). */ 841 reg = pci_config_get8(sc->sc_pcih, 0x41); 842 if (reg) 843 pci_config_put8(sc->sc_pcih, 0x41, 0); 844 845 error = ddi_regs_map_setup(dip, 1, &sc->sc_base, 0, 0, &iwn_reg_accattr, 846 &sc->sc_regh); 847 if (error != DDI_SUCCESS) { 848 dev_err(sc->sc_dip, CE_WARN, "!ddi_regs_map_setup() failed"); 849 goto fail_regs_map; 850 } 851 852 /* Clear pending interrupts. */ 853 IWN_WRITE(sc, IWN_INT, 0xffffffff); 854 855 /* Disable all interrupts. */ 856 IWN_WRITE(sc, IWN_INT_MASK, 0); 857 858 /* Install interrupt handler. */ 859 if (iwn_intr_setup(sc) != DDI_SUCCESS) 860 goto fail_intr; 861 862 mutex_init(&sc->sc_mtx, NULL, MUTEX_DRIVER, 863 DDI_INTR_PRI(sc->sc_intr_pri)); 864 mutex_init(&sc->sc_tx_mtx, NULL, MUTEX_DRIVER, 865 DDI_INTR_PRI(sc->sc_intr_pri)); 866 mutex_init(&sc->sc_mt_mtx, NULL, MUTEX_DRIVER, 867 DDI_INTR_PRI(sc->sc_intr_pri)); 868 869 cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL); 870 cv_init(&sc->sc_scan_cv, NULL, CV_DRIVER, NULL); 871 cv_init(&sc->sc_fhdma_cv, NULL, CV_DRIVER, NULL); 872 cv_init(&sc->sc_alive_cv, NULL, CV_DRIVER, NULL); 873 cv_init(&sc->sc_calib_cv, NULL, CV_DRIVER, NULL); 874 875 iwn_kstat_init(sc); 876 877 /* Read hardware revision and attach. */ 878 sc->hw_type = 879 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK) 880 >> IWN_HW_REV_TYPE_SHIFT; 881 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 882 error = iwn4965_attach(sc); 883 else 884 error = iwn5000_attach(sc, sc->sc_devid); 885 if (error != 0) { 886 dev_err(sc->sc_dip, CE_WARN, "!could not attach device"); 887 goto fail_hw; 888 } 889 890 if ((error = iwn_hw_prepare(sc)) != 0) { 891 dev_err(sc->sc_dip, CE_WARN, "!hardware not ready"); 892 goto fail_hw; 893 } 894 895 /* Read MAC address, channels, etc from EEPROM. */ 896 if ((error = iwn_read_eeprom(sc)) != 0) { 897 dev_err(sc->sc_dip, CE_WARN, "!could not read EEPROM"); 898 goto fail_hw; 899 } 900 901 /* Allocate DMA memory for firmware transfers. */ 902 if ((error = iwn_alloc_fwmem(sc)) != 0) { 903 dev_err(sc->sc_dip, CE_WARN, 904 "!could not allocate memory for firmware"); 905 goto fail_fwmem; 906 } 907 908 /* Allocate "Keep Warm" page. */ 909 if ((error = iwn_alloc_kw(sc)) != 0) { 910 dev_err(sc->sc_dip, CE_WARN, 911 "!could not allocate keep warm page"); 912 goto fail_kw; 913 } 914 915 /* Allocate ICT table for 5000 Series. */ 916 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 917 (error = iwn_alloc_ict(sc)) != 0) { 918 dev_err(sc->sc_dip, CE_WARN, "!could not allocate ICT table"); 919 goto fail_ict; 920 } 921 922 /* Allocate TX scheduler "rings". */ 923 if ((error = iwn_alloc_sched(sc)) != 0) { 924 dev_err(sc->sc_dip, CE_WARN, 925 "!could not allocate TX scheduler rings"); 926 goto fail_sched; 927 } 928 929 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 930 for (i = 0; i < sc->ntxqs; i++) { 931 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 932 dev_err(sc->sc_dip, CE_WARN, 933 "!could not allocate TX ring %d", i); 934 while (--i >= 0) 935 iwn_free_tx_ring(sc, &sc->txq[i]); 936 goto fail_txring; 937 } 938 } 939 940 /* Allocate RX ring. */ 941 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 942 dev_err(sc->sc_dip, CE_WARN, "!could not allocate RX ring"); 943 goto fail_rxring; 944 } 945 946 /* Clear pending interrupts. */ 947 IWN_WRITE(sc, IWN_INT, 0xffffffff); 948 949 /* Count the number of available chains. */ 950 sc->ntxchains = 951 ((sc->txchainmask >> 2) & 1) + 952 ((sc->txchainmask >> 1) & 1) + 953 ((sc->txchainmask >> 0) & 1); 954 sc->nrxchains = 955 ((sc->rxchainmask >> 2) & 1) + 956 ((sc->rxchainmask >> 1) & 1) + 957 ((sc->rxchainmask >> 0) & 1); 958 dev_err(sc->sc_dip, CE_CONT, "!MIMO %dT%dR, %s, address %s", 959 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 960 ieee80211_macaddr_sprintf(ic->ic_macaddr)); 961 962 sc->sc_ant->tx_ant.value.ul = sc->txchainmask; 963 sc->sc_ant->rx_ant.value.ul = sc->rxchainmask; 964 965 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 966 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 967 ic->ic_state = IEEE80211_S_INIT; 968 969 /* Set device capabilities. */ 970 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 971 * and IEEE80211_C_PMGT too. */ 972 ic->ic_caps = 973 IEEE80211_C_IBSS | /* IBSS mode support */ 974 IEEE80211_C_WPA | /* 802.11i */ 975 IEEE80211_C_MONITOR | /* monitor mode supported */ 976 IEEE80211_C_TXPMGT | /* tx power management */ 977 IEEE80211_C_SHSLOT | /* short slot time supported */ 978 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 979 IEEE80211_C_WME; /* 802.11e */ 980 981 #ifndef IEEE80211_NO_HT 982 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 983 /* Set HT capabilities. */ 984 ic->ic_htcaps = 985 #if IWN_RBUF_SIZE == 8192 986 IEEE80211_HTCAP_AMSDU7935 | 987 #endif 988 IEEE80211_HTCAP_CBW20_40 | 989 IEEE80211_HTCAP_SGI20 | 990 IEEE80211_HTCAP_SGI40; 991 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 992 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 993 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 994 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 995 else 996 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 997 } 998 #endif /* !IEEE80211_NO_HT */ 999 1000 /* Set supported legacy rates. */ 1001 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 1002 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 1003 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 1004 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 1005 } 1006 #ifndef IEEE80211_NO_HT 1007 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 1008 /* Set supported HT rates. */ 1009 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 1010 if (sc->nrxchains > 1) 1011 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 1012 if (sc->nrxchains > 2) 1013 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 1014 } 1015 #endif 1016 1017 /* IBSS channel undefined for now. */ 1018 ic->ic_ibss_chan = &ic->ic_sup_channels[0]; 1019 1020 ic->ic_node_newassoc = iwn_newassoc; 1021 ic->ic_xmit = iwn_send; 1022 #ifdef IWN_HWCRYPTO 1023 ic->ic_crypto.cs_key_set = iwn_set_key; 1024 ic->ic_crypto.cs_key_delete = iwn_delete_key; 1025 #endif 1026 ic->ic_wme.wme_update = iwn_wme_update; 1027 #ifndef IEEE80211_NO_HT 1028 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 1029 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 1030 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 1031 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 1032 #endif 1033 /* 1034 * attach to 802.11 module 1035 */ 1036 ieee80211_attach(ic); 1037 1038 ieee80211_register_door(ic, ddi_driver_name(dip), ddi_get_instance(dip)); 1039 1040 /* Override 802.11 state transition machine. */ 1041 sc->sc_newstate = ic->ic_newstate; 1042 ic->ic_newstate = iwn_newstate; 1043 ic->ic_watchdog = iwn_watchdog; 1044 1045 ic->ic_node_alloc = iwn_node_alloc; 1046 ic->ic_node_free = iwn_node_free; 1047 1048 ieee80211_media_init(ic); 1049 1050 /* 1051 * initialize default tx key 1052 */ 1053 ic->ic_def_txkey = 0; 1054 1055 sc->amrr.amrr_min_success_threshold = 1; 1056 sc->amrr.amrr_max_success_threshold = 15; 1057 1058 /* 1059 * Initialize pointer to device specific functions 1060 */ 1061 wd.wd_secalloc = WIFI_SEC_NONE; 1062 wd.wd_opmode = ic->ic_opmode; 1063 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr); 1064 1065 /* 1066 * create relation to GLD 1067 */ 1068 macp = mac_alloc(MAC_VERSION); 1069 if (NULL == macp) { 1070 dev_err(sc->sc_dip, CE_WARN, "!mac_alloc() failed"); 1071 goto fail_mac_alloc; 1072 } 1073 1074 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI; 1075 macp->m_driver = sc; 1076 macp->m_dip = dip; 1077 macp->m_src_addr = ic->ic_macaddr; 1078 macp->m_callbacks = &iwn_m_callbacks; 1079 macp->m_min_sdu = 0; 1080 macp->m_max_sdu = IEEE80211_MTU; 1081 macp->m_pdata = &wd; 1082 macp->m_pdata_size = sizeof (wd); 1083 1084 /* 1085 * Register the macp to mac 1086 */ 1087 error = mac_register(macp, &ic->ic_mach); 1088 mac_free(macp); 1089 if (error != DDI_SUCCESS) { 1090 dev_err(sc->sc_dip, CE_WARN, "!mac_register() failed"); 1091 goto fail_mac_alloc; 1092 } 1093 1094 /* 1095 * Create minor node of type DDI_NT_NET_WIFI 1096 */ 1097 (void) snprintf(strbuf, sizeof (strbuf), "iwn%d", instance); 1098 error = ddi_create_minor_node(dip, strbuf, S_IFCHR, 1099 instance + 1, DDI_NT_NET_WIFI, 0); 1100 if (error != DDI_SUCCESS) { 1101 dev_err(sc->sc_dip, CE_WARN, "!ddi_create_minor_node() failed"); 1102 goto fail_minor; 1103 } 1104 1105 /* 1106 * Notify link is down now 1107 */ 1108 mac_link_update(ic->ic_mach, LINK_STATE_DOWN); 1109 1110 sc->sc_periodic = ddi_periodic_add(iwn_periodic, sc, 1111 iwn_periodic_interval * MICROSEC, 0); 1112 1113 if (sc->sc_ks_misc) 1114 kstat_install(sc->sc_ks_misc); 1115 if (sc->sc_ks_ant) 1116 kstat_install(sc->sc_ks_ant); 1117 if (sc->sc_ks_sens) 1118 kstat_install(sc->sc_ks_sens); 1119 if (sc->sc_ks_timing) 1120 kstat_install(sc->sc_ks_timing); 1121 if (sc->sc_ks_edca) 1122 kstat_install(sc->sc_ks_edca); 1123 if (sc->sc_ks_txpower) 1124 kstat_install(sc->sc_ks_txpower); 1125 if (sc->sc_ks_toff) 1126 kstat_install(sc->sc_ks_toff); 1127 1128 sc->sc_flags |= IWN_FLAG_ATTACHED; 1129 1130 return (DDI_SUCCESS); 1131 1132 /* Free allocated memory if something failed during attachment. */ 1133 fail_minor: 1134 mac_unregister(ic->ic_mach); 1135 1136 fail_mac_alloc: 1137 ieee80211_detach(ic); 1138 iwn_free_rx_ring(sc, &sc->rxq); 1139 1140 fail_rxring: 1141 for (i = 0; i < sc->ntxqs; i++) 1142 iwn_free_tx_ring(sc, &sc->txq[i]); 1143 1144 fail_txring: 1145 iwn_free_sched(sc); 1146 1147 fail_sched: 1148 if (sc->ict != NULL) 1149 iwn_free_ict(sc); 1150 1151 fail_ict: 1152 iwn_free_kw(sc); 1153 1154 fail_kw: 1155 iwn_free_fwmem(sc); 1156 1157 fail_fwmem: 1158 fail_hw: 1159 iwn_intr_teardown(sc); 1160 1161 iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower, 1162 sizeof (struct iwn_ks_txpower)); 1163 1164 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 1165 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000, 1166 sizeof (struct iwn_ks_toff_6000)); 1167 else 1168 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000, 1169 sizeof (struct iwn_ks_toff_2000)); 1170 1171 fail_intr: 1172 ddi_regs_map_free(&sc->sc_regh); 1173 1174 fail_regs_map: 1175 fail_pci_capab: 1176 pci_config_teardown(&sc->sc_pcih); 1177 1178 fail_pci_config: 1179 iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc, 1180 sizeof (struct iwn_ks_misc)); 1181 iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant, 1182 sizeof (struct iwn_ks_ant)); 1183 iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens, 1184 sizeof (struct iwn_ks_sens)); 1185 iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing, 1186 sizeof (struct iwn_ks_timing)); 1187 iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca, 1188 sizeof (struct iwn_ks_edca)); 1189 1190 ddi_soft_state_free(iwn_state, instance); 1191 1192 return (DDI_FAILURE); 1193 } 1194 1195 int 1196 iwn4965_attach(struct iwn_softc *sc) 1197 { 1198 struct iwn_ops *ops = &sc->ops; 1199 1200 ops->load_firmware = iwn4965_load_firmware; 1201 ops->read_eeprom = iwn4965_read_eeprom; 1202 ops->post_alive = iwn4965_post_alive; 1203 ops->nic_config = iwn4965_nic_config; 1204 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 1205 ops->update_sched = iwn4965_update_sched; 1206 ops->get_temperature = iwn4965_get_temperature; 1207 ops->get_rssi = iwn4965_get_rssi; 1208 ops->set_txpower = iwn4965_set_txpower; 1209 ops->init_gains = iwn4965_init_gains; 1210 ops->set_gains = iwn4965_set_gains; 1211 ops->add_node = iwn4965_add_node; 1212 ops->tx_done = iwn4965_tx_done; 1213 #ifndef IEEE80211_NO_HT 1214 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1215 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1216 #endif 1217 sc->ntxqs = IWN4965_NTXQUEUES; 1218 sc->ndmachnls = IWN4965_NDMACHNLS; 1219 sc->broadcast_id = IWN4965_ID_BROADCAST; 1220 sc->rxonsz = IWN4965_RXONSZ; 1221 sc->schedsz = IWN4965_SCHEDSZ; 1222 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1223 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1224 sc->fwsz = IWN4965_FWSZ; 1225 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1226 sc->limits = &iwn4965_sensitivity_limits; 1227 sc->fwname = "iwlwifi-4965-2.ucode"; 1228 /* Override chains masks, ROM is known to be broken. */ 1229 sc->txchainmask = IWN_ANT_AB; 1230 sc->rxchainmask = IWN_ANT_ABC; 1231 1232 iwn_kstat_create(sc, "txpower", sizeof (struct iwn_ks_txpower), 1233 &sc->sc_ks_txpower, (void **)&sc->sc_txpower); 1234 iwn_kstat_init_4965(sc); 1235 1236 return 0; 1237 } 1238 1239 int 1240 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1241 { 1242 struct iwn_ops *ops = &sc->ops; 1243 1244 ops->load_firmware = iwn5000_load_firmware; 1245 ops->read_eeprom = iwn5000_read_eeprom; 1246 ops->post_alive = iwn5000_post_alive; 1247 ops->nic_config = iwn5000_nic_config; 1248 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 1249 ops->update_sched = iwn5000_update_sched; 1250 ops->get_temperature = iwn5000_get_temperature; 1251 ops->get_rssi = iwn5000_get_rssi; 1252 ops->set_txpower = iwn5000_set_txpower; 1253 ops->init_gains = iwn5000_init_gains; 1254 ops->set_gains = iwn5000_set_gains; 1255 ops->add_node = iwn5000_add_node; 1256 ops->tx_done = iwn5000_tx_done; 1257 #ifndef IEEE80211_NO_HT 1258 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1259 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1260 #endif 1261 sc->ntxqs = IWN5000_NTXQUEUES; 1262 sc->ndmachnls = IWN5000_NDMACHNLS; 1263 sc->broadcast_id = IWN5000_ID_BROADCAST; 1264 sc->rxonsz = IWN5000_RXONSZ; 1265 sc->schedsz = IWN5000_SCHEDSZ; 1266 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1267 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1268 sc->fwsz = IWN5000_FWSZ; 1269 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1270 1271 switch (sc->hw_type) { 1272 case IWN_HW_REV_TYPE_5100: 1273 sc->limits = &iwn5000_sensitivity_limits; 1274 sc->fwname = "iwlwifi-5000-2.ucode"; 1275 /* Override chains masks, ROM is known to be broken. */ 1276 sc->txchainmask = IWN_ANT_B; 1277 sc->rxchainmask = IWN_ANT_AB; 1278 break; 1279 case IWN_HW_REV_TYPE_5150: 1280 sc->limits = &iwn5150_sensitivity_limits; 1281 sc->fwname = "iwlwifi-5150-2.ucode"; 1282 break; 1283 case IWN_HW_REV_TYPE_5300: 1284 case IWN_HW_REV_TYPE_5350: 1285 sc->limits = &iwn5000_sensitivity_limits; 1286 sc->fwname = "iwlwifi-5000-2.ucode"; 1287 break; 1288 case IWN_HW_REV_TYPE_1000: 1289 sc->limits = &iwn1000_sensitivity_limits; 1290 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 || 1291 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2) 1292 sc->fwname = "iwlwifi-100-5.ucode"; 1293 else 1294 sc->fwname = "iwlwifi-1000-3.ucode"; 1295 break; 1296 case IWN_HW_REV_TYPE_6000: 1297 sc->limits = &iwn6000_sensitivity_limits; 1298 sc->fwname = "iwlwifi-6000-4.ucode"; 1299 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 1300 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 1301 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 1302 /* Override chains masks, ROM is known to be broken. */ 1303 sc->txchainmask = IWN_ANT_BC; 1304 sc->rxchainmask = IWN_ANT_BC; 1305 } 1306 break; 1307 case IWN_HW_REV_TYPE_6050: 1308 sc->limits = &iwn6000_sensitivity_limits; 1309 sc->fwname = "iwlwifi-6050-5.ucode"; 1310 break; 1311 case IWN_HW_REV_TYPE_6005: 1312 sc->limits = &iwn6000_sensitivity_limits; 1313 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 1314 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 1315 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 1316 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 1317 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 1318 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 || 1319 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) { 1320 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 1321 ops->config_bt_coex = iwn_config_bt_coex_adv1; 1322 } 1323 else 1324 sc->fwname = "iwlwifi-6000g2a-6.ucode"; 1325 1326 iwn_kstat_create(sc, "temp_offset", 1327 sizeof (struct iwn_ks_toff_6000), 1328 &sc->sc_ks_toff, (void **)&sc->sc_toff.t6000); 1329 iwn_kstat_init_6000(sc); 1330 break; 1331 case IWN_HW_REV_TYPE_2030: 1332 sc->limits = &iwn2000_sensitivity_limits; 1333 sc->fwname = "iwlwifi-2030-6.ucode"; 1334 ops->config_bt_coex = iwn_config_bt_coex_adv2; 1335 1336 iwn_kstat_create(sc, "temp_offset", 1337 sizeof (struct iwn_ks_toff_2000), 1338 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1339 iwn_kstat_init_2000(sc); 1340 break; 1341 case IWN_HW_REV_TYPE_2000: 1342 sc->limits = &iwn2000_sensitivity_limits; 1343 sc->fwname = "iwlwifi-2000-6.ucode"; 1344 1345 iwn_kstat_create(sc, "temp_offset", 1346 sizeof (struct iwn_ks_toff_2000), 1347 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1348 iwn_kstat_init_2000(sc); 1349 break; 1350 case IWN_HW_REV_TYPE_135: 1351 sc->limits = &iwn2000_sensitivity_limits; 1352 sc->fwname = "iwlwifi-135-6.ucode"; 1353 ops->config_bt_coex = iwn_config_bt_coex_adv2; 1354 1355 iwn_kstat_create(sc, "temp_offset", 1356 sizeof (struct iwn_ks_toff_2000), 1357 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1358 iwn_kstat_init_2000(sc); 1359 break; 1360 case IWN_HW_REV_TYPE_105: 1361 sc->limits = &iwn2000_sensitivity_limits; 1362 sc->fwname = "iwlwifi-105-6.ucode"; 1363 1364 iwn_kstat_create(sc, "temp_offset", 1365 sizeof (struct iwn_ks_toff_2000), 1366 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1367 iwn_kstat_init_2000(sc); 1368 break; 1369 default: 1370 dev_err(sc->sc_dip, CE_WARN, "!adapter type %d not supported", 1371 sc->hw_type); 1372 return ENOTSUP; 1373 } 1374 return 0; 1375 } 1376 1377 static int 1378 iwn_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1379 { 1380 struct iwn_softc *sc = ddi_get_driver_private(dip); 1381 ieee80211com_t *ic = &sc->sc_ic; 1382 int qid, error; 1383 1384 switch (cmd) { 1385 case DDI_DETACH: 1386 break; 1387 case DDI_SUSPEND: 1388 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 1389 sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL; 1390 1391 sc->sc_flags |= IWN_FLAG_SUSPEND; 1392 1393 if (sc->sc_flags & IWN_FLAG_RUNNING) { 1394 iwn_hw_stop(sc, B_TRUE); 1395 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1396 1397 } 1398 1399 return (DDI_SUCCESS); 1400 default: 1401 return (DDI_FAILURE); 1402 } 1403 1404 if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) { 1405 return (DDI_FAILURE); 1406 } 1407 1408 error = mac_disable(ic->ic_mach); 1409 if (error != DDI_SUCCESS) 1410 return (error); 1411 1412 mutex_enter(&sc->sc_mtx); 1413 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO; 1414 mutex_exit(&sc->sc_mtx); 1415 1416 if (sc->calib_to != 0) 1417 (void) untimeout(sc->calib_to); 1418 sc->calib_to = 0; 1419 1420 if (sc->scan_to != 0) 1421 (void) untimeout(sc->scan_to); 1422 sc->scan_to = 0; 1423 1424 ddi_periodic_delete(sc->sc_periodic); 1425 1426 /* 1427 * stop chipset 1428 */ 1429 iwn_hw_stop(sc, B_TRUE); 1430 1431 /* 1432 * Unregister from GLD 1433 */ 1434 (void) mac_unregister(ic->ic_mach); 1435 ieee80211_detach(ic); 1436 1437 /* Uninstall interrupt handler. */ 1438 iwn_intr_teardown(sc); 1439 1440 /* Free DMA resources. */ 1441 mutex_enter(&sc->sc_mtx); 1442 iwn_free_rx_ring(sc, &sc->rxq); 1443 for (qid = 0; qid < sc->ntxqs; qid++) 1444 iwn_free_tx_ring(sc, &sc->txq[qid]); 1445 iwn_free_sched(sc); 1446 iwn_free_kw(sc); 1447 if (sc->ict != NULL) 1448 iwn_free_ict(sc); 1449 iwn_free_fwmem(sc); 1450 mutex_exit(&sc->sc_mtx); 1451 1452 iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc, 1453 sizeof (struct iwn_ks_misc)); 1454 iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant, 1455 sizeof (struct iwn_ks_ant)); 1456 iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens, 1457 sizeof (struct iwn_ks_sens)); 1458 iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing, 1459 sizeof (struct iwn_ks_timing)); 1460 iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca, 1461 sizeof (struct iwn_ks_edca)); 1462 iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower, 1463 sizeof (struct iwn_ks_txpower)); 1464 1465 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 1466 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000, 1467 sizeof (struct iwn_ks_toff_6000)); 1468 else 1469 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000, 1470 sizeof (struct iwn_ks_toff_2000)); 1471 1472 ddi_regs_map_free(&sc->sc_regh); 1473 pci_config_teardown(&sc->sc_pcih); 1474 ddi_remove_minor_node(dip, NULL); 1475 ddi_soft_state_free(iwn_state, ddi_get_instance(dip)); 1476 1477 return 0; 1478 } 1479 1480 static int 1481 iwn_quiesce(dev_info_t *dip) 1482 { 1483 struct iwn_softc *sc; 1484 1485 sc = ddi_get_soft_state(iwn_state, ddi_get_instance(dip)); 1486 if (sc == NULL) 1487 return (DDI_FAILURE); 1488 1489 #ifdef IWN_DEBUG 1490 /* bypass any messages */ 1491 iwn_dbg_print = 0; 1492 #endif 1493 1494 /* 1495 * No more blocking is allowed while we are in the 1496 * quiesce(9E) entry point. 1497 */ 1498 sc->sc_flags |= IWN_FLAG_QUIESCED; 1499 1500 /* 1501 * Disable and mask all interrupts. 1502 */ 1503 iwn_hw_stop(sc, B_FALSE); 1504 1505 return (DDI_SUCCESS); 1506 } 1507 1508 static int 1509 iwn_nic_lock(struct iwn_softc *sc) 1510 { 1511 int ntries; 1512 1513 /* Request exclusive access to NIC. */ 1514 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1515 1516 /* Spin until we actually get the lock. */ 1517 for (ntries = 0; ntries < 1000; ntries++) { 1518 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1519 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1520 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1521 return 0; 1522 DELAY(10); 1523 } 1524 return ETIMEDOUT; 1525 } 1526 1527 static __inline void 1528 iwn_nic_unlock(struct iwn_softc *sc) 1529 { 1530 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1531 } 1532 1533 static __inline uint32_t 1534 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1535 { 1536 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1537 IWN_BARRIER_READ_WRITE(sc); 1538 return IWN_READ(sc, IWN_PRPH_RDATA); 1539 } 1540 1541 static __inline void 1542 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1543 { 1544 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1545 IWN_BARRIER_WRITE(sc); 1546 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1547 } 1548 1549 static __inline void 1550 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1551 { 1552 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1553 } 1554 1555 static __inline void 1556 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1557 { 1558 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1559 } 1560 1561 static __inline void 1562 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1563 const uint32_t *data, int count) 1564 { 1565 for (; count > 0; count--, data++, addr += 4) 1566 iwn_prph_write(sc, addr, *data); 1567 } 1568 1569 static __inline uint32_t 1570 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1571 { 1572 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1573 IWN_BARRIER_READ_WRITE(sc); 1574 return IWN_READ(sc, IWN_MEM_RDATA); 1575 } 1576 1577 static __inline void 1578 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1579 { 1580 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1581 IWN_BARRIER_WRITE(sc); 1582 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1583 } 1584 1585 #ifndef IEEE80211_NO_HT 1586 static __inline void 1587 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1588 { 1589 uint32_t tmp; 1590 1591 tmp = iwn_mem_read(sc, addr & ~3); 1592 if (addr & 3) 1593 tmp = (tmp & 0x0000ffff) | data << 16; 1594 else 1595 tmp = (tmp & 0xffff0000) | data; 1596 iwn_mem_write(sc, addr & ~3, tmp); 1597 } 1598 #endif 1599 1600 static __inline void 1601 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1602 int count) 1603 { 1604 for (; count > 0; count--, addr += 4) 1605 *data++ = iwn_mem_read(sc, addr); 1606 } 1607 1608 static __inline void 1609 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1610 int count) 1611 { 1612 for (; count > 0; count--, addr += 4) 1613 iwn_mem_write(sc, addr, val); 1614 } 1615 1616 static int 1617 iwn_eeprom_lock(struct iwn_softc *sc) 1618 { 1619 int i, ntries; 1620 1621 for (i = 0; i < 100; i++) { 1622 /* Request exclusive access to EEPROM. */ 1623 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1624 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1625 1626 /* Spin until we actually get the lock. */ 1627 for (ntries = 0; ntries < 100; ntries++) { 1628 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1629 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1630 return 0; 1631 DELAY(10); 1632 } 1633 } 1634 return ETIMEDOUT; 1635 } 1636 1637 static __inline void 1638 iwn_eeprom_unlock(struct iwn_softc *sc) 1639 { 1640 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1641 } 1642 1643 /* 1644 * Initialize access by host to One Time Programmable ROM. 1645 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1646 */ 1647 static int 1648 iwn_init_otprom(struct iwn_softc *sc) 1649 { 1650 uint16_t prev = 0, base, next; 1651 int count, error; 1652 1653 /* Wait for clock stabilization before accessing prph. */ 1654 if ((error = iwn_clock_wait(sc)) != 0) 1655 return error; 1656 1657 if ((error = iwn_nic_lock(sc)) != 0) 1658 return error; 1659 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1660 DELAY(5); 1661 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1662 iwn_nic_unlock(sc); 1663 1664 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1665 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1666 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1667 IWN_RESET_LINK_PWR_MGMT_DIS); 1668 } 1669 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1670 /* Clear ECC status. */ 1671 IWN_SETBITS(sc, IWN_OTP_GP, 1672 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1673 1674 /* 1675 * Find the block before last block (contains the EEPROM image) 1676 * for HW without OTP shadow RAM. 1677 */ 1678 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1679 /* Switch to absolute addressing mode. */ 1680 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1681 base = 0; 1682 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1683 error = iwn_read_prom_data(sc, base, &next, 2); 1684 if (error != 0) 1685 return error; 1686 if (next == 0) /* End of linked-list. */ 1687 break; 1688 prev = base; 1689 base = le16toh(next); 1690 } 1691 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1692 return EIO; 1693 /* Skip "next" word. */ 1694 sc->prom_base = prev + 1; 1695 } 1696 return 0; 1697 } 1698 1699 static int 1700 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1701 { 1702 uint8_t *out = data; 1703 uint32_t val, tmp; 1704 int ntries; 1705 1706 addr += sc->prom_base; 1707 for (; count > 0; count -= 2, addr++) { 1708 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1709 for (ntries = 0; ntries < 10; ntries++) { 1710 val = IWN_READ(sc, IWN_EEPROM); 1711 if (val & IWN_EEPROM_READ_VALID) 1712 break; 1713 DELAY(5); 1714 } 1715 if (ntries == 10) { 1716 dev_err(sc->sc_dip, CE_WARN, 1717 "!timeout reading ROM at 0x%x", addr); 1718 return ETIMEDOUT; 1719 } 1720 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1721 /* OTPROM, check for ECC errors. */ 1722 tmp = IWN_READ(sc, IWN_OTP_GP); 1723 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1724 dev_err(sc->sc_dip, CE_WARN, 1725 "!OTPROM ECC error at 0x%x", addr); 1726 return EIO; 1727 } 1728 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1729 /* Correctable ECC error, clear bit. */ 1730 IWN_SETBITS(sc, IWN_OTP_GP, 1731 IWN_OTP_GP_ECC_CORR_STTS); 1732 } 1733 } 1734 *out++ = val >> 16; 1735 if (count > 1) 1736 *out++ = val >> 24; 1737 } 1738 return 0; 1739 } 1740 1741 static int 1742 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1743 uint_t size, uint_t flags, void **kvap, ddi_device_acc_attr_t *acc_attr, 1744 uint_t align) 1745 { 1746 ddi_dma_attr_t dma_attr = { 1747 .dma_attr_version = DMA_ATTR_V0, 1748 .dma_attr_addr_lo = 0, 1749 .dma_attr_addr_hi = 0xfffffffffULL, 1750 .dma_attr_count_max = 0xfffffffffULL, 1751 .dma_attr_align = align, 1752 .dma_attr_burstsizes = 0x7ff, 1753 .dma_attr_minxfer = 1, 1754 .dma_attr_maxxfer = 0xfffffffffULL, 1755 .dma_attr_seg = 0xfffffffffULL, 1756 .dma_attr_sgllen = 1, 1757 .dma_attr_granular = 1, 1758 .dma_attr_flags = 0, 1759 }; 1760 int error; 1761 1762 error = ddi_dma_alloc_handle(sc->sc_dip, &dma_attr, DDI_DMA_SLEEP, NULL, 1763 &dma->dma_hdl); 1764 if (error != DDI_SUCCESS) { 1765 dev_err(sc->sc_dip, CE_WARN, 1766 "ddi_dma_alloc_handle() failed, error = %d", error); 1767 goto fail; 1768 } 1769 1770 error = ddi_dma_mem_alloc(dma->dma_hdl, size, acc_attr, 1771 flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), DDI_DMA_SLEEP, 0, 1772 &dma->vaddr, &dma->length, &dma->acc_hdl); 1773 if (error != DDI_SUCCESS) { 1774 dev_err(sc->sc_dip, CE_WARN, 1775 "ddi_dma_mem_alloc() failed, error = %d", error); 1776 goto fail2; 1777 } 1778 1779 bzero(dma->vaddr, dma->length); 1780 1781 error = ddi_dma_addr_bind_handle(dma->dma_hdl, NULL, dma->vaddr, 1782 dma->length, flags, DDI_DMA_SLEEP, NULL, &dma->cookie, 1783 &dma->ncookies); 1784 if (error != DDI_DMA_MAPPED) { 1785 dma->ncookies = 0; 1786 dev_err(sc->sc_dip, CE_WARN, 1787 "ddi_dma_addr_bind_handle() failed, error = %d", error); 1788 goto fail3; 1789 } 1790 1791 dma->size = size; 1792 dma->paddr = dma->cookie.dmac_laddress; 1793 1794 if (kvap != NULL) 1795 *kvap = (void *)dma->vaddr; 1796 1797 return (DDI_SUCCESS); 1798 1799 fail3: 1800 ddi_dma_mem_free(&dma->acc_hdl); 1801 fail2: 1802 ddi_dma_free_handle(&dma->dma_hdl); 1803 fail: 1804 bzero(dma, sizeof (struct iwn_dma_info)); 1805 return (DDI_FAILURE); 1806 } 1807 1808 static void 1809 iwn_dma_contig_free(struct iwn_dma_info *dma) 1810 { 1811 if (dma->dma_hdl != NULL) { 1812 if (dma->ncookies) 1813 (void) ddi_dma_unbind_handle(dma->dma_hdl); 1814 ddi_dma_free_handle(&dma->dma_hdl); 1815 } 1816 1817 if (dma->acc_hdl != NULL) 1818 ddi_dma_mem_free(&dma->acc_hdl); 1819 1820 bzero(dma, sizeof (struct iwn_dma_info)); 1821 } 1822 1823 static int 1824 iwn_alloc_sched(struct iwn_softc *sc) 1825 { 1826 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1827 1828 return iwn_dma_contig_alloc(sc, &sc->sched_dma, sc->schedsz, 1829 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->sched, 1830 &iwn_dma_accattr, 1024); 1831 } 1832 1833 static void 1834 iwn_free_sched(struct iwn_softc *sc) 1835 { 1836 iwn_dma_contig_free(&sc->sched_dma); 1837 } 1838 1839 static int 1840 iwn_alloc_kw(struct iwn_softc *sc) 1841 { 1842 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1843 1844 return iwn_dma_contig_alloc(sc, &sc->kw_dma, IWN_KW_SIZE, 1845 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 4096); 1846 } 1847 1848 static void 1849 iwn_free_kw(struct iwn_softc *sc) 1850 { 1851 iwn_dma_contig_free(&sc->kw_dma); 1852 } 1853 1854 static int 1855 iwn_alloc_ict(struct iwn_softc *sc) 1856 { 1857 /* ICT table must be aligned on a 4KB boundary. */ 1858 1859 return iwn_dma_contig_alloc(sc, &sc->ict_dma, IWN_ICT_SIZE, 1860 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->ict, 1861 &iwn_dma_descattr, 4096); 1862 } 1863 1864 static void 1865 iwn_free_ict(struct iwn_softc *sc) 1866 { 1867 iwn_dma_contig_free(&sc->ict_dma); 1868 } 1869 1870 static int 1871 iwn_alloc_fwmem(struct iwn_softc *sc) 1872 { 1873 /* Must be aligned on a 16-byte boundary. */ 1874 return iwn_dma_contig_alloc(sc, &sc->fw_dma, sc->fwsz, 1875 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 16); 1876 } 1877 1878 static void 1879 iwn_free_fwmem(struct iwn_softc *sc) 1880 { 1881 iwn_dma_contig_free(&sc->fw_dma); 1882 } 1883 1884 static int 1885 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1886 { 1887 size_t size; 1888 int i, error; 1889 1890 ring->cur = 0; 1891 1892 /* Allocate RX descriptors (256-byte aligned). */ 1893 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1894 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size, 1895 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&ring->desc, 1896 &iwn_dma_descattr, 256); 1897 if (error != DDI_SUCCESS) { 1898 dev_err(sc->sc_dip, CE_WARN, 1899 "!could not allocate RX ring DMA memory"); 1900 goto fail; 1901 } 1902 1903 /* Allocate RX status area (16-byte aligned). */ 1904 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, 1905 sizeof (struct iwn_rx_status), DDI_DMA_CONSISTENT | DDI_DMA_RDWR, 1906 (void **)&ring->stat, &iwn_dma_descattr, 16); 1907 if (error != DDI_SUCCESS) { 1908 dev_err(sc->sc_dip, CE_WARN, 1909 "!could not allocate RX status DMA memory"); 1910 goto fail; 1911 } 1912 1913 /* 1914 * Allocate and map RX buffers. 1915 */ 1916 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1917 struct iwn_rx_data *data = &ring->data[i]; 1918 1919 error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_RBUF_SIZE, 1920 DDI_DMA_CONSISTENT | DDI_DMA_READ, NULL, &iwn_dma_accattr, 1921 256); 1922 if (error != DDI_SUCCESS) { 1923 dev_err(sc->sc_dip, CE_WARN, 1924 "!could not create RX buf DMA map"); 1925 goto fail; 1926 } 1927 1928 /* Set physical address of RX buffer (256-byte aligned). */ 1929 ring->desc[i] = htole32(data->dma_data.paddr >> 8); 1930 } 1931 1932 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 1933 1934 return 0; 1935 1936 fail: iwn_free_rx_ring(sc, ring); 1937 return error; 1938 } 1939 1940 static void 1941 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1942 { 1943 int ntries; 1944 1945 if (iwn_nic_lock(sc) == 0) { 1946 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1947 for (ntries = 0; ntries < 1000; ntries++) { 1948 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1949 IWN_FH_RX_STATUS_IDLE) 1950 break; 1951 DELAY(10); 1952 } 1953 iwn_nic_unlock(sc); 1954 } 1955 ring->cur = 0; 1956 sc->last_rx_valid = 0; 1957 } 1958 1959 static void 1960 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1961 { 1962 _NOTE(ARGUNUSED(sc)); 1963 int i; 1964 1965 iwn_dma_contig_free(&ring->desc_dma); 1966 iwn_dma_contig_free(&ring->stat_dma); 1967 1968 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1969 struct iwn_rx_data *data = &ring->data[i]; 1970 1971 if (data->dma_data.dma_hdl) 1972 iwn_dma_contig_free(&data->dma_data); 1973 } 1974 } 1975 1976 static int 1977 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1978 { 1979 uintptr_t paddr; 1980 size_t size; 1981 int i, error; 1982 1983 ring->qid = qid; 1984 ring->queued = 0; 1985 ring->cur = 0; 1986 1987 /* Allocate TX descriptors (256-byte aligned). */ 1988 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1989 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size, 1990 DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->desc, 1991 &iwn_dma_descattr, 256); 1992 if (error != DDI_SUCCESS) { 1993 dev_err(sc->sc_dip, CE_WARN, 1994 "!could not allocate TX ring DMA memory"); 1995 goto fail; 1996 } 1997 /* 1998 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1999 * to allocate commands space for other rings. 2000 * XXX Do we really need to allocate descriptors for other rings? 2001 */ 2002 if (qid > 4) 2003 return 0; 2004 2005 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2006 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, size, 2007 DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->cmd, 2008 &iwn_dma_accattr, 4); 2009 if (error != DDI_SUCCESS) { 2010 dev_err(sc->sc_dip, CE_WARN, 2011 "!could not allocate TX cmd DMA memory"); 2012 goto fail; 2013 } 2014 2015 paddr = ring->cmd_dma.paddr; 2016 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2017 struct iwn_tx_data *data = &ring->data[i]; 2018 2019 data->cmd_paddr = paddr; 2020 data->scratch_paddr = paddr + 12; 2021 paddr += sizeof (struct iwn_tx_cmd); 2022 2023 error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_TBUF_SIZE, 2024 DDI_DMA_CONSISTENT | DDI_DMA_WRITE, NULL, &iwn_dma_accattr, 2025 256); 2026 if (error != DDI_SUCCESS) { 2027 dev_err(sc->sc_dip, CE_WARN, 2028 "!could not create TX buf DMA map"); 2029 goto fail; 2030 } 2031 } 2032 return 0; 2033 2034 fail: iwn_free_tx_ring(sc, ring); 2035 return error; 2036 } 2037 2038 static void 2039 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2040 { 2041 int i; 2042 2043 if (ring->qid < 4) 2044 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2045 struct iwn_tx_data *data = &ring->data[i]; 2046 2047 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, 2048 DDI_DMA_SYNC_FORDEV); 2049 } 2050 2051 /* Clear TX descriptors. */ 2052 memset(ring->desc, 0, ring->desc_dma.size); 2053 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 2054 sc->qfullmsk &= ~(1 << ring->qid); 2055 ring->queued = 0; 2056 ring->cur = 0; 2057 } 2058 2059 static void 2060 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2061 { 2062 _NOTE(ARGUNUSED(sc)); 2063 int i; 2064 2065 iwn_dma_contig_free(&ring->desc_dma); 2066 iwn_dma_contig_free(&ring->cmd_dma); 2067 2068 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2069 struct iwn_tx_data *data = &ring->data[i]; 2070 2071 if (data->dma_data.dma_hdl) 2072 iwn_dma_contig_free(&data->dma_data); 2073 } 2074 } 2075 2076 static void 2077 iwn5000_ict_reset(struct iwn_softc *sc) 2078 { 2079 /* Disable interrupts. */ 2080 IWN_WRITE(sc, IWN_INT_MASK, 0); 2081 2082 /* Reset ICT table. */ 2083 memset(sc->ict, 0, IWN_ICT_SIZE); 2084 sc->ict_cur = 0; 2085 2086 /* Set physical address of ICT table (4KB aligned). */ 2087 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2088 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2089 2090 /* Enable periodic RX interrupt. */ 2091 sc->int_mask |= IWN_INT_RX_PERIODIC; 2092 /* Switch to ICT interrupt mode in driver. */ 2093 sc->sc_flags |= IWN_FLAG_USE_ICT; 2094 2095 /* Re-enable interrupts. */ 2096 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2097 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2098 } 2099 2100 static int 2101 iwn_read_eeprom(struct iwn_softc *sc) 2102 { 2103 struct iwn_ops *ops = &sc->ops; 2104 struct ieee80211com *ic = &sc->sc_ic; 2105 uint16_t val; 2106 int error; 2107 2108 /* Check whether adapter has an EEPROM or an OTPROM. */ 2109 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2110 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2111 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2112 IWN_DBG("%s found", 2113 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2114 2115 /* Adapter has to be powered on for EEPROM access to work. */ 2116 if ((error = iwn_apm_init(sc)) != 0) { 2117 dev_err(sc->sc_dip, CE_WARN, 2118 "!could not power ON adapter"); 2119 return error; 2120 } 2121 2122 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2123 dev_err(sc->sc_dip, CE_WARN, 2124 "!bad ROM signature"); 2125 return EIO; 2126 } 2127 if ((error = iwn_eeprom_lock(sc)) != 0) { 2128 dev_err(sc->sc_dip, CE_WARN, 2129 "!could not lock ROM (error=%d)", error); 2130 return error; 2131 } 2132 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2133 if ((error = iwn_init_otprom(sc)) != 0) { 2134 dev_err(sc->sc_dip, CE_WARN, 2135 "!could not initialize OTPROM"); 2136 return error; 2137 } 2138 } 2139 2140 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2141 IWN_DBG("SKU capabilities=0x%04x", le16toh(val)); 2142 /* Check if HT support is bonded out. */ 2143 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2144 sc->sc_flags |= IWN_FLAG_HAS_11N; 2145 2146 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2147 sc->rfcfg = le16toh(val); 2148 IWN_DBG("radio config=0x%04x", sc->rfcfg); 2149 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2150 if (sc->txchainmask == 0) 2151 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2152 if (sc->rxchainmask == 0) 2153 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2154 2155 /* Read MAC address. */ 2156 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_macaddr, 6); 2157 2158 /* Read adapter-specific information from EEPROM. */ 2159 ops->read_eeprom(sc); 2160 2161 iwn_apm_stop(sc); /* Power OFF adapter. */ 2162 2163 iwn_eeprom_unlock(sc); 2164 return 0; 2165 } 2166 2167 static void 2168 iwn4965_read_eeprom(struct iwn_softc *sc) 2169 { 2170 uint32_t addr; 2171 uint16_t val; 2172 int i; 2173 2174 /* Read regulatory domain (4 ASCII characters). */ 2175 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2176 2177 /* Read the list of authorized channels (20MHz ones only). */ 2178 for (i = 0; i < 5; i++) { 2179 addr = iwn4965_regulatory_bands[i]; 2180 iwn_read_eeprom_channels(sc, i, addr); 2181 } 2182 2183 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2184 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2185 sc->maxpwr2GHz = val & 0xff; 2186 sc->maxpwr5GHz = val >> 8; 2187 /* Check that EEPROM values are within valid range. */ 2188 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2189 sc->maxpwr5GHz = 38; 2190 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2191 sc->maxpwr2GHz = 38; 2192 IWN_DBG("maxpwr 2GHz=%d 5GHz=%d", sc->maxpwr2GHz, sc->maxpwr5GHz); 2193 2194 /* Read samples for each TX power group. */ 2195 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2196 sizeof sc->bands); 2197 2198 /* Read voltage at which samples were taken. */ 2199 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2200 sc->eeprom_voltage = (int16_t)le16toh(val); 2201 IWN_DBG("voltage=%d (in 0.3V)", sc->eeprom_voltage); 2202 2203 #ifdef IWN_DEBUG 2204 /* Print samples. */ 2205 if (iwn_dbg_print != 0) { 2206 for (i = 0; i < IWN_NBANDS; i++) 2207 iwn4965_print_power_group(sc, i); 2208 } 2209 #endif 2210 } 2211 2212 #ifdef IWN_DEBUG 2213 static void 2214 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2215 { 2216 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2217 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2218 int j, c; 2219 2220 dev_err(sc->sc_dip, CE_CONT, "!===band %d===", i); 2221 dev_err(sc->sc_dip, CE_CONT, "!chan lo=%d, chan hi=%d", band->lo, 2222 band->hi); 2223 dev_err(sc->sc_dip, CE_CONT, "!chan1 num=%d", chans[0].num); 2224 for (c = 0; c < 2; c++) { 2225 for (j = 0; j < IWN_NSAMPLES; j++) { 2226 dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: " 2227 "temp=%d gain=%d power=%d pa_det=%d", c, j, 2228 chans[0].samples[c][j].temp, 2229 chans[0].samples[c][j].gain, 2230 chans[0].samples[c][j].power, 2231 chans[0].samples[c][j].pa_det); 2232 } 2233 } 2234 dev_err(sc->sc_dip, CE_CONT, "!chan2 num=%d", chans[1].num); 2235 for (c = 0; c < 2; c++) { 2236 for (j = 0; j < IWN_NSAMPLES; j++) { 2237 dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: " 2238 "temp=%d gain=%d power=%d pa_det=%d", c, j, 2239 chans[1].samples[c][j].temp, 2240 chans[1].samples[c][j].gain, 2241 chans[1].samples[c][j].power, 2242 chans[1].samples[c][j].pa_det); 2243 } 2244 } 2245 } 2246 #endif 2247 2248 static void 2249 iwn5000_read_eeprom(struct iwn_softc *sc) 2250 { 2251 struct iwn5000_eeprom_calib_hdr hdr; 2252 int32_t volt; 2253 uint32_t base, addr; 2254 uint16_t val; 2255 int i; 2256 2257 /* Read regulatory domain (4 ASCII characters). */ 2258 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2259 base = le16toh(val); 2260 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2261 sc->eeprom_domain, 4); 2262 2263 /* Read the list of authorized channels (20MHz ones only). */ 2264 for (i = 0; i < 5; i++) { 2265 addr = base + iwn5000_regulatory_bands[i]; 2266 iwn_read_eeprom_channels(sc, i, addr); 2267 } 2268 2269 /* Read enhanced TX power information for 6000 Series. */ 2270 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 2271 iwn_read_eeprom_enhinfo(sc); 2272 2273 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2274 base = le16toh(val); 2275 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2276 IWN_DBG("calib version=%u pa type=%u voltage=%u", 2277 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2278 sc->calib_ver = hdr.version; 2279 2280 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 2281 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2282 sc->hw_type == IWN_HW_REV_TYPE_135 || 2283 sc->hw_type == IWN_HW_REV_TYPE_105) { 2284 sc->eeprom_voltage = le16toh(hdr.volt); 2285 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2286 sc->eeprom_temp = le16toh(val); 2287 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 2288 sc->eeprom_rawtemp = le16toh(val); 2289 } 2290 2291 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2292 /* Compute temperature offset. */ 2293 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2294 sc->eeprom_temp = le16toh(val); 2295 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2296 volt = le16toh(val); 2297 sc->temp_off = sc->eeprom_temp - (volt / -5); 2298 IWN_DBG("temp=%d volt=%d offset=%dK", 2299 sc->eeprom_temp, volt, sc->temp_off); 2300 } else { 2301 /* Read crystal calibration. */ 2302 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2303 &sc->eeprom_crystal, sizeof (uint32_t)); 2304 IWN_DBG("crystal calibration 0x%08x", 2305 le32toh(sc->eeprom_crystal)); 2306 } 2307 } 2308 2309 static void 2310 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2311 { 2312 struct ieee80211com *ic = &sc->sc_ic; 2313 const struct iwn_chan_band *band = &iwn_bands[n]; 2314 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 2315 uint8_t chan; 2316 int i; 2317 2318 iwn_read_prom_data(sc, addr, channels, 2319 band->nchan * sizeof (struct iwn_eeprom_chan)); 2320 2321 for (i = 0; i < band->nchan; i++) { 2322 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 2323 continue; 2324 2325 chan = band->chan[i]; 2326 2327 if (n == 0) { /* 2GHz band */ 2328 ic->ic_sup_channels[chan].ich_freq = 2329 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2330 ic->ic_sup_channels[chan].ich_flags = 2331 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2332 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2333 2334 } else { /* 5GHz band */ 2335 /* 2336 * Some adapters support channels 7, 8, 11 and 12 2337 * both in the 2GHz and 4.9GHz bands. 2338 * Because of limitations in our net80211 layer, 2339 * we don't support them in the 4.9GHz band. 2340 */ 2341 if (chan <= 14) 2342 continue; 2343 2344 ic->ic_sup_channels[chan].ich_freq = 2345 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2346 ic->ic_sup_channels[chan].ich_flags = 2347 IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM; 2348 /* We have at least one valid 5GHz channel. */ 2349 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 2350 } 2351 2352 /* Is active scan allowed on this channel? */ 2353 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 2354 ic->ic_sup_channels[chan].ich_flags |= 2355 IEEE80211_CHAN_PASSIVE; 2356 } 2357 2358 /* Save maximum allowed TX power for this channel. */ 2359 sc->maxpwr[chan] = channels[i].maxpwr; 2360 2361 IWN_DBG("adding chan %d flags=0x%x maxpwr=%d", 2362 chan, channels[i].flags, sc->maxpwr[chan]); 2363 } 2364 } 2365 2366 static void 2367 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2368 { 2369 struct iwn_eeprom_enhinfo enhinfo[35]; 2370 uint16_t val, base; 2371 int8_t maxpwr; 2372 int i; 2373 2374 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2375 base = le16toh(val); 2376 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2377 enhinfo, sizeof enhinfo); 2378 2379 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 2380 for (i = 0; i < __arraycount(enhinfo); i++) { 2381 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 2382 continue; /* Skip invalid entries. */ 2383 2384 maxpwr = 0; 2385 if (sc->txchainmask & IWN_ANT_A) 2386 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2387 if (sc->txchainmask & IWN_ANT_B) 2388 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2389 if (sc->txchainmask & IWN_ANT_C) 2390 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2391 if (sc->ntxchains == 2) 2392 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2393 else if (sc->ntxchains == 3) 2394 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2395 maxpwr /= 2; /* Convert half-dBm to dBm. */ 2396 2397 IWN_DBG("enhinfo %d, maxpwr=%d", i, maxpwr); 2398 sc->enh_maxpwr[i] = maxpwr; 2399 } 2400 } 2401 2402 static struct ieee80211_node * 2403 iwn_node_alloc(ieee80211com_t *ic) 2404 { 2405 _NOTE(ARGUNUSED(ic)); 2406 return (kmem_zalloc(sizeof (struct iwn_node), KM_NOSLEEP)); 2407 } 2408 2409 static void 2410 iwn_node_free(ieee80211_node_t *in) 2411 { 2412 ASSERT(in != NULL); 2413 ASSERT(in->in_ic != NULL); 2414 2415 if (in->in_wpa_ie != NULL) 2416 ieee80211_free(in->in_wpa_ie); 2417 2418 if (in->in_wme_ie != NULL) 2419 ieee80211_free(in->in_wme_ie); 2420 2421 if (in->in_htcap_ie != NULL) 2422 ieee80211_free(in->in_htcap_ie); 2423 2424 kmem_free(in, sizeof (struct iwn_node)); 2425 } 2426 2427 static void 2428 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2429 { 2430 _NOTE(ARGUNUSED(isnew)); 2431 struct iwn_softc *sc = (struct iwn_softc *)&ni->in_ic; 2432 struct iwn_node *wn = (void *)ni; 2433 uint8_t rate, ridx; 2434 int i; 2435 2436 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 2437 /* 2438 * Select a medium rate and depend on AMRR to raise/lower it. 2439 */ 2440 ni->in_txrate = ni->in_rates.ir_nrates / 2; 2441 2442 for (i = 0; i < ni->in_rates.ir_nrates; i++) { 2443 rate = ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL; 2444 /* Map 802.11 rate to HW rate index. */ 2445 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 2446 if (iwn_rates[ridx].rate == rate) 2447 break; 2448 wn->ridx[i] = ridx; 2449 } 2450 } 2451 2452 static int 2453 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2454 { 2455 struct iwn_softc *sc = (struct iwn_softc *)ic; 2456 enum ieee80211_state ostate; 2457 int error; 2458 2459 mutex_enter(&sc->sc_mtx); 2460 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO; 2461 mutex_exit(&sc->sc_mtx); 2462 2463 (void) untimeout(sc->calib_to); 2464 sc->calib_to = 0; 2465 2466 mutex_enter(&sc->sc_mtx); 2467 ostate = ic->ic_state; 2468 2469 DTRACE_PROBE5(new__state, int, sc->sc_flags, 2470 enum ieee80211_state, ostate, 2471 const char *, ieee80211_state_name[ostate], 2472 enum ieee80211_state, nstate, 2473 const char *, ieee80211_state_name[nstate]); 2474 2475 if ((sc->sc_flags & IWN_FLAG_RADIO_OFF) && nstate != IEEE80211_S_INIT) { 2476 mutex_exit(&sc->sc_mtx); 2477 return (IWN_FAIL); 2478 } 2479 2480 if (!(sc->sc_flags & IWN_FLAG_HW_INITED) && 2481 nstate != IEEE80211_S_INIT) { 2482 mutex_exit(&sc->sc_mtx); 2483 return (IWN_FAIL); 2484 } 2485 2486 switch (nstate) { 2487 case IEEE80211_S_SCAN: 2488 /* XXX Do not abort a running scan. */ 2489 if (sc->sc_flags & IWN_FLAG_SCANNING) { 2490 if (ostate != nstate) 2491 dev_err(sc->sc_dip, CE_WARN, "!scan request(%d)" 2492 " while scanning(%d) ignored", nstate, 2493 ostate); 2494 mutex_exit(&sc->sc_mtx); 2495 return (0); 2496 } 2497 2498 bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon)); 2499 sc->sc_ostate = ostate; 2500 2501 /* XXX Not sure if call and flags are needed. */ 2502 ieee80211_node_table_reset(&ic->ic_scan); 2503 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 2504 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ; 2505 2506 /* Make the link LED blink while we're scanning. */ 2507 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 2508 2509 ic->ic_state = nstate; 2510 2511 error = iwn_scan(sc, IEEE80211_CHAN_2GHZ); 2512 if (error != 0) { 2513 dev_err(sc->sc_dip, CE_WARN, 2514 "!could not initiate scan"); 2515 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2516 mutex_exit(&sc->sc_mtx); 2517 return (error); 2518 } 2519 2520 mutex_exit(&sc->sc_mtx); 2521 sc->scan_to = timeout(iwn_abort_scan, sc, iwn_scan_timeout * 2522 drv_usectohz(MICROSEC)); 2523 return (error); 2524 2525 case IEEE80211_S_ASSOC: 2526 if (ostate != IEEE80211_S_RUN) { 2527 mutex_exit(&sc->sc_mtx); 2528 break; 2529 } 2530 /* FALLTHROUGH */ 2531 case IEEE80211_S_AUTH: 2532 /* Reset state to handle reassociations correctly. */ 2533 sc->rxon.associd = 0; 2534 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 2535 sc->calib.state = IWN_CALIB_STATE_INIT; 2536 2537 if ((error = iwn_auth(sc)) != 0) { 2538 mutex_exit(&sc->sc_mtx); 2539 dev_err(sc->sc_dip, CE_WARN, 2540 "!could not move to auth state"); 2541 return error; 2542 } 2543 mutex_exit(&sc->sc_mtx); 2544 break; 2545 2546 case IEEE80211_S_RUN: 2547 if ((error = iwn_run(sc)) != 0) { 2548 mutex_exit(&sc->sc_mtx); 2549 dev_err(sc->sc_dip, CE_WARN, 2550 "!could not move to run state"); 2551 return error; 2552 } 2553 mutex_exit(&sc->sc_mtx); 2554 break; 2555 2556 case IEEE80211_S_INIT: 2557 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2558 sc->calib.state = IWN_CALIB_STATE_INIT; 2559 2560 /* 2561 * set LED off after init 2562 */ 2563 iwn_set_led(sc, IWN_LED_LINK, 1, 0); 2564 2565 cv_signal(&sc->sc_scan_cv); 2566 mutex_exit(&sc->sc_mtx); 2567 if (sc->scan_to != 0) 2568 (void) untimeout(sc->scan_to); 2569 sc->scan_to = 0; 2570 break; 2571 } 2572 2573 error = sc->sc_newstate(ic, nstate, arg); 2574 2575 if (nstate == IEEE80211_S_RUN) 2576 ieee80211_start_watchdog(ic, 1); 2577 2578 return (error); 2579 } 2580 2581 static void 2582 iwn_iter_func(void *arg, struct ieee80211_node *ni) 2583 { 2584 struct iwn_softc *sc = arg; 2585 struct iwn_node *wn = (struct iwn_node *)ni; 2586 2587 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 2588 } 2589 2590 static void 2591 iwn_calib_timeout(void *arg) 2592 { 2593 struct iwn_softc *sc = arg; 2594 struct ieee80211com *ic = &sc->sc_ic; 2595 2596 mutex_enter(&sc->sc_mtx); 2597 2598 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 2599 if (ic->ic_opmode == IEEE80211_M_STA) 2600 iwn_iter_func(sc, ic->ic_bss); 2601 else 2602 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 2603 } 2604 /* Force automatic TX power calibration every 60 secs. */ 2605 if (++sc->calib_cnt >= 120) { 2606 uint32_t flags = 0; 2607 2608 DTRACE_PROBE(get__statistics); 2609 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2610 sizeof flags, 1); 2611 sc->calib_cnt = 0; 2612 } 2613 2614 /* Automatic rate control triggered every 500ms. */ 2615 if ((sc->sc_flags & IWN_FLAG_STOP_CALIB_TO) == 0) 2616 sc->calib_to = timeout(iwn_calib_timeout, sc, 2617 drv_usectohz(500000)); 2618 2619 mutex_exit(&sc->sc_mtx); 2620 } 2621 2622 /* 2623 * Process an RX_PHY firmware notification. This is usually immediately 2624 * followed by an MPDU_RX_DONE notification. 2625 */ 2626 static void 2627 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2628 struct iwn_rx_data *data) 2629 { 2630 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2631 2632 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2633 sizeof (*stat), DDI_DMA_SYNC_FORKERNEL); 2634 2635 DTRACE_PROBE1(rx__phy, struct iwn_rx_stat *, stat); 2636 2637 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2638 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2639 sc->last_rx_valid = 1; 2640 } 2641 2642 /* 2643 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2644 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2645 */ 2646 static void 2647 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2648 struct iwn_rx_data *data) 2649 { 2650 struct iwn_ops *ops = &sc->ops; 2651 struct ieee80211com *ic = &sc->sc_ic; 2652 struct iwn_rx_ring *ring = &sc->rxq; 2653 struct ieee80211_frame *wh; 2654 struct ieee80211_node *ni; 2655 mblk_t *m; 2656 struct iwn_rx_stat *stat; 2657 char *head; 2658 uint32_t flags; 2659 int len, rssi; 2660 2661 if (desc->type == IWN_MPDU_RX_DONE) { 2662 /* Check for prior RX_PHY notification. */ 2663 if (!sc->last_rx_valid) { 2664 dev_err(sc->sc_dip, CE_WARN, 2665 "missing RX_PHY"); 2666 return; 2667 } 2668 sc->last_rx_valid = 0; 2669 stat = &sc->last_rx_stat; 2670 } else 2671 stat = (struct iwn_rx_stat *)(desc + 1); 2672 2673 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, 2674 DDI_DMA_SYNC_FORKERNEL); 2675 2676 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2677 dev_err(sc->sc_dip, CE_WARN, 2678 "!invalid RX statistic header"); 2679 return; 2680 } 2681 if (desc->type == IWN_MPDU_RX_DONE) { 2682 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2683 head = (char *)(mpdu + 1); 2684 len = le16toh(mpdu->len); 2685 } else { 2686 head = (char *)(stat + 1) + stat->cfg_phy_len; 2687 len = le16toh(stat->len); 2688 } 2689 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2690 flags = le32toh(*(uint32_t *)(head + len)); 2691 2692 /* Discard frames with a bad FCS early. */ 2693 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2694 sc->sc_rx_err++; 2695 ic->ic_stats.is_fcs_errors++; 2696 return; 2697 } 2698 /* Discard frames that are too short. */ 2699 if (len < sizeof (*wh)) { 2700 sc->sc_rx_err++; 2701 return; 2702 } 2703 2704 m = allocb(len, BPRI_MED); 2705 if (m == NULL) { 2706 sc->sc_rx_nobuf++; 2707 return; 2708 } 2709 2710 /* Update RX descriptor. */ 2711 ring->desc[ring->cur] = 2712 htole32(data->dma_data.paddr >> 8); 2713 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 2714 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2715 DDI_DMA_SYNC_FORDEV); 2716 2717 /* Grab a reference to the source node. */ 2718 wh = (struct ieee80211_frame*)head; 2719 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame *)wh); 2720 2721 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2722 /* NetBSD does decryption in ieee80211_input. */ 2723 2724 rssi = ops->get_rssi(stat); 2725 2726 /* 2727 * convert dBm to percentage 2728 */ 2729 rssi = (100 * 75 * 75 - (-20 - rssi) * (15 * 75 + 62 * (-20 - rssi))) 2730 / (75 * 75); 2731 if (rssi > 100) 2732 rssi = 100; 2733 else if (rssi < 1) 2734 rssi = 1; 2735 2736 bcopy(wh, m->b_wptr, len); 2737 m->b_wptr += len; 2738 2739 /* XXX Added for NetBSD: scans never stop without it */ 2740 if (ic->ic_state == IEEE80211_S_SCAN) 2741 iwn_fix_channel(sc, m, stat); 2742 2743 /* Send the frame to the 802.11 layer. */ 2744 ieee80211_input(ic, m, ni, rssi, 0); 2745 2746 /* Node is no longer needed. */ 2747 ieee80211_free_node(ni); 2748 } 2749 2750 #ifndef IEEE80211_NO_HT 2751 /* Process an incoming Compressed BlockAck. */ 2752 static void 2753 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2754 struct iwn_rx_data *data) 2755 { 2756 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2757 struct iwn_tx_ring *txq; 2758 2759 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2760 sizeof (*ba), DDI_DMA_SYNC_FORKERNEL); 2761 2762 txq = &sc->txq[le16toh(ba->qid)]; 2763 /* XXX TBD */ 2764 } 2765 #endif 2766 2767 /* 2768 * Process a CALIBRATION_RESULT notification sent by the initialization 2769 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2770 */ 2771 static void 2772 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2773 struct iwn_rx_data *data) 2774 { 2775 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2776 int len, idx = -1; 2777 2778 /* Runtime firmware should not send such a notification. */ 2779 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2780 return; 2781 2782 len = (le32toh(desc->len) & 0x3fff) - 4; 2783 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), len, 2784 DDI_DMA_SYNC_FORKERNEL); 2785 2786 switch (calib->code) { 2787 case IWN5000_PHY_CALIB_DC: 2788 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2789 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2790 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2791 sc->hw_type == IWN_HW_REV_TYPE_135 || 2792 sc->hw_type == IWN_HW_REV_TYPE_105) 2793 idx = 0; 2794 break; 2795 case IWN5000_PHY_CALIB_LO: 2796 idx = 1; 2797 break; 2798 case IWN5000_PHY_CALIB_TX_IQ: 2799 idx = 2; 2800 break; 2801 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2802 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2803 sc->hw_type != IWN_HW_REV_TYPE_5150) 2804 idx = 3; 2805 break; 2806 case IWN5000_PHY_CALIB_BASE_BAND: 2807 idx = 4; 2808 break; 2809 } 2810 if (idx == -1) /* Ignore other results. */ 2811 return; 2812 2813 /* Save calibration result. */ 2814 if (sc->calibcmd[idx].buf != NULL) 2815 kmem_free(sc->calibcmd[idx].buf, sc->calibcmd[idx].len); 2816 sc->calibcmd[idx].buf = kmem_zalloc(len, KM_NOSLEEP); 2817 if (sc->calibcmd[idx].buf == NULL) { 2818 return; 2819 } 2820 sc->calibcmd[idx].len = len; 2821 memcpy(sc->calibcmd[idx].buf, calib, len); 2822 } 2823 2824 /* 2825 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2826 * The latter is sent by the firmware after each received beacon. 2827 */ 2828 static void 2829 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2830 struct iwn_rx_data *data) 2831 { 2832 struct iwn_ops *ops = &sc->ops; 2833 struct ieee80211com *ic = &sc->sc_ic; 2834 struct iwn_calib_state *calib = &sc->calib; 2835 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2836 int temp = 0; 2837 2838 /* Ignore statistics received during a scan. */ 2839 if (ic->ic_state != IEEE80211_S_RUN) 2840 return; 2841 2842 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2843 sizeof (*stats), DDI_DMA_SYNC_FORKERNEL); 2844 2845 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2846 2847 /* Test if temperature has changed. */ 2848 if (stats->general.temp != sc->rawtemp) { 2849 /* Convert "raw" temperature to degC. */ 2850 sc->rawtemp = stats->general.temp; 2851 temp = ops->get_temperature(sc); 2852 sc->sc_misc->temp.value.ul = temp; 2853 2854 /* Update TX power if need be (4965AGN only). */ 2855 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2856 iwn4965_power_calibration(sc, temp); 2857 } 2858 2859 DTRACE_PROBE2(rx__statistics, struct iwn_stats *, stats, int, temp); 2860 2861 if (desc->type != IWN_BEACON_STATISTICS) 2862 return; /* Reply to a statistics request. */ 2863 2864 sc->noise = iwn_get_noise(&stats->rx.general); 2865 sc->sc_misc->noise.value.l = sc->noise; 2866 2867 /* Test that RSSI and noise are present in stats report. */ 2868 if (le32toh(stats->rx.general.flags) != 1) { 2869 return; 2870 } 2871 2872 /* 2873 * XXX Differential gain calibration makes the 6005 firmware 2874 * crap out, so skip it for now. This effectively disables 2875 * sensitivity tuning as well. 2876 */ 2877 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2878 return; 2879 2880 if (calib->state == IWN_CALIB_STATE_ASSOC) 2881 iwn_collect_noise(sc, &stats->rx.general); 2882 else if (calib->state == IWN_CALIB_STATE_RUN) 2883 iwn_tune_sensitivity(sc, &stats->rx); 2884 } 2885 2886 /* 2887 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2888 * and 5000 adapters have different incompatible TX status formats. 2889 */ 2890 static void 2891 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2892 struct iwn_rx_data *data) 2893 { 2894 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2895 2896 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2897 sizeof (*stat), DDI_DMA_SYNC_FORKERNEL); 2898 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2899 } 2900 2901 static void 2902 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2903 struct iwn_rx_data *data) 2904 { 2905 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2906 2907 #ifdef notyet 2908 /* Reset TX scheduler slot. */ 2909 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2910 #endif 2911 2912 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2913 sizeof (*stat), DDI_DMA_SYNC_FORKERNEL); 2914 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2915 } 2916 2917 /* 2918 * Adapter-independent backend for TX_DONE firmware notifications. 2919 */ 2920 static void 2921 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2922 uint8_t status) 2923 { 2924 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2925 struct iwn_tx_data *data = &ring->data[desc->idx]; 2926 struct iwn_node *wn = (struct iwn_node *)data->ni; 2927 2928 /* Update rate control statistics. */ 2929 wn->amn.amn_txcnt++; 2930 if (ackfailcnt > 0) 2931 wn->amn.amn_retrycnt++; 2932 2933 if (status != 1 && status != 2) 2934 sc->sc_tx_err++; 2935 else 2936 sc->sc_ic.ic_stats.is_tx_frags++; 2937 2938 ieee80211_free_node(data->ni); 2939 data->ni = NULL; 2940 2941 mutex_enter(&sc->sc_tx_mtx); 2942 sc->sc_tx_timer = 0; 2943 if (--ring->queued < IWN_TX_RING_LOMARK) { 2944 sc->qfullmsk &= ~(1 << ring->qid); 2945 } 2946 mac_tx_update(sc->sc_ic.ic_mach); 2947 mutex_exit(&sc->sc_tx_mtx); 2948 } 2949 2950 /* 2951 * Process a "command done" firmware notification. This is where we wakeup 2952 * processes waiting for a synchronous command completion. 2953 */ 2954 static void 2955 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2956 { 2957 struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM]; 2958 struct iwn_tx_data *data; 2959 2960 if ((desc->qid & 0xf) != IWN_CMD_QUEUE_NUM) 2961 return; /* Not a command ack. */ 2962 2963 data = &ring->data[desc->idx]; 2964 2965 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 2966 2967 /* If the command was mapped in an extra buffer, free it. */ 2968 if (data->cmd_dma.dma_hdl) { 2969 (void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, 0, 2970 DDI_DMA_SYNC_FORDEV); 2971 iwn_dma_contig_free(&data->cmd_dma); 2972 } 2973 2974 mutex_enter(&sc->sc_mtx); 2975 sc->sc_cmd_flag = SC_CMD_FLG_DONE; 2976 cv_signal(&sc->sc_cmd_cv); 2977 mutex_exit(&sc->sc_mtx); 2978 } 2979 2980 /* 2981 * Process an INT_FH_RX or INT_SW_RX interrupt. 2982 */ 2983 static void 2984 iwn_notif_intr(struct iwn_softc *sc) 2985 { 2986 struct iwn_ops *ops = &sc->ops; 2987 struct ieee80211com *ic = &sc->sc_ic; 2988 uint16_t hw; 2989 2990 ASSERT(sc != NULL); 2991 2992 (void) ddi_dma_sync(sc->rxq.stat_dma.dma_hdl, 0, 0, 2993 DDI_DMA_SYNC_FORKERNEL); 2994 2995 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2996 while (sc->rxq.cur != hw) { 2997 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2998 struct iwn_rx_desc *desc; 2999 3000 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, sizeof (*desc), 3001 DDI_DMA_SYNC_FORKERNEL); 3002 desc = (struct iwn_rx_desc *)data->dma_data.vaddr; 3003 3004 DTRACE_PROBE1(notification__intr, struct iwn_rx_desc *, desc); 3005 3006 if (!(desc->qid & 0x80)) /* Reply to a command. */ 3007 iwn_cmd_done(sc, desc); 3008 3009 switch (desc->type) { 3010 case IWN_RX_PHY: 3011 iwn_rx_phy(sc, desc, data); 3012 break; 3013 3014 case IWN_RX_DONE: /* 4965AGN only. */ 3015 case IWN_MPDU_RX_DONE: 3016 /* An 802.11 frame has been received. */ 3017 iwn_rx_done(sc, desc, data); 3018 break; 3019 #ifndef IEEE80211_NO_HT 3020 case IWN_RX_COMPRESSED_BA: 3021 /* A Compressed BlockAck has been received. */ 3022 iwn_rx_compressed_ba(sc, desc, data); 3023 break; 3024 #endif 3025 case IWN_TX_DONE: 3026 /* An 802.11 frame has been transmitted. */ 3027 ops->tx_done(sc, desc, data); 3028 break; 3029 3030 case IWN_RX_STATISTICS: 3031 case IWN_BEACON_STATISTICS: 3032 mutex_enter(&sc->sc_mtx); 3033 iwn_rx_statistics(sc, desc, data); 3034 mutex_exit(&sc->sc_mtx); 3035 break; 3036 3037 case IWN_BEACON_MISSED: 3038 { 3039 struct iwn_beacon_missed *miss = 3040 (struct iwn_beacon_missed *)(desc + 1); 3041 3042 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3043 sizeof (*desc), sizeof (*miss), 3044 DDI_DMA_SYNC_FORKERNEL); 3045 /* 3046 * If more than iwn_beacons_missed_disconnect 3047 * consecutive beacons are missed, we've probably lost 3048 * our connection. 3049 * If more than iwn_beacons_missed_sensitivity 3050 * consecutive beacons are missed, reinitialize the 3051 * sensitivity state machine. 3052 */ 3053 DTRACE_PROBE1(beacons__missed, 3054 struct iwn_beacon_missed *, miss); 3055 if (ic->ic_state == IEEE80211_S_RUN) { 3056 if (le32toh(miss->consecutive) 3057 > iwn_beacons_missed_disconnect) { 3058 dev_err(sc->sc_dip, CE_WARN, 3059 "!iwn_notif_intr(): %d consecutive " 3060 "beacons missed, disconnecting", 3061 le32toh(miss->consecutive)); 3062 ieee80211_new_state(ic, 3063 IEEE80211_S_INIT, -1); 3064 } else if (le32toh(miss->consecutive) 3065 > iwn_beacons_missed_sensitivity) { 3066 mutex_enter(&sc->sc_mtx); 3067 (void)iwn_init_sensitivity(sc); 3068 mutex_exit(&sc->sc_mtx); 3069 } 3070 } 3071 break; 3072 } 3073 case IWN_UC_READY: 3074 { 3075 struct iwn_ucode_info *uc = 3076 (struct iwn_ucode_info *)(desc + 1); 3077 3078 /* The microcontroller is ready. */ 3079 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3080 sizeof (*desc), sizeof (*uc), 3081 DDI_DMA_SYNC_FORKERNEL); 3082 DTRACE_PROBE1(uc__ready, struct iwn_ucode_info *, uc) 3083 3084 if (le32toh(uc->valid) != 1) { 3085 dev_err(sc->sc_dip, CE_WARN, 3086 "!microcontroller initialization failed"); 3087 break; 3088 } 3089 if (uc->subtype == IWN_UCODE_INIT) { 3090 /* Save microcontroller report. */ 3091 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3092 } 3093 /* Save the address of the error log in SRAM. */ 3094 sc->errptr = le32toh(uc->errptr); 3095 break; 3096 } 3097 case IWN_STATE_CHANGED: 3098 { 3099 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3100 uint32_t *status = (uint32_t *)(desc + 1); 3101 3102 /* Enabled/disabled notification. */ 3103 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3104 sizeof (*desc), sizeof (*status), 3105 DDI_DMA_SYNC_FORKERNEL); 3106 DTRACE_PROBE1(state__changed, uint32_t, *status); 3107 3108 if (le32toh(*status) & 1) { 3109 /* The radio button has to be pushed. */ 3110 dev_err(sc->sc_dip, CE_WARN, 3111 "!Radio transmitter is off"); 3112 /* Turn the interface down. */ 3113 mutex_enter(&sc->sc_mtx); 3114 sc->sc_flags |= 3115 IWN_FLAG_HW_ERR_RECOVER | 3116 IWN_FLAG_RADIO_OFF; 3117 mutex_exit(&sc->sc_mtx); 3118 ieee80211_new_state(&sc->sc_ic, 3119 IEEE80211_S_INIT, -1); 3120 3121 return; /* No further processing. */ 3122 } 3123 break; 3124 } 3125 case IWN_START_SCAN: 3126 { 3127 struct iwn_start_scan *scan = 3128 (struct iwn_start_scan *)(desc + 1); 3129 3130 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3131 sizeof (*desc), sizeof (*scan), 3132 DDI_DMA_SYNC_FORKERNEL); 3133 DTRACE_PROBE2(start__scan, uint8_t, scan->chan, 3134 uint32_t, le32toh(scan->status)); 3135 3136 /* Fix current channel. */ 3137 ic->ic_curchan = ic->ic_bss->in_chan = 3138 &ic->ic_sup_channels[scan->chan]; 3139 break; 3140 } 3141 case IWN_STOP_SCAN: 3142 { 3143 struct iwn_stop_scan *scan = 3144 (struct iwn_stop_scan *)(desc + 1); 3145 3146 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3147 sizeof (*desc), sizeof (*scan), 3148 DDI_DMA_SYNC_FORKERNEL); 3149 DTRACE_PROBE3(stop__scan, uint8_t, scan->chan, 3150 uint32_t, le32toh(scan->status), 3151 uint8_t, scan->nchan); 3152 3153 if (iwn_enable_5ghz != 0 && 3154 (sc->sc_flags & IWN_FLAG_SCANNING_2GHZ) && 3155 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 3156 /* 3157 * We just finished scanning 2GHz channels, 3158 * start scanning 5GHz ones. 3159 */ 3160 mutex_enter(&sc->sc_mtx); 3161 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ; 3162 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ; 3163 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) { 3164 mutex_exit(&sc->sc_mtx); 3165 break; 3166 } 3167 mutex_exit(&sc->sc_mtx); 3168 } 3169 ieee80211_end_scan(ic); 3170 mutex_enter(&sc->sc_mtx); 3171 sc->sc_flags &= ~IWN_FLAG_SCANNING; 3172 cv_signal(&sc->sc_scan_cv); 3173 mutex_exit(&sc->sc_mtx); 3174 (void) untimeout(sc->scan_to); 3175 sc->scan_to = 0; 3176 break; 3177 } 3178 case IWN5000_CALIBRATION_RESULT: 3179 iwn5000_rx_calib_results(sc, desc, data); 3180 break; 3181 3182 case IWN5000_CALIBRATION_DONE: 3183 mutex_enter(&sc->sc_mtx); 3184 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3185 cv_signal(&sc->sc_calib_cv); 3186 mutex_exit(&sc->sc_mtx); 3187 break; 3188 } 3189 3190 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3191 } 3192 3193 /* Tell the firmware what we have processed. */ 3194 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3195 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3196 } 3197 3198 /* 3199 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3200 * from power-down sleep mode. 3201 */ 3202 static void 3203 iwn_wakeup_intr(struct iwn_softc *sc) 3204 { 3205 int qid; 3206 3207 DTRACE_PROBE(wakeup__intr); 3208 3209 /* Wakeup RX and TX rings. */ 3210 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 3211 for (qid = 0; qid < sc->ntxqs; qid++) { 3212 struct iwn_tx_ring *ring = &sc->txq[qid]; 3213 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 3214 } 3215 } 3216 3217 /* 3218 * Dump the error log of the firmware when a firmware panic occurs. Although 3219 * we can't debug the firmware because it is neither open source nor free, it 3220 * can help us to identify certain classes of problems. 3221 */ 3222 static void 3223 iwn_fatal_intr(struct iwn_softc *sc) 3224 { 3225 struct iwn_fw_dump dump; 3226 int i; 3227 3228 /* Force a complete recalibration on next init. */ 3229 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 3230 3231 /* Check that the error log address is valid. */ 3232 if (sc->errptr < IWN_FW_DATA_BASE || 3233 sc->errptr + sizeof (dump) > 3234 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 3235 dev_err(sc->sc_dip, CE_WARN, 3236 "!bad firmware error log address 0x%08x", sc->errptr); 3237 return; 3238 } 3239 if (iwn_nic_lock(sc) != 0) { 3240 dev_err(sc->sc_dip, CE_WARN, 3241 "!could not read firmware error log"); 3242 return; 3243 } 3244 /* Read firmware error log from SRAM. */ 3245 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3246 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 3247 sizeof (dump) / sizeof (uint32_t)); 3248 iwn_nic_unlock(sc); 3249 3250 if (dump.valid == 0) { 3251 dev_err(sc->sc_dip, CE_WARN, 3252 "!firmware error log is empty"); 3253 return; 3254 } 3255 dev_err(sc->sc_dip, CE_WARN, "!firmware error log:"); 3256 dev_err(sc->sc_dip, CE_CONT, "! error type = \"%s\" (0x%08X)", 3257 (dump.id < __arraycount(iwn_fw_errmsg)) ? 3258 iwn_fw_errmsg[dump.id] : "UNKNOWN", 3259 dump.id); 3260 dev_err(sc->sc_dip, CE_CONT, "! program counter = 0x%08X", dump.pc); 3261 dev_err(sc->sc_dip, CE_CONT, "! source line = 0x%08X", 3262 dump.src_line); 3263 dev_err(sc->sc_dip, CE_CONT, "! error data = 0x%08X%08X", 3264 dump.error_data[0], dump.error_data[1]); 3265 dev_err(sc->sc_dip, CE_CONT, "! branch link = 0x%08X%08X", 3266 dump.branch_link[0], dump.branch_link[1]); 3267 dev_err(sc->sc_dip, CE_CONT, "! interrupt link = 0x%08X%08X", 3268 dump.interrupt_link[0], dump.interrupt_link[1]); 3269 dev_err(sc->sc_dip, CE_CONT, "! time = %u", dump.time[0]); 3270 3271 /* Dump driver status (TX and RX rings) while we're here. */ 3272 dev_err(sc->sc_dip, CE_WARN, "!driver status:"); 3273 for (i = 0; i < sc->ntxqs; i++) { 3274 struct iwn_tx_ring *ring = &sc->txq[i]; 3275 dev_err(sc->sc_dip, CE_WARN, 3276 "! tx ring %2d: qid=%2d cur=%3d queued=%3d", 3277 i, ring->qid, ring->cur, ring->queued); 3278 } 3279 dev_err(sc->sc_dip, CE_WARN, "! rx ring: cur=%d", sc->rxq.cur); 3280 dev_err(sc->sc_dip, CE_WARN, "! 802.11 state %d", sc->sc_ic.ic_state); 3281 } 3282 3283 /*ARGSUSED1*/ 3284 static uint_t 3285 iwn_intr(caddr_t arg, caddr_t unused) 3286 { 3287 _NOTE(ARGUNUSED(unused)); 3288 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3289 struct iwn_softc *sc = (struct iwn_softc *)arg; 3290 uint32_t r1, r2, tmp; 3291 3292 if (sc == NULL) 3293 return (DDI_INTR_UNCLAIMED); 3294 3295 /* Disable interrupts. */ 3296 IWN_WRITE(sc, IWN_INT_MASK, 0); 3297 3298 /* Read interrupts from ICT (fast) or from registers (slow). */ 3299 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3300 (void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0, 3301 DDI_DMA_SYNC_FORKERNEL); 3302 tmp = 0; 3303 while (sc->ict[sc->ict_cur] != 0) { 3304 tmp |= sc->ict[sc->ict_cur]; 3305 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 3306 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 3307 } 3308 (void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0, 3309 DDI_DMA_SYNC_FORDEV); 3310 tmp = le32toh(tmp); 3311 if (tmp == 0xffffffff) /* Shouldn't happen. */ 3312 tmp = 0; 3313 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 3314 tmp |= 0x8000; 3315 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 3316 r2 = 0; /* Unused. */ 3317 } else { 3318 r1 = IWN_READ(sc, IWN_INT); 3319 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 3320 return (DDI_INTR_UNCLAIMED); /* Hardware gone! */ 3321 r2 = IWN_READ(sc, IWN_FH_INT); 3322 } 3323 if (r1 == 0 && r2 == 0) { 3324 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 3325 return (DDI_INTR_UNCLAIMED); /* Interrupt not for us. */ 3326 } 3327 3328 /* Acknowledge interrupts. */ 3329 IWN_WRITE(sc, IWN_INT, r1); 3330 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 3331 IWN_WRITE(sc, IWN_FH_INT, r2); 3332 3333 if (r1 & IWN_INT_RF_TOGGLED) { 3334 tmp = IWN_READ(sc, IWN_GP_CNTRL); 3335 dev_err(sc->sc_dip, CE_NOTE, 3336 "!RF switch: radio %s", 3337 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 3338 } 3339 if (r1 & IWN_INT_CT_REACHED) { 3340 dev_err(sc->sc_dip, CE_WARN, 3341 "!critical temperature reached!"); 3342 } 3343 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 3344 dev_err(sc->sc_dip, CE_WARN, 3345 "!fatal firmware error"); 3346 /* Dump firmware error log and stop. */ 3347 iwn_fatal_intr(sc); 3348 iwn_hw_stop(sc, B_TRUE); 3349 if (!IWN_CHK_FAST_RECOVER(sc)) 3350 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 3351 mutex_enter(&sc->sc_mtx); 3352 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER; 3353 mutex_exit(&sc->sc_mtx); 3354 3355 return (DDI_INTR_CLAIMED); 3356 } 3357 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 3358 (r2 & IWN_FH_INT_RX)) { 3359 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3360 int ena = (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)); 3361 3362 if (ena) 3363 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 3364 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3365 IWN_INT_PERIODIC_DIS); 3366 iwn_notif_intr(sc); 3367 if (ena) 3368 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3369 IWN_INT_PERIODIC_ENA); 3370 } else { 3371 iwn_notif_intr(sc); 3372 } 3373 } 3374 3375 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 3376 if (sc->sc_flags & IWN_FLAG_USE_ICT) 3377 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 3378 mutex_enter(&sc->sc_mtx); 3379 sc->sc_flags |= IWN_FLAG_FW_DMA; 3380 cv_signal(&sc->sc_fhdma_cv); 3381 mutex_exit(&sc->sc_mtx); 3382 } 3383 3384 if (r1 & IWN_INT_ALIVE) { 3385 mutex_enter(&sc->sc_mtx); 3386 sc->sc_flags |= IWN_FLAG_FW_ALIVE; 3387 cv_signal(&sc->sc_alive_cv); 3388 mutex_exit(&sc->sc_mtx); 3389 } 3390 3391 if (r1 & IWN_INT_WAKEUP) 3392 iwn_wakeup_intr(sc); 3393 3394 /* Re-enable interrupts. */ 3395 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 3396 return (DDI_INTR_CLAIMED); 3397 } 3398 3399 /* 3400 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 3401 * 5000 adapters use a slightly different format). 3402 */ 3403 static void 3404 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3405 uint16_t len) 3406 { 3407 _NOTE(ARGUNUSED(id)); 3408 int w_idx = qid * IWN4965_SCHED_COUNT + idx; 3409 uint16_t *w = &sc->sched[w_idx]; 3410 3411 *w = htole16(len + 8); 3412 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t), 3413 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3414 if (idx < IWN_SCHED_WINSZ) { 3415 *(w + IWN_TX_RING_COUNT) = *w; 3416 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, 3417 (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t), 3418 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3419 } 3420 } 3421 3422 static void 3423 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3424 uint16_t len) 3425 { 3426 int w_idx = qid * IWN5000_SCHED_COUNT + idx; 3427 uint16_t *w = &sc->sched[w_idx]; 3428 3429 *w = htole16(id << 12 | (len + 8)); 3430 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t), 3431 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3432 if (idx < IWN_SCHED_WINSZ) { 3433 *(w + IWN_TX_RING_COUNT) = *w; 3434 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, 3435 (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t), 3436 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3437 } 3438 } 3439 3440 #ifdef notyet 3441 static void 3442 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 3443 { 3444 int w_idx = qid * IWN5000_SCHED_COUNT + idx; 3445 uint16_t *w = &sc->sched[w_idx]; 3446 3447 *w = (*w & htole16(0xf000)) | htole16(1); 3448 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t), 3449 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3450 if (idx < IWN_SCHED_WINSZ) { 3451 *(w + IWN_TX_RING_COUNT) = *w; 3452 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, 3453 (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t), 3454 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3455 } 3456 } 3457 #endif 3458 3459 /* 3460 * This function is only for compatibility with Net80211 module. 3461 * iwn_qosparam_to_hw() is the actual function updating EDCA 3462 * parameters to hardware. 3463 */ 3464 static int 3465 iwn_wme_update(struct ieee80211com *ic) 3466 { 3467 _NOTE(ARGUNUSED(ic)); 3468 return (0); 3469 } 3470 3471 static int 3472 iwn_wme_to_qos_ac(struct iwn_softc *sc, int wme_ac) 3473 { 3474 int qos_ac; 3475 3476 switch (wme_ac) { 3477 case WME_AC_BE: 3478 qos_ac = QOS_AC_BK; 3479 break; 3480 case WME_AC_BK: 3481 qos_ac = QOS_AC_BE; 3482 break; 3483 case WME_AC_VI: 3484 qos_ac = QOS_AC_VI; 3485 break; 3486 case WME_AC_VO: 3487 qos_ac = QOS_AC_VO; 3488 break; 3489 default: 3490 dev_err(sc->sc_dip, CE_WARN, "!iwn_wme_to_qos_ac(): " 3491 "WME AC index is not in suitable range.\n"); 3492 qos_ac = QOS_AC_INVALID; 3493 break; 3494 } 3495 3496 return (qos_ac); 3497 } 3498 3499 static uint16_t 3500 iwn_cw_e_to_cw(uint8_t cw_e) 3501 { 3502 uint16_t cw = 1; 3503 3504 while (cw_e > 0) { 3505 cw <<= 1; 3506 cw_e--; 3507 } 3508 3509 cw -= 1; 3510 return (cw); 3511 } 3512 3513 static int 3514 iwn_wmeparam_check(struct iwn_softc *sc, struct wmeParams *wmeparam) 3515 { 3516 int i; 3517 3518 for (i = 0; i < WME_NUM_AC; i++) { 3519 3520 if ((wmeparam[i].wmep_logcwmax > QOS_CW_RANGE_MAX) || 3521 (wmeparam[i].wmep_logcwmin >= wmeparam[i].wmep_logcwmax)) { 3522 cmn_err(CE_WARN, "iwn_wmeparam_check(): " 3523 "Contention window is not in suitable range.\n"); 3524 return (IWN_FAIL); 3525 } 3526 3527 if ((wmeparam[i].wmep_aifsn < QOS_AIFSN_MIN) || 3528 (wmeparam[i].wmep_aifsn > QOS_AIFSN_MAX)) { 3529 dev_err(sc->sc_dip, CE_WARN, "!iwn_wmeparam_check(): " 3530 "Arbitration interframe space number" 3531 "is not in suitable range.\n"); 3532 return (IWN_FAIL); 3533 } 3534 } 3535 3536 return (IWN_SUCCESS); 3537 } 3538 3539 /* 3540 * This function updates EDCA parameters into hardware. 3541 * FIFO0-background, FIFO1-best effort, FIFO2-video, FIFO3-voice. 3542 */ 3543 static int 3544 iwn_qosparam_to_hw(struct iwn_softc *sc, int async) 3545 { 3546 ieee80211com_t *ic = &sc->sc_ic; 3547 ieee80211_node_t *in = ic->ic_bss; 3548 struct wmeParams *wmeparam; 3549 struct iwn_edca_params edcaparam; 3550 int i, j; 3551 int err = IWN_FAIL; 3552 3553 if ((in->in_flags & IEEE80211_NODE_QOS) && 3554 (IEEE80211_M_STA == ic->ic_opmode)) { 3555 wmeparam = ic->ic_wme.wme_chanParams.cap_wmeParams; 3556 } else { 3557 return (IWN_SUCCESS); 3558 } 3559 3560 (void) memset(&edcaparam, 0, sizeof (edcaparam)); 3561 3562 err = iwn_wmeparam_check(sc, wmeparam); 3563 if (err != IWN_SUCCESS) { 3564 return (err); 3565 } 3566 3567 if (in->in_flags & IEEE80211_NODE_QOS) { 3568 edcaparam.flags |= QOS_PARAM_FLG_UPDATE_EDCA; 3569 } 3570 3571 if (in->in_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)) { 3572 edcaparam.flags |= QOS_PARAM_FLG_TGN; 3573 } 3574 3575 for (i = 0; i < WME_NUM_AC; i++) { 3576 3577 j = iwn_wme_to_qos_ac(sc, i); 3578 if (j < QOS_AC_BK || j > QOS_AC_VO) { 3579 return (IWN_FAIL); 3580 } 3581 3582 sc->sc_edca->ac[j].cwmin.value.ul = edcaparam.ac[j].cwmin = 3583 iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmin); 3584 sc->sc_edca->ac[j].cwmax.value.ul = edcaparam.ac[j].cwmax = 3585 iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmax); 3586 sc->sc_edca->ac[j].aifsn.value.ul = edcaparam.ac[j].aifsn = 3587 wmeparam[i].wmep_aifsn; 3588 sc->sc_edca->ac[j].txop.value.ul = edcaparam.ac[j].txoplimit = 3589 (uint16_t)(wmeparam[i].wmep_txopLimit * 32); 3590 } 3591 3592 err = iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &edcaparam, 3593 sizeof (edcaparam), async); 3594 if (err != IWN_SUCCESS) { 3595 dev_err(sc->sc_dip, CE_WARN, "!iwn_qosparam_to_hw(): " 3596 "failed to update QoS parameters into hardware."); 3597 return (err); 3598 } 3599 3600 return (err); 3601 } 3602 3603 static inline int 3604 iwn_wme_tid_qos_ac(int tid) 3605 { 3606 switch (tid) { 3607 case 1: 3608 case 2: 3609 return (QOS_AC_BK); 3610 case 0: 3611 case 3: 3612 return (QOS_AC_BE); 3613 case 4: 3614 case 5: 3615 return (QOS_AC_VI); 3616 case 6: 3617 case 7: 3618 return (QOS_AC_VO); 3619 } 3620 3621 return (QOS_AC_BE); 3622 } 3623 3624 static inline int 3625 iwn_qos_ac_to_txq(int qos_ac) 3626 { 3627 switch (qos_ac) { 3628 case QOS_AC_BK: 3629 return (QOS_AC_BK_TO_TXQ); 3630 case QOS_AC_BE: 3631 return (QOS_AC_BE_TO_TXQ); 3632 case QOS_AC_VI: 3633 return (QOS_AC_VI_TO_TXQ); 3634 case QOS_AC_VO: 3635 return (QOS_AC_VO_TO_TXQ); 3636 } 3637 3638 return (QOS_AC_BE_TO_TXQ); 3639 } 3640 3641 static int 3642 iwn_wme_tid_to_txq(struct iwn_softc *sc, int tid) 3643 { 3644 int queue_n = TXQ_FOR_AC_INVALID; 3645 int qos_ac; 3646 3647 if (tid < WME_TID_MIN || 3648 tid > WME_TID_MAX) { 3649 dev_err(sc->sc_dip, CE_WARN, "!wme_tid_to_txq(): " 3650 "TID is not in suitable range."); 3651 return (queue_n); 3652 } 3653 3654 qos_ac = iwn_wme_tid_qos_ac(tid); 3655 queue_n = iwn_qos_ac_to_txq(qos_ac); 3656 3657 return (queue_n); 3658 } 3659 3660 static int 3661 iwn_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type) 3662 { 3663 struct iwn_softc *sc = (struct iwn_softc *)ic; 3664 struct iwn_node *wn; 3665 struct iwn_tx_ring *ring; 3666 struct iwn_tx_desc *desc; 3667 struct iwn_tx_data *data; 3668 struct iwn_tx_cmd *cmd; 3669 struct iwn_cmd_data *tx; 3670 ieee80211_node_t *in; 3671 const struct iwn_rate *rinfo; 3672 struct ieee80211_frame *wh; 3673 struct ieee80211_key *k = NULL; 3674 uint32_t flags; 3675 uint_t hdrlen; 3676 uint8_t ridx, txant; 3677 int i, totlen, seglen, pad; 3678 int txq_id = NON_QOS_TXQ; 3679 struct ieee80211_qosframe *qwh = NULL; 3680 uint8_t tid = WME_TID_INVALID; 3681 ddi_dma_cookie_t cookie; 3682 mblk_t *m0, *m; 3683 int mblen, off; 3684 3685 int noack = 0; 3686 3687 if (ic == NULL) 3688 return (EIO); 3689 3690 if ((mp == NULL) || (MBLKL(mp) <= 0)) 3691 return (EIO); 3692 3693 if (sc->sc_flags & IWN_FLAG_SUSPEND) { 3694 freemsg(mp); 3695 sc->sc_tx_err++; 3696 return(EIO); 3697 } 3698 3699 wh = (struct ieee80211_frame *)mp->b_rptr; 3700 3701 hdrlen = ieee80211_hdrspace(ic, mp->b_rptr); 3702 3703 /* 3704 * determine send which AP or station in IBSS 3705 */ 3706 in = ieee80211_find_txnode(ic, wh->i_addr1); 3707 if (in == NULL) { 3708 dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): " 3709 "failed to find tx node"); 3710 freemsg(mp); 3711 sc->sc_tx_err++; 3712 return(EIO); 3713 } 3714 3715 wn = (struct iwn_node *)in; 3716 3717 /* 3718 * Determine TX queue according to traffic ID in frame 3719 * if working in QoS mode. 3720 */ 3721 if (in->in_flags & IEEE80211_NODE_QOS) { 3722 if ((type & IEEE80211_FC0_TYPE_MASK) == 3723 IEEE80211_FC0_TYPE_DATA) { 3724 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3725 qwh = (struct ieee80211_qosframe *)wh; 3726 3727 tid = qwh->i_qos[0] & IEEE80211_QOS_TID; 3728 txq_id = iwn_wme_tid_to_txq(sc, tid); 3729 3730 if (txq_id < TXQ_FOR_AC_MIN || 3731 (txq_id > TXQ_FOR_AC_MAX)) { 3732 freemsg(mp); 3733 sc->sc_tx_err++; 3734 return(EIO); 3735 } 3736 } else { 3737 txq_id = NON_QOS_TXQ; 3738 } 3739 } else if ((type & IEEE80211_FC0_TYPE_MASK) == 3740 IEEE80211_FC0_TYPE_MGT) { 3741 txq_id = QOS_TXQ_FOR_MGT; 3742 } else { 3743 txq_id = NON_QOS_TXQ; 3744 } 3745 } else { 3746 txq_id = NON_QOS_TXQ; 3747 } 3748 3749 if (sc->qfullmsk & (1 << txq_id)) { 3750 sc->sc_tx_err++; 3751 /* net80211-initiated send */ 3752 if ((type & IEEE80211_FC0_TYPE_MASK) != 3753 IEEE80211_FC0_TYPE_DATA) 3754 freemsg(mp); 3755 return (EAGAIN); 3756 } 3757 3758 /* Choose a TX rate index. */ 3759 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3760 type != IEEE80211_FC0_TYPE_DATA) { 3761 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3762 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 3763 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 3764 ridx = sc->fixed_ridx; 3765 } else 3766 ridx = wn->ridx[in->in_txrate]; 3767 rinfo = &iwn_rates[ridx]; 3768 3769 m = allocb(msgdsize(mp) + 32, BPRI_MED); 3770 if (m) { 3771 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { 3772 mblen = MBLKL(m0); 3773 bcopy(m0->b_rptr, m->b_rptr + off, mblen); 3774 off += mblen; 3775 } 3776 3777 m->b_wptr += off; 3778 3779 freemsg(mp); 3780 mp = m; 3781 3782 wh = (struct ieee80211_frame *)mp->b_rptr; 3783 } else { 3784 dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): can't copy"); 3785 /* net80211-initiated send */ 3786 if ((type & IEEE80211_FC0_TYPE_MASK) != 3787 IEEE80211_FC0_TYPE_DATA) 3788 freemsg(mp); 3789 return (EAGAIN); 3790 } 3791 3792 3793 /* 3794 * Net80211 module encapsulate outbound data frames. 3795 * Add some fields of 80211 frame. 3796 */ 3797 if ((type & IEEE80211_FC0_TYPE_MASK) == 3798 IEEE80211_FC0_TYPE_DATA) 3799 (void) ieee80211_encap(ic, mp, in); 3800 3801 /* Encrypt the frame if need be. */ 3802 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3803 k = ieee80211_crypto_encap(ic, mp); 3804 if (k == NULL) { 3805 freemsg(mp); 3806 return(EIO); 3807 } 3808 /* Packet header may have moved, reset our local pointer. */ 3809 wh = (struct ieee80211_frame *)mp->b_rptr; 3810 } 3811 totlen = msgdsize(mp); 3812 3813 mutex_enter(&sc->sc_tx_mtx); 3814 ring = &sc->txq[txq_id]; 3815 desc = &ring->desc[ring->cur]; 3816 data = &ring->data[ring->cur]; 3817 3818 /* Prepare TX firmware command. */ 3819 cmd = &ring->cmd[ring->cur]; 3820 cmd->code = IWN_CMD_TX_DATA; 3821 cmd->flags = 0; 3822 cmd->qid = ring->qid; 3823 cmd->idx = ring->cur; 3824 3825 tx = (struct iwn_cmd_data *)cmd->data; 3826 /* NB: No need to clear tx, all fields are reinitialized here. */ 3827 tx->scratch = 0; /* clear "scratch" area */ 3828 3829 flags = 0; 3830 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3831 /* Unicast frame, check if an ACK is expected. */ 3832 if (!noack) 3833 flags |= IWN_TX_NEED_ACK; 3834 } 3835 3836 if ((wh->i_fc[0] & 3837 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3838 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3839 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3840 3841 ASSERT((flags & IWN_TX_IMM_BA) == 0); 3842 3843 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3844 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3845 3846 ASSERT((flags & IWN_TX_MORE_FRAG) == 0); 3847 3848 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3849 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3850 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3851 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 3852 flags |= IWN_TX_NEED_RTS; 3853 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3854 ridx >= IWN_RIDX_OFDM6) { 3855 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3856 flags |= IWN_TX_NEED_CTS; 3857 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3858 flags |= IWN_TX_NEED_RTS; 3859 } 3860 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3861 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3862 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3863 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3864 flags |= IWN_TX_NEED_PROTECTION; 3865 } else 3866 flags |= IWN_TX_FULL_TXOP; 3867 } 3868 } 3869 3870 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3871 type != IEEE80211_FC0_TYPE_DATA) 3872 tx->id = sc->broadcast_id; 3873 else 3874 tx->id = wn->id; 3875 3876 if (type == IEEE80211_FC0_TYPE_MGT) { 3877 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3878 3879 #ifndef IEEE80211_STA_ONLY 3880 /* Tell HW to set timestamp in probe responses. */ 3881 /* XXX NetBSD rev 1.11 added probe requests here but */ 3882 /* probe requests do not take timestamps (from Bergamini). */ 3883 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3884 flags |= IWN_TX_INSERT_TSTAMP; 3885 #endif 3886 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 3887 /* changes here. These are not needed (from Bergamini). */ 3888 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3889 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3890 tx->timeout = htole16(3); 3891 else 3892 tx->timeout = htole16(2); 3893 } else 3894 tx->timeout = htole16(0); 3895 3896 if (hdrlen & 3) { 3897 /* First segment length must be a multiple of 4. */ 3898 flags |= IWN_TX_NEED_PADDING; 3899 pad = 4 - (hdrlen & 3); 3900 } else 3901 pad = 0; 3902 3903 if (tid != WME_TID_INVALID) { 3904 flags &= ~IWN_TX_AUTO_SEQ; 3905 } else { 3906 flags |= IWN_TX_AUTO_SEQ; 3907 tid = 0; 3908 } 3909 3910 tx->len = htole16(totlen); 3911 tx->tid = tid; 3912 tx->rts_ntries = 60; 3913 tx->data_ntries = 15; 3914 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3915 tx->plcp = rinfo->plcp; 3916 tx->rflags = rinfo->flags; 3917 if (tx->id == sc->broadcast_id) { 3918 /* Group or management frame. */ 3919 tx->linkq = 0; 3920 /* XXX Alternate between antenna A and B? */ 3921 txant = IWN_LSB(sc->txchainmask); 3922 tx->rflags |= IWN_RFLAG_ANT(txant); 3923 } else { 3924 tx->linkq = in->in_rates.ir_nrates - in->in_txrate - 1; 3925 flags |= IWN_TX_LINKQ; /* enable MRR */ 3926 } 3927 /* Set physical address of "scratch area". */ 3928 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3929 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3930 3931 /* Copy 802.11 header in TX command. */ 3932 /* XXX NetBSD changed this in rev 1.20 */ 3933 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 3934 mp->b_rptr += hdrlen; 3935 3936 bcopy(mp->b_rptr, data->dma_data.vaddr, totlen - hdrlen); 3937 tx->security = 0; 3938 tx->flags = htole32(flags); 3939 3940 data->ni = in; 3941 3942 DTRACE_PROBE4(tx, int, ring->qid, int, ring->cur, size_t, MBLKL(mp), 3943 int, data->dma_data.ncookies); 3944 3945 /* Fill TX descriptor. */ 3946 desc->nsegs = 1 + data->dma_data.ncookies; 3947 /* First DMA segment is used by the TX command. */ 3948 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3949 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3950 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3951 3952 /* Other DMA segments are for data payload. */ 3953 cookie = data->dma_data.cookie; 3954 for (i = 1, seglen = totlen - hdrlen; 3955 i <= data->dma_data.ncookies; 3956 i++, seglen -= cookie.dmac_size) { 3957 desc->segs[i].addr = htole32(IWN_LOADDR(cookie.dmac_laddress)); 3958 desc->segs[i].len = htole16(IWN_HIADDR(cookie.dmac_laddress) | 3959 seglen << 4); 3960 if (i < data->dma_data.ncookies) 3961 ddi_dma_nextcookie(data->dma_data.dma_hdl, &cookie); 3962 } 3963 3964 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 3965 (void) ddi_dma_sync(ring->cmd_dma.dma_hdl, ring->cur * sizeof (*cmd), 3966 sizeof (*cmd), DDI_DMA_SYNC_FORDEV); 3967 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, ring->cur * sizeof (*desc), 3968 sizeof (*desc), DDI_DMA_SYNC_FORDEV); 3969 3970 /* Update TX scheduler. */ 3971 sc->ops.update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3972 3973 /* Kick TX ring. */ 3974 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3975 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3976 3977 /* Mark TX ring as full if we reach a certain threshold. */ 3978 if (++ring->queued > IWN_TX_RING_HIMARK) 3979 sc->qfullmsk |= 1 << ring->qid; 3980 mutex_exit(&sc->sc_tx_mtx); 3981 freemsg(mp); 3982 3983 ic->ic_stats.is_tx_bytes += totlen; 3984 3985 mutex_enter(&sc->sc_mt_mtx); 3986 if (sc->sc_tx_timer == 0) 3987 sc->sc_tx_timer = 5; 3988 mutex_exit(&sc->sc_mt_mtx); 3989 3990 return 0; 3991 } 3992 3993 static mblk_t * 3994 iwn_m_tx(void *arg, mblk_t *mp) 3995 { 3996 struct iwn_softc *sc; 3997 ieee80211com_t *ic; 3998 mblk_t *next; 3999 4000 sc = (struct iwn_softc *)arg; 4001 ASSERT(sc != NULL); 4002 ic = &sc->sc_ic; 4003 4004 if (sc->sc_flags & IWN_FLAG_SUSPEND) { 4005 freemsgchain(mp); 4006 return (NULL); 4007 } 4008 4009 if (ic->ic_state != IEEE80211_S_RUN) { 4010 freemsgchain(mp); 4011 return (NULL); 4012 } 4013 4014 if ((sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) { 4015 freemsgchain(mp); 4016 return (NULL); 4017 } 4018 4019 while (mp != NULL) { 4020 next = mp->b_next; 4021 mp->b_next = NULL; 4022 if (iwn_send(ic, mp, IEEE80211_FC0_TYPE_DATA) == EAGAIN) { 4023 mp->b_next = next; 4024 break; 4025 } 4026 mp = next; 4027 } 4028 4029 return (mp); 4030 } 4031 4032 static void 4033 iwn_watchdog(void *arg) 4034 { 4035 struct iwn_softc *sc = (struct iwn_softc *)arg; 4036 ieee80211com_t *ic = &sc->sc_ic; 4037 timeout_id_t timeout_id = ic->ic_watchdog_timer; 4038 4039 ieee80211_stop_watchdog(ic); 4040 4041 mutex_enter(&sc->sc_mt_mtx); 4042 if (sc->sc_tx_timer > 0) { 4043 if (--sc->sc_tx_timer == 0) { 4044 dev_err(sc->sc_dip, CE_WARN, "!device timeout"); 4045 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER; 4046 sc->sc_ostate = IEEE80211_S_RUN; 4047 DTRACE_PROBE(recover__send__fail); 4048 } 4049 } 4050 mutex_exit(&sc->sc_mt_mtx); 4051 4052 if ((ic->ic_state != IEEE80211_S_AUTH) && 4053 (ic->ic_state != IEEE80211_S_ASSOC)) 4054 return; 4055 4056 if (ic->ic_bss->in_fails > 10) { 4057 DTRACE_PROBE2(watchdog__reset, timeout_id_t, timeout_id, 4058 struct ieee80211node *, ic->ic_bss); 4059 dev_err(sc->sc_dip, CE_WARN, "!iwn_watchdog reset"); 4060 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 4061 } else { 4062 ic->ic_bss->in_fails++; 4063 4064 DTRACE_PROBE2(watchdog__timeout, timeout_id_t, timeout_id, 4065 struct ieee80211node *, ic->ic_bss); 4066 4067 ieee80211_watchdog(ic); 4068 } 4069 } 4070 4071 static void 4072 iwn_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 4073 { 4074 struct iwn_softc *sc; 4075 struct ieee80211com *ic; 4076 int error = 0; 4077 4078 sc = (struct iwn_softc *)arg; 4079 ASSERT(sc != NULL); 4080 ic = &sc->sc_ic; 4081 4082 mutex_enter(&sc->sc_mtx); 4083 while (sc->sc_flags & IWN_FLAG_SCANNING) 4084 cv_wait(&sc->sc_scan_cv, &sc->sc_mtx); 4085 mutex_exit(&sc->sc_mtx); 4086 4087 error = ieee80211_ioctl(ic, wq, mp); 4088 if (error == ENETRESET) { 4089 /* 4090 * This is special for the hidden AP connection. 4091 * In any case, we should make sure only one 'scan' 4092 * in the driver for a 'connect' CLI command. So 4093 * when connecting to a hidden AP, the scan is just 4094 * sent out to the air when we know the desired 4095 * essid of the AP we want to connect. 4096 */ 4097 if (ic->ic_des_esslen) { 4098 if (sc->sc_flags & IWN_FLAG_RUNNING) { 4099 DTRACE_PROBE(netreset); 4100 iwn_m_stop(sc); 4101 (void) iwn_m_start(sc); 4102 (void) ieee80211_new_state(ic, 4103 IEEE80211_S_SCAN, -1); 4104 } 4105 } 4106 } 4107 } 4108 4109 /* 4110 * Call back functions for get/set property 4111 */ 4112 static int 4113 iwn_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 4114 uint_t wldp_length, void *wldp_buf) 4115 { 4116 struct iwn_softc *sc; 4117 4118 sc = (struct iwn_softc *)arg; 4119 ASSERT(sc != NULL); 4120 4121 return (ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num, 4122 wldp_length, wldp_buf)); 4123 } 4124 4125 static void 4126 iwn_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 4127 mac_prop_info_handle_t prh) 4128 { 4129 struct iwn_softc *sc; 4130 4131 sc = (struct iwn_softc *)arg; 4132 ASSERT(sc != NULL); 4133 4134 ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh); 4135 } 4136 4137 static int 4138 iwn_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 4139 uint_t wldp_length, const void *wldp_buf) 4140 { 4141 struct iwn_softc *sc; 4142 ieee80211com_t *ic; 4143 int err = EINVAL; 4144 4145 sc = (struct iwn_softc *)arg; 4146 ASSERT(sc != NULL); 4147 ic = &sc->sc_ic; 4148 4149 mutex_enter(&sc->sc_mtx); 4150 while (sc->sc_flags & IWN_FLAG_SCANNING) 4151 cv_wait(&sc->sc_scan_cv, &sc->sc_mtx); 4152 mutex_exit(&sc->sc_mtx); 4153 4154 err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length, 4155 wldp_buf); 4156 4157 if (err == ENETRESET) { 4158 if (ic->ic_des_esslen) { 4159 if (sc->sc_flags & IWN_FLAG_RUNNING) { 4160 DTRACE_PROBE(netreset); 4161 iwn_m_stop(sc); 4162 (void) iwn_m_start(sc); 4163 (void) ieee80211_new_state(ic, 4164 IEEE80211_S_SCAN, -1); 4165 } 4166 } 4167 err = 0; 4168 } 4169 4170 return (err); 4171 } 4172 4173 /* 4174 * invoked by GLD get statistics from NIC and driver 4175 */ 4176 static int 4177 iwn_m_stat(void *arg, uint_t stat, uint64_t *val) 4178 { 4179 struct iwn_softc *sc; 4180 ieee80211com_t *ic; 4181 ieee80211_node_t *in; 4182 4183 sc = (struct iwn_softc *)arg; 4184 ASSERT(sc != NULL); 4185 ic = &sc->sc_ic; 4186 4187 mutex_enter(&sc->sc_mtx); 4188 4189 switch (stat) { 4190 case MAC_STAT_IFSPEED: 4191 in = ic->ic_bss; 4192 *val = ((IEEE80211_FIXED_RATE_NONE == ic->ic_fixed_rate) ? 4193 IEEE80211_RATE(in->in_txrate) : 4194 ic->ic_fixed_rate) / 2 * 1000000; 4195 break; 4196 case MAC_STAT_NOXMTBUF: 4197 *val = sc->sc_tx_nobuf; 4198 break; 4199 case MAC_STAT_NORCVBUF: 4200 *val = sc->sc_rx_nobuf; 4201 break; 4202 case MAC_STAT_IERRORS: 4203 *val = sc->sc_rx_err; 4204 break; 4205 case MAC_STAT_RBYTES: 4206 *val = ic->ic_stats.is_rx_bytes; 4207 break; 4208 case MAC_STAT_IPACKETS: 4209 *val = ic->ic_stats.is_rx_frags; 4210 break; 4211 case MAC_STAT_OBYTES: 4212 *val = ic->ic_stats.is_tx_bytes; 4213 break; 4214 case MAC_STAT_OPACKETS: 4215 *val = ic->ic_stats.is_tx_frags; 4216 break; 4217 case MAC_STAT_OERRORS: 4218 case WIFI_STAT_TX_FAILED: 4219 *val = sc->sc_tx_err; 4220 break; 4221 case WIFI_STAT_TX_RETRANS: 4222 *val = sc->sc_tx_retries; 4223 break; 4224 case WIFI_STAT_FCS_ERRORS: 4225 case WIFI_STAT_WEP_ERRORS: 4226 case WIFI_STAT_TX_FRAGS: 4227 case WIFI_STAT_MCAST_TX: 4228 case WIFI_STAT_RTS_SUCCESS: 4229 case WIFI_STAT_RTS_FAILURE: 4230 case WIFI_STAT_ACK_FAILURE: 4231 case WIFI_STAT_RX_FRAGS: 4232 case WIFI_STAT_MCAST_RX: 4233 case WIFI_STAT_RX_DUPS: 4234 mutex_exit(&sc->sc_mtx); 4235 return (ieee80211_stat(ic, stat, val)); 4236 default: 4237 mutex_exit(&sc->sc_mtx); 4238 return (ENOTSUP); 4239 } 4240 4241 mutex_exit(&sc->sc_mtx); 4242 4243 return (0); 4244 4245 } 4246 4247 /* 4248 * invoked by GLD to configure NIC 4249 */ 4250 static int 4251 iwn_m_unicst(void *arg, const uint8_t *macaddr) 4252 { 4253 struct iwn_softc *sc; 4254 ieee80211com_t *ic; 4255 int err = IWN_SUCCESS; 4256 4257 sc = (struct iwn_softc *)arg; 4258 ASSERT(sc != NULL); 4259 ic = &sc->sc_ic; 4260 4261 if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) { 4262 mutex_enter(&sc->sc_mtx); 4263 IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr); 4264 err = iwn_config(sc); 4265 mutex_exit(&sc->sc_mtx); 4266 if (err != IWN_SUCCESS) { 4267 dev_err(sc->sc_dip, CE_WARN, "!iwn_m_unicst(): " 4268 "failed to configure device"); 4269 goto fail; 4270 } 4271 } 4272 4273 return (err); 4274 4275 fail: 4276 return (err); 4277 } 4278 4279 /*ARGSUSED*/ 4280 static int 4281 iwn_m_multicst(void *arg, boolean_t add, const uint8_t *m) 4282 { 4283 return (IWN_SUCCESS); 4284 } 4285 4286 /*ARGSUSED*/ 4287 static int 4288 iwn_m_promisc(void *arg, boolean_t on) 4289 { 4290 _NOTE(ARGUNUSED(on)); 4291 4292 return (IWN_SUCCESS); 4293 } 4294 4295 static void 4296 iwn_abort_scan(void *arg) 4297 { 4298 struct iwn_softc *sc = (struct iwn_softc *)arg; 4299 ieee80211com_t *ic = &sc->sc_ic; 4300 4301 mutex_enter(&sc->sc_mtx); 4302 if ((sc->sc_flags & IWN_FLAG_SCANNING) == 0) { 4303 mutex_exit(&sc->sc_mtx); 4304 return; 4305 } 4306 4307 dev_err(sc->sc_dip, CE_WARN, 4308 "!aborting scan, flags = %x, state = %s", 4309 sc->sc_flags, ieee80211_state_name[ic->ic_state]); 4310 sc->sc_flags &= ~IWN_FLAG_SCANNING; 4311 iwn_hw_stop(sc, B_FALSE); 4312 mutex_exit(&sc->sc_mtx); 4313 4314 sc->scan_to = 0; 4315 (void) iwn_init(sc); 4316 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 4317 } 4318 4319 /* 4320 * periodic function to deal with RF switch and HW error recovery 4321 */ 4322 static void 4323 iwn_periodic(void *arg) 4324 { 4325 struct iwn_softc *sc = (struct iwn_softc *)arg; 4326 ieee80211com_t *ic = &sc->sc_ic; 4327 int err; 4328 uint32_t tmp; 4329 4330 mutex_enter(&sc->sc_mtx); 4331 tmp = IWN_READ(sc, IWN_GP_CNTRL); 4332 if (tmp & IWN_GP_CNTRL_RFKILL) { 4333 sc->sc_flags &= ~IWN_FLAG_RADIO_OFF; 4334 } else { 4335 sc->sc_flags |= IWN_FLAG_RADIO_OFF; 4336 } 4337 4338 /* 4339 * If the RF is OFF, do nothing. 4340 */ 4341 if (sc->sc_flags & IWN_FLAG_RADIO_OFF) { 4342 mutex_exit(&sc->sc_mtx); 4343 return; 4344 } 4345 4346 mutex_exit(&sc->sc_mtx); 4347 4348 /* 4349 * recovery fatal error 4350 */ 4351 if (ic->ic_mach && 4352 (sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) { 4353 dev_err(sc->sc_dip, CE_WARN, 4354 "!trying to restore previous state"); 4355 4356 mutex_enter(&sc->sc_mtx); 4357 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO; 4358 mutex_exit(&sc->sc_mtx); 4359 4360 if (sc->calib_to != 0) 4361 (void) untimeout(sc->calib_to); 4362 sc->calib_to = 0; 4363 4364 if (sc->scan_to != 0) 4365 (void) untimeout(sc->scan_to); 4366 sc->scan_to = 0; 4367 4368 iwn_hw_stop(sc, B_TRUE); 4369 4370 if (IWN_CHK_FAST_RECOVER(sc)) { 4371 /* save runtime configuration */ 4372 bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon)); 4373 } else { 4374 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 4375 } 4376 4377 err = iwn_init(sc); 4378 if (err != IWN_SUCCESS) 4379 return; 4380 4381 mutex_enter(&sc->sc_mtx); 4382 sc->sc_flags |= IWN_FLAG_RUNNING; 4383 mutex_exit(&sc->sc_mtx); 4384 4385 if (!IWN_CHK_FAST_RECOVER(sc) || 4386 iwn_fast_recover(sc) != IWN_SUCCESS) { 4387 mutex_enter(&sc->sc_mtx); 4388 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 4389 mutex_exit(&sc->sc_mtx); 4390 if (sc->sc_ostate != IEEE80211_S_INIT) { 4391 ieee80211_new_state(ic, IEEE80211_S_SCAN, 0); 4392 } 4393 } 4394 } 4395 } 4396 4397 /* 4398 * Send a command to the firmware. 4399 */ 4400 static int 4401 iwn_cmd(struct iwn_softc *sc, uint8_t code, void *buf, int size, int async) 4402 { 4403 struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM]; 4404 struct iwn_tx_desc *desc; 4405 struct iwn_tx_data *data; 4406 struct iwn_tx_cmd *cmd; 4407 clock_t clk; 4408 uintptr_t paddr; 4409 int totlen, ret; 4410 4411 ASSERT(mutex_owned(&sc->sc_mtx)); 4412 4413 desc = &ring->desc[ring->cur]; 4414 data = &ring->data[ring->cur]; 4415 totlen = 4 + size; 4416 4417 if (size > sizeof (cmd->data)) { 4418 /* Command is too large to fit in a descriptor. */ 4419 if (iwn_dma_contig_alloc(sc, &data->cmd_dma, totlen, 4420 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&cmd, 4421 &iwn_dma_accattr, 1) != DDI_SUCCESS) 4422 return ENOBUFS; 4423 paddr = data->cmd_dma.paddr; 4424 } else { 4425 cmd = &ring->cmd[ring->cur]; 4426 paddr = data->cmd_paddr; 4427 } 4428 4429 cmd->code = code; 4430 cmd->flags = 0; 4431 cmd->qid = ring->qid; 4432 cmd->idx = ring->cur; 4433 bzero(cmd->data, size); 4434 memcpy(cmd->data, buf, size); 4435 4436 bzero(desc, sizeof(*desc)); 4437 desc->nsegs = 1; 4438 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 4439 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 4440 4441 if (size > sizeof cmd->data) { 4442 (void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, totlen, 4443 DDI_DMA_SYNC_FORDEV); 4444 } else { 4445 (void) ddi_dma_sync(ring->cmd_dma.dma_hdl, 4446 ring->cur * sizeof (*cmd), 4447 totlen, DDI_DMA_SYNC_FORDEV); 4448 } 4449 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 4450 ring->cur * sizeof (*desc), 4451 sizeof (*desc), DDI_DMA_SYNC_FORDEV); 4452 4453 /* Update TX scheduler. */ 4454 sc->ops.update_sched(sc, ring->qid, ring->cur, 0, 0); 4455 4456 /* Kick command ring. */ 4457 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4458 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4459 4460 if (async) 4461 return (IWN_SUCCESS); 4462 4463 sc->sc_cmd_flag = SC_CMD_FLG_NONE; 4464 clk = ddi_get_lbolt() + drv_usectohz(2000000); 4465 while (sc->sc_cmd_flag != SC_CMD_FLG_DONE) 4466 if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_mtx, clk) < 0) 4467 break; 4468 4469 ret = (sc->sc_cmd_flag == SC_CMD_FLG_DONE) ? IWN_SUCCESS : IWN_FAIL; 4470 sc->sc_cmd_flag = SC_CMD_FLG_NONE; 4471 4472 return (ret); 4473 } 4474 4475 static int 4476 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 4477 { 4478 struct iwn4965_node_info hnode; 4479 char *src, *dst; 4480 4481 /* 4482 * We use the node structure for 5000 Series internally (it is 4483 * a superset of the one for 4965AGN). We thus copy the common 4484 * fields before sending the command. 4485 */ 4486 src = (char *)node; 4487 dst = (char *)&hnode; 4488 memcpy(dst, src, 48); 4489 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 4490 memcpy(dst + 48, src + 72, 20); 4491 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 4492 } 4493 4494 static int 4495 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 4496 { 4497 /* Direct mapping. */ 4498 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 4499 } 4500 4501 static int 4502 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 4503 { 4504 struct iwn_node *wn = (void *)ni; 4505 struct ieee80211_rateset *rs = &ni->in_rates; 4506 struct iwn_cmd_link_quality linkq; 4507 const struct iwn_rate *rinfo; 4508 uint8_t txant; 4509 int i, txrate; 4510 4511 /* Use the first valid TX antenna. */ 4512 txant = IWN_LSB(sc->txchainmask); 4513 4514 memset(&linkq, 0, sizeof linkq); 4515 linkq.id = wn->id; 4516 linkq.antmsk_1stream = txant; 4517 linkq.antmsk_2stream = IWN_ANT_AB; 4518 linkq.ampdu_max = 31; 4519 linkq.ampdu_threshold = 3; 4520 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4521 4522 /* Start at highest available bit-rate. */ 4523 txrate = rs->ir_nrates - 1; 4524 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 4525 rinfo = &iwn_rates[wn->ridx[txrate]]; 4526 linkq.retry[i].plcp = rinfo->plcp; 4527 linkq.retry[i].rflags = rinfo->flags; 4528 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 4529 /* Next retry at immediate lower bit-rate. */ 4530 if (txrate > 0) 4531 txrate--; 4532 } 4533 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 4534 } 4535 4536 /* 4537 * Broadcast node is used to send group-addressed and management frames. 4538 */ 4539 static int 4540 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 4541 { 4542 struct iwn_ops *ops = &sc->ops; 4543 struct iwn_node_info node; 4544 struct iwn_cmd_link_quality linkq; 4545 const struct iwn_rate *rinfo; 4546 uint8_t txant; 4547 int i, error; 4548 4549 memset(&node, 0, sizeof node); 4550 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 4551 node.id = sc->broadcast_id; 4552 DTRACE_PROBE(add__broadcast__node); 4553 if ((error = ops->add_node(sc, &node, async)) != 0) 4554 return error; 4555 4556 /* Use the first valid TX antenna. */ 4557 txant = IWN_LSB(sc->txchainmask); 4558 4559 memset(&linkq, 0, sizeof linkq); 4560 linkq.id = sc->broadcast_id; 4561 linkq.antmsk_1stream = txant; 4562 linkq.antmsk_2stream = IWN_ANT_AB; 4563 linkq.ampdu_max = 64; 4564 linkq.ampdu_threshold = 3; 4565 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4566 4567 /* Use lowest mandatory bit-rate. */ 4568 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 4569 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 4570 linkq.retry[0].plcp = rinfo->plcp; 4571 linkq.retry[0].rflags = rinfo->flags; 4572 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 4573 /* Use same bit-rate for all TX retries. */ 4574 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 4575 linkq.retry[i].plcp = linkq.retry[0].plcp; 4576 linkq.retry[i].rflags = linkq.retry[0].rflags; 4577 } 4578 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 4579 } 4580 4581 static void 4582 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 4583 { 4584 struct iwn_cmd_led led; 4585 4586 /* Clear microcode LED ownership. */ 4587 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 4588 4589 led.which = which; 4590 led.unit = htole32(10000); /* on/off in unit of 100ms */ 4591 led.off = off; 4592 led.on = on; 4593 DTRACE_PROBE1(led__change, const char *, 4594 (off != 0 && on != 0) ? "blinking" : 4595 (off != 0) ? "off" : "on"); 4596 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 4597 } 4598 4599 /* 4600 * Set the critical temperature at which the firmware will stop the radio 4601 * and notify us. 4602 */ 4603 static int 4604 iwn_set_critical_temp(struct iwn_softc *sc) 4605 { 4606 struct iwn_critical_temp crit; 4607 int32_t temp; 4608 4609 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 4610 4611 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 4612 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 4613 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 4614 temp = IWN_CTOK(110); 4615 else 4616 temp = 110; 4617 4618 sc->sc_misc->crit_temp.value.ul = temp; 4619 4620 memset(&crit, 0, sizeof crit); 4621 crit.tempR = htole32(temp); 4622 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 4623 } 4624 4625 static int 4626 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 4627 { 4628 struct iwn_cmd_timing cmd; 4629 uint64_t val, mod; 4630 4631 memset(&cmd, 0, sizeof cmd); 4632 memcpy(&cmd.tstamp, ni->in_tstamp.data, sizeof (uint64_t)); 4633 cmd.bintval = htole16(ni->in_intval); 4634 cmd.lintval = htole16(10); 4635 4636 /* Compute remaining time until next beacon. */ 4637 val = (uint64_t)ni->in_intval * 1024; /* msecs -> usecs */ 4638 mod = le64toh(cmd.tstamp) % val; 4639 cmd.binitval = htole32((uint32_t)(val - mod)); 4640 4641 sc->sc_timing->bintval.value.ul = ni->in_intval; 4642 sc->sc_timing->tstamp.value.ul = ni->in_tstamp.tsf; 4643 sc->sc_timing->init.value.ul = (uint32_t)(val - mod); 4644 4645 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 4646 } 4647 4648 static void 4649 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 4650 { 4651 /* Adjust TX power if need be (delta >= 3 degC). */ 4652 IWN_DBG("temperature %d->%d", sc->temp, temp); 4653 if (abs(temp - sc->temp) >= 3) { 4654 /* Record temperature of last calibration. */ 4655 sc->temp = temp; 4656 (void)iwn4965_set_txpower(sc, 1); 4657 } 4658 } 4659 4660 /* 4661 * Set TX power for current channel (each rate has its own power settings). 4662 * This function takes into account the regulatory information from EEPROM, 4663 * the current temperature and the current voltage. 4664 */ 4665 static int 4666 iwn4965_set_txpower(struct iwn_softc *sc, int async) 4667 { 4668 /* Fixed-point arithmetic division using a n-bit fractional part. */ 4669 #define fdivround(a, b, n) \ 4670 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 4671 /* Linear interpolation. */ 4672 #define interpolate(x, x1, y1, x2, y2, n) \ 4673 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 4674 4675 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 4676 struct ieee80211com *ic = &sc->sc_ic; 4677 struct iwn_ucode_info *uc = &sc->ucode_info; 4678 struct ieee80211_channel *ch; 4679 struct iwn4965_cmd_txpower cmd; 4680 struct iwn4965_eeprom_chan_samples *chans; 4681 const uint8_t *rf_gain, *dsp_gain; 4682 int32_t vdiff, tdiff; 4683 int i, c, grp, maxpwr; 4684 uint8_t chan; 4685 4686 /* Retrieve current channel from last RXON. */ 4687 chan = sc->rxon.chan; 4688 sc->sc_txpower->chan.value.l = chan; 4689 ch = &ic->ic_sup_channels[chan]; 4690 4691 memset(&cmd, 0, sizeof cmd); 4692 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 4693 cmd.chan = chan; 4694 4695 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 4696 maxpwr = sc->maxpwr5GHz; 4697 rf_gain = iwn4965_rf_gain_5ghz; 4698 dsp_gain = iwn4965_dsp_gain_5ghz; 4699 } else { 4700 maxpwr = sc->maxpwr2GHz; 4701 rf_gain = iwn4965_rf_gain_2ghz; 4702 dsp_gain = iwn4965_dsp_gain_2ghz; 4703 } 4704 4705 /* Compute voltage compensation. */ 4706 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 4707 if (vdiff > 0) 4708 vdiff *= 2; 4709 if (abs(vdiff) > 2) 4710 vdiff = 0; 4711 sc->sc_txpower->vdiff.value.l = vdiff; 4712 4713 /* Get channel attenuation group. */ 4714 if (chan <= 20) /* 1-20 */ 4715 grp = 4; 4716 else if (chan <= 43) /* 34-43 */ 4717 grp = 0; 4718 else if (chan <= 70) /* 44-70 */ 4719 grp = 1; 4720 else if (chan <= 124) /* 71-124 */ 4721 grp = 2; 4722 else /* 125-200 */ 4723 grp = 3; 4724 sc->sc_txpower->group.value.l = grp; 4725 4726 /* Get channel sub-band. */ 4727 for (i = 0; i < IWN_NBANDS; i++) 4728 if (sc->bands[i].lo != 0 && 4729 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 4730 break; 4731 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 4732 return EINVAL; 4733 chans = sc->bands[i].chans; 4734 sc->sc_txpower->subband.value.l = i; 4735 4736 for (c = 0; c < 2; c++) { 4737 uint8_t power, gain, temp; 4738 int maxchpwr, pwr, ridx, idx; 4739 4740 power = interpolate(chan, 4741 chans[0].num, chans[0].samples[c][1].power, 4742 chans[1].num, chans[1].samples[c][1].power, 1); 4743 gain = interpolate(chan, 4744 chans[0].num, chans[0].samples[c][1].gain, 4745 chans[1].num, chans[1].samples[c][1].gain, 1); 4746 temp = interpolate(chan, 4747 chans[0].num, chans[0].samples[c][1].temp, 4748 chans[1].num, chans[1].samples[c][1].temp, 1); 4749 sc->sc_txpower->txchain[c].power.value.l = power; 4750 sc->sc_txpower->txchain[c].gain.value.l = gain; 4751 sc->sc_txpower->txchain[c].temp.value.l = temp; 4752 4753 /* Compute temperature compensation. */ 4754 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 4755 sc->sc_txpower->txchain[c].tcomp.value.l = tdiff; 4756 4757 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 4758 /* Convert dBm to half-dBm. */ 4759 maxchpwr = sc->maxpwr[chan] * 2; 4760 if ((ridx / 8) & 1) 4761 maxchpwr -= 6; /* MIMO 2T: -3dB */ 4762 4763 pwr = maxpwr; 4764 4765 /* Adjust TX power based on rate. */ 4766 if ((ridx % 8) == 5) 4767 pwr -= 15; /* OFDM48: -7.5dB */ 4768 else if ((ridx % 8) == 6) 4769 pwr -= 17; /* OFDM54: -8.5dB */ 4770 else if ((ridx % 8) == 7) 4771 pwr -= 20; /* OFDM60: -10dB */ 4772 else 4773 pwr -= 10; /* Others: -5dB */ 4774 4775 /* Do not exceed channel max TX power. */ 4776 if (pwr > maxchpwr) 4777 pwr = maxchpwr; 4778 4779 idx = gain - (pwr - power) - tdiff - vdiff; 4780 if ((ridx / 8) & 1) /* MIMO */ 4781 idx += (int32_t)le32toh(uc->atten[grp][c]); 4782 4783 if (cmd.band == 0) 4784 idx += 9; /* 5GHz */ 4785 if (ridx == IWN_RIDX_MAX) 4786 idx += 5; /* CCK */ 4787 4788 /* Make sure idx stays in a valid range. */ 4789 if (idx < 0) 4790 idx = 0; 4791 else if (idx > IWN4965_MAX_PWR_INDEX) 4792 idx = IWN4965_MAX_PWR_INDEX; 4793 4794 sc->sc_txpower->txchain[c].rate[ridx].rf_gain.value.l = 4795 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 4796 sc->sc_txpower->txchain[c].rate[ridx].dsp_gain.value.l = 4797 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 4798 } 4799 } 4800 4801 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 4802 4803 #undef interpolate 4804 #undef fdivround 4805 } 4806 4807 static int 4808 iwn5000_set_txpower(struct iwn_softc *sc, int async) 4809 { 4810 struct iwn5000_cmd_txpower cmd; 4811 4812 /* 4813 * TX power calibration is handled automatically by the firmware 4814 * for 5000 Series. 4815 */ 4816 memset(&cmd, 0, sizeof cmd); 4817 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 4818 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 4819 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 4820 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 4821 } 4822 4823 /* 4824 * Retrieve the maximum RSSI (in dBm) among receivers. 4825 */ 4826 static int 4827 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 4828 { 4829 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 4830 uint8_t mask, agc; 4831 int rssi; 4832 4833 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 4834 agc = (le16toh(phy->agc) >> 7) & 0x7f; 4835 4836 rssi = 0; 4837 if (mask & IWN_ANT_A) 4838 rssi = MAX(rssi, phy->rssi[0]); 4839 if (mask & IWN_ANT_B) 4840 rssi = MAX(rssi, phy->rssi[2]); 4841 if (mask & IWN_ANT_C) 4842 rssi = MAX(rssi, phy->rssi[4]); 4843 4844 return rssi - agc - IWN_RSSI_TO_DBM; 4845 } 4846 4847 static int 4848 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 4849 { 4850 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 4851 uint8_t agc; 4852 int rssi; 4853 4854 agc = (le32toh(phy->agc) >> 9) & 0x7f; 4855 4856 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 4857 le16toh(phy->rssi[1]) & 0xff); 4858 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 4859 4860 return rssi - agc - IWN_RSSI_TO_DBM; 4861 } 4862 4863 /* 4864 * Retrieve the average noise (in dBm) among receivers. 4865 */ 4866 static int 4867 iwn_get_noise(const struct iwn_rx_general_stats *stats) 4868 { 4869 int i, total, nbant, noise; 4870 4871 total = nbant = 0; 4872 for (i = 0; i < 3; i++) { 4873 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 4874 continue; 4875 total += noise; 4876 nbant++; 4877 } 4878 /* There should be at least one antenna but check anyway. */ 4879 return (nbant == 0) ? -127 : (total / nbant) - 107; 4880 } 4881 4882 /* 4883 * Compute temperature (in degC) from last received statistics. 4884 */ 4885 static int 4886 iwn4965_get_temperature(struct iwn_softc *sc) 4887 { 4888 struct iwn_ucode_info *uc = &sc->ucode_info; 4889 int32_t r1, r2, r3, r4, temp; 4890 4891 r1 = le32toh(uc->temp[0].chan20MHz); 4892 r2 = le32toh(uc->temp[1].chan20MHz); 4893 r3 = le32toh(uc->temp[2].chan20MHz); 4894 r4 = le32toh(sc->rawtemp); 4895 4896 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 4897 return 0; 4898 4899 /* Sign-extend 23-bit R4 value to 32-bit. */ 4900 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 4901 /* Compute temperature in Kelvin. */ 4902 temp = (259 * (r4 - r2)) / (r3 - r1); 4903 temp = (temp * 97) / 100 + 8; 4904 4905 return IWN_KTOC(temp); 4906 } 4907 4908 static int 4909 iwn5000_get_temperature(struct iwn_softc *sc) 4910 { 4911 int32_t temp; 4912 4913 /* 4914 * Temperature is not used by the driver for 5000 Series because 4915 * TX power calibration is handled by firmware. We export it to 4916 * users through a kstat though. 4917 */ 4918 temp = le32toh(sc->rawtemp); 4919 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 4920 temp = (temp / -5) + sc->temp_off; 4921 temp = IWN_KTOC(temp); 4922 } 4923 return temp; 4924 } 4925 4926 /* 4927 * Initialize sensitivity calibration state machine. 4928 */ 4929 static int 4930 iwn_init_sensitivity(struct iwn_softc *sc) 4931 { 4932 struct iwn_ops *ops = &sc->ops; 4933 struct iwn_calib_state *calib = &sc->calib; 4934 uint32_t flags; 4935 int error; 4936 4937 /* Reset calibration state machine. */ 4938 memset(calib, 0, sizeof (*calib)); 4939 calib->state = IWN_CALIB_STATE_INIT; 4940 calib->cck_state = IWN_CCK_STATE_HIFA; 4941 /* Set initial correlation values. */ 4942 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 4943 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 4944 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 4945 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 4946 calib->cck_x4 = 125; 4947 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 4948 calib->energy_cck = sc->limits->energy_cck; 4949 4950 /* Write initial sensitivity. */ 4951 if ((error = iwn_send_sensitivity(sc)) != 0) 4952 return error; 4953 4954 /* Write initial gains. */ 4955 if ((error = ops->init_gains(sc)) != 0) 4956 return error; 4957 4958 /* Request statistics at each beacon interval. */ 4959 flags = 0; 4960 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4961 } 4962 4963 /* 4964 * Collect noise and RSSI statistics for the first 20 beacons received 4965 * after association and use them to determine connected antennas and 4966 * to set differential gains. 4967 */ 4968 static void 4969 iwn_collect_noise(struct iwn_softc *sc, 4970 const struct iwn_rx_general_stats *stats) 4971 { 4972 struct iwn_ops *ops = &sc->ops; 4973 struct iwn_calib_state *calib = &sc->calib; 4974 uint32_t val; 4975 int i; 4976 4977 /* Accumulate RSSI and noise for all 3 antennas. */ 4978 for (i = 0; i < 3; i++) { 4979 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4980 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4981 } 4982 /* NB: We update differential gains only once after 20 beacons. */ 4983 if (++calib->nbeacons < 20) 4984 return; 4985 4986 /* Determine highest average RSSI. */ 4987 val = MAX(calib->rssi[0], calib->rssi[1]); 4988 val = MAX(calib->rssi[2], val); 4989 4990 /* Determine which antennas are connected. */ 4991 sc->chainmask = sc->rxchainmask; 4992 for (i = 0; i < 3; i++) 4993 if (val - calib->rssi[i] > 15 * 20) 4994 sc->chainmask &= ~(1 << i); 4995 4996 sc->sc_ant->conn_ant.value.ul = sc->chainmask; 4997 4998 /* If none of the TX antennas are connected, keep at least one. */ 4999 if ((sc->chainmask & sc->txchainmask) == 0) 5000 sc->chainmask |= IWN_LSB(sc->txchainmask); 5001 5002 (void)ops->set_gains(sc); 5003 calib->state = IWN_CALIB_STATE_RUN; 5004 5005 #ifdef notyet 5006 /* XXX Disable RX chains with no antennas connected. */ 5007 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 5008 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 5009 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5010 #endif 5011 5012 /* Enable power-saving mode if requested by user. */ 5013 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 5014 (void)iwn_set_pslevel(sc, 0, 3, 1); 5015 } 5016 5017 static int 5018 iwn4965_init_gains(struct iwn_softc *sc) 5019 { 5020 struct iwn_phy_calib_gain cmd; 5021 5022 memset(&cmd, 0, sizeof cmd); 5023 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5024 /* Differential gains initially set to 0 for all 3 antennas. */ 5025 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5026 } 5027 5028 static int 5029 iwn5000_init_gains(struct iwn_softc *sc) 5030 { 5031 struct iwn_phy_calib cmd; 5032 5033 memset(&cmd, 0, sizeof cmd); 5034 cmd.code = sc->reset_noise_gain; 5035 cmd.ngroups = 1; 5036 cmd.isvalid = 1; 5037 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5038 } 5039 5040 static int 5041 iwn4965_set_gains(struct iwn_softc *sc) 5042 { 5043 struct iwn_calib_state *calib = &sc->calib; 5044 struct iwn_phy_calib_gain cmd; 5045 int i, delta, noise; 5046 5047 /* Get minimal noise among connected antennas. */ 5048 noise = INT_MAX; /* NB: There's at least one antenna. */ 5049 for (i = 0; i < 3; i++) 5050 if (sc->chainmask & (1 << i)) 5051 noise = MIN(calib->noise[i], noise); 5052 5053 memset(&cmd, 0, sizeof cmd); 5054 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5055 /* Set differential gains for connected antennas. */ 5056 for (i = 0; i < 3; i++) { 5057 if (sc->chainmask & (1 << i)) { 5058 /* Compute attenuation (in unit of 1.5dB). */ 5059 delta = (noise - calib->noise[i]) / 30; 5060 /* NB: delta <= 0 */ 5061 /* Limit to [-4.5dB,0]. */ 5062 cmd.gain[i] = (uint8_t)MIN(abs(delta), 3); 5063 if (delta < 0) 5064 cmd.gain[i] |= 1 << 2; /* sign bit */ 5065 sc->sc_ant->gain[i].value.ul = cmd.gain[i]; 5066 } 5067 } 5068 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5069 } 5070 5071 static int 5072 iwn5000_set_gains(struct iwn_softc *sc) 5073 { 5074 struct iwn_calib_state *calib = &sc->calib; 5075 struct iwn_phy_calib_gain cmd; 5076 int i, ant, div, delta; 5077 5078 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 5079 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 5080 5081 memset(&cmd, 0, sizeof cmd); 5082 cmd.code = sc->noise_gain; 5083 cmd.ngroups = 1; 5084 cmd.isvalid = 1; 5085 /* Get first available RX antenna as referential. */ 5086 ant = IWN_LSB(sc->rxchainmask); 5087 /* Set differential gains for other antennas. */ 5088 for (i = ant + 1; i < 3; i++) { 5089 if (sc->chainmask & (1 << i)) { 5090 /* The delta is relative to antenna "ant". */ 5091 delta = (calib->noise[ant] - calib->noise[i]) / div; 5092 /* Limit to [-4.5dB,+4.5dB]. */ 5093 cmd.gain[i - 1] = (uint8_t)MIN(abs(delta), 3); 5094 if (delta < 0) 5095 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 5096 sc->sc_ant->gain[i - 1].value.ul 5097 = cmd.gain[i - 1]; 5098 } 5099 } 5100 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5101 } 5102 5103 /* 5104 * Tune RF RX sensitivity based on the number of false alarms detected 5105 * during the last beacon period. 5106 */ 5107 static void 5108 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 5109 { 5110 #define inc(val, inc, max) \ 5111 if ((val) < (max)) { \ 5112 if ((val) < (max) - (inc)) \ 5113 (val) += (inc); \ 5114 else \ 5115 (val) = (max); \ 5116 needs_update = 1; \ 5117 } 5118 #define dec(val, dec, min) \ 5119 if ((val) > (min)) { \ 5120 if ((val) > (min) + (dec)) \ 5121 (val) -= (dec); \ 5122 else \ 5123 (val) = (min); \ 5124 needs_update = 1; \ 5125 } 5126 5127 const struct iwn_sensitivity_limits *limits = sc->limits; 5128 struct iwn_calib_state *calib = &sc->calib; 5129 uint32_t val, rxena, fa; 5130 uint32_t energy[3], energy_min; 5131 uint8_t noise[3], noise_ref; 5132 int i, needs_update = 0; 5133 5134 /* Check that we've been enabled long enough. */ 5135 if ((rxena = le32toh(stats->general.load)) == 0) 5136 return; 5137 5138 /* Compute number of false alarms since last call for OFDM. */ 5139 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 5140 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 5141 fa *= 200 * 1024; /* 200TU */ 5142 5143 /* Save counters values for next call. */ 5144 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 5145 calib->fa_ofdm = le32toh(stats->ofdm.fa); 5146 5147 if (fa > 50 * rxena) { 5148 /* High false alarm count, decrease sensitivity. */ 5149 IWN_DBG("OFDM high false alarm count: %u", fa); 5150 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 5151 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 5152 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 5153 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 5154 5155 } else if (fa < 5 * rxena) { 5156 /* Low false alarm count, increase sensitivity. */ 5157 IWN_DBG("OFDM low false alarm count: %u", fa); 5158 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 5159 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 5160 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 5161 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 5162 } 5163 5164 /* Compute maximum noise among 3 receivers. */ 5165 for (i = 0; i < 3; i++) 5166 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 5167 val = MAX(noise[0], noise[1]); 5168 val = MAX(noise[2], val); 5169 /* Insert it into our samples table. */ 5170 calib->noise_samples[calib->cur_noise_sample] = (uint8_t)val; 5171 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 5172 5173 /* Compute maximum noise among last 20 samples. */ 5174 noise_ref = calib->noise_samples[0]; 5175 for (i = 1; i < 20; i++) 5176 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 5177 5178 /* Compute maximum energy among 3 receivers. */ 5179 for (i = 0; i < 3; i++) 5180 energy[i] = le32toh(stats->general.energy[i]); 5181 val = MIN(energy[0], energy[1]); 5182 val = MIN(energy[2], val); 5183 /* Insert it into our samples table. */ 5184 calib->energy_samples[calib->cur_energy_sample] = val; 5185 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 5186 5187 /* Compute minimum energy among last 10 samples. */ 5188 energy_min = calib->energy_samples[0]; 5189 for (i = 1; i < 10; i++) 5190 energy_min = MAX(energy_min, calib->energy_samples[i]); 5191 energy_min += 6; 5192 5193 /* Compute number of false alarms since last call for CCK. */ 5194 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 5195 fa += le32toh(stats->cck.fa) - calib->fa_cck; 5196 fa *= 200 * 1024; /* 200TU */ 5197 5198 /* Save counters values for next call. */ 5199 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 5200 calib->fa_cck = le32toh(stats->cck.fa); 5201 5202 if (fa > 50 * rxena) { 5203 /* High false alarm count, decrease sensitivity. */ 5204 IWN_DBG("CCK high false alarm count: %u", fa); 5205 calib->cck_state = IWN_CCK_STATE_HIFA; 5206 calib->low_fa = 0; 5207 5208 if (calib->cck_x4 > 160) { 5209 calib->noise_ref = noise_ref; 5210 if (calib->energy_cck > 2) 5211 dec(calib->energy_cck, 2, energy_min); 5212 } 5213 if (calib->cck_x4 < 160) { 5214 calib->cck_x4 = 161; 5215 needs_update = 1; 5216 } else 5217 inc(calib->cck_x4, 3, limits->max_cck_x4); 5218 5219 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 5220 5221 } else if (fa < 5 * rxena) { 5222 /* Low false alarm count, increase sensitivity. */ 5223 IWN_DBG("CCK low false alarm count: %u", fa); 5224 calib->cck_state = IWN_CCK_STATE_LOFA; 5225 calib->low_fa++; 5226 5227 if (calib->cck_state != IWN_CCK_STATE_INIT && 5228 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 5229 calib->low_fa > 100)) { 5230 inc(calib->energy_cck, 2, limits->min_energy_cck); 5231 dec(calib->cck_x4, 3, limits->min_cck_x4); 5232 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 5233 } 5234 } else { 5235 /* Not worth to increase or decrease sensitivity. */ 5236 IWN_DBG("CCK normal false alarm count: %u", fa); 5237 calib->low_fa = 0; 5238 calib->noise_ref = noise_ref; 5239 5240 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 5241 /* Previous interval had many false alarms. */ 5242 dec(calib->energy_cck, 8, energy_min); 5243 } 5244 calib->cck_state = IWN_CCK_STATE_INIT; 5245 } 5246 5247 if (needs_update) 5248 (void)iwn_send_sensitivity(sc); 5249 #undef dec 5250 #undef inc 5251 } 5252 5253 static int 5254 iwn_send_sensitivity(struct iwn_softc *sc) 5255 { 5256 struct iwn_calib_state *calib = &sc->calib; 5257 struct iwn_enhanced_sensitivity_cmd cmd; 5258 int len; 5259 5260 memset(&cmd, 0, sizeof cmd); 5261 len = sizeof (struct iwn_sensitivity_cmd); 5262 cmd.which = IWN_SENSITIVITY_WORKTBL; 5263 /* OFDM modulation. */ 5264 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 5265 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 5266 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 5267 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 5268 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 5269 cmd.energy_ofdm_th = htole16(62); 5270 /* CCK modulation. */ 5271 cmd.corr_cck_x4 = htole16(calib->cck_x4); 5272 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 5273 cmd.energy_cck = htole16(calib->energy_cck); 5274 /* Barker modulation: use default values. */ 5275 cmd.corr_barker = htole16(190); 5276 cmd.corr_barker_mrc = htole16(390); 5277 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 5278 goto send; 5279 /* Enhanced sensitivity settings. */ 5280 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 5281 cmd.ofdm_det_slope_mrc = htole16(668); 5282 cmd.ofdm_det_icept_mrc = htole16(4); 5283 cmd.ofdm_det_slope = htole16(486); 5284 cmd.ofdm_det_icept = htole16(37); 5285 cmd.cck_det_slope_mrc = htole16(853); 5286 cmd.cck_det_icept_mrc = htole16(4); 5287 cmd.cck_det_slope = htole16(476); 5288 cmd.cck_det_icept = htole16(99); 5289 send: 5290 5291 sc->sc_sens->ofdm_x1.value.ul = calib->ofdm_x1; 5292 sc->sc_sens->ofdm_mrc_x1.value.ul = calib->ofdm_mrc_x1; 5293 sc->sc_sens->ofdm_x4.value.ul = calib->ofdm_x4; 5294 sc->sc_sens->ofdm_mrc_x4.value.ul = calib->ofdm_mrc_x4; 5295 sc->sc_sens->cck_x4.value.ul = calib->cck_x4; 5296 sc->sc_sens->cck_mrc_x4.value.ul = calib->cck_mrc_x4; 5297 sc->sc_sens->energy_cck.value.ul = calib->energy_cck; 5298 5299 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 5300 } 5301 5302 /* 5303 * Set STA mode power saving level (between 0 and 5). 5304 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 5305 */ 5306 static int 5307 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 5308 { 5309 struct iwn_pmgt_cmd cmd; 5310 const struct iwn_pmgt *pmgt; 5311 uint32_t maxp, skip_dtim; 5312 uint32_t reg; 5313 int i; 5314 5315 /* Select which PS parameters to use. */ 5316 if (dtim <= 2) 5317 pmgt = &iwn_pmgt[0][level]; 5318 else if (dtim <= 10) 5319 pmgt = &iwn_pmgt[1][level]; 5320 else 5321 pmgt = &iwn_pmgt[2][level]; 5322 5323 memset(&cmd, 0, sizeof cmd); 5324 if (level != 0) /* not CAM */ 5325 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 5326 if (level == 5) 5327 cmd.flags |= htole16(IWN_PS_FAST_PD); 5328 /* Retrieve PCIe Active State Power Management (ASPM). */ 5329 reg = pci_config_get32(sc->sc_pcih, 5330 sc->sc_cap_off + PCIE_LINKCTL); 5331 if (!(reg & PCIE_LINKCTL_ASPM_CTL_L0S)) /* L0s Entry disabled. */ 5332 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 5333 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 5334 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 5335 5336 if (dtim == 0) { 5337 dtim = 1; 5338 skip_dtim = 0; 5339 } else 5340 skip_dtim = pmgt->skip_dtim; 5341 if (skip_dtim != 0) { 5342 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 5343 maxp = pmgt->intval[4]; 5344 if (maxp == (uint32_t)-1) 5345 maxp = dtim * (skip_dtim + 1); 5346 else if (maxp > dtim) 5347 maxp = (maxp / dtim) * dtim; 5348 } else 5349 maxp = dtim; 5350 for (i = 0; i < 5; i++) 5351 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 5352 5353 sc->sc_misc->pslevel.value.ul = level; 5354 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 5355 } 5356 5357 int 5358 iwn5000_runtime_calib(struct iwn_softc *sc) 5359 { 5360 struct iwn5000_calib_config cmd; 5361 5362 memset(&cmd, 0, sizeof cmd); 5363 cmd.ucode.once.enable = 0xffffffff; 5364 cmd.ucode.once.start = IWN5000_CALIB_DC; 5365 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 5366 } 5367 5368 static int 5369 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 5370 { 5371 struct iwn_bluetooth bluetooth; 5372 5373 memset(&bluetooth, 0, sizeof bluetooth); 5374 bluetooth.flags = IWN_BT_COEX_ENABLE; 5375 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 5376 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 5377 5378 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 5379 } 5380 5381 static int 5382 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 5383 { 5384 uint8_t prio_table[16]; 5385 5386 memset(&prio_table, 0, sizeof prio_table); 5387 prio_table[ 0] = 6; /* init calibration 1 */ 5388 prio_table[ 1] = 7; /* init calibration 2 */ 5389 prio_table[ 2] = 2; /* periodic calib low 1 */ 5390 prio_table[ 3] = 3; /* periodic calib low 2 */ 5391 prio_table[ 4] = 4; /* periodic calib high 1 */ 5392 prio_table[ 5] = 5; /* periodic calib high 2 */ 5393 prio_table[ 6] = 6; /* dtim */ 5394 prio_table[ 7] = 8; /* scan52 */ 5395 prio_table[ 8] = 10; /* scan24 */ 5396 5397 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 5398 &prio_table, sizeof prio_table, 0); 5399 } 5400 5401 static int 5402 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic, 5403 size_t len) 5404 { 5405 struct iwn_btcoex_prot btprot; 5406 int error; 5407 5408 basic->bt.flags = IWN_BT_COEX_ENABLE; 5409 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF; 5410 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF; 5411 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 5412 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 5413 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 5414 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 5415 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 5416 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 5417 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 5418 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 5419 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 5420 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28); 5421 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa); 5422 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 5423 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa); 5424 basic->bt3_lookup_table[ 8] = htole32(0xc0004000); 5425 basic->bt3_lookup_table[ 9] = htole32(0x00004000); 5426 basic->bt3_lookup_table[10] = htole32(0xf0005000); 5427 basic->bt3_lookup_table[11] = htole32(0xf0005000); 5428 basic->reduce_txpower = 0; /* as not implemented */ 5429 basic->valid = IWN_BT_ALL_VALID_MASK; 5430 5431 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &basic, len, 0); 5432 if (error != 0) { 5433 dev_err(sc->sc_dip, CE_WARN, 5434 "!could not configure advanced bluetooth coexistence"); 5435 return error; 5436 } 5437 5438 error = iwn_config_bt_coex_prio_table(sc); 5439 if (error != 0) { 5440 dev_err(sc->sc_dip, CE_WARN, 5441 "!could not configure send BT priority table"); 5442 return error; 5443 } 5444 5445 /* Force BT state machine change */ 5446 memset(&btprot, 0, sizeof btprot); 5447 btprot.open = 1; 5448 btprot.type = 1; 5449 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 5450 if (error != 0) { 5451 dev_err(sc->sc_dip, CE_WARN, "!could not open BT protcol"); 5452 return error; 5453 } 5454 5455 btprot.open = 0; 5456 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 5457 if (error != 0) { 5458 dev_err(sc->sc_dip, CE_WARN, "!could not close BT protcol"); 5459 return error; 5460 } 5461 return 0; 5462 } 5463 5464 static int 5465 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 5466 { 5467 struct iwn_bt_adv1 d; 5468 5469 memset(&d, 0, sizeof d); 5470 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 5471 d.tx_prio_boost = 0; 5472 d.rx_prio_boost = 0; 5473 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 5474 } 5475 5476 static int 5477 iwn_config_bt_coex_adv2(struct iwn_softc *sc) 5478 { 5479 struct iwn_bt_adv2 d; 5480 5481 memset(&d, 0, sizeof d); 5482 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 5483 d.tx_prio_boost = 0; 5484 d.rx_prio_boost = 0; 5485 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 5486 } 5487 5488 static int 5489 iwn_config(struct iwn_softc *sc) 5490 { 5491 struct iwn_ops *ops = &sc->ops; 5492 struct ieee80211com *ic = &sc->sc_ic; 5493 uint32_t txmask; 5494 uint16_t rxchain; 5495 int error; 5496 5497 error = ops->config_bt_coex(sc); 5498 if (error != 0) { 5499 dev_err(sc->sc_dip, CE_WARN, 5500 "!could not configure bluetooth coexistence"); 5501 return error; 5502 } 5503 5504 /* Set radio temperature sensor offset. */ 5505 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 5506 error = iwn6000_temp_offset_calib(sc); 5507 if (error != 0) { 5508 dev_err(sc->sc_dip, CE_WARN, 5509 "!could not set temperature offset"); 5510 return error; 5511 } 5512 } 5513 5514 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 5515 sc->hw_type == IWN_HW_REV_TYPE_2000 || 5516 sc->hw_type == IWN_HW_REV_TYPE_135 || 5517 sc->hw_type == IWN_HW_REV_TYPE_105) { 5518 error = iwn2000_temp_offset_calib(sc); 5519 if (error != 0) { 5520 dev_err(sc->sc_dip, CE_WARN, 5521 "!could not set temperature offset"); 5522 return error; 5523 } 5524 } 5525 5526 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 5527 sc->hw_type == IWN_HW_REV_TYPE_6005) { 5528 /* Configure runtime DC calibration. */ 5529 error = iwn5000_runtime_calib(sc); 5530 if (error != 0) { 5531 dev_err(sc->sc_dip, CE_WARN, 5532 "!could not configure runtime calibration"); 5533 return error; 5534 } 5535 } 5536 5537 /* Configure valid TX chains for 5000 Series. */ 5538 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 5539 txmask = htole32(sc->txchainmask); 5540 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 5541 sizeof txmask, 0); 5542 if (error != 0) { 5543 dev_err(sc->sc_dip, CE_WARN, 5544 "!could not configure valid TX chains"); 5545 return error; 5546 } 5547 } 5548 5549 /* Set mode, channel, RX filter and enable RX. */ 5550 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 5551 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_macaddr); 5552 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_macaddr); 5553 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 5554 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5555 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 5556 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5557 switch (ic->ic_opmode) { 5558 case IEEE80211_M_IBSS: 5559 sc->rxon.mode = IWN_MODE_IBSS; 5560 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 5561 break; 5562 case IEEE80211_M_STA: 5563 sc->rxon.mode = IWN_MODE_STA; 5564 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 5565 break; 5566 case IEEE80211_M_MONITOR: 5567 sc->rxon.mode = IWN_MODE_MONITOR; 5568 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 5569 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 5570 break; 5571 default: 5572 /* Should not get there. */ 5573 ASSERT(ic->ic_opmode == IEEE80211_M_IBSS || 5574 ic->ic_opmode == IEEE80211_M_STA || 5575 ic->ic_opmode == IEEE80211_M_MONITOR); 5576 break; 5577 } 5578 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 5579 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 5580 sc->rxon.ht_single_mask = 0xff; 5581 sc->rxon.ht_dual_mask = 0xff; 5582 sc->rxon.ht_triple_mask = 0xff; 5583 rxchain = 5584 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5585 IWN_RXCHAIN_MIMO_COUNT(2) | 5586 IWN_RXCHAIN_IDLE_COUNT(2); 5587 sc->rxon.rxchain = htole16(rxchain); 5588 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 5589 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 5590 if (error != 0) { 5591 dev_err(sc->sc_dip, CE_WARN, 5592 "!RXON command failed"); 5593 return error; 5594 } 5595 5596 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 5597 dev_err(sc->sc_dip, CE_WARN, 5598 "!could not add broadcast node"); 5599 return error; 5600 } 5601 5602 /* Configuration has changed, set TX power accordingly. */ 5603 if ((error = ops->set_txpower(sc, 0)) != 0) { 5604 dev_err(sc->sc_dip, CE_WARN, 5605 "!could not set TX power"); 5606 return error; 5607 } 5608 5609 if ((error = iwn_set_critical_temp(sc)) != 0) { 5610 dev_err(sc->sc_dip, CE_WARN, 5611 "!could not set critical temperature"); 5612 return error; 5613 } 5614 5615 /* Set power saving level to CAM during initialization. */ 5616 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 5617 dev_err(sc->sc_dip, CE_WARN, 5618 "!could not set power saving level"); 5619 return error; 5620 } 5621 return 0; 5622 } 5623 5624 static uint16_t 5625 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags, 5626 uint8_t n_probes) 5627 { 5628 _NOTE(ARGUNUSED(sc)); 5629 5630 /* No channel? Default to 2GHz settings */ 5631 if (flags & IEEE80211_CHAN_2GHZ) 5632 return IWN_ACTIVE_DWELL_TIME_2GHZ + 5633 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1); 5634 5635 /* 5GHz dwell time */ 5636 return IWN_ACTIVE_DWELL_TIME_5GHZ + 5637 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1); 5638 } 5639 5640 /* 5641 * Limit the total dwell time to 85% of the beacon interval. 5642 * 5643 * Returns the dwell time in milliseconds. 5644 */ 5645 static uint16_t 5646 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 5647 { 5648 _NOTE(ARGUNUSED(dwell_time)); 5649 5650 struct ieee80211com *ic = &sc->sc_ic; 5651 struct ieee80211_node *ni = ic->ic_bss; 5652 int bintval = 0; 5653 5654 /* bintval is in TU (1.024mS) */ 5655 if (ni != NULL) 5656 bintval = ni->in_intval; 5657 5658 /* 5659 * If it's non-zero, we should calculate the minimum of 5660 * it and the DWELL_BASE. 5661 * 5662 * XXX Yes, the math should take into account that bintval 5663 * is 1.024mS, not 1mS.. 5664 */ 5665 if (bintval > 0) 5666 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)); 5667 5668 /* No association context? Default */ 5669 return IWN_PASSIVE_DWELL_BASE; 5670 } 5671 5672 static uint16_t 5673 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 5674 { 5675 uint16_t passive; 5676 if (flags & IEEE80211_CHAN_2GHZ) 5677 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 5678 else 5679 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 5680 5681 /* Clamp to the beacon interval if we're associated */ 5682 return iwn_limit_dwell(sc, passive); 5683 } 5684 5685 static int 5686 iwn_scan(struct iwn_softc *sc, uint16_t flags) 5687 { 5688 struct ieee80211com *ic = &sc->sc_ic; 5689 struct iwn_scan_hdr *hdr; 5690 struct iwn_cmd_data *tx; 5691 struct iwn_scan_essid *essid; 5692 struct iwn_scan_chan *chan; 5693 struct ieee80211_frame *wh; 5694 struct ieee80211_rateset *rs; 5695 struct ieee80211_channel *c; 5696 uint8_t *buf, *frm; 5697 uint16_t rxchain, dwell_active, dwell_passive; 5698 uint8_t txant; 5699 int buflen, error, is_active; 5700 5701 buf = kmem_zalloc(IWN_SCAN_MAXSZ, KM_NOSLEEP); 5702 if (buf == NULL) { 5703 dev_err(sc->sc_dip, CE_WARN, 5704 "!could not allocate buffer for scan command"); 5705 return ENOMEM; 5706 } 5707 hdr = (struct iwn_scan_hdr *)buf; 5708 /* 5709 * Move to the next channel if no frames are received within 20ms 5710 * after sending the probe request. 5711 */ 5712 hdr->quiet_time = htole16(20); /* timeout in milliseconds */ 5713 hdr->quiet_threshold = htole16(1); /* min # of packets */ 5714 5715 /* Select antennas for scanning. */ 5716 rxchain = 5717 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5718 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 5719 IWN_RXCHAIN_DRIVER_FORCE; 5720 if ((flags & IEEE80211_CHAN_5GHZ) && 5721 sc->hw_type == IWN_HW_REV_TYPE_4965) { 5722 /* Ant A must be avoided in 5GHz because of an HW bug. */ 5723 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 5724 } else /* Use all available RX antennas. */ 5725 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 5726 hdr->rxchain = htole16(rxchain); 5727 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 5728 5729 tx = (struct iwn_cmd_data *)(hdr + 1); 5730 tx->flags = htole32(IWN_TX_AUTO_SEQ); 5731 tx->id = sc->broadcast_id; 5732 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 5733 5734 if (flags & IEEE80211_CHAN_5GHZ) { 5735 /* Send probe requests at 6Mbps. */ 5736 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 5737 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 5738 } else { 5739 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 5740 /* Send probe requests at 1Mbps. */ 5741 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 5742 tx->rflags = IWN_RFLAG_CCK; 5743 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 5744 } 5745 5746 hdr->crc_threshold = 0xffff; 5747 5748 /* Use the first valid TX antenna. */ 5749 txant = IWN_LSB(sc->txchainmask); 5750 tx->rflags |= IWN_RFLAG_ANT(txant); 5751 5752 /* 5753 * Only do active scanning if we're announcing a probe request 5754 * for a given SSID (or more, if we ever add it to the driver.) 5755 */ 5756 is_active = 0; 5757 5758 essid = (struct iwn_scan_essid *)(tx + 1); 5759 if (ic->ic_des_esslen != 0) { 5760 char essidstr[IEEE80211_NWID_LEN+1]; 5761 memcpy(essidstr, ic->ic_des_essid, ic->ic_des_esslen); 5762 essidstr[ic->ic_des_esslen] = '\0'; 5763 5764 DTRACE_PROBE1(scan__direct, char *, essidstr); 5765 5766 essid[0].id = IEEE80211_ELEMID_SSID; 5767 essid[0].len = ic->ic_des_esslen; 5768 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 5769 5770 is_active = 1; 5771 /* hdr->crc_threshold = 0x1; */ 5772 hdr->scan_flags = htole32(IWN_SCAN_PASSIVE2ACTIVE); 5773 } 5774 /* 5775 * Build a probe request frame. Most of the following code is a 5776 * copy & paste of what is done in net80211. 5777 */ 5778 wh = (struct ieee80211_frame *)(essid + 20); 5779 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 5780 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 5781 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 5782 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 5783 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr); 5784 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 5785 wh->i_dur[0] = wh->i_dur[1] = 0; /* filled by HW */ 5786 wh->i_seq[0] = wh->i_seq[1] = 0; /* filled by HW */ 5787 5788 frm = (uint8_t *)(wh + 1); 5789 frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen); 5790 frm = ieee80211_add_rates(frm, rs); 5791 #ifndef IEEE80211_NO_HT 5792 if (ic->ic_flags & IEEE80211_F_HTON) 5793 frm = ieee80211_add_htcaps(frm, ic); 5794 #endif 5795 if (rs->ir_nrates > IEEE80211_RATE_SIZE) 5796 frm = ieee80211_add_xrates(frm, rs); 5797 5798 /* Set length of probe request. */ 5799 /*LINTED: E_PTRDIFF_OVERFLOW*/ 5800 tx->len = htole16(frm - (uint8_t *)wh); 5801 5802 5803 /* 5804 * If active scanning is requested but a certain channel is 5805 * marked passive, we can do active scanning if we detect 5806 * transmissions. 5807 * 5808 * There is an issue with some firmware versions that triggers 5809 * a sysassert on a "good CRC threshold" of zero (== disabled), 5810 * on a radar channel even though this means that we should NOT 5811 * send probes. 5812 * 5813 * The "good CRC threshold" is the number of frames that we 5814 * need to receive during our dwell time on a channel before 5815 * sending out probes -- setting this to a huge value will 5816 * mean we never reach it, but at the same time work around 5817 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 5818 * here instead of IWN_GOOD_CRC_TH_DISABLED. 5819 * 5820 * This was fixed in later versions along with some other 5821 * scan changes, and the threshold behaves as a flag in those 5822 * versions. 5823 */ 5824 5825 /* 5826 * If we're doing active scanning, set the crc_threshold 5827 * to a suitable value. This is different to active veruss 5828 * passive scanning depending upon the channel flags; the 5829 * firmware will obey that particular check for us. 5830 */ 5831 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 5832 hdr->crc_threshold = is_active ? 5833 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 5834 else 5835 hdr->crc_threshold = is_active ? 5836 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 5837 5838 chan = (struct iwn_scan_chan *)frm; 5839 for (c = &ic->ic_sup_channels[1]; 5840 c <= &ic->ic_sup_channels[IEEE80211_CHAN_MAX]; c++) { 5841 if ((c->ich_flags & flags) != flags) 5842 continue; 5843 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 5844 chan->flags = 0; 5845 if (!(c->ich_flags & IEEE80211_CHAN_PASSIVE)) 5846 chan->flags |= htole32(IWN_CHAN_ACTIVE); 5847 if (ic->ic_des_esslen != 0) 5848 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 5849 5850 /* 5851 * Calculate the active/passive dwell times. 5852 */ 5853 5854 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 5855 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 5856 5857 /* Make sure they're valid */ 5858 if (dwell_passive <= dwell_active) 5859 dwell_passive = dwell_active + 1; 5860 5861 chan->active = htole16(dwell_active); 5862 chan->passive = htole16(dwell_passive); 5863 5864 chan->dsp_gain = 0x6e; 5865 if (IEEE80211_IS_CHAN_5GHZ(c)) { 5866 chan->rf_gain = 0x3b; 5867 } else { 5868 chan->rf_gain = 0x28; 5869 } 5870 DTRACE_PROBE5(add__channel, uint8_t, chan->chan, 5871 uint32_t, chan->flags, uint8_t, chan->rf_gain, 5872 uint16_t, chan->active, uint16_t, chan->passive); 5873 hdr->nchan++; 5874 chan++; 5875 } 5876 5877 /*LINTED: E_PTRDIFF_OVERFLOW*/ 5878 buflen = (uint8_t *)chan - buf; 5879 hdr->len = htole16(buflen); 5880 5881 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 5882 kmem_free(buf, IWN_SCAN_MAXSZ); 5883 return error; 5884 } 5885 5886 static int 5887 iwn_auth(struct iwn_softc *sc) 5888 { 5889 struct iwn_ops *ops = &sc->ops; 5890 struct ieee80211com *ic = &sc->sc_ic; 5891 struct ieee80211_node *ni = ic->ic_bss; 5892 int error; 5893 5894 ASSERT(ni->in_chan != NULL); 5895 5896 /* Update adapter configuration. */ 5897 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid); 5898 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->in_chan); 5899 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5900 if ((ni->in_chan != IEEE80211_CHAN_ANYC) && 5901 IEEE80211_IS_CHAN_2GHZ(ni->in_chan)) 5902 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5903 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5904 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 5905 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5906 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 5907 switch (ic->ic_curmode) { 5908 case IEEE80211_MODE_11A: 5909 sc->rxon.cck_mask = 0; 5910 sc->rxon.ofdm_mask = 0x15; 5911 break; 5912 case IEEE80211_MODE_11B: 5913 sc->rxon.cck_mask = 0x03; 5914 sc->rxon.ofdm_mask = 0; 5915 break; 5916 default: /* Assume 802.11b/g. */ 5917 sc->rxon.cck_mask = 0x0f; 5918 sc->rxon.ofdm_mask = 0x15; 5919 } 5920 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 5921 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5922 if (error != 0) { 5923 dev_err(sc->sc_dip, CE_WARN, 5924 "!RXON command failed"); 5925 return error; 5926 } 5927 5928 /* Configuration has changed, set TX power accordingly. */ 5929 if ((error = ops->set_txpower(sc, 1)) != 0) { 5930 dev_err(sc->sc_dip, CE_WARN, 5931 "!could not set TX power"); 5932 return error; 5933 } 5934 /* 5935 * Reconfiguring RXON clears the firmware nodes table so we must 5936 * add the broadcast node again. 5937 */ 5938 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 5939 dev_err(sc->sc_dip, CE_WARN, 5940 "!could not add broadcast node"); 5941 return error; 5942 } 5943 return 0; 5944 } 5945 5946 static int 5947 iwn_fast_recover(struct iwn_softc *sc) 5948 { 5949 int err = IWN_FAIL; 5950 5951 mutex_enter(&sc->sc_mtx); 5952 5953 /* restore runtime configuration */ 5954 bcopy(&sc->rxon_save, &sc->rxon, 5955 sizeof (sc->rxon)); 5956 5957 sc->rxon.associd = 0; 5958 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 5959 5960 if ((err = iwn_auth(sc)) != IWN_SUCCESS) { 5961 dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): " 5962 "could not setup authentication"); 5963 mutex_exit(&sc->sc_mtx); 5964 return (err); 5965 } 5966 5967 bcopy(&sc->rxon_save, &sc->rxon, sizeof (sc->rxon)); 5968 5969 /* update adapter's configuration */ 5970 err = iwn_run(sc); 5971 if (err != IWN_SUCCESS) { 5972 dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): " 5973 "failed to setup association"); 5974 mutex_exit(&sc->sc_mtx); 5975 return (err); 5976 } 5977 /* set LED on */ 5978 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5979 5980 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 5981 mutex_exit(&sc->sc_mtx); 5982 5983 /* start queue */ 5984 DTRACE_PROBE(resume__xmit); 5985 5986 return (IWN_SUCCESS); 5987 } 5988 5989 static int 5990 iwn_run(struct iwn_softc *sc) 5991 { 5992 struct iwn_ops *ops = &sc->ops; 5993 struct ieee80211com *ic = &sc->sc_ic; 5994 struct ieee80211_node *ni = ic->ic_bss; 5995 struct iwn_node_info node; 5996 int error; 5997 5998 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5999 /* Link LED blinks while monitoring. */ 6000 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 6001 return 0; 6002 } 6003 if ((error = iwn_set_timing(sc, ni)) != 0) { 6004 dev_err(sc->sc_dip, CE_WARN, 6005 "!could not set timing"); 6006 return error; 6007 } 6008 6009 /* Update adapter configuration. */ 6010 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid); 6011 sc->rxon.associd = htole16(IEEE80211_AID(ni->in_associd)); 6012 /* Short preamble and slot time are negotiated when associating. */ 6013 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 6014 if (ic->ic_flags & IEEE80211_F_SHSLOT) 6015 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 6016 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 6017 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 6018 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 6019 if (ic->ic_opmode != IEEE80211_M_STA && 6020 ic->ic_opmode != IEEE80211_M_IBSS) 6021 sc->rxon.filter |= htole32(IWN_FILTER_BEACON); 6022 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 6023 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 6024 if (error != 0) { 6025 dev_err(sc->sc_dip, CE_WARN, 6026 "!could not update configuration"); 6027 return error; 6028 } 6029 6030 /* Configuration has changed, set TX power accordingly. */ 6031 if ((error = ops->set_txpower(sc, 1)) != 0) { 6032 dev_err(sc->sc_dip, CE_WARN, 6033 "!could not set TX power"); 6034 return error; 6035 } 6036 6037 /* Fake a join to initialize the TX rate. */ 6038 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 6039 iwn_newassoc(ni, 1); 6040 6041 /* Add BSS node. */ 6042 memset(&node, 0, sizeof node); 6043 IEEE80211_ADDR_COPY(node.macaddr, ni->in_macaddr); 6044 node.id = IWN_ID_BSS; 6045 #ifdef notyet 6046 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 6047 IWN_AMDPU_DENSITY(5)); /* 2us */ 6048 #endif 6049 error = ops->add_node(sc, &node, 1); 6050 if (error != 0) { 6051 dev_err(sc->sc_dip, CE_WARN, 6052 "!could not add BSS node"); 6053 return error; 6054 } 6055 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 6056 dev_err(sc->sc_dip, CE_WARN, 6057 "!could not setup link quality for node %d", node.id); 6058 return error; 6059 } 6060 6061 if ((error = iwn_init_sensitivity(sc)) != 0) { 6062 dev_err(sc->sc_dip, CE_WARN, 6063 "!could not set sensitivity"); 6064 return error; 6065 } 6066 6067 if ((error = iwn_qosparam_to_hw(sc, 1)) != 0) { 6068 dev_err(sc->sc_dip, CE_WARN, 6069 "!could not set QoS params"); 6070 return (error); 6071 } 6072 6073 /* Start periodic calibration timer. */ 6074 sc->sc_flags &= ~IWN_FLAG_STOP_CALIB_TO; 6075 sc->calib.state = IWN_CALIB_STATE_ASSOC; 6076 sc->calib_cnt = 0; 6077 sc->calib_to = timeout(iwn_calib_timeout, sc, drv_usectohz(500000)); 6078 6079 /* Link LED always on while associated. */ 6080 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 6081 return 0; 6082 } 6083 6084 #ifdef IWN_HWCRYPTO 6085 /* 6086 * We support CCMP hardware encryption/decryption of unicast frames only. 6087 * HW support for TKIP really sucks. We should let TKIP die anyway. 6088 */ 6089 static int 6090 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 6091 struct ieee80211_key *k) 6092 { 6093 struct iwn_softc *sc = ic->ic_softc; 6094 struct iwn_ops *ops = &sc->ops; 6095 struct iwn_node *wn = (void *)ni; 6096 struct iwn_node_info node; 6097 uint16_t kflags; 6098 6099 if ((k->k_flags & IEEE80211_KEY_GROUP) || 6100 k->k_cipher != IEEE80211_CIPHER_CCMP) 6101 return ieee80211_set_key(ic, ni, k); 6102 6103 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 6104 if (k->k_flags & IEEE80211_KEY_GROUP) 6105 kflags |= IWN_KFLAG_GROUP; 6106 6107 memset(&node, 0, sizeof node); 6108 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 6109 sc->broadcast_id : wn->id; 6110 node.control = IWN_NODE_UPDATE; 6111 node.flags = IWN_FLAG_SET_KEY; 6112 node.kflags = htole16(kflags); 6113 node.kid = k->k_id; 6114 memcpy(node.key, k->k_key, k->k_len); 6115 DTRACE_PROBE2(set__key, int, k->k_id, int, node.id); 6116 return ops->add_node(sc, &node, 1); 6117 } 6118 6119 static void 6120 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 6121 struct ieee80211_key *k) 6122 { 6123 struct iwn_softc *sc = ic->ic_softc; 6124 struct iwn_ops *ops = &sc->ops; 6125 struct iwn_node *wn = (void *)ni; 6126 struct iwn_node_info node; 6127 6128 if ((k->k_flags & IEEE80211_KEY_GROUP) || 6129 k->k_cipher != IEEE80211_CIPHER_CCMP) { 6130 /* See comment about other ciphers above. */ 6131 ieee80211_delete_key(ic, ni, k); 6132 return; 6133 } 6134 if (ic->ic_state != IEEE80211_S_RUN) 6135 return; /* Nothing to do. */ 6136 memset(&node, 0, sizeof node); 6137 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 6138 sc->broadcast_id : wn->id; 6139 node.control = IWN_NODE_UPDATE; 6140 node.flags = IWN_FLAG_SET_KEY; 6141 node.kflags = htole16(IWN_KFLAG_INVALID); 6142 node.kid = 0xff; 6143 DTRACE_PROBE1(del__key, int, node.id); 6144 (void)ops->add_node(sc, &node, 1); 6145 } 6146 #endif 6147 6148 #ifndef IEEE80211_NO_HT 6149 /* 6150 * This function is called by upper layer when an ADDBA request is received 6151 * from another STA and before the ADDBA response is sent. 6152 */ 6153 static int 6154 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 6155 uint8_t tid) 6156 { 6157 struct ieee80211_rx_ba *ba = &ni->in_rx_ba[tid]; 6158 struct iwn_softc *sc = ic->ic_softc; 6159 struct iwn_ops *ops = &sc->ops; 6160 struct iwn_node *wn = (void *)ni; 6161 struct iwn_node_info node; 6162 6163 memset(&node, 0, sizeof node); 6164 node.id = wn->id; 6165 node.control = IWN_NODE_UPDATE; 6166 node.flags = IWN_FLAG_SET_ADDBA; 6167 node.addba_tid = tid; 6168 node.addba_ssn = htole16(ba->ba_winstart); 6169 DTRACE_PROBE3(addba, uint8_t, wn->id, uint8_t, tid, int, ba->ba_winstart); 6170 return ops->add_node(sc, &node, 1); 6171 } 6172 6173 /* 6174 * This function is called by upper layer on teardown of an HT-immediate 6175 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 6176 */ 6177 static void 6178 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 6179 uint8_t tid) 6180 { 6181 struct iwn_softc *sc = ic->ic_softc; 6182 struct iwn_ops *ops = &sc->ops; 6183 struct iwn_node *wn = (void *)ni; 6184 struct iwn_node_info node; 6185 6186 memset(&node, 0, sizeof node); 6187 node.id = wn->id; 6188 node.control = IWN_NODE_UPDATE; 6189 node.flags = IWN_FLAG_SET_DELBA; 6190 node.delba_tid = tid; 6191 DTRACE_PROBE2(delba, uint8_t, wn->id, uint8_t, tid); 6192 (void)ops->add_node(sc, &node, 1); 6193 } 6194 6195 /* 6196 * This function is called by upper layer when an ADDBA response is received 6197 * from another STA. 6198 */ 6199 static int 6200 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 6201 uint8_t tid) 6202 { 6203 struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid]; 6204 struct iwn_softc *sc = ic->ic_softc; 6205 struct iwn_ops *ops = &sc->ops; 6206 struct iwn_node *wn = (void *)ni; 6207 struct iwn_node_info node; 6208 int error; 6209 6210 /* Enable TX for the specified RA/TID. */ 6211 wn->disable_tid &= ~(1 << tid); 6212 memset(&node, 0, sizeof node); 6213 node.id = wn->id; 6214 node.control = IWN_NODE_UPDATE; 6215 node.flags = IWN_FLAG_SET_DISABLE_TID; 6216 node.disable_tid = htole16(wn->disable_tid); 6217 error = ops->add_node(sc, &node, 1); 6218 if (error != 0) 6219 return error; 6220 6221 if ((error = iwn_nic_lock(sc)) != 0) 6222 return error; 6223 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 6224 iwn_nic_unlock(sc); 6225 return 0; 6226 } 6227 6228 static void 6229 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 6230 uint8_t tid) 6231 { 6232 struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid]; 6233 struct iwn_softc *sc = ic->ic_softc; 6234 struct iwn_ops *ops = &sc->ops; 6235 6236 if (iwn_nic_lock(sc) != 0) 6237 return; 6238 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 6239 iwn_nic_unlock(sc); 6240 } 6241 6242 static void 6243 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 6244 uint8_t tid, uint16_t ssn) 6245 { 6246 struct iwn_node *wn = (void *)ni; 6247 int qid = 7 + tid; 6248 6249 /* Stop TX scheduler while we're changing its configuration. */ 6250 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6251 IWN4965_TXQ_STATUS_CHGACT); 6252 6253 /* Assign RA/TID translation to the queue. */ 6254 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 6255 wn->id << 4 | tid); 6256 6257 /* Enable chain-building mode for the queue. */ 6258 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 6259 6260 /* Set starting sequence number from the ADDBA request. */ 6261 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6262 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 6263 6264 /* Set scheduler window size. */ 6265 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 6266 IWN_SCHED_WINSZ); 6267 /* Set scheduler frame limit. */ 6268 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 6269 IWN_SCHED_LIMIT << 16); 6270 6271 /* Enable interrupts for the queue. */ 6272 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 6273 6274 /* Mark the queue as active. */ 6275 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6276 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 6277 iwn_tid2fifo[tid] << 1); 6278 } 6279 6280 static void 6281 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 6282 { 6283 int qid = 7 + tid; 6284 6285 /* Stop TX scheduler while we're changing its configuration. */ 6286 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6287 IWN4965_TXQ_STATUS_CHGACT); 6288 6289 /* Set starting sequence number from the ADDBA request. */ 6290 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6291 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 6292 6293 /* Disable interrupts for the queue. */ 6294 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 6295 6296 /* Mark the queue as inactive. */ 6297 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6298 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 6299 } 6300 6301 static void 6302 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 6303 uint8_t tid, uint16_t ssn) 6304 { 6305 struct iwn_node *wn = (void *)ni; 6306 int qid = 10 + tid; 6307 6308 /* Stop TX scheduler while we're changing its configuration. */ 6309 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6310 IWN5000_TXQ_STATUS_CHGACT); 6311 6312 /* Assign RA/TID translation to the queue. */ 6313 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 6314 wn->id << 4 | tid); 6315 6316 /* Enable chain-building mode for the queue. */ 6317 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 6318 6319 /* Enable aggregation for the queue. */ 6320 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 6321 6322 /* Set starting sequence number from the ADDBA request. */ 6323 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6324 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 6325 6326 /* Set scheduler window size and frame limit. */ 6327 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 6328 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 6329 6330 /* Enable interrupts for the queue. */ 6331 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 6332 6333 /* Mark the queue as active. */ 6334 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6335 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 6336 } 6337 6338 static void 6339 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 6340 { 6341 int qid = 10 + tid; 6342 6343 /* Stop TX scheduler while we're changing its configuration. */ 6344 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6345 IWN5000_TXQ_STATUS_CHGACT); 6346 6347 /* Disable aggregation for the queue. */ 6348 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 6349 6350 /* Set starting sequence number from the ADDBA request. */ 6351 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6352 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 6353 6354 /* Disable interrupts for the queue. */ 6355 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 6356 6357 /* Mark the queue as inactive. */ 6358 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6359 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 6360 } 6361 #endif /* !IEEE80211_NO_HT */ 6362 6363 /* 6364 * Query calibration tables from the initialization firmware. We do this 6365 * only once at first boot. Called from a process context. 6366 */ 6367 static int 6368 iwn5000_query_calibration(struct iwn_softc *sc) 6369 { 6370 struct iwn5000_calib_config cmd; 6371 int error; 6372 clock_t clk; 6373 6374 ASSERT(mutex_owned(&sc->sc_mtx)); 6375 6376 memset(&cmd, 0, sizeof cmd); 6377 cmd.ucode.once.enable = 0xffffffff; 6378 cmd.ucode.once.start = 0xffffffff; 6379 cmd.ucode.once.send = 0xffffffff; 6380 cmd.ucode.flags = 0xffffffff; 6381 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 6382 if (error != 0) 6383 return error; 6384 6385 /* Wait at most two seconds for calibration to complete. */ 6386 clk = ddi_get_lbolt() + drv_usectohz(2000000); 6387 while (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 6388 if (cv_timedwait(&sc->sc_calib_cv, &sc->sc_mtx, clk) < 0) 6389 return (IWN_FAIL); 6390 6391 return (IWN_SUCCESS); 6392 } 6393 6394 /* 6395 * Send calibration results to the runtime firmware. These results were 6396 * obtained on first boot from the initialization firmware. 6397 */ 6398 static int 6399 iwn5000_send_calibration(struct iwn_softc *sc) 6400 { 6401 int idx, error; 6402 6403 for (idx = 0; idx < 5; idx++) { 6404 if (sc->calibcmd[idx].buf == NULL) 6405 continue; /* No results available. */ 6406 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 6407 sc->calibcmd[idx].len, 0); 6408 if (error != 0) { 6409 dev_err(sc->sc_dip, CE_WARN, 6410 "!could not send calibration result"); 6411 return error; 6412 } 6413 } 6414 return 0; 6415 } 6416 6417 static int 6418 iwn5000_send_wimax_coex(struct iwn_softc *sc) 6419 { 6420 struct iwn5000_wimax_coex wimax; 6421 6422 #ifdef notyet 6423 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6424 /* Enable WiMAX coexistence for combo adapters. */ 6425 wimax.flags = 6426 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 6427 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 6428 IWN_WIMAX_COEX_STA_TABLE_VALID | 6429 IWN_WIMAX_COEX_ENABLE; 6430 memcpy(wimax.events, iwn6050_wimax_events, 6431 sizeof iwn6050_wimax_events); 6432 } else 6433 #endif 6434 { 6435 /* Disable WiMAX coexistence. */ 6436 wimax.flags = 0; 6437 memset(wimax.events, 0, sizeof wimax.events); 6438 } 6439 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 6440 } 6441 6442 static int 6443 iwn6000_temp_offset_calib(struct iwn_softc *sc) 6444 { 6445 struct iwn6000_phy_calib_temp_offset cmd; 6446 6447 memset(&cmd, 0, sizeof cmd); 6448 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 6449 cmd.ngroups = 1; 6450 cmd.isvalid = 1; 6451 if (sc->eeprom_temp != 0) 6452 cmd.offset = htole16(sc->eeprom_temp); 6453 else 6454 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 6455 sc->sc_toff.t6000->toff.value.l = le16toh(cmd.offset); 6456 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6457 } 6458 6459 static int 6460 iwn2000_temp_offset_calib(struct iwn_softc *sc) 6461 { 6462 struct iwn2000_phy_calib_temp_offset cmd; 6463 6464 memset(&cmd, 0, sizeof cmd); 6465 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 6466 cmd.ngroups = 1; 6467 cmd.isvalid = 1; 6468 if (sc->eeprom_rawtemp != 0) { 6469 cmd.offset_low = htole16(sc->eeprom_rawtemp); 6470 cmd.offset_high = htole16(sc->eeprom_temp); 6471 } else { 6472 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 6473 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 6474 } 6475 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 6476 sc->sc_toff.t2000->toff_lo.value.l = le16toh(cmd.offset_low); 6477 sc->sc_toff.t2000->toff_hi.value.l = le16toh(cmd.offset_high); 6478 sc->sc_toff.t2000->volt.value.l = le16toh(cmd.burnt_voltage_ref); 6479 6480 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6481 } 6482 6483 /* 6484 * This function is called after the runtime firmware notifies us of its 6485 * readiness (called in a process context). 6486 */ 6487 static int 6488 iwn4965_post_alive(struct iwn_softc *sc) 6489 { 6490 int error, qid; 6491 6492 if ((error = iwn_nic_lock(sc)) != 0) 6493 return error; 6494 6495 /* Clear TX scheduler state in SRAM. */ 6496 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 6497 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 6498 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 6499 6500 /* Set physical address of TX scheduler rings (1KB aligned). */ 6501 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 6502 6503 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 6504 6505 /* Disable chain mode for all our 16 queues. */ 6506 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 6507 6508 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 6509 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 6510 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 6511 6512 /* Set scheduler window size. */ 6513 iwn_mem_write(sc, sc->sched_base + 6514 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 6515 /* Set scheduler frame limit. */ 6516 iwn_mem_write(sc, sc->sched_base + 6517 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 6518 IWN_SCHED_LIMIT << 16); 6519 } 6520 6521 /* Enable interrupts for all our 16 queues. */ 6522 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 6523 /* Identify TX FIFO rings (0-7). */ 6524 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 6525 6526 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6527 for (qid = 0; qid < 7; qid++) { 6528 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 6529 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6530 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 6531 } 6532 iwn_nic_unlock(sc); 6533 return 0; 6534 } 6535 6536 /* 6537 * This function is called after the initialization or runtime firmware 6538 * notifies us of its readiness (called in a process context). 6539 */ 6540 static int 6541 iwn5000_post_alive(struct iwn_softc *sc) 6542 { 6543 int error, qid; 6544 6545 /* Switch to using ICT interrupt mode. */ 6546 iwn5000_ict_reset(sc); 6547 6548 if ((error = iwn_nic_lock(sc)) != 0) 6549 return error; 6550 6551 /* Clear TX scheduler state in SRAM. */ 6552 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 6553 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 6554 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 6555 6556 /* Set physical address of TX scheduler rings (1KB aligned). */ 6557 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 6558 6559 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 6560 6561 /* Enable chain mode for all queues, except command queue. */ 6562 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 6563 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 6564 6565 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 6566 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 6567 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 6568 6569 iwn_mem_write(sc, sc->sched_base + 6570 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 6571 /* Set scheduler window size and frame limit. */ 6572 iwn_mem_write(sc, sc->sched_base + 6573 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 6574 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 6575 } 6576 6577 /* Enable interrupts for all our 20 queues. */ 6578 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 6579 /* Identify TX FIFO rings (0-7). */ 6580 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 6581 6582 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6583 for (qid = 0; qid < 7; qid++) { 6584 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 6585 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6586 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 6587 } 6588 iwn_nic_unlock(sc); 6589 6590 /* Configure WiMAX coexistence for combo adapters. */ 6591 error = iwn5000_send_wimax_coex(sc); 6592 if (error != 0) { 6593 dev_err(sc->sc_dip, CE_WARN, 6594 "!could not configure WiMAX coexistence"); 6595 return error; 6596 } 6597 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 6598 struct iwn5000_phy_calib_crystal cmd; 6599 6600 /* Perform crystal calibration. */ 6601 memset(&cmd, 0, sizeof cmd); 6602 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 6603 cmd.ngroups = 1; 6604 cmd.isvalid = 1; 6605 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 6606 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 6607 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6608 if (error != 0) { 6609 dev_err(sc->sc_dip, CE_WARN, 6610 "!crystal calibration failed"); 6611 return error; 6612 } 6613 } 6614 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 6615 /* Query calibration from the initialization firmware. */ 6616 if ((error = iwn5000_query_calibration(sc)) != 0) { 6617 dev_err(sc->sc_dip, CE_WARN, 6618 "!could not query calibration"); 6619 return error; 6620 } 6621 /* 6622 * We have the calibration results now, reboot with the 6623 * runtime firmware (call ourselves recursively!) 6624 */ 6625 iwn_hw_stop(sc, B_FALSE); 6626 error = iwn_hw_init(sc); 6627 } else { 6628 /* Send calibration results to runtime firmware. */ 6629 error = iwn5000_send_calibration(sc); 6630 } 6631 return error; 6632 } 6633 6634 /* 6635 * The firmware boot code is small and is intended to be copied directy into 6636 * the NIC internal memory (no DMA transfer). 6637 */ 6638 static int 6639 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 6640 { 6641 int error, ntries; 6642 6643 size /= sizeof (uint32_t); 6644 6645 if ((error = iwn_nic_lock(sc)) != 0) 6646 return error; 6647 6648 /* Copy microcode image into NIC memory. */ 6649 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 6650 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 6651 (const uint32_t *)ucode, size); 6652 6653 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 6654 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 6655 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 6656 6657 /* Start boot load now. */ 6658 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 6659 6660 /* Wait for transfer to complete. */ 6661 for (ntries = 0; ntries < 1000; ntries++) { 6662 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 6663 IWN_BSM_WR_CTRL_START)) 6664 break; 6665 DELAY(10); 6666 } 6667 if (ntries == 1000) { 6668 dev_err(sc->sc_dip, CE_WARN, 6669 "!could not load boot firmware"); 6670 iwn_nic_unlock(sc); 6671 return ETIMEDOUT; 6672 } 6673 6674 /* Enable boot after power up. */ 6675 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 6676 6677 iwn_nic_unlock(sc); 6678 return 0; 6679 } 6680 6681 static int 6682 iwn4965_load_firmware(struct iwn_softc *sc) 6683 { 6684 struct iwn_fw_info *fw = &sc->fw; 6685 struct iwn_dma_info *dma = &sc->fw_dma; 6686 int error; 6687 clock_t clk; 6688 6689 ASSERT(mutex_owned(&sc->sc_mtx)); 6690 6691 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 6692 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 6693 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6694 fw->init.text, fw->init.textsz); 6695 (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 6696 6697 /* Tell adapter where to find initialization sections. */ 6698 if ((error = iwn_nic_lock(sc)) != 0) 6699 return error; 6700 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6701 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 6702 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6703 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6704 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 6705 iwn_nic_unlock(sc); 6706 6707 /* Load firmware boot code. */ 6708 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 6709 if (error != 0) { 6710 dev_err(sc->sc_dip, CE_WARN, 6711 "!could not load boot firmware"); 6712 return error; 6713 } 6714 /* Now press "execute". */ 6715 IWN_WRITE(sc, IWN_RESET, 0); 6716 6717 /* Wait at most one second for first alive notification. */ 6718 clk = ddi_get_lbolt() + drv_usectohz(1000000); 6719 while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) { 6720 if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) { 6721 dev_err(sc->sc_dip, CE_WARN, 6722 "!timeout waiting for adapter to initialize"); 6723 return (IWN_FAIL); 6724 } 6725 } 6726 6727 /* Retrieve current temperature for initial TX power calibration. */ 6728 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 6729 sc->temp = iwn4965_get_temperature(sc); 6730 sc->sc_misc->temp.value.ul = sc->temp; 6731 6732 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 6733 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 6734 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6735 fw->main.text, fw->main.textsz); 6736 (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 6737 6738 /* Tell adapter where to find runtime sections. */ 6739 if ((error = iwn_nic_lock(sc)) != 0) 6740 return error; 6741 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6742 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 6743 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6744 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6745 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 6746 IWN_FW_UPDATED | fw->main.textsz); 6747 iwn_nic_unlock(sc); 6748 6749 return 0; 6750 } 6751 6752 static int 6753 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 6754 const uint8_t *section, int size) 6755 { 6756 struct iwn_dma_info *dma = &sc->fw_dma; 6757 int error; 6758 clock_t clk; 6759 6760 ASSERT(mutex_owned(&sc->sc_mtx)); 6761 6762 /* Copy firmware section into pre-allocated DMA-safe memory. */ 6763 memcpy(dma->vaddr, section, size); 6764 (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 6765 6766 if ((error = iwn_nic_lock(sc)) != 0) 6767 return error; 6768 6769 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6770 IWN_FH_TX_CONFIG_DMA_PAUSE); 6771 6772 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 6773 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 6774 IWN_LOADDR(dma->paddr)); 6775 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 6776 IWN_HIADDR(dma->paddr) << 28 | size); 6777 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 6778 IWN_FH_TXBUF_STATUS_TBNUM(1) | 6779 IWN_FH_TXBUF_STATUS_TBIDX(1) | 6780 IWN_FH_TXBUF_STATUS_TFBD_VALID); 6781 6782 /* Kick Flow Handler to start DMA transfer. */ 6783 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6784 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 6785 6786 iwn_nic_unlock(sc); 6787 6788 /* Wait at most five seconds for FH DMA transfer to complete. */ 6789 clk = ddi_get_lbolt() + drv_usectohz(5000000); 6790 while ((sc->sc_flags & IWN_FLAG_FW_DMA) == 0) { 6791 if (cv_timedwait(&sc->sc_fhdma_cv, &sc->sc_mtx, clk) < 0) 6792 return (IWN_FAIL); 6793 } 6794 sc->sc_flags &= ~IWN_FLAG_FW_DMA; 6795 6796 return (IWN_SUCCESS); 6797 } 6798 6799 static int 6800 iwn5000_load_firmware(struct iwn_softc *sc) 6801 { 6802 struct iwn_fw_part *fw; 6803 int error; 6804 6805 /* Load the initialization firmware on first boot only. */ 6806 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 6807 &sc->fw.main : &sc->fw.init; 6808 6809 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 6810 fw->text, fw->textsz); 6811 if (error != 0) { 6812 dev_err(sc->sc_dip, CE_WARN, 6813 "!could not load firmware %s section", ".text"); 6814 return error; 6815 } 6816 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 6817 fw->data, fw->datasz); 6818 if (error != 0) { 6819 dev_err(sc->sc_dip, CE_WARN, 6820 "!could not load firmware %s section", ".data"); 6821 return error; 6822 } 6823 6824 /* Now press "execute". */ 6825 IWN_WRITE(sc, IWN_RESET, 0); 6826 return 0; 6827 } 6828 6829 /* 6830 * Extract text and data sections from a legacy firmware image. 6831 */ 6832 static int 6833 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 6834 { 6835 _NOTE(ARGUNUSED(sc)); 6836 const uint32_t *ptr; 6837 size_t hdrlen = 24; 6838 uint32_t rev; 6839 6840 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 6841 ptr = (const uint32_t *)fw->data; 6842 rev = le32toh(*ptr++); 6843 6844 /* Check firmware API version. */ 6845 if (IWN_FW_API(rev) <= 1) { 6846 dev_err(sc->sc_dip, CE_WARN, 6847 "!bad firmware, need API version >=2"); 6848 return EINVAL; 6849 } 6850 if (IWN_FW_API(rev) >= 3) { 6851 /* Skip build number (version 2 header). */ 6852 hdrlen += 4; 6853 ptr++; 6854 } 6855 if (fw->size < hdrlen) { 6856 dev_err(sc->sc_dip, CE_WARN, 6857 "!firmware too short: %lld bytes", (longlong_t)fw->size); 6858 return EINVAL; 6859 } 6860 fw->main.textsz = le32toh(*ptr++); 6861 fw->main.datasz = le32toh(*ptr++); 6862 fw->init.textsz = le32toh(*ptr++); 6863 fw->init.datasz = le32toh(*ptr++); 6864 fw->boot.textsz = le32toh(*ptr++); 6865 6866 /* Check that all firmware sections fit. */ 6867 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 6868 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 6869 dev_err(sc->sc_dip, CE_WARN, 6870 "!firmware too short: %lld bytes", (longlong_t)fw->size); 6871 return EINVAL; 6872 } 6873 6874 /* Get pointers to firmware sections. */ 6875 fw->main.text = (const uint8_t *)ptr; 6876 fw->main.data = fw->main.text + fw->main.textsz; 6877 fw->init.text = fw->main.data + fw->main.datasz; 6878 fw->init.data = fw->init.text + fw->init.textsz; 6879 fw->boot.text = fw->init.data + fw->init.datasz; 6880 return 0; 6881 } 6882 6883 /* 6884 * Extract text and data sections from a TLV firmware image. 6885 */ 6886 static int 6887 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 6888 uint16_t alt) 6889 { 6890 _NOTE(ARGUNUSED(sc)); 6891 const struct iwn_fw_tlv_hdr *hdr; 6892 const struct iwn_fw_tlv *tlv; 6893 const uint8_t *ptr, *end; 6894 uint64_t altmask; 6895 uint32_t len; 6896 6897 if (fw->size < sizeof (*hdr)) { 6898 dev_err(sc->sc_dip, CE_WARN, 6899 "!firmware too short: %lld bytes", (longlong_t)fw->size); 6900 return EINVAL; 6901 } 6902 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 6903 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 6904 dev_err(sc->sc_dip, CE_WARN, 6905 "!bad firmware signature 0x%08x", le32toh(hdr->signature)); 6906 return EINVAL; 6907 } 6908 6909 /* 6910 * Select the closest supported alternative that is less than 6911 * or equal to the specified one. 6912 */ 6913 altmask = le64toh(hdr->altmask); 6914 while (alt > 0 && !(altmask & (1ULL << alt))) 6915 alt--; /* Downgrade. */ 6916 IWN_DBG("using alternative %d", alt); 6917 6918 ptr = (const uint8_t *)(hdr + 1); 6919 end = (const uint8_t *)(fw->data + fw->size); 6920 6921 /* Parse type-length-value fields. */ 6922 while (ptr + sizeof (*tlv) <= end) { 6923 tlv = (const struct iwn_fw_tlv *)ptr; 6924 len = le32toh(tlv->len); 6925 6926 ptr += sizeof (*tlv); 6927 if (ptr + len > end) { 6928 dev_err(sc->sc_dip, CE_WARN, 6929 "!firmware too short: %lld bytes", 6930 (longlong_t)fw->size); 6931 return EINVAL; 6932 } 6933 /* Skip other alternatives. */ 6934 if (tlv->alt != 0 && le16toh(tlv->alt) != alt) { 6935 IWN_DBG("skipping other alternative"); 6936 goto next; 6937 } 6938 6939 switch (le16toh(tlv->type)) { 6940 case IWN_FW_TLV_MAIN_TEXT: 6941 fw->main.text = ptr; 6942 fw->main.textsz = len; 6943 break; 6944 case IWN_FW_TLV_MAIN_DATA: 6945 fw->main.data = ptr; 6946 fw->main.datasz = len; 6947 break; 6948 case IWN_FW_TLV_INIT_TEXT: 6949 fw->init.text = ptr; 6950 fw->init.textsz = len; 6951 break; 6952 case IWN_FW_TLV_INIT_DATA: 6953 fw->init.data = ptr; 6954 fw->init.datasz = len; 6955 break; 6956 case IWN_FW_TLV_BOOT_TEXT: 6957 fw->boot.text = ptr; 6958 fw->boot.textsz = len; 6959 break; 6960 case IWN_FW_TLV_ENH_SENS: 6961 if (len != 0) { 6962 dev_err(sc->sc_dip, CE_WARN, 6963 "!TLV type %d has invalid size %u", 6964 le16toh(tlv->type), len); 6965 goto next; 6966 } 6967 sc->sc_flags |= IWN_FLAG_ENH_SENS; 6968 break; 6969 case IWN_FW_TLV_PHY_CALIB: 6970 if (len != sizeof(uint32_t)) { 6971 dev_err(sc->sc_dip, CE_WARN, 6972 "!TLV type %d has invalid size %u", 6973 le16toh(tlv->type), len); 6974 goto next; 6975 } 6976 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) { 6977 sc->reset_noise_gain = le32toh(*ptr); 6978 sc->noise_gain = le32toh(*ptr) + 1; 6979 } 6980 break; 6981 case IWN_FW_TLV_FLAGS: 6982 if (len < sizeof(uint32_t)) 6983 break; 6984 if (len % sizeof(uint32_t)) 6985 break; 6986 sc->tlv_feature_flags = le32toh(*ptr); 6987 IWN_DBG("feature: 0x%08x", sc->tlv_feature_flags); 6988 break; 6989 default: 6990 IWN_DBG("TLV type %d not handled", le16toh(tlv->type)); 6991 break; 6992 } 6993 next: /* TLV fields are 32-bit aligned. */ 6994 ptr += (len + 3) & ~3; 6995 } 6996 return 0; 6997 } 6998 6999 static int 7000 iwn_read_firmware(struct iwn_softc *sc) 7001 { 7002 struct iwn_fw_info *fw = &sc->fw; 7003 firmware_handle_t fwh; 7004 int error; 7005 7006 /* 7007 * Some PHY calibration commands are firmware-dependent; these 7008 * are the default values that will be overridden if 7009 * necessary. 7010 */ 7011 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 7012 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 7013 7014 /* Initialize for error returns */ 7015 fw->data = NULL; 7016 fw->size = 0; 7017 7018 /* Open firmware image. */ 7019 if ((error = firmware_open("iwn", sc->fwname, &fwh)) != 0) { 7020 dev_err(sc->sc_dip, CE_WARN, 7021 "!could not get firmware handle %s", sc->fwname); 7022 return error; 7023 } 7024 fw->size = firmware_get_size(fwh); 7025 if (fw->size < sizeof (uint32_t)) { 7026 dev_err(sc->sc_dip, CE_WARN, 7027 "!firmware too short: %lld bytes", (longlong_t)fw->size); 7028 (void) firmware_close(fwh); 7029 return EINVAL; 7030 } 7031 7032 /* Read the firmware. */ 7033 fw->data = kmem_alloc(fw->size, KM_SLEEP); 7034 error = firmware_read(fwh, 0, fw->data, fw->size); 7035 (void) firmware_close(fwh); 7036 if (error != 0) { 7037 dev_err(sc->sc_dip, CE_WARN, 7038 "!could not read firmware %s", sc->fwname); 7039 goto out; 7040 } 7041 7042 /* Retrieve text and data sections. */ 7043 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 7044 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 7045 error = iwn_read_firmware_leg(sc, fw); 7046 else 7047 error = iwn_read_firmware_tlv(sc, fw, 1); 7048 if (error != 0) { 7049 dev_err(sc->sc_dip, CE_WARN, 7050 "!could not read firmware sections"); 7051 goto out; 7052 } 7053 7054 /* Make sure text and data sections fit in hardware memory. */ 7055 if (fw->main.textsz > sc->fw_text_maxsz || 7056 fw->main.datasz > sc->fw_data_maxsz || 7057 fw->init.textsz > sc->fw_text_maxsz || 7058 fw->init.datasz > sc->fw_data_maxsz || 7059 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 7060 (fw->boot.textsz & 3) != 0) { 7061 dev_err(sc->sc_dip, CE_WARN, 7062 "!firmware sections too large"); 7063 goto out; 7064 } 7065 7066 /* We can proceed with loading the firmware. */ 7067 return 0; 7068 out: 7069 kmem_free(fw->data, fw->size); 7070 fw->data = NULL; 7071 fw->size = 0; 7072 return error ? error : EINVAL; 7073 } 7074 7075 static int 7076 iwn_clock_wait(struct iwn_softc *sc) 7077 { 7078 int ntries; 7079 7080 /* Set "initialization complete" bit. */ 7081 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 7082 7083 /* Wait for clock stabilization. */ 7084 for (ntries = 0; ntries < 2500; ntries++) { 7085 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 7086 return 0; 7087 DELAY(10); 7088 } 7089 dev_err(sc->sc_dip, CE_WARN, 7090 "!timeout waiting for clock stabilization"); 7091 return ETIMEDOUT; 7092 } 7093 7094 static int 7095 iwn_apm_init(struct iwn_softc *sc) 7096 { 7097 uint32_t reg; 7098 int error; 7099 7100 /* Disable L0s exit timer (NMI bug workaround). */ 7101 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 7102 /* Don't wait for ICH L0s (ICH bug workaround). */ 7103 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 7104 7105 /* Set FH wait threshold to max (HW bug under stress workaround). */ 7106 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 7107 7108 /* Enable HAP INTA to move adapter from L1a to L0s. */ 7109 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 7110 7111 /* Retrieve PCIe Active State Power Management (ASPM). */ 7112 reg = pci_config_get32(sc->sc_pcih, 7113 sc->sc_cap_off + PCIE_LINKCTL); 7114 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 7115 if (reg & PCIE_LINKCTL_ASPM_CTL_L1) /* L1 Entry enabled. */ 7116 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 7117 else 7118 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 7119 7120 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 7121 sc->hw_type <= IWN_HW_REV_TYPE_1000) 7122 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 7123 7124 /* Wait for clock stabilization before accessing prph. */ 7125 if ((error = iwn_clock_wait(sc)) != 0) 7126 return error; 7127 7128 if ((error = iwn_nic_lock(sc)) != 0) 7129 return error; 7130 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 7131 /* Enable DMA and BSM (Bootstrap State Machine). */ 7132 iwn_prph_write(sc, IWN_APMG_CLK_EN, 7133 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 7134 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 7135 } else { 7136 /* Enable DMA. */ 7137 iwn_prph_write(sc, IWN_APMG_CLK_EN, 7138 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 7139 } 7140 DELAY(20); 7141 /* Disable L1-Active. */ 7142 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 7143 iwn_nic_unlock(sc); 7144 7145 return 0; 7146 } 7147 7148 static void 7149 iwn_apm_stop_master(struct iwn_softc *sc) 7150 { 7151 int ntries; 7152 7153 /* Stop busmaster DMA activity. */ 7154 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 7155 for (ntries = 0; ntries < 100; ntries++) { 7156 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 7157 return; 7158 DELAY(10); 7159 } 7160 dev_err(sc->sc_dip, CE_WARN, 7161 "!timeout waiting for master"); 7162 } 7163 7164 static void 7165 iwn_apm_stop(struct iwn_softc *sc) 7166 { 7167 iwn_apm_stop_master(sc); 7168 7169 /* Reset the entire device. */ 7170 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 7171 DELAY(10); 7172 /* Clear "initialization complete" bit. */ 7173 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 7174 } 7175 7176 static int 7177 iwn4965_nic_config(struct iwn_softc *sc) 7178 { 7179 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 7180 /* 7181 * I don't believe this to be correct but this is what the 7182 * vendor driver is doing. Probably the bits should not be 7183 * shifted in IWN_RFCFG_*. 7184 */ 7185 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7186 IWN_RFCFG_TYPE(sc->rfcfg) | 7187 IWN_RFCFG_STEP(sc->rfcfg) | 7188 IWN_RFCFG_DASH(sc->rfcfg)); 7189 } 7190 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7191 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 7192 return 0; 7193 } 7194 7195 static int 7196 iwn5000_nic_config(struct iwn_softc *sc) 7197 { 7198 uint32_t tmp; 7199 int error; 7200 7201 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 7202 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7203 IWN_RFCFG_TYPE(sc->rfcfg) | 7204 IWN_RFCFG_STEP(sc->rfcfg) | 7205 IWN_RFCFG_DASH(sc->rfcfg)); 7206 } 7207 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7208 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 7209 7210 if ((error = iwn_nic_lock(sc)) != 0) 7211 return error; 7212 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 7213 7214 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 7215 /* 7216 * Select first Switching Voltage Regulator (1.32V) to 7217 * solve a stability issue related to noisy DC2DC line 7218 * in the silicon of 1000 Series. 7219 */ 7220 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 7221 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 7222 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 7223 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 7224 } 7225 iwn_nic_unlock(sc); 7226 7227 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 7228 /* Use internal power amplifier only. */ 7229 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 7230 } 7231 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 7232 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 7233 /* Indicate that ROM calibration version is >=6. */ 7234 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 7235 } 7236 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 7237 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 7238 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 7239 sc->hw_type == IWN_HW_REV_TYPE_2000 || 7240 sc->hw_type == IWN_HW_REV_TYPE_135 || 7241 sc->hw_type == IWN_HW_REV_TYPE_105) 7242 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 7243 return 0; 7244 } 7245 7246 /* 7247 * Take NIC ownership over Intel Active Management Technology (AMT). 7248 */ 7249 static int 7250 iwn_hw_prepare(struct iwn_softc *sc) 7251 { 7252 int ntries; 7253 7254 /* Check if hardware is ready. */ 7255 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 7256 for (ntries = 0; ntries < 5; ntries++) { 7257 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 7258 IWN_HW_IF_CONFIG_NIC_READY) 7259 return 0; 7260 DELAY(10); 7261 } 7262 7263 /* Hardware not ready, force into ready state. */ 7264 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 7265 for (ntries = 0; ntries < 15000; ntries++) { 7266 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 7267 IWN_HW_IF_CONFIG_PREPARE_DONE)) 7268 break; 7269 DELAY(10); 7270 } 7271 if (ntries == 15000) 7272 return ETIMEDOUT; 7273 7274 /* Hardware should be ready now. */ 7275 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 7276 for (ntries = 0; ntries < 5; ntries++) { 7277 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 7278 IWN_HW_IF_CONFIG_NIC_READY) 7279 return 0; 7280 DELAY(10); 7281 } 7282 return ETIMEDOUT; 7283 } 7284 7285 static int 7286 iwn_hw_init(struct iwn_softc *sc) 7287 { 7288 struct iwn_ops *ops = &sc->ops; 7289 int error, chnl, qid; 7290 clock_t clk; 7291 uint32_t rx_config; 7292 7293 ASSERT(mutex_owned(&sc->sc_mtx)); 7294 7295 /* Clear pending interrupts. */ 7296 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7297 7298 if ((error = iwn_apm_init(sc)) != 0) { 7299 dev_err(sc->sc_dip, CE_WARN, 7300 "!could not power ON adapter"); 7301 return error; 7302 } 7303 7304 /* Select VMAIN power source. */ 7305 if ((error = iwn_nic_lock(sc)) != 0) 7306 return error; 7307 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 7308 iwn_nic_unlock(sc); 7309 7310 /* Perform adapter-specific initialization. */ 7311 if ((error = ops->nic_config(sc)) != 0) 7312 return error; 7313 7314 /* Initialize RX ring. */ 7315 if ((error = iwn_nic_lock(sc)) != 0) 7316 return error; 7317 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 7318 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 7319 /* Set physical address of RX ring (256-byte aligned). */ 7320 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 7321 /* Set physical address of RX status (16-byte aligned). */ 7322 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 7323 /* Enable RX. */ 7324 rx_config = 7325 IWN_FH_RX_CONFIG_ENA | 7326 #if IWN_RBUF_SIZE == 8192 7327 IWN_FH_RX_CONFIG_RB_SIZE_8K | 7328 #endif 7329 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 7330 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 7331 IWN_FH_RX_CONFIG_SINGLE_FRAME | 7332 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 7333 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG); 7334 IWN_WRITE(sc, IWN_FH_RX_CONFIG, rx_config); 7335 iwn_nic_unlock(sc); 7336 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 7337 7338 if ((error = iwn_nic_lock(sc)) != 0) 7339 return error; 7340 7341 /* Initialize TX scheduler. */ 7342 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 7343 7344 /* Set physical address of "keep warm" page (16-byte aligned). */ 7345 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 7346 7347 /* Initialize TX rings. */ 7348 for (qid = 0; qid < sc->ntxqs; qid++) { 7349 struct iwn_tx_ring *txq = &sc->txq[qid]; 7350 7351 /* Set physical address of TX ring (256-byte aligned). */ 7352 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 7353 txq->desc_dma.paddr >> 8); 7354 } 7355 iwn_nic_unlock(sc); 7356 7357 /* Enable DMA channels. */ 7358 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 7359 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 7360 IWN_FH_TX_CONFIG_DMA_ENA | 7361 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 7362 } 7363 7364 /* Clear "radio off" and "commands blocked" bits. */ 7365 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7366 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 7367 7368 /* Clear pending interrupts. */ 7369 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7370 /* Enable interrupt coalescing. */ 7371 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 32); 7372 /* Enable interrupts. */ 7373 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 7374 7375 /* _Really_ make sure "radio off" bit is cleared! */ 7376 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7377 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7378 7379 /* Enable shadow registers. */ 7380 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 7381 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 7382 7383 if ((error = ops->load_firmware(sc)) != 0) { 7384 dev_err(sc->sc_dip, CE_WARN, 7385 "!could not load firmware"); 7386 return error; 7387 } 7388 /* Wait at most one second for firmware alive notification. */ 7389 clk = ddi_get_lbolt() + drv_usectohz(1000000); 7390 while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) { 7391 if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) { 7392 dev_err(sc->sc_dip, CE_WARN, 7393 "!timeout waiting for adapter to initialize"); 7394 return (IWN_FAIL); 7395 } 7396 } 7397 /* Do post-firmware initialization. */ 7398 return ops->post_alive(sc); 7399 } 7400 7401 static void 7402 iwn_hw_stop(struct iwn_softc *sc, boolean_t lock) 7403 { 7404 int chnl, qid, ntries; 7405 7406 if (lock) { 7407 mutex_enter(&sc->sc_mtx); 7408 } 7409 7410 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 7411 7412 /* Disable interrupts. */ 7413 IWN_WRITE(sc, IWN_INT_MASK, 0); 7414 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7415 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 7416 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 7417 7418 /* Make sure we no longer hold the NIC lock. */ 7419 iwn_nic_unlock(sc); 7420 7421 /* Stop TX scheduler. */ 7422 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 7423 7424 /* Stop all DMA channels. */ 7425 if (iwn_nic_lock(sc) == 0) { 7426 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 7427 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 7428 for (ntries = 0; ntries < 200; ntries++) { 7429 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 7430 IWN_FH_TX_STATUS_IDLE(chnl)) 7431 break; 7432 DELAY(10); 7433 } 7434 } 7435 iwn_nic_unlock(sc); 7436 } 7437 7438 /* Stop RX ring. */ 7439 iwn_reset_rx_ring(sc, &sc->rxq); 7440 7441 /* Reset all TX rings. */ 7442 for (qid = 0; qid < sc->ntxqs; qid++) 7443 iwn_reset_tx_ring(sc, &sc->txq[qid]); 7444 7445 if (iwn_nic_lock(sc) == 0) { 7446 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 7447 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 7448 iwn_nic_unlock(sc); 7449 } 7450 DELAY(5); 7451 /* Power OFF adapter. */ 7452 iwn_apm_stop(sc); 7453 7454 sc->sc_flags &= ~(IWN_FLAG_HW_INITED | IWN_FLAG_FW_ALIVE); 7455 7456 if (lock) { 7457 mutex_exit(&sc->sc_mtx); 7458 } 7459 } 7460 7461 static int 7462 iwn_init(struct iwn_softc *sc) 7463 { 7464 int error; 7465 7466 mutex_enter(&sc->sc_mtx); 7467 if (sc->sc_flags & IWN_FLAG_HW_INITED) 7468 goto out; 7469 if ((error = iwn_hw_prepare(sc)) != 0) { 7470 dev_err(sc->sc_dip, CE_WARN, "!hardware not ready"); 7471 goto fail; 7472 } 7473 7474 /* Check that the radio is not disabled by hardware switch. */ 7475 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 7476 dev_err(sc->sc_dip, CE_WARN, 7477 "!radio is disabled by hardware switch"); 7478 error = EPERM; /* :-) */ 7479 goto fail; 7480 } 7481 7482 /* Read firmware images from the filesystem. */ 7483 if ((error = iwn_read_firmware(sc)) != 0) { 7484 dev_err(sc->sc_dip, CE_WARN, "!could not read firmware"); 7485 goto fail; 7486 } 7487 7488 /* Initialize interrupt mask to default value. */ 7489 sc->int_mask = IWN_INT_MASK_DEF; 7490 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 7491 7492 /* Initialize hardware and upload firmware. */ 7493 ASSERT(sc->fw.data != NULL && sc->fw.size > 0); 7494 error = iwn_hw_init(sc); 7495 if (error != 0) { 7496 dev_err(sc->sc_dip, CE_WARN, "!could not initialize hardware"); 7497 goto fail; 7498 } 7499 7500 /* Configure adapter now that it is ready. */ 7501 if ((error = iwn_config(sc)) != 0) { 7502 dev_err(sc->sc_dip, CE_WARN, "!could not configure device"); 7503 goto fail; 7504 } 7505 7506 sc->sc_flags |= IWN_FLAG_HW_INITED; 7507 out: 7508 mutex_exit(&sc->sc_mtx); 7509 return 0; 7510 7511 fail: 7512 iwn_hw_stop(sc, B_FALSE); 7513 mutex_exit(&sc->sc_mtx); 7514 return error; 7515 } 7516 7517 /* 7518 * XXX code from usr/src/uts/common/io/net80211/net880211_output.c 7519 * Copyright (c) 2001 Atsushi Onoe 7520 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 7521 * Copyright (c) 2007-2009 Damien Bergamini 7522 * All rights reserved. 7523 */ 7524 7525 /* 7526 * Add SSID element to a frame 7527 */ 7528 static uint8_t * 7529 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, uint32_t len) 7530 { 7531 *frm++ = IEEE80211_ELEMID_SSID; 7532 *frm++ = (uint8_t)len; 7533 bcopy(ssid, frm, len); 7534 return (frm + len); 7535 } 7536 7537 /* 7538 * Add supported rates information element to a frame. 7539 */ 7540 static uint8_t * 7541 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 7542 { 7543 uint8_t nrates; 7544 7545 *frm++ = IEEE80211_ELEMID_RATES; 7546 nrates = rs->ir_nrates; 7547 if (nrates > IEEE80211_RATE_SIZE) 7548 nrates = IEEE80211_RATE_SIZE; 7549 *frm++ = nrates; 7550 bcopy(rs->ir_rates, frm, nrates); 7551 return (frm + nrates); 7552 } 7553 7554 /* 7555 * Add extended supported rates element to a frame, usually for 11g mode 7556 */ 7557 static uint8_t * 7558 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 7559 { 7560 if (rs->ir_nrates > IEEE80211_RATE_SIZE) { 7561 uint8_t nrates = rs->ir_nrates - IEEE80211_RATE_SIZE; 7562 7563 *frm++ = IEEE80211_ELEMID_XRATES; 7564 *frm++ = nrates; 7565 bcopy(rs->ir_rates + IEEE80211_RATE_SIZE, frm, nrates); 7566 frm += nrates; 7567 } 7568 return (frm); 7569 } 7570 7571 /* 7572 * XXX: Hack to set the current channel to the value advertised in beacons or 7573 * probe responses. Only used during AP detection. 7574 * XXX: Duplicated from if_iwi.c 7575 */ 7576 static void 7577 iwn_fix_channel(struct iwn_softc *sc, mblk_t *m, 7578 struct iwn_rx_stat *stat) 7579 { 7580 struct ieee80211com *ic = &sc->sc_ic; 7581 struct ieee80211_frame *wh; 7582 uint8_t subtype; 7583 uint8_t *frm, *efrm; 7584 7585 wh = (struct ieee80211_frame *)m->b_rptr; 7586 7587 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 7588 return; 7589 7590 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 7591 7592 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 7593 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 7594 return; 7595 7596 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) { 7597 int chan = le16toh(stat->chan); 7598 if (chan < __arraycount(ic->ic_sup_channels)) 7599 ic->ic_curchan = &ic->ic_sup_channels[chan]; 7600 return; 7601 } 7602 7603 frm = (uint8_t *)(wh + 1); 7604 efrm = (uint8_t *)m->b_wptr; 7605 7606 frm += 12; /* skip tstamp, bintval and capinfo fields */ 7607 while (frm < efrm) { 7608 if (*frm == IEEE80211_ELEMID_DSPARMS) 7609 #if IEEE80211_CHAN_MAX < 255 7610 if (frm[2] <= IEEE80211_CHAN_MAX) 7611 #endif 7612 ic->ic_curchan = &ic->ic_sup_channels[frm[2]]; 7613 7614 frm += frm[1] + 2; 7615 } 7616 } 7617 7618 /* 7619 * invoked by GLD to start or open NIC 7620 */ 7621 static int 7622 iwn_m_start(void *arg) 7623 { 7624 struct iwn_softc *sc; 7625 ieee80211com_t *ic; 7626 int err = IWN_FAIL; 7627 7628 sc = (struct iwn_softc *)arg; 7629 ASSERT(sc != NULL); 7630 ic = &sc->sc_ic; 7631 7632 err = iwn_init(sc); 7633 if (err != IWN_SUCCESS) { 7634 /* 7635 * If initialization failed because the RF switch is off, 7636 * return success anyway to make the 'plumb' succeed. 7637 * The iwn_thread() tries to re-init background. 7638 */ 7639 if (err == EPERM && 7640 !(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 7641 mutex_enter(&sc->sc_mtx); 7642 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER; 7643 sc->sc_flags |= IWN_FLAG_RADIO_OFF; 7644 mutex_exit(&sc->sc_mtx); 7645 return (IWN_SUCCESS); 7646 } 7647 7648 return (err); 7649 } 7650 7651 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 7652 7653 mutex_enter(&sc->sc_mtx); 7654 sc->sc_flags |= IWN_FLAG_RUNNING; 7655 mutex_exit(&sc->sc_mtx); 7656 7657 return (IWN_SUCCESS); 7658 } 7659 7660 /* 7661 * invoked by GLD to stop or down NIC 7662 */ 7663 static void 7664 iwn_m_stop(void *arg) 7665 { 7666 struct iwn_softc *sc; 7667 ieee80211com_t *ic; 7668 7669 sc = (struct iwn_softc *)arg; 7670 ASSERT(sc != NULL); 7671 ic = &sc->sc_ic; 7672 7673 iwn_hw_stop(sc, B_TRUE); 7674 7675 /* 7676 * release buffer for calibration 7677 */ 7678 7679 ieee80211_stop_watchdog(ic); 7680 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 7681 7682 mutex_enter(&sc->sc_mtx); 7683 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 7684 sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL; 7685 7686 sc->sc_flags &= ~IWN_FLAG_RUNNING; 7687 sc->sc_flags &= ~IWN_FLAG_SCANNING; 7688 mutex_exit(&sc->sc_mtx); 7689 } 7690 7691 7692 /* 7693 * Module Loading Data & Entry Points 7694 */ 7695 DDI_DEFINE_STREAM_OPS(iwn_devops, nulldev, nulldev, iwn_attach, 7696 iwn_detach, nodev, NULL, D_MP, NULL, iwn_quiesce); 7697 7698 static struct modldrv iwn_modldrv = { 7699 &mod_driverops, 7700 "Intel WiFi Link 4965 and 1000/5000/6000 series driver", 7701 &iwn_devops 7702 }; 7703 7704 static struct modlinkage iwn_modlinkage = { 7705 MODREV_1, 7706 &iwn_modldrv, 7707 NULL 7708 }; 7709 7710 int 7711 _init(void) 7712 { 7713 int status; 7714 7715 status = ddi_soft_state_init(&iwn_state, 7716 sizeof (struct iwn_softc), 1); 7717 if (status != DDI_SUCCESS) 7718 return (status); 7719 7720 mac_init_ops(&iwn_devops, "iwn"); 7721 status = mod_install(&iwn_modlinkage); 7722 if (status != DDI_SUCCESS) { 7723 mac_fini_ops(&iwn_devops); 7724 ddi_soft_state_fini(&iwn_state); 7725 } 7726 7727 return (status); 7728 } 7729 7730 int 7731 _fini(void) 7732 { 7733 int status; 7734 7735 status = mod_remove(&iwn_modlinkage); 7736 if (status == DDI_SUCCESS) { 7737 mac_fini_ops(&iwn_devops); 7738 ddi_soft_state_fini(&iwn_state); 7739 } 7740 7741 return (status); 7742 } 7743 7744 int 7745 _info(struct modinfo *mip) 7746 { 7747 return (mod_info(&iwn_modlinkage, mip)); 7748 } 7749