1 /* $NetBSD: if_iwn.c,v 1.78 2016/06/10 13:27:14 ozaki-r Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Copyright 2016 Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> 22 */ 23 24 /* 25 * Driver for Intel WiFi Link 4965 and 100/1000/2000/5000/6000 Series 802.11 26 * network adapters. 27 */ 28 29 /* 30 * TODO: 31 * - turn tunables into driver properties 32 */ 33 34 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 35 36 #include <sys/modctl.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/stat.h> 40 41 #include <sys/param.h> 42 #include <sys/sockio.h> 43 #include <sys/proc.h> 44 #include <sys/socket.h> 45 #include <sys/systm.h> 46 #include <sys/mutex.h> 47 #include <sys/conf.h> 48 49 #include <sys/pci.h> 50 #include <sys/pcie.h> 51 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 62 #include <sys/dlpi.h> 63 #include <sys/mac_provider.h> 64 #include <sys/mac_wifi.h> 65 #include <sys/net80211.h> 66 #include <sys/firmload.h> 67 #include <sys/queue.h> 68 #include <sys/strsun.h> 69 #include <sys/strsubr.h> 70 #include <sys/sysmacros.h> 71 #include <sys/types.h> 72 #include <sys/kstat.h> 73 74 #include <sys/sdt.h> 75 76 #include "if_iwncompat.h" 77 #include "if_iwnreg.h" 78 #include "if_iwnvar.h" 79 #include <inet/wifi_ioctl.h> 80 81 #ifdef DEBUG 82 #define IWN_DEBUG 83 #endif 84 85 /* 86 * regs access attributes 87 */ 88 static ddi_device_acc_attr_t iwn_reg_accattr = { 89 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 90 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 91 .devacc_attr_dataorder = DDI_STRICTORDER_ACC, 92 .devacc_attr_access = DDI_DEFAULT_ACC 93 }; 94 95 /* 96 * DMA access attributes for descriptor 97 */ 98 static ddi_device_acc_attr_t iwn_dma_descattr = { 99 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 100 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 101 .devacc_attr_dataorder = DDI_STRICTORDER_ACC, 102 .devacc_attr_access = DDI_DEFAULT_ACC 103 }; 104 105 /* 106 * DMA access attributes 107 */ 108 static ddi_device_acc_attr_t iwn_dma_accattr = { 109 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 110 .devacc_attr_endian_flags = DDI_NEVERSWAP_ACC, 111 .devacc_attr_dataorder = DDI_STRICTORDER_ACC, 112 .devacc_attr_access = DDI_DEFAULT_ACC 113 }; 114 115 116 /* 117 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 118 */ 119 static const struct ieee80211_rateset iwn_rateset_11a = 120 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 121 122 static const struct ieee80211_rateset iwn_rateset_11b = 123 { 4, { 2, 4, 11, 22 } }; 124 125 static const struct ieee80211_rateset iwn_rateset_11g = 126 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 127 128 static void iwn_kstat_create(struct iwn_softc *, const char *, size_t, 129 kstat_t **, void **); 130 static void iwn_kstat_free(kstat_t *, void *, size_t); 131 static void iwn_kstat_init(struct iwn_softc *); 132 static void iwn_kstat_init_2000(struct iwn_softc *); 133 static void iwn_kstat_init_4965(struct iwn_softc *); 134 static void iwn_kstat_init_6000(struct iwn_softc *); 135 static void iwn_intr_teardown(struct iwn_softc *); 136 static int iwn_intr_add(struct iwn_softc *, int); 137 static int iwn_intr_setup(struct iwn_softc *); 138 static int iwn_attach(dev_info_t *, ddi_attach_cmd_t); 139 static int iwn4965_attach(struct iwn_softc *); 140 static int iwn5000_attach(struct iwn_softc *, uint16_t); 141 static int iwn_detach(dev_info_t *, ddi_detach_cmd_t); 142 static int iwn_quiesce(dev_info_t *); 143 static int iwn_nic_lock(struct iwn_softc *); 144 static int iwn_eeprom_lock(struct iwn_softc *); 145 static int iwn_init_otprom(struct iwn_softc *); 146 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 147 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 148 uint_t, uint_t, void **, ddi_device_acc_attr_t *, uint_t); 149 static void iwn_dma_contig_free(struct iwn_dma_info *); 150 static int iwn_alloc_sched(struct iwn_softc *); 151 static void iwn_free_sched(struct iwn_softc *); 152 static int iwn_alloc_kw(struct iwn_softc *); 153 static void iwn_free_kw(struct iwn_softc *); 154 static int iwn_alloc_ict(struct iwn_softc *); 155 static void iwn_free_ict(struct iwn_softc *); 156 static int iwn_alloc_fwmem(struct iwn_softc *); 157 static void iwn_free_fwmem(struct iwn_softc *); 158 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 159 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 160 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 161 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 162 int); 163 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 164 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 165 static void iwn5000_ict_reset(struct iwn_softc *); 166 static int iwn_read_eeprom(struct iwn_softc *); 167 static void iwn4965_read_eeprom(struct iwn_softc *); 168 169 #ifdef IWN_DEBUG 170 static void iwn4965_print_power_group(struct iwn_softc *, int); 171 #endif 172 static void iwn5000_read_eeprom(struct iwn_softc *); 173 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 174 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 175 static struct ieee80211_node *iwn_node_alloc(ieee80211com_t *); 176 static void iwn_node_free(ieee80211_node_t *); 177 static void iwn_newassoc(struct ieee80211_node *, int); 178 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 179 static void iwn_iter_func(void *, struct ieee80211_node *); 180 static void iwn_calib_timeout(void *); 181 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 182 struct iwn_rx_data *); 183 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 184 struct iwn_rx_data *); 185 #ifndef IEEE80211_NO_HT 186 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 187 struct iwn_rx_data *); 188 #endif 189 static void iwn5000_rx_calib_results(struct iwn_softc *, 190 struct iwn_rx_desc *, struct iwn_rx_data *); 191 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 192 struct iwn_rx_data *); 193 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 194 struct iwn_rx_data *); 195 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 196 struct iwn_rx_data *); 197 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 198 uint8_t); 199 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 200 static void iwn_notif_intr(struct iwn_softc *); 201 static void iwn_wakeup_intr(struct iwn_softc *); 202 static void iwn_fatal_intr(struct iwn_softc *); 203 static uint_t iwn_intr(caddr_t, caddr_t); 204 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 205 uint16_t); 206 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 207 uint16_t); 208 #ifdef notyet 209 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 210 #endif 211 static int iwn_send(ieee80211com_t *, mblk_t *, uint8_t); 212 static void iwn_watchdog(void *); 213 static int iwn_cmd(struct iwn_softc *, uint8_t, void *, int, int); 214 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 215 int); 216 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 217 int); 218 static int iwn_set_link_quality(struct iwn_softc *, 219 struct ieee80211_node *); 220 static int iwn_add_broadcast_node(struct iwn_softc *, int); 221 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 222 static int iwn_set_critical_temp(struct iwn_softc *); 223 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 224 static void iwn4965_power_calibration(struct iwn_softc *, int); 225 static int iwn4965_set_txpower(struct iwn_softc *, int); 226 static int iwn5000_set_txpower(struct iwn_softc *, int); 227 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 228 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 229 static int iwn_get_noise(const struct iwn_rx_general_stats *); 230 static int iwn4965_get_temperature(struct iwn_softc *); 231 static int iwn5000_get_temperature(struct iwn_softc *); 232 static int iwn_init_sensitivity(struct iwn_softc *); 233 static void iwn_collect_noise(struct iwn_softc *, 234 const struct iwn_rx_general_stats *); 235 static int iwn4965_init_gains(struct iwn_softc *); 236 static int iwn5000_init_gains(struct iwn_softc *); 237 static int iwn4965_set_gains(struct iwn_softc *); 238 static int iwn5000_set_gains(struct iwn_softc *); 239 static void iwn_tune_sensitivity(struct iwn_softc *, 240 const struct iwn_rx_stats *); 241 static int iwn_send_sensitivity(struct iwn_softc *); 242 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 243 static int iwn5000_runtime_calib(struct iwn_softc *); 244 245 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 246 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 247 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 248 static int iwn_config_bt_coex_adv2(struct iwn_softc *); 249 250 static int iwn_config(struct iwn_softc *); 251 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, 252 uint8_t); 253 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 254 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 255 static int iwn_scan(struct iwn_softc *, uint16_t); 256 static int iwn_auth(struct iwn_softc *); 257 static int iwn_run(struct iwn_softc *); 258 #ifdef IWN_HWCRYPTO 259 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 260 struct ieee80211_key *); 261 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 262 struct ieee80211_key *); 263 #endif 264 static int iwn_wme_update(struct ieee80211com *); 265 #ifndef IEEE80211_NO_HT 266 static int iwn_ampdu_rx_start(struct ieee80211com *, 267 struct ieee80211_node *, uint8_t); 268 static void iwn_ampdu_rx_stop(struct ieee80211com *, 269 struct ieee80211_node *, uint8_t); 270 static int iwn_ampdu_tx_start(struct ieee80211com *, 271 struct ieee80211_node *, uint8_t); 272 static void iwn_ampdu_tx_stop(struct ieee80211com *, 273 struct ieee80211_node *, uint8_t); 274 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 275 struct ieee80211_node *, uint8_t, uint16_t); 276 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 277 uint8_t, uint16_t); 278 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 279 struct ieee80211_node *, uint8_t, uint16_t); 280 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 281 uint8_t, uint16_t); 282 #endif 283 static int iwn5000_query_calibration(struct iwn_softc *); 284 static int iwn5000_send_calibration(struct iwn_softc *); 285 static int iwn5000_send_wimax_coex(struct iwn_softc *); 286 static int iwn6000_temp_offset_calib(struct iwn_softc *); 287 static int iwn2000_temp_offset_calib(struct iwn_softc *); 288 static int iwn4965_post_alive(struct iwn_softc *); 289 static int iwn5000_post_alive(struct iwn_softc *); 290 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 291 int); 292 static int iwn4965_load_firmware(struct iwn_softc *); 293 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 294 const uint8_t *, int); 295 static int iwn5000_load_firmware(struct iwn_softc *); 296 static int iwn_read_firmware_leg(struct iwn_softc *, 297 struct iwn_fw_info *); 298 static int iwn_read_firmware_tlv(struct iwn_softc *, 299 struct iwn_fw_info *, uint16_t); 300 static int iwn_read_firmware(struct iwn_softc *); 301 static int iwn_clock_wait(struct iwn_softc *); 302 static int iwn_apm_init(struct iwn_softc *); 303 static void iwn_apm_stop_master(struct iwn_softc *); 304 static void iwn_apm_stop(struct iwn_softc *); 305 static int iwn4965_nic_config(struct iwn_softc *); 306 static int iwn5000_nic_config(struct iwn_softc *); 307 static int iwn_hw_prepare(struct iwn_softc *); 308 static int iwn_hw_init(struct iwn_softc *); 309 static void iwn_hw_stop(struct iwn_softc *, boolean_t); 310 static int iwn_init(struct iwn_softc *); 311 static void iwn_abort_scan(void *); 312 static void iwn_periodic(void *); 313 static int iwn_fast_recover(struct iwn_softc *); 314 315 static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, uint32_t); 316 static uint8_t *ieee80211_add_rates(uint8_t *, 317 const struct ieee80211_rateset *); 318 static uint8_t *ieee80211_add_xrates(uint8_t *, 319 const struct ieee80211_rateset *); 320 321 static void iwn_fix_channel(struct iwn_softc *, mblk_t *, 322 struct iwn_rx_stat *); 323 324 #ifdef IWN_DEBUG 325 326 #define IWN_DBG(...) iwn_dbg("?" __VA_ARGS__) 327 328 static int iwn_dbg_print = 0; 329 330 static void 331 iwn_dbg(const char *fmt, ...) 332 { 333 va_list ap; 334 335 if (iwn_dbg_print != 0) { 336 va_start(ap, fmt); 337 vcmn_err(CE_CONT, fmt, ap); 338 va_end(ap); 339 } 340 } 341 342 #else 343 #define IWN_DBG(...) 344 #endif 345 346 /* 347 * tunables 348 */ 349 350 /* 351 * enable 5GHz scanning 352 */ 353 int iwn_enable_5ghz = 1; 354 355 /* 356 * If more than 50 consecutive beacons are missed, 357 * we've probably lost our connection. 358 * If more than 5 consecutive beacons are missed, 359 * reinitialize the sensitivity state machine. 360 */ 361 int iwn_beacons_missed_disconnect = 50; 362 int iwn_beacons_missed_sensitivity = 5; 363 364 /* 365 * iwn_periodic interval, in units of msec 366 */ 367 int iwn_periodic_interval = 100; 368 369 /* 370 * scan timeout in sec 371 */ 372 int iwn_scan_timeout = 20; 373 374 static ether_addr_t etherbroadcastaddr = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 375 376 static void *iwn_state = NULL; 377 378 /* 379 * Mac Call Back entries 380 */ 381 static int iwn_m_stat(void *, uint_t, uint64_t *); 382 static int iwn_m_start(void *); 383 static void iwn_m_stop(void *); 384 static int iwn_m_unicst(void *, const uint8_t *); 385 static int iwn_m_multicst(void *, boolean_t, const uint8_t *); 386 static int iwn_m_promisc(void *, boolean_t); 387 static mblk_t *iwn_m_tx(void *, mblk_t *); 388 static void iwn_m_ioctl(void *, queue_t *, mblk_t *); 389 static int iwn_m_setprop(void *, const char *, mac_prop_id_t, uint_t, 390 const void *); 391 static int iwn_m_getprop(void *, const char *, mac_prop_id_t, uint_t, 392 void *); 393 static void iwn_m_propinfo(void *, const char *, mac_prop_id_t, 394 mac_prop_info_handle_t); 395 396 mac_callbacks_t iwn_m_callbacks = { 397 .mc_callbacks = MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO, 398 .mc_getstat = iwn_m_stat, 399 .mc_start = iwn_m_start, 400 .mc_stop = iwn_m_stop, 401 .mc_setpromisc = iwn_m_promisc, 402 .mc_multicst = iwn_m_multicst, 403 .mc_unicst = iwn_m_unicst, 404 .mc_tx = iwn_m_tx, 405 .mc_reserved = NULL, 406 .mc_ioctl = iwn_m_ioctl, 407 .mc_getcapab = NULL, 408 .mc_open = NULL, 409 .mc_close = NULL, 410 .mc_setprop = iwn_m_setprop, 411 .mc_getprop = iwn_m_getprop, 412 .mc_propinfo = iwn_m_propinfo 413 }; 414 415 static inline uint32_t 416 iwn_read(struct iwn_softc *sc, int reg) 417 { 418 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 419 return (ddi_get32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg))); 420 } 421 422 static inline void 423 iwn_write(struct iwn_softc *sc, int reg, uint32_t val) 424 { 425 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 426 ddi_put32(sc->sc_regh, (uint32_t *)(sc->sc_base + reg), val); 427 } 428 429 static inline void 430 iwn_write_1(struct iwn_softc *sc, int reg, uint8_t val) 431 { 432 ddi_put8(sc->sc_regh, (uint8_t *)(sc->sc_base + reg), val); 433 } 434 435 static void 436 iwn_kstat_create(struct iwn_softc *sc, const char *name, size_t size, 437 kstat_t **ks, void **data) 438 { 439 *ks = kstat_create(ddi_driver_name(sc->sc_dip), 440 ddi_get_instance(sc->sc_dip), name, "misc", KSTAT_TYPE_NAMED, 441 size / sizeof (kstat_named_t), 0); 442 if (*ks == NULL) 443 *data = kmem_zalloc(size, KM_SLEEP); 444 else 445 *data = (*ks)->ks_data; 446 } 447 448 static void 449 iwn_kstat_free(kstat_t *ks, void *data, size_t size) 450 { 451 if (ks != NULL) 452 kstat_delete(ks); 453 else if (data != NULL) 454 kmem_free(data, size); 455 } 456 457 static void 458 iwn_kstat_init(struct iwn_softc *sc) 459 { 460 if (sc->sc_ks_misc != NULL) 461 sc->sc_ks_misc->ks_lock = &sc->sc_mtx; 462 if (sc->sc_ks_ant != NULL) 463 sc->sc_ks_ant->ks_lock = &sc->sc_mtx; 464 if (sc->sc_ks_sens != NULL) 465 sc->sc_ks_sens->ks_lock = &sc->sc_mtx; 466 if (sc->sc_ks_timing != NULL) 467 sc->sc_ks_timing->ks_lock = &sc->sc_mtx; 468 if (sc->sc_ks_edca != NULL) 469 sc->sc_ks_edca->ks_lock = &sc->sc_mtx; 470 471 kstat_named_init(&sc->sc_misc->temp, 472 "temperature", KSTAT_DATA_ULONG); 473 kstat_named_init(&sc->sc_misc->crit_temp, 474 "critical temperature", KSTAT_DATA_ULONG); 475 kstat_named_init(&sc->sc_misc->pslevel, 476 "power saving level", KSTAT_DATA_ULONG); 477 kstat_named_init(&sc->sc_misc->noise, 478 "noise", KSTAT_DATA_LONG); 479 480 481 kstat_named_init(&sc->sc_ant->tx_ant, 482 "TX mask", KSTAT_DATA_ULONG); 483 kstat_named_init(&sc->sc_ant->rx_ant, 484 "RX mask", KSTAT_DATA_ULONG); 485 kstat_named_init(&sc->sc_ant->conn_ant, 486 "connected mask", KSTAT_DATA_ULONG); 487 kstat_named_init(&sc->sc_ant->gain[0], 488 "gain A", KSTAT_DATA_ULONG); 489 kstat_named_init(&sc->sc_ant->gain[1], 490 "gain B", KSTAT_DATA_ULONG); 491 kstat_named_init(&sc->sc_ant->gain[2], 492 "gain C", KSTAT_DATA_ULONG); 493 494 kstat_named_init(&sc->sc_sens->ofdm_x1, 495 "OFDM X1", KSTAT_DATA_ULONG); 496 kstat_named_init(&sc->sc_sens->ofdm_mrc_x1, 497 "OFDM MRC X1", KSTAT_DATA_ULONG); 498 kstat_named_init(&sc->sc_sens->ofdm_x4, 499 "OFDM X4", KSTAT_DATA_ULONG); 500 kstat_named_init(&sc->sc_sens->ofdm_mrc_x4, 501 "OFDM MRC X4", KSTAT_DATA_ULONG); 502 kstat_named_init(&sc->sc_sens->cck_x4, 503 "CCK X4", KSTAT_DATA_ULONG); 504 kstat_named_init(&sc->sc_sens->cck_mrc_x4, 505 "CCK MRC X4", KSTAT_DATA_ULONG); 506 kstat_named_init(&sc->sc_sens->energy_cck, 507 "energy CCK", KSTAT_DATA_ULONG); 508 509 kstat_named_init(&sc->sc_timing->bintval, 510 "bintval", KSTAT_DATA_ULONG); 511 kstat_named_init(&sc->sc_timing->tstamp, 512 "timestamp", KSTAT_DATA_ULONGLONG); 513 kstat_named_init(&sc->sc_timing->init, 514 "init", KSTAT_DATA_ULONG); 515 516 kstat_named_init(&sc->sc_edca->ac[0].cwmin, 517 "background cwmin", KSTAT_DATA_ULONG); 518 kstat_named_init(&sc->sc_edca->ac[0].cwmax, 519 "background cwmax", KSTAT_DATA_ULONG); 520 kstat_named_init(&sc->sc_edca->ac[0].aifsn, 521 "background aifsn", KSTAT_DATA_ULONG); 522 kstat_named_init(&sc->sc_edca->ac[0].txop, 523 "background txop", KSTAT_DATA_ULONG); 524 kstat_named_init(&sc->sc_edca->ac[1].cwmin, 525 "best effort cwmin", KSTAT_DATA_ULONG); 526 kstat_named_init(&sc->sc_edca->ac[1].cwmax, 527 "best effort cwmax", KSTAT_DATA_ULONG); 528 kstat_named_init(&sc->sc_edca->ac[1].aifsn, 529 "best effort aifsn", KSTAT_DATA_ULONG); 530 kstat_named_init(&sc->sc_edca->ac[1].txop, 531 "best effort txop", KSTAT_DATA_ULONG); 532 kstat_named_init(&sc->sc_edca->ac[2].cwmin, 533 "video cwmin", KSTAT_DATA_ULONG); 534 kstat_named_init(&sc->sc_edca->ac[2].cwmax, 535 "video cwmax", KSTAT_DATA_ULONG); 536 kstat_named_init(&sc->sc_edca->ac[2].aifsn, 537 "video aifsn", KSTAT_DATA_ULONG); 538 kstat_named_init(&sc->sc_edca->ac[2].txop, 539 "video txop", KSTAT_DATA_ULONG); 540 kstat_named_init(&sc->sc_edca->ac[3].cwmin, 541 "voice cwmin", KSTAT_DATA_ULONG); 542 kstat_named_init(&sc->sc_edca->ac[3].cwmax, 543 "voice cwmax", KSTAT_DATA_ULONG); 544 kstat_named_init(&sc->sc_edca->ac[3].aifsn, 545 "voice aifsn", KSTAT_DATA_ULONG); 546 kstat_named_init(&sc->sc_edca->ac[3].txop, 547 "voice txop", KSTAT_DATA_ULONG); 548 } 549 550 static void 551 iwn_kstat_init_2000(struct iwn_softc *sc) 552 { 553 if (sc->sc_ks_toff != NULL) 554 sc->sc_ks_toff->ks_lock = &sc->sc_mtx; 555 556 kstat_named_init(&sc->sc_toff.t2000->toff_lo, 557 "temperature offset low", KSTAT_DATA_LONG); 558 kstat_named_init(&sc->sc_toff.t2000->toff_hi, 559 "temperature offset high", KSTAT_DATA_LONG); 560 kstat_named_init(&sc->sc_toff.t2000->volt, 561 "reference voltage", KSTAT_DATA_LONG); 562 } 563 564 static void 565 iwn_kstat_init_4965(struct iwn_softc *sc) 566 { 567 int i, r; 568 569 if (sc->sc_ks_txpower != NULL) 570 sc->sc_ks_txpower->ks_lock = &sc->sc_mtx; 571 572 kstat_named_init(&sc->sc_txpower->vdiff, 573 "voltage comp", KSTAT_DATA_LONG); 574 kstat_named_init(&sc->sc_txpower->chan, 575 "channel", KSTAT_DATA_LONG); 576 kstat_named_init(&sc->sc_txpower->group, 577 "attenuation group", KSTAT_DATA_LONG); 578 kstat_named_init(&sc->sc_txpower->subband, 579 "sub-band", KSTAT_DATA_LONG); 580 for (i = 0; i != 2; i++) { 581 char tmp[KSTAT_STRLEN]; 582 583 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d power", i); 584 kstat_named_init(&sc->sc_txpower->txchain[i].power, 585 tmp, KSTAT_DATA_LONG); 586 587 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d gain", i); 588 kstat_named_init(&sc->sc_txpower->txchain[i].gain, 589 tmp, KSTAT_DATA_LONG); 590 591 (void) snprintf(tmp, KSTAT_STRLEN - 1, "Ant %d temperature", i); 592 kstat_named_init(&sc->sc_txpower->txchain[i].temp, 593 tmp, KSTAT_DATA_LONG); 594 595 (void) snprintf(tmp, KSTAT_STRLEN - 1, 596 "Ant %d temperature compensation", i); 597 kstat_named_init(&sc->sc_txpower->txchain[i].tcomp, 598 tmp, KSTAT_DATA_LONG); 599 600 for (r = 0; r <= IWN_RIDX_MAX; r++) { 601 (void) snprintf(tmp, KSTAT_STRLEN - 1, 602 "Ant %d Rate %d RF gain", i, r); 603 kstat_named_init( 604 &sc->sc_txpower->txchain[i].rate[r].rf_gain, 605 tmp, KSTAT_DATA_LONG); 606 607 (void) snprintf(tmp, KSTAT_STRLEN - 1, 608 "Ant %d Rate %d DSP gain", i, r); 609 kstat_named_init( 610 &sc->sc_txpower->txchain[0].rate[0].dsp_gain, 611 tmp, KSTAT_DATA_LONG); 612 } 613 } 614 } 615 616 static void 617 iwn_kstat_init_6000(struct iwn_softc *sc) 618 { 619 if (sc->sc_ks_toff != NULL) 620 sc->sc_ks_toff->ks_lock = &sc->sc_mtx; 621 622 kstat_named_init(&sc->sc_toff.t6000->toff, 623 "temperature offset", KSTAT_DATA_LONG); 624 } 625 626 static void 627 iwn_intr_teardown(struct iwn_softc *sc) 628 { 629 if (sc->sc_intr_htable != NULL) { 630 if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) { 631 (void) ddi_intr_block_disable(sc->sc_intr_htable, 632 sc->sc_intr_count); 633 } else { 634 (void) ddi_intr_disable(sc->sc_intr_htable[0]); 635 } 636 (void) ddi_intr_remove_handler(sc->sc_intr_htable[0]); 637 (void) ddi_intr_free(sc->sc_intr_htable[0]); 638 sc->sc_intr_htable[0] = NULL; 639 640 kmem_free(sc->sc_intr_htable, sc->sc_intr_size); 641 sc->sc_intr_size = 0; 642 sc->sc_intr_htable = NULL; 643 } 644 } 645 646 static int 647 iwn_intr_add(struct iwn_softc *sc, int intr_type) 648 { 649 int ni, na; 650 int ret; 651 char *func; 652 653 if (ddi_intr_get_nintrs(sc->sc_dip, intr_type, &ni) != DDI_SUCCESS) 654 return (DDI_FAILURE); 655 656 657 if (ddi_intr_get_navail(sc->sc_dip, intr_type, &na) != DDI_SUCCESS) 658 return (DDI_FAILURE); 659 660 sc->sc_intr_size = sizeof (ddi_intr_handle_t); 661 sc->sc_intr_htable = kmem_zalloc(sc->sc_intr_size, KM_SLEEP); 662 663 ret = ddi_intr_alloc(sc->sc_dip, sc->sc_intr_htable, intr_type, 0, 1, 664 &sc->sc_intr_count, DDI_INTR_ALLOC_STRICT); 665 if (ret != DDI_SUCCESS) { 666 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_alloc() failed"); 667 return (DDI_FAILURE); 668 } 669 670 ret = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri); 671 if (ret != DDI_SUCCESS) { 672 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_pri() failed"); 673 return (DDI_FAILURE); 674 } 675 676 ret = ddi_intr_add_handler(sc->sc_intr_htable[0], iwn_intr, (caddr_t)sc, 677 NULL); 678 if (ret != DDI_SUCCESS) { 679 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_add_handler() failed"); 680 return (DDI_FAILURE); 681 } 682 683 ret = ddi_intr_get_cap(sc->sc_intr_htable[0], &sc->sc_intr_cap); 684 if (ret != DDI_SUCCESS) { 685 dev_err(sc->sc_dip, CE_WARN, "!ddi_intr_get_cap() failed"); 686 return (DDI_FAILURE); 687 } 688 689 if ((sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) != 0) { 690 ret = ddi_intr_block_enable(sc->sc_intr_htable, 691 sc->sc_intr_count); 692 func = "ddi_intr_enable_block"; 693 } else { 694 ret = ddi_intr_enable(sc->sc_intr_htable[0]); 695 func = "ddi_intr_enable"; 696 } 697 698 if (ret != DDI_SUCCESS) { 699 dev_err(sc->sc_dip, CE_WARN, "!%s() failed", func); 700 return (DDI_FAILURE); 701 } 702 703 return (DDI_SUCCESS); 704 } 705 706 static int 707 iwn_intr_setup(struct iwn_softc *sc) 708 { 709 int intr_type; 710 int ret; 711 712 ret = ddi_intr_get_supported_types(sc->sc_dip, &intr_type); 713 if (ret != DDI_SUCCESS) { 714 dev_err(sc->sc_dip, CE_WARN, 715 "!ddi_intr_get_supported_types() failed"); 716 return (DDI_FAILURE); 717 } 718 719 if ((intr_type & DDI_INTR_TYPE_MSIX)) { 720 if (iwn_intr_add(sc, DDI_INTR_TYPE_MSIX) == DDI_SUCCESS) 721 return (DDI_SUCCESS); 722 iwn_intr_teardown(sc); 723 } 724 725 if ((intr_type & DDI_INTR_TYPE_MSI)) { 726 if (iwn_intr_add(sc, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) 727 return (DDI_SUCCESS); 728 iwn_intr_teardown(sc); 729 } 730 731 if ((intr_type & DDI_INTR_TYPE_FIXED)) { 732 if (iwn_intr_add(sc, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS) 733 return (DDI_SUCCESS); 734 iwn_intr_teardown(sc); 735 } 736 737 dev_err(sc->sc_dip, CE_WARN, "!iwn_intr_setup() failed"); 738 return (DDI_FAILURE); 739 } 740 741 static int 742 iwn_pci_get_capability(ddi_acc_handle_t pcih, int cap, int *cap_off) 743 { 744 uint8_t ptr; 745 uint8_t val; 746 747 for (ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR); 748 ptr != 0 && ptr != 0xff; 749 ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR)) { 750 val = pci_config_get8(pcih, ptr + PCIE_CAP_ID); 751 if (val == 0xff) 752 return (DDI_FAILURE); 753 754 if (cap != val) 755 continue; 756 757 *cap_off = ptr; 758 return (DDI_SUCCESS); 759 } 760 761 return (DDI_FAILURE); 762 } 763 764 static int 765 iwn_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 766 { 767 int instance; 768 769 struct iwn_softc *sc; 770 struct ieee80211com *ic; 771 char strbuf[32]; 772 wifi_data_t wd = { 0 }; 773 mac_register_t *macp; 774 uint32_t reg; 775 int i, error; 776 777 switch (cmd) { 778 case DDI_ATTACH: 779 break; 780 781 case DDI_RESUME: 782 instance = ddi_get_instance(dip); 783 sc = ddi_get_soft_state(iwn_state, 784 instance); 785 ASSERT(sc != NULL); 786 787 if (sc->sc_flags & IWN_FLAG_RUNNING) { 788 (void) iwn_init(sc); 789 } 790 791 sc->sc_flags &= ~IWN_FLAG_SUSPEND; 792 793 return (DDI_SUCCESS); 794 default: 795 return (DDI_FAILURE); 796 } 797 798 instance = ddi_get_instance(dip); 799 800 if (ddi_soft_state_zalloc(iwn_state, instance) != DDI_SUCCESS) { 801 dev_err(dip, CE_WARN, "!ddi_soft_state_zalloc() failed"); 802 return (DDI_FAILURE); 803 } 804 805 sc = ddi_get_soft_state(iwn_state, instance); 806 ddi_set_driver_private(dip, (caddr_t)sc); 807 808 ic = &sc->sc_ic; 809 810 sc->sc_dip = dip; 811 812 iwn_kstat_create(sc, "hw_state", sizeof (struct iwn_ks_misc), 813 &sc->sc_ks_misc, (void **)&sc->sc_misc); 814 iwn_kstat_create(sc, "antennas", sizeof (struct iwn_ks_ant), 815 &sc->sc_ks_ant, (void **)&sc->sc_ant); 816 iwn_kstat_create(sc, "sensitivity", sizeof (struct iwn_ks_sens), 817 &sc->sc_ks_sens, (void **)&sc->sc_sens); 818 iwn_kstat_create(sc, "timing", sizeof (struct iwn_ks_timing), 819 &sc->sc_ks_timing, (void **)&sc->sc_timing); 820 iwn_kstat_create(sc, "edca", sizeof (struct iwn_ks_edca), 821 &sc->sc_ks_edca, (void **)&sc->sc_edca); 822 823 if (pci_config_setup(dip, &sc->sc_pcih) != DDI_SUCCESS) { 824 dev_err(sc->sc_dip, CE_WARN, "!pci_config_setup() failed"); 825 goto fail_pci_config; 826 } 827 828 /* 829 * Get the offset of the PCI Express Capability Structure in PCI 830 * Configuration Space. 831 */ 832 error = iwn_pci_get_capability(sc->sc_pcih, PCI_CAP_ID_PCI_E, 833 &sc->sc_cap_off); 834 if (error != DDI_SUCCESS) { 835 dev_err(sc->sc_dip, CE_WARN, 836 "!PCIe capability structure not found!"); 837 goto fail_pci_capab; 838 } 839 840 /* Clear device-specific "PCI retry timeout" register (41h). */ 841 reg = pci_config_get8(sc->sc_pcih, 0x41); 842 if (reg) 843 pci_config_put8(sc->sc_pcih, 0x41, 0); 844 845 error = ddi_regs_map_setup(dip, 1, &sc->sc_base, 0, 0, &iwn_reg_accattr, 846 &sc->sc_regh); 847 if (error != DDI_SUCCESS) { 848 dev_err(sc->sc_dip, CE_WARN, "!ddi_regs_map_setup() failed"); 849 goto fail_regs_map; 850 } 851 852 /* Clear pending interrupts. */ 853 IWN_WRITE(sc, IWN_INT, 0xffffffff); 854 855 /* Disable all interrupts. */ 856 IWN_WRITE(sc, IWN_INT_MASK, 0); 857 858 /* Install interrupt handler. */ 859 if (iwn_intr_setup(sc) != DDI_SUCCESS) 860 goto fail_intr; 861 862 mutex_init(&sc->sc_mtx, NULL, MUTEX_DRIVER, 863 DDI_INTR_PRI(sc->sc_intr_pri)); 864 mutex_init(&sc->sc_tx_mtx, NULL, MUTEX_DRIVER, 865 DDI_INTR_PRI(sc->sc_intr_pri)); 866 mutex_init(&sc->sc_mt_mtx, NULL, MUTEX_DRIVER, 867 DDI_INTR_PRI(sc->sc_intr_pri)); 868 869 cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL); 870 cv_init(&sc->sc_scan_cv, NULL, CV_DRIVER, NULL); 871 cv_init(&sc->sc_fhdma_cv, NULL, CV_DRIVER, NULL); 872 cv_init(&sc->sc_alive_cv, NULL, CV_DRIVER, NULL); 873 cv_init(&sc->sc_calib_cv, NULL, CV_DRIVER, NULL); 874 875 iwn_kstat_init(sc); 876 877 /* Read hardware revision and attach. */ 878 sc->hw_type = 879 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK) 880 >> IWN_HW_REV_TYPE_SHIFT; 881 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 882 error = iwn4965_attach(sc); 883 else 884 error = iwn5000_attach(sc, sc->sc_devid); 885 if (error != 0) { 886 dev_err(sc->sc_dip, CE_WARN, "!could not attach device"); 887 goto fail_hw; 888 } 889 890 if ((error = iwn_hw_prepare(sc)) != 0) { 891 dev_err(sc->sc_dip, CE_WARN, "!hardware not ready"); 892 goto fail_hw; 893 } 894 895 /* Read MAC address, channels, etc from EEPROM. */ 896 if ((error = iwn_read_eeprom(sc)) != 0) { 897 dev_err(sc->sc_dip, CE_WARN, "!could not read EEPROM"); 898 goto fail_hw; 899 } 900 901 /* Allocate DMA memory for firmware transfers. */ 902 if ((error = iwn_alloc_fwmem(sc)) != 0) { 903 dev_err(sc->sc_dip, CE_WARN, 904 "!could not allocate memory for firmware"); 905 goto fail_fwmem; 906 } 907 908 /* Allocate "Keep Warm" page. */ 909 if ((error = iwn_alloc_kw(sc)) != 0) { 910 dev_err(sc->sc_dip, CE_WARN, 911 "!could not allocate keep warm page"); 912 goto fail_kw; 913 } 914 915 /* Allocate ICT table for 5000 Series. */ 916 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 917 (error = iwn_alloc_ict(sc)) != 0) { 918 dev_err(sc->sc_dip, CE_WARN, "!could not allocate ICT table"); 919 goto fail_ict; 920 } 921 922 /* Allocate TX scheduler "rings". */ 923 if ((error = iwn_alloc_sched(sc)) != 0) { 924 dev_err(sc->sc_dip, CE_WARN, 925 "!could not allocate TX scheduler rings"); 926 goto fail_sched; 927 } 928 929 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 930 for (i = 0; i < sc->ntxqs; i++) { 931 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 932 dev_err(sc->sc_dip, CE_WARN, 933 "!could not allocate TX ring %d", i); 934 while (--i >= 0) 935 iwn_free_tx_ring(sc, &sc->txq[i]); 936 goto fail_txring; 937 } 938 } 939 940 /* Allocate RX ring. */ 941 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 942 dev_err(sc->sc_dip, CE_WARN, "!could not allocate RX ring"); 943 goto fail_rxring; 944 } 945 946 /* Clear pending interrupts. */ 947 IWN_WRITE(sc, IWN_INT, 0xffffffff); 948 949 /* Count the number of available chains. */ 950 sc->ntxchains = 951 ((sc->txchainmask >> 2) & 1) + 952 ((sc->txchainmask >> 1) & 1) + 953 ((sc->txchainmask >> 0) & 1); 954 sc->nrxchains = 955 ((sc->rxchainmask >> 2) & 1) + 956 ((sc->rxchainmask >> 1) & 1) + 957 ((sc->rxchainmask >> 0) & 1); 958 dev_err(sc->sc_dip, CE_CONT, "!MIMO %dT%dR, %s, address %s", 959 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 960 ieee80211_macaddr_sprintf(ic->ic_macaddr)); 961 962 sc->sc_ant->tx_ant.value.ul = sc->txchainmask; 963 sc->sc_ant->rx_ant.value.ul = sc->rxchainmask; 964 965 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 966 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 967 ic->ic_state = IEEE80211_S_INIT; 968 969 /* Set device capabilities. */ 970 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, 971 * and IEEE80211_C_PMGT too. */ 972 ic->ic_caps = 973 IEEE80211_C_IBSS | /* IBSS mode support */ 974 IEEE80211_C_WPA | /* 802.11i */ 975 IEEE80211_C_MONITOR | /* monitor mode supported */ 976 IEEE80211_C_TXPMGT | /* tx power management */ 977 IEEE80211_C_SHSLOT | /* short slot time supported */ 978 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 979 IEEE80211_C_WME; /* 802.11e */ 980 981 #ifndef IEEE80211_NO_HT 982 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 983 /* Set HT capabilities. */ 984 ic->ic_htcaps = 985 #if IWN_RBUF_SIZE == 8192 986 IEEE80211_HTCAP_AMSDU7935 | 987 #endif 988 IEEE80211_HTCAP_CBW20_40 | 989 IEEE80211_HTCAP_SGI20 | 990 IEEE80211_HTCAP_SGI40; 991 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 992 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 993 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 994 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 995 else 996 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 997 } 998 #endif /* !IEEE80211_NO_HT */ 999 1000 /* Set supported legacy rates. */ 1001 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b; 1002 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g; 1003 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 1004 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a; 1005 } 1006 #ifndef IEEE80211_NO_HT 1007 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 1008 /* Set supported HT rates. */ 1009 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 1010 if (sc->nrxchains > 1) 1011 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 1012 if (sc->nrxchains > 2) 1013 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 1014 } 1015 #endif 1016 1017 /* IBSS channel undefined for now. */ 1018 ic->ic_ibss_chan = &ic->ic_sup_channels[0]; 1019 1020 ic->ic_node_newassoc = iwn_newassoc; 1021 ic->ic_xmit = iwn_send; 1022 #ifdef IWN_HWCRYPTO 1023 ic->ic_crypto.cs_key_set = iwn_set_key; 1024 ic->ic_crypto.cs_key_delete = iwn_delete_key; 1025 #endif 1026 ic->ic_wme.wme_update = iwn_wme_update; 1027 #ifndef IEEE80211_NO_HT 1028 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 1029 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 1030 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 1031 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 1032 #endif 1033 /* 1034 * attach to 802.11 module 1035 */ 1036 ieee80211_attach(ic); 1037 1038 ieee80211_register_door(ic, ddi_driver_name(dip), ddi_get_instance(dip)); 1039 1040 /* Override 802.11 state transition machine. */ 1041 sc->sc_newstate = ic->ic_newstate; 1042 ic->ic_newstate = iwn_newstate; 1043 ic->ic_watchdog = iwn_watchdog; 1044 1045 ic->ic_node_alloc = iwn_node_alloc; 1046 ic->ic_node_free = iwn_node_free; 1047 1048 ieee80211_media_init(ic); 1049 1050 /* 1051 * initialize default tx key 1052 */ 1053 ic->ic_def_txkey = 0; 1054 1055 sc->amrr.amrr_min_success_threshold = 1; 1056 sc->amrr.amrr_max_success_threshold = 15; 1057 1058 /* 1059 * Initialize pointer to device specific functions 1060 */ 1061 wd.wd_secalloc = WIFI_SEC_NONE; 1062 wd.wd_opmode = ic->ic_opmode; 1063 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr); 1064 1065 /* 1066 * create relation to GLD 1067 */ 1068 macp = mac_alloc(MAC_VERSION); 1069 if (NULL == macp) { 1070 dev_err(sc->sc_dip, CE_WARN, "!mac_alloc() failed"); 1071 goto fail_mac_alloc; 1072 } 1073 1074 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI; 1075 macp->m_driver = sc; 1076 macp->m_dip = dip; 1077 macp->m_src_addr = ic->ic_macaddr; 1078 macp->m_callbacks = &iwn_m_callbacks; 1079 macp->m_min_sdu = 0; 1080 macp->m_max_sdu = IEEE80211_MTU; 1081 macp->m_pdata = &wd; 1082 macp->m_pdata_size = sizeof (wd); 1083 1084 /* 1085 * Register the macp to mac 1086 */ 1087 error = mac_register(macp, &ic->ic_mach); 1088 mac_free(macp); 1089 if (error != DDI_SUCCESS) { 1090 dev_err(sc->sc_dip, CE_WARN, "!mac_register() failed"); 1091 goto fail_mac_alloc; 1092 } 1093 1094 /* 1095 * Create minor node of type DDI_NT_NET_WIFI 1096 */ 1097 (void) snprintf(strbuf, sizeof (strbuf), "iwn%d", instance); 1098 error = ddi_create_minor_node(dip, strbuf, S_IFCHR, 1099 instance + 1, DDI_NT_NET_WIFI, 0); 1100 if (error != DDI_SUCCESS) { 1101 dev_err(sc->sc_dip, CE_WARN, "!ddi_create_minor_node() failed"); 1102 goto fail_minor; 1103 } 1104 1105 /* 1106 * Notify link is down now 1107 */ 1108 mac_link_update(ic->ic_mach, LINK_STATE_DOWN); 1109 1110 sc->sc_periodic = ddi_periodic_add(iwn_periodic, sc, 1111 iwn_periodic_interval * MICROSEC, 0); 1112 1113 if (sc->sc_ks_misc) 1114 kstat_install(sc->sc_ks_misc); 1115 if (sc->sc_ks_ant) 1116 kstat_install(sc->sc_ks_ant); 1117 if (sc->sc_ks_sens) 1118 kstat_install(sc->sc_ks_sens); 1119 if (sc->sc_ks_timing) 1120 kstat_install(sc->sc_ks_timing); 1121 if (sc->sc_ks_edca) 1122 kstat_install(sc->sc_ks_edca); 1123 if (sc->sc_ks_txpower) 1124 kstat_install(sc->sc_ks_txpower); 1125 if (sc->sc_ks_toff) 1126 kstat_install(sc->sc_ks_toff); 1127 1128 sc->sc_flags |= IWN_FLAG_ATTACHED; 1129 1130 return (DDI_SUCCESS); 1131 1132 /* Free allocated memory if something failed during attachment. */ 1133 fail_minor: 1134 mac_unregister(ic->ic_mach); 1135 1136 fail_mac_alloc: 1137 ieee80211_detach(ic); 1138 iwn_free_rx_ring(sc, &sc->rxq); 1139 1140 fail_rxring: 1141 for (i = 0; i < sc->ntxqs; i++) 1142 iwn_free_tx_ring(sc, &sc->txq[i]); 1143 1144 fail_txring: 1145 iwn_free_sched(sc); 1146 1147 fail_sched: 1148 if (sc->ict != NULL) 1149 iwn_free_ict(sc); 1150 1151 fail_ict: 1152 iwn_free_kw(sc); 1153 1154 fail_kw: 1155 iwn_free_fwmem(sc); 1156 1157 fail_fwmem: 1158 fail_hw: 1159 iwn_intr_teardown(sc); 1160 1161 iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower, 1162 sizeof (struct iwn_ks_txpower)); 1163 1164 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 1165 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000, 1166 sizeof (struct iwn_ks_toff_6000)); 1167 else 1168 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000, 1169 sizeof (struct iwn_ks_toff_2000)); 1170 1171 fail_intr: 1172 ddi_regs_map_free(&sc->sc_regh); 1173 1174 fail_regs_map: 1175 fail_pci_capab: 1176 pci_config_teardown(&sc->sc_pcih); 1177 1178 fail_pci_config: 1179 iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc, 1180 sizeof (struct iwn_ks_misc)); 1181 iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant, 1182 sizeof (struct iwn_ks_ant)); 1183 iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens, 1184 sizeof (struct iwn_ks_sens)); 1185 iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing, 1186 sizeof (struct iwn_ks_timing)); 1187 iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca, 1188 sizeof (struct iwn_ks_edca)); 1189 1190 ddi_soft_state_free(iwn_state, instance); 1191 1192 return (DDI_FAILURE); 1193 } 1194 1195 int 1196 iwn4965_attach(struct iwn_softc *sc) 1197 { 1198 struct iwn_ops *ops = &sc->ops; 1199 1200 ops->load_firmware = iwn4965_load_firmware; 1201 ops->read_eeprom = iwn4965_read_eeprom; 1202 ops->post_alive = iwn4965_post_alive; 1203 ops->nic_config = iwn4965_nic_config; 1204 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 1205 ops->update_sched = iwn4965_update_sched; 1206 ops->get_temperature = iwn4965_get_temperature; 1207 ops->get_rssi = iwn4965_get_rssi; 1208 ops->set_txpower = iwn4965_set_txpower; 1209 ops->init_gains = iwn4965_init_gains; 1210 ops->set_gains = iwn4965_set_gains; 1211 ops->add_node = iwn4965_add_node; 1212 ops->tx_done = iwn4965_tx_done; 1213 #ifndef IEEE80211_NO_HT 1214 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1215 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1216 #endif 1217 sc->ntxqs = IWN4965_NTXQUEUES; 1218 sc->ndmachnls = IWN4965_NDMACHNLS; 1219 sc->broadcast_id = IWN4965_ID_BROADCAST; 1220 sc->rxonsz = IWN4965_RXONSZ; 1221 sc->schedsz = IWN4965_SCHEDSZ; 1222 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1223 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1224 sc->fwsz = IWN4965_FWSZ; 1225 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1226 sc->limits = &iwn4965_sensitivity_limits; 1227 sc->fwname = "iwlwifi-4965-2.ucode"; 1228 /* Override chains masks, ROM is known to be broken. */ 1229 sc->txchainmask = IWN_ANT_AB; 1230 sc->rxchainmask = IWN_ANT_ABC; 1231 1232 iwn_kstat_create(sc, "txpower", sizeof (struct iwn_ks_txpower), 1233 &sc->sc_ks_txpower, (void **)&sc->sc_txpower); 1234 iwn_kstat_init_4965(sc); 1235 1236 return 0; 1237 } 1238 1239 int 1240 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1241 { 1242 struct iwn_ops *ops = &sc->ops; 1243 1244 ops->load_firmware = iwn5000_load_firmware; 1245 ops->read_eeprom = iwn5000_read_eeprom; 1246 ops->post_alive = iwn5000_post_alive; 1247 ops->nic_config = iwn5000_nic_config; 1248 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 1249 ops->update_sched = iwn5000_update_sched; 1250 ops->get_temperature = iwn5000_get_temperature; 1251 ops->get_rssi = iwn5000_get_rssi; 1252 ops->set_txpower = iwn5000_set_txpower; 1253 ops->init_gains = iwn5000_init_gains; 1254 ops->set_gains = iwn5000_set_gains; 1255 ops->add_node = iwn5000_add_node; 1256 ops->tx_done = iwn5000_tx_done; 1257 #ifndef IEEE80211_NO_HT 1258 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1259 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1260 #endif 1261 sc->ntxqs = IWN5000_NTXQUEUES; 1262 sc->ndmachnls = IWN5000_NDMACHNLS; 1263 sc->broadcast_id = IWN5000_ID_BROADCAST; 1264 sc->rxonsz = IWN5000_RXONSZ; 1265 sc->schedsz = IWN5000_SCHEDSZ; 1266 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1267 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1268 sc->fwsz = IWN5000_FWSZ; 1269 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1270 1271 switch (sc->hw_type) { 1272 case IWN_HW_REV_TYPE_5100: 1273 sc->limits = &iwn5000_sensitivity_limits; 1274 sc->fwname = "iwlwifi-5000-2.ucode"; 1275 /* Override chains masks, ROM is known to be broken. */ 1276 sc->txchainmask = IWN_ANT_B; 1277 sc->rxchainmask = IWN_ANT_AB; 1278 break; 1279 case IWN_HW_REV_TYPE_5150: 1280 sc->limits = &iwn5150_sensitivity_limits; 1281 sc->fwname = "iwlwifi-5150-2.ucode"; 1282 break; 1283 case IWN_HW_REV_TYPE_5300: 1284 case IWN_HW_REV_TYPE_5350: 1285 sc->limits = &iwn5000_sensitivity_limits; 1286 sc->fwname = "iwlwifi-5000-2.ucode"; 1287 break; 1288 case IWN_HW_REV_TYPE_1000: 1289 sc->limits = &iwn1000_sensitivity_limits; 1290 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 || 1291 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2) 1292 sc->fwname = "iwlwifi-100-5.ucode"; 1293 else 1294 sc->fwname = "iwlwifi-1000-3.ucode"; 1295 break; 1296 case IWN_HW_REV_TYPE_6000: 1297 sc->limits = &iwn6000_sensitivity_limits; 1298 sc->fwname = "iwlwifi-6000-4.ucode"; 1299 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 1300 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 1301 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 1302 /* Override chains masks, ROM is known to be broken. */ 1303 sc->txchainmask = IWN_ANT_BC; 1304 sc->rxchainmask = IWN_ANT_BC; 1305 } 1306 break; 1307 case IWN_HW_REV_TYPE_6050: 1308 sc->limits = &iwn6000_sensitivity_limits; 1309 sc->fwname = "iwlwifi-6050-5.ucode"; 1310 break; 1311 case IWN_HW_REV_TYPE_6005: 1312 sc->limits = &iwn6000_sensitivity_limits; 1313 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 1314 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 1315 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 1316 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 1317 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 1318 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 || 1319 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) { 1320 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 1321 ops->config_bt_coex = iwn_config_bt_coex_adv1; 1322 } 1323 else 1324 sc->fwname = "iwlwifi-6000g2a-6.ucode"; 1325 1326 iwn_kstat_create(sc, "temp_offset", 1327 sizeof (struct iwn_ks_toff_6000), 1328 &sc->sc_ks_toff, (void **)&sc->sc_toff.t6000); 1329 iwn_kstat_init_6000(sc); 1330 break; 1331 case IWN_HW_REV_TYPE_2030: 1332 sc->limits = &iwn2000_sensitivity_limits; 1333 sc->fwname = "iwlwifi-2030-6.ucode"; 1334 ops->config_bt_coex = iwn_config_bt_coex_adv2; 1335 1336 iwn_kstat_create(sc, "temp_offset", 1337 sizeof (struct iwn_ks_toff_2000), 1338 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1339 iwn_kstat_init_2000(sc); 1340 break; 1341 case IWN_HW_REV_TYPE_2000: 1342 sc->limits = &iwn2000_sensitivity_limits; 1343 sc->fwname = "iwlwifi-2000-6.ucode"; 1344 1345 iwn_kstat_create(sc, "temp_offset", 1346 sizeof (struct iwn_ks_toff_2000), 1347 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1348 iwn_kstat_init_2000(sc); 1349 break; 1350 case IWN_HW_REV_TYPE_135: 1351 sc->limits = &iwn2000_sensitivity_limits; 1352 sc->fwname = "iwlwifi-135-6.ucode"; 1353 ops->config_bt_coex = iwn_config_bt_coex_adv2; 1354 1355 iwn_kstat_create(sc, "temp_offset", 1356 sizeof (struct iwn_ks_toff_2000), 1357 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1358 iwn_kstat_init_2000(sc); 1359 break; 1360 case IWN_HW_REV_TYPE_105: 1361 sc->limits = &iwn2000_sensitivity_limits; 1362 sc->fwname = "iwlwifi-105-6.ucode"; 1363 1364 iwn_kstat_create(sc, "temp_offset", 1365 sizeof (struct iwn_ks_toff_2000), 1366 &sc->sc_ks_toff, (void **)&sc->sc_toff.t2000); 1367 iwn_kstat_init_2000(sc); 1368 break; 1369 default: 1370 dev_err(sc->sc_dip, CE_WARN, "!adapter type %d not supported", 1371 sc->hw_type); 1372 return ENOTSUP; 1373 } 1374 return 0; 1375 } 1376 1377 static int 1378 iwn_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1379 { 1380 struct iwn_softc *sc = ddi_get_driver_private(dip); 1381 ieee80211com_t *ic = &sc->sc_ic; 1382 int qid, error; 1383 1384 switch (cmd) { 1385 case DDI_DETACH: 1386 break; 1387 case DDI_SUSPEND: 1388 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 1389 sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL; 1390 1391 sc->sc_flags |= IWN_FLAG_SUSPEND; 1392 1393 if (sc->sc_flags & IWN_FLAG_RUNNING) { 1394 iwn_hw_stop(sc, B_TRUE); 1395 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1396 1397 } 1398 1399 return (DDI_SUCCESS); 1400 default: 1401 return (DDI_FAILURE); 1402 } 1403 1404 if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) { 1405 return (DDI_FAILURE); 1406 } 1407 1408 error = mac_disable(ic->ic_mach); 1409 if (error != DDI_SUCCESS) 1410 return (error); 1411 1412 mutex_enter(&sc->sc_mtx); 1413 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO; 1414 mutex_exit(&sc->sc_mtx); 1415 1416 if (sc->calib_to != 0) 1417 (void) untimeout(sc->calib_to); 1418 sc->calib_to = 0; 1419 1420 if (sc->scan_to != 0) 1421 (void) untimeout(sc->scan_to); 1422 sc->scan_to = 0; 1423 1424 ddi_periodic_delete(sc->sc_periodic); 1425 1426 /* 1427 * stop chipset 1428 */ 1429 iwn_hw_stop(sc, B_TRUE); 1430 1431 /* 1432 * Unregister from GLD 1433 */ 1434 (void) mac_unregister(ic->ic_mach); 1435 ieee80211_detach(ic); 1436 1437 /* Uninstall interrupt handler. */ 1438 iwn_intr_teardown(sc); 1439 1440 /* Free DMA resources. */ 1441 mutex_enter(&sc->sc_mtx); 1442 iwn_free_rx_ring(sc, &sc->rxq); 1443 for (qid = 0; qid < sc->ntxqs; qid++) 1444 iwn_free_tx_ring(sc, &sc->txq[qid]); 1445 iwn_free_sched(sc); 1446 iwn_free_kw(sc); 1447 if (sc->ict != NULL) 1448 iwn_free_ict(sc); 1449 iwn_free_fwmem(sc); 1450 mutex_exit(&sc->sc_mtx); 1451 1452 iwn_kstat_free(sc->sc_ks_misc, sc->sc_misc, 1453 sizeof (struct iwn_ks_misc)); 1454 iwn_kstat_free(sc->sc_ks_ant, sc->sc_ant, 1455 sizeof (struct iwn_ks_ant)); 1456 iwn_kstat_free(sc->sc_ks_sens, sc->sc_sens, 1457 sizeof (struct iwn_ks_sens)); 1458 iwn_kstat_free(sc->sc_ks_timing, sc->sc_timing, 1459 sizeof (struct iwn_ks_timing)); 1460 iwn_kstat_free(sc->sc_ks_edca, sc->sc_edca, 1461 sizeof (struct iwn_ks_edca)); 1462 iwn_kstat_free(sc->sc_ks_txpower, sc->sc_txpower, 1463 sizeof (struct iwn_ks_txpower)); 1464 1465 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 1466 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t6000, 1467 sizeof (struct iwn_ks_toff_6000)); 1468 else 1469 iwn_kstat_free(sc->sc_ks_toff, sc->sc_toff.t2000, 1470 sizeof (struct iwn_ks_toff_2000)); 1471 1472 ddi_regs_map_free(&sc->sc_regh); 1473 pci_config_teardown(&sc->sc_pcih); 1474 ddi_remove_minor_node(dip, NULL); 1475 ddi_soft_state_free(iwn_state, ddi_get_instance(dip)); 1476 1477 return 0; 1478 } 1479 1480 static int 1481 iwn_quiesce(dev_info_t *dip) 1482 { 1483 struct iwn_softc *sc; 1484 1485 sc = ddi_get_soft_state(iwn_state, ddi_get_instance(dip)); 1486 if (sc == NULL) 1487 return (DDI_FAILURE); 1488 1489 #ifdef IWN_DEBUG 1490 /* bypass any messages */ 1491 iwn_dbg_print = 0; 1492 #endif 1493 1494 /* 1495 * No more blocking is allowed while we are in the 1496 * quiesce(9E) entry point. 1497 */ 1498 sc->sc_flags |= IWN_FLAG_QUIESCED; 1499 1500 /* 1501 * Disable and mask all interrupts. 1502 */ 1503 iwn_hw_stop(sc, B_FALSE); 1504 1505 return (DDI_SUCCESS); 1506 } 1507 1508 static int 1509 iwn_nic_lock(struct iwn_softc *sc) 1510 { 1511 int ntries; 1512 1513 /* Request exclusive access to NIC. */ 1514 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1515 1516 /* Spin until we actually get the lock. */ 1517 for (ntries = 0; ntries < 1000; ntries++) { 1518 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1519 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1520 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1521 return 0; 1522 DELAY(10); 1523 } 1524 return ETIMEDOUT; 1525 } 1526 1527 static __inline void 1528 iwn_nic_unlock(struct iwn_softc *sc) 1529 { 1530 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1531 } 1532 1533 static __inline uint32_t 1534 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1535 { 1536 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1537 IWN_BARRIER_READ_WRITE(sc); 1538 return IWN_READ(sc, IWN_PRPH_RDATA); 1539 } 1540 1541 static __inline void 1542 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1543 { 1544 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1545 IWN_BARRIER_WRITE(sc); 1546 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1547 } 1548 1549 static __inline void 1550 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1551 { 1552 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1553 } 1554 1555 static __inline void 1556 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1557 { 1558 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1559 } 1560 1561 static __inline void 1562 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1563 const uint32_t *data, int count) 1564 { 1565 for (; count > 0; count--, data++, addr += 4) 1566 iwn_prph_write(sc, addr, *data); 1567 } 1568 1569 static __inline uint32_t 1570 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1571 { 1572 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1573 IWN_BARRIER_READ_WRITE(sc); 1574 return IWN_READ(sc, IWN_MEM_RDATA); 1575 } 1576 1577 static __inline void 1578 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1579 { 1580 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1581 IWN_BARRIER_WRITE(sc); 1582 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1583 } 1584 1585 #ifndef IEEE80211_NO_HT 1586 static __inline void 1587 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1588 { 1589 uint32_t tmp; 1590 1591 tmp = iwn_mem_read(sc, addr & ~3); 1592 if (addr & 3) 1593 tmp = (tmp & 0x0000ffff) | data << 16; 1594 else 1595 tmp = (tmp & 0xffff0000) | data; 1596 iwn_mem_write(sc, addr & ~3, tmp); 1597 } 1598 #endif 1599 1600 static __inline void 1601 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1602 int count) 1603 { 1604 for (; count > 0; count--, addr += 4) 1605 *data++ = iwn_mem_read(sc, addr); 1606 } 1607 1608 static __inline void 1609 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1610 int count) 1611 { 1612 for (; count > 0; count--, addr += 4) 1613 iwn_mem_write(sc, addr, val); 1614 } 1615 1616 static int 1617 iwn_eeprom_lock(struct iwn_softc *sc) 1618 { 1619 int i, ntries; 1620 1621 for (i = 0; i < 100; i++) { 1622 /* Request exclusive access to EEPROM. */ 1623 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1624 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1625 1626 /* Spin until we actually get the lock. */ 1627 for (ntries = 0; ntries < 100; ntries++) { 1628 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1629 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1630 return 0; 1631 DELAY(10); 1632 } 1633 } 1634 return ETIMEDOUT; 1635 } 1636 1637 static __inline void 1638 iwn_eeprom_unlock(struct iwn_softc *sc) 1639 { 1640 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1641 } 1642 1643 /* 1644 * Initialize access by host to One Time Programmable ROM. 1645 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1646 */ 1647 static int 1648 iwn_init_otprom(struct iwn_softc *sc) 1649 { 1650 uint16_t prev = 0, base, next; 1651 int count, error; 1652 1653 /* Wait for clock stabilization before accessing prph. */ 1654 if ((error = iwn_clock_wait(sc)) != 0) 1655 return error; 1656 1657 if ((error = iwn_nic_lock(sc)) != 0) 1658 return error; 1659 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1660 DELAY(5); 1661 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1662 iwn_nic_unlock(sc); 1663 1664 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1665 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1666 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1667 IWN_RESET_LINK_PWR_MGMT_DIS); 1668 } 1669 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1670 /* Clear ECC status. */ 1671 IWN_SETBITS(sc, IWN_OTP_GP, 1672 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1673 1674 /* 1675 * Find the block before last block (contains the EEPROM image) 1676 * for HW without OTP shadow RAM. 1677 */ 1678 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1679 /* Switch to absolute addressing mode. */ 1680 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1681 base = 0; 1682 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1683 error = iwn_read_prom_data(sc, base, &next, 2); 1684 if (error != 0) 1685 return error; 1686 if (next == 0) /* End of linked-list. */ 1687 break; 1688 prev = base; 1689 base = le16toh(next); 1690 } 1691 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1692 return EIO; 1693 /* Skip "next" word. */ 1694 sc->prom_base = prev + 1; 1695 } 1696 return 0; 1697 } 1698 1699 static int 1700 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1701 { 1702 uint8_t *out = data; 1703 uint32_t val, tmp; 1704 int ntries; 1705 1706 addr += sc->prom_base; 1707 for (; count > 0; count -= 2, addr++) { 1708 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1709 for (ntries = 0; ntries < 10; ntries++) { 1710 val = IWN_READ(sc, IWN_EEPROM); 1711 if (val & IWN_EEPROM_READ_VALID) 1712 break; 1713 DELAY(5); 1714 } 1715 if (ntries == 10) { 1716 dev_err(sc->sc_dip, CE_WARN, 1717 "!timeout reading ROM at 0x%x", addr); 1718 return ETIMEDOUT; 1719 } 1720 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1721 /* OTPROM, check for ECC errors. */ 1722 tmp = IWN_READ(sc, IWN_OTP_GP); 1723 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1724 dev_err(sc->sc_dip, CE_WARN, 1725 "!OTPROM ECC error at 0x%x", addr); 1726 return EIO; 1727 } 1728 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1729 /* Correctable ECC error, clear bit. */ 1730 IWN_SETBITS(sc, IWN_OTP_GP, 1731 IWN_OTP_GP_ECC_CORR_STTS); 1732 } 1733 } 1734 *out++ = val >> 16; 1735 if (count > 1) 1736 *out++ = val >> 24; 1737 } 1738 return 0; 1739 } 1740 1741 static int 1742 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1743 uint_t size, uint_t flags, void **kvap, ddi_device_acc_attr_t *acc_attr, 1744 uint_t align) 1745 { 1746 ddi_dma_attr_t dma_attr = { 1747 .dma_attr_version = DMA_ATTR_V0, 1748 .dma_attr_addr_lo = 0, 1749 .dma_attr_addr_hi = 0xfffffffffULL, 1750 .dma_attr_count_max = 0xfffffffffULL, 1751 .dma_attr_align = align, 1752 .dma_attr_burstsizes = 0x7ff, 1753 .dma_attr_minxfer = 1, 1754 .dma_attr_maxxfer = 0xfffffffffULL, 1755 .dma_attr_seg = 0xfffffffffULL, 1756 .dma_attr_sgllen = 1, 1757 .dma_attr_granular = 1, 1758 .dma_attr_flags = 0, 1759 }; 1760 int error; 1761 1762 error = ddi_dma_alloc_handle(sc->sc_dip, &dma_attr, DDI_DMA_SLEEP, NULL, 1763 &dma->dma_hdl); 1764 if (error != DDI_SUCCESS) { 1765 dev_err(sc->sc_dip, CE_WARN, 1766 "ddi_dma_alloc_handle() failed, error = %d", error); 1767 goto fail; 1768 } 1769 1770 error = ddi_dma_mem_alloc(dma->dma_hdl, size, acc_attr, 1771 flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), DDI_DMA_SLEEP, 0, 1772 &dma->vaddr, &dma->length, &dma->acc_hdl); 1773 if (error != DDI_SUCCESS) { 1774 dev_err(sc->sc_dip, CE_WARN, 1775 "ddi_dma_mem_alloc() failed, error = %d", error); 1776 goto fail2; 1777 } 1778 1779 bzero(dma->vaddr, dma->length); 1780 1781 error = ddi_dma_addr_bind_handle(dma->dma_hdl, NULL, dma->vaddr, 1782 dma->length, flags, DDI_DMA_SLEEP, NULL, &dma->cookie, 1783 &dma->ncookies); 1784 if (error != DDI_DMA_MAPPED) { 1785 dma->ncookies = 0; 1786 dev_err(sc->sc_dip, CE_WARN, 1787 "ddi_dma_addr_bind_handle() failed, error = %d", error); 1788 goto fail3; 1789 } 1790 1791 dma->size = size; 1792 dma->paddr = dma->cookie.dmac_laddress; 1793 1794 if (kvap != NULL) 1795 *kvap = (void *)dma->vaddr; 1796 1797 return (DDI_SUCCESS); 1798 1799 fail3: 1800 ddi_dma_mem_free(&dma->acc_hdl); 1801 fail2: 1802 ddi_dma_free_handle(&dma->dma_hdl); 1803 fail: 1804 bzero(dma, sizeof (struct iwn_dma_info)); 1805 return (DDI_FAILURE); 1806 } 1807 1808 static void 1809 iwn_dma_contig_free(struct iwn_dma_info *dma) 1810 { 1811 if (dma->dma_hdl != NULL) { 1812 if (dma->ncookies) 1813 (void) ddi_dma_unbind_handle(dma->dma_hdl); 1814 ddi_dma_free_handle(&dma->dma_hdl); 1815 } 1816 1817 if (dma->acc_hdl != NULL) 1818 ddi_dma_mem_free(&dma->acc_hdl); 1819 1820 bzero(dma, sizeof (struct iwn_dma_info)); 1821 } 1822 1823 static int 1824 iwn_alloc_sched(struct iwn_softc *sc) 1825 { 1826 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1827 1828 return iwn_dma_contig_alloc(sc, &sc->sched_dma, sc->schedsz, 1829 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->sched, 1830 &iwn_dma_accattr, 1024); 1831 } 1832 1833 static void 1834 iwn_free_sched(struct iwn_softc *sc) 1835 { 1836 iwn_dma_contig_free(&sc->sched_dma); 1837 } 1838 1839 static int 1840 iwn_alloc_kw(struct iwn_softc *sc) 1841 { 1842 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1843 1844 return iwn_dma_contig_alloc(sc, &sc->kw_dma, IWN_KW_SIZE, 1845 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 4096); 1846 } 1847 1848 static void 1849 iwn_free_kw(struct iwn_softc *sc) 1850 { 1851 iwn_dma_contig_free(&sc->kw_dma); 1852 } 1853 1854 static int 1855 iwn_alloc_ict(struct iwn_softc *sc) 1856 { 1857 /* ICT table must be aligned on a 4KB boundary. */ 1858 1859 return iwn_dma_contig_alloc(sc, &sc->ict_dma, IWN_ICT_SIZE, 1860 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&sc->ict, 1861 &iwn_dma_descattr, 4096); 1862 } 1863 1864 static void 1865 iwn_free_ict(struct iwn_softc *sc) 1866 { 1867 iwn_dma_contig_free(&sc->ict_dma); 1868 } 1869 1870 static int 1871 iwn_alloc_fwmem(struct iwn_softc *sc) 1872 { 1873 /* Must be aligned on a 16-byte boundary. */ 1874 return iwn_dma_contig_alloc(sc, &sc->fw_dma, sc->fwsz, 1875 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, NULL, &iwn_dma_accattr, 16); 1876 } 1877 1878 static void 1879 iwn_free_fwmem(struct iwn_softc *sc) 1880 { 1881 iwn_dma_contig_free(&sc->fw_dma); 1882 } 1883 1884 static int 1885 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1886 { 1887 size_t size; 1888 int i, error; 1889 1890 ring->cur = 0; 1891 1892 /* Allocate RX descriptors (256-byte aligned). */ 1893 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1894 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size, 1895 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&ring->desc, 1896 &iwn_dma_descattr, 256); 1897 if (error != DDI_SUCCESS) { 1898 dev_err(sc->sc_dip, CE_WARN, 1899 "!could not allocate RX ring DMA memory"); 1900 goto fail; 1901 } 1902 1903 /* Allocate RX status area (16-byte aligned). */ 1904 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, 1905 sizeof (struct iwn_rx_status), DDI_DMA_CONSISTENT | DDI_DMA_RDWR, 1906 (void **)&ring->stat, &iwn_dma_descattr, 16); 1907 if (error != DDI_SUCCESS) { 1908 dev_err(sc->sc_dip, CE_WARN, 1909 "!could not allocate RX status DMA memory"); 1910 goto fail; 1911 } 1912 1913 /* 1914 * Allocate and map RX buffers. 1915 */ 1916 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1917 struct iwn_rx_data *data = &ring->data[i]; 1918 1919 error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_RBUF_SIZE, 1920 DDI_DMA_CONSISTENT | DDI_DMA_READ, NULL, &iwn_dma_accattr, 1921 256); 1922 if (error != DDI_SUCCESS) { 1923 dev_err(sc->sc_dip, CE_WARN, 1924 "!could not create RX buf DMA map"); 1925 goto fail; 1926 } 1927 1928 /* Set physical address of RX buffer (256-byte aligned). */ 1929 ring->desc[i] = htole32(data->dma_data.paddr >> 8); 1930 } 1931 1932 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 1933 1934 return 0; 1935 1936 fail: iwn_free_rx_ring(sc, ring); 1937 return error; 1938 } 1939 1940 static void 1941 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1942 { 1943 int ntries; 1944 1945 if (iwn_nic_lock(sc) == 0) { 1946 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1947 for (ntries = 0; ntries < 1000; ntries++) { 1948 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1949 IWN_FH_RX_STATUS_IDLE) 1950 break; 1951 DELAY(10); 1952 } 1953 iwn_nic_unlock(sc); 1954 } 1955 ring->cur = 0; 1956 sc->last_rx_valid = 0; 1957 } 1958 1959 static void 1960 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1961 { 1962 _NOTE(ARGUNUSED(sc)); 1963 int i; 1964 1965 iwn_dma_contig_free(&ring->desc_dma); 1966 iwn_dma_contig_free(&ring->stat_dma); 1967 1968 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1969 struct iwn_rx_data *data = &ring->data[i]; 1970 1971 if (data->dma_data.dma_hdl) 1972 iwn_dma_contig_free(&data->dma_data); 1973 } 1974 } 1975 1976 static int 1977 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1978 { 1979 uintptr_t paddr; 1980 size_t size; 1981 int i, error; 1982 1983 ring->qid = qid; 1984 ring->queued = 0; 1985 ring->cur = 0; 1986 1987 /* Allocate TX descriptors (256-byte aligned). */ 1988 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1989 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, size, 1990 DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->desc, 1991 &iwn_dma_descattr, 256); 1992 if (error != DDI_SUCCESS) { 1993 dev_err(sc->sc_dip, CE_WARN, 1994 "!could not allocate TX ring DMA memory"); 1995 goto fail; 1996 } 1997 /* 1998 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1999 * to allocate commands space for other rings. 2000 * XXX Do we really need to allocate descriptors for other rings? 2001 */ 2002 if (qid > 4) 2003 return 0; 2004 2005 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2006 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, size, 2007 DDI_DMA_CONSISTENT | DDI_DMA_WRITE, (void **)&ring->cmd, 2008 &iwn_dma_accattr, 4); 2009 if (error != DDI_SUCCESS) { 2010 dev_err(sc->sc_dip, CE_WARN, 2011 "!could not allocate TX cmd DMA memory"); 2012 goto fail; 2013 } 2014 2015 paddr = ring->cmd_dma.paddr; 2016 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2017 struct iwn_tx_data *data = &ring->data[i]; 2018 2019 data->cmd_paddr = paddr; 2020 data->scratch_paddr = paddr + 12; 2021 paddr += sizeof (struct iwn_tx_cmd); 2022 2023 error = iwn_dma_contig_alloc(sc, &data->dma_data, IWN_TBUF_SIZE, 2024 DDI_DMA_CONSISTENT | DDI_DMA_WRITE, NULL, &iwn_dma_accattr, 2025 256); 2026 if (error != DDI_SUCCESS) { 2027 dev_err(sc->sc_dip, CE_WARN, 2028 "!could not create TX buf DMA map"); 2029 goto fail; 2030 } 2031 } 2032 return 0; 2033 2034 fail: iwn_free_tx_ring(sc, ring); 2035 return error; 2036 } 2037 2038 static void 2039 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2040 { 2041 int i; 2042 2043 if (ring->qid < 4) 2044 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2045 struct iwn_tx_data *data = &ring->data[i]; 2046 2047 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, 2048 DDI_DMA_SYNC_FORDEV); 2049 } 2050 2051 /* Clear TX descriptors. */ 2052 memset(ring->desc, 0, ring->desc_dma.size); 2053 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 2054 sc->qfullmsk &= ~(1 << ring->qid); 2055 ring->queued = 0; 2056 ring->cur = 0; 2057 } 2058 2059 static void 2060 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2061 { 2062 _NOTE(ARGUNUSED(sc)); 2063 int i; 2064 2065 iwn_dma_contig_free(&ring->desc_dma); 2066 iwn_dma_contig_free(&ring->cmd_dma); 2067 2068 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2069 struct iwn_tx_data *data = &ring->data[i]; 2070 2071 if (data->dma_data.dma_hdl) 2072 iwn_dma_contig_free(&data->dma_data); 2073 } 2074 } 2075 2076 static void 2077 iwn5000_ict_reset(struct iwn_softc *sc) 2078 { 2079 /* Disable interrupts. */ 2080 IWN_WRITE(sc, IWN_INT_MASK, 0); 2081 2082 /* Reset ICT table. */ 2083 memset(sc->ict, 0, IWN_ICT_SIZE); 2084 sc->ict_cur = 0; 2085 2086 /* Set physical address of ICT table (4KB aligned). */ 2087 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2088 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2089 2090 /* Enable periodic RX interrupt. */ 2091 sc->int_mask |= IWN_INT_RX_PERIODIC; 2092 /* Switch to ICT interrupt mode in driver. */ 2093 sc->sc_flags |= IWN_FLAG_USE_ICT; 2094 2095 /* Re-enable interrupts. */ 2096 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2097 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2098 } 2099 2100 static int 2101 iwn_read_eeprom(struct iwn_softc *sc) 2102 { 2103 struct iwn_ops *ops = &sc->ops; 2104 struct ieee80211com *ic = &sc->sc_ic; 2105 uint16_t val; 2106 int error; 2107 2108 /* Check whether adapter has an EEPROM or an OTPROM. */ 2109 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2110 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2111 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2112 IWN_DBG("%s found", 2113 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2114 2115 /* Adapter has to be powered on for EEPROM access to work. */ 2116 if ((error = iwn_apm_init(sc)) != 0) { 2117 dev_err(sc->sc_dip, CE_WARN, 2118 "!could not power ON adapter"); 2119 return error; 2120 } 2121 2122 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2123 dev_err(sc->sc_dip, CE_WARN, 2124 "!bad ROM signature"); 2125 return EIO; 2126 } 2127 if ((error = iwn_eeprom_lock(sc)) != 0) { 2128 dev_err(sc->sc_dip, CE_WARN, 2129 "!could not lock ROM (error=%d)", error); 2130 return error; 2131 } 2132 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2133 if ((error = iwn_init_otprom(sc)) != 0) { 2134 dev_err(sc->sc_dip, CE_WARN, 2135 "!could not initialize OTPROM"); 2136 return error; 2137 } 2138 } 2139 2140 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2141 IWN_DBG("SKU capabilities=0x%04x", le16toh(val)); 2142 /* Check if HT support is bonded out. */ 2143 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2144 sc->sc_flags |= IWN_FLAG_HAS_11N; 2145 2146 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2147 sc->rfcfg = le16toh(val); 2148 IWN_DBG("radio config=0x%04x", sc->rfcfg); 2149 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2150 if (sc->txchainmask == 0) 2151 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2152 if (sc->rxchainmask == 0) 2153 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2154 2155 /* Read MAC address. */ 2156 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_macaddr, 6); 2157 2158 /* Read adapter-specific information from EEPROM. */ 2159 ops->read_eeprom(sc); 2160 2161 iwn_apm_stop(sc); /* Power OFF adapter. */ 2162 2163 iwn_eeprom_unlock(sc); 2164 return 0; 2165 } 2166 2167 static void 2168 iwn4965_read_eeprom(struct iwn_softc *sc) 2169 { 2170 uint32_t addr; 2171 uint16_t val; 2172 int i; 2173 2174 /* Read regulatory domain (4 ASCII characters). */ 2175 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2176 2177 /* Read the list of authorized channels (20MHz ones only). */ 2178 for (i = 0; i < 5; i++) { 2179 addr = iwn4965_regulatory_bands[i]; 2180 iwn_read_eeprom_channels(sc, i, addr); 2181 } 2182 2183 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2184 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2185 sc->maxpwr2GHz = val & 0xff; 2186 sc->maxpwr5GHz = val >> 8; 2187 /* Check that EEPROM values are within valid range. */ 2188 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2189 sc->maxpwr5GHz = 38; 2190 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2191 sc->maxpwr2GHz = 38; 2192 IWN_DBG("maxpwr 2GHz=%d 5GHz=%d", sc->maxpwr2GHz, sc->maxpwr5GHz); 2193 2194 /* Read samples for each TX power group. */ 2195 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2196 sizeof sc->bands); 2197 2198 /* Read voltage at which samples were taken. */ 2199 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2200 sc->eeprom_voltage = (int16_t)le16toh(val); 2201 IWN_DBG("voltage=%d (in 0.3V)", sc->eeprom_voltage); 2202 2203 #ifdef IWN_DEBUG 2204 /* Print samples. */ 2205 if (iwn_dbg_print != 0) { 2206 for (i = 0; i < IWN_NBANDS; i++) 2207 iwn4965_print_power_group(sc, i); 2208 } 2209 #endif 2210 } 2211 2212 #ifdef IWN_DEBUG 2213 static void 2214 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2215 { 2216 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2217 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2218 int j, c; 2219 2220 dev_err(sc->sc_dip, CE_CONT, "!===band %d===", i); 2221 dev_err(sc->sc_dip, CE_CONT, "!chan lo=%d, chan hi=%d", band->lo, 2222 band->hi); 2223 dev_err(sc->sc_dip, CE_CONT, "!chan1 num=%d", chans[0].num); 2224 for (c = 0; c < 2; c++) { 2225 for (j = 0; j < IWN_NSAMPLES; j++) { 2226 dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: " 2227 "temp=%d gain=%d power=%d pa_det=%d", c, j, 2228 chans[0].samples[c][j].temp, 2229 chans[0].samples[c][j].gain, 2230 chans[0].samples[c][j].power, 2231 chans[0].samples[c][j].pa_det); 2232 } 2233 } 2234 dev_err(sc->sc_dip, CE_CONT, "!chan2 num=%d", chans[1].num); 2235 for (c = 0; c < 2; c++) { 2236 for (j = 0; j < IWN_NSAMPLES; j++) { 2237 dev_err(sc->sc_dip, CE_CONT, "!chain %d, sample %d: " 2238 "temp=%d gain=%d power=%d pa_det=%d", c, j, 2239 chans[1].samples[c][j].temp, 2240 chans[1].samples[c][j].gain, 2241 chans[1].samples[c][j].power, 2242 chans[1].samples[c][j].pa_det); 2243 } 2244 } 2245 } 2246 #endif 2247 2248 static void 2249 iwn5000_read_eeprom(struct iwn_softc *sc) 2250 { 2251 struct iwn5000_eeprom_calib_hdr hdr; 2252 int32_t volt; 2253 uint32_t base, addr; 2254 uint16_t val; 2255 int i; 2256 2257 /* Read regulatory domain (4 ASCII characters). */ 2258 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2259 base = le16toh(val); 2260 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2261 sc->eeprom_domain, 4); 2262 2263 /* Read the list of authorized channels (20MHz ones only). */ 2264 for (i = 0; i < 5; i++) { 2265 addr = base + iwn5000_regulatory_bands[i]; 2266 iwn_read_eeprom_channels(sc, i, addr); 2267 } 2268 2269 /* Read enhanced TX power information for 6000 Series. */ 2270 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 2271 iwn_read_eeprom_enhinfo(sc); 2272 2273 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2274 base = le16toh(val); 2275 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2276 IWN_DBG("calib version=%u pa type=%u voltage=%u", 2277 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2278 sc->calib_ver = hdr.version; 2279 2280 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 2281 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2282 sc->hw_type == IWN_HW_REV_TYPE_135 || 2283 sc->hw_type == IWN_HW_REV_TYPE_105) { 2284 sc->eeprom_voltage = le16toh(hdr.volt); 2285 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2286 sc->eeprom_temp = le16toh(val); 2287 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 2288 sc->eeprom_rawtemp = le16toh(val); 2289 } 2290 2291 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2292 /* Compute temperature offset. */ 2293 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2294 sc->eeprom_temp = le16toh(val); 2295 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2296 volt = le16toh(val); 2297 sc->temp_off = sc->eeprom_temp - (volt / -5); 2298 IWN_DBG("temp=%d volt=%d offset=%dK", 2299 sc->eeprom_temp, volt, sc->temp_off); 2300 } else { 2301 /* Read crystal calibration. */ 2302 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2303 &sc->eeprom_crystal, sizeof (uint32_t)); 2304 IWN_DBG("crystal calibration 0x%08x", 2305 le32toh(sc->eeprom_crystal)); 2306 } 2307 } 2308 2309 static void 2310 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2311 { 2312 struct ieee80211com *ic = &sc->sc_ic; 2313 const struct iwn_chan_band *band = &iwn_bands[n]; 2314 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 2315 uint8_t chan; 2316 int i; 2317 2318 iwn_read_prom_data(sc, addr, channels, 2319 band->nchan * sizeof (struct iwn_eeprom_chan)); 2320 2321 for (i = 0; i < band->nchan; i++) { 2322 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 2323 continue; 2324 2325 chan = band->chan[i]; 2326 2327 if (n == 0) { /* 2GHz band */ 2328 ic->ic_sup_channels[chan].ich_freq = 2329 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 2330 ic->ic_sup_channels[chan].ich_flags = 2331 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2332 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2333 2334 } else { /* 5GHz band */ 2335 /* 2336 * Some adapters support channels 7, 8, 11 and 12 2337 * both in the 2GHz and 4.9GHz bands. 2338 * Because of limitations in our net80211 layer, 2339 * we don't support them in the 4.9GHz band. 2340 */ 2341 if (chan <= 14) 2342 continue; 2343 2344 ic->ic_sup_channels[chan].ich_freq = 2345 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 2346 ic->ic_sup_channels[chan].ich_flags = 2347 IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM; 2348 /* We have at least one valid 5GHz channel. */ 2349 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 2350 } 2351 2352 /* Is active scan allowed on this channel? */ 2353 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 2354 ic->ic_sup_channels[chan].ich_flags |= 2355 IEEE80211_CHAN_PASSIVE; 2356 } 2357 2358 /* Save maximum allowed TX power for this channel. */ 2359 sc->maxpwr[chan] = channels[i].maxpwr; 2360 2361 IWN_DBG("adding chan %d flags=0x%x maxpwr=%d", 2362 chan, channels[i].flags, sc->maxpwr[chan]); 2363 } 2364 } 2365 2366 static void 2367 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2368 { 2369 struct iwn_eeprom_enhinfo enhinfo[35]; 2370 uint16_t val, base; 2371 int8_t maxpwr; 2372 int i; 2373 2374 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2375 base = le16toh(val); 2376 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2377 enhinfo, sizeof enhinfo); 2378 2379 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 2380 for (i = 0; i < __arraycount(enhinfo); i++) { 2381 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 2382 continue; /* Skip invalid entries. */ 2383 2384 maxpwr = 0; 2385 if (sc->txchainmask & IWN_ANT_A) 2386 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2387 if (sc->txchainmask & IWN_ANT_B) 2388 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2389 if (sc->txchainmask & IWN_ANT_C) 2390 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2391 if (sc->ntxchains == 2) 2392 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2393 else if (sc->ntxchains == 3) 2394 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2395 maxpwr /= 2; /* Convert half-dBm to dBm. */ 2396 2397 IWN_DBG("enhinfo %d, maxpwr=%d", i, maxpwr); 2398 sc->enh_maxpwr[i] = maxpwr; 2399 } 2400 } 2401 2402 static struct ieee80211_node * 2403 iwn_node_alloc(ieee80211com_t *ic) 2404 { 2405 _NOTE(ARGUNUSED(ic)); 2406 return (kmem_zalloc(sizeof (struct iwn_node), KM_NOSLEEP)); 2407 } 2408 2409 static void 2410 iwn_node_free(ieee80211_node_t *in) 2411 { 2412 ASSERT(in != NULL); 2413 ASSERT(in->in_ic != NULL); 2414 2415 if (in->in_wpa_ie != NULL) 2416 ieee80211_free(in->in_wpa_ie); 2417 2418 if (in->in_wme_ie != NULL) 2419 ieee80211_free(in->in_wme_ie); 2420 2421 if (in->in_htcap_ie != NULL) 2422 ieee80211_free(in->in_htcap_ie); 2423 2424 kmem_free(in, sizeof (struct iwn_node)); 2425 } 2426 2427 static void 2428 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2429 { 2430 _NOTE(ARGUNUSED(isnew)); 2431 struct iwn_softc *sc = (struct iwn_softc *)&ni->in_ic; 2432 struct iwn_node *wn = (void *)ni; 2433 uint8_t rate, ridx; 2434 int i; 2435 2436 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 2437 /* 2438 * Select a medium rate and depend on AMRR to raise/lower it. 2439 */ 2440 ni->in_txrate = ni->in_rates.ir_nrates / 2; 2441 2442 for (i = 0; i < ni->in_rates.ir_nrates; i++) { 2443 rate = ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL; 2444 /* Map 802.11 rate to HW rate index. */ 2445 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 2446 if (iwn_rates[ridx].rate == rate) 2447 break; 2448 wn->ridx[i] = ridx; 2449 } 2450 } 2451 2452 static int 2453 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2454 { 2455 struct iwn_softc *sc = (struct iwn_softc *)ic; 2456 enum ieee80211_state ostate; 2457 int error; 2458 2459 mutex_enter(&sc->sc_mtx); 2460 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO; 2461 mutex_exit(&sc->sc_mtx); 2462 2463 (void) untimeout(sc->calib_to); 2464 sc->calib_to = 0; 2465 2466 mutex_enter(&sc->sc_mtx); 2467 ostate = ic->ic_state; 2468 2469 DTRACE_PROBE5(new__state, int, sc->sc_flags, 2470 enum ieee80211_state, ostate, 2471 const char *, ieee80211_state_name[ostate], 2472 enum ieee80211_state, nstate, 2473 const char *, ieee80211_state_name[nstate]); 2474 2475 if ((sc->sc_flags & IWN_FLAG_RADIO_OFF) && nstate != IEEE80211_S_INIT) { 2476 mutex_exit(&sc->sc_mtx); 2477 return (IWN_FAIL); 2478 } 2479 2480 if (!(sc->sc_flags & IWN_FLAG_HW_INITED) && 2481 nstate != IEEE80211_S_INIT) { 2482 mutex_exit(&sc->sc_mtx); 2483 return (IWN_FAIL); 2484 } 2485 2486 switch (nstate) { 2487 case IEEE80211_S_SCAN: 2488 /* XXX Do not abort a running scan. */ 2489 if (sc->sc_flags & IWN_FLAG_SCANNING) { 2490 if (ostate != nstate) 2491 dev_err(sc->sc_dip, CE_WARN, "!scan request(%d)" 2492 " while scanning(%d) ignored", nstate, 2493 ostate); 2494 mutex_exit(&sc->sc_mtx); 2495 return (0); 2496 } 2497 2498 bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon)); 2499 sc->sc_ostate = ostate; 2500 2501 /* XXX Not sure if call and flags are needed. */ 2502 ieee80211_node_table_reset(&ic->ic_scan); 2503 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 2504 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ; 2505 2506 /* Make the link LED blink while we're scanning. */ 2507 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 2508 2509 ic->ic_state = nstate; 2510 2511 error = iwn_scan(sc, IEEE80211_CHAN_2GHZ); 2512 if (error != 0) { 2513 dev_err(sc->sc_dip, CE_WARN, 2514 "!could not initiate scan"); 2515 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2516 mutex_exit(&sc->sc_mtx); 2517 return (error); 2518 } 2519 2520 mutex_exit(&sc->sc_mtx); 2521 sc->scan_to = timeout(iwn_abort_scan, sc, iwn_scan_timeout * 2522 drv_usectohz(MICROSEC)); 2523 return (error); 2524 2525 case IEEE80211_S_ASSOC: 2526 if (ostate != IEEE80211_S_RUN) { 2527 mutex_exit(&sc->sc_mtx); 2528 break; 2529 } 2530 /* FALLTHROUGH */ 2531 case IEEE80211_S_AUTH: 2532 /* Reset state to handle reassociations correctly. */ 2533 sc->rxon.associd = 0; 2534 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 2535 sc->calib.state = IWN_CALIB_STATE_INIT; 2536 2537 if ((error = iwn_auth(sc)) != 0) { 2538 mutex_exit(&sc->sc_mtx); 2539 dev_err(sc->sc_dip, CE_WARN, 2540 "!could not move to auth state"); 2541 return error; 2542 } 2543 mutex_exit(&sc->sc_mtx); 2544 break; 2545 2546 case IEEE80211_S_RUN: 2547 if ((error = iwn_run(sc)) != 0) { 2548 mutex_exit(&sc->sc_mtx); 2549 dev_err(sc->sc_dip, CE_WARN, 2550 "!could not move to run state"); 2551 return error; 2552 } 2553 mutex_exit(&sc->sc_mtx); 2554 break; 2555 2556 case IEEE80211_S_INIT: 2557 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2558 sc->calib.state = IWN_CALIB_STATE_INIT; 2559 2560 /* 2561 * set LED off after init 2562 */ 2563 iwn_set_led(sc, IWN_LED_LINK, 1, 0); 2564 2565 cv_signal(&sc->sc_scan_cv); 2566 mutex_exit(&sc->sc_mtx); 2567 if (sc->scan_to != 0) 2568 (void) untimeout(sc->scan_to); 2569 sc->scan_to = 0; 2570 break; 2571 } 2572 2573 error = sc->sc_newstate(ic, nstate, arg); 2574 2575 if (nstate == IEEE80211_S_RUN) 2576 ieee80211_start_watchdog(ic, 1); 2577 2578 return (error); 2579 } 2580 2581 static void 2582 iwn_iter_func(void *arg, struct ieee80211_node *ni) 2583 { 2584 struct iwn_softc *sc = arg; 2585 struct iwn_node *wn = (struct iwn_node *)ni; 2586 2587 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 2588 } 2589 2590 static void 2591 iwn_calib_timeout(void *arg) 2592 { 2593 struct iwn_softc *sc = arg; 2594 struct ieee80211com *ic = &sc->sc_ic; 2595 2596 mutex_enter(&sc->sc_mtx); 2597 2598 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 2599 if (ic->ic_opmode == IEEE80211_M_STA) 2600 iwn_iter_func(sc, ic->ic_bss); 2601 else 2602 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 2603 } 2604 /* Force automatic TX power calibration every 60 secs. */ 2605 if (++sc->calib_cnt >= 120) { 2606 uint32_t flags = 0; 2607 2608 DTRACE_PROBE(get__statistics); 2609 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2610 sizeof flags, 1); 2611 sc->calib_cnt = 0; 2612 } 2613 2614 /* Automatic rate control triggered every 500ms. */ 2615 if ((sc->sc_flags & IWN_FLAG_STOP_CALIB_TO) == 0) 2616 sc->calib_to = timeout(iwn_calib_timeout, sc, 2617 drv_usectohz(500000)); 2618 2619 mutex_exit(&sc->sc_mtx); 2620 } 2621 2622 /* 2623 * Process an RX_PHY firmware notification. This is usually immediately 2624 * followed by an MPDU_RX_DONE notification. 2625 */ 2626 static void 2627 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2628 struct iwn_rx_data *data) 2629 { 2630 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2631 2632 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2633 sizeof (*stat), DDI_DMA_SYNC_FORKERNEL); 2634 2635 DTRACE_PROBE1(rx__phy, struct iwn_rx_stat *, stat); 2636 2637 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2638 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2639 sc->last_rx_valid = 1; 2640 } 2641 2642 /* 2643 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2644 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2645 */ 2646 static void 2647 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2648 struct iwn_rx_data *data) 2649 { 2650 struct iwn_ops *ops = &sc->ops; 2651 struct ieee80211com *ic = &sc->sc_ic; 2652 struct iwn_rx_ring *ring = &sc->rxq; 2653 struct ieee80211_frame *wh; 2654 struct ieee80211_node *ni; 2655 mblk_t *m; 2656 struct iwn_rx_stat *stat; 2657 char *head; 2658 uint32_t flags; 2659 int len, rssi; 2660 2661 if (desc->type == IWN_MPDU_RX_DONE) { 2662 /* Check for prior RX_PHY notification. */ 2663 if (!sc->last_rx_valid) { 2664 dev_err(sc->sc_dip, CE_WARN, 2665 "missing RX_PHY"); 2666 return; 2667 } 2668 sc->last_rx_valid = 0; 2669 stat = &sc->last_rx_stat; 2670 } else 2671 stat = (struct iwn_rx_stat *)(desc + 1); 2672 2673 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, 2674 DDI_DMA_SYNC_FORKERNEL); 2675 2676 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2677 dev_err(sc->sc_dip, CE_WARN, 2678 "!invalid RX statistic header"); 2679 return; 2680 } 2681 if (desc->type == IWN_MPDU_RX_DONE) { 2682 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2683 head = (char *)(mpdu + 1); 2684 len = le16toh(mpdu->len); 2685 } else { 2686 head = (char *)(stat + 1) + stat->cfg_phy_len; 2687 len = le16toh(stat->len); 2688 } 2689 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2690 flags = le32toh(*(uint32_t *)(head + len)); 2691 2692 /* Discard frames with a bad FCS early. */ 2693 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2694 sc->sc_rx_err++; 2695 ic->ic_stats.is_fcs_errors++; 2696 return; 2697 } 2698 /* Discard frames that are too short. */ 2699 if (len < sizeof (*wh)) { 2700 sc->sc_rx_err++; 2701 return; 2702 } 2703 2704 m = allocb(len, BPRI_MED); 2705 if (m == NULL) { 2706 sc->sc_rx_nobuf++; 2707 return; 2708 } 2709 2710 /* Update RX descriptor. */ 2711 ring->desc[ring->cur] = 2712 htole32(data->dma_data.paddr >> 8); 2713 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 2714 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2715 DDI_DMA_SYNC_FORDEV); 2716 2717 /* Grab a reference to the source node. */ 2718 wh = (struct ieee80211_frame*)head; 2719 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame *)wh); 2720 2721 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2722 /* NetBSD does decryption in ieee80211_input. */ 2723 2724 rssi = ops->get_rssi(stat); 2725 2726 /* 2727 * convert dBm to percentage 2728 */ 2729 rssi = (100 * 75 * 75 - (-20 - rssi) * (15 * 75 + 62 * (-20 - rssi))) 2730 / (75 * 75); 2731 if (rssi > 100) 2732 rssi = 100; 2733 else if (rssi < 1) 2734 rssi = 1; 2735 2736 bcopy(wh, m->b_wptr, len); 2737 m->b_wptr += len; 2738 2739 /* XXX Added for NetBSD: scans never stop without it */ 2740 if (ic->ic_state == IEEE80211_S_SCAN) 2741 iwn_fix_channel(sc, m, stat); 2742 2743 /* Send the frame to the 802.11 layer. */ 2744 ieee80211_input(ic, m, ni, rssi, 0); 2745 2746 /* Node is no longer needed. */ 2747 ieee80211_free_node(ni); 2748 } 2749 2750 #ifndef IEEE80211_NO_HT 2751 /* Process an incoming Compressed BlockAck. */ 2752 static void 2753 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2754 struct iwn_rx_data *data) 2755 { 2756 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2757 struct iwn_tx_ring *txq; 2758 2759 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2760 sizeof (*ba), DDI_DMA_SYNC_FORKERNEL); 2761 2762 txq = &sc->txq[le16toh(ba->qid)]; 2763 /* XXX TBD */ 2764 } 2765 #endif 2766 2767 /* 2768 * Process a CALIBRATION_RESULT notification sent by the initialization 2769 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2770 */ 2771 static void 2772 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2773 struct iwn_rx_data *data) 2774 { 2775 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2776 int len, idx = -1; 2777 2778 /* Runtime firmware should not send such a notification. */ 2779 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2780 return; 2781 2782 len = (le32toh(desc->len) & 0x3fff) - 4; 2783 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), len, 2784 DDI_DMA_SYNC_FORKERNEL); 2785 2786 switch (calib->code) { 2787 case IWN5000_PHY_CALIB_DC: 2788 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2789 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2790 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2791 sc->hw_type == IWN_HW_REV_TYPE_135 || 2792 sc->hw_type == IWN_HW_REV_TYPE_105) 2793 idx = 0; 2794 break; 2795 case IWN5000_PHY_CALIB_LO: 2796 idx = 1; 2797 break; 2798 case IWN5000_PHY_CALIB_TX_IQ: 2799 idx = 2; 2800 break; 2801 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2802 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2803 sc->hw_type != IWN_HW_REV_TYPE_5150) 2804 idx = 3; 2805 break; 2806 case IWN5000_PHY_CALIB_BASE_BAND: 2807 idx = 4; 2808 break; 2809 } 2810 if (idx == -1) /* Ignore other results. */ 2811 return; 2812 2813 /* Save calibration result. */ 2814 if (sc->calibcmd[idx].buf != NULL) 2815 kmem_free(sc->calibcmd[idx].buf, sc->calibcmd[idx].len); 2816 sc->calibcmd[idx].buf = kmem_zalloc(len, KM_NOSLEEP); 2817 if (sc->calibcmd[idx].buf == NULL) { 2818 return; 2819 } 2820 sc->calibcmd[idx].len = len; 2821 memcpy(sc->calibcmd[idx].buf, calib, len); 2822 } 2823 2824 /* 2825 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2826 * The latter is sent by the firmware after each received beacon. 2827 */ 2828 static void 2829 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2830 struct iwn_rx_data *data) 2831 { 2832 struct iwn_ops *ops = &sc->ops; 2833 struct ieee80211com *ic = &sc->sc_ic; 2834 struct iwn_calib_state *calib = &sc->calib; 2835 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2836 int temp = 0; 2837 2838 /* Ignore statistics received during a scan. */ 2839 if (ic->ic_state != IEEE80211_S_RUN) 2840 return; 2841 2842 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2843 sizeof (*stats), DDI_DMA_SYNC_FORKERNEL); 2844 2845 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2846 2847 /* Test if temperature has changed. */ 2848 if (stats->general.temp != sc->rawtemp) { 2849 /* Convert "raw" temperature to degC. */ 2850 sc->rawtemp = stats->general.temp; 2851 temp = ops->get_temperature(sc); 2852 sc->sc_misc->temp.value.ul = temp; 2853 2854 /* Update TX power if need be (4965AGN only). */ 2855 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2856 iwn4965_power_calibration(sc, temp); 2857 } 2858 2859 DTRACE_PROBE2(rx__statistics, struct iwn_stats *, stats, int, temp); 2860 2861 if (desc->type != IWN_BEACON_STATISTICS) 2862 return; /* Reply to a statistics request. */ 2863 2864 sc->noise = iwn_get_noise(&stats->rx.general); 2865 sc->sc_misc->noise.value.l = sc->noise; 2866 2867 /* Test that RSSI and noise are present in stats report. */ 2868 if (le32toh(stats->rx.general.flags) != 1) { 2869 return; 2870 } 2871 2872 /* 2873 * XXX Differential gain calibration makes the 6005 firmware 2874 * crap out, so skip it for now. This effectively disables 2875 * sensitivity tuning as well. 2876 */ 2877 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2878 return; 2879 2880 if (calib->state == IWN_CALIB_STATE_ASSOC) 2881 iwn_collect_noise(sc, &stats->rx.general); 2882 else if (calib->state == IWN_CALIB_STATE_RUN) 2883 iwn_tune_sensitivity(sc, &stats->rx); 2884 } 2885 2886 /* 2887 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2888 * and 5000 adapters have different incompatible TX status formats. 2889 */ 2890 static void 2891 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2892 struct iwn_rx_data *data) 2893 { 2894 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2895 2896 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2897 sizeof (*stat), DDI_DMA_SYNC_FORKERNEL); 2898 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2899 } 2900 2901 static void 2902 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2903 struct iwn_rx_data *data) 2904 { 2905 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2906 2907 #ifdef notyet 2908 /* Reset TX scheduler slot. */ 2909 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2910 #endif 2911 2912 (void) ddi_dma_sync(data->dma_data.dma_hdl, sizeof (*desc), 2913 sizeof (*stat), DDI_DMA_SYNC_FORKERNEL); 2914 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2915 } 2916 2917 /* 2918 * Adapter-independent backend for TX_DONE firmware notifications. 2919 */ 2920 static void 2921 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2922 uint8_t status) 2923 { 2924 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2925 struct iwn_tx_data *data = &ring->data[desc->idx]; 2926 struct iwn_node *wn = (struct iwn_node *)data->ni; 2927 2928 /* Update rate control statistics. */ 2929 wn->amn.amn_txcnt++; 2930 if (ackfailcnt > 0) 2931 wn->amn.amn_retrycnt++; 2932 2933 if (status != 1 && status != 2) 2934 sc->sc_tx_err++; 2935 else 2936 sc->sc_ic.ic_stats.is_tx_frags++; 2937 2938 ieee80211_free_node(data->ni); 2939 data->ni = NULL; 2940 2941 mutex_enter(&sc->sc_tx_mtx); 2942 sc->sc_tx_timer = 0; 2943 if (--ring->queued < IWN_TX_RING_LOMARK) { 2944 sc->qfullmsk &= ~(1 << ring->qid); 2945 } 2946 mac_tx_update(sc->sc_ic.ic_mach); 2947 mutex_exit(&sc->sc_tx_mtx); 2948 } 2949 2950 /* 2951 * Process a "command done" firmware notification. This is where we wakeup 2952 * processes waiting for a synchronous command completion. 2953 */ 2954 static void 2955 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2956 { 2957 struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM]; 2958 struct iwn_tx_data *data; 2959 2960 if ((desc->qid & 0xf) != IWN_CMD_QUEUE_NUM) 2961 return; /* Not a command ack. */ 2962 2963 data = &ring->data[desc->idx]; 2964 2965 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 2966 2967 /* If the command was mapped in an extra buffer, free it. */ 2968 if (data->cmd_dma.dma_hdl) { 2969 (void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, 0, 2970 DDI_DMA_SYNC_FORDEV); 2971 iwn_dma_contig_free(&data->cmd_dma); 2972 } 2973 2974 mutex_enter(&sc->sc_mtx); 2975 sc->sc_cmd_flag = SC_CMD_FLG_DONE; 2976 cv_signal(&sc->sc_cmd_cv); 2977 mutex_exit(&sc->sc_mtx); 2978 } 2979 2980 /* 2981 * Process an INT_FH_RX or INT_SW_RX interrupt. 2982 */ 2983 static void 2984 iwn_notif_intr(struct iwn_softc *sc) 2985 { 2986 struct iwn_ops *ops = &sc->ops; 2987 struct ieee80211com *ic = &sc->sc_ic; 2988 uint16_t hw; 2989 2990 ASSERT(sc != NULL); 2991 2992 (void) ddi_dma_sync(sc->rxq.stat_dma.dma_hdl, 0, 0, 2993 DDI_DMA_SYNC_FORKERNEL); 2994 2995 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2996 while (sc->rxq.cur != hw) { 2997 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2998 struct iwn_rx_desc *desc; 2999 3000 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, sizeof (*desc), 3001 DDI_DMA_SYNC_FORKERNEL); 3002 desc = (struct iwn_rx_desc *)data->dma_data.vaddr; 3003 3004 DTRACE_PROBE1(notification__intr, struct iwn_rx_desc *, desc); 3005 3006 if (!(desc->qid & 0x80)) /* Reply to a command. */ 3007 iwn_cmd_done(sc, desc); 3008 3009 switch (desc->type) { 3010 case IWN_RX_PHY: 3011 iwn_rx_phy(sc, desc, data); 3012 break; 3013 3014 case IWN_RX_DONE: /* 4965AGN only. */ 3015 case IWN_MPDU_RX_DONE: 3016 /* An 802.11 frame has been received. */ 3017 iwn_rx_done(sc, desc, data); 3018 break; 3019 #ifndef IEEE80211_NO_HT 3020 case IWN_RX_COMPRESSED_BA: 3021 /* A Compressed BlockAck has been received. */ 3022 iwn_rx_compressed_ba(sc, desc, data); 3023 break; 3024 #endif 3025 case IWN_TX_DONE: 3026 /* An 802.11 frame has been transmitted. */ 3027 ops->tx_done(sc, desc, data); 3028 break; 3029 3030 case IWN_RX_STATISTICS: 3031 case IWN_BEACON_STATISTICS: 3032 mutex_enter(&sc->sc_mtx); 3033 iwn_rx_statistics(sc, desc, data); 3034 mutex_exit(&sc->sc_mtx); 3035 break; 3036 3037 case IWN_BEACON_MISSED: 3038 { 3039 struct iwn_beacon_missed *miss = 3040 (struct iwn_beacon_missed *)(desc + 1); 3041 3042 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3043 sizeof (*desc), sizeof (*miss), 3044 DDI_DMA_SYNC_FORKERNEL); 3045 /* 3046 * If more than iwn_beacons_missed_disconnect 3047 * consecutive beacons are missed, we've probably lost 3048 * our connection. 3049 * If more than iwn_beacons_missed_sensitivity 3050 * consecutive beacons are missed, reinitialize the 3051 * sensitivity state machine. 3052 */ 3053 DTRACE_PROBE1(beacons__missed, 3054 struct iwn_beacon_missed *, miss); 3055 if (ic->ic_state == IEEE80211_S_RUN) { 3056 if (le32toh(miss->consecutive) 3057 > iwn_beacons_missed_disconnect) { 3058 dev_err(sc->sc_dip, CE_WARN, 3059 "!iwn_notif_intr(): %d consecutive " 3060 "beacons missed, disconnecting", 3061 le32toh(miss->consecutive)); 3062 ieee80211_new_state(ic, 3063 IEEE80211_S_INIT, -1); 3064 } else if (le32toh(miss->consecutive) 3065 > iwn_beacons_missed_sensitivity) { 3066 mutex_enter(&sc->sc_mtx); 3067 (void)iwn_init_sensitivity(sc); 3068 mutex_exit(&sc->sc_mtx); 3069 } 3070 } 3071 break; 3072 } 3073 case IWN_UC_READY: 3074 { 3075 struct iwn_ucode_info *uc = 3076 (struct iwn_ucode_info *)(desc + 1); 3077 3078 /* The microcontroller is ready. */ 3079 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3080 sizeof (*desc), sizeof (*uc), 3081 DDI_DMA_SYNC_FORKERNEL); 3082 DTRACE_PROBE1(uc__ready, struct iwn_ucode_info *, uc) 3083 3084 if (le32toh(uc->valid) != 1) { 3085 dev_err(sc->sc_dip, CE_WARN, 3086 "!microcontroller initialization failed"); 3087 break; 3088 } 3089 if (uc->subtype == IWN_UCODE_INIT) { 3090 /* Save microcontroller report. */ 3091 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3092 } 3093 /* Save the address of the error log in SRAM. */ 3094 sc->errptr = le32toh(uc->errptr); 3095 break; 3096 } 3097 case IWN_STATE_CHANGED: 3098 { 3099 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3100 uint32_t *status = (uint32_t *)(desc + 1); 3101 3102 /* Enabled/disabled notification. */ 3103 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3104 sizeof (*desc), sizeof (*status), 3105 DDI_DMA_SYNC_FORKERNEL); 3106 DTRACE_PROBE1(state__changed, uint32_t, *status); 3107 3108 if (le32toh(*status) & 1) { 3109 /* The radio button has to be pushed. */ 3110 dev_err(sc->sc_dip, CE_WARN, 3111 "!Radio transmitter is off"); 3112 /* Turn the interface down. */ 3113 mutex_enter(&sc->sc_mtx); 3114 sc->sc_flags |= 3115 IWN_FLAG_HW_ERR_RECOVER | 3116 IWN_FLAG_RADIO_OFF; 3117 mutex_exit(&sc->sc_mtx); 3118 ieee80211_new_state(&sc->sc_ic, 3119 IEEE80211_S_INIT, -1); 3120 3121 return; /* No further processing. */ 3122 } 3123 break; 3124 } 3125 case IWN_START_SCAN: 3126 { 3127 struct iwn_start_scan *scan = 3128 (struct iwn_start_scan *)(desc + 1); 3129 3130 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3131 sizeof (*desc), sizeof (*scan), 3132 DDI_DMA_SYNC_FORKERNEL); 3133 DTRACE_PROBE2(start__scan, uint8_t, scan->chan, 3134 uint32_t, le32toh(scan->status)); 3135 3136 /* Fix current channel. */ 3137 ic->ic_curchan = ic->ic_bss->in_chan = 3138 &ic->ic_sup_channels[scan->chan]; 3139 break; 3140 } 3141 case IWN_STOP_SCAN: 3142 { 3143 struct iwn_stop_scan *scan = 3144 (struct iwn_stop_scan *)(desc + 1); 3145 3146 (void) ddi_dma_sync(data->dma_data.dma_hdl, 3147 sizeof (*desc), sizeof (*scan), 3148 DDI_DMA_SYNC_FORKERNEL); 3149 DTRACE_PROBE3(stop__scan, uint8_t, scan->chan, 3150 uint32_t, le32toh(scan->status), 3151 uint8_t, scan->nchan); 3152 3153 if (iwn_enable_5ghz != 0 && 3154 (sc->sc_flags & IWN_FLAG_SCANNING_2GHZ) && 3155 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 3156 /* 3157 * We just finished scanning 2GHz channels, 3158 * start scanning 5GHz ones. 3159 */ 3160 mutex_enter(&sc->sc_mtx); 3161 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ; 3162 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ; 3163 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) { 3164 mutex_exit(&sc->sc_mtx); 3165 break; 3166 } 3167 mutex_exit(&sc->sc_mtx); 3168 } 3169 ieee80211_end_scan(ic); 3170 mutex_enter(&sc->sc_mtx); 3171 sc->sc_flags &= ~IWN_FLAG_SCANNING; 3172 cv_signal(&sc->sc_scan_cv); 3173 mutex_exit(&sc->sc_mtx); 3174 (void) untimeout(sc->scan_to); 3175 sc->scan_to = 0; 3176 break; 3177 } 3178 case IWN5000_CALIBRATION_RESULT: 3179 iwn5000_rx_calib_results(sc, desc, data); 3180 break; 3181 3182 case IWN5000_CALIBRATION_DONE: 3183 mutex_enter(&sc->sc_mtx); 3184 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3185 cv_signal(&sc->sc_calib_cv); 3186 mutex_exit(&sc->sc_mtx); 3187 break; 3188 } 3189 3190 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3191 } 3192 3193 /* Tell the firmware what we have processed. */ 3194 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3195 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3196 } 3197 3198 /* 3199 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3200 * from power-down sleep mode. 3201 */ 3202 static void 3203 iwn_wakeup_intr(struct iwn_softc *sc) 3204 { 3205 int qid; 3206 3207 DTRACE_PROBE(wakeup__intr); 3208 3209 /* Wakeup RX and TX rings. */ 3210 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 3211 for (qid = 0; qid < sc->ntxqs; qid++) { 3212 struct iwn_tx_ring *ring = &sc->txq[qid]; 3213 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 3214 } 3215 } 3216 3217 /* 3218 * Dump the error log of the firmware when a firmware panic occurs. Although 3219 * we can't debug the firmware because it is neither open source nor free, it 3220 * can help us to identify certain classes of problems. 3221 */ 3222 static void 3223 iwn_fatal_intr(struct iwn_softc *sc) 3224 { 3225 struct iwn_fw_dump *dump; 3226 uint32_t buf[P2ROUNDUP(sizeof (*dump), sizeof (uint32_t)) / 3227 sizeof (uint32_t)]; 3228 int i; 3229 3230 /* Force a complete recalibration on next init. */ 3231 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 3232 3233 /* Check that the error log address is valid. */ 3234 if (sc->errptr < IWN_FW_DATA_BASE || 3235 sc->errptr + sizeof (*dump) > 3236 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 3237 dev_err(sc->sc_dip, CE_WARN, 3238 "!bad firmware error log address 0x%08x", sc->errptr); 3239 return; 3240 } 3241 if (iwn_nic_lock(sc) != 0) { 3242 dev_err(sc->sc_dip, CE_WARN, 3243 "!could not read firmware error log"); 3244 return; 3245 } 3246 /* Read firmware error log from SRAM. */ 3247 dump = (struct iwn_fw_dump *)buf; 3248 iwn_mem_read_region_4(sc, sc->errptr, buf, ARRAY_SIZE(buf)); 3249 iwn_nic_unlock(sc); 3250 3251 if (dump->valid == 0) { 3252 dev_err(sc->sc_dip, CE_WARN, 3253 "!firmware error log is empty"); 3254 return; 3255 } 3256 dev_err(sc->sc_dip, CE_WARN, "!firmware error log:"); 3257 dev_err(sc->sc_dip, CE_CONT, "! error type = \"%s\" (0x%08X)", 3258 (dump->id < __arraycount(iwn_fw_errmsg)) ? 3259 iwn_fw_errmsg[dump->id] : "UNKNOWN", 3260 dump->id); 3261 dev_err(sc->sc_dip, CE_CONT, "! program counter = 0x%08X", dump->pc); 3262 dev_err(sc->sc_dip, CE_CONT, "! source line = 0x%08X", 3263 dump->src_line); 3264 dev_err(sc->sc_dip, CE_CONT, "! error data = 0x%08X%08X", 3265 dump->error_data[0], dump->error_data[1]); 3266 dev_err(sc->sc_dip, CE_CONT, "! branch link = 0x%08X%08X", 3267 dump->branch_link[0], dump->branch_link[1]); 3268 dev_err(sc->sc_dip, CE_CONT, "! interrupt link = 0x%08X%08X", 3269 dump->interrupt_link[0], dump->interrupt_link[1]); 3270 dev_err(sc->sc_dip, CE_CONT, "! time = %u", dump->time[0]); 3271 3272 /* Dump driver status (TX and RX rings) while we're here. */ 3273 dev_err(sc->sc_dip, CE_WARN, "!driver status:"); 3274 for (i = 0; i < sc->ntxqs; i++) { 3275 struct iwn_tx_ring *ring = &sc->txq[i]; 3276 dev_err(sc->sc_dip, CE_WARN, 3277 "! tx ring %2d: qid=%2d cur=%3d queued=%3d", 3278 i, ring->qid, ring->cur, ring->queued); 3279 } 3280 dev_err(sc->sc_dip, CE_WARN, "! rx ring: cur=%d", sc->rxq.cur); 3281 dev_err(sc->sc_dip, CE_WARN, "! 802.11 state %d", sc->sc_ic.ic_state); 3282 } 3283 3284 /*ARGSUSED1*/ 3285 static uint_t 3286 iwn_intr(caddr_t arg, caddr_t unused) 3287 { 3288 _NOTE(ARGUNUSED(unused)); 3289 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 3290 struct iwn_softc *sc = (struct iwn_softc *)arg; 3291 uint32_t r1, r2, tmp; 3292 3293 if (sc == NULL) 3294 return (DDI_INTR_UNCLAIMED); 3295 3296 /* Disable interrupts. */ 3297 IWN_WRITE(sc, IWN_INT_MASK, 0); 3298 3299 /* Read interrupts from ICT (fast) or from registers (slow). */ 3300 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3301 (void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0, 3302 DDI_DMA_SYNC_FORKERNEL); 3303 tmp = 0; 3304 while (sc->ict[sc->ict_cur] != 0) { 3305 tmp |= sc->ict[sc->ict_cur]; 3306 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 3307 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 3308 } 3309 (void) ddi_dma_sync(sc->ict_dma.dma_hdl, 0, 0, 3310 DDI_DMA_SYNC_FORDEV); 3311 tmp = le32toh(tmp); 3312 if (tmp == 0xffffffff) /* Shouldn't happen. */ 3313 tmp = 0; 3314 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 3315 tmp |= 0x8000; 3316 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 3317 r2 = 0; /* Unused. */ 3318 } else { 3319 r1 = IWN_READ(sc, IWN_INT); 3320 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 3321 return (DDI_INTR_UNCLAIMED); /* Hardware gone! */ 3322 r2 = IWN_READ(sc, IWN_FH_INT); 3323 } 3324 if (r1 == 0 && r2 == 0) { 3325 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 3326 return (DDI_INTR_UNCLAIMED); /* Interrupt not for us. */ 3327 } 3328 3329 /* Acknowledge interrupts. */ 3330 IWN_WRITE(sc, IWN_INT, r1); 3331 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 3332 IWN_WRITE(sc, IWN_FH_INT, r2); 3333 3334 if (r1 & IWN_INT_RF_TOGGLED) { 3335 tmp = IWN_READ(sc, IWN_GP_CNTRL); 3336 dev_err(sc->sc_dip, CE_NOTE, 3337 "!RF switch: radio %s", 3338 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 3339 } 3340 if (r1 & IWN_INT_CT_REACHED) { 3341 dev_err(sc->sc_dip, CE_WARN, 3342 "!critical temperature reached!"); 3343 } 3344 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 3345 dev_err(sc->sc_dip, CE_WARN, 3346 "!fatal firmware error"); 3347 /* Dump firmware error log and stop. */ 3348 iwn_fatal_intr(sc); 3349 iwn_hw_stop(sc, B_TRUE); 3350 if (!IWN_CHK_FAST_RECOVER(sc)) 3351 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 3352 mutex_enter(&sc->sc_mtx); 3353 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER; 3354 mutex_exit(&sc->sc_mtx); 3355 3356 return (DDI_INTR_CLAIMED); 3357 } 3358 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 3359 (r2 & IWN_FH_INT_RX)) { 3360 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3361 int ena = (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)); 3362 3363 if (ena) 3364 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 3365 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3366 IWN_INT_PERIODIC_DIS); 3367 iwn_notif_intr(sc); 3368 if (ena) 3369 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3370 IWN_INT_PERIODIC_ENA); 3371 } else { 3372 iwn_notif_intr(sc); 3373 } 3374 } 3375 3376 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 3377 if (sc->sc_flags & IWN_FLAG_USE_ICT) 3378 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 3379 mutex_enter(&sc->sc_mtx); 3380 sc->sc_flags |= IWN_FLAG_FW_DMA; 3381 cv_signal(&sc->sc_fhdma_cv); 3382 mutex_exit(&sc->sc_mtx); 3383 } 3384 3385 if (r1 & IWN_INT_ALIVE) { 3386 mutex_enter(&sc->sc_mtx); 3387 sc->sc_flags |= IWN_FLAG_FW_ALIVE; 3388 cv_signal(&sc->sc_alive_cv); 3389 mutex_exit(&sc->sc_mtx); 3390 } 3391 3392 if (r1 & IWN_INT_WAKEUP) 3393 iwn_wakeup_intr(sc); 3394 3395 /* Re-enable interrupts. */ 3396 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 3397 return (DDI_INTR_CLAIMED); 3398 } 3399 3400 /* 3401 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 3402 * 5000 adapters use a slightly different format). 3403 */ 3404 static void 3405 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3406 uint16_t len) 3407 { 3408 _NOTE(ARGUNUSED(id)); 3409 int w_idx = qid * IWN4965_SCHED_COUNT + idx; 3410 uint16_t *w = &sc->sched[w_idx]; 3411 3412 *w = htole16(len + 8); 3413 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t), 3414 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3415 if (idx < IWN_SCHED_WINSZ) { 3416 *(w + IWN_TX_RING_COUNT) = *w; 3417 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, 3418 (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t), 3419 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3420 } 3421 } 3422 3423 static void 3424 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3425 uint16_t len) 3426 { 3427 int w_idx = qid * IWN5000_SCHED_COUNT + idx; 3428 uint16_t *w = &sc->sched[w_idx]; 3429 3430 *w = htole16(id << 12 | (len + 8)); 3431 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t), 3432 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3433 if (idx < IWN_SCHED_WINSZ) { 3434 *(w + IWN_TX_RING_COUNT) = *w; 3435 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, 3436 (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t), 3437 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3438 } 3439 } 3440 3441 #ifdef notyet 3442 static void 3443 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 3444 { 3445 int w_idx = qid * IWN5000_SCHED_COUNT + idx; 3446 uint16_t *w = &sc->sched[w_idx]; 3447 3448 *w = (*w & htole16(0xf000)) | htole16(1); 3449 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, w_idx * sizeof (uint16_t), 3450 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3451 if (idx < IWN_SCHED_WINSZ) { 3452 *(w + IWN_TX_RING_COUNT) = *w; 3453 (void) ddi_dma_sync(sc->sched_dma.dma_hdl, 3454 (w_idx + IWN_TX_RING_COUNT) * sizeof (uint16_t), 3455 sizeof (uint16_t), DDI_DMA_SYNC_FORDEV); 3456 } 3457 } 3458 #endif 3459 3460 /* 3461 * This function is only for compatibility with Net80211 module. 3462 * iwn_qosparam_to_hw() is the actual function updating EDCA 3463 * parameters to hardware. 3464 */ 3465 static int 3466 iwn_wme_update(struct ieee80211com *ic) 3467 { 3468 _NOTE(ARGUNUSED(ic)); 3469 return (0); 3470 } 3471 3472 static int 3473 iwn_wme_to_qos_ac(struct iwn_softc *sc, int wme_ac) 3474 { 3475 int qos_ac; 3476 3477 switch (wme_ac) { 3478 case WME_AC_BE: 3479 qos_ac = QOS_AC_BK; 3480 break; 3481 case WME_AC_BK: 3482 qos_ac = QOS_AC_BE; 3483 break; 3484 case WME_AC_VI: 3485 qos_ac = QOS_AC_VI; 3486 break; 3487 case WME_AC_VO: 3488 qos_ac = QOS_AC_VO; 3489 break; 3490 default: 3491 dev_err(sc->sc_dip, CE_WARN, "!iwn_wme_to_qos_ac(): " 3492 "WME AC index is not in suitable range.\n"); 3493 qos_ac = QOS_AC_INVALID; 3494 break; 3495 } 3496 3497 return (qos_ac); 3498 } 3499 3500 static uint16_t 3501 iwn_cw_e_to_cw(uint8_t cw_e) 3502 { 3503 uint16_t cw = 1; 3504 3505 while (cw_e > 0) { 3506 cw <<= 1; 3507 cw_e--; 3508 } 3509 3510 cw -= 1; 3511 return (cw); 3512 } 3513 3514 static int 3515 iwn_wmeparam_check(struct iwn_softc *sc, struct wmeParams *wmeparam) 3516 { 3517 int i; 3518 3519 for (i = 0; i < WME_NUM_AC; i++) { 3520 3521 if ((wmeparam[i].wmep_logcwmax > QOS_CW_RANGE_MAX) || 3522 (wmeparam[i].wmep_logcwmin >= wmeparam[i].wmep_logcwmax)) { 3523 cmn_err(CE_WARN, "iwn_wmeparam_check(): " 3524 "Contention window is not in suitable range.\n"); 3525 return (IWN_FAIL); 3526 } 3527 3528 if ((wmeparam[i].wmep_aifsn < QOS_AIFSN_MIN) || 3529 (wmeparam[i].wmep_aifsn > QOS_AIFSN_MAX)) { 3530 dev_err(sc->sc_dip, CE_WARN, "!iwn_wmeparam_check(): " 3531 "Arbitration interframe space number" 3532 "is not in suitable range.\n"); 3533 return (IWN_FAIL); 3534 } 3535 } 3536 3537 return (IWN_SUCCESS); 3538 } 3539 3540 /* 3541 * This function updates EDCA parameters into hardware. 3542 * FIFO0-background, FIFO1-best effort, FIFO2-video, FIFO3-voice. 3543 */ 3544 static int 3545 iwn_qosparam_to_hw(struct iwn_softc *sc, int async) 3546 { 3547 ieee80211com_t *ic = &sc->sc_ic; 3548 ieee80211_node_t *in = ic->ic_bss; 3549 struct wmeParams *wmeparam; 3550 struct iwn_edca_params edcaparam; 3551 int i, j; 3552 int err = IWN_FAIL; 3553 3554 if ((in->in_flags & IEEE80211_NODE_QOS) && 3555 (IEEE80211_M_STA == ic->ic_opmode)) { 3556 wmeparam = ic->ic_wme.wme_chanParams.cap_wmeParams; 3557 } else { 3558 return (IWN_SUCCESS); 3559 } 3560 3561 (void) memset(&edcaparam, 0, sizeof (edcaparam)); 3562 3563 err = iwn_wmeparam_check(sc, wmeparam); 3564 if (err != IWN_SUCCESS) { 3565 return (err); 3566 } 3567 3568 if (in->in_flags & IEEE80211_NODE_QOS) { 3569 edcaparam.flags |= QOS_PARAM_FLG_UPDATE_EDCA; 3570 } 3571 3572 if (in->in_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)) { 3573 edcaparam.flags |= QOS_PARAM_FLG_TGN; 3574 } 3575 3576 for (i = 0; i < WME_NUM_AC; i++) { 3577 3578 j = iwn_wme_to_qos_ac(sc, i); 3579 if (j < QOS_AC_BK || j > QOS_AC_VO) { 3580 return (IWN_FAIL); 3581 } 3582 3583 sc->sc_edca->ac[j].cwmin.value.ul = edcaparam.ac[j].cwmin = 3584 iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmin); 3585 sc->sc_edca->ac[j].cwmax.value.ul = edcaparam.ac[j].cwmax = 3586 iwn_cw_e_to_cw(wmeparam[i].wmep_logcwmax); 3587 sc->sc_edca->ac[j].aifsn.value.ul = edcaparam.ac[j].aifsn = 3588 wmeparam[i].wmep_aifsn; 3589 sc->sc_edca->ac[j].txop.value.ul = edcaparam.ac[j].txoplimit = 3590 (uint16_t)(wmeparam[i].wmep_txopLimit * 32); 3591 } 3592 3593 err = iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &edcaparam, 3594 sizeof (edcaparam), async); 3595 if (err != IWN_SUCCESS) { 3596 dev_err(sc->sc_dip, CE_WARN, "!iwn_qosparam_to_hw(): " 3597 "failed to update QoS parameters into hardware."); 3598 return (err); 3599 } 3600 3601 return (err); 3602 } 3603 3604 static inline int 3605 iwn_wme_tid_qos_ac(int tid) 3606 { 3607 switch (tid) { 3608 case 1: 3609 case 2: 3610 return (QOS_AC_BK); 3611 case 0: 3612 case 3: 3613 return (QOS_AC_BE); 3614 case 4: 3615 case 5: 3616 return (QOS_AC_VI); 3617 case 6: 3618 case 7: 3619 return (QOS_AC_VO); 3620 } 3621 3622 return (QOS_AC_BE); 3623 } 3624 3625 static inline int 3626 iwn_qos_ac_to_txq(int qos_ac) 3627 { 3628 switch (qos_ac) { 3629 case QOS_AC_BK: 3630 return (QOS_AC_BK_TO_TXQ); 3631 case QOS_AC_BE: 3632 return (QOS_AC_BE_TO_TXQ); 3633 case QOS_AC_VI: 3634 return (QOS_AC_VI_TO_TXQ); 3635 case QOS_AC_VO: 3636 return (QOS_AC_VO_TO_TXQ); 3637 } 3638 3639 return (QOS_AC_BE_TO_TXQ); 3640 } 3641 3642 static int 3643 iwn_wme_tid_to_txq(struct iwn_softc *sc, int tid) 3644 { 3645 int queue_n = TXQ_FOR_AC_INVALID; 3646 int qos_ac; 3647 3648 if (tid < WME_TID_MIN || 3649 tid > WME_TID_MAX) { 3650 dev_err(sc->sc_dip, CE_WARN, "!wme_tid_to_txq(): " 3651 "TID is not in suitable range."); 3652 return (queue_n); 3653 } 3654 3655 qos_ac = iwn_wme_tid_qos_ac(tid); 3656 queue_n = iwn_qos_ac_to_txq(qos_ac); 3657 3658 return (queue_n); 3659 } 3660 3661 static int 3662 iwn_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type) 3663 { 3664 struct iwn_softc *sc = (struct iwn_softc *)ic; 3665 struct iwn_node *wn; 3666 struct iwn_tx_ring *ring; 3667 struct iwn_tx_desc *desc; 3668 struct iwn_tx_data *data; 3669 struct iwn_tx_cmd *cmd; 3670 struct iwn_cmd_data *tx; 3671 ieee80211_node_t *in; 3672 const struct iwn_rate *rinfo; 3673 struct ieee80211_frame *wh; 3674 struct ieee80211_key *k = NULL; 3675 uint32_t flags; 3676 uint_t hdrlen; 3677 uint8_t ridx, txant; 3678 int i, totlen, seglen, pad; 3679 int txq_id = NON_QOS_TXQ; 3680 struct ieee80211_qosframe *qwh = NULL; 3681 uint8_t tid = WME_TID_INVALID; 3682 ddi_dma_cookie_t cookie; 3683 mblk_t *m0, *m; 3684 int mblen, off; 3685 3686 int noack = 0; 3687 3688 if (ic == NULL) 3689 return (EIO); 3690 3691 if ((mp == NULL) || (MBLKL(mp) <= 0)) 3692 return (EIO); 3693 3694 if (sc->sc_flags & IWN_FLAG_SUSPEND) { 3695 freemsg(mp); 3696 sc->sc_tx_err++; 3697 return(EIO); 3698 } 3699 3700 wh = (struct ieee80211_frame *)mp->b_rptr; 3701 3702 hdrlen = ieee80211_hdrspace(ic, mp->b_rptr); 3703 3704 /* 3705 * determine send which AP or station in IBSS 3706 */ 3707 in = ieee80211_find_txnode(ic, wh->i_addr1); 3708 if (in == NULL) { 3709 dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): " 3710 "failed to find tx node"); 3711 freemsg(mp); 3712 sc->sc_tx_err++; 3713 return(EIO); 3714 } 3715 3716 wn = (struct iwn_node *)in; 3717 3718 /* 3719 * Determine TX queue according to traffic ID in frame 3720 * if working in QoS mode. 3721 */ 3722 if (in->in_flags & IEEE80211_NODE_QOS) { 3723 if ((type & IEEE80211_FC0_TYPE_MASK) == 3724 IEEE80211_FC0_TYPE_DATA) { 3725 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3726 qwh = (struct ieee80211_qosframe *)wh; 3727 3728 tid = qwh->i_qos[0] & IEEE80211_QOS_TID; 3729 txq_id = iwn_wme_tid_to_txq(sc, tid); 3730 3731 if (txq_id < TXQ_FOR_AC_MIN || 3732 (txq_id > TXQ_FOR_AC_MAX)) { 3733 freemsg(mp); 3734 sc->sc_tx_err++; 3735 return(EIO); 3736 } 3737 } else { 3738 txq_id = NON_QOS_TXQ; 3739 } 3740 } else if ((type & IEEE80211_FC0_TYPE_MASK) == 3741 IEEE80211_FC0_TYPE_MGT) { 3742 txq_id = QOS_TXQ_FOR_MGT; 3743 } else { 3744 txq_id = NON_QOS_TXQ; 3745 } 3746 } else { 3747 txq_id = NON_QOS_TXQ; 3748 } 3749 3750 if (sc->qfullmsk & (1 << txq_id)) { 3751 sc->sc_tx_err++; 3752 /* net80211-initiated send */ 3753 if ((type & IEEE80211_FC0_TYPE_MASK) != 3754 IEEE80211_FC0_TYPE_DATA) 3755 freemsg(mp); 3756 return (EAGAIN); 3757 } 3758 3759 /* Choose a TX rate index. */ 3760 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3761 type != IEEE80211_FC0_TYPE_DATA) { 3762 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3763 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 3764 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 3765 ridx = sc->fixed_ridx; 3766 } else 3767 ridx = wn->ridx[in->in_txrate]; 3768 rinfo = &iwn_rates[ridx]; 3769 3770 m = allocb(msgdsize(mp) + 32, BPRI_MED); 3771 if (m) { 3772 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { 3773 mblen = MBLKL(m0); 3774 bcopy(m0->b_rptr, m->b_rptr + off, mblen); 3775 off += mblen; 3776 } 3777 3778 m->b_wptr += off; 3779 3780 freemsg(mp); 3781 mp = m; 3782 3783 wh = (struct ieee80211_frame *)mp->b_rptr; 3784 } else { 3785 dev_err(sc->sc_dip, CE_WARN, "!iwn_send(): can't copy"); 3786 /* net80211-initiated send */ 3787 if ((type & IEEE80211_FC0_TYPE_MASK) != 3788 IEEE80211_FC0_TYPE_DATA) 3789 freemsg(mp); 3790 return (EAGAIN); 3791 } 3792 3793 3794 /* 3795 * Net80211 module encapsulate outbound data frames. 3796 * Add some fields of 80211 frame. 3797 */ 3798 if ((type & IEEE80211_FC0_TYPE_MASK) == 3799 IEEE80211_FC0_TYPE_DATA) 3800 (void) ieee80211_encap(ic, mp, in); 3801 3802 /* Encrypt the frame if need be. */ 3803 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3804 k = ieee80211_crypto_encap(ic, mp); 3805 if (k == NULL) { 3806 freemsg(mp); 3807 return(EIO); 3808 } 3809 /* Packet header may have moved, reset our local pointer. */ 3810 wh = (struct ieee80211_frame *)mp->b_rptr; 3811 } 3812 totlen = msgdsize(mp); 3813 3814 mutex_enter(&sc->sc_tx_mtx); 3815 ring = &sc->txq[txq_id]; 3816 desc = &ring->desc[ring->cur]; 3817 data = &ring->data[ring->cur]; 3818 3819 /* Prepare TX firmware command. */ 3820 cmd = &ring->cmd[ring->cur]; 3821 cmd->code = IWN_CMD_TX_DATA; 3822 cmd->flags = 0; 3823 cmd->qid = ring->qid; 3824 cmd->idx = ring->cur; 3825 3826 tx = (struct iwn_cmd_data *)cmd->data; 3827 /* NB: No need to clear tx, all fields are reinitialized here. */ 3828 tx->scratch = 0; /* clear "scratch" area */ 3829 3830 flags = 0; 3831 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3832 /* Unicast frame, check if an ACK is expected. */ 3833 if (!noack) 3834 flags |= IWN_TX_NEED_ACK; 3835 } 3836 3837 if ((wh->i_fc[0] & 3838 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3839 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3840 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3841 3842 ASSERT((flags & IWN_TX_IMM_BA) == 0); 3843 3844 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3845 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3846 3847 ASSERT((flags & IWN_TX_MORE_FRAG) == 0); 3848 3849 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3850 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3851 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3852 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 3853 flags |= IWN_TX_NEED_RTS; 3854 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3855 ridx >= IWN_RIDX_OFDM6) { 3856 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3857 flags |= IWN_TX_NEED_CTS; 3858 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3859 flags |= IWN_TX_NEED_RTS; 3860 } 3861 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3862 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3863 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3864 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3865 flags |= IWN_TX_NEED_PROTECTION; 3866 } else 3867 flags |= IWN_TX_FULL_TXOP; 3868 } 3869 } 3870 3871 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3872 type != IEEE80211_FC0_TYPE_DATA) 3873 tx->id = sc->broadcast_id; 3874 else 3875 tx->id = wn->id; 3876 3877 if (type == IEEE80211_FC0_TYPE_MGT) { 3878 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3879 3880 #ifndef IEEE80211_STA_ONLY 3881 /* Tell HW to set timestamp in probe responses. */ 3882 /* XXX NetBSD rev 1.11 added probe requests here but */ 3883 /* probe requests do not take timestamps (from Bergamini). */ 3884 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3885 flags |= IWN_TX_INSERT_TSTAMP; 3886 #endif 3887 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 3888 /* changes here. These are not needed (from Bergamini). */ 3889 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3890 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3891 tx->timeout = htole16(3); 3892 else 3893 tx->timeout = htole16(2); 3894 } else 3895 tx->timeout = htole16(0); 3896 3897 if (hdrlen & 3) { 3898 /* First segment length must be a multiple of 4. */ 3899 flags |= IWN_TX_NEED_PADDING; 3900 pad = 4 - (hdrlen & 3); 3901 } else 3902 pad = 0; 3903 3904 if (tid != WME_TID_INVALID) { 3905 flags &= ~IWN_TX_AUTO_SEQ; 3906 } else { 3907 flags |= IWN_TX_AUTO_SEQ; 3908 tid = 0; 3909 } 3910 3911 tx->len = htole16(totlen); 3912 tx->tid = tid; 3913 tx->rts_ntries = 60; 3914 tx->data_ntries = 15; 3915 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3916 tx->plcp = rinfo->plcp; 3917 tx->rflags = rinfo->flags; 3918 if (tx->id == sc->broadcast_id) { 3919 /* Group or management frame. */ 3920 tx->linkq = 0; 3921 /* XXX Alternate between antenna A and B? */ 3922 txant = IWN_LSB(sc->txchainmask); 3923 tx->rflags |= IWN_RFLAG_ANT(txant); 3924 } else { 3925 tx->linkq = in->in_rates.ir_nrates - in->in_txrate - 1; 3926 flags |= IWN_TX_LINKQ; /* enable MRR */ 3927 } 3928 /* Set physical address of "scratch area". */ 3929 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3930 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3931 3932 /* Copy 802.11 header in TX command. */ 3933 /* XXX NetBSD changed this in rev 1.20 */ 3934 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 3935 mp->b_rptr += hdrlen; 3936 3937 bcopy(mp->b_rptr, data->dma_data.vaddr, totlen - hdrlen); 3938 tx->security = 0; 3939 tx->flags = htole32(flags); 3940 3941 data->ni = in; 3942 3943 DTRACE_PROBE4(tx, int, ring->qid, int, ring->cur, size_t, MBLKL(mp), 3944 int, data->dma_data.ncookies); 3945 3946 /* Fill TX descriptor. */ 3947 desc->nsegs = 1 + data->dma_data.ncookies; 3948 /* First DMA segment is used by the TX command. */ 3949 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3950 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3951 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3952 3953 /* Other DMA segments are for data payload. */ 3954 cookie = data->dma_data.cookie; 3955 for (i = 1, seglen = totlen - hdrlen; 3956 i <= data->dma_data.ncookies; 3957 i++, seglen -= cookie.dmac_size) { 3958 desc->segs[i].addr = htole32(IWN_LOADDR(cookie.dmac_laddress)); 3959 desc->segs[i].len = htole16(IWN_HIADDR(cookie.dmac_laddress) | 3960 seglen << 4); 3961 if (i < data->dma_data.ncookies) 3962 ddi_dma_nextcookie(data->dma_data.dma_hdl, &cookie); 3963 } 3964 3965 (void) ddi_dma_sync(data->dma_data.dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 3966 (void) ddi_dma_sync(ring->cmd_dma.dma_hdl, ring->cur * sizeof (*cmd), 3967 sizeof (*cmd), DDI_DMA_SYNC_FORDEV); 3968 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, ring->cur * sizeof (*desc), 3969 sizeof (*desc), DDI_DMA_SYNC_FORDEV); 3970 3971 /* Update TX scheduler. */ 3972 sc->ops.update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3973 3974 /* Kick TX ring. */ 3975 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3976 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3977 3978 /* Mark TX ring as full if we reach a certain threshold. */ 3979 if (++ring->queued > IWN_TX_RING_HIMARK) 3980 sc->qfullmsk |= 1 << ring->qid; 3981 mutex_exit(&sc->sc_tx_mtx); 3982 freemsg(mp); 3983 3984 ic->ic_stats.is_tx_bytes += totlen; 3985 3986 mutex_enter(&sc->sc_mt_mtx); 3987 if (sc->sc_tx_timer == 0) 3988 sc->sc_tx_timer = 5; 3989 mutex_exit(&sc->sc_mt_mtx); 3990 3991 return 0; 3992 } 3993 3994 static mblk_t * 3995 iwn_m_tx(void *arg, mblk_t *mp) 3996 { 3997 struct iwn_softc *sc; 3998 ieee80211com_t *ic; 3999 mblk_t *next; 4000 4001 sc = (struct iwn_softc *)arg; 4002 ASSERT(sc != NULL); 4003 ic = &sc->sc_ic; 4004 4005 if (sc->sc_flags & IWN_FLAG_SUSPEND) { 4006 freemsgchain(mp); 4007 return (NULL); 4008 } 4009 4010 if (ic->ic_state != IEEE80211_S_RUN) { 4011 freemsgchain(mp); 4012 return (NULL); 4013 } 4014 4015 if ((sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) { 4016 freemsgchain(mp); 4017 return (NULL); 4018 } 4019 4020 while (mp != NULL) { 4021 next = mp->b_next; 4022 mp->b_next = NULL; 4023 if (iwn_send(ic, mp, IEEE80211_FC0_TYPE_DATA) == EAGAIN) { 4024 mp->b_next = next; 4025 break; 4026 } 4027 mp = next; 4028 } 4029 4030 return (mp); 4031 } 4032 4033 static void 4034 iwn_watchdog(void *arg) 4035 { 4036 struct iwn_softc *sc = (struct iwn_softc *)arg; 4037 ieee80211com_t *ic = &sc->sc_ic; 4038 timeout_id_t timeout_id = ic->ic_watchdog_timer; 4039 4040 ieee80211_stop_watchdog(ic); 4041 4042 mutex_enter(&sc->sc_mt_mtx); 4043 if (sc->sc_tx_timer > 0) { 4044 if (--sc->sc_tx_timer == 0) { 4045 dev_err(sc->sc_dip, CE_WARN, "!device timeout"); 4046 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER; 4047 sc->sc_ostate = IEEE80211_S_RUN; 4048 DTRACE_PROBE(recover__send__fail); 4049 } 4050 } 4051 mutex_exit(&sc->sc_mt_mtx); 4052 4053 if ((ic->ic_state != IEEE80211_S_AUTH) && 4054 (ic->ic_state != IEEE80211_S_ASSOC)) 4055 return; 4056 4057 if (ic->ic_bss->in_fails > 10) { 4058 DTRACE_PROBE2(watchdog__reset, timeout_id_t, timeout_id, 4059 struct ieee80211node *, ic->ic_bss); 4060 dev_err(sc->sc_dip, CE_WARN, "!iwn_watchdog reset"); 4061 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 4062 } else { 4063 ic->ic_bss->in_fails++; 4064 4065 DTRACE_PROBE2(watchdog__timeout, timeout_id_t, timeout_id, 4066 struct ieee80211node *, ic->ic_bss); 4067 4068 ieee80211_watchdog(ic); 4069 } 4070 } 4071 4072 static void 4073 iwn_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 4074 { 4075 struct iwn_softc *sc; 4076 struct ieee80211com *ic; 4077 int error = 0; 4078 4079 sc = (struct iwn_softc *)arg; 4080 ASSERT(sc != NULL); 4081 ic = &sc->sc_ic; 4082 4083 mutex_enter(&sc->sc_mtx); 4084 while (sc->sc_flags & IWN_FLAG_SCANNING) 4085 cv_wait(&sc->sc_scan_cv, &sc->sc_mtx); 4086 mutex_exit(&sc->sc_mtx); 4087 4088 error = ieee80211_ioctl(ic, wq, mp); 4089 if (error == ENETRESET) { 4090 /* 4091 * This is special for the hidden AP connection. 4092 * In any case, we should make sure only one 'scan' 4093 * in the driver for a 'connect' CLI command. So 4094 * when connecting to a hidden AP, the scan is just 4095 * sent out to the air when we know the desired 4096 * essid of the AP we want to connect. 4097 */ 4098 if (ic->ic_des_esslen) { 4099 if (sc->sc_flags & IWN_FLAG_RUNNING) { 4100 DTRACE_PROBE(netreset); 4101 iwn_m_stop(sc); 4102 (void) iwn_m_start(sc); 4103 (void) ieee80211_new_state(ic, 4104 IEEE80211_S_SCAN, -1); 4105 } 4106 } 4107 } 4108 } 4109 4110 /* 4111 * Call back functions for get/set property 4112 */ 4113 static int 4114 iwn_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 4115 uint_t wldp_length, void *wldp_buf) 4116 { 4117 struct iwn_softc *sc; 4118 4119 sc = (struct iwn_softc *)arg; 4120 ASSERT(sc != NULL); 4121 4122 return (ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num, 4123 wldp_length, wldp_buf)); 4124 } 4125 4126 static void 4127 iwn_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 4128 mac_prop_info_handle_t prh) 4129 { 4130 struct iwn_softc *sc; 4131 4132 sc = (struct iwn_softc *)arg; 4133 ASSERT(sc != NULL); 4134 4135 ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh); 4136 } 4137 4138 static int 4139 iwn_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 4140 uint_t wldp_length, const void *wldp_buf) 4141 { 4142 struct iwn_softc *sc; 4143 ieee80211com_t *ic; 4144 int err = EINVAL; 4145 4146 sc = (struct iwn_softc *)arg; 4147 ASSERT(sc != NULL); 4148 ic = &sc->sc_ic; 4149 4150 mutex_enter(&sc->sc_mtx); 4151 while (sc->sc_flags & IWN_FLAG_SCANNING) 4152 cv_wait(&sc->sc_scan_cv, &sc->sc_mtx); 4153 mutex_exit(&sc->sc_mtx); 4154 4155 err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length, 4156 wldp_buf); 4157 4158 if (err == ENETRESET) { 4159 if (ic->ic_des_esslen) { 4160 if (sc->sc_flags & IWN_FLAG_RUNNING) { 4161 DTRACE_PROBE(netreset); 4162 iwn_m_stop(sc); 4163 (void) iwn_m_start(sc); 4164 (void) ieee80211_new_state(ic, 4165 IEEE80211_S_SCAN, -1); 4166 } 4167 } 4168 err = 0; 4169 } 4170 4171 return (err); 4172 } 4173 4174 /* 4175 * invoked by GLD get statistics from NIC and driver 4176 */ 4177 static int 4178 iwn_m_stat(void *arg, uint_t stat, uint64_t *val) 4179 { 4180 struct iwn_softc *sc; 4181 ieee80211com_t *ic; 4182 ieee80211_node_t *in; 4183 4184 sc = (struct iwn_softc *)arg; 4185 ASSERT(sc != NULL); 4186 ic = &sc->sc_ic; 4187 4188 mutex_enter(&sc->sc_mtx); 4189 4190 switch (stat) { 4191 case MAC_STAT_IFSPEED: 4192 in = ic->ic_bss; 4193 *val = ((IEEE80211_FIXED_RATE_NONE == ic->ic_fixed_rate) ? 4194 IEEE80211_RATE(in->in_txrate) : 4195 ic->ic_fixed_rate) / 2 * 1000000; 4196 break; 4197 case MAC_STAT_NOXMTBUF: 4198 *val = sc->sc_tx_nobuf; 4199 break; 4200 case MAC_STAT_NORCVBUF: 4201 *val = sc->sc_rx_nobuf; 4202 break; 4203 case MAC_STAT_IERRORS: 4204 *val = sc->sc_rx_err; 4205 break; 4206 case MAC_STAT_RBYTES: 4207 *val = ic->ic_stats.is_rx_bytes; 4208 break; 4209 case MAC_STAT_IPACKETS: 4210 *val = ic->ic_stats.is_rx_frags; 4211 break; 4212 case MAC_STAT_OBYTES: 4213 *val = ic->ic_stats.is_tx_bytes; 4214 break; 4215 case MAC_STAT_OPACKETS: 4216 *val = ic->ic_stats.is_tx_frags; 4217 break; 4218 case MAC_STAT_OERRORS: 4219 case WIFI_STAT_TX_FAILED: 4220 *val = sc->sc_tx_err; 4221 break; 4222 case WIFI_STAT_TX_RETRANS: 4223 *val = sc->sc_tx_retries; 4224 break; 4225 case WIFI_STAT_FCS_ERRORS: 4226 case WIFI_STAT_WEP_ERRORS: 4227 case WIFI_STAT_TX_FRAGS: 4228 case WIFI_STAT_MCAST_TX: 4229 case WIFI_STAT_RTS_SUCCESS: 4230 case WIFI_STAT_RTS_FAILURE: 4231 case WIFI_STAT_ACK_FAILURE: 4232 case WIFI_STAT_RX_FRAGS: 4233 case WIFI_STAT_MCAST_RX: 4234 case WIFI_STAT_RX_DUPS: 4235 mutex_exit(&sc->sc_mtx); 4236 return (ieee80211_stat(ic, stat, val)); 4237 default: 4238 mutex_exit(&sc->sc_mtx); 4239 return (ENOTSUP); 4240 } 4241 4242 mutex_exit(&sc->sc_mtx); 4243 4244 return (0); 4245 4246 } 4247 4248 /* 4249 * invoked by GLD to configure NIC 4250 */ 4251 static int 4252 iwn_m_unicst(void *arg, const uint8_t *macaddr) 4253 { 4254 struct iwn_softc *sc; 4255 ieee80211com_t *ic; 4256 int err = IWN_SUCCESS; 4257 4258 sc = (struct iwn_softc *)arg; 4259 ASSERT(sc != NULL); 4260 ic = &sc->sc_ic; 4261 4262 if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) { 4263 mutex_enter(&sc->sc_mtx); 4264 IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr); 4265 err = iwn_config(sc); 4266 mutex_exit(&sc->sc_mtx); 4267 if (err != IWN_SUCCESS) { 4268 dev_err(sc->sc_dip, CE_WARN, "!iwn_m_unicst(): " 4269 "failed to configure device"); 4270 goto fail; 4271 } 4272 } 4273 4274 return (err); 4275 4276 fail: 4277 return (err); 4278 } 4279 4280 /*ARGSUSED*/ 4281 static int 4282 iwn_m_multicst(void *arg, boolean_t add, const uint8_t *m) 4283 { 4284 return (IWN_SUCCESS); 4285 } 4286 4287 /*ARGSUSED*/ 4288 static int 4289 iwn_m_promisc(void *arg, boolean_t on) 4290 { 4291 _NOTE(ARGUNUSED(on)); 4292 4293 return (IWN_SUCCESS); 4294 } 4295 4296 static void 4297 iwn_abort_scan(void *arg) 4298 { 4299 struct iwn_softc *sc = (struct iwn_softc *)arg; 4300 ieee80211com_t *ic = &sc->sc_ic; 4301 4302 mutex_enter(&sc->sc_mtx); 4303 if ((sc->sc_flags & IWN_FLAG_SCANNING) == 0) { 4304 mutex_exit(&sc->sc_mtx); 4305 return; 4306 } 4307 4308 dev_err(sc->sc_dip, CE_WARN, 4309 "!aborting scan, flags = %x, state = %s", 4310 sc->sc_flags, ieee80211_state_name[ic->ic_state]); 4311 sc->sc_flags &= ~IWN_FLAG_SCANNING; 4312 iwn_hw_stop(sc, B_FALSE); 4313 mutex_exit(&sc->sc_mtx); 4314 4315 sc->scan_to = 0; 4316 (void) iwn_init(sc); 4317 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 4318 } 4319 4320 /* 4321 * periodic function to deal with RF switch and HW error recovery 4322 */ 4323 static void 4324 iwn_periodic(void *arg) 4325 { 4326 struct iwn_softc *sc = (struct iwn_softc *)arg; 4327 ieee80211com_t *ic = &sc->sc_ic; 4328 int err; 4329 uint32_t tmp; 4330 4331 mutex_enter(&sc->sc_mtx); 4332 tmp = IWN_READ(sc, IWN_GP_CNTRL); 4333 if (tmp & IWN_GP_CNTRL_RFKILL) { 4334 sc->sc_flags &= ~IWN_FLAG_RADIO_OFF; 4335 } else { 4336 sc->sc_flags |= IWN_FLAG_RADIO_OFF; 4337 } 4338 4339 /* 4340 * If the RF is OFF, do nothing. 4341 */ 4342 if (sc->sc_flags & IWN_FLAG_RADIO_OFF) { 4343 mutex_exit(&sc->sc_mtx); 4344 return; 4345 } 4346 4347 mutex_exit(&sc->sc_mtx); 4348 4349 /* 4350 * recovery fatal error 4351 */ 4352 if (ic->ic_mach && 4353 (sc->sc_flags & IWN_FLAG_HW_ERR_RECOVER)) { 4354 dev_err(sc->sc_dip, CE_WARN, 4355 "!trying to restore previous state"); 4356 4357 mutex_enter(&sc->sc_mtx); 4358 sc->sc_flags |= IWN_FLAG_STOP_CALIB_TO; 4359 mutex_exit(&sc->sc_mtx); 4360 4361 if (sc->calib_to != 0) 4362 (void) untimeout(sc->calib_to); 4363 sc->calib_to = 0; 4364 4365 if (sc->scan_to != 0) 4366 (void) untimeout(sc->scan_to); 4367 sc->scan_to = 0; 4368 4369 iwn_hw_stop(sc, B_TRUE); 4370 4371 if (IWN_CHK_FAST_RECOVER(sc)) { 4372 /* save runtime configuration */ 4373 bcopy(&sc->rxon, &sc->rxon_save, sizeof (sc->rxon)); 4374 } else { 4375 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 4376 } 4377 4378 err = iwn_init(sc); 4379 if (err != IWN_SUCCESS) 4380 return; 4381 4382 mutex_enter(&sc->sc_mtx); 4383 sc->sc_flags |= IWN_FLAG_RUNNING; 4384 mutex_exit(&sc->sc_mtx); 4385 4386 if (!IWN_CHK_FAST_RECOVER(sc) || 4387 iwn_fast_recover(sc) != IWN_SUCCESS) { 4388 mutex_enter(&sc->sc_mtx); 4389 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 4390 mutex_exit(&sc->sc_mtx); 4391 if (sc->sc_ostate != IEEE80211_S_INIT) { 4392 ieee80211_new_state(ic, IEEE80211_S_SCAN, 0); 4393 } 4394 } 4395 } 4396 } 4397 4398 /* 4399 * Send a command to the firmware. 4400 */ 4401 static int 4402 iwn_cmd(struct iwn_softc *sc, uint8_t code, void *buf, int size, int async) 4403 { 4404 struct iwn_tx_ring *ring = &sc->txq[IWN_CMD_QUEUE_NUM]; 4405 struct iwn_tx_desc *desc; 4406 struct iwn_tx_data *data; 4407 struct iwn_tx_cmd *cmd; 4408 clock_t clk; 4409 uintptr_t paddr; 4410 int totlen, ret; 4411 4412 ASSERT(mutex_owned(&sc->sc_mtx)); 4413 4414 desc = &ring->desc[ring->cur]; 4415 data = &ring->data[ring->cur]; 4416 totlen = 4 + size; 4417 4418 if (size > sizeof (cmd->data)) { 4419 /* Command is too large to fit in a descriptor. */ 4420 if (iwn_dma_contig_alloc(sc, &data->cmd_dma, totlen, 4421 DDI_DMA_CONSISTENT | DDI_DMA_RDWR, (void **)&cmd, 4422 &iwn_dma_accattr, 1) != DDI_SUCCESS) 4423 return ENOBUFS; 4424 paddr = data->cmd_dma.paddr; 4425 } else { 4426 cmd = &ring->cmd[ring->cur]; 4427 paddr = data->cmd_paddr; 4428 } 4429 4430 cmd->code = code; 4431 cmd->flags = 0; 4432 cmd->qid = ring->qid; 4433 cmd->idx = ring->cur; 4434 bzero(cmd->data, size); 4435 memcpy(cmd->data, buf, size); 4436 4437 bzero(desc, sizeof(*desc)); 4438 desc->nsegs = 1; 4439 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 4440 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 4441 4442 if (size > sizeof cmd->data) { 4443 (void) ddi_dma_sync(data->cmd_dma.dma_hdl, 0, totlen, 4444 DDI_DMA_SYNC_FORDEV); 4445 } else { 4446 (void) ddi_dma_sync(ring->cmd_dma.dma_hdl, 4447 ring->cur * sizeof (*cmd), 4448 totlen, DDI_DMA_SYNC_FORDEV); 4449 } 4450 (void) ddi_dma_sync(ring->desc_dma.dma_hdl, 4451 ring->cur * sizeof (*desc), 4452 sizeof (*desc), DDI_DMA_SYNC_FORDEV); 4453 4454 /* Update TX scheduler. */ 4455 sc->ops.update_sched(sc, ring->qid, ring->cur, 0, 0); 4456 4457 /* Kick command ring. */ 4458 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4459 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4460 4461 if (async) 4462 return (IWN_SUCCESS); 4463 4464 sc->sc_cmd_flag = SC_CMD_FLG_NONE; 4465 clk = ddi_get_lbolt() + drv_usectohz(2000000); 4466 while (sc->sc_cmd_flag != SC_CMD_FLG_DONE) 4467 if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_mtx, clk) < 0) 4468 break; 4469 4470 ret = (sc->sc_cmd_flag == SC_CMD_FLG_DONE) ? IWN_SUCCESS : IWN_FAIL; 4471 sc->sc_cmd_flag = SC_CMD_FLG_NONE; 4472 4473 return (ret); 4474 } 4475 4476 static int 4477 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 4478 { 4479 struct iwn4965_node_info hnode; 4480 char *src, *dst; 4481 4482 /* 4483 * We use the node structure for 5000 Series internally (it is 4484 * a superset of the one for 4965AGN). We thus copy the common 4485 * fields before sending the command. 4486 */ 4487 src = (char *)node; 4488 dst = (char *)&hnode; 4489 memcpy(dst, src, 48); 4490 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 4491 memcpy(dst + 48, src + 72, 20); 4492 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 4493 } 4494 4495 static int 4496 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 4497 { 4498 /* Direct mapping. */ 4499 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 4500 } 4501 4502 static int 4503 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 4504 { 4505 struct iwn_node *wn = (void *)ni; 4506 struct ieee80211_rateset *rs = &ni->in_rates; 4507 struct iwn_cmd_link_quality linkq; 4508 const struct iwn_rate *rinfo; 4509 uint8_t txant; 4510 int i, txrate; 4511 4512 /* Use the first valid TX antenna. */ 4513 txant = IWN_LSB(sc->txchainmask); 4514 4515 memset(&linkq, 0, sizeof linkq); 4516 linkq.id = wn->id; 4517 linkq.antmsk_1stream = txant; 4518 linkq.antmsk_2stream = IWN_ANT_AB; 4519 linkq.ampdu_max = 31; 4520 linkq.ampdu_threshold = 3; 4521 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4522 4523 /* Start at highest available bit-rate. */ 4524 txrate = rs->ir_nrates - 1; 4525 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 4526 rinfo = &iwn_rates[wn->ridx[txrate]]; 4527 linkq.retry[i].plcp = rinfo->plcp; 4528 linkq.retry[i].rflags = rinfo->flags; 4529 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 4530 /* Next retry at immediate lower bit-rate. */ 4531 if (txrate > 0) 4532 txrate--; 4533 } 4534 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 4535 } 4536 4537 /* 4538 * Broadcast node is used to send group-addressed and management frames. 4539 */ 4540 static int 4541 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 4542 { 4543 struct iwn_ops *ops = &sc->ops; 4544 struct iwn_node_info node; 4545 struct iwn_cmd_link_quality linkq; 4546 const struct iwn_rate *rinfo; 4547 uint8_t txant; 4548 int i, error; 4549 4550 memset(&node, 0, sizeof node); 4551 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 4552 node.id = sc->broadcast_id; 4553 DTRACE_PROBE(add__broadcast__node); 4554 if ((error = ops->add_node(sc, &node, async)) != 0) 4555 return error; 4556 4557 /* Use the first valid TX antenna. */ 4558 txant = IWN_LSB(sc->txchainmask); 4559 4560 memset(&linkq, 0, sizeof linkq); 4561 linkq.id = sc->broadcast_id; 4562 linkq.antmsk_1stream = txant; 4563 linkq.antmsk_2stream = IWN_ANT_AB; 4564 linkq.ampdu_max = 64; 4565 linkq.ampdu_threshold = 3; 4566 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4567 4568 /* Use lowest mandatory bit-rate. */ 4569 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 4570 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 4571 linkq.retry[0].plcp = rinfo->plcp; 4572 linkq.retry[0].rflags = rinfo->flags; 4573 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 4574 /* Use same bit-rate for all TX retries. */ 4575 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 4576 linkq.retry[i].plcp = linkq.retry[0].plcp; 4577 linkq.retry[i].rflags = linkq.retry[0].rflags; 4578 } 4579 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 4580 } 4581 4582 static void 4583 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 4584 { 4585 struct iwn_cmd_led led; 4586 4587 /* Clear microcode LED ownership. */ 4588 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 4589 4590 led.which = which; 4591 led.unit = htole32(10000); /* on/off in unit of 100ms */ 4592 led.off = off; 4593 led.on = on; 4594 DTRACE_PROBE1(led__change, const char *, 4595 (off != 0 && on != 0) ? "blinking" : 4596 (off != 0) ? "off" : "on"); 4597 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 4598 } 4599 4600 /* 4601 * Set the critical temperature at which the firmware will stop the radio 4602 * and notify us. 4603 */ 4604 static int 4605 iwn_set_critical_temp(struct iwn_softc *sc) 4606 { 4607 struct iwn_critical_temp crit; 4608 int32_t temp; 4609 4610 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 4611 4612 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 4613 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 4614 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 4615 temp = IWN_CTOK(110); 4616 else 4617 temp = 110; 4618 4619 sc->sc_misc->crit_temp.value.ul = temp; 4620 4621 memset(&crit, 0, sizeof crit); 4622 crit.tempR = htole32(temp); 4623 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 4624 } 4625 4626 static int 4627 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 4628 { 4629 struct iwn_cmd_timing cmd; 4630 uint64_t val, mod; 4631 4632 memset(&cmd, 0, sizeof cmd); 4633 memcpy(&cmd.tstamp, ni->in_tstamp.data, sizeof (uint64_t)); 4634 cmd.bintval = htole16(ni->in_intval); 4635 cmd.lintval = htole16(10); 4636 4637 /* Compute remaining time until next beacon. */ 4638 val = (uint64_t)ni->in_intval * 1024; /* msecs -> usecs */ 4639 mod = le64toh(cmd.tstamp) % val; 4640 cmd.binitval = htole32((uint32_t)(val - mod)); 4641 4642 sc->sc_timing->bintval.value.ul = ni->in_intval; 4643 sc->sc_timing->tstamp.value.ul = ni->in_tstamp.tsf; 4644 sc->sc_timing->init.value.ul = (uint32_t)(val - mod); 4645 4646 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 4647 } 4648 4649 static void 4650 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 4651 { 4652 /* Adjust TX power if need be (delta >= 3 degC). */ 4653 IWN_DBG("temperature %d->%d", sc->temp, temp); 4654 if (abs(temp - sc->temp) >= 3) { 4655 /* Record temperature of last calibration. */ 4656 sc->temp = temp; 4657 (void)iwn4965_set_txpower(sc, 1); 4658 } 4659 } 4660 4661 /* 4662 * Set TX power for current channel (each rate has its own power settings). 4663 * This function takes into account the regulatory information from EEPROM, 4664 * the current temperature and the current voltage. 4665 */ 4666 static int 4667 iwn4965_set_txpower(struct iwn_softc *sc, int async) 4668 { 4669 /* Fixed-point arithmetic division using a n-bit fractional part. */ 4670 #define fdivround(a, b, n) \ 4671 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 4672 /* Linear interpolation. */ 4673 #define interpolate(x, x1, y1, x2, y2, n) \ 4674 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 4675 4676 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 4677 struct ieee80211com *ic = &sc->sc_ic; 4678 struct iwn_ucode_info *uc = &sc->ucode_info; 4679 struct ieee80211_channel *ch; 4680 struct iwn4965_cmd_txpower cmd; 4681 struct iwn4965_eeprom_chan_samples *chans; 4682 const uint8_t *rf_gain, *dsp_gain; 4683 int32_t vdiff, tdiff; 4684 int i, c, grp, maxpwr; 4685 uint8_t chan; 4686 4687 /* Retrieve current channel from last RXON. */ 4688 chan = sc->rxon.chan; 4689 sc->sc_txpower->chan.value.l = chan; 4690 ch = &ic->ic_sup_channels[chan]; 4691 4692 memset(&cmd, 0, sizeof cmd); 4693 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 4694 cmd.chan = chan; 4695 4696 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 4697 maxpwr = sc->maxpwr5GHz; 4698 rf_gain = iwn4965_rf_gain_5ghz; 4699 dsp_gain = iwn4965_dsp_gain_5ghz; 4700 } else { 4701 maxpwr = sc->maxpwr2GHz; 4702 rf_gain = iwn4965_rf_gain_2ghz; 4703 dsp_gain = iwn4965_dsp_gain_2ghz; 4704 } 4705 4706 /* Compute voltage compensation. */ 4707 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 4708 if (vdiff > 0) 4709 vdiff *= 2; 4710 if (abs(vdiff) > 2) 4711 vdiff = 0; 4712 sc->sc_txpower->vdiff.value.l = vdiff; 4713 4714 /* Get channel attenuation group. */ 4715 if (chan <= 20) /* 1-20 */ 4716 grp = 4; 4717 else if (chan <= 43) /* 34-43 */ 4718 grp = 0; 4719 else if (chan <= 70) /* 44-70 */ 4720 grp = 1; 4721 else if (chan <= 124) /* 71-124 */ 4722 grp = 2; 4723 else /* 125-200 */ 4724 grp = 3; 4725 sc->sc_txpower->group.value.l = grp; 4726 4727 /* Get channel sub-band. */ 4728 for (i = 0; i < IWN_NBANDS; i++) 4729 if (sc->bands[i].lo != 0 && 4730 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 4731 break; 4732 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 4733 return EINVAL; 4734 chans = sc->bands[i].chans; 4735 sc->sc_txpower->subband.value.l = i; 4736 4737 for (c = 0; c < 2; c++) { 4738 uint8_t power, gain, temp; 4739 int maxchpwr, pwr, ridx, idx; 4740 4741 power = interpolate(chan, 4742 chans[0].num, chans[0].samples[c][1].power, 4743 chans[1].num, chans[1].samples[c][1].power, 1); 4744 gain = interpolate(chan, 4745 chans[0].num, chans[0].samples[c][1].gain, 4746 chans[1].num, chans[1].samples[c][1].gain, 1); 4747 temp = interpolate(chan, 4748 chans[0].num, chans[0].samples[c][1].temp, 4749 chans[1].num, chans[1].samples[c][1].temp, 1); 4750 sc->sc_txpower->txchain[c].power.value.l = power; 4751 sc->sc_txpower->txchain[c].gain.value.l = gain; 4752 sc->sc_txpower->txchain[c].temp.value.l = temp; 4753 4754 /* Compute temperature compensation. */ 4755 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 4756 sc->sc_txpower->txchain[c].tcomp.value.l = tdiff; 4757 4758 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 4759 /* Convert dBm to half-dBm. */ 4760 maxchpwr = sc->maxpwr[chan] * 2; 4761 if ((ridx / 8) & 1) 4762 maxchpwr -= 6; /* MIMO 2T: -3dB */ 4763 4764 pwr = maxpwr; 4765 4766 /* Adjust TX power based on rate. */ 4767 if ((ridx % 8) == 5) 4768 pwr -= 15; /* OFDM48: -7.5dB */ 4769 else if ((ridx % 8) == 6) 4770 pwr -= 17; /* OFDM54: -8.5dB */ 4771 else if ((ridx % 8) == 7) 4772 pwr -= 20; /* OFDM60: -10dB */ 4773 else 4774 pwr -= 10; /* Others: -5dB */ 4775 4776 /* Do not exceed channel max TX power. */ 4777 if (pwr > maxchpwr) 4778 pwr = maxchpwr; 4779 4780 idx = gain - (pwr - power) - tdiff - vdiff; 4781 if ((ridx / 8) & 1) /* MIMO */ 4782 idx += (int32_t)le32toh(uc->atten[grp][c]); 4783 4784 if (cmd.band == 0) 4785 idx += 9; /* 5GHz */ 4786 if (ridx == IWN_RIDX_MAX) 4787 idx += 5; /* CCK */ 4788 4789 /* Make sure idx stays in a valid range. */ 4790 if (idx < 0) 4791 idx = 0; 4792 else if (idx > IWN4965_MAX_PWR_INDEX) 4793 idx = IWN4965_MAX_PWR_INDEX; 4794 4795 sc->sc_txpower->txchain[c].rate[ridx].rf_gain.value.l = 4796 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 4797 sc->sc_txpower->txchain[c].rate[ridx].dsp_gain.value.l = 4798 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 4799 } 4800 } 4801 4802 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 4803 4804 #undef interpolate 4805 #undef fdivround 4806 } 4807 4808 static int 4809 iwn5000_set_txpower(struct iwn_softc *sc, int async) 4810 { 4811 struct iwn5000_cmd_txpower cmd; 4812 4813 /* 4814 * TX power calibration is handled automatically by the firmware 4815 * for 5000 Series. 4816 */ 4817 memset(&cmd, 0, sizeof cmd); 4818 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 4819 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 4820 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 4821 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 4822 } 4823 4824 /* 4825 * Retrieve the maximum RSSI (in dBm) among receivers. 4826 */ 4827 static int 4828 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 4829 { 4830 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 4831 uint8_t mask, agc; 4832 int rssi; 4833 4834 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 4835 agc = (le16toh(phy->agc) >> 7) & 0x7f; 4836 4837 rssi = 0; 4838 if (mask & IWN_ANT_A) 4839 rssi = MAX(rssi, phy->rssi[0]); 4840 if (mask & IWN_ANT_B) 4841 rssi = MAX(rssi, phy->rssi[2]); 4842 if (mask & IWN_ANT_C) 4843 rssi = MAX(rssi, phy->rssi[4]); 4844 4845 return rssi - agc - IWN_RSSI_TO_DBM; 4846 } 4847 4848 static int 4849 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 4850 { 4851 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 4852 uint8_t agc; 4853 int rssi; 4854 4855 agc = (le32toh(phy->agc) >> 9) & 0x7f; 4856 4857 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 4858 le16toh(phy->rssi[1]) & 0xff); 4859 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 4860 4861 return rssi - agc - IWN_RSSI_TO_DBM; 4862 } 4863 4864 /* 4865 * Retrieve the average noise (in dBm) among receivers. 4866 */ 4867 static int 4868 iwn_get_noise(const struct iwn_rx_general_stats *stats) 4869 { 4870 int i, total, nbant, noise; 4871 4872 total = nbant = 0; 4873 for (i = 0; i < 3; i++) { 4874 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 4875 continue; 4876 total += noise; 4877 nbant++; 4878 } 4879 /* There should be at least one antenna but check anyway. */ 4880 return (nbant == 0) ? -127 : (total / nbant) - 107; 4881 } 4882 4883 /* 4884 * Compute temperature (in degC) from last received statistics. 4885 */ 4886 static int 4887 iwn4965_get_temperature(struct iwn_softc *sc) 4888 { 4889 struct iwn_ucode_info *uc = &sc->ucode_info; 4890 int32_t r1, r2, r3, r4, temp; 4891 4892 r1 = le32toh(uc->temp[0].chan20MHz); 4893 r2 = le32toh(uc->temp[1].chan20MHz); 4894 r3 = le32toh(uc->temp[2].chan20MHz); 4895 r4 = le32toh(sc->rawtemp); 4896 4897 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 4898 return 0; 4899 4900 /* Sign-extend 23-bit R4 value to 32-bit. */ 4901 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 4902 /* Compute temperature in Kelvin. */ 4903 temp = (259 * (r4 - r2)) / (r3 - r1); 4904 temp = (temp * 97) / 100 + 8; 4905 4906 return IWN_KTOC(temp); 4907 } 4908 4909 static int 4910 iwn5000_get_temperature(struct iwn_softc *sc) 4911 { 4912 int32_t temp; 4913 4914 /* 4915 * Temperature is not used by the driver for 5000 Series because 4916 * TX power calibration is handled by firmware. We export it to 4917 * users through a kstat though. 4918 */ 4919 temp = le32toh(sc->rawtemp); 4920 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 4921 temp = (temp / -5) + sc->temp_off; 4922 temp = IWN_KTOC(temp); 4923 } 4924 return temp; 4925 } 4926 4927 /* 4928 * Initialize sensitivity calibration state machine. 4929 */ 4930 static int 4931 iwn_init_sensitivity(struct iwn_softc *sc) 4932 { 4933 struct iwn_ops *ops = &sc->ops; 4934 struct iwn_calib_state *calib = &sc->calib; 4935 uint32_t flags; 4936 int error; 4937 4938 /* Reset calibration state machine. */ 4939 memset(calib, 0, sizeof (*calib)); 4940 calib->state = IWN_CALIB_STATE_INIT; 4941 calib->cck_state = IWN_CCK_STATE_HIFA; 4942 /* Set initial correlation values. */ 4943 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 4944 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 4945 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 4946 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 4947 calib->cck_x4 = 125; 4948 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 4949 calib->energy_cck = sc->limits->energy_cck; 4950 4951 /* Write initial sensitivity. */ 4952 if ((error = iwn_send_sensitivity(sc)) != 0) 4953 return error; 4954 4955 /* Write initial gains. */ 4956 if ((error = ops->init_gains(sc)) != 0) 4957 return error; 4958 4959 /* Request statistics at each beacon interval. */ 4960 flags = 0; 4961 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4962 } 4963 4964 /* 4965 * Collect noise and RSSI statistics for the first 20 beacons received 4966 * after association and use them to determine connected antennas and 4967 * to set differential gains. 4968 */ 4969 static void 4970 iwn_collect_noise(struct iwn_softc *sc, 4971 const struct iwn_rx_general_stats *stats) 4972 { 4973 struct iwn_ops *ops = &sc->ops; 4974 struct iwn_calib_state *calib = &sc->calib; 4975 uint32_t val; 4976 int i; 4977 4978 /* Accumulate RSSI and noise for all 3 antennas. */ 4979 for (i = 0; i < 3; i++) { 4980 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4981 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4982 } 4983 /* NB: We update differential gains only once after 20 beacons. */ 4984 if (++calib->nbeacons < 20) 4985 return; 4986 4987 /* Determine highest average RSSI. */ 4988 val = MAX(calib->rssi[0], calib->rssi[1]); 4989 val = MAX(calib->rssi[2], val); 4990 4991 /* Determine which antennas are connected. */ 4992 sc->chainmask = sc->rxchainmask; 4993 for (i = 0; i < 3; i++) 4994 if (val - calib->rssi[i] > 15 * 20) 4995 sc->chainmask &= ~(1 << i); 4996 4997 sc->sc_ant->conn_ant.value.ul = sc->chainmask; 4998 4999 /* If none of the TX antennas are connected, keep at least one. */ 5000 if ((sc->chainmask & sc->txchainmask) == 0) 5001 sc->chainmask |= IWN_LSB(sc->txchainmask); 5002 5003 (void)ops->set_gains(sc); 5004 calib->state = IWN_CALIB_STATE_RUN; 5005 5006 #ifdef notyet 5007 /* XXX Disable RX chains with no antennas connected. */ 5008 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 5009 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 5010 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5011 #endif 5012 5013 /* Enable power-saving mode if requested by user. */ 5014 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 5015 (void)iwn_set_pslevel(sc, 0, 3, 1); 5016 } 5017 5018 static int 5019 iwn4965_init_gains(struct iwn_softc *sc) 5020 { 5021 struct iwn_phy_calib_gain cmd; 5022 5023 memset(&cmd, 0, sizeof cmd); 5024 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5025 /* Differential gains initially set to 0 for all 3 antennas. */ 5026 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5027 } 5028 5029 static int 5030 iwn5000_init_gains(struct iwn_softc *sc) 5031 { 5032 struct iwn_phy_calib cmd; 5033 5034 memset(&cmd, 0, sizeof cmd); 5035 cmd.code = sc->reset_noise_gain; 5036 cmd.ngroups = 1; 5037 cmd.isvalid = 1; 5038 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5039 } 5040 5041 static int 5042 iwn4965_set_gains(struct iwn_softc *sc) 5043 { 5044 struct iwn_calib_state *calib = &sc->calib; 5045 struct iwn_phy_calib_gain cmd; 5046 int i, delta, noise; 5047 5048 /* Get minimal noise among connected antennas. */ 5049 noise = INT_MAX; /* NB: There's at least one antenna. */ 5050 for (i = 0; i < 3; i++) 5051 if (sc->chainmask & (1 << i)) 5052 noise = MIN(calib->noise[i], noise); 5053 5054 memset(&cmd, 0, sizeof cmd); 5055 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5056 /* Set differential gains for connected antennas. */ 5057 for (i = 0; i < 3; i++) { 5058 if (sc->chainmask & (1 << i)) { 5059 /* Compute attenuation (in unit of 1.5dB). */ 5060 delta = (noise - calib->noise[i]) / 30; 5061 /* NB: delta <= 0 */ 5062 /* Limit to [-4.5dB,0]. */ 5063 cmd.gain[i] = (uint8_t)MIN(abs(delta), 3); 5064 if (delta < 0) 5065 cmd.gain[i] |= 1 << 2; /* sign bit */ 5066 sc->sc_ant->gain[i].value.ul = cmd.gain[i]; 5067 } 5068 } 5069 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5070 } 5071 5072 static int 5073 iwn5000_set_gains(struct iwn_softc *sc) 5074 { 5075 struct iwn_calib_state *calib = &sc->calib; 5076 struct iwn_phy_calib_gain cmd; 5077 int i, ant, div, delta; 5078 5079 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 5080 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 5081 5082 memset(&cmd, 0, sizeof cmd); 5083 cmd.code = sc->noise_gain; 5084 cmd.ngroups = 1; 5085 cmd.isvalid = 1; 5086 /* Get first available RX antenna as referential. */ 5087 ant = IWN_LSB(sc->rxchainmask); 5088 /* Set differential gains for other antennas. */ 5089 for (i = ant + 1; i < 3; i++) { 5090 if (sc->chainmask & (1 << i)) { 5091 /* The delta is relative to antenna "ant". */ 5092 delta = (calib->noise[ant] - calib->noise[i]) / div; 5093 /* Limit to [-4.5dB,+4.5dB]. */ 5094 cmd.gain[i - 1] = (uint8_t)MIN(abs(delta), 3); 5095 if (delta < 0) 5096 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 5097 sc->sc_ant->gain[i - 1].value.ul 5098 = cmd.gain[i - 1]; 5099 } 5100 } 5101 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5102 } 5103 5104 /* 5105 * Tune RF RX sensitivity based on the number of false alarms detected 5106 * during the last beacon period. 5107 */ 5108 static void 5109 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 5110 { 5111 #define inc(val, inc, max) \ 5112 if ((val) < (max)) { \ 5113 if ((val) < (max) - (inc)) \ 5114 (val) += (inc); \ 5115 else \ 5116 (val) = (max); \ 5117 needs_update = 1; \ 5118 } 5119 #define dec(val, dec, min) \ 5120 if ((val) > (min)) { \ 5121 if ((val) > (min) + (dec)) \ 5122 (val) -= (dec); \ 5123 else \ 5124 (val) = (min); \ 5125 needs_update = 1; \ 5126 } 5127 5128 const struct iwn_sensitivity_limits *limits = sc->limits; 5129 struct iwn_calib_state *calib = &sc->calib; 5130 uint32_t val, rxena, fa; 5131 uint32_t energy[3], energy_min; 5132 uint8_t noise[3], noise_ref; 5133 int i, needs_update = 0; 5134 5135 /* Check that we've been enabled long enough. */ 5136 if ((rxena = le32toh(stats->general.load)) == 0) 5137 return; 5138 5139 /* Compute number of false alarms since last call for OFDM. */ 5140 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 5141 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 5142 fa *= 200 * 1024; /* 200TU */ 5143 5144 /* Save counters values for next call. */ 5145 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 5146 calib->fa_ofdm = le32toh(stats->ofdm.fa); 5147 5148 if (fa > 50 * rxena) { 5149 /* High false alarm count, decrease sensitivity. */ 5150 IWN_DBG("OFDM high false alarm count: %u", fa); 5151 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 5152 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 5153 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 5154 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 5155 5156 } else if (fa < 5 * rxena) { 5157 /* Low false alarm count, increase sensitivity. */ 5158 IWN_DBG("OFDM low false alarm count: %u", fa); 5159 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 5160 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 5161 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 5162 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 5163 } 5164 5165 /* Compute maximum noise among 3 receivers. */ 5166 for (i = 0; i < 3; i++) 5167 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 5168 val = MAX(noise[0], noise[1]); 5169 val = MAX(noise[2], val); 5170 /* Insert it into our samples table. */ 5171 calib->noise_samples[calib->cur_noise_sample] = (uint8_t)val; 5172 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 5173 5174 /* Compute maximum noise among last 20 samples. */ 5175 noise_ref = calib->noise_samples[0]; 5176 for (i = 1; i < 20; i++) 5177 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 5178 5179 /* Compute maximum energy among 3 receivers. */ 5180 for (i = 0; i < 3; i++) 5181 energy[i] = le32toh(stats->general.energy[i]); 5182 val = MIN(energy[0], energy[1]); 5183 val = MIN(energy[2], val); 5184 /* Insert it into our samples table. */ 5185 calib->energy_samples[calib->cur_energy_sample] = val; 5186 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 5187 5188 /* Compute minimum energy among last 10 samples. */ 5189 energy_min = calib->energy_samples[0]; 5190 for (i = 1; i < 10; i++) 5191 energy_min = MAX(energy_min, calib->energy_samples[i]); 5192 energy_min += 6; 5193 5194 /* Compute number of false alarms since last call for CCK. */ 5195 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 5196 fa += le32toh(stats->cck.fa) - calib->fa_cck; 5197 fa *= 200 * 1024; /* 200TU */ 5198 5199 /* Save counters values for next call. */ 5200 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 5201 calib->fa_cck = le32toh(stats->cck.fa); 5202 5203 if (fa > 50 * rxena) { 5204 /* High false alarm count, decrease sensitivity. */ 5205 IWN_DBG("CCK high false alarm count: %u", fa); 5206 calib->cck_state = IWN_CCK_STATE_HIFA; 5207 calib->low_fa = 0; 5208 5209 if (calib->cck_x4 > 160) { 5210 calib->noise_ref = noise_ref; 5211 if (calib->energy_cck > 2) 5212 dec(calib->energy_cck, 2, energy_min); 5213 } 5214 if (calib->cck_x4 < 160) { 5215 calib->cck_x4 = 161; 5216 needs_update = 1; 5217 } else 5218 inc(calib->cck_x4, 3, limits->max_cck_x4); 5219 5220 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 5221 5222 } else if (fa < 5 * rxena) { 5223 /* Low false alarm count, increase sensitivity. */ 5224 IWN_DBG("CCK low false alarm count: %u", fa); 5225 calib->cck_state = IWN_CCK_STATE_LOFA; 5226 calib->low_fa++; 5227 5228 if (calib->cck_state != IWN_CCK_STATE_INIT && 5229 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 5230 calib->low_fa > 100)) { 5231 inc(calib->energy_cck, 2, limits->min_energy_cck); 5232 dec(calib->cck_x4, 3, limits->min_cck_x4); 5233 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 5234 } 5235 } else { 5236 /* Not worth to increase or decrease sensitivity. */ 5237 IWN_DBG("CCK normal false alarm count: %u", fa); 5238 calib->low_fa = 0; 5239 calib->noise_ref = noise_ref; 5240 5241 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 5242 /* Previous interval had many false alarms. */ 5243 dec(calib->energy_cck, 8, energy_min); 5244 } 5245 calib->cck_state = IWN_CCK_STATE_INIT; 5246 } 5247 5248 if (needs_update) 5249 (void)iwn_send_sensitivity(sc); 5250 #undef dec 5251 #undef inc 5252 } 5253 5254 static int 5255 iwn_send_sensitivity(struct iwn_softc *sc) 5256 { 5257 struct iwn_calib_state *calib = &sc->calib; 5258 struct iwn_enhanced_sensitivity_cmd cmd; 5259 int len; 5260 5261 memset(&cmd, 0, sizeof cmd); 5262 len = sizeof (struct iwn_sensitivity_cmd); 5263 cmd.which = IWN_SENSITIVITY_WORKTBL; 5264 /* OFDM modulation. */ 5265 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 5266 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 5267 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 5268 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 5269 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 5270 cmd.energy_ofdm_th = htole16(62); 5271 /* CCK modulation. */ 5272 cmd.corr_cck_x4 = htole16(calib->cck_x4); 5273 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 5274 cmd.energy_cck = htole16(calib->energy_cck); 5275 /* Barker modulation: use default values. */ 5276 cmd.corr_barker = htole16(190); 5277 cmd.corr_barker_mrc = htole16(390); 5278 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 5279 goto send; 5280 /* Enhanced sensitivity settings. */ 5281 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 5282 cmd.ofdm_det_slope_mrc = htole16(668); 5283 cmd.ofdm_det_icept_mrc = htole16(4); 5284 cmd.ofdm_det_slope = htole16(486); 5285 cmd.ofdm_det_icept = htole16(37); 5286 cmd.cck_det_slope_mrc = htole16(853); 5287 cmd.cck_det_icept_mrc = htole16(4); 5288 cmd.cck_det_slope = htole16(476); 5289 cmd.cck_det_icept = htole16(99); 5290 send: 5291 5292 sc->sc_sens->ofdm_x1.value.ul = calib->ofdm_x1; 5293 sc->sc_sens->ofdm_mrc_x1.value.ul = calib->ofdm_mrc_x1; 5294 sc->sc_sens->ofdm_x4.value.ul = calib->ofdm_x4; 5295 sc->sc_sens->ofdm_mrc_x4.value.ul = calib->ofdm_mrc_x4; 5296 sc->sc_sens->cck_x4.value.ul = calib->cck_x4; 5297 sc->sc_sens->cck_mrc_x4.value.ul = calib->cck_mrc_x4; 5298 sc->sc_sens->energy_cck.value.ul = calib->energy_cck; 5299 5300 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 5301 } 5302 5303 /* 5304 * Set STA mode power saving level (between 0 and 5). 5305 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 5306 */ 5307 static int 5308 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 5309 { 5310 struct iwn_pmgt_cmd cmd; 5311 const struct iwn_pmgt *pmgt; 5312 uint32_t maxp, skip_dtim; 5313 uint32_t reg; 5314 int i; 5315 5316 /* Select which PS parameters to use. */ 5317 if (dtim <= 2) 5318 pmgt = &iwn_pmgt[0][level]; 5319 else if (dtim <= 10) 5320 pmgt = &iwn_pmgt[1][level]; 5321 else 5322 pmgt = &iwn_pmgt[2][level]; 5323 5324 memset(&cmd, 0, sizeof cmd); 5325 if (level != 0) /* not CAM */ 5326 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 5327 if (level == 5) 5328 cmd.flags |= htole16(IWN_PS_FAST_PD); 5329 /* Retrieve PCIe Active State Power Management (ASPM). */ 5330 reg = pci_config_get32(sc->sc_pcih, 5331 sc->sc_cap_off + PCIE_LINKCTL); 5332 if (!(reg & PCIE_LINKCTL_ASPM_CTL_L0S)) /* L0s Entry disabled. */ 5333 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 5334 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 5335 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 5336 5337 if (dtim == 0) { 5338 dtim = 1; 5339 skip_dtim = 0; 5340 } else 5341 skip_dtim = pmgt->skip_dtim; 5342 if (skip_dtim != 0) { 5343 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 5344 maxp = pmgt->intval[4]; 5345 if (maxp == (uint32_t)-1) 5346 maxp = dtim * (skip_dtim + 1); 5347 else if (maxp > dtim) 5348 maxp = (maxp / dtim) * dtim; 5349 } else 5350 maxp = dtim; 5351 for (i = 0; i < 5; i++) 5352 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 5353 5354 sc->sc_misc->pslevel.value.ul = level; 5355 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 5356 } 5357 5358 int 5359 iwn5000_runtime_calib(struct iwn_softc *sc) 5360 { 5361 struct iwn5000_calib_config cmd; 5362 5363 memset(&cmd, 0, sizeof cmd); 5364 cmd.ucode.once.enable = 0xffffffff; 5365 cmd.ucode.once.start = IWN5000_CALIB_DC; 5366 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 5367 } 5368 5369 static int 5370 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 5371 { 5372 struct iwn_bluetooth bluetooth; 5373 5374 memset(&bluetooth, 0, sizeof bluetooth); 5375 bluetooth.flags = IWN_BT_COEX_ENABLE; 5376 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 5377 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 5378 5379 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 5380 } 5381 5382 static int 5383 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 5384 { 5385 uint8_t prio_table[16]; 5386 5387 memset(&prio_table, 0, sizeof prio_table); 5388 prio_table[ 0] = 6; /* init calibration 1 */ 5389 prio_table[ 1] = 7; /* init calibration 2 */ 5390 prio_table[ 2] = 2; /* periodic calib low 1 */ 5391 prio_table[ 3] = 3; /* periodic calib low 2 */ 5392 prio_table[ 4] = 4; /* periodic calib high 1 */ 5393 prio_table[ 5] = 5; /* periodic calib high 2 */ 5394 prio_table[ 6] = 6; /* dtim */ 5395 prio_table[ 7] = 8; /* scan52 */ 5396 prio_table[ 8] = 10; /* scan24 */ 5397 5398 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 5399 &prio_table, sizeof prio_table, 0); 5400 } 5401 5402 static int 5403 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic, 5404 size_t len) 5405 { 5406 struct iwn_btcoex_prot btprot; 5407 int error; 5408 5409 basic->bt.flags = IWN_BT_COEX_ENABLE; 5410 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF; 5411 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF; 5412 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 5413 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 5414 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 5415 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 5416 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 5417 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 5418 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 5419 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 5420 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 5421 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28); 5422 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa); 5423 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 5424 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa); 5425 basic->bt3_lookup_table[ 8] = htole32(0xc0004000); 5426 basic->bt3_lookup_table[ 9] = htole32(0x00004000); 5427 basic->bt3_lookup_table[10] = htole32(0xf0005000); 5428 basic->bt3_lookup_table[11] = htole32(0xf0005000); 5429 basic->reduce_txpower = 0; /* as not implemented */ 5430 basic->valid = IWN_BT_ALL_VALID_MASK; 5431 5432 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &basic, len, 0); 5433 if (error != 0) { 5434 dev_err(sc->sc_dip, CE_WARN, 5435 "!could not configure advanced bluetooth coexistence"); 5436 return error; 5437 } 5438 5439 error = iwn_config_bt_coex_prio_table(sc); 5440 if (error != 0) { 5441 dev_err(sc->sc_dip, CE_WARN, 5442 "!could not configure send BT priority table"); 5443 return error; 5444 } 5445 5446 /* Force BT state machine change */ 5447 memset(&btprot, 0, sizeof btprot); 5448 btprot.open = 1; 5449 btprot.type = 1; 5450 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 5451 if (error != 0) { 5452 dev_err(sc->sc_dip, CE_WARN, "!could not open BT protcol"); 5453 return error; 5454 } 5455 5456 btprot.open = 0; 5457 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 5458 if (error != 0) { 5459 dev_err(sc->sc_dip, CE_WARN, "!could not close BT protcol"); 5460 return error; 5461 } 5462 return 0; 5463 } 5464 5465 static int 5466 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 5467 { 5468 struct iwn_bt_adv1 d; 5469 5470 memset(&d, 0, sizeof d); 5471 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 5472 d.tx_prio_boost = 0; 5473 d.rx_prio_boost = 0; 5474 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 5475 } 5476 5477 static int 5478 iwn_config_bt_coex_adv2(struct iwn_softc *sc) 5479 { 5480 struct iwn_bt_adv2 d; 5481 5482 memset(&d, 0, sizeof d); 5483 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 5484 d.tx_prio_boost = 0; 5485 d.rx_prio_boost = 0; 5486 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 5487 } 5488 5489 static int 5490 iwn_config(struct iwn_softc *sc) 5491 { 5492 struct iwn_ops *ops = &sc->ops; 5493 struct ieee80211com *ic = &sc->sc_ic; 5494 uint32_t txmask; 5495 uint16_t rxchain; 5496 int error; 5497 5498 error = ops->config_bt_coex(sc); 5499 if (error != 0) { 5500 dev_err(sc->sc_dip, CE_WARN, 5501 "!could not configure bluetooth coexistence"); 5502 return error; 5503 } 5504 5505 /* Set radio temperature sensor offset. */ 5506 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 5507 error = iwn6000_temp_offset_calib(sc); 5508 if (error != 0) { 5509 dev_err(sc->sc_dip, CE_WARN, 5510 "!could not set temperature offset"); 5511 return error; 5512 } 5513 } 5514 5515 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 5516 sc->hw_type == IWN_HW_REV_TYPE_2000 || 5517 sc->hw_type == IWN_HW_REV_TYPE_135 || 5518 sc->hw_type == IWN_HW_REV_TYPE_105) { 5519 error = iwn2000_temp_offset_calib(sc); 5520 if (error != 0) { 5521 dev_err(sc->sc_dip, CE_WARN, 5522 "!could not set temperature offset"); 5523 return error; 5524 } 5525 } 5526 5527 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 5528 sc->hw_type == IWN_HW_REV_TYPE_6005) { 5529 /* Configure runtime DC calibration. */ 5530 error = iwn5000_runtime_calib(sc); 5531 if (error != 0) { 5532 dev_err(sc->sc_dip, CE_WARN, 5533 "!could not configure runtime calibration"); 5534 return error; 5535 } 5536 } 5537 5538 /* Configure valid TX chains for 5000 Series. */ 5539 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 5540 txmask = htole32(sc->txchainmask); 5541 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 5542 sizeof txmask, 0); 5543 if (error != 0) { 5544 dev_err(sc->sc_dip, CE_WARN, 5545 "!could not configure valid TX chains"); 5546 return error; 5547 } 5548 } 5549 5550 /* Set mode, channel, RX filter and enable RX. */ 5551 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 5552 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_macaddr); 5553 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_macaddr); 5554 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 5555 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5556 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 5557 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5558 switch (ic->ic_opmode) { 5559 case IEEE80211_M_IBSS: 5560 sc->rxon.mode = IWN_MODE_IBSS; 5561 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 5562 break; 5563 case IEEE80211_M_STA: 5564 sc->rxon.mode = IWN_MODE_STA; 5565 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 5566 break; 5567 case IEEE80211_M_MONITOR: 5568 sc->rxon.mode = IWN_MODE_MONITOR; 5569 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 5570 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 5571 break; 5572 default: 5573 /* Should not get there. */ 5574 ASSERT(ic->ic_opmode == IEEE80211_M_IBSS || 5575 ic->ic_opmode == IEEE80211_M_STA || 5576 ic->ic_opmode == IEEE80211_M_MONITOR); 5577 break; 5578 } 5579 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 5580 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 5581 sc->rxon.ht_single_mask = 0xff; 5582 sc->rxon.ht_dual_mask = 0xff; 5583 sc->rxon.ht_triple_mask = 0xff; 5584 rxchain = 5585 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5586 IWN_RXCHAIN_MIMO_COUNT(2) | 5587 IWN_RXCHAIN_IDLE_COUNT(2); 5588 sc->rxon.rxchain = htole16(rxchain); 5589 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 5590 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 5591 if (error != 0) { 5592 dev_err(sc->sc_dip, CE_WARN, 5593 "!RXON command failed"); 5594 return error; 5595 } 5596 5597 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 5598 dev_err(sc->sc_dip, CE_WARN, 5599 "!could not add broadcast node"); 5600 return error; 5601 } 5602 5603 /* Configuration has changed, set TX power accordingly. */ 5604 if ((error = ops->set_txpower(sc, 0)) != 0) { 5605 dev_err(sc->sc_dip, CE_WARN, 5606 "!could not set TX power"); 5607 return error; 5608 } 5609 5610 if ((error = iwn_set_critical_temp(sc)) != 0) { 5611 dev_err(sc->sc_dip, CE_WARN, 5612 "!could not set critical temperature"); 5613 return error; 5614 } 5615 5616 /* Set power saving level to CAM during initialization. */ 5617 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 5618 dev_err(sc->sc_dip, CE_WARN, 5619 "!could not set power saving level"); 5620 return error; 5621 } 5622 return 0; 5623 } 5624 5625 static uint16_t 5626 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags, 5627 uint8_t n_probes) 5628 { 5629 _NOTE(ARGUNUSED(sc)); 5630 5631 /* No channel? Default to 2GHz settings */ 5632 if (flags & IEEE80211_CHAN_2GHZ) 5633 return IWN_ACTIVE_DWELL_TIME_2GHZ + 5634 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1); 5635 5636 /* 5GHz dwell time */ 5637 return IWN_ACTIVE_DWELL_TIME_5GHZ + 5638 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1); 5639 } 5640 5641 /* 5642 * Limit the total dwell time to 85% of the beacon interval. 5643 * 5644 * Returns the dwell time in milliseconds. 5645 */ 5646 static uint16_t 5647 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 5648 { 5649 _NOTE(ARGUNUSED(dwell_time)); 5650 5651 struct ieee80211com *ic = &sc->sc_ic; 5652 struct ieee80211_node *ni = ic->ic_bss; 5653 int bintval = 0; 5654 5655 /* bintval is in TU (1.024mS) */ 5656 if (ni != NULL) 5657 bintval = ni->in_intval; 5658 5659 /* 5660 * If it's non-zero, we should calculate the minimum of 5661 * it and the DWELL_BASE. 5662 * 5663 * XXX Yes, the math should take into account that bintval 5664 * is 1.024mS, not 1mS.. 5665 */ 5666 if (bintval > 0) 5667 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)); 5668 5669 /* No association context? Default */ 5670 return IWN_PASSIVE_DWELL_BASE; 5671 } 5672 5673 static uint16_t 5674 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 5675 { 5676 uint16_t passive; 5677 if (flags & IEEE80211_CHAN_2GHZ) 5678 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 5679 else 5680 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 5681 5682 /* Clamp to the beacon interval if we're associated */ 5683 return iwn_limit_dwell(sc, passive); 5684 } 5685 5686 static int 5687 iwn_scan(struct iwn_softc *sc, uint16_t flags) 5688 { 5689 struct ieee80211com *ic = &sc->sc_ic; 5690 struct iwn_scan_hdr *hdr; 5691 struct iwn_cmd_data *tx; 5692 struct iwn_scan_essid *essid; 5693 struct iwn_scan_chan *chan; 5694 struct ieee80211_frame *wh; 5695 struct ieee80211_rateset *rs; 5696 struct ieee80211_channel *c; 5697 uint8_t *buf, *frm; 5698 uint16_t rxchain, dwell_active, dwell_passive; 5699 uint8_t txant; 5700 int buflen, error, is_active; 5701 5702 buf = kmem_zalloc(IWN_SCAN_MAXSZ, KM_NOSLEEP); 5703 if (buf == NULL) { 5704 dev_err(sc->sc_dip, CE_WARN, 5705 "!could not allocate buffer for scan command"); 5706 return ENOMEM; 5707 } 5708 hdr = (struct iwn_scan_hdr *)buf; 5709 /* 5710 * Move to the next channel if no frames are received within 20ms 5711 * after sending the probe request. 5712 */ 5713 hdr->quiet_time = htole16(20); /* timeout in milliseconds */ 5714 hdr->quiet_threshold = htole16(1); /* min # of packets */ 5715 5716 /* Select antennas for scanning. */ 5717 rxchain = 5718 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5719 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 5720 IWN_RXCHAIN_DRIVER_FORCE; 5721 if ((flags & IEEE80211_CHAN_5GHZ) && 5722 sc->hw_type == IWN_HW_REV_TYPE_4965) { 5723 /* Ant A must be avoided in 5GHz because of an HW bug. */ 5724 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 5725 } else /* Use all available RX antennas. */ 5726 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 5727 hdr->rxchain = htole16(rxchain); 5728 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 5729 5730 tx = (struct iwn_cmd_data *)(hdr + 1); 5731 tx->flags = htole32(IWN_TX_AUTO_SEQ); 5732 tx->id = sc->broadcast_id; 5733 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 5734 5735 if (flags & IEEE80211_CHAN_5GHZ) { 5736 /* Send probe requests at 6Mbps. */ 5737 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 5738 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 5739 } else { 5740 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 5741 /* Send probe requests at 1Mbps. */ 5742 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 5743 tx->rflags = IWN_RFLAG_CCK; 5744 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 5745 } 5746 5747 hdr->crc_threshold = 0xffff; 5748 5749 /* Use the first valid TX antenna. */ 5750 txant = IWN_LSB(sc->txchainmask); 5751 tx->rflags |= IWN_RFLAG_ANT(txant); 5752 5753 /* 5754 * Only do active scanning if we're announcing a probe request 5755 * for a given SSID (or more, if we ever add it to the driver.) 5756 */ 5757 is_active = 0; 5758 5759 essid = (struct iwn_scan_essid *)(tx + 1); 5760 if (ic->ic_des_esslen != 0) { 5761 char essidstr[IEEE80211_NWID_LEN+1]; 5762 memcpy(essidstr, ic->ic_des_essid, ic->ic_des_esslen); 5763 essidstr[ic->ic_des_esslen] = '\0'; 5764 5765 DTRACE_PROBE1(scan__direct, char *, essidstr); 5766 5767 essid[0].id = IEEE80211_ELEMID_SSID; 5768 essid[0].len = ic->ic_des_esslen; 5769 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 5770 5771 is_active = 1; 5772 /* hdr->crc_threshold = 0x1; */ 5773 hdr->scan_flags = htole32(IWN_SCAN_PASSIVE2ACTIVE); 5774 } 5775 /* 5776 * Build a probe request frame. Most of the following code is a 5777 * copy & paste of what is done in net80211. 5778 */ 5779 wh = (struct ieee80211_frame *)(essid + 20); 5780 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 5781 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 5782 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 5783 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 5784 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr); 5785 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 5786 wh->i_dur[0] = wh->i_dur[1] = 0; /* filled by HW */ 5787 wh->i_seq[0] = wh->i_seq[1] = 0; /* filled by HW */ 5788 5789 frm = (uint8_t *)(wh + 1); 5790 frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen); 5791 frm = ieee80211_add_rates(frm, rs); 5792 #ifndef IEEE80211_NO_HT 5793 if (ic->ic_flags & IEEE80211_F_HTON) 5794 frm = ieee80211_add_htcaps(frm, ic); 5795 #endif 5796 if (rs->ir_nrates > IEEE80211_RATE_SIZE) 5797 frm = ieee80211_add_xrates(frm, rs); 5798 5799 /* Set length of probe request. */ 5800 /*LINTED: E_PTRDIFF_OVERFLOW*/ 5801 tx->len = htole16(frm - (uint8_t *)wh); 5802 5803 5804 /* 5805 * If active scanning is requested but a certain channel is 5806 * marked passive, we can do active scanning if we detect 5807 * transmissions. 5808 * 5809 * There is an issue with some firmware versions that triggers 5810 * a sysassert on a "good CRC threshold" of zero (== disabled), 5811 * on a radar channel even though this means that we should NOT 5812 * send probes. 5813 * 5814 * The "good CRC threshold" is the number of frames that we 5815 * need to receive during our dwell time on a channel before 5816 * sending out probes -- setting this to a huge value will 5817 * mean we never reach it, but at the same time work around 5818 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 5819 * here instead of IWN_GOOD_CRC_TH_DISABLED. 5820 * 5821 * This was fixed in later versions along with some other 5822 * scan changes, and the threshold behaves as a flag in those 5823 * versions. 5824 */ 5825 5826 /* 5827 * If we're doing active scanning, set the crc_threshold 5828 * to a suitable value. This is different to active veruss 5829 * passive scanning depending upon the channel flags; the 5830 * firmware will obey that particular check for us. 5831 */ 5832 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 5833 hdr->crc_threshold = is_active ? 5834 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 5835 else 5836 hdr->crc_threshold = is_active ? 5837 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 5838 5839 chan = (struct iwn_scan_chan *)frm; 5840 for (c = &ic->ic_sup_channels[1]; 5841 c <= &ic->ic_sup_channels[IEEE80211_CHAN_MAX]; c++) { 5842 if ((c->ich_flags & flags) != flags) 5843 continue; 5844 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 5845 chan->flags = 0; 5846 if (!(c->ich_flags & IEEE80211_CHAN_PASSIVE)) 5847 chan->flags |= htole32(IWN_CHAN_ACTIVE); 5848 if (ic->ic_des_esslen != 0) 5849 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 5850 5851 /* 5852 * Calculate the active/passive dwell times. 5853 */ 5854 5855 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 5856 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 5857 5858 /* Make sure they're valid */ 5859 if (dwell_passive <= dwell_active) 5860 dwell_passive = dwell_active + 1; 5861 5862 chan->active = htole16(dwell_active); 5863 chan->passive = htole16(dwell_passive); 5864 5865 chan->dsp_gain = 0x6e; 5866 if (IEEE80211_IS_CHAN_5GHZ(c)) { 5867 chan->rf_gain = 0x3b; 5868 } else { 5869 chan->rf_gain = 0x28; 5870 } 5871 DTRACE_PROBE5(add__channel, uint8_t, chan->chan, 5872 uint32_t, chan->flags, uint8_t, chan->rf_gain, 5873 uint16_t, chan->active, uint16_t, chan->passive); 5874 hdr->nchan++; 5875 chan++; 5876 } 5877 5878 /*LINTED: E_PTRDIFF_OVERFLOW*/ 5879 buflen = (uint8_t *)chan - buf; 5880 hdr->len = htole16(buflen); 5881 5882 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 5883 kmem_free(buf, IWN_SCAN_MAXSZ); 5884 return error; 5885 } 5886 5887 static int 5888 iwn_auth(struct iwn_softc *sc) 5889 { 5890 struct iwn_ops *ops = &sc->ops; 5891 struct ieee80211com *ic = &sc->sc_ic; 5892 struct ieee80211_node *ni = ic->ic_bss; 5893 int error; 5894 5895 ASSERT(ni->in_chan != NULL); 5896 5897 /* Update adapter configuration. */ 5898 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid); 5899 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->in_chan); 5900 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5901 if ((ni->in_chan != IEEE80211_CHAN_ANYC) && 5902 IEEE80211_IS_CHAN_2GHZ(ni->in_chan)) 5903 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5904 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5905 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 5906 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5907 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 5908 switch (ic->ic_curmode) { 5909 case IEEE80211_MODE_11A: 5910 sc->rxon.cck_mask = 0; 5911 sc->rxon.ofdm_mask = 0x15; 5912 break; 5913 case IEEE80211_MODE_11B: 5914 sc->rxon.cck_mask = 0x03; 5915 sc->rxon.ofdm_mask = 0; 5916 break; 5917 default: /* Assume 802.11b/g. */ 5918 sc->rxon.cck_mask = 0x0f; 5919 sc->rxon.ofdm_mask = 0x15; 5920 } 5921 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 5922 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5923 if (error != 0) { 5924 dev_err(sc->sc_dip, CE_WARN, 5925 "!RXON command failed"); 5926 return error; 5927 } 5928 5929 /* Configuration has changed, set TX power accordingly. */ 5930 if ((error = ops->set_txpower(sc, 1)) != 0) { 5931 dev_err(sc->sc_dip, CE_WARN, 5932 "!could not set TX power"); 5933 return error; 5934 } 5935 /* 5936 * Reconfiguring RXON clears the firmware nodes table so we must 5937 * add the broadcast node again. 5938 */ 5939 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 5940 dev_err(sc->sc_dip, CE_WARN, 5941 "!could not add broadcast node"); 5942 return error; 5943 } 5944 return 0; 5945 } 5946 5947 static int 5948 iwn_fast_recover(struct iwn_softc *sc) 5949 { 5950 int err = IWN_FAIL; 5951 5952 mutex_enter(&sc->sc_mtx); 5953 5954 /* restore runtime configuration */ 5955 bcopy(&sc->rxon_save, &sc->rxon, 5956 sizeof (sc->rxon)); 5957 5958 sc->rxon.associd = 0; 5959 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 5960 5961 if ((err = iwn_auth(sc)) != IWN_SUCCESS) { 5962 dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): " 5963 "could not setup authentication"); 5964 mutex_exit(&sc->sc_mtx); 5965 return (err); 5966 } 5967 5968 bcopy(&sc->rxon_save, &sc->rxon, sizeof (sc->rxon)); 5969 5970 /* update adapter's configuration */ 5971 err = iwn_run(sc); 5972 if (err != IWN_SUCCESS) { 5973 dev_err(sc->sc_dip, CE_WARN, "!iwn_fast_recover(): " 5974 "failed to setup association"); 5975 mutex_exit(&sc->sc_mtx); 5976 return (err); 5977 } 5978 /* set LED on */ 5979 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5980 5981 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 5982 mutex_exit(&sc->sc_mtx); 5983 5984 /* start queue */ 5985 DTRACE_PROBE(resume__xmit); 5986 5987 return (IWN_SUCCESS); 5988 } 5989 5990 static int 5991 iwn_run(struct iwn_softc *sc) 5992 { 5993 struct iwn_ops *ops = &sc->ops; 5994 struct ieee80211com *ic = &sc->sc_ic; 5995 struct ieee80211_node *ni = ic->ic_bss; 5996 struct iwn_node_info node; 5997 int error; 5998 5999 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 6000 /* Link LED blinks while monitoring. */ 6001 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 6002 return 0; 6003 } 6004 if ((error = iwn_set_timing(sc, ni)) != 0) { 6005 dev_err(sc->sc_dip, CE_WARN, 6006 "!could not set timing"); 6007 return error; 6008 } 6009 6010 /* Update adapter configuration. */ 6011 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->in_bssid); 6012 sc->rxon.associd = htole16(IEEE80211_AID(ni->in_associd)); 6013 /* Short preamble and slot time are negotiated when associating. */ 6014 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 6015 if (ic->ic_flags & IEEE80211_F_SHSLOT) 6016 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 6017 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 6018 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 6019 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 6020 if (ic->ic_opmode != IEEE80211_M_STA && 6021 ic->ic_opmode != IEEE80211_M_IBSS) 6022 sc->rxon.filter |= htole32(IWN_FILTER_BEACON); 6023 DTRACE_PROBE2(rxon, struct iwn_rxon *, &sc->rxon, int, sc->rxonsz); 6024 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 6025 if (error != 0) { 6026 dev_err(sc->sc_dip, CE_WARN, 6027 "!could not update configuration"); 6028 return error; 6029 } 6030 6031 /* Configuration has changed, set TX power accordingly. */ 6032 if ((error = ops->set_txpower(sc, 1)) != 0) { 6033 dev_err(sc->sc_dip, CE_WARN, 6034 "!could not set TX power"); 6035 return error; 6036 } 6037 6038 /* Fake a join to initialize the TX rate. */ 6039 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 6040 iwn_newassoc(ni, 1); 6041 6042 /* Add BSS node. */ 6043 memset(&node, 0, sizeof node); 6044 IEEE80211_ADDR_COPY(node.macaddr, ni->in_macaddr); 6045 node.id = IWN_ID_BSS; 6046 #ifdef notyet 6047 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 6048 IWN_AMDPU_DENSITY(5)); /* 2us */ 6049 #endif 6050 error = ops->add_node(sc, &node, 1); 6051 if (error != 0) { 6052 dev_err(sc->sc_dip, CE_WARN, 6053 "!could not add BSS node"); 6054 return error; 6055 } 6056 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 6057 dev_err(sc->sc_dip, CE_WARN, 6058 "!could not setup link quality for node %d", node.id); 6059 return error; 6060 } 6061 6062 if ((error = iwn_init_sensitivity(sc)) != 0) { 6063 dev_err(sc->sc_dip, CE_WARN, 6064 "!could not set sensitivity"); 6065 return error; 6066 } 6067 6068 if ((error = iwn_qosparam_to_hw(sc, 1)) != 0) { 6069 dev_err(sc->sc_dip, CE_WARN, 6070 "!could not set QoS params"); 6071 return (error); 6072 } 6073 6074 /* Start periodic calibration timer. */ 6075 sc->sc_flags &= ~IWN_FLAG_STOP_CALIB_TO; 6076 sc->calib.state = IWN_CALIB_STATE_ASSOC; 6077 sc->calib_cnt = 0; 6078 sc->calib_to = timeout(iwn_calib_timeout, sc, drv_usectohz(500000)); 6079 6080 /* Link LED always on while associated. */ 6081 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 6082 return 0; 6083 } 6084 6085 #ifdef IWN_HWCRYPTO 6086 /* 6087 * We support CCMP hardware encryption/decryption of unicast frames only. 6088 * HW support for TKIP really sucks. We should let TKIP die anyway. 6089 */ 6090 static int 6091 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 6092 struct ieee80211_key *k) 6093 { 6094 struct iwn_softc *sc = ic->ic_softc; 6095 struct iwn_ops *ops = &sc->ops; 6096 struct iwn_node *wn = (void *)ni; 6097 struct iwn_node_info node; 6098 uint16_t kflags; 6099 6100 if ((k->k_flags & IEEE80211_KEY_GROUP) || 6101 k->k_cipher != IEEE80211_CIPHER_CCMP) 6102 return ieee80211_set_key(ic, ni, k); 6103 6104 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 6105 if (k->k_flags & IEEE80211_KEY_GROUP) 6106 kflags |= IWN_KFLAG_GROUP; 6107 6108 memset(&node, 0, sizeof node); 6109 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 6110 sc->broadcast_id : wn->id; 6111 node.control = IWN_NODE_UPDATE; 6112 node.flags = IWN_FLAG_SET_KEY; 6113 node.kflags = htole16(kflags); 6114 node.kid = k->k_id; 6115 memcpy(node.key, k->k_key, k->k_len); 6116 DTRACE_PROBE2(set__key, int, k->k_id, int, node.id); 6117 return ops->add_node(sc, &node, 1); 6118 } 6119 6120 static void 6121 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 6122 struct ieee80211_key *k) 6123 { 6124 struct iwn_softc *sc = ic->ic_softc; 6125 struct iwn_ops *ops = &sc->ops; 6126 struct iwn_node *wn = (void *)ni; 6127 struct iwn_node_info node; 6128 6129 if ((k->k_flags & IEEE80211_KEY_GROUP) || 6130 k->k_cipher != IEEE80211_CIPHER_CCMP) { 6131 /* See comment about other ciphers above. */ 6132 ieee80211_delete_key(ic, ni, k); 6133 return; 6134 } 6135 if (ic->ic_state != IEEE80211_S_RUN) 6136 return; /* Nothing to do. */ 6137 memset(&node, 0, sizeof node); 6138 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 6139 sc->broadcast_id : wn->id; 6140 node.control = IWN_NODE_UPDATE; 6141 node.flags = IWN_FLAG_SET_KEY; 6142 node.kflags = htole16(IWN_KFLAG_INVALID); 6143 node.kid = 0xff; 6144 DTRACE_PROBE1(del__key, int, node.id); 6145 (void)ops->add_node(sc, &node, 1); 6146 } 6147 #endif 6148 6149 #ifndef IEEE80211_NO_HT 6150 /* 6151 * This function is called by upper layer when an ADDBA request is received 6152 * from another STA and before the ADDBA response is sent. 6153 */ 6154 static int 6155 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 6156 uint8_t tid) 6157 { 6158 struct ieee80211_rx_ba *ba = &ni->in_rx_ba[tid]; 6159 struct iwn_softc *sc = ic->ic_softc; 6160 struct iwn_ops *ops = &sc->ops; 6161 struct iwn_node *wn = (void *)ni; 6162 struct iwn_node_info node; 6163 6164 memset(&node, 0, sizeof node); 6165 node.id = wn->id; 6166 node.control = IWN_NODE_UPDATE; 6167 node.flags = IWN_FLAG_SET_ADDBA; 6168 node.addba_tid = tid; 6169 node.addba_ssn = htole16(ba->ba_winstart); 6170 DTRACE_PROBE3(addba, uint8_t, wn->id, uint8_t, tid, int, ba->ba_winstart); 6171 return ops->add_node(sc, &node, 1); 6172 } 6173 6174 /* 6175 * This function is called by upper layer on teardown of an HT-immediate 6176 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 6177 */ 6178 static void 6179 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 6180 uint8_t tid) 6181 { 6182 struct iwn_softc *sc = ic->ic_softc; 6183 struct iwn_ops *ops = &sc->ops; 6184 struct iwn_node *wn = (void *)ni; 6185 struct iwn_node_info node; 6186 6187 memset(&node, 0, sizeof node); 6188 node.id = wn->id; 6189 node.control = IWN_NODE_UPDATE; 6190 node.flags = IWN_FLAG_SET_DELBA; 6191 node.delba_tid = tid; 6192 DTRACE_PROBE2(delba, uint8_t, wn->id, uint8_t, tid); 6193 (void)ops->add_node(sc, &node, 1); 6194 } 6195 6196 /* 6197 * This function is called by upper layer when an ADDBA response is received 6198 * from another STA. 6199 */ 6200 static int 6201 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 6202 uint8_t tid) 6203 { 6204 struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid]; 6205 struct iwn_softc *sc = ic->ic_softc; 6206 struct iwn_ops *ops = &sc->ops; 6207 struct iwn_node *wn = (void *)ni; 6208 struct iwn_node_info node; 6209 int error; 6210 6211 /* Enable TX for the specified RA/TID. */ 6212 wn->disable_tid &= ~(1 << tid); 6213 memset(&node, 0, sizeof node); 6214 node.id = wn->id; 6215 node.control = IWN_NODE_UPDATE; 6216 node.flags = IWN_FLAG_SET_DISABLE_TID; 6217 node.disable_tid = htole16(wn->disable_tid); 6218 error = ops->add_node(sc, &node, 1); 6219 if (error != 0) 6220 return error; 6221 6222 if ((error = iwn_nic_lock(sc)) != 0) 6223 return error; 6224 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 6225 iwn_nic_unlock(sc); 6226 return 0; 6227 } 6228 6229 static void 6230 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 6231 uint8_t tid) 6232 { 6233 struct ieee80211_tx_ba *ba = &ni->in_tx_ba[tid]; 6234 struct iwn_softc *sc = ic->ic_softc; 6235 struct iwn_ops *ops = &sc->ops; 6236 6237 if (iwn_nic_lock(sc) != 0) 6238 return; 6239 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 6240 iwn_nic_unlock(sc); 6241 } 6242 6243 static void 6244 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 6245 uint8_t tid, uint16_t ssn) 6246 { 6247 struct iwn_node *wn = (void *)ni; 6248 int qid = 7 + tid; 6249 6250 /* Stop TX scheduler while we're changing its configuration. */ 6251 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6252 IWN4965_TXQ_STATUS_CHGACT); 6253 6254 /* Assign RA/TID translation to the queue. */ 6255 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 6256 wn->id << 4 | tid); 6257 6258 /* Enable chain-building mode for the queue. */ 6259 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 6260 6261 /* Set starting sequence number from the ADDBA request. */ 6262 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6263 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 6264 6265 /* Set scheduler window size. */ 6266 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 6267 IWN_SCHED_WINSZ); 6268 /* Set scheduler frame limit. */ 6269 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 6270 IWN_SCHED_LIMIT << 16); 6271 6272 /* Enable interrupts for the queue. */ 6273 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 6274 6275 /* Mark the queue as active. */ 6276 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6277 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 6278 iwn_tid2fifo[tid] << 1); 6279 } 6280 6281 static void 6282 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 6283 { 6284 int qid = 7 + tid; 6285 6286 /* Stop TX scheduler while we're changing its configuration. */ 6287 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6288 IWN4965_TXQ_STATUS_CHGACT); 6289 6290 /* Set starting sequence number from the ADDBA request. */ 6291 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6292 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 6293 6294 /* Disable interrupts for the queue. */ 6295 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 6296 6297 /* Mark the queue as inactive. */ 6298 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6299 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 6300 } 6301 6302 static void 6303 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 6304 uint8_t tid, uint16_t ssn) 6305 { 6306 struct iwn_node *wn = (void *)ni; 6307 int qid = 10 + tid; 6308 6309 /* Stop TX scheduler while we're changing its configuration. */ 6310 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6311 IWN5000_TXQ_STATUS_CHGACT); 6312 6313 /* Assign RA/TID translation to the queue. */ 6314 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 6315 wn->id << 4 | tid); 6316 6317 /* Enable chain-building mode for the queue. */ 6318 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 6319 6320 /* Enable aggregation for the queue. */ 6321 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 6322 6323 /* Set starting sequence number from the ADDBA request. */ 6324 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6325 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 6326 6327 /* Set scheduler window size and frame limit. */ 6328 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 6329 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 6330 6331 /* Enable interrupts for the queue. */ 6332 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 6333 6334 /* Mark the queue as active. */ 6335 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6336 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 6337 } 6338 6339 static void 6340 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 6341 { 6342 int qid = 10 + tid; 6343 6344 /* Stop TX scheduler while we're changing its configuration. */ 6345 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6346 IWN5000_TXQ_STATUS_CHGACT); 6347 6348 /* Disable aggregation for the queue. */ 6349 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 6350 6351 /* Set starting sequence number from the ADDBA request. */ 6352 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6353 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 6354 6355 /* Disable interrupts for the queue. */ 6356 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 6357 6358 /* Mark the queue as inactive. */ 6359 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6360 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 6361 } 6362 #endif /* !IEEE80211_NO_HT */ 6363 6364 /* 6365 * Query calibration tables from the initialization firmware. We do this 6366 * only once at first boot. Called from a process context. 6367 */ 6368 static int 6369 iwn5000_query_calibration(struct iwn_softc *sc) 6370 { 6371 struct iwn5000_calib_config cmd; 6372 int error; 6373 clock_t clk; 6374 6375 ASSERT(mutex_owned(&sc->sc_mtx)); 6376 6377 memset(&cmd, 0, sizeof cmd); 6378 cmd.ucode.once.enable = 0xffffffff; 6379 cmd.ucode.once.start = 0xffffffff; 6380 cmd.ucode.once.send = 0xffffffff; 6381 cmd.ucode.flags = 0xffffffff; 6382 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 6383 if (error != 0) 6384 return error; 6385 6386 /* Wait at most two seconds for calibration to complete. */ 6387 clk = ddi_get_lbolt() + drv_usectohz(2000000); 6388 while (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 6389 if (cv_timedwait(&sc->sc_calib_cv, &sc->sc_mtx, clk) < 0) 6390 return (IWN_FAIL); 6391 6392 return (IWN_SUCCESS); 6393 } 6394 6395 /* 6396 * Send calibration results to the runtime firmware. These results were 6397 * obtained on first boot from the initialization firmware. 6398 */ 6399 static int 6400 iwn5000_send_calibration(struct iwn_softc *sc) 6401 { 6402 int idx, error; 6403 6404 for (idx = 0; idx < 5; idx++) { 6405 if (sc->calibcmd[idx].buf == NULL) 6406 continue; /* No results available. */ 6407 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 6408 sc->calibcmd[idx].len, 0); 6409 if (error != 0) { 6410 dev_err(sc->sc_dip, CE_WARN, 6411 "!could not send calibration result"); 6412 return error; 6413 } 6414 } 6415 return 0; 6416 } 6417 6418 static int 6419 iwn5000_send_wimax_coex(struct iwn_softc *sc) 6420 { 6421 struct iwn5000_wimax_coex wimax; 6422 6423 #ifdef notyet 6424 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6425 /* Enable WiMAX coexistence for combo adapters. */ 6426 wimax.flags = 6427 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 6428 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 6429 IWN_WIMAX_COEX_STA_TABLE_VALID | 6430 IWN_WIMAX_COEX_ENABLE; 6431 memcpy(wimax.events, iwn6050_wimax_events, 6432 sizeof iwn6050_wimax_events); 6433 } else 6434 #endif 6435 { 6436 /* Disable WiMAX coexistence. */ 6437 wimax.flags = 0; 6438 memset(wimax.events, 0, sizeof wimax.events); 6439 } 6440 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 6441 } 6442 6443 static int 6444 iwn6000_temp_offset_calib(struct iwn_softc *sc) 6445 { 6446 struct iwn6000_phy_calib_temp_offset cmd; 6447 6448 memset(&cmd, 0, sizeof cmd); 6449 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 6450 cmd.ngroups = 1; 6451 cmd.isvalid = 1; 6452 if (sc->eeprom_temp != 0) 6453 cmd.offset = htole16(sc->eeprom_temp); 6454 else 6455 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 6456 sc->sc_toff.t6000->toff.value.l = le16toh(cmd.offset); 6457 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6458 } 6459 6460 static int 6461 iwn2000_temp_offset_calib(struct iwn_softc *sc) 6462 { 6463 struct iwn2000_phy_calib_temp_offset cmd; 6464 6465 memset(&cmd, 0, sizeof cmd); 6466 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 6467 cmd.ngroups = 1; 6468 cmd.isvalid = 1; 6469 if (sc->eeprom_rawtemp != 0) { 6470 cmd.offset_low = htole16(sc->eeprom_rawtemp); 6471 cmd.offset_high = htole16(sc->eeprom_temp); 6472 } else { 6473 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 6474 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 6475 } 6476 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 6477 sc->sc_toff.t2000->toff_lo.value.l = le16toh(cmd.offset_low); 6478 sc->sc_toff.t2000->toff_hi.value.l = le16toh(cmd.offset_high); 6479 sc->sc_toff.t2000->volt.value.l = le16toh(cmd.burnt_voltage_ref); 6480 6481 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6482 } 6483 6484 /* 6485 * This function is called after the runtime firmware notifies us of its 6486 * readiness (called in a process context). 6487 */ 6488 static int 6489 iwn4965_post_alive(struct iwn_softc *sc) 6490 { 6491 int error, qid; 6492 6493 if ((error = iwn_nic_lock(sc)) != 0) 6494 return error; 6495 6496 /* Clear TX scheduler state in SRAM. */ 6497 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 6498 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 6499 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 6500 6501 /* Set physical address of TX scheduler rings (1KB aligned). */ 6502 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 6503 6504 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 6505 6506 /* Disable chain mode for all our 16 queues. */ 6507 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 6508 6509 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 6510 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 6511 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 6512 6513 /* Set scheduler window size. */ 6514 iwn_mem_write(sc, sc->sched_base + 6515 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 6516 /* Set scheduler frame limit. */ 6517 iwn_mem_write(sc, sc->sched_base + 6518 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 6519 IWN_SCHED_LIMIT << 16); 6520 } 6521 6522 /* Enable interrupts for all our 16 queues. */ 6523 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 6524 /* Identify TX FIFO rings (0-7). */ 6525 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 6526 6527 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6528 for (qid = 0; qid < 7; qid++) { 6529 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 6530 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6531 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 6532 } 6533 iwn_nic_unlock(sc); 6534 return 0; 6535 } 6536 6537 /* 6538 * This function is called after the initialization or runtime firmware 6539 * notifies us of its readiness (called in a process context). 6540 */ 6541 static int 6542 iwn5000_post_alive(struct iwn_softc *sc) 6543 { 6544 int error, qid; 6545 6546 /* Switch to using ICT interrupt mode. */ 6547 iwn5000_ict_reset(sc); 6548 6549 if ((error = iwn_nic_lock(sc)) != 0) 6550 return error; 6551 6552 /* Clear TX scheduler state in SRAM. */ 6553 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 6554 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 6555 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 6556 6557 /* Set physical address of TX scheduler rings (1KB aligned). */ 6558 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 6559 6560 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 6561 6562 /* Enable chain mode for all queues, except command queue. */ 6563 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 6564 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 6565 6566 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 6567 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 6568 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 6569 6570 iwn_mem_write(sc, sc->sched_base + 6571 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 6572 /* Set scheduler window size and frame limit. */ 6573 iwn_mem_write(sc, sc->sched_base + 6574 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 6575 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 6576 } 6577 6578 /* Enable interrupts for all our 20 queues. */ 6579 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 6580 /* Identify TX FIFO rings (0-7). */ 6581 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 6582 6583 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6584 for (qid = 0; qid < 7; qid++) { 6585 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 6586 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6587 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 6588 } 6589 iwn_nic_unlock(sc); 6590 6591 /* Configure WiMAX coexistence for combo adapters. */ 6592 error = iwn5000_send_wimax_coex(sc); 6593 if (error != 0) { 6594 dev_err(sc->sc_dip, CE_WARN, 6595 "!could not configure WiMAX coexistence"); 6596 return error; 6597 } 6598 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 6599 struct iwn5000_phy_calib_crystal cmd; 6600 6601 /* Perform crystal calibration. */ 6602 memset(&cmd, 0, sizeof cmd); 6603 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 6604 cmd.ngroups = 1; 6605 cmd.isvalid = 1; 6606 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 6607 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 6608 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6609 if (error != 0) { 6610 dev_err(sc->sc_dip, CE_WARN, 6611 "!crystal calibration failed"); 6612 return error; 6613 } 6614 } 6615 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 6616 /* Query calibration from the initialization firmware. */ 6617 if ((error = iwn5000_query_calibration(sc)) != 0) { 6618 dev_err(sc->sc_dip, CE_WARN, 6619 "!could not query calibration"); 6620 return error; 6621 } 6622 /* 6623 * We have the calibration results now, reboot with the 6624 * runtime firmware (call ourselves recursively!) 6625 */ 6626 iwn_hw_stop(sc, B_FALSE); 6627 error = iwn_hw_init(sc); 6628 } else { 6629 /* Send calibration results to runtime firmware. */ 6630 error = iwn5000_send_calibration(sc); 6631 } 6632 return error; 6633 } 6634 6635 /* 6636 * The firmware boot code is small and is intended to be copied directy into 6637 * the NIC internal memory (no DMA transfer). 6638 */ 6639 static int 6640 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 6641 { 6642 int error, ntries; 6643 6644 size /= sizeof (uint32_t); 6645 6646 if ((error = iwn_nic_lock(sc)) != 0) 6647 return error; 6648 6649 /* Copy microcode image into NIC memory. */ 6650 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 6651 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 6652 (const uint32_t *)ucode, size); 6653 6654 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 6655 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 6656 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 6657 6658 /* Start boot load now. */ 6659 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 6660 6661 /* Wait for transfer to complete. */ 6662 for (ntries = 0; ntries < 1000; ntries++) { 6663 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 6664 IWN_BSM_WR_CTRL_START)) 6665 break; 6666 DELAY(10); 6667 } 6668 if (ntries == 1000) { 6669 dev_err(sc->sc_dip, CE_WARN, 6670 "!could not load boot firmware"); 6671 iwn_nic_unlock(sc); 6672 return ETIMEDOUT; 6673 } 6674 6675 /* Enable boot after power up. */ 6676 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 6677 6678 iwn_nic_unlock(sc); 6679 return 0; 6680 } 6681 6682 static int 6683 iwn4965_load_firmware(struct iwn_softc *sc) 6684 { 6685 struct iwn_fw_info *fw = &sc->fw; 6686 struct iwn_dma_info *dma = &sc->fw_dma; 6687 int error; 6688 clock_t clk; 6689 6690 ASSERT(mutex_owned(&sc->sc_mtx)); 6691 6692 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 6693 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 6694 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6695 fw->init.text, fw->init.textsz); 6696 (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 6697 6698 /* Tell adapter where to find initialization sections. */ 6699 if ((error = iwn_nic_lock(sc)) != 0) 6700 return error; 6701 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6702 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 6703 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6704 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6705 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 6706 iwn_nic_unlock(sc); 6707 6708 /* Load firmware boot code. */ 6709 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 6710 if (error != 0) { 6711 dev_err(sc->sc_dip, CE_WARN, 6712 "!could not load boot firmware"); 6713 return error; 6714 } 6715 /* Now press "execute". */ 6716 IWN_WRITE(sc, IWN_RESET, 0); 6717 6718 /* Wait at most one second for first alive notification. */ 6719 clk = ddi_get_lbolt() + drv_usectohz(1000000); 6720 while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) { 6721 if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) { 6722 dev_err(sc->sc_dip, CE_WARN, 6723 "!timeout waiting for adapter to initialize"); 6724 return (IWN_FAIL); 6725 } 6726 } 6727 6728 /* Retrieve current temperature for initial TX power calibration. */ 6729 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 6730 sc->temp = iwn4965_get_temperature(sc); 6731 sc->sc_misc->temp.value.ul = sc->temp; 6732 6733 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 6734 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 6735 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6736 fw->main.text, fw->main.textsz); 6737 (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 6738 6739 /* Tell adapter where to find runtime sections. */ 6740 if ((error = iwn_nic_lock(sc)) != 0) 6741 return error; 6742 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6743 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 6744 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6745 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6746 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 6747 IWN_FW_UPDATED | fw->main.textsz); 6748 iwn_nic_unlock(sc); 6749 6750 return 0; 6751 } 6752 6753 static int 6754 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 6755 const uint8_t *section, int size) 6756 { 6757 struct iwn_dma_info *dma = &sc->fw_dma; 6758 int error; 6759 clock_t clk; 6760 6761 ASSERT(mutex_owned(&sc->sc_mtx)); 6762 6763 /* Copy firmware section into pre-allocated DMA-safe memory. */ 6764 memcpy(dma->vaddr, section, size); 6765 (void) ddi_dma_sync(dma->dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 6766 6767 if ((error = iwn_nic_lock(sc)) != 0) 6768 return error; 6769 6770 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6771 IWN_FH_TX_CONFIG_DMA_PAUSE); 6772 6773 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 6774 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 6775 IWN_LOADDR(dma->paddr)); 6776 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 6777 IWN_HIADDR(dma->paddr) << 28 | size); 6778 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 6779 IWN_FH_TXBUF_STATUS_TBNUM(1) | 6780 IWN_FH_TXBUF_STATUS_TBIDX(1) | 6781 IWN_FH_TXBUF_STATUS_TFBD_VALID); 6782 6783 /* Kick Flow Handler to start DMA transfer. */ 6784 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6785 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 6786 6787 iwn_nic_unlock(sc); 6788 6789 /* Wait at most five seconds for FH DMA transfer to complete. */ 6790 clk = ddi_get_lbolt() + drv_usectohz(5000000); 6791 while ((sc->sc_flags & IWN_FLAG_FW_DMA) == 0) { 6792 if (cv_timedwait(&sc->sc_fhdma_cv, &sc->sc_mtx, clk) < 0) 6793 return (IWN_FAIL); 6794 } 6795 sc->sc_flags &= ~IWN_FLAG_FW_DMA; 6796 6797 return (IWN_SUCCESS); 6798 } 6799 6800 static int 6801 iwn5000_load_firmware(struct iwn_softc *sc) 6802 { 6803 struct iwn_fw_part *fw; 6804 int error; 6805 6806 /* Load the initialization firmware on first boot only. */ 6807 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 6808 &sc->fw.main : &sc->fw.init; 6809 6810 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 6811 fw->text, fw->textsz); 6812 if (error != 0) { 6813 dev_err(sc->sc_dip, CE_WARN, 6814 "!could not load firmware %s section", ".text"); 6815 return error; 6816 } 6817 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 6818 fw->data, fw->datasz); 6819 if (error != 0) { 6820 dev_err(sc->sc_dip, CE_WARN, 6821 "!could not load firmware %s section", ".data"); 6822 return error; 6823 } 6824 6825 /* Now press "execute". */ 6826 IWN_WRITE(sc, IWN_RESET, 0); 6827 return 0; 6828 } 6829 6830 /* 6831 * Extract text and data sections from a legacy firmware image. 6832 */ 6833 static int 6834 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 6835 { 6836 _NOTE(ARGUNUSED(sc)); 6837 const uint32_t *ptr; 6838 size_t hdrlen = 24; 6839 uint32_t rev; 6840 6841 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 6842 ptr = (const uint32_t *)fw->data; 6843 rev = le32toh(*ptr++); 6844 6845 /* Check firmware API version. */ 6846 if (IWN_FW_API(rev) <= 1) { 6847 dev_err(sc->sc_dip, CE_WARN, 6848 "!bad firmware, need API version >=2"); 6849 return EINVAL; 6850 } 6851 if (IWN_FW_API(rev) >= 3) { 6852 /* Skip build number (version 2 header). */ 6853 hdrlen += 4; 6854 ptr++; 6855 } 6856 if (fw->size < hdrlen) { 6857 dev_err(sc->sc_dip, CE_WARN, 6858 "!firmware too short: %lld bytes", (longlong_t)fw->size); 6859 return EINVAL; 6860 } 6861 fw->main.textsz = le32toh(*ptr++); 6862 fw->main.datasz = le32toh(*ptr++); 6863 fw->init.textsz = le32toh(*ptr++); 6864 fw->init.datasz = le32toh(*ptr++); 6865 fw->boot.textsz = le32toh(*ptr++); 6866 6867 /* Check that all firmware sections fit. */ 6868 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 6869 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 6870 dev_err(sc->sc_dip, CE_WARN, 6871 "!firmware too short: %lld bytes", (longlong_t)fw->size); 6872 return EINVAL; 6873 } 6874 6875 /* Get pointers to firmware sections. */ 6876 fw->main.text = (const uint8_t *)ptr; 6877 fw->main.data = fw->main.text + fw->main.textsz; 6878 fw->init.text = fw->main.data + fw->main.datasz; 6879 fw->init.data = fw->init.text + fw->init.textsz; 6880 fw->boot.text = fw->init.data + fw->init.datasz; 6881 return 0; 6882 } 6883 6884 /* 6885 * Extract text and data sections from a TLV firmware image. 6886 */ 6887 static int 6888 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 6889 uint16_t alt) 6890 { 6891 _NOTE(ARGUNUSED(sc)); 6892 const struct iwn_fw_tlv_hdr *hdr; 6893 const struct iwn_fw_tlv *tlv; 6894 const uint8_t *ptr, *end; 6895 uint64_t altmask; 6896 uint32_t len; 6897 6898 if (fw->size < sizeof (*hdr)) { 6899 dev_err(sc->sc_dip, CE_WARN, 6900 "!firmware too short: %lld bytes", (longlong_t)fw->size); 6901 return EINVAL; 6902 } 6903 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 6904 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 6905 dev_err(sc->sc_dip, CE_WARN, 6906 "!bad firmware signature 0x%08x", le32toh(hdr->signature)); 6907 return EINVAL; 6908 } 6909 6910 /* 6911 * Select the closest supported alternative that is less than 6912 * or equal to the specified one. 6913 */ 6914 altmask = le64toh(hdr->altmask); 6915 while (alt > 0 && !(altmask & (1ULL << alt))) 6916 alt--; /* Downgrade. */ 6917 IWN_DBG("using alternative %d", alt); 6918 6919 ptr = (const uint8_t *)(hdr + 1); 6920 end = (const uint8_t *)(fw->data + fw->size); 6921 6922 /* Parse type-length-value fields. */ 6923 while (ptr + sizeof (*tlv) <= end) { 6924 tlv = (const struct iwn_fw_tlv *)ptr; 6925 len = le32toh(tlv->len); 6926 6927 ptr += sizeof (*tlv); 6928 if (ptr + len > end) { 6929 dev_err(sc->sc_dip, CE_WARN, 6930 "!firmware too short: %lld bytes", 6931 (longlong_t)fw->size); 6932 return EINVAL; 6933 } 6934 /* Skip other alternatives. */ 6935 if (tlv->alt != 0 && le16toh(tlv->alt) != alt) { 6936 IWN_DBG("skipping other alternative"); 6937 goto next; 6938 } 6939 6940 switch (le16toh(tlv->type)) { 6941 case IWN_FW_TLV_MAIN_TEXT: 6942 fw->main.text = ptr; 6943 fw->main.textsz = len; 6944 break; 6945 case IWN_FW_TLV_MAIN_DATA: 6946 fw->main.data = ptr; 6947 fw->main.datasz = len; 6948 break; 6949 case IWN_FW_TLV_INIT_TEXT: 6950 fw->init.text = ptr; 6951 fw->init.textsz = len; 6952 break; 6953 case IWN_FW_TLV_INIT_DATA: 6954 fw->init.data = ptr; 6955 fw->init.datasz = len; 6956 break; 6957 case IWN_FW_TLV_BOOT_TEXT: 6958 fw->boot.text = ptr; 6959 fw->boot.textsz = len; 6960 break; 6961 case IWN_FW_TLV_ENH_SENS: 6962 if (len != 0) { 6963 dev_err(sc->sc_dip, CE_WARN, 6964 "!TLV type %d has invalid size %u", 6965 le16toh(tlv->type), len); 6966 goto next; 6967 } 6968 sc->sc_flags |= IWN_FLAG_ENH_SENS; 6969 break; 6970 case IWN_FW_TLV_PHY_CALIB: 6971 if (len != sizeof(uint32_t)) { 6972 dev_err(sc->sc_dip, CE_WARN, 6973 "!TLV type %d has invalid size %u", 6974 le16toh(tlv->type), len); 6975 goto next; 6976 } 6977 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) { 6978 sc->reset_noise_gain = le32toh(*ptr); 6979 sc->noise_gain = le32toh(*ptr) + 1; 6980 } 6981 break; 6982 case IWN_FW_TLV_FLAGS: 6983 if (len < sizeof(uint32_t)) 6984 break; 6985 if (len % sizeof(uint32_t)) 6986 break; 6987 sc->tlv_feature_flags = le32toh(*ptr); 6988 IWN_DBG("feature: 0x%08x", sc->tlv_feature_flags); 6989 break; 6990 default: 6991 IWN_DBG("TLV type %d not handled", le16toh(tlv->type)); 6992 break; 6993 } 6994 next: /* TLV fields are 32-bit aligned. */ 6995 ptr += (len + 3) & ~3; 6996 } 6997 return 0; 6998 } 6999 7000 static int 7001 iwn_read_firmware(struct iwn_softc *sc) 7002 { 7003 struct iwn_fw_info *fw = &sc->fw; 7004 firmware_handle_t fwh; 7005 int error; 7006 7007 /* 7008 * Some PHY calibration commands are firmware-dependent; these 7009 * are the default values that will be overridden if 7010 * necessary. 7011 */ 7012 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 7013 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 7014 7015 /* Initialize for error returns */ 7016 fw->data = NULL; 7017 fw->size = 0; 7018 7019 /* Open firmware image. */ 7020 if ((error = firmware_open("iwn", sc->fwname, &fwh)) != 0) { 7021 dev_err(sc->sc_dip, CE_WARN, 7022 "!could not get firmware handle %s", sc->fwname); 7023 return error; 7024 } 7025 fw->size = firmware_get_size(fwh); 7026 if (fw->size < sizeof (uint32_t)) { 7027 dev_err(sc->sc_dip, CE_WARN, 7028 "!firmware too short: %lld bytes", (longlong_t)fw->size); 7029 (void) firmware_close(fwh); 7030 return EINVAL; 7031 } 7032 7033 /* Read the firmware. */ 7034 fw->data = kmem_alloc(fw->size, KM_SLEEP); 7035 error = firmware_read(fwh, 0, fw->data, fw->size); 7036 (void) firmware_close(fwh); 7037 if (error != 0) { 7038 dev_err(sc->sc_dip, CE_WARN, 7039 "!could not read firmware %s", sc->fwname); 7040 goto out; 7041 } 7042 7043 /* Retrieve text and data sections. */ 7044 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 7045 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 7046 error = iwn_read_firmware_leg(sc, fw); 7047 else 7048 error = iwn_read_firmware_tlv(sc, fw, 1); 7049 if (error != 0) { 7050 dev_err(sc->sc_dip, CE_WARN, 7051 "!could not read firmware sections"); 7052 goto out; 7053 } 7054 7055 /* Make sure text and data sections fit in hardware memory. */ 7056 if (fw->main.textsz > sc->fw_text_maxsz || 7057 fw->main.datasz > sc->fw_data_maxsz || 7058 fw->init.textsz > sc->fw_text_maxsz || 7059 fw->init.datasz > sc->fw_data_maxsz || 7060 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 7061 (fw->boot.textsz & 3) != 0) { 7062 dev_err(sc->sc_dip, CE_WARN, 7063 "!firmware sections too large"); 7064 goto out; 7065 } 7066 7067 /* We can proceed with loading the firmware. */ 7068 return 0; 7069 out: 7070 kmem_free(fw->data, fw->size); 7071 fw->data = NULL; 7072 fw->size = 0; 7073 return error ? error : EINVAL; 7074 } 7075 7076 static int 7077 iwn_clock_wait(struct iwn_softc *sc) 7078 { 7079 int ntries; 7080 7081 /* Set "initialization complete" bit. */ 7082 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 7083 7084 /* Wait for clock stabilization. */ 7085 for (ntries = 0; ntries < 2500; ntries++) { 7086 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 7087 return 0; 7088 DELAY(10); 7089 } 7090 dev_err(sc->sc_dip, CE_WARN, 7091 "!timeout waiting for clock stabilization"); 7092 return ETIMEDOUT; 7093 } 7094 7095 static int 7096 iwn_apm_init(struct iwn_softc *sc) 7097 { 7098 uint32_t reg; 7099 int error; 7100 7101 /* Disable L0s exit timer (NMI bug workaround). */ 7102 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 7103 /* Don't wait for ICH L0s (ICH bug workaround). */ 7104 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 7105 7106 /* Set FH wait threshold to max (HW bug under stress workaround). */ 7107 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 7108 7109 /* Enable HAP INTA to move adapter from L1a to L0s. */ 7110 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 7111 7112 /* Retrieve PCIe Active State Power Management (ASPM). */ 7113 reg = pci_config_get32(sc->sc_pcih, 7114 sc->sc_cap_off + PCIE_LINKCTL); 7115 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 7116 if (reg & PCIE_LINKCTL_ASPM_CTL_L1) /* L1 Entry enabled. */ 7117 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 7118 else 7119 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 7120 7121 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 7122 sc->hw_type <= IWN_HW_REV_TYPE_1000) 7123 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 7124 7125 /* Wait for clock stabilization before accessing prph. */ 7126 if ((error = iwn_clock_wait(sc)) != 0) 7127 return error; 7128 7129 if ((error = iwn_nic_lock(sc)) != 0) 7130 return error; 7131 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 7132 /* Enable DMA and BSM (Bootstrap State Machine). */ 7133 iwn_prph_write(sc, IWN_APMG_CLK_EN, 7134 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 7135 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 7136 } else { 7137 /* Enable DMA. */ 7138 iwn_prph_write(sc, IWN_APMG_CLK_EN, 7139 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 7140 } 7141 DELAY(20); 7142 /* Disable L1-Active. */ 7143 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 7144 iwn_nic_unlock(sc); 7145 7146 return 0; 7147 } 7148 7149 static void 7150 iwn_apm_stop_master(struct iwn_softc *sc) 7151 { 7152 int ntries; 7153 7154 /* Stop busmaster DMA activity. */ 7155 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 7156 for (ntries = 0; ntries < 100; ntries++) { 7157 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 7158 return; 7159 DELAY(10); 7160 } 7161 dev_err(sc->sc_dip, CE_WARN, 7162 "!timeout waiting for master"); 7163 } 7164 7165 static void 7166 iwn_apm_stop(struct iwn_softc *sc) 7167 { 7168 iwn_apm_stop_master(sc); 7169 7170 /* Reset the entire device. */ 7171 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 7172 DELAY(10); 7173 /* Clear "initialization complete" bit. */ 7174 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 7175 } 7176 7177 static int 7178 iwn4965_nic_config(struct iwn_softc *sc) 7179 { 7180 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 7181 /* 7182 * I don't believe this to be correct but this is what the 7183 * vendor driver is doing. Probably the bits should not be 7184 * shifted in IWN_RFCFG_*. 7185 */ 7186 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7187 IWN_RFCFG_TYPE(sc->rfcfg) | 7188 IWN_RFCFG_STEP(sc->rfcfg) | 7189 IWN_RFCFG_DASH(sc->rfcfg)); 7190 } 7191 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7192 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 7193 return 0; 7194 } 7195 7196 static int 7197 iwn5000_nic_config(struct iwn_softc *sc) 7198 { 7199 uint32_t tmp; 7200 int error; 7201 7202 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 7203 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7204 IWN_RFCFG_TYPE(sc->rfcfg) | 7205 IWN_RFCFG_STEP(sc->rfcfg) | 7206 IWN_RFCFG_DASH(sc->rfcfg)); 7207 } 7208 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7209 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 7210 7211 if ((error = iwn_nic_lock(sc)) != 0) 7212 return error; 7213 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 7214 7215 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 7216 /* 7217 * Select first Switching Voltage Regulator (1.32V) to 7218 * solve a stability issue related to noisy DC2DC line 7219 * in the silicon of 1000 Series. 7220 */ 7221 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 7222 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 7223 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 7224 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 7225 } 7226 iwn_nic_unlock(sc); 7227 7228 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 7229 /* Use internal power amplifier only. */ 7230 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 7231 } 7232 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 7233 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 7234 /* Indicate that ROM calibration version is >=6. */ 7235 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 7236 } 7237 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 7238 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 7239 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 7240 sc->hw_type == IWN_HW_REV_TYPE_2000 || 7241 sc->hw_type == IWN_HW_REV_TYPE_135 || 7242 sc->hw_type == IWN_HW_REV_TYPE_105) 7243 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 7244 return 0; 7245 } 7246 7247 /* 7248 * Take NIC ownership over Intel Active Management Technology (AMT). 7249 */ 7250 static int 7251 iwn_hw_prepare(struct iwn_softc *sc) 7252 { 7253 int ntries; 7254 7255 /* Check if hardware is ready. */ 7256 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 7257 for (ntries = 0; ntries < 5; ntries++) { 7258 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 7259 IWN_HW_IF_CONFIG_NIC_READY) 7260 return 0; 7261 DELAY(10); 7262 } 7263 7264 /* Hardware not ready, force into ready state. */ 7265 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 7266 for (ntries = 0; ntries < 15000; ntries++) { 7267 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 7268 IWN_HW_IF_CONFIG_PREPARE_DONE)) 7269 break; 7270 DELAY(10); 7271 } 7272 if (ntries == 15000) 7273 return ETIMEDOUT; 7274 7275 /* Hardware should be ready now. */ 7276 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 7277 for (ntries = 0; ntries < 5; ntries++) { 7278 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 7279 IWN_HW_IF_CONFIG_NIC_READY) 7280 return 0; 7281 DELAY(10); 7282 } 7283 return ETIMEDOUT; 7284 } 7285 7286 static int 7287 iwn_hw_init(struct iwn_softc *sc) 7288 { 7289 struct iwn_ops *ops = &sc->ops; 7290 int error, chnl, qid; 7291 clock_t clk; 7292 uint32_t rx_config; 7293 7294 ASSERT(mutex_owned(&sc->sc_mtx)); 7295 7296 /* Clear pending interrupts. */ 7297 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7298 7299 if ((error = iwn_apm_init(sc)) != 0) { 7300 dev_err(sc->sc_dip, CE_WARN, 7301 "!could not power ON adapter"); 7302 return error; 7303 } 7304 7305 /* Select VMAIN power source. */ 7306 if ((error = iwn_nic_lock(sc)) != 0) 7307 return error; 7308 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 7309 iwn_nic_unlock(sc); 7310 7311 /* Perform adapter-specific initialization. */ 7312 if ((error = ops->nic_config(sc)) != 0) 7313 return error; 7314 7315 /* Initialize RX ring. */ 7316 if ((error = iwn_nic_lock(sc)) != 0) 7317 return error; 7318 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 7319 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 7320 /* Set physical address of RX ring (256-byte aligned). */ 7321 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 7322 /* Set physical address of RX status (16-byte aligned). */ 7323 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 7324 /* Enable RX. */ 7325 rx_config = 7326 IWN_FH_RX_CONFIG_ENA | 7327 #if IWN_RBUF_SIZE == 8192 7328 IWN_FH_RX_CONFIG_RB_SIZE_8K | 7329 #endif 7330 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 7331 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 7332 IWN_FH_RX_CONFIG_SINGLE_FRAME | 7333 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 7334 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG); 7335 IWN_WRITE(sc, IWN_FH_RX_CONFIG, rx_config); 7336 iwn_nic_unlock(sc); 7337 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 7338 7339 if ((error = iwn_nic_lock(sc)) != 0) 7340 return error; 7341 7342 /* Initialize TX scheduler. */ 7343 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 7344 7345 /* Set physical address of "keep warm" page (16-byte aligned). */ 7346 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 7347 7348 /* Initialize TX rings. */ 7349 for (qid = 0; qid < sc->ntxqs; qid++) { 7350 struct iwn_tx_ring *txq = &sc->txq[qid]; 7351 7352 /* Set physical address of TX ring (256-byte aligned). */ 7353 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 7354 txq->desc_dma.paddr >> 8); 7355 } 7356 iwn_nic_unlock(sc); 7357 7358 /* Enable DMA channels. */ 7359 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 7360 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 7361 IWN_FH_TX_CONFIG_DMA_ENA | 7362 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 7363 } 7364 7365 /* Clear "radio off" and "commands blocked" bits. */ 7366 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7367 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 7368 7369 /* Clear pending interrupts. */ 7370 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7371 /* Enable interrupt coalescing. */ 7372 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 32); 7373 /* Enable interrupts. */ 7374 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 7375 7376 /* _Really_ make sure "radio off" bit is cleared! */ 7377 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7378 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7379 7380 /* Enable shadow registers. */ 7381 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 7382 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 7383 7384 if ((error = ops->load_firmware(sc)) != 0) { 7385 dev_err(sc->sc_dip, CE_WARN, 7386 "!could not load firmware"); 7387 return error; 7388 } 7389 /* Wait at most one second for firmware alive notification. */ 7390 clk = ddi_get_lbolt() + drv_usectohz(1000000); 7391 while ((sc->sc_flags & IWN_FLAG_FW_ALIVE) == 0) { 7392 if (cv_timedwait(&sc->sc_alive_cv, &sc->sc_mtx, clk) < 0) { 7393 dev_err(sc->sc_dip, CE_WARN, 7394 "!timeout waiting for adapter to initialize"); 7395 return (IWN_FAIL); 7396 } 7397 } 7398 /* Do post-firmware initialization. */ 7399 return ops->post_alive(sc); 7400 } 7401 7402 static void 7403 iwn_hw_stop(struct iwn_softc *sc, boolean_t lock) 7404 { 7405 int chnl, qid, ntries; 7406 7407 if (lock) { 7408 mutex_enter(&sc->sc_mtx); 7409 } 7410 7411 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 7412 7413 /* Disable interrupts. */ 7414 IWN_WRITE(sc, IWN_INT_MASK, 0); 7415 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7416 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 7417 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 7418 7419 /* Make sure we no longer hold the NIC lock. */ 7420 iwn_nic_unlock(sc); 7421 7422 /* Stop TX scheduler. */ 7423 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 7424 7425 /* Stop all DMA channels. */ 7426 if (iwn_nic_lock(sc) == 0) { 7427 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 7428 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 7429 for (ntries = 0; ntries < 200; ntries++) { 7430 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 7431 IWN_FH_TX_STATUS_IDLE(chnl)) 7432 break; 7433 DELAY(10); 7434 } 7435 } 7436 iwn_nic_unlock(sc); 7437 } 7438 7439 /* Stop RX ring. */ 7440 iwn_reset_rx_ring(sc, &sc->rxq); 7441 7442 /* Reset all TX rings. */ 7443 for (qid = 0; qid < sc->ntxqs; qid++) 7444 iwn_reset_tx_ring(sc, &sc->txq[qid]); 7445 7446 if (iwn_nic_lock(sc) == 0) { 7447 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 7448 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 7449 iwn_nic_unlock(sc); 7450 } 7451 DELAY(5); 7452 /* Power OFF adapter. */ 7453 iwn_apm_stop(sc); 7454 7455 sc->sc_flags &= ~(IWN_FLAG_HW_INITED | IWN_FLAG_FW_ALIVE); 7456 7457 if (lock) { 7458 mutex_exit(&sc->sc_mtx); 7459 } 7460 } 7461 7462 static int 7463 iwn_init(struct iwn_softc *sc) 7464 { 7465 int error; 7466 7467 mutex_enter(&sc->sc_mtx); 7468 if (sc->sc_flags & IWN_FLAG_HW_INITED) 7469 goto out; 7470 if ((error = iwn_hw_prepare(sc)) != 0) { 7471 dev_err(sc->sc_dip, CE_WARN, "!hardware not ready"); 7472 goto fail; 7473 } 7474 7475 /* Check that the radio is not disabled by hardware switch. */ 7476 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 7477 dev_err(sc->sc_dip, CE_WARN, 7478 "!radio is disabled by hardware switch"); 7479 error = EPERM; /* :-) */ 7480 goto fail; 7481 } 7482 7483 /* Read firmware images from the filesystem. */ 7484 if ((error = iwn_read_firmware(sc)) != 0) { 7485 dev_err(sc->sc_dip, CE_WARN, "!could not read firmware"); 7486 goto fail; 7487 } 7488 7489 /* Initialize interrupt mask to default value. */ 7490 sc->int_mask = IWN_INT_MASK_DEF; 7491 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 7492 7493 /* Initialize hardware and upload firmware. */ 7494 ASSERT(sc->fw.data != NULL && sc->fw.size > 0); 7495 error = iwn_hw_init(sc); 7496 if (error != 0) { 7497 dev_err(sc->sc_dip, CE_WARN, "!could not initialize hardware"); 7498 goto fail; 7499 } 7500 7501 /* Configure adapter now that it is ready. */ 7502 if ((error = iwn_config(sc)) != 0) { 7503 dev_err(sc->sc_dip, CE_WARN, "!could not configure device"); 7504 goto fail; 7505 } 7506 7507 sc->sc_flags |= IWN_FLAG_HW_INITED; 7508 out: 7509 mutex_exit(&sc->sc_mtx); 7510 return 0; 7511 7512 fail: 7513 iwn_hw_stop(sc, B_FALSE); 7514 mutex_exit(&sc->sc_mtx); 7515 return error; 7516 } 7517 7518 /* 7519 * XXX code from usr/src/uts/common/io/net80211/net880211_output.c 7520 * Copyright (c) 2001 Atsushi Onoe 7521 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 7522 * Copyright (c) 2007-2009 Damien Bergamini 7523 * All rights reserved. 7524 */ 7525 7526 /* 7527 * Add SSID element to a frame 7528 */ 7529 static uint8_t * 7530 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, uint32_t len) 7531 { 7532 *frm++ = IEEE80211_ELEMID_SSID; 7533 *frm++ = (uint8_t)len; 7534 bcopy(ssid, frm, len); 7535 return (frm + len); 7536 } 7537 7538 /* 7539 * Add supported rates information element to a frame. 7540 */ 7541 static uint8_t * 7542 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 7543 { 7544 uint8_t nrates; 7545 7546 *frm++ = IEEE80211_ELEMID_RATES; 7547 nrates = rs->ir_nrates; 7548 if (nrates > IEEE80211_RATE_SIZE) 7549 nrates = IEEE80211_RATE_SIZE; 7550 *frm++ = nrates; 7551 bcopy(rs->ir_rates, frm, nrates); 7552 return (frm + nrates); 7553 } 7554 7555 /* 7556 * Add extended supported rates element to a frame, usually for 11g mode 7557 */ 7558 static uint8_t * 7559 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 7560 { 7561 if (rs->ir_nrates > IEEE80211_RATE_SIZE) { 7562 uint8_t nrates = rs->ir_nrates - IEEE80211_RATE_SIZE; 7563 7564 *frm++ = IEEE80211_ELEMID_XRATES; 7565 *frm++ = nrates; 7566 bcopy(rs->ir_rates + IEEE80211_RATE_SIZE, frm, nrates); 7567 frm += nrates; 7568 } 7569 return (frm); 7570 } 7571 7572 /* 7573 * XXX: Hack to set the current channel to the value advertised in beacons or 7574 * probe responses. Only used during AP detection. 7575 * XXX: Duplicated from if_iwi.c 7576 */ 7577 static void 7578 iwn_fix_channel(struct iwn_softc *sc, mblk_t *m, 7579 struct iwn_rx_stat *stat) 7580 { 7581 struct ieee80211com *ic = &sc->sc_ic; 7582 struct ieee80211_frame *wh; 7583 uint8_t subtype; 7584 uint8_t *frm, *efrm; 7585 7586 wh = (struct ieee80211_frame *)m->b_rptr; 7587 7588 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 7589 return; 7590 7591 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 7592 7593 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 7594 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 7595 return; 7596 7597 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) { 7598 int chan = le16toh(stat->chan); 7599 if (chan < __arraycount(ic->ic_sup_channels)) 7600 ic->ic_curchan = &ic->ic_sup_channels[chan]; 7601 return; 7602 } 7603 7604 frm = (uint8_t *)(wh + 1); 7605 efrm = (uint8_t *)m->b_wptr; 7606 7607 frm += 12; /* skip tstamp, bintval and capinfo fields */ 7608 while (frm < efrm) { 7609 if (*frm == IEEE80211_ELEMID_DSPARMS) 7610 #if IEEE80211_CHAN_MAX < 255 7611 if (frm[2] <= IEEE80211_CHAN_MAX) 7612 #endif 7613 ic->ic_curchan = &ic->ic_sup_channels[frm[2]]; 7614 7615 frm += frm[1] + 2; 7616 } 7617 } 7618 7619 /* 7620 * invoked by GLD to start or open NIC 7621 */ 7622 static int 7623 iwn_m_start(void *arg) 7624 { 7625 struct iwn_softc *sc; 7626 ieee80211com_t *ic; 7627 int err = IWN_FAIL; 7628 7629 sc = (struct iwn_softc *)arg; 7630 ASSERT(sc != NULL); 7631 ic = &sc->sc_ic; 7632 7633 err = iwn_init(sc); 7634 if (err != IWN_SUCCESS) { 7635 /* 7636 * If initialization failed because the RF switch is off, 7637 * return success anyway to make the 'plumb' succeed. 7638 * The iwn_thread() tries to re-init background. 7639 */ 7640 if (err == EPERM && 7641 !(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 7642 mutex_enter(&sc->sc_mtx); 7643 sc->sc_flags |= IWN_FLAG_HW_ERR_RECOVER; 7644 sc->sc_flags |= IWN_FLAG_RADIO_OFF; 7645 mutex_exit(&sc->sc_mtx); 7646 return (IWN_SUCCESS); 7647 } 7648 7649 return (err); 7650 } 7651 7652 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 7653 7654 mutex_enter(&sc->sc_mtx); 7655 sc->sc_flags |= IWN_FLAG_RUNNING; 7656 mutex_exit(&sc->sc_mtx); 7657 7658 return (IWN_SUCCESS); 7659 } 7660 7661 /* 7662 * invoked by GLD to stop or down NIC 7663 */ 7664 static void 7665 iwn_m_stop(void *arg) 7666 { 7667 struct iwn_softc *sc; 7668 ieee80211com_t *ic; 7669 7670 sc = (struct iwn_softc *)arg; 7671 ASSERT(sc != NULL); 7672 ic = &sc->sc_ic; 7673 7674 iwn_hw_stop(sc, B_TRUE); 7675 7676 /* 7677 * release buffer for calibration 7678 */ 7679 7680 ieee80211_stop_watchdog(ic); 7681 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 7682 7683 mutex_enter(&sc->sc_mtx); 7684 sc->sc_flags &= ~IWN_FLAG_HW_ERR_RECOVER; 7685 sc->sc_flags &= ~IWN_FLAG_RATE_AUTO_CTL; 7686 7687 sc->sc_flags &= ~IWN_FLAG_RUNNING; 7688 sc->sc_flags &= ~IWN_FLAG_SCANNING; 7689 mutex_exit(&sc->sc_mtx); 7690 } 7691 7692 7693 /* 7694 * Module Loading Data & Entry Points 7695 */ 7696 DDI_DEFINE_STREAM_OPS(iwn_devops, nulldev, nulldev, iwn_attach, 7697 iwn_detach, nodev, NULL, D_MP, NULL, iwn_quiesce); 7698 7699 static struct modldrv iwn_modldrv = { 7700 &mod_driverops, 7701 "Intel WiFi Link 4965 and 1000/5000/6000 series driver", 7702 &iwn_devops 7703 }; 7704 7705 static struct modlinkage iwn_modlinkage = { 7706 MODREV_1, 7707 &iwn_modldrv, 7708 NULL 7709 }; 7710 7711 int 7712 _init(void) 7713 { 7714 int status; 7715 7716 status = ddi_soft_state_init(&iwn_state, 7717 sizeof (struct iwn_softc), 1); 7718 if (status != DDI_SUCCESS) 7719 return (status); 7720 7721 mac_init_ops(&iwn_devops, "iwn"); 7722 status = mod_install(&iwn_modlinkage); 7723 if (status != DDI_SUCCESS) { 7724 mac_fini_ops(&iwn_devops); 7725 ddi_soft_state_fini(&iwn_state); 7726 } 7727 7728 return (status); 7729 } 7730 7731 int 7732 _fini(void) 7733 { 7734 int status; 7735 7736 status = mod_remove(&iwn_modlinkage); 7737 if (status == DDI_SUCCESS) { 7738 mac_fini_ops(&iwn_devops); 7739 ddi_soft_state_fini(&iwn_state); 7740 } 7741 7742 return (status); 7743 } 7744 7745 int 7746 _info(struct modinfo *mip) 7747 { 7748 return (mod_info(&iwn_modlinkage, mip)); 7749 } 7750