1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
24 */
25
26 /*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
29 * Copyright 2016 Joyent, Inc.
30 * Copyright 2020 Oxide Computer Company
31 */
32
33 #include "igb_sw.h"
34
35 static char ident[] = "Intel 1Gb Ethernet";
36 static char igb_version[] = "igb 2.3.8-ish";
37
38 /*
39 * Local function protoypes
40 */
41 static int igb_register_mac(igb_t *);
42 static int igb_identify_hardware(igb_t *);
43 static int igb_regs_map(igb_t *);
44 static void igb_init_properties(igb_t *);
45 static int igb_init_driver_settings(igb_t *);
46 static void igb_init_locks(igb_t *);
47 static void igb_destroy_locks(igb_t *);
48 static int igb_init_mac_address(igb_t *);
49 static int igb_init(igb_t *);
50 static int igb_init_adapter(igb_t *);
51 static void igb_stop_adapter(igb_t *);
52 static int igb_reset(igb_t *);
53 static void igb_tx_clean(igb_t *);
54 static boolean_t igb_tx_drain(igb_t *);
55 static boolean_t igb_rx_drain(igb_t *);
56 static int igb_alloc_rings(igb_t *);
57 static int igb_alloc_rx_data(igb_t *);
58 static void igb_free_rx_data(igb_t *);
59 static void igb_free_rings(igb_t *);
60 static void igb_setup_rings(igb_t *);
61 static void igb_setup_rx(igb_t *);
62 static void igb_setup_tx(igb_t *);
63 static void igb_setup_rx_ring(igb_rx_ring_t *);
64 static void igb_setup_tx_ring(igb_tx_ring_t *);
65 static void igb_setup_rss(igb_t *);
66 static void igb_setup_mac_rss_classify(igb_t *);
67 static void igb_setup_mac_classify(igb_t *);
68 static void igb_init_unicst(igb_t *);
69 static void igb_setup_multicst(igb_t *);
70 static void igb_get_phy_state(igb_t *);
71 static void igb_param_sync(igb_t *);
72 static void igb_get_conf(igb_t *);
73 static int igb_get_prop(igb_t *, char *, int, int, int);
74 static boolean_t igb_is_link_up(igb_t *);
75 static boolean_t igb_link_check(igb_t *);
76 static void igb_local_timer(void *);
77 static void igb_link_timer(void *);
78 static void igb_arm_watchdog_timer(igb_t *);
79 static void igb_start_watchdog_timer(igb_t *);
80 static void igb_restart_watchdog_timer(igb_t *);
81 static void igb_stop_watchdog_timer(igb_t *);
82 static void igb_start_link_timer(igb_t *);
83 static void igb_stop_link_timer(igb_t *);
84 static void igb_disable_adapter_interrupts(igb_t *);
85 static void igb_enable_adapter_interrupts_82575(igb_t *);
86 static void igb_enable_adapter_interrupts_82576(igb_t *);
87 static void igb_enable_adapter_interrupts_82580(igb_t *);
88 static boolean_t is_valid_mac_addr(uint8_t *);
89 static boolean_t igb_stall_check(igb_t *);
90 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
91 static void igb_set_external_loopback(igb_t *);
92 static void igb_set_internal_phy_loopback(igb_t *);
93 static void igb_set_internal_serdes_loopback(igb_t *);
94 static boolean_t igb_find_mac_address(igb_t *);
95 static int igb_alloc_intrs(igb_t *);
96 static int igb_alloc_intr_handles(igb_t *, int);
97 static int igb_add_intr_handlers(igb_t *);
98 static void igb_rem_intr_handlers(igb_t *);
99 static void igb_rem_intrs(igb_t *);
100 static int igb_enable_intrs(igb_t *);
101 static int igb_disable_intrs(igb_t *);
102 static void igb_setup_msix_82575(igb_t *);
103 static void igb_setup_msix_82576(igb_t *);
104 static void igb_setup_msix_82580(igb_t *);
105 static uint_t igb_intr_legacy(void *, void *);
106 static uint_t igb_intr_msi(void *, void *);
107 static uint_t igb_intr_rx(void *, void *);
108 static uint_t igb_intr_tx(void *, void *);
109 static uint_t igb_intr_tx_other(void *, void *);
110 static void igb_intr_rx_work(igb_rx_ring_t *);
111 static void igb_intr_tx_work(igb_tx_ring_t *);
112 static void igb_intr_link_work(igb_t *);
113 static void igb_get_driver_control(struct e1000_hw *);
114 static void igb_release_driver_control(struct e1000_hw *);
115
116 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
117 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
118 static int igb_resume(dev_info_t *);
119 static int igb_suspend(dev_info_t *);
120 static int igb_quiesce(dev_info_t *);
121 static void igb_unconfigure(dev_info_t *, igb_t *);
122 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
123 const void *);
124 static void igb_fm_init(igb_t *);
125 static void igb_fm_fini(igb_t *);
126 static void igb_release_multicast(igb_t *);
127 static int igb_ufm_fill_image(ddi_ufm_handle_t *, void *arg, uint_t,
128 ddi_ufm_image_t *);
129 static int igb_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
130 ddi_ufm_slot_t *);
131 static int igb_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
132 static int igb_ufm_readimg(ddi_ufm_handle_t *, void *, uint_t, uint_t,
133 uint64_t, uint64_t, void *, uint64_t *);
134
135 char *igb_priv_props[] = {
136 "_eee_support",
137 "_tx_copy_thresh",
138 "_tx_recycle_thresh",
139 "_tx_overload_thresh",
140 "_tx_resched_thresh",
141 "_rx_copy_thresh",
142 "_rx_limit_per_intr",
143 "_intr_throttling",
144 "_adv_pause_cap",
145 "_adv_asym_pause_cap",
146 NULL
147 };
148
149 static struct cb_ops igb_cb_ops = {
150 nulldev, /* cb_open */
151 nulldev, /* cb_close */
152 nodev, /* cb_strategy */
153 nodev, /* cb_print */
154 nodev, /* cb_dump */
155 nodev, /* cb_read */
156 nodev, /* cb_write */
157 nodev, /* cb_ioctl */
158 nodev, /* cb_devmap */
159 nodev, /* cb_mmap */
160 nodev, /* cb_segmap */
161 nochpoll, /* cb_chpoll */
162 ddi_prop_op, /* cb_prop_op */
163 NULL, /* cb_stream */
164 D_MP | D_HOTPLUG, /* cb_flag */
165 CB_REV, /* cb_rev */
166 nodev, /* cb_aread */
167 nodev /* cb_awrite */
168 };
169
170 static struct dev_ops igb_dev_ops = {
171 DEVO_REV, /* devo_rev */
172 0, /* devo_refcnt */
173 NULL, /* devo_getinfo */
174 nulldev, /* devo_identify */
175 nulldev, /* devo_probe */
176 igb_attach, /* devo_attach */
177 igb_detach, /* devo_detach */
178 nodev, /* devo_reset */
179 &igb_cb_ops, /* devo_cb_ops */
180 NULL, /* devo_bus_ops */
181 ddi_power, /* devo_power */
182 igb_quiesce, /* devo_quiesce */
183 };
184
185 static struct modldrv igb_modldrv = {
186 &mod_driverops, /* Type of module. This one is a driver */
187 ident, /* Discription string */
188 &igb_dev_ops, /* driver ops */
189 };
190
191 static struct modlinkage igb_modlinkage = {
192 MODREV_1, &igb_modldrv, NULL
193 };
194
195 /* Access attributes for register mapping */
196 ddi_device_acc_attr_t igb_regs_acc_attr = {
197 DDI_DEVICE_ATTR_V1,
198 DDI_STRUCTURE_LE_ACC,
199 DDI_STRICTORDER_ACC,
200 DDI_FLAGERR_ACC
201 };
202
203 #define IGB_M_CALLBACK_FLAGS \
204 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
205
206 static mac_callbacks_t igb_m_callbacks = {
207 IGB_M_CALLBACK_FLAGS,
208 igb_m_stat,
209 igb_m_start,
210 igb_m_stop,
211 igb_m_promisc,
212 igb_m_multicst,
213 NULL,
214 NULL,
215 NULL,
216 igb_m_ioctl,
217 igb_m_getcapab,
218 NULL,
219 NULL,
220 igb_m_setprop,
221 igb_m_getprop,
222 igb_m_propinfo
223 };
224
225 /*
226 * Initialize capabilities of each supported adapter type
227 */
228 static adapter_info_t igb_82575_cap = {
229 /* limits */
230 4, /* maximum number of rx queues */
231 1, /* minimum number of rx queues */
232 4, /* default number of rx queues */
233 4, /* maximum number of tx queues */
234 1, /* minimum number of tx queues */
235 4, /* default number of tx queues */
236 65535, /* maximum interrupt throttle rate */
237 0, /* minimum interrupt throttle rate */
238 200, /* default interrupt throttle rate */
239
240 /* function pointers */
241 igb_enable_adapter_interrupts_82575,
242 igb_setup_msix_82575,
243
244 /* capabilities */
245 (IGB_FLAG_HAS_DCA | /* capability flags */
246 IGB_FLAG_VMDQ_POOL),
247
248 0xffc00000 /* mask for RXDCTL register */
249 };
250
251 static adapter_info_t igb_82576_cap = {
252 /* limits */
253 16, /* maximum number of rx queues */
254 1, /* minimum number of rx queues */
255 4, /* default number of rx queues */
256 16, /* maximum number of tx queues */
257 1, /* minimum number of tx queues */
258 4, /* default number of tx queues */
259 65535, /* maximum interrupt throttle rate */
260 0, /* minimum interrupt throttle rate */
261 200, /* default interrupt throttle rate */
262
263 /* function pointers */
264 igb_enable_adapter_interrupts_82576,
265 igb_setup_msix_82576,
266
267 /* capabilities */
268 (IGB_FLAG_HAS_DCA | /* capability flags */
269 IGB_FLAG_VMDQ_POOL |
270 IGB_FLAG_NEED_CTX_IDX),
271
272 0xffe00000 /* mask for RXDCTL register */
273 };
274
275 static adapter_info_t igb_82580_cap = {
276 /* limits */
277 8, /* maximum number of rx queues */
278 1, /* minimum number of rx queues */
279 4, /* default number of rx queues */
280 8, /* maximum number of tx queues */
281 1, /* minimum number of tx queues */
282 4, /* default number of tx queues */
283 65535, /* maximum interrupt throttle rate */
284 0, /* minimum interrupt throttle rate */
285 200, /* default interrupt throttle rate */
286
287 /* function pointers */
288 igb_enable_adapter_interrupts_82580,
289 igb_setup_msix_82580,
290
291 /* capabilities */
292 (IGB_FLAG_HAS_DCA | /* capability flags */
293 IGB_FLAG_VMDQ_POOL |
294 IGB_FLAG_NEED_CTX_IDX),
295
296 0xffe00000 /* mask for RXDCTL register */
297 };
298
299 static adapter_info_t igb_i350_cap = {
300 /* limits */
301 8, /* maximum number of rx queues */
302 1, /* minimum number of rx queues */
303 4, /* default number of rx queues */
304 8, /* maximum number of tx queues */
305 1, /* minimum number of tx queues */
306 4, /* default number of tx queues */
307 65535, /* maximum interrupt throttle rate */
308 0, /* minimum interrupt throttle rate */
309 200, /* default interrupt throttle rate */
310
311 /* function pointers */
312 igb_enable_adapter_interrupts_82580,
313 igb_setup_msix_82580,
314
315 /* capabilities */
316 (IGB_FLAG_HAS_DCA | /* capability flags */
317 IGB_FLAG_VMDQ_POOL |
318 IGB_FLAG_NEED_CTX_IDX),
319
320 0xffe00000 /* mask for RXDCTL register */
321 };
322
323 static adapter_info_t igb_i210_cap = {
324 /* limits */
325 4, /* maximum number of rx queues */
326 1, /* minimum number of rx queues */
327 4, /* default number of rx queues */
328 4, /* maximum number of tx queues */
329 1, /* minimum number of tx queues */
330 4, /* default number of tx queues */
331 65535, /* maximum interrupt throttle rate */
332 0, /* minimum interrupt throttle rate */
333 200, /* default interrupt throttle rate */
334
335 /* function pointers */
336 igb_enable_adapter_interrupts_82580,
337 igb_setup_msix_82580,
338
339 /* capabilities */
340 (IGB_FLAG_HAS_DCA | /* capability flags */
341 IGB_FLAG_VMDQ_POOL |
342 IGB_FLAG_NEED_CTX_IDX),
343
344 0xfff00000 /* mask for RXDCTL register */
345 };
346
347 static adapter_info_t igb_i354_cap = {
348 /* limits */
349 8, /* maximum number of rx queues */
350 1, /* minimum number of rx queues */
351 4, /* default number of rx queues */
352 8, /* maximum number of tx queues */
353 1, /* minimum number of tx queues */
354 4, /* default number of tx queues */
355 65535, /* maximum interrupt throttle rate */
356 0, /* minimum interrupt throttle rate */
357 200, /* default interrupt throttle rate */
358
359 /* function pointers */
360 igb_enable_adapter_interrupts_82580,
361 igb_setup_msix_82580,
362
363 /* capabilities */
364 (IGB_FLAG_HAS_DCA | /* capability flags */
365 IGB_FLAG_VMDQ_POOL |
366 IGB_FLAG_NEED_CTX_IDX),
367
368 0xfff00000 /* mask for RXDCTL register */
369 };
370
371 static ddi_ufm_ops_t igb_ufm_ops = {
372 .ddi_ufm_op_fill_image = igb_ufm_fill_image,
373 .ddi_ufm_op_fill_slot = igb_ufm_fill_slot,
374 .ddi_ufm_op_getcaps = igb_ufm_getcaps,
375 .ddi_ufm_op_readimg = igb_ufm_readimg
376 };
377
378 /*
379 * Module Initialization Functions
380 */
381
382 int
_init(void)383 _init(void)
384 {
385 int status;
386
387 mac_init_ops(&igb_dev_ops, MODULE_NAME);
388
389 status = mod_install(&igb_modlinkage);
390
391 if (status != DDI_SUCCESS) {
392 mac_fini_ops(&igb_dev_ops);
393 }
394
395 return (status);
396 }
397
398 int
_fini(void)399 _fini(void)
400 {
401 int status;
402
403 status = mod_remove(&igb_modlinkage);
404
405 if (status == DDI_SUCCESS) {
406 mac_fini_ops(&igb_dev_ops);
407 }
408
409 return (status);
410
411 }
412
413 int
_info(struct modinfo * modinfop)414 _info(struct modinfo *modinfop)
415 {
416 int status;
417
418 status = mod_info(&igb_modlinkage, modinfop);
419
420 return (status);
421 }
422
423 /*
424 * igb_attach - driver attach
425 *
426 * This function is the device specific initialization entry
427 * point. This entry point is required and must be written.
428 * The DDI_ATTACH command must be provided in the attach entry
429 * point. When attach() is called with cmd set to DDI_ATTACH,
430 * all normal kernel services (such as kmem_alloc(9F)) are
431 * available for use by the driver.
432 *
433 * The attach() function will be called once for each instance
434 * of the device on the system with cmd set to DDI_ATTACH.
435 * Until attach() succeeds, the only driver entry points which
436 * may be called are open(9E) and getinfo(9E).
437 */
438 static int
igb_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)439 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
440 {
441 igb_t *igb;
442 struct igb_osdep *osdep;
443 struct e1000_hw *hw;
444 int instance;
445
446 /*
447 * Check the command and perform corresponding operations
448 */
449 switch (cmd) {
450 default:
451 return (DDI_FAILURE);
452
453 case DDI_RESUME:
454 return (igb_resume(devinfo));
455
456 case DDI_ATTACH:
457 break;
458 }
459
460 /* Get the device instance */
461 instance = ddi_get_instance(devinfo);
462
463 /* Allocate memory for the instance data structure */
464 igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
465
466 igb->dip = devinfo;
467 igb->instance = instance;
468
469 hw = &igb->hw;
470 osdep = &igb->osdep;
471 hw->back = osdep;
472 osdep->igb = igb;
473
474 /* Attach the instance pointer to the dev_info data structure */
475 ddi_set_driver_private(devinfo, igb);
476
477
478 /* Initialize for fma support */
479 igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
480 0, 0x0f,
481 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
482 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
483 igb_fm_init(igb);
484 igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
485
486 /*
487 * Map PCI config space registers
488 */
489 if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
490 igb_log(igb, IGB_LOG_ERROR, "Failed to map PCI configurations");
491 goto attach_fail;
492 }
493 igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
494
495 /*
496 * Identify the chipset family
497 */
498 if (igb_identify_hardware(igb) != IGB_SUCCESS) {
499 igb_log(igb, IGB_LOG_ERROR, "Failed to identify hardware");
500 goto attach_fail;
501 }
502
503 /*
504 * Map device registers
505 */
506 if (igb_regs_map(igb) != IGB_SUCCESS) {
507 igb_log(igb, IGB_LOG_ERROR, "Failed to map device registers");
508 goto attach_fail;
509 }
510 igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
511
512 /*
513 * Initialize driver parameters
514 */
515 igb_init_properties(igb);
516 igb->attach_progress |= ATTACH_PROGRESS_PROPS;
517
518 /*
519 * Allocate interrupts
520 */
521 if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
522 igb_log(igb, IGB_LOG_ERROR, "Failed to allocate interrupts");
523 goto attach_fail;
524 }
525 igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
526
527 /*
528 * Allocate rx/tx rings based on the ring numbers.
529 * The actual numbers of rx/tx rings are decided by the number of
530 * allocated interrupt vectors, so we should allocate the rings after
531 * interrupts are allocated.
532 */
533 if (igb_alloc_rings(igb) != IGB_SUCCESS) {
534 igb_log(igb, IGB_LOG_ERROR,
535 "Failed to allocate rx/tx rings or groups");
536 goto attach_fail;
537 }
538 igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
539
540 /*
541 * Add interrupt handlers
542 */
543 if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
544 igb_log(igb, IGB_LOG_ERROR, "Failed to add interrupt handlers");
545 goto attach_fail;
546 }
547 igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
548
549 /*
550 * Initialize driver parameters
551 */
552 if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
553 igb_log(igb, IGB_LOG_ERROR,
554 "Failed to initialize driver settings");
555 goto attach_fail;
556 }
557
558 if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
559 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
560 goto attach_fail;
561 }
562
563 /*
564 * Initialize mutexes for this device.
565 * Do this before enabling the interrupt handler and
566 * register the softint to avoid the condition where
567 * interrupt handler can try using uninitialized mutex
568 */
569 igb_init_locks(igb);
570 igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
571
572 /*
573 * Initialize the adapter
574 */
575 if (igb_init(igb) != IGB_SUCCESS) {
576 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize adapter");
577 goto attach_fail;
578 }
579 igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
580
581 /*
582 * Initialize sensors. This swallows any errors to ensure that access to
583 * the network is still available.
584 */
585 igb_init_sensors(igb);
586
587 /*
588 * Initialize statistics
589 */
590 if (igb_init_stats(igb) != IGB_SUCCESS) {
591 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize statistics");
592 goto attach_fail;
593 }
594 igb->attach_progress |= ATTACH_PROGRESS_STATS;
595
596 /*
597 * Register the driver to the MAC
598 */
599 if (igb_register_mac(igb) != IGB_SUCCESS) {
600 igb_log(igb, IGB_LOG_ERROR, "Failed to register MAC");
601 goto attach_fail;
602 }
603 igb->attach_progress |= ATTACH_PROGRESS_MAC;
604
605 /*
606 * Now that mutex locks are initialized, and the chip is also
607 * initialized, enable interrupts.
608 */
609 if (igb_enable_intrs(igb) != IGB_SUCCESS) {
610 igb_log(igb, IGB_LOG_ERROR, "Failed to enable DDI interrupts");
611 goto attach_fail;
612 }
613 igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
614
615 /*
616 * Only enable UFM support on function zero of the device as the images
617 * are always device wide.
618 */
619 if (igb->hw.bus.func == 0) {
620 if (ddi_ufm_init(devinfo, DDI_UFM_CURRENT_VERSION, &igb_ufm_ops,
621 &igb->igb_ufmh, igb) != 0) {
622 igb_log(igb, IGB_LOG_ERROR, "Failed to enable DDI UFM "
623 "support");
624 goto attach_fail;
625 }
626 igb->attach_progress |= ATTACH_PROGRESS_UFM;
627 ddi_ufm_update(igb->igb_ufmh);
628 }
629
630 igb_log(igb, IGB_LOG_INFO, "%s", igb_version);
631 atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
632
633 /*
634 * Newer models have Energy Efficient Ethernet, let's disable this by
635 * default.
636 */
637 if (igb->hw.mac.type == e1000_i350)
638 (void) e1000_set_eee_i350(&igb->hw, false, false);
639 else if (igb->hw.mac.type == e1000_i354)
640 (void) e1000_set_eee_i354(&igb->hw, false, false);
641
642 return (DDI_SUCCESS);
643
644 attach_fail:
645 igb_unconfigure(devinfo, igb);
646 return (DDI_FAILURE);
647 }
648
649 /*
650 * igb_detach - driver detach
651 *
652 * The detach() function is the complement of the attach routine.
653 * If cmd is set to DDI_DETACH, detach() is used to remove the
654 * state associated with a given instance of a device node
655 * prior to the removal of that instance from the system.
656 *
657 * The detach() function will be called once for each instance
658 * of the device for which there has been a successful attach()
659 * once there are no longer any opens on the device.
660 *
661 * Interrupts routine are disabled, All memory allocated by this
662 * driver are freed.
663 */
664 static int
igb_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)665 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
666 {
667 igb_t *igb;
668
669 /*
670 * Check detach command
671 */
672 switch (cmd) {
673 default:
674 return (DDI_FAILURE);
675
676 case DDI_SUSPEND:
677 return (igb_suspend(devinfo));
678
679 case DDI_DETACH:
680 break;
681 }
682
683
684 /*
685 * Get the pointer to the driver private data structure
686 */
687 igb = (igb_t *)ddi_get_driver_private(devinfo);
688 if (igb == NULL)
689 return (DDI_FAILURE);
690
691 /*
692 * Unregister MAC. If failed, we have to fail the detach
693 */
694 if (mac_unregister(igb->mac_hdl) != 0) {
695 igb_log(igb, IGB_LOG_ERROR, "Failed to unregister MAC");
696 return (DDI_FAILURE);
697 }
698 igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
699
700 /*
701 * If the device is still running, it needs to be stopped first.
702 * This check is necessary because under some specific circumstances,
703 * the detach routine can be called without stopping the interface
704 * first.
705 */
706 mutex_enter(&igb->gen_lock);
707 if (igb->igb_state & IGB_STARTED) {
708 atomic_and_32(&igb->igb_state, ~IGB_STARTED);
709 igb_stop(igb, B_TRUE);
710 mutex_exit(&igb->gen_lock);
711 /* Disable and stop the watchdog timer */
712 igb_disable_watchdog_timer(igb);
713 } else
714 mutex_exit(&igb->gen_lock);
715
716 /*
717 * Check if there are still rx buffers held by the upper layer.
718 * If so, fail the detach.
719 */
720 if (!igb_rx_drain(igb))
721 return (DDI_FAILURE);
722
723 /*
724 * Do the remaining unconfigure routines
725 */
726 igb_unconfigure(devinfo, igb);
727
728 return (DDI_SUCCESS);
729 }
730
731 /*
732 * quiesce(9E) entry point.
733 *
734 * This function is called when the system is single-threaded at high
735 * PIL with preemption disabled. Therefore, this function must not be
736 * blocked.
737 *
738 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
739 * DDI_FAILURE indicates an error condition and should almost never happen.
740 */
741 static int
igb_quiesce(dev_info_t * devinfo)742 igb_quiesce(dev_info_t *devinfo)
743 {
744 igb_t *igb;
745 struct e1000_hw *hw;
746
747 igb = (igb_t *)ddi_get_driver_private(devinfo);
748
749 if (igb == NULL)
750 return (DDI_FAILURE);
751
752 hw = &igb->hw;
753
754 /*
755 * Disable the adapter interrupts
756 */
757 igb_disable_adapter_interrupts(igb);
758
759 /* Tell firmware driver is no longer in control */
760 igb_release_driver_control(hw);
761
762 /*
763 * Reset the chipset
764 */
765 (void) e1000_reset_hw(hw);
766
767 /*
768 * Reset PHY if possible
769 */
770 if (e1000_check_reset_block(hw) == E1000_SUCCESS)
771 (void) e1000_phy_hw_reset(hw);
772
773 return (DDI_SUCCESS);
774 }
775
776 /*
777 * igb_unconfigure - release all resources held by this instance
778 */
779 static void
igb_unconfigure(dev_info_t * devinfo,igb_t * igb)780 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
781 {
782 if (igb->attach_progress & ATTACH_PROGRESS_UFM) {
783 ddi_ufm_fini(igb->igb_ufmh);
784 }
785
786 /*
787 * Disable interrupt
788 */
789 if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
790 (void) igb_disable_intrs(igb);
791 }
792
793 /*
794 * Unregister MAC
795 */
796 if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
797 (void) mac_unregister(igb->mac_hdl);
798 }
799
800 /*
801 * Free statistics
802 */
803 if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
804 kstat_delete((kstat_t *)igb->igb_ks);
805 }
806
807 /*
808 * Remove interrupt handlers
809 */
810 if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
811 igb_rem_intr_handlers(igb);
812 }
813
814 /*
815 * Remove interrupts
816 */
817 if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
818 igb_rem_intrs(igb);
819 }
820
821 /*
822 * Remove driver properties
823 */
824 if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
825 (void) ddi_prop_remove_all(devinfo);
826 }
827
828 /*
829 * Stop the adapter
830 */
831 if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
832 mutex_enter(&igb->gen_lock);
833 igb_stop_adapter(igb);
834 mutex_exit(&igb->gen_lock);
835 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
836 ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
837 }
838
839 /*
840 * Clean up sensors
841 */
842 igb_fini_sensors(igb);
843
844 /*
845 * Free multicast table
846 */
847 igb_release_multicast(igb);
848
849 /*
850 * Free register handle
851 */
852 if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
853 if (igb->osdep.reg_handle != NULL)
854 ddi_regs_map_free(&igb->osdep.reg_handle);
855 }
856
857 /*
858 * Free PCI config handle
859 */
860 if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
861 if (igb->osdep.cfg_handle != NULL)
862 pci_config_teardown(&igb->osdep.cfg_handle);
863 }
864
865 /*
866 * Free locks
867 */
868 if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
869 igb_destroy_locks(igb);
870 }
871
872 /*
873 * Free the rx/tx rings
874 */
875 if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
876 igb_free_rings(igb);
877 }
878
879 /*
880 * Remove FMA
881 */
882 if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
883 igb_fm_fini(igb);
884 }
885
886 /*
887 * Free the driver data structure
888 */
889 kmem_free(igb, sizeof (igb_t));
890
891 ddi_set_driver_private(devinfo, NULL);
892 }
893
894 /*
895 * igb_register_mac - Register the driver and its function pointers with
896 * the GLD interface
897 */
898 static int
igb_register_mac(igb_t * igb)899 igb_register_mac(igb_t *igb)
900 {
901 struct e1000_hw *hw = &igb->hw;
902 mac_register_t *mac;
903 int status;
904
905 if ((mac = mac_alloc(MAC_VERSION)) == NULL)
906 return (IGB_FAILURE);
907
908 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
909 mac->m_driver = igb;
910 mac->m_dip = igb->dip;
911 mac->m_src_addr = hw->mac.addr;
912 mac->m_callbacks = &igb_m_callbacks;
913 mac->m_min_sdu = 0;
914 mac->m_max_sdu = igb->max_frame_size -
915 sizeof (struct ether_vlan_header) - ETHERFCSL;
916 mac->m_margin = VLAN_TAGSZ;
917 mac->m_priv_props = igb_priv_props;
918 mac->m_v12n = MAC_VIRT_LEVEL1;
919
920 status = mac_register(mac, &igb->mac_hdl);
921
922 mac_free(mac);
923
924 return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
925 }
926
927 /*
928 * igb_identify_hardware - Identify the type of the chipset
929 */
930 static int
igb_identify_hardware(igb_t * igb)931 igb_identify_hardware(igb_t *igb)
932 {
933 struct e1000_hw *hw = &igb->hw;
934 struct igb_osdep *osdep = &igb->osdep;
935
936 /*
937 * Get the device id
938 */
939 hw->vendor_id =
940 pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
941 hw->device_id =
942 pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
943 hw->revision_id =
944 pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
945 hw->subsystem_device_id =
946 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
947 hw->subsystem_vendor_id =
948 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
949
950 /*
951 * Set the mac type of the adapter based on the device id
952 */
953 if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
954 return (IGB_FAILURE);
955 }
956
957 /*
958 * Install adapter capabilities based on mac type
959 */
960 switch (hw->mac.type) {
961 case e1000_82575:
962 igb->capab = &igb_82575_cap;
963 break;
964 case e1000_82576:
965 igb->capab = &igb_82576_cap;
966 break;
967 case e1000_82580:
968 igb->capab = &igb_82580_cap;
969 break;
970 case e1000_i350:
971 igb->capab = &igb_i350_cap;
972 break;
973 case e1000_i210:
974 case e1000_i211:
975 igb->capab = &igb_i210_cap;
976 break;
977 case e1000_i354:
978 igb->capab = &igb_i354_cap;
979 break;
980 default:
981 return (IGB_FAILURE);
982 }
983
984 return (IGB_SUCCESS);
985 }
986
987 /*
988 * igb_regs_map - Map the device registers
989 */
990 static int
igb_regs_map(igb_t * igb)991 igb_regs_map(igb_t *igb)
992 {
993 dev_info_t *devinfo = igb->dip;
994 struct e1000_hw *hw = &igb->hw;
995 struct igb_osdep *osdep = &igb->osdep;
996 off_t mem_size;
997
998 /*
999 * First get the size of device registers to be mapped.
1000 */
1001 if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
1002 DDI_SUCCESS) {
1003 return (IGB_FAILURE);
1004 }
1005
1006 /*
1007 * Call ddi_regs_map_setup() to map registers
1008 */
1009 if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
1010 (caddr_t *)&hw->hw_addr, 0,
1011 mem_size, &igb_regs_acc_attr,
1012 &osdep->reg_handle)) != DDI_SUCCESS) {
1013 return (IGB_FAILURE);
1014 }
1015
1016 return (IGB_SUCCESS);
1017 }
1018
1019 /*
1020 * igb_init_properties - Initialize driver properties
1021 */
1022 static void
igb_init_properties(igb_t * igb)1023 igb_init_properties(igb_t *igb)
1024 {
1025 /*
1026 * Get conf file properties, including link settings
1027 * jumbo frames, ring number, descriptor number, etc.
1028 */
1029 igb_get_conf(igb);
1030 }
1031
1032 /*
1033 * igb_init_driver_settings - Initialize driver settings
1034 *
1035 * The settings include hardware function pointers, bus information,
1036 * rx/tx rings settings, link state, and any other parameters that
1037 * need to be setup during driver initialization.
1038 */
1039 static int
igb_init_driver_settings(igb_t * igb)1040 igb_init_driver_settings(igb_t *igb)
1041 {
1042 struct e1000_hw *hw = &igb->hw;
1043 igb_rx_ring_t *rx_ring;
1044 igb_tx_ring_t *tx_ring;
1045 uint32_t rx_size;
1046 uint32_t tx_size;
1047 int i;
1048
1049 /*
1050 * Initialize chipset specific hardware function pointers
1051 */
1052 if (e1000_setup_init_funcs(hw, true) != E1000_SUCCESS) {
1053 return (IGB_FAILURE);
1054 }
1055
1056 /*
1057 * Get bus information
1058 */
1059 if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
1060 return (IGB_FAILURE);
1061 }
1062
1063 /*
1064 * Get the system page size
1065 */
1066 igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
1067
1068 /*
1069 * Set rx buffer size
1070 * The IP header alignment room is counted in the calculation.
1071 * The rx buffer size is in unit of 1K that is required by the
1072 * chipset hardware.
1073 */
1074 rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
1075 igb->rx_buf_size = ((rx_size >> 10) +
1076 ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1077
1078 /*
1079 * Set tx buffer size
1080 */
1081 tx_size = igb->max_frame_size;
1082 igb->tx_buf_size = ((tx_size >> 10) +
1083 ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1084
1085 /*
1086 * Initialize rx/tx rings parameters
1087 */
1088 for (i = 0; i < igb->num_rx_rings; i++) {
1089 rx_ring = &igb->rx_rings[i];
1090 rx_ring->index = i;
1091 rx_ring->igb = igb;
1092 }
1093
1094 for (i = 0; i < igb->num_tx_rings; i++) {
1095 tx_ring = &igb->tx_rings[i];
1096 tx_ring->index = i;
1097 tx_ring->igb = igb;
1098 if (igb->tx_head_wb_enable)
1099 tx_ring->tx_recycle = igb_tx_recycle_head_wb;
1100 else
1101 tx_ring->tx_recycle = igb_tx_recycle_legacy;
1102
1103 tx_ring->ring_size = igb->tx_ring_size;
1104 tx_ring->free_list_size = igb->tx_ring_size +
1105 (igb->tx_ring_size >> 1);
1106 }
1107
1108 /*
1109 * Initialize values of interrupt throttling rates
1110 */
1111 for (i = 1; i < MAX_NUM_EITR; i++)
1112 igb->intr_throttling[i] = igb->intr_throttling[0];
1113
1114 /*
1115 * The initial link state should be "unknown"
1116 */
1117 igb->link_state = LINK_STATE_UNKNOWN;
1118
1119 return (IGB_SUCCESS);
1120 }
1121
1122 /*
1123 * igb_init_locks - Initialize locks
1124 */
1125 static void
igb_init_locks(igb_t * igb)1126 igb_init_locks(igb_t *igb)
1127 {
1128 igb_rx_ring_t *rx_ring;
1129 igb_tx_ring_t *tx_ring;
1130 int i;
1131
1132 for (i = 0; i < igb->num_rx_rings; i++) {
1133 rx_ring = &igb->rx_rings[i];
1134 mutex_init(&rx_ring->rx_lock, NULL,
1135 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1136 }
1137
1138 for (i = 0; i < igb->num_tx_rings; i++) {
1139 tx_ring = &igb->tx_rings[i];
1140 mutex_init(&tx_ring->tx_lock, NULL,
1141 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1142 mutex_init(&tx_ring->recycle_lock, NULL,
1143 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1144 mutex_init(&tx_ring->tcb_head_lock, NULL,
1145 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1146 mutex_init(&tx_ring->tcb_tail_lock, NULL,
1147 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1148 }
1149
1150 mutex_init(&igb->gen_lock, NULL,
1151 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1152
1153 mutex_init(&igb->watchdog_lock, NULL,
1154 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1155
1156 mutex_init(&igb->link_lock, NULL,
1157 MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1158 }
1159
1160 /*
1161 * igb_destroy_locks - Destroy locks
1162 */
1163 static void
igb_destroy_locks(igb_t * igb)1164 igb_destroy_locks(igb_t *igb)
1165 {
1166 igb_rx_ring_t *rx_ring;
1167 igb_tx_ring_t *tx_ring;
1168 int i;
1169
1170 for (i = 0; i < igb->num_rx_rings; i++) {
1171 rx_ring = &igb->rx_rings[i];
1172 mutex_destroy(&rx_ring->rx_lock);
1173 }
1174
1175 for (i = 0; i < igb->num_tx_rings; i++) {
1176 tx_ring = &igb->tx_rings[i];
1177 mutex_destroy(&tx_ring->tx_lock);
1178 mutex_destroy(&tx_ring->recycle_lock);
1179 mutex_destroy(&tx_ring->tcb_head_lock);
1180 mutex_destroy(&tx_ring->tcb_tail_lock);
1181 }
1182
1183 mutex_destroy(&igb->gen_lock);
1184 mutex_destroy(&igb->watchdog_lock);
1185 mutex_destroy(&igb->link_lock);
1186 }
1187
1188 static int
igb_resume(dev_info_t * devinfo)1189 igb_resume(dev_info_t *devinfo)
1190 {
1191 igb_t *igb;
1192
1193 igb = (igb_t *)ddi_get_driver_private(devinfo);
1194 if (igb == NULL)
1195 return (DDI_FAILURE);
1196
1197 mutex_enter(&igb->gen_lock);
1198
1199 /*
1200 * Enable interrupts
1201 */
1202 if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1203 if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1204 igb_log(igb, IGB_LOG_ERROR,
1205 "Failed to enable DDI interrupts");
1206 mutex_exit(&igb->gen_lock);
1207 return (DDI_FAILURE);
1208 }
1209 }
1210
1211 if (igb->igb_state & IGB_STARTED) {
1212 if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1213 mutex_exit(&igb->gen_lock);
1214 return (DDI_FAILURE);
1215 }
1216
1217 /*
1218 * Enable and start the watchdog timer
1219 */
1220 igb_enable_watchdog_timer(igb);
1221 }
1222
1223 atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1224
1225 mutex_exit(&igb->gen_lock);
1226
1227 return (DDI_SUCCESS);
1228 }
1229
1230 static int
igb_suspend(dev_info_t * devinfo)1231 igb_suspend(dev_info_t *devinfo)
1232 {
1233 igb_t *igb;
1234
1235 igb = (igb_t *)ddi_get_driver_private(devinfo);
1236 if (igb == NULL)
1237 return (DDI_FAILURE);
1238
1239 mutex_enter(&igb->gen_lock);
1240
1241 atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1242
1243 /*
1244 * Disable interrupts
1245 */
1246 if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1247 (void) igb_disable_intrs(igb);
1248 }
1249
1250 if (!(igb->igb_state & IGB_STARTED)) {
1251 mutex_exit(&igb->gen_lock);
1252 return (DDI_SUCCESS);
1253 }
1254
1255 igb_stop(igb, B_FALSE);
1256
1257 mutex_exit(&igb->gen_lock);
1258
1259 /*
1260 * Disable and stop the watchdog timer
1261 */
1262 igb_disable_watchdog_timer(igb);
1263
1264 return (DDI_SUCCESS);
1265 }
1266
1267 static int
igb_init(igb_t * igb)1268 igb_init(igb_t *igb)
1269 {
1270 mutex_enter(&igb->gen_lock);
1271
1272 /*
1273 * Initilize the adapter
1274 */
1275 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1276 mutex_exit(&igb->gen_lock);
1277 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1278 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1279 return (IGB_FAILURE);
1280 }
1281
1282 mutex_exit(&igb->gen_lock);
1283
1284 return (IGB_SUCCESS);
1285 }
1286
1287 /*
1288 * igb_init_mac_address - Initialize the default MAC address
1289 *
1290 * On success, the MAC address is entered in the igb->hw.mac.addr
1291 * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1292 * address register.
1293 *
1294 * Important side effects:
1295 * 1. adapter is reset - this is required to put it in a known state.
1296 * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1297 * MAC address and all default settings are stored, so a valid checksum
1298 * is required.
1299 */
1300 static int
igb_init_mac_address(igb_t * igb)1301 igb_init_mac_address(igb_t *igb)
1302 {
1303 struct e1000_hw *hw = &igb->hw;
1304
1305 ASSERT(mutex_owned(&igb->gen_lock));
1306
1307 /*
1308 * Reset chipset to put the hardware in a known state
1309 * before we try to get MAC address from NVM.
1310 */
1311 if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1312 igb_log(igb, IGB_LOG_ERROR, "Adapter reset failed.");
1313 goto init_mac_fail;
1314 }
1315
1316 /*
1317 * NVM validation
1318 */
1319 if (((igb->hw.mac.type != e1000_i210) &&
1320 (igb->hw.mac.type != e1000_i211)) &&
1321 (e1000_validate_nvm_checksum(hw) < 0)) {
1322 /*
1323 * Some PCI-E parts fail the first check due to
1324 * the link being in sleep state. Call it again,
1325 * if it fails a second time its a real issue.
1326 */
1327 if (e1000_validate_nvm_checksum(hw) < 0) {
1328 igb_log(igb, IGB_LOG_ERROR,
1329 "Invalid NVM checksum. Please contact "
1330 "the vendor to update the NVM.");
1331 goto init_mac_fail;
1332 }
1333 }
1334
1335 /*
1336 * Get the mac address
1337 * This function should handle SPARC case correctly.
1338 */
1339 if (!igb_find_mac_address(igb)) {
1340 igb_log(igb, IGB_LOG_ERROR, "Failed to get the mac address");
1341 goto init_mac_fail;
1342 }
1343
1344 /* Validate mac address */
1345 if (!is_valid_mac_addr(hw->mac.addr)) {
1346 igb_log(igb, IGB_LOG_ERROR, "Invalid mac address");
1347 goto init_mac_fail;
1348 }
1349
1350 return (IGB_SUCCESS);
1351
1352 init_mac_fail:
1353 return (IGB_FAILURE);
1354 }
1355
1356 /*
1357 * igb_init_adapter - Initialize the adapter
1358 */
1359 static int
igb_init_adapter(igb_t * igb)1360 igb_init_adapter(igb_t *igb)
1361 {
1362 struct e1000_hw *hw = &igb->hw;
1363 uint32_t pba;
1364 int oemid[2];
1365 uint16_t nvmword;
1366 uint32_t hwm;
1367 uint32_t default_mtu;
1368 u8 pbanum[E1000_PBANUM_LENGTH];
1369 char eepromver[5]; /* f.ff */
1370 int i;
1371
1372 ASSERT(mutex_owned(&igb->gen_lock));
1373
1374 /*
1375 * In order to obtain the default MAC address, this will reset the
1376 * adapter and validate the NVM that the address and many other
1377 * default settings come from.
1378 */
1379 if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1380 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize MAC address");
1381 goto init_adapter_fail;
1382 }
1383
1384 /*
1385 * Packet Buffer Allocation (PBA)
1386 * Writing PBA sets the receive portion of the buffer
1387 * the remainder is used for the transmit buffer.
1388 */
1389 switch (hw->mac.type) {
1390 case e1000_82575:
1391 pba = E1000_PBA_32K;
1392 break;
1393 case e1000_82576:
1394 pba = E1000_READ_REG(hw, E1000_RXPBS);
1395 pba &= E1000_RXPBS_SIZE_MASK_82576;
1396 break;
1397 case e1000_82580:
1398 case e1000_i350:
1399 case e1000_i354:
1400 pba = E1000_READ_REG(hw, E1000_RXPBS);
1401 pba = e1000_rxpbs_adjust_82580(pba);
1402 break;
1403 case e1000_i210:
1404 case e1000_i211:
1405 pba = E1000_PBA_34K;
1406 default:
1407 break;
1408 }
1409
1410 /* Special needs in case of Jumbo frames */
1411 default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
1412 MIN_MTU, MAX_MTU, DEFAULT_MTU);
1413 if ((hw->mac.type == e1000_82575) && (default_mtu > ETHERMTU)) {
1414 u32 tx_space, min_tx, min_rx;
1415 pba = E1000_READ_REG(hw, E1000_PBA);
1416 tx_space = pba >> 16;
1417 pba &= 0xffff;
1418 min_tx = (igb->max_frame_size +
1419 sizeof (struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
1420 min_tx = roundup(min_tx, 1024);
1421 min_tx >>= 10;
1422 min_rx = igb->max_frame_size;
1423 min_rx = roundup(min_rx, 1024);
1424 min_rx >>= 10;
1425 if (tx_space < min_tx &&
1426 ((min_tx - tx_space) < pba)) {
1427 pba = pba - (min_tx - tx_space);
1428 /*
1429 * if short on rx space, rx wins
1430 * and must trump tx adjustment
1431 */
1432 if (pba < min_rx)
1433 pba = min_rx;
1434 }
1435 E1000_WRITE_REG(hw, E1000_PBA, pba);
1436 }
1437
1438 DEBUGOUT1("igb_init: pba=%dK", pba);
1439
1440 /*
1441 * These parameters control the automatic generation (Tx) and
1442 * response (Rx) to Ethernet PAUSE frames.
1443 * - High water mark should allow for at least two frames to be
1444 * received after sending an XOFF.
1445 * - Low water mark works best when it is very near the high water mark.
1446 * This allows the receiver to restart by sending XON when it has
1447 * drained a bit.
1448 */
1449 hwm = min(((pba << 10) * 9 / 10),
1450 ((pba << 10) - 2 * igb->max_frame_size));
1451
1452 if (hw->mac.type < e1000_82576) {
1453 hw->fc.high_water = hwm & 0xFFF8; /* 8-byte granularity */
1454 hw->fc.low_water = hw->fc.high_water - 8;
1455 } else {
1456 hw->fc.high_water = hwm & 0xFFF0; /* 16-byte granularity */
1457 hw->fc.low_water = hw->fc.high_water - 16;
1458 }
1459
1460 hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1461 hw->fc.send_xon = true;
1462
1463 (void) e1000_validate_mdi_setting(hw);
1464
1465 /*
1466 * Reset the chipset hardware the second time to put PBA settings
1467 * into effect.
1468 */
1469 if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1470 igb_log(igb, IGB_LOG_ERROR, "Second reset failed");
1471 goto init_adapter_fail;
1472 }
1473
1474 /*
1475 * Don't wait for auto-negotiation to complete
1476 */
1477 hw->phy.autoneg_wait_to_complete = false;
1478
1479 /*
1480 * Copper options
1481 */
1482 if (hw->phy.media_type == e1000_media_type_copper) {
1483 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
1484 hw->phy.disable_polarity_correction = false;
1485 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1486 }
1487
1488 /*
1489 * Initialize link settings
1490 */
1491 (void) igb_setup_link(igb, B_FALSE);
1492
1493 /*
1494 * Configure/Initialize hardware
1495 */
1496 if (e1000_init_hw(hw) != E1000_SUCCESS) {
1497 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize hardware");
1498 goto init_adapter_fail;
1499 }
1500
1501 /*
1502 * Start the link setup timer
1503 */
1504 igb_start_link_timer(igb);
1505
1506 /*
1507 * Disable wakeup control by default
1508 */
1509 E1000_WRITE_REG(hw, E1000_WUC, 0);
1510
1511 /*
1512 * Record phy info in hw struct
1513 */
1514 (void) e1000_get_phy_info(hw);
1515
1516 /*
1517 * Make sure driver has control
1518 */
1519 igb_get_driver_control(hw);
1520
1521 /*
1522 * Restore LED settings to the default from EEPROM
1523 * to meet the standard for Sun platforms.
1524 */
1525 (void) e1000_cleanup_led(hw);
1526
1527 /*
1528 * Setup MSI-X interrupts
1529 */
1530 if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1531 igb->capab->setup_msix(igb);
1532
1533 /*
1534 * Initialize unicast addresses.
1535 */
1536 igb_init_unicst(igb);
1537
1538 /*
1539 * Setup and initialize the mctable structures.
1540 */
1541 igb_setup_multicst(igb);
1542
1543 /*
1544 * Set interrupt throttling rate
1545 */
1546 for (i = 0; i < igb->intr_cnt; i++)
1547 E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1548
1549 /*
1550 * Read identifying information and place in devinfo.
1551 */
1552 nvmword = 0xffff;
1553 (void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_0, 1, &nvmword);
1554 oemid[0] = (int)nvmword;
1555 (void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_1, 1, &nvmword);
1556 oemid[1] = (int)nvmword;
1557 (void) ddi_prop_update_int_array(DDI_DEV_T_NONE, igb->dip,
1558 "oem-identifier", oemid, 2);
1559
1560 pbanum[0] = '\0';
1561 (void) e1000_read_pba_string(&igb->hw, pbanum, sizeof (pbanum));
1562 if (*pbanum != '\0') {
1563 (void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1564 "printed-board-assembly", (char *)pbanum);
1565 }
1566
1567 nvmword = 0xffff;
1568 (void) e1000_read_nvm(&igb->hw, NVM_VERSION, 1, &nvmword);
1569 if ((nvmword & 0xf00) == 0) {
1570 (void) snprintf(eepromver, sizeof (eepromver), "%x.%x",
1571 (nvmword & 0xf000) >> 12, (nvmword & 0xff));
1572 (void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1573 "nvm-version", eepromver);
1574 }
1575
1576 /*
1577 * Save the state of the phy
1578 */
1579 igb_get_phy_state(igb);
1580
1581 igb_param_sync(igb);
1582
1583 return (IGB_SUCCESS);
1584
1585 init_adapter_fail:
1586 /*
1587 * Reset PHY if possible
1588 */
1589 if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1590 (void) e1000_phy_hw_reset(hw);
1591
1592 return (IGB_FAILURE);
1593 }
1594
1595 /*
1596 * igb_stop_adapter - Stop the adapter
1597 */
1598 static void
igb_stop_adapter(igb_t * igb)1599 igb_stop_adapter(igb_t *igb)
1600 {
1601 struct e1000_hw *hw = &igb->hw;
1602
1603 ASSERT(mutex_owned(&igb->gen_lock));
1604
1605 /* Stop the link setup timer */
1606 igb_stop_link_timer(igb);
1607
1608 /* Tell firmware driver is no longer in control */
1609 igb_release_driver_control(hw);
1610
1611 /*
1612 * Reset the chipset
1613 */
1614 if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1615 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1616 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1617 }
1618
1619 /*
1620 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1621 */
1622 }
1623
1624 /*
1625 * igb_reset - Reset the chipset and restart the driver.
1626 *
1627 * It involves stopping and re-starting the chipset,
1628 * and re-configuring the rx/tx rings.
1629 */
1630 static int
igb_reset(igb_t * igb)1631 igb_reset(igb_t *igb)
1632 {
1633 int i;
1634
1635 mutex_enter(&igb->gen_lock);
1636
1637 ASSERT(igb->igb_state & IGB_STARTED);
1638 atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1639
1640 /*
1641 * Disable the adapter interrupts to stop any rx/tx activities
1642 * before draining pending data and resetting hardware.
1643 */
1644 igb_disable_adapter_interrupts(igb);
1645
1646 /*
1647 * Drain the pending transmit packets
1648 */
1649 (void) igb_tx_drain(igb);
1650
1651 for (i = 0; i < igb->num_rx_rings; i++)
1652 mutex_enter(&igb->rx_rings[i].rx_lock);
1653 for (i = 0; i < igb->num_tx_rings; i++)
1654 mutex_enter(&igb->tx_rings[i].tx_lock);
1655
1656 /*
1657 * Stop the adapter
1658 */
1659 igb_stop_adapter(igb);
1660
1661 /*
1662 * Clean the pending tx data/resources
1663 */
1664 igb_tx_clean(igb);
1665
1666 /*
1667 * Start the adapter
1668 */
1669 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1670 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1671 goto reset_failure;
1672 }
1673
1674 /*
1675 * Setup the rx/tx rings
1676 */
1677 igb->tx_ring_init = B_FALSE;
1678 igb_setup_rings(igb);
1679
1680 atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1681
1682 /*
1683 * Enable adapter interrupts
1684 * The interrupts must be enabled after the driver state is START
1685 */
1686 igb->capab->enable_intr(igb);
1687
1688 if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1689 goto reset_failure;
1690
1691 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1692 goto reset_failure;
1693
1694 for (i = igb->num_tx_rings - 1; i >= 0; i--)
1695 mutex_exit(&igb->tx_rings[i].tx_lock);
1696 for (i = igb->num_rx_rings - 1; i >= 0; i--)
1697 mutex_exit(&igb->rx_rings[i].rx_lock);
1698
1699 atomic_or_32(&igb->igb_state, IGB_STARTED);
1700
1701 mutex_exit(&igb->gen_lock);
1702
1703 return (IGB_SUCCESS);
1704
1705 reset_failure:
1706 for (i = igb->num_tx_rings - 1; i >= 0; i--)
1707 mutex_exit(&igb->tx_rings[i].tx_lock);
1708 for (i = igb->num_rx_rings - 1; i >= 0; i--)
1709 mutex_exit(&igb->rx_rings[i].rx_lock);
1710
1711 mutex_exit(&igb->gen_lock);
1712
1713 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1714
1715 return (IGB_FAILURE);
1716 }
1717
1718 /*
1719 * igb_tx_clean - Clean the pending transmit packets and DMA resources
1720 */
1721 static void
igb_tx_clean(igb_t * igb)1722 igb_tx_clean(igb_t *igb)
1723 {
1724 igb_tx_ring_t *tx_ring;
1725 tx_control_block_t *tcb;
1726 link_list_t pending_list;
1727 uint32_t desc_num;
1728 int i, j;
1729
1730 LINK_LIST_INIT(&pending_list);
1731
1732 for (i = 0; i < igb->num_tx_rings; i++) {
1733 tx_ring = &igb->tx_rings[i];
1734
1735 mutex_enter(&tx_ring->recycle_lock);
1736
1737 /*
1738 * Clean the pending tx data - the pending packets in the
1739 * work_list that have no chances to be transmitted again.
1740 *
1741 * We must ensure the chipset is stopped or the link is down
1742 * before cleaning the transmit packets.
1743 */
1744 desc_num = 0;
1745 for (j = 0; j < tx_ring->ring_size; j++) {
1746 tcb = tx_ring->work_list[j];
1747 if (tcb != NULL) {
1748 desc_num += tcb->desc_num;
1749
1750 tx_ring->work_list[j] = NULL;
1751
1752 igb_free_tcb(tcb);
1753
1754 LIST_PUSH_TAIL(&pending_list, &tcb->link);
1755 }
1756 }
1757
1758 if (desc_num > 0) {
1759 atomic_add_32(&tx_ring->tbd_free, desc_num);
1760 ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1761
1762 /*
1763 * Reset the head and tail pointers of the tbd ring;
1764 * Reset the head write-back if it is enabled.
1765 */
1766 tx_ring->tbd_head = 0;
1767 tx_ring->tbd_tail = 0;
1768 if (igb->tx_head_wb_enable)
1769 *tx_ring->tbd_head_wb = 0;
1770
1771 E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1772 E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1773 }
1774
1775 mutex_exit(&tx_ring->recycle_lock);
1776
1777 /*
1778 * Add the tx control blocks in the pending list to
1779 * the free list.
1780 */
1781 igb_put_free_list(tx_ring, &pending_list);
1782 }
1783 }
1784
1785 /*
1786 * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1787 */
1788 static boolean_t
igb_tx_drain(igb_t * igb)1789 igb_tx_drain(igb_t *igb)
1790 {
1791 igb_tx_ring_t *tx_ring;
1792 boolean_t done;
1793 int i, j;
1794
1795 /*
1796 * Wait for a specific time to allow pending tx packets
1797 * to be transmitted.
1798 *
1799 * Check the counter tbd_free to see if transmission is done.
1800 * No lock protection is needed here.
1801 *
1802 * Return B_TRUE if all pending packets have been transmitted;
1803 * Otherwise return B_FALSE;
1804 */
1805 for (i = 0; i < TX_DRAIN_TIME; i++) {
1806
1807 done = B_TRUE;
1808 for (j = 0; j < igb->num_tx_rings; j++) {
1809 tx_ring = &igb->tx_rings[j];
1810 done = done &&
1811 (tx_ring->tbd_free == tx_ring->ring_size);
1812 }
1813
1814 if (done)
1815 break;
1816
1817 msec_delay(1);
1818 }
1819
1820 return (done);
1821 }
1822
1823 /*
1824 * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1825 */
1826 static boolean_t
igb_rx_drain(igb_t * igb)1827 igb_rx_drain(igb_t *igb)
1828 {
1829 boolean_t done;
1830 int i;
1831
1832 /*
1833 * Polling the rx free list to check if those rx buffers held by
1834 * the upper layer are released.
1835 *
1836 * Check the counter rcb_free to see if all pending buffers are
1837 * released. No lock protection is needed here.
1838 *
1839 * Return B_TRUE if all pending buffers have been released;
1840 * Otherwise return B_FALSE;
1841 */
1842 for (i = 0; i < RX_DRAIN_TIME; i++) {
1843 done = (igb->rcb_pending == 0);
1844
1845 if (done)
1846 break;
1847
1848 msec_delay(1);
1849 }
1850
1851 return (done);
1852 }
1853
1854 /*
1855 * igb_start - Start the driver/chipset
1856 */
1857 int
igb_start(igb_t * igb,boolean_t alloc_buffer)1858 igb_start(igb_t *igb, boolean_t alloc_buffer)
1859 {
1860 int i;
1861
1862 ASSERT(mutex_owned(&igb->gen_lock));
1863
1864 if (alloc_buffer) {
1865 if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1866 igb_log(igb, IGB_LOG_ERROR,
1867 "Failed to allocate software receive rings");
1868 return (IGB_FAILURE);
1869 }
1870
1871 /* Allocate buffers for all the rx/tx rings */
1872 if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1873 igb_log(igb, IGB_LOG_ERROR,
1874 "Failed to allocate DMA resource");
1875 return (IGB_FAILURE);
1876 }
1877
1878 igb->tx_ring_init = B_TRUE;
1879 } else {
1880 igb->tx_ring_init = B_FALSE;
1881 }
1882
1883 for (i = 0; i < igb->num_rx_rings; i++)
1884 mutex_enter(&igb->rx_rings[i].rx_lock);
1885 for (i = 0; i < igb->num_tx_rings; i++)
1886 mutex_enter(&igb->tx_rings[i].tx_lock);
1887
1888 /*
1889 * Start the adapter
1890 */
1891 if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1892 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1893 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1894 goto start_failure;
1895 }
1896 igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1897 }
1898
1899 /*
1900 * Setup the rx/tx rings
1901 */
1902 igb_setup_rings(igb);
1903
1904 /*
1905 * Enable adapter interrupts
1906 * The interrupts must be enabled after the driver state is START
1907 */
1908 igb->capab->enable_intr(igb);
1909
1910 if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1911 goto start_failure;
1912
1913 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1914 goto start_failure;
1915
1916 if (igb->hw.mac.type == e1000_i350)
1917 (void) e1000_set_eee_i350(&igb->hw, false, false);
1918 else if (igb->hw.mac.type == e1000_i354)
1919 (void) e1000_set_eee_i354(&igb->hw, false, false);
1920
1921 for (i = igb->num_tx_rings - 1; i >= 0; i--)
1922 mutex_exit(&igb->tx_rings[i].tx_lock);
1923 for (i = igb->num_rx_rings - 1; i >= 0; i--)
1924 mutex_exit(&igb->rx_rings[i].rx_lock);
1925
1926 return (IGB_SUCCESS);
1927
1928 start_failure:
1929 for (i = igb->num_tx_rings - 1; i >= 0; i--)
1930 mutex_exit(&igb->tx_rings[i].tx_lock);
1931 for (i = igb->num_rx_rings - 1; i >= 0; i--)
1932 mutex_exit(&igb->rx_rings[i].rx_lock);
1933
1934 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1935
1936 return (IGB_FAILURE);
1937 }
1938
1939 /*
1940 * igb_stop - Stop the driver/chipset
1941 */
1942 void
igb_stop(igb_t * igb,boolean_t free_buffer)1943 igb_stop(igb_t *igb, boolean_t free_buffer)
1944 {
1945 int i;
1946
1947 ASSERT(mutex_owned(&igb->gen_lock));
1948
1949 igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1950
1951 /*
1952 * Disable the adapter interrupts
1953 */
1954 igb_disable_adapter_interrupts(igb);
1955
1956 /*
1957 * Drain the pending tx packets
1958 */
1959 (void) igb_tx_drain(igb);
1960
1961 for (i = 0; i < igb->num_rx_rings; i++)
1962 mutex_enter(&igb->rx_rings[i].rx_lock);
1963 for (i = 0; i < igb->num_tx_rings; i++)
1964 mutex_enter(&igb->tx_rings[i].tx_lock);
1965
1966 /*
1967 * Stop the adapter
1968 */
1969 igb_stop_adapter(igb);
1970
1971 /*
1972 * Clean the pending tx data/resources
1973 */
1974 igb_tx_clean(igb);
1975
1976 for (i = igb->num_tx_rings - 1; i >= 0; i--)
1977 mutex_exit(&igb->tx_rings[i].tx_lock);
1978 for (i = igb->num_rx_rings - 1; i >= 0; i--)
1979 mutex_exit(&igb->rx_rings[i].rx_lock);
1980
1981 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1982 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1983
1984 if (igb->link_state == LINK_STATE_UP) {
1985 igb->link_state = LINK_STATE_UNKNOWN;
1986 mac_link_update(igb->mac_hdl, igb->link_state);
1987 }
1988
1989 if (free_buffer) {
1990 /*
1991 * Release the DMA/memory resources of rx/tx rings
1992 */
1993 igb_free_dma(igb);
1994 igb_free_rx_data(igb);
1995 }
1996 }
1997
1998 /*
1999 * igb_alloc_rings - Allocate memory space for rx/tx rings
2000 */
2001 static int
igb_alloc_rings(igb_t * igb)2002 igb_alloc_rings(igb_t *igb)
2003 {
2004 /*
2005 * Allocate memory space for rx rings
2006 */
2007 igb->rx_rings = kmem_zalloc(
2008 sizeof (igb_rx_ring_t) * igb->num_rx_rings,
2009 KM_NOSLEEP);
2010
2011 if (igb->rx_rings == NULL) {
2012 return (IGB_FAILURE);
2013 }
2014
2015 /*
2016 * Allocate memory space for tx rings
2017 */
2018 igb->tx_rings = kmem_zalloc(
2019 sizeof (igb_tx_ring_t) * igb->num_tx_rings,
2020 KM_NOSLEEP);
2021
2022 if (igb->tx_rings == NULL) {
2023 kmem_free(igb->rx_rings,
2024 sizeof (igb_rx_ring_t) * igb->num_rx_rings);
2025 igb->rx_rings = NULL;
2026 return (IGB_FAILURE);
2027 }
2028
2029 /*
2030 * Allocate memory space for rx ring groups
2031 */
2032 igb->rx_groups = kmem_zalloc(
2033 sizeof (igb_rx_group_t) * igb->num_rx_groups,
2034 KM_NOSLEEP);
2035
2036 if (igb->rx_groups == NULL) {
2037 kmem_free(igb->rx_rings,
2038 sizeof (igb_rx_ring_t) * igb->num_rx_rings);
2039 kmem_free(igb->tx_rings,
2040 sizeof (igb_tx_ring_t) * igb->num_tx_rings);
2041 igb->rx_rings = NULL;
2042 igb->tx_rings = NULL;
2043 return (IGB_FAILURE);
2044 }
2045
2046 return (IGB_SUCCESS);
2047 }
2048
2049 /*
2050 * igb_free_rings - Free the memory space of rx/tx rings.
2051 */
2052 static void
igb_free_rings(igb_t * igb)2053 igb_free_rings(igb_t *igb)
2054 {
2055 if (igb->rx_rings != NULL) {
2056 kmem_free(igb->rx_rings,
2057 sizeof (igb_rx_ring_t) * igb->num_rx_rings);
2058 igb->rx_rings = NULL;
2059 }
2060
2061 if (igb->tx_rings != NULL) {
2062 kmem_free(igb->tx_rings,
2063 sizeof (igb_tx_ring_t) * igb->num_tx_rings);
2064 igb->tx_rings = NULL;
2065 }
2066
2067 if (igb->rx_groups != NULL) {
2068 kmem_free(igb->rx_groups,
2069 sizeof (igb_rx_group_t) * igb->num_rx_groups);
2070 igb->rx_groups = NULL;
2071 }
2072 }
2073
2074 static int
igb_alloc_rx_data(igb_t * igb)2075 igb_alloc_rx_data(igb_t *igb)
2076 {
2077 igb_rx_ring_t *rx_ring;
2078 int i;
2079
2080 for (i = 0; i < igb->num_rx_rings; i++) {
2081 rx_ring = &igb->rx_rings[i];
2082 if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
2083 goto alloc_rx_rings_failure;
2084 }
2085 return (IGB_SUCCESS);
2086
2087 alloc_rx_rings_failure:
2088 igb_free_rx_data(igb);
2089 return (IGB_FAILURE);
2090 }
2091
2092 static void
igb_free_rx_data(igb_t * igb)2093 igb_free_rx_data(igb_t *igb)
2094 {
2095 igb_rx_ring_t *rx_ring;
2096 igb_rx_data_t *rx_data;
2097 int i;
2098
2099 for (i = 0; i < igb->num_rx_rings; i++) {
2100 rx_ring = &igb->rx_rings[i];
2101
2102 mutex_enter(&igb->rx_pending_lock);
2103 rx_data = rx_ring->rx_data;
2104
2105 if (rx_data != NULL) {
2106 rx_data->flag |= IGB_RX_STOPPED;
2107
2108 if (rx_data->rcb_pending == 0) {
2109 igb_free_rx_ring_data(rx_data);
2110 rx_ring->rx_data = NULL;
2111 }
2112 }
2113
2114 mutex_exit(&igb->rx_pending_lock);
2115 }
2116 }
2117
2118 /*
2119 * igb_setup_rings - Setup rx/tx rings
2120 */
2121 static void
igb_setup_rings(igb_t * igb)2122 igb_setup_rings(igb_t *igb)
2123 {
2124 /*
2125 * Setup the rx/tx rings, including the following:
2126 *
2127 * 1. Setup the descriptor ring and the control block buffers;
2128 * 2. Initialize necessary registers for receive/transmit;
2129 * 3. Initialize software pointers/parameters for receive/transmit;
2130 */
2131 igb_setup_rx(igb);
2132
2133 igb_setup_tx(igb);
2134 }
2135
2136 static void
igb_setup_rx_ring(igb_rx_ring_t * rx_ring)2137 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
2138 {
2139 igb_t *igb = rx_ring->igb;
2140 igb_rx_data_t *rx_data = rx_ring->rx_data;
2141 struct e1000_hw *hw = &igb->hw;
2142 rx_control_block_t *rcb;
2143 union e1000_adv_rx_desc *rbd;
2144 uint32_t size;
2145 uint32_t buf_low;
2146 uint32_t buf_high;
2147 uint32_t rxdctl;
2148 int i;
2149
2150 ASSERT(mutex_owned(&rx_ring->rx_lock));
2151 ASSERT(mutex_owned(&igb->gen_lock));
2152
2153 /*
2154 * Initialize descriptor ring with buffer addresses
2155 */
2156 for (i = 0; i < igb->rx_ring_size; i++) {
2157 rcb = rx_data->work_list[i];
2158 rbd = &rx_data->rbd_ring[i];
2159
2160 rbd->read.pkt_addr = rcb->rx_buf.dma_address;
2161 rbd->read.hdr_addr = 0;
2162 }
2163
2164 /*
2165 * Initialize the base address registers
2166 */
2167 buf_low = (uint32_t)rx_data->rbd_area.dma_address;
2168 buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
2169 E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
2170 E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
2171
2172 /*
2173 * Initialize the length register
2174 */
2175 size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
2176 E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
2177
2178 /*
2179 * Initialize buffer size & descriptor type
2180 */
2181 E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2182 ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2183 E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2184
2185 /*
2186 * Setup the Receive Descriptor Control Register (RXDCTL)
2187 */
2188 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2189 rxdctl &= igb->capab->rxdctl_mask;
2190 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2191 rxdctl |= 16; /* pthresh */
2192 rxdctl |= 8 << 8; /* hthresh */
2193 rxdctl |= 1 << 16; /* wthresh */
2194 E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2195
2196 rx_data->rbd_next = 0;
2197 }
2198
2199 static void
igb_setup_rx(igb_t * igb)2200 igb_setup_rx(igb_t *igb)
2201 {
2202 igb_rx_ring_t *rx_ring;
2203 igb_rx_data_t *rx_data;
2204 igb_rx_group_t *rx_group;
2205 struct e1000_hw *hw = &igb->hw;
2206 uint32_t rctl, rxcsum;
2207 uint32_t ring_per_group;
2208 int i;
2209
2210 /*
2211 * Setup the Receive Control Register (RCTL), and enable the
2212 * receiver. The initial configuration is to: enable the receiver,
2213 * accept broadcasts, discard bad packets, accept long packets,
2214 * disable VLAN filter checking, and set receive buffer size to
2215 * 2k. For 82575, also set the receive descriptor minimum
2216 * threshold size to 1/2 the ring.
2217 */
2218 rctl = E1000_READ_REG(hw, E1000_RCTL);
2219
2220 /*
2221 * Clear the field used for wakeup control. This driver doesn't do
2222 * wakeup but leave this here for completeness.
2223 */
2224 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2225 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2226
2227 rctl |= (E1000_RCTL_EN | /* Enable Receive Unit */
2228 E1000_RCTL_BAM | /* Accept Broadcast Packets */
2229 E1000_RCTL_LPE | /* Large Packet Enable */
2230 /* Multicast filter offset */
2231 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2232 E1000_RCTL_RDMTS_HALF | /* rx descriptor threshold */
2233 E1000_RCTL_SECRC); /* Strip Ethernet CRC */
2234
2235 for (i = 0; i < igb->num_rx_groups; i++) {
2236 rx_group = &igb->rx_groups[i];
2237 rx_group->index = i;
2238 rx_group->igb = igb;
2239 }
2240
2241 /*
2242 * Set up all rx descriptor rings - must be called before receive unit
2243 * enabled.
2244 */
2245 ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2246 for (i = 0; i < igb->num_rx_rings; i++) {
2247 rx_ring = &igb->rx_rings[i];
2248 igb_setup_rx_ring(rx_ring);
2249
2250 /*
2251 * Map a ring to a group by assigning a group index
2252 */
2253 rx_ring->group_index = i / ring_per_group;
2254 }
2255
2256 /*
2257 * Setup the Rx Long Packet Max Length register
2258 */
2259 E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2260
2261 /*
2262 * Hardware checksum settings
2263 */
2264 if (igb->rx_hcksum_enable) {
2265 rxcsum =
2266 E1000_RXCSUM_TUOFL | /* TCP/UDP checksum */
2267 E1000_RXCSUM_IPOFL; /* IP checksum */
2268
2269 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2270 }
2271
2272 /*
2273 * Setup classify and RSS for multiple receive queues
2274 */
2275 switch (igb->vmdq_mode) {
2276 case E1000_VMDQ_OFF:
2277 /*
2278 * One ring group, only RSS is needed when more than
2279 * one ring enabled.
2280 */
2281 if (igb->num_rx_rings > 1)
2282 igb_setup_rss(igb);
2283 break;
2284 case E1000_VMDQ_MAC:
2285 /*
2286 * Multiple groups, each group has one ring,
2287 * only the MAC classification is needed.
2288 */
2289 igb_setup_mac_classify(igb);
2290 break;
2291 case E1000_VMDQ_MAC_RSS:
2292 /*
2293 * Multiple groups and multiple rings, both
2294 * MAC classification and RSS are needed.
2295 */
2296 igb_setup_mac_rss_classify(igb);
2297 break;
2298 }
2299
2300 /*
2301 * Enable the receive unit - must be done after all
2302 * the rx setup above.
2303 */
2304 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2305
2306 /*
2307 * Initialize all adapter ring head & tail pointers - must
2308 * be done after receive unit is enabled
2309 */
2310 for (i = 0; i < igb->num_rx_rings; i++) {
2311 rx_ring = &igb->rx_rings[i];
2312 rx_data = rx_ring->rx_data;
2313 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2314 E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2315 }
2316
2317 /*
2318 * 82575 with manageability enabled needs a special flush to make
2319 * sure the fifos start clean.
2320 */
2321 if ((hw->mac.type == e1000_82575) &&
2322 (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2323 e1000_rx_fifo_flush_82575(hw);
2324 }
2325 }
2326
2327 static void
igb_setup_tx_ring(igb_tx_ring_t * tx_ring)2328 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2329 {
2330 igb_t *igb = tx_ring->igb;
2331 struct e1000_hw *hw = &igb->hw;
2332 uint32_t size;
2333 uint32_t buf_low;
2334 uint32_t buf_high;
2335 uint32_t reg_val;
2336
2337 ASSERT(mutex_owned(&tx_ring->tx_lock));
2338 ASSERT(mutex_owned(&igb->gen_lock));
2339
2340
2341 /*
2342 * Initialize the length register
2343 */
2344 size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2345 E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2346
2347 /*
2348 * Initialize the base address registers
2349 */
2350 buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2351 buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2352 E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2353 E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2354
2355 /*
2356 * Setup head & tail pointers
2357 */
2358 E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2359 E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2360
2361 /*
2362 * Setup head write-back
2363 */
2364 if (igb->tx_head_wb_enable) {
2365 /*
2366 * The memory of the head write-back is allocated using
2367 * the extra tbd beyond the tail of the tbd ring.
2368 */
2369 tx_ring->tbd_head_wb = (uint32_t *)
2370 ((uintptr_t)tx_ring->tbd_area.address + size);
2371 *tx_ring->tbd_head_wb = 0;
2372
2373 buf_low = (uint32_t)
2374 (tx_ring->tbd_area.dma_address + size);
2375 buf_high = (uint32_t)
2376 ((tx_ring->tbd_area.dma_address + size) >> 32);
2377
2378 /* Set the head write-back enable bit */
2379 buf_low |= E1000_TX_HEAD_WB_ENABLE;
2380
2381 E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2382 E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2383
2384 /*
2385 * Turn off relaxed ordering for head write back or it will
2386 * cause problems with the tx recycling
2387 */
2388 reg_val = E1000_READ_REG(hw,
2389 E1000_DCA_TXCTRL(tx_ring->index));
2390 reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2391 E1000_WRITE_REG(hw,
2392 E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2393 } else {
2394 tx_ring->tbd_head_wb = NULL;
2395 }
2396
2397 tx_ring->tbd_head = 0;
2398 tx_ring->tbd_tail = 0;
2399 tx_ring->tbd_free = tx_ring->ring_size;
2400
2401 if (igb->tx_ring_init == B_TRUE) {
2402 tx_ring->tcb_head = 0;
2403 tx_ring->tcb_tail = 0;
2404 tx_ring->tcb_free = tx_ring->free_list_size;
2405 }
2406
2407 /*
2408 * Enable TXDCTL per queue
2409 */
2410 reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2411 reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2412 E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2413
2414 /*
2415 * Initialize hardware checksum offload settings
2416 */
2417 bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2418 }
2419
2420 static void
igb_setup_tx(igb_t * igb)2421 igb_setup_tx(igb_t *igb)
2422 {
2423 igb_tx_ring_t *tx_ring;
2424 struct e1000_hw *hw = &igb->hw;
2425 uint32_t reg_val;
2426 int i;
2427
2428 for (i = 0; i < igb->num_tx_rings; i++) {
2429 tx_ring = &igb->tx_rings[i];
2430 igb_setup_tx_ring(tx_ring);
2431 }
2432
2433 /*
2434 * Setup the Transmit Control Register (TCTL)
2435 */
2436 reg_val = E1000_READ_REG(hw, E1000_TCTL);
2437 reg_val &= ~E1000_TCTL_CT;
2438 reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2439 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2440
2441 /* Enable transmits */
2442 reg_val |= E1000_TCTL_EN;
2443
2444 E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2445 }
2446
2447 /*
2448 * igb_setup_rss - Setup receive-side scaling feature
2449 */
2450 static void
igb_setup_rss(igb_t * igb)2451 igb_setup_rss(igb_t *igb)
2452 {
2453 struct e1000_hw *hw = &igb->hw;
2454 uint32_t i, mrqc, rxcsum;
2455 int shift = 0;
2456 uint32_t random;
2457 union e1000_reta {
2458 uint32_t dword;
2459 uint8_t bytes[4];
2460 } reta;
2461
2462 /* Setup the Redirection Table */
2463 if (hw->mac.type == e1000_82576) {
2464 shift = 3;
2465 } else if (hw->mac.type == e1000_82575) {
2466 shift = 6;
2467 }
2468 for (i = 0; i < (32 * 4); i++) {
2469 reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2470 if ((i & 3) == 3) {
2471 E1000_WRITE_REG(hw,
2472 (E1000_RETA(0) + (i & ~3)), reta.dword);
2473 }
2474 }
2475
2476 /* Fill out hash function seeds */
2477 for (i = 0; i < 10; i++) {
2478 (void) random_get_pseudo_bytes((uint8_t *)&random,
2479 sizeof (uint32_t));
2480 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2481 }
2482
2483 /* Setup the Multiple Receive Queue Control register */
2484 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2485 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2486 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2487 E1000_MRQC_RSS_FIELD_IPV6 |
2488 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2489 E1000_MRQC_RSS_FIELD_IPV4_UDP |
2490 E1000_MRQC_RSS_FIELD_IPV6_UDP |
2491 E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2492 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2493
2494 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2495
2496 /*
2497 * Disable Packet Checksum to enable RSS for multiple receive queues.
2498 *
2499 * The Packet Checksum is not ethernet CRC. It is another kind of
2500 * checksum offloading provided by the 82575 chipset besides the IP
2501 * header checksum offloading and the TCP/UDP checksum offloading.
2502 * The Packet Checksum is by default computed over the entire packet
2503 * from the first byte of the DA through the last byte of the CRC,
2504 * including the Ethernet and IP headers.
2505 *
2506 * It is a hardware limitation that Packet Checksum is mutually
2507 * exclusive with RSS.
2508 */
2509 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2510 rxcsum |= E1000_RXCSUM_PCSD;
2511 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2512 }
2513
2514 /*
2515 * igb_setup_mac_rss_classify - Setup MAC classification and rss
2516 */
2517 static void
igb_setup_mac_rss_classify(igb_t * igb)2518 igb_setup_mac_rss_classify(igb_t *igb)
2519 {
2520 struct e1000_hw *hw = &igb->hw;
2521 uint32_t i, mrqc, vmdctl, rxcsum;
2522 uint32_t ring_per_group;
2523 int shift_group0, shift_group1;
2524 uint32_t random;
2525 union e1000_reta {
2526 uint32_t dword;
2527 uint8_t bytes[4];
2528 } reta;
2529
2530 ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2531
2532 /* Setup the Redirection Table, it is shared between two groups */
2533 shift_group0 = 2;
2534 shift_group1 = 6;
2535 for (i = 0; i < (32 * 4); i++) {
2536 reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2537 ((ring_per_group + (i % ring_per_group)) << shift_group1);
2538 if ((i & 3) == 3) {
2539 E1000_WRITE_REG(hw,
2540 (E1000_RETA(0) + (i & ~3)), reta.dword);
2541 }
2542 }
2543
2544 /* Fill out hash function seeds */
2545 for (i = 0; i < 10; i++) {
2546 (void) random_get_pseudo_bytes((uint8_t *)&random,
2547 sizeof (uint32_t));
2548 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2549 }
2550
2551 /*
2552 * Setup the Multiple Receive Queue Control register,
2553 * enable VMDq based on packet destination MAC address and RSS.
2554 */
2555 mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2556 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2557 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2558 E1000_MRQC_RSS_FIELD_IPV6 |
2559 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2560 E1000_MRQC_RSS_FIELD_IPV4_UDP |
2561 E1000_MRQC_RSS_FIELD_IPV6_UDP |
2562 E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2563 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2564
2565 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2566
2567
2568 /* Define the default group and default queues */
2569 vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2570 E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2571
2572 /*
2573 * Disable Packet Checksum to enable RSS for multiple receive queues.
2574 *
2575 * The Packet Checksum is not ethernet CRC. It is another kind of
2576 * checksum offloading provided by the 82575 chipset besides the IP
2577 * header checksum offloading and the TCP/UDP checksum offloading.
2578 * The Packet Checksum is by default computed over the entire packet
2579 * from the first byte of the DA through the last byte of the CRC,
2580 * including the Ethernet and IP headers.
2581 *
2582 * It is a hardware limitation that Packet Checksum is mutually
2583 * exclusive with RSS.
2584 */
2585 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2586 rxcsum |= E1000_RXCSUM_PCSD;
2587 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2588 }
2589
2590 /*
2591 * igb_setup_mac_classify - Setup MAC classification feature
2592 */
2593 static void
igb_setup_mac_classify(igb_t * igb)2594 igb_setup_mac_classify(igb_t *igb)
2595 {
2596 struct e1000_hw *hw = &igb->hw;
2597 uint32_t mrqc, rxcsum;
2598
2599 /*
2600 * Setup the Multiple Receive Queue Control register,
2601 * enable VMDq based on packet destination MAC address.
2602 */
2603 mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2604 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2605
2606 /*
2607 * Disable Packet Checksum to enable RSS for multiple receive queues.
2608 *
2609 * The Packet Checksum is not ethernet CRC. It is another kind of
2610 * checksum offloading provided by the 82575 chipset besides the IP
2611 * header checksum offloading and the TCP/UDP checksum offloading.
2612 * The Packet Checksum is by default computed over the entire packet
2613 * from the first byte of the DA through the last byte of the CRC,
2614 * including the Ethernet and IP headers.
2615 *
2616 * It is a hardware limitation that Packet Checksum is mutually
2617 * exclusive with RSS.
2618 */
2619 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2620 rxcsum |= E1000_RXCSUM_PCSD;
2621 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2622
2623 }
2624
2625 /*
2626 * igb_init_unicst - Initialize the unicast addresses
2627 */
2628 static void
igb_init_unicst(igb_t * igb)2629 igb_init_unicst(igb_t *igb)
2630 {
2631 struct e1000_hw *hw = &igb->hw;
2632 int slot;
2633
2634 /*
2635 * Here we should consider two situations:
2636 *
2637 * 1. Chipset is initialized the first time
2638 * Initialize the multiple unicast addresses, and
2639 * save the default MAC address.
2640 *
2641 * 2. Chipset is reset
2642 * Recover the multiple unicast addresses from the
2643 * software data structure to the RAR registers.
2644 */
2645
2646 /*
2647 * Clear the default MAC address in the RAR0 rgister,
2648 * which is loaded from EEPROM when system boot or chipreset,
2649 * this will cause the conficts with add_mac/rem_mac entry
2650 * points when VMDq is enabled. For this reason, the RAR0
2651 * must be cleared for both cases mentioned above.
2652 */
2653 e1000_rar_clear(hw, 0);
2654
2655 if (!igb->unicst_init) {
2656
2657 /* Initialize the multiple unicast addresses */
2658 igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2659 igb->unicst_avail = igb->unicst_total;
2660
2661 for (slot = 0; slot < igb->unicst_total; slot++)
2662 igb->unicst_addr[slot].mac.set = 0;
2663
2664 igb->unicst_init = B_TRUE;
2665 } else {
2666 /* Re-configure the RAR registers */
2667 for (slot = 0; slot < igb->unicst_total; slot++) {
2668 (void) e1000_rar_set_vmdq(hw,
2669 igb->unicst_addr[slot].mac.addr,
2670 slot, igb->vmdq_mode,
2671 igb->unicst_addr[slot].mac.group_index);
2672 }
2673 }
2674 }
2675
2676 /*
2677 * igb_unicst_find - Find the slot for the specified unicast address
2678 */
2679 int
igb_unicst_find(igb_t * igb,const uint8_t * mac_addr)2680 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2681 {
2682 int slot;
2683
2684 ASSERT(mutex_owned(&igb->gen_lock));
2685
2686 for (slot = 0; slot < igb->unicst_total; slot++) {
2687 if (bcmp(igb->unicst_addr[slot].mac.addr,
2688 mac_addr, ETHERADDRL) == 0)
2689 return (slot);
2690 }
2691
2692 return (-1);
2693 }
2694
2695 /*
2696 * igb_unicst_set - Set the unicast address to the specified slot
2697 */
2698 int
igb_unicst_set(igb_t * igb,const uint8_t * mac_addr,int slot)2699 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2700 int slot)
2701 {
2702 struct e1000_hw *hw = &igb->hw;
2703
2704 ASSERT(mutex_owned(&igb->gen_lock));
2705
2706 /*
2707 * Save the unicast address in the software data structure
2708 */
2709 bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2710
2711 /*
2712 * Set the unicast address to the RAR register
2713 */
2714 (void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2715
2716 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2717 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2718 return (EIO);
2719 }
2720
2721 return (0);
2722 }
2723
2724 /*
2725 * igb_multicst_add - Add a multicst address
2726 */
2727 int
igb_multicst_add(igb_t * igb,const uint8_t * multiaddr)2728 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2729 {
2730 struct ether_addr *new_table;
2731 size_t new_len;
2732 size_t old_len;
2733
2734 ASSERT(mutex_owned(&igb->gen_lock));
2735
2736 if ((multiaddr[0] & 01) == 0) {
2737 igb_log(igb, IGB_LOG_ERROR, "Illegal multicast address");
2738 return (EINVAL);
2739 }
2740
2741 if (igb->mcast_count >= igb->mcast_max_num) {
2742 igb_log(igb, IGB_LOG_ERROR,
2743 "Adapter requested more than %d mcast addresses",
2744 igb->mcast_max_num);
2745 return (ENOENT);
2746 }
2747
2748 if (igb->mcast_count == igb->mcast_alloc_count) {
2749 old_len = igb->mcast_alloc_count *
2750 sizeof (struct ether_addr);
2751 new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2752 sizeof (struct ether_addr);
2753
2754 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2755 if (new_table == NULL) {
2756 igb_log(igb, IGB_LOG_ERROR,
2757 "Not enough memory to alloc mcast table");
2758 return (ENOMEM);
2759 }
2760
2761 if (igb->mcast_table != NULL) {
2762 bcopy(igb->mcast_table, new_table, old_len);
2763 kmem_free(igb->mcast_table, old_len);
2764 }
2765 igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2766 igb->mcast_table = new_table;
2767 }
2768
2769 bcopy(multiaddr,
2770 &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2771 igb->mcast_count++;
2772
2773 /*
2774 * Update the multicast table in the hardware
2775 */
2776 igb_setup_multicst(igb);
2777
2778 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2779 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2780 return (EIO);
2781 }
2782
2783 return (0);
2784 }
2785
2786 /*
2787 * igb_multicst_remove - Remove a multicst address
2788 */
2789 int
igb_multicst_remove(igb_t * igb,const uint8_t * multiaddr)2790 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2791 {
2792 struct ether_addr *new_table;
2793 size_t new_len;
2794 size_t old_len;
2795 int i;
2796
2797 ASSERT(mutex_owned(&igb->gen_lock));
2798
2799 for (i = 0; i < igb->mcast_count; i++) {
2800 if (bcmp(multiaddr, &igb->mcast_table[i],
2801 ETHERADDRL) == 0) {
2802 for (i++; i < igb->mcast_count; i++) {
2803 igb->mcast_table[i - 1] =
2804 igb->mcast_table[i];
2805 }
2806 igb->mcast_count--;
2807 break;
2808 }
2809 }
2810
2811 if ((igb->mcast_alloc_count - igb->mcast_count) >
2812 MCAST_ALLOC_COUNT) {
2813 old_len = igb->mcast_alloc_count *
2814 sizeof (struct ether_addr);
2815 new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2816 sizeof (struct ether_addr);
2817
2818 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2819 if (new_table != NULL) {
2820 bcopy(igb->mcast_table, new_table, new_len);
2821 kmem_free(igb->mcast_table, old_len);
2822 igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2823 igb->mcast_table = new_table;
2824 }
2825 }
2826
2827 /*
2828 * Update the multicast table in the hardware
2829 */
2830 igb_setup_multicst(igb);
2831
2832 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2833 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2834 return (EIO);
2835 }
2836
2837 return (0);
2838 }
2839
2840 static void
igb_release_multicast(igb_t * igb)2841 igb_release_multicast(igb_t *igb)
2842 {
2843 if (igb->mcast_table != NULL) {
2844 kmem_free(igb->mcast_table,
2845 igb->mcast_alloc_count * sizeof (struct ether_addr));
2846 igb->mcast_table = NULL;
2847 }
2848 }
2849
2850 /*
2851 * igb_setup_multicast - setup multicast data structures
2852 *
2853 * This routine initializes all of the multicast related structures
2854 * and save them in the hardware registers.
2855 */
2856 static void
igb_setup_multicst(igb_t * igb)2857 igb_setup_multicst(igb_t *igb)
2858 {
2859 uint8_t *mc_addr_list;
2860 uint32_t mc_addr_count;
2861 struct e1000_hw *hw = &igb->hw;
2862
2863 ASSERT(mutex_owned(&igb->gen_lock));
2864 ASSERT(igb->mcast_count <= igb->mcast_max_num);
2865
2866 mc_addr_list = (uint8_t *)igb->mcast_table;
2867 mc_addr_count = igb->mcast_count;
2868
2869 /*
2870 * Update the multicase addresses to the MTA registers
2871 */
2872 e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2873 }
2874
2875 /*
2876 * igb_get_conf - Get driver configurations set in driver.conf
2877 *
2878 * This routine gets user-configured values out of the configuration
2879 * file igb.conf.
2880 *
2881 * For each configurable value, there is a minimum, a maximum, and a
2882 * default.
2883 * If user does not configure a value, use the default.
2884 * If user configures below the minimum, use the minumum.
2885 * If user configures above the maximum, use the maxumum.
2886 */
2887 static void
igb_get_conf(igb_t * igb)2888 igb_get_conf(igb_t *igb)
2889 {
2890 struct e1000_hw *hw = &igb->hw;
2891 uint32_t default_mtu;
2892 uint32_t flow_control;
2893 uint32_t ring_per_group;
2894 int i;
2895
2896 /*
2897 * igb driver supports the following user configurations:
2898 *
2899 * Link configurations:
2900 * adv_autoneg_cap
2901 * adv_1000fdx_cap
2902 * adv_100fdx_cap
2903 * adv_100hdx_cap
2904 * adv_10fdx_cap
2905 * adv_10hdx_cap
2906 * Note: 1000hdx is not supported.
2907 *
2908 * Jumbo frame configuration:
2909 * default_mtu
2910 *
2911 * Ethernet flow control configuration:
2912 * flow_control
2913 *
2914 * Multiple rings configurations:
2915 * tx_queue_number
2916 * tx_ring_size
2917 * rx_queue_number
2918 * rx_ring_size
2919 *
2920 * Call igb_get_prop() to get the value for a specific
2921 * configuration parameter.
2922 */
2923
2924 /*
2925 * Link configurations
2926 */
2927 igb->param_adv_autoneg_cap = igb_get_prop(igb,
2928 PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2929 igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2930 PROP_ADV_1000FDX_CAP, 0, 1, 1);
2931 igb->param_adv_100fdx_cap = igb_get_prop(igb,
2932 PROP_ADV_100FDX_CAP, 0, 1, 1);
2933 igb->param_adv_100hdx_cap = igb_get_prop(igb,
2934 PROP_ADV_100HDX_CAP, 0, 1, 1);
2935 igb->param_adv_10fdx_cap = igb_get_prop(igb,
2936 PROP_ADV_10FDX_CAP, 0, 1, 1);
2937 igb->param_adv_10hdx_cap = igb_get_prop(igb,
2938 PROP_ADV_10HDX_CAP, 0, 1, 1);
2939
2940 /*
2941 * Jumbo frame configurations
2942 */
2943 default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2944 MIN_MTU, MAX_MTU, DEFAULT_MTU);
2945
2946 igb->max_frame_size = default_mtu +
2947 sizeof (struct ether_vlan_header) + ETHERFCSL;
2948
2949 /*
2950 * Ethernet flow control configuration
2951 */
2952 flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2953 e1000_fc_none, 4, e1000_fc_full);
2954 if (flow_control == 4)
2955 flow_control = e1000_fc_default;
2956
2957 hw->fc.requested_mode = flow_control;
2958
2959 /*
2960 * Multiple rings configurations
2961 */
2962 igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2963 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2964 igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2965 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2966
2967 igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2968 igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2969 MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2970 /*
2971 * Currently we do not support VMDq for 82576 and 82580.
2972 * If it is e1000_82576, set num_rx_groups to 1.
2973 */
2974 if (hw->mac.type >= e1000_82576)
2975 igb->num_rx_groups = 1;
2976
2977 if (igb->mr_enable) {
2978 igb->num_tx_rings = igb->capab->def_tx_que_num;
2979 igb->num_rx_rings = igb->capab->def_rx_que_num;
2980 } else {
2981 igb->num_tx_rings = 1;
2982 igb->num_rx_rings = 1;
2983
2984 if (igb->num_rx_groups > 1) {
2985 igb_log(igb, IGB_LOG_ERROR,
2986 "Invalid rx groups number. Please enable multiple "
2987 "rings first");
2988 igb->num_rx_groups = 1;
2989 }
2990 }
2991
2992 /*
2993 * Check the divisibility between rx rings and rx groups.
2994 */
2995 for (i = igb->num_rx_groups; i > 0; i--) {
2996 if ((igb->num_rx_rings % i) == 0)
2997 break;
2998 }
2999 if (i != igb->num_rx_groups) {
3000 igb_log(igb, IGB_LOG_ERROR,
3001 "Invalid rx groups number. Downgrade the rx group "
3002 "number to %d.", i);
3003 igb->num_rx_groups = i;
3004 }
3005
3006 /*
3007 * Get the ring number per group.
3008 */
3009 ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
3010
3011 if (igb->num_rx_groups == 1) {
3012 /*
3013 * One rx ring group, the rx ring number is num_rx_rings.
3014 */
3015 igb->vmdq_mode = E1000_VMDQ_OFF;
3016 } else if (ring_per_group == 1) {
3017 /*
3018 * Multiple rx groups, each group has one rx ring.
3019 */
3020 igb->vmdq_mode = E1000_VMDQ_MAC;
3021 } else {
3022 /*
3023 * Multiple groups and multiple rings.
3024 */
3025 igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
3026 }
3027
3028 /*
3029 * Tunable used to force an interrupt type. The only use is
3030 * for testing of the lesser interrupt types.
3031 * 0 = don't force interrupt type
3032 * 1 = force interrupt type MSIX
3033 * 2 = force interrupt type MSI
3034 * 3 = force interrupt type Legacy
3035 */
3036 igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
3037 IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
3038
3039 igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
3040 0, 1, 1);
3041 igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
3042 0, 1, 1);
3043 igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
3044 0, 1, 1);
3045 igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
3046 0, 1, 1);
3047
3048 /*
3049 * igb LSO needs the tx h/w checksum support.
3050 * Here LSO will be disabled if tx h/w checksum has been disabled.
3051 */
3052 if (igb->tx_hcksum_enable == B_FALSE)
3053 igb->lso_enable = B_FALSE;
3054
3055 igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
3056 MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
3057 DEFAULT_TX_COPY_THRESHOLD);
3058 igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
3059 MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3060 DEFAULT_TX_RECYCLE_THRESHOLD);
3061 igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
3062 MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
3063 DEFAULT_TX_OVERLOAD_THRESHOLD);
3064 igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
3065 MIN_TX_RESCHED_THRESHOLD,
3066 MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
3067 igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
3068 DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
3069
3070 igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
3071 MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
3072 DEFAULT_RX_COPY_THRESHOLD);
3073 igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
3074 MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
3075 DEFAULT_RX_LIMIT_PER_INTR);
3076
3077 igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
3078 igb->capab->min_intr_throttle,
3079 igb->capab->max_intr_throttle,
3080 igb->capab->def_intr_throttle);
3081
3082 /*
3083 * Max number of multicast addresses
3084 */
3085 igb->mcast_max_num =
3086 igb_get_prop(igb, PROP_MCAST_MAX_NUM,
3087 MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
3088 }
3089
3090 /*
3091 * igb_get_prop - Get a property value out of the configuration file igb.conf
3092 *
3093 * Caller provides the name of the property, a default value, a minimum
3094 * value, and a maximum value.
3095 *
3096 * Return configured value of the property, with default, minimum and
3097 * maximum properly applied.
3098 */
3099 static int
igb_get_prop(igb_t * igb,char * propname,int minval,int maxval,int defval)3100 igb_get_prop(igb_t *igb,
3101 char *propname, /* name of the property */
3102 int minval, /* minimum acceptable value */
3103 int maxval, /* maximim acceptable value */
3104 int defval) /* default value */
3105 {
3106 int value;
3107
3108 /*
3109 * Call ddi_prop_get_int() to read the conf settings
3110 */
3111 value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
3112 DDI_PROP_DONTPASS, propname, defval);
3113
3114 if (value > maxval)
3115 value = maxval;
3116
3117 if (value < minval)
3118 value = minval;
3119
3120 return (value);
3121 }
3122
3123 /*
3124 * igb_setup_link - Using the link properties to setup the link
3125 */
3126 int
igb_setup_link(igb_t * igb,boolean_t setup_hw)3127 igb_setup_link(igb_t *igb, boolean_t setup_hw)
3128 {
3129 struct e1000_mac_info *mac;
3130 struct e1000_phy_info *phy;
3131 boolean_t invalid;
3132
3133 mac = &igb->hw.mac;
3134 phy = &igb->hw.phy;
3135 invalid = B_FALSE;
3136
3137 if (igb->param_adv_autoneg_cap == 1) {
3138 mac->autoneg = true;
3139 phy->autoneg_advertised = 0;
3140
3141 /*
3142 * 1000hdx is not supported for autonegotiation
3143 */
3144 if (igb->param_adv_1000fdx_cap == 1)
3145 phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3146
3147 if (igb->param_adv_100fdx_cap == 1)
3148 phy->autoneg_advertised |= ADVERTISE_100_FULL;
3149
3150 if (igb->param_adv_100hdx_cap == 1)
3151 phy->autoneg_advertised |= ADVERTISE_100_HALF;
3152
3153 if (igb->param_adv_10fdx_cap == 1)
3154 phy->autoneg_advertised |= ADVERTISE_10_FULL;
3155
3156 if (igb->param_adv_10hdx_cap == 1)
3157 phy->autoneg_advertised |= ADVERTISE_10_HALF;
3158
3159 if (phy->autoneg_advertised == 0)
3160 invalid = B_TRUE;
3161 } else {
3162 mac->autoneg = false;
3163
3164 /*
3165 * 1000fdx and 1000hdx are not supported for forced link
3166 */
3167 if (igb->param_adv_100fdx_cap == 1)
3168 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3169 else if (igb->param_adv_100hdx_cap == 1)
3170 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3171 else if (igb->param_adv_10fdx_cap == 1)
3172 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3173 else if (igb->param_adv_10hdx_cap == 1)
3174 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3175 else
3176 invalid = B_TRUE;
3177 }
3178
3179 if (invalid) {
3180 igb_log(igb, IGB_LOG_INFO, "Invalid link settings. Setup "
3181 "link to autonegotiation with full link capabilities.");
3182 mac->autoneg = true;
3183 phy->autoneg_advertised = ADVERTISE_1000_FULL |
3184 ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3185 ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3186 }
3187
3188 if (setup_hw) {
3189 if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3190 return (IGB_FAILURE);
3191 }
3192
3193 return (IGB_SUCCESS);
3194 }
3195
3196
3197 /*
3198 * igb_is_link_up - Check if the link is up
3199 */
3200 static boolean_t
igb_is_link_up(igb_t * igb)3201 igb_is_link_up(igb_t *igb)
3202 {
3203 struct e1000_hw *hw = &igb->hw;
3204 boolean_t link_up = B_FALSE;
3205
3206 ASSERT(mutex_owned(&igb->gen_lock));
3207
3208 /*
3209 * get_link_status is set in the interrupt handler on link-status-change
3210 * or rx sequence error interrupt. get_link_status will stay
3211 * false until the e1000_check_for_link establishes link only
3212 * for copper adapters.
3213 */
3214 switch (hw->phy.media_type) {
3215 case e1000_media_type_copper:
3216 if (hw->mac.get_link_status) {
3217 (void) e1000_check_for_link(hw);
3218 link_up = !hw->mac.get_link_status;
3219 } else {
3220 link_up = B_TRUE;
3221 }
3222 break;
3223 case e1000_media_type_fiber:
3224 (void) e1000_check_for_link(hw);
3225 link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3226 break;
3227 case e1000_media_type_internal_serdes:
3228 (void) e1000_check_for_link(hw);
3229 link_up = hw->mac.serdes_has_link;
3230 break;
3231 }
3232
3233 return (link_up);
3234 }
3235
3236 /*
3237 * igb_link_check - Link status processing
3238 */
3239 static boolean_t
igb_link_check(igb_t * igb)3240 igb_link_check(igb_t *igb)
3241 {
3242 struct e1000_hw *hw = &igb->hw;
3243 uint16_t speed = 0, duplex = 0;
3244 boolean_t link_changed = B_FALSE;
3245
3246 ASSERT(mutex_owned(&igb->gen_lock));
3247
3248 if (igb_is_link_up(igb)) {
3249 /*
3250 * The Link is up, check whether it was marked as down earlier
3251 */
3252 if (igb->link_state != LINK_STATE_UP) {
3253 (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3254 igb->link_speed = speed;
3255 igb->link_duplex = duplex;
3256 igb->link_state = LINK_STATE_UP;
3257 link_changed = B_TRUE;
3258 if (!igb->link_complete)
3259 igb_stop_link_timer(igb);
3260 }
3261 } else if (igb->link_complete) {
3262 if (igb->link_state != LINK_STATE_DOWN) {
3263 igb->link_speed = 0;
3264 igb->link_duplex = 0;
3265 igb->link_state = LINK_STATE_DOWN;
3266 link_changed = B_TRUE;
3267 }
3268 }
3269
3270 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3271 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3272 return (B_FALSE);
3273 }
3274
3275 return (link_changed);
3276 }
3277
3278 /*
3279 * igb_local_timer - driver watchdog function
3280 *
3281 * This function will handle the hardware stall check, link status
3282 * check and other routines.
3283 */
3284 static void
igb_local_timer(void * arg)3285 igb_local_timer(void *arg)
3286 {
3287 igb_t *igb = (igb_t *)arg;
3288 boolean_t link_changed = B_FALSE;
3289
3290 if (igb->igb_state & IGB_ERROR) {
3291 igb->reset_count++;
3292 if (igb_reset(igb) == IGB_SUCCESS)
3293 ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3294
3295 igb_restart_watchdog_timer(igb);
3296 return;
3297 }
3298
3299 if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3300 igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3301 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3302 igb->reset_count++;
3303 if (igb_reset(igb) == IGB_SUCCESS)
3304 ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3305
3306 igb_restart_watchdog_timer(igb);
3307 return;
3308 }
3309
3310 mutex_enter(&igb->gen_lock);
3311 if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3312 link_changed = igb_link_check(igb);
3313 mutex_exit(&igb->gen_lock);
3314
3315 if (link_changed)
3316 mac_link_update(igb->mac_hdl, igb->link_state);
3317
3318 igb_restart_watchdog_timer(igb);
3319 }
3320
3321 /*
3322 * igb_link_timer - link setup timer function
3323 *
3324 * It is called when the timer for link setup is expired, which indicates
3325 * the completion of the link setup. The link state will not be updated
3326 * until the link setup is completed. And the link state will not be sent
3327 * to the upper layer through mac_link_update() in this function. It will
3328 * be updated in the local timer routine or the interrupts service routine
3329 * after the interface is started (plumbed).
3330 */
3331 static void
igb_link_timer(void * arg)3332 igb_link_timer(void *arg)
3333 {
3334 igb_t *igb = (igb_t *)arg;
3335
3336 mutex_enter(&igb->link_lock);
3337 igb->link_complete = B_TRUE;
3338 igb->link_tid = 0;
3339 mutex_exit(&igb->link_lock);
3340 }
3341 /*
3342 * igb_stall_check - check for transmit stall
3343 *
3344 * This function checks if the adapter is stalled (in transmit).
3345 *
3346 * It is called each time the watchdog timeout is invoked.
3347 * If the transmit descriptor reclaim continuously fails,
3348 * the watchdog value will increment by 1. If the watchdog
3349 * value exceeds the threshold, the igb is assumed to
3350 * have stalled and need to be reset.
3351 */
3352 static boolean_t
igb_stall_check(igb_t * igb)3353 igb_stall_check(igb_t *igb)
3354 {
3355 igb_tx_ring_t *tx_ring;
3356 struct e1000_hw *hw = &igb->hw;
3357 boolean_t result;
3358 int i;
3359
3360 if (igb->link_state != LINK_STATE_UP)
3361 return (B_FALSE);
3362
3363 /*
3364 * If any tx ring is stalled, we'll reset the chipset
3365 */
3366 result = B_FALSE;
3367 for (i = 0; i < igb->num_tx_rings; i++) {
3368 tx_ring = &igb->tx_rings[i];
3369
3370 if (tx_ring->recycle_fail > 0)
3371 tx_ring->stall_watchdog++;
3372 else
3373 tx_ring->stall_watchdog = 0;
3374
3375 if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3376 result = B_TRUE;
3377 if (hw->mac.type == e1000_82580) {
3378 hw->dev_spec._82575.global_device_reset
3379 = B_TRUE;
3380 }
3381 break;
3382 }
3383 }
3384
3385 if (result) {
3386 tx_ring->stall_watchdog = 0;
3387 tx_ring->recycle_fail = 0;
3388 }
3389
3390 return (result);
3391 }
3392
3393
3394 /*
3395 * is_valid_mac_addr - Check if the mac address is valid
3396 */
3397 static boolean_t
is_valid_mac_addr(uint8_t * mac_addr)3398 is_valid_mac_addr(uint8_t *mac_addr)
3399 {
3400 const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3401 const uint8_t addr_test2[6] =
3402 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3403
3404 if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3405 !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3406 return (B_FALSE);
3407
3408 return (B_TRUE);
3409 }
3410
3411 static boolean_t
igb_find_mac_address(igb_t * igb)3412 igb_find_mac_address(igb_t *igb)
3413 {
3414 struct e1000_hw *hw = &igb->hw;
3415 #ifdef __sparc
3416 uchar_t *bytes;
3417 struct ether_addr sysaddr;
3418 uint_t nelts;
3419 int err;
3420 boolean_t found = B_FALSE;
3421
3422 /*
3423 * The "vendor's factory-set address" may already have
3424 * been extracted from the chip, but if the property
3425 * "local-mac-address" is set we use that instead.
3426 *
3427 * We check whether it looks like an array of 6
3428 * bytes (which it should, if OBP set it). If we can't
3429 * make sense of it this way, we'll ignore it.
3430 */
3431 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3432 DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3433 if (err == DDI_PROP_SUCCESS) {
3434 if (nelts == ETHERADDRL) {
3435 while (nelts--)
3436 hw->mac.addr[nelts] = bytes[nelts];
3437 found = B_TRUE;
3438 }
3439 ddi_prop_free(bytes);
3440 }
3441
3442 /*
3443 * Look up the OBP property "local-mac-address?". If the user has set
3444 * 'local-mac-address? = false', use "the system address" instead.
3445 */
3446 if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3447 "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3448 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3449 if (localetheraddr(NULL, &sysaddr) != 0) {
3450 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3451 found = B_TRUE;
3452 }
3453 }
3454 ddi_prop_free(bytes);
3455 }
3456
3457 /*
3458 * Finally(!), if there's a valid "mac-address" property (created
3459 * if we netbooted from this interface), we must use this instead
3460 * of any of the above to ensure that the NFS/install server doesn't
3461 * get confused by the address changing as Solaris takes over!
3462 */
3463 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3464 DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3465 if (err == DDI_PROP_SUCCESS) {
3466 if (nelts == ETHERADDRL) {
3467 while (nelts--)
3468 hw->mac.addr[nelts] = bytes[nelts];
3469 found = B_TRUE;
3470 }
3471 ddi_prop_free(bytes);
3472 }
3473
3474 if (found) {
3475 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3476 return (B_TRUE);
3477 }
3478 #endif
3479
3480 /*
3481 * Read the device MAC address from the EEPROM
3482 */
3483 if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3484 return (B_FALSE);
3485
3486 return (B_TRUE);
3487 }
3488
3489 static void
igb_arm_watchdog_timer(igb_t * igb)3490 igb_arm_watchdog_timer(igb_t *igb)
3491 {
3492 /*
3493 * Fire a watchdog timer
3494 */
3495 igb->watchdog_tid =
3496 timeout(igb_local_timer,
3497 (void *)igb, 1 * drv_usectohz(1000000));
3498
3499 }
3500
3501 /*
3502 * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3503 */
3504 void
igb_enable_watchdog_timer(igb_t * igb)3505 igb_enable_watchdog_timer(igb_t *igb)
3506 {
3507 mutex_enter(&igb->watchdog_lock);
3508
3509 if (!igb->watchdog_enable) {
3510 igb->watchdog_enable = B_TRUE;
3511 igb->watchdog_start = B_TRUE;
3512 igb_arm_watchdog_timer(igb);
3513 }
3514
3515 mutex_exit(&igb->watchdog_lock);
3516
3517 }
3518
3519 /*
3520 * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3521 */
3522 void
igb_disable_watchdog_timer(igb_t * igb)3523 igb_disable_watchdog_timer(igb_t *igb)
3524 {
3525 timeout_id_t tid;
3526
3527 mutex_enter(&igb->watchdog_lock);
3528
3529 igb->watchdog_enable = B_FALSE;
3530 igb->watchdog_start = B_FALSE;
3531 tid = igb->watchdog_tid;
3532 igb->watchdog_tid = 0;
3533
3534 mutex_exit(&igb->watchdog_lock);
3535
3536 if (tid != 0)
3537 (void) untimeout(tid);
3538
3539 }
3540
3541 /*
3542 * igb_start_watchdog_timer - Start the driver watchdog timer
3543 */
3544 static void
igb_start_watchdog_timer(igb_t * igb)3545 igb_start_watchdog_timer(igb_t *igb)
3546 {
3547 mutex_enter(&igb->watchdog_lock);
3548
3549 if (igb->watchdog_enable) {
3550 if (!igb->watchdog_start) {
3551 igb->watchdog_start = B_TRUE;
3552 igb_arm_watchdog_timer(igb);
3553 }
3554 }
3555
3556 mutex_exit(&igb->watchdog_lock);
3557 }
3558
3559 /*
3560 * igb_restart_watchdog_timer - Restart the driver watchdog timer
3561 */
3562 static void
igb_restart_watchdog_timer(igb_t * igb)3563 igb_restart_watchdog_timer(igb_t *igb)
3564 {
3565 mutex_enter(&igb->watchdog_lock);
3566
3567 if (igb->watchdog_start)
3568 igb_arm_watchdog_timer(igb);
3569
3570 mutex_exit(&igb->watchdog_lock);
3571 }
3572
3573 /*
3574 * igb_stop_watchdog_timer - Stop the driver watchdog timer
3575 */
3576 static void
igb_stop_watchdog_timer(igb_t * igb)3577 igb_stop_watchdog_timer(igb_t *igb)
3578 {
3579 timeout_id_t tid;
3580
3581 mutex_enter(&igb->watchdog_lock);
3582
3583 igb->watchdog_start = B_FALSE;
3584 tid = igb->watchdog_tid;
3585 igb->watchdog_tid = 0;
3586
3587 mutex_exit(&igb->watchdog_lock);
3588
3589 if (tid != 0)
3590 (void) untimeout(tid);
3591 }
3592
3593 /*
3594 * igb_start_link_timer - Start the link setup timer
3595 */
3596 static void
igb_start_link_timer(struct igb * igb)3597 igb_start_link_timer(struct igb *igb)
3598 {
3599 struct e1000_hw *hw = &igb->hw;
3600 clock_t link_timeout;
3601
3602 if (hw->mac.autoneg)
3603 link_timeout = PHY_AUTO_NEG_LIMIT *
3604 drv_usectohz(100000);
3605 else
3606 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3607
3608 mutex_enter(&igb->link_lock);
3609 if (hw->phy.autoneg_wait_to_complete) {
3610 igb->link_complete = B_TRUE;
3611 } else {
3612 igb->link_complete = B_FALSE;
3613 igb->link_tid = timeout(igb_link_timer, (void *)igb,
3614 link_timeout);
3615 }
3616 mutex_exit(&igb->link_lock);
3617 }
3618
3619 /*
3620 * igb_stop_link_timer - Stop the link setup timer
3621 */
3622 static void
igb_stop_link_timer(struct igb * igb)3623 igb_stop_link_timer(struct igb *igb)
3624 {
3625 timeout_id_t tid;
3626
3627 mutex_enter(&igb->link_lock);
3628 igb->link_complete = B_TRUE;
3629 tid = igb->link_tid;
3630 igb->link_tid = 0;
3631 mutex_exit(&igb->link_lock);
3632
3633 if (tid != 0)
3634 (void) untimeout(tid);
3635 }
3636
3637 /*
3638 * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3639 */
3640 static void
igb_disable_adapter_interrupts(igb_t * igb)3641 igb_disable_adapter_interrupts(igb_t *igb)
3642 {
3643 struct e1000_hw *hw = &igb->hw;
3644
3645 /*
3646 * Set the IMC register to mask all the interrupts,
3647 * including the tx interrupts.
3648 */
3649 E1000_WRITE_REG(hw, E1000_IMC, ~0);
3650 E1000_WRITE_REG(hw, E1000_IAM, 0);
3651
3652 /*
3653 * Additional disabling for MSI-X
3654 */
3655 if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3656 E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3657 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3658 E1000_WRITE_REG(hw, E1000_EIAM, 0);
3659 }
3660
3661 E1000_WRITE_FLUSH(hw);
3662 }
3663
3664 /*
3665 * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3666 */
3667 static void
igb_enable_adapter_interrupts_82580(igb_t * igb)3668 igb_enable_adapter_interrupts_82580(igb_t *igb)
3669 {
3670 struct e1000_hw *hw = &igb->hw;
3671
3672 /* Clear any pending interrupts */
3673 (void) E1000_READ_REG(hw, E1000_ICR);
3674 igb->ims_mask |= E1000_IMS_DRSTA;
3675
3676 if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3677
3678 /* Interrupt enabling for MSI-X */
3679 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3680 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3681 igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3682 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3683 } else { /* Interrupt enabling for MSI and legacy */
3684 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3685 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3686 igb->ims_mask |= E1000_IMS_DRSTA;
3687 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3688 }
3689
3690 /* Disable auto-mask for ICR interrupt bits */
3691 E1000_WRITE_REG(hw, E1000_IAM, 0);
3692
3693 E1000_WRITE_FLUSH(hw);
3694 }
3695
3696 /*
3697 * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3698 */
3699 static void
igb_enable_adapter_interrupts_82576(igb_t * igb)3700 igb_enable_adapter_interrupts_82576(igb_t *igb)
3701 {
3702 struct e1000_hw *hw = &igb->hw;
3703
3704 /* Clear any pending interrupts */
3705 (void) E1000_READ_REG(hw, E1000_ICR);
3706
3707 if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3708
3709 /* Interrupt enabling for MSI-X */
3710 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3711 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3712 igb->ims_mask = E1000_IMS_LSC;
3713 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3714 } else {
3715 /* Interrupt enabling for MSI and legacy */
3716 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3717 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3718 E1000_WRITE_REG(hw, E1000_IMS,
3719 (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3720 }
3721
3722 /* Disable auto-mask for ICR interrupt bits */
3723 E1000_WRITE_REG(hw, E1000_IAM, 0);
3724
3725 E1000_WRITE_FLUSH(hw);
3726 }
3727
3728 /*
3729 * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3730 */
3731 static void
igb_enable_adapter_interrupts_82575(igb_t * igb)3732 igb_enable_adapter_interrupts_82575(igb_t *igb)
3733 {
3734 struct e1000_hw *hw = &igb->hw;
3735 uint32_t reg;
3736
3737 /* Clear any pending interrupts */
3738 (void) E1000_READ_REG(hw, E1000_ICR);
3739
3740 if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3741 /* Interrupt enabling for MSI-X */
3742 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3743 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3744 igb->ims_mask = E1000_IMS_LSC;
3745 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3746
3747 /* Enable MSI-X PBA support */
3748 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3749 reg |= E1000_CTRL_EXT_PBA_CLR;
3750
3751 /* Non-selective interrupt clear-on-read */
3752 reg |= E1000_CTRL_EXT_IRCA; /* Called NSICR in the EAS */
3753
3754 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3755 } else {
3756 /* Interrupt enabling for MSI and legacy */
3757 igb->ims_mask = IMS_ENABLE_MASK;
3758 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3759 }
3760
3761 E1000_WRITE_FLUSH(hw);
3762 }
3763
3764 /*
3765 * Loopback Support
3766 */
3767 static lb_property_t lb_normal =
3768 { normal, "normal", IGB_LB_NONE };
3769 static lb_property_t lb_external =
3770 { external, "External", IGB_LB_EXTERNAL };
3771 static lb_property_t lb_phy =
3772 { internal, "PHY", IGB_LB_INTERNAL_PHY };
3773 static lb_property_t lb_serdes =
3774 { internal, "SerDes", IGB_LB_INTERNAL_SERDES };
3775
3776 enum ioc_reply
igb_loopback_ioctl(igb_t * igb,struct iocblk * iocp,mblk_t * mp)3777 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3778 {
3779 lb_info_sz_t *lbsp;
3780 lb_property_t *lbpp;
3781 struct e1000_hw *hw;
3782 uint32_t *lbmp;
3783 uint32_t size;
3784 uint32_t value;
3785
3786 hw = &igb->hw;
3787
3788 if (mp->b_cont == NULL)
3789 return (IOC_INVAL);
3790
3791 switch (iocp->ioc_cmd) {
3792 default:
3793 return (IOC_INVAL);
3794
3795 case LB_GET_INFO_SIZE:
3796 size = sizeof (lb_info_sz_t);
3797 if (iocp->ioc_count != size)
3798 return (IOC_INVAL);
3799
3800 value = sizeof (lb_normal);
3801 if (hw->phy.media_type == e1000_media_type_copper)
3802 value += sizeof (lb_phy);
3803 else
3804 value += sizeof (lb_serdes);
3805 value += sizeof (lb_external);
3806
3807 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3808 *lbsp = value;
3809 break;
3810
3811 case LB_GET_INFO:
3812 value = sizeof (lb_normal);
3813 if (hw->phy.media_type == e1000_media_type_copper)
3814 value += sizeof (lb_phy);
3815 else
3816 value += sizeof (lb_serdes);
3817 value += sizeof (lb_external);
3818
3819 size = value;
3820 if (iocp->ioc_count != size)
3821 return (IOC_INVAL);
3822
3823 value = 0;
3824 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3825
3826 lbpp[value++] = lb_normal;
3827 if (hw->phy.media_type == e1000_media_type_copper)
3828 lbpp[value++] = lb_phy;
3829 else
3830 lbpp[value++] = lb_serdes;
3831 lbpp[value++] = lb_external;
3832 break;
3833
3834 case LB_GET_MODE:
3835 size = sizeof (uint32_t);
3836 if (iocp->ioc_count != size)
3837 return (IOC_INVAL);
3838
3839 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3840 *lbmp = igb->loopback_mode;
3841 break;
3842
3843 case LB_SET_MODE:
3844 size = 0;
3845 if (iocp->ioc_count != sizeof (uint32_t))
3846 return (IOC_INVAL);
3847
3848 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3849 if (!igb_set_loopback_mode(igb, *lbmp))
3850 return (IOC_INVAL);
3851 break;
3852 }
3853
3854 iocp->ioc_count = size;
3855 iocp->ioc_error = 0;
3856
3857 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3858 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3859 return (IOC_INVAL);
3860 }
3861
3862 return (IOC_REPLY);
3863 }
3864
3865 /*
3866 * igb_set_loopback_mode - Setup loopback based on the loopback mode
3867 */
3868 static boolean_t
igb_set_loopback_mode(igb_t * igb,uint32_t mode)3869 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3870 {
3871 struct e1000_hw *hw;
3872 int i;
3873
3874 if (mode == igb->loopback_mode)
3875 return (B_TRUE);
3876
3877 hw = &igb->hw;
3878
3879 igb->loopback_mode = mode;
3880
3881 if (mode == IGB_LB_NONE) {
3882 /* Reset the chip */
3883 hw->phy.autoneg_wait_to_complete = true;
3884 (void) igb_reset(igb);
3885 hw->phy.autoneg_wait_to_complete = false;
3886 return (B_TRUE);
3887 }
3888
3889 mutex_enter(&igb->gen_lock);
3890
3891 switch (mode) {
3892 default:
3893 mutex_exit(&igb->gen_lock);
3894 return (B_FALSE);
3895
3896 case IGB_LB_EXTERNAL:
3897 igb_set_external_loopback(igb);
3898 break;
3899
3900 case IGB_LB_INTERNAL_PHY:
3901 igb_set_internal_phy_loopback(igb);
3902 break;
3903
3904 case IGB_LB_INTERNAL_SERDES:
3905 igb_set_internal_serdes_loopback(igb);
3906 break;
3907 }
3908
3909 mutex_exit(&igb->gen_lock);
3910
3911 /*
3912 * When external loopback is set, wait up to 1000ms to get the link up.
3913 * According to test, 1000ms can work and it's an experimental value.
3914 */
3915 if (mode == IGB_LB_EXTERNAL) {
3916 for (i = 0; i <= 10; i++) {
3917 mutex_enter(&igb->gen_lock);
3918 (void) igb_link_check(igb);
3919 mutex_exit(&igb->gen_lock);
3920
3921 if (igb->link_state == LINK_STATE_UP)
3922 break;
3923
3924 msec_delay(100);
3925 }
3926
3927 if (igb->link_state != LINK_STATE_UP) {
3928 /*
3929 * Does not support external loopback.
3930 * Reset driver to loopback none.
3931 */
3932 igb->loopback_mode = IGB_LB_NONE;
3933
3934 /* Reset the chip */
3935 hw->phy.autoneg_wait_to_complete = true;
3936 (void) igb_reset(igb);
3937 hw->phy.autoneg_wait_to_complete = false;
3938
3939 igb_log(igb, IGB_LOG_INFO, "Set external loopback "
3940 "failed, reset to loopback none.");
3941
3942 return (B_FALSE);
3943 }
3944 }
3945
3946 return (B_TRUE);
3947 }
3948
3949 /*
3950 * igb_set_external_loopback - Set the external loopback mode
3951 */
3952 static void
igb_set_external_loopback(igb_t * igb)3953 igb_set_external_loopback(igb_t *igb)
3954 {
3955 struct e1000_hw *hw;
3956 uint32_t ctrl_ext;
3957
3958 hw = &igb->hw;
3959
3960 /* Set link mode to PHY (00b) in the Extended Control register */
3961 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3962 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3963 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3964
3965 (void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3966 (void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3967 (void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3968 (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3969 }
3970
3971 /*
3972 * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3973 */
3974 static void
igb_set_internal_phy_loopback(igb_t * igb)3975 igb_set_internal_phy_loopback(igb_t *igb)
3976 {
3977 struct e1000_hw *hw;
3978 uint32_t ctrl_ext;
3979 uint16_t phy_ctrl;
3980 uint16_t phy_pconf;
3981
3982 hw = &igb->hw;
3983
3984 /* Set link mode to PHY (00b) in the Extended Control register */
3985 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3986 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3987 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3988
3989 /*
3990 * Set PHY control register (0x4140):
3991 * Set full duplex mode
3992 * Set loopback bit
3993 * Clear auto-neg enable bit
3994 * Set PHY speed
3995 */
3996 phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3997 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3998
3999 /* Set the link disable bit in the Port Configuration register */
4000 (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
4001 phy_pconf |= (uint16_t)1 << 14;
4002 (void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
4003 }
4004
4005 /*
4006 * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
4007 */
4008 static void
igb_set_internal_serdes_loopback(igb_t * igb)4009 igb_set_internal_serdes_loopback(igb_t *igb)
4010 {
4011 struct e1000_hw *hw;
4012 uint32_t ctrl_ext;
4013 uint32_t ctrl;
4014 uint32_t pcs_lctl;
4015 uint32_t connsw;
4016
4017 hw = &igb->hw;
4018
4019 /* Set link mode to SerDes (11b) in the Extended Control register */
4020 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4021 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
4022 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4023
4024 /* Configure the SerDes to loopback */
4025 E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
4026
4027 /* Set Device Control register */
4028 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4029 ctrl |= (E1000_CTRL_FD | /* Force full duplex */
4030 E1000_CTRL_SLU); /* Force link up */
4031 ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
4032 E1000_CTRL_TFCE | /* Disable transmit flow control */
4033 E1000_CTRL_LRST); /* Clear link reset */
4034 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4035
4036 /* Set PCS Link Control register */
4037 pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
4038 pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
4039 E1000_PCS_LCTL_FSD |
4040 E1000_PCS_LCTL_FDV_FULL |
4041 E1000_PCS_LCTL_FLV_LINK_UP);
4042 pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
4043 E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
4044
4045 /* Set the Copper/Fiber Switch Control - CONNSW register */
4046 connsw = E1000_READ_REG(hw, E1000_CONNSW);
4047 connsw &= ~E1000_CONNSW_ENRGSRC;
4048 E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
4049 }
4050
4051 /*
4052 * igb_intr_rx_work - rx processing of ISR
4053 */
4054 static void
igb_intr_rx_work(igb_rx_ring_t * rx_ring)4055 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
4056 {
4057 mblk_t *mp;
4058
4059 mutex_enter(&rx_ring->rx_lock);
4060 mp = igb_rx(rx_ring, IGB_NO_POLL);
4061 mutex_exit(&rx_ring->rx_lock);
4062
4063 if (mp != NULL)
4064 mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
4065 rx_ring->ring_gen_num);
4066 }
4067
4068 /*
4069 * igb_intr_tx_work - tx processing of ISR
4070 */
4071 static void
igb_intr_tx_work(igb_tx_ring_t * tx_ring)4072 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
4073 {
4074 igb_t *igb = tx_ring->igb;
4075
4076 /* Recycle the tx descriptors */
4077 tx_ring->tx_recycle(tx_ring);
4078
4079 /* Schedule the re-transmit */
4080 if (tx_ring->reschedule &&
4081 (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
4082 tx_ring->reschedule = B_FALSE;
4083 mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
4084 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4085 }
4086 }
4087
4088 /*
4089 * igb_intr_link_work - link-status-change processing of ISR
4090 */
4091 static void
igb_intr_link_work(igb_t * igb)4092 igb_intr_link_work(igb_t *igb)
4093 {
4094 boolean_t link_changed;
4095
4096 igb_stop_watchdog_timer(igb);
4097
4098 mutex_enter(&igb->gen_lock);
4099
4100 /*
4101 * Because we got a link-status-change interrupt, force
4102 * e1000_check_for_link() to look at phy
4103 */
4104 igb->hw.mac.get_link_status = true;
4105
4106 /* igb_link_check takes care of link status change */
4107 link_changed = igb_link_check(igb);
4108
4109 /* Get new phy state */
4110 igb_get_phy_state(igb);
4111
4112 mutex_exit(&igb->gen_lock);
4113
4114 if (link_changed)
4115 mac_link_update(igb->mac_hdl, igb->link_state);
4116
4117 igb_start_watchdog_timer(igb);
4118 }
4119
4120 /*
4121 * igb_intr_legacy - Interrupt handler for legacy interrupts
4122 */
4123 static uint_t
igb_intr_legacy(void * arg1,void * arg2)4124 igb_intr_legacy(void *arg1, void *arg2)
4125 {
4126 igb_t *igb = (igb_t *)arg1;
4127 igb_tx_ring_t *tx_ring;
4128 uint32_t icr;
4129 mblk_t *mp;
4130 boolean_t tx_reschedule;
4131 boolean_t link_changed;
4132 uint_t result;
4133
4134 _NOTE(ARGUNUSED(arg2));
4135
4136 mutex_enter(&igb->gen_lock);
4137
4138 if (igb->igb_state & IGB_SUSPENDED) {
4139 mutex_exit(&igb->gen_lock);
4140 return (DDI_INTR_UNCLAIMED);
4141 }
4142
4143 mp = NULL;
4144 tx_reschedule = B_FALSE;
4145 link_changed = B_FALSE;
4146 icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4147
4148 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4149 mutex_exit(&igb->gen_lock);
4150 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4151 atomic_or_32(&igb->igb_state, IGB_ERROR);
4152 return (DDI_INTR_UNCLAIMED);
4153 }
4154
4155 if (icr & E1000_ICR_INT_ASSERTED) {
4156 /*
4157 * E1000_ICR_INT_ASSERTED bit was set:
4158 * Read(Clear) the ICR, claim this interrupt,
4159 * look for work to do.
4160 */
4161 ASSERT(igb->num_rx_rings == 1);
4162 ASSERT(igb->num_tx_rings == 1);
4163
4164 /* Make sure all interrupt causes cleared */
4165 (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4166
4167 if (icr & E1000_ICR_RXT0) {
4168 mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
4169 }
4170
4171 if (icr & E1000_ICR_TXDW) {
4172 tx_ring = &igb->tx_rings[0];
4173
4174 /* Recycle the tx descriptors */
4175 tx_ring->tx_recycle(tx_ring);
4176
4177 /* Schedule the re-transmit */
4178 tx_reschedule = (tx_ring->reschedule &&
4179 (tx_ring->tbd_free >= igb->tx_resched_thresh));
4180 }
4181
4182 if (icr & E1000_ICR_LSC) {
4183 /*
4184 * Because we got a link-status-change interrupt, force
4185 * e1000_check_for_link() to look at phy
4186 */
4187 igb->hw.mac.get_link_status = true;
4188
4189 /* igb_link_check takes care of link status change */
4190 link_changed = igb_link_check(igb);
4191
4192 /* Get new phy state */
4193 igb_get_phy_state(igb);
4194 }
4195
4196 if (icr & E1000_ICR_DRSTA) {
4197 /* 82580 Full Device Reset needed */
4198 atomic_or_32(&igb->igb_state, IGB_STALL);
4199 }
4200
4201 result = DDI_INTR_CLAIMED;
4202 } else {
4203 /*
4204 * E1000_ICR_INT_ASSERTED bit was not set:
4205 * Don't claim this interrupt.
4206 */
4207 result = DDI_INTR_UNCLAIMED;
4208 }
4209
4210 mutex_exit(&igb->gen_lock);
4211
4212 /*
4213 * Do the following work outside of the gen_lock
4214 */
4215 if (mp != NULL)
4216 mac_rx(igb->mac_hdl, NULL, mp);
4217
4218 if (tx_reschedule) {
4219 tx_ring->reschedule = B_FALSE;
4220 mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4221 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4222 }
4223
4224 if (link_changed)
4225 mac_link_update(igb->mac_hdl, igb->link_state);
4226
4227 return (result);
4228 }
4229
4230 /*
4231 * igb_intr_msi - Interrupt handler for MSI
4232 */
4233 static uint_t
igb_intr_msi(void * arg1,void * arg2)4234 igb_intr_msi(void *arg1, void *arg2)
4235 {
4236 igb_t *igb = (igb_t *)arg1;
4237 uint32_t icr;
4238
4239 _NOTE(ARGUNUSED(arg2));
4240
4241 icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4242
4243 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4244 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4245 atomic_or_32(&igb->igb_state, IGB_ERROR);
4246 return (DDI_INTR_CLAIMED);
4247 }
4248
4249 /* Make sure all interrupt causes cleared */
4250 (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4251
4252 /*
4253 * For MSI interrupt, we have only one vector,
4254 * so we have only one rx ring and one tx ring enabled.
4255 */
4256 ASSERT(igb->num_rx_rings == 1);
4257 ASSERT(igb->num_tx_rings == 1);
4258
4259 if (icr & E1000_ICR_RXT0) {
4260 igb_intr_rx_work(&igb->rx_rings[0]);
4261 }
4262
4263 if (icr & E1000_ICR_TXDW) {
4264 igb_intr_tx_work(&igb->tx_rings[0]);
4265 }
4266
4267 if (icr & E1000_ICR_LSC) {
4268 igb_intr_link_work(igb);
4269 }
4270
4271 if (icr & E1000_ICR_DRSTA) {
4272 /* 82580 Full Device Reset needed */
4273 atomic_or_32(&igb->igb_state, IGB_STALL);
4274 }
4275
4276 return (DDI_INTR_CLAIMED);
4277 }
4278
4279 /*
4280 * igb_intr_rx - Interrupt handler for rx
4281 */
4282 static uint_t
igb_intr_rx(void * arg1,void * arg2)4283 igb_intr_rx(void *arg1, void *arg2)
4284 {
4285 igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4286
4287 _NOTE(ARGUNUSED(arg2));
4288
4289 /*
4290 * Only used via MSI-X vector so don't check cause bits
4291 * and only clean the given ring.
4292 */
4293 igb_intr_rx_work(rx_ring);
4294
4295 return (DDI_INTR_CLAIMED);
4296 }
4297
4298 /*
4299 * igb_intr_tx - Interrupt handler for tx
4300 */
4301 static uint_t
igb_intr_tx(void * arg1,void * arg2)4302 igb_intr_tx(void *arg1, void *arg2)
4303 {
4304 igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4305
4306 _NOTE(ARGUNUSED(arg2));
4307
4308 /*
4309 * Only used via MSI-X vector so don't check cause bits
4310 * and only clean the given ring.
4311 */
4312 igb_intr_tx_work(tx_ring);
4313
4314 return (DDI_INTR_CLAIMED);
4315 }
4316
4317 /*
4318 * igb_intr_tx_other - Interrupt handler for both tx and other
4319 *
4320 */
4321 static uint_t
igb_intr_tx_other(void * arg1,void * arg2)4322 igb_intr_tx_other(void *arg1, void *arg2)
4323 {
4324 igb_t *igb = (igb_t *)arg1;
4325 uint32_t icr;
4326
4327 _NOTE(ARGUNUSED(arg2));
4328
4329 icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4330
4331 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4332 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4333 atomic_or_32(&igb->igb_state, IGB_ERROR);
4334 return (DDI_INTR_CLAIMED);
4335 }
4336
4337 /*
4338 * Look for tx reclaiming work first. Remember, in the
4339 * case of only interrupt sharing, only one tx ring is
4340 * used
4341 */
4342 igb_intr_tx_work(&igb->tx_rings[0]);
4343
4344 /*
4345 * Check for "other" causes.
4346 */
4347 if (icr & E1000_ICR_LSC) {
4348 igb_intr_link_work(igb);
4349 }
4350
4351 /*
4352 * The DOUTSYNC bit indicates a tx packet dropped because
4353 * DMA engine gets "out of sync". There isn't a real fix
4354 * for this. The Intel recommendation is to count the number
4355 * of occurrences so user can detect when it is happening.
4356 * The issue is non-fatal and there's no recovery action
4357 * available.
4358 */
4359 if (icr & E1000_ICR_DOUTSYNC) {
4360 IGB_STAT(igb->dout_sync);
4361 }
4362
4363 if (icr & E1000_ICR_DRSTA) {
4364 /* 82580 Full Device Reset needed */
4365 atomic_or_32(&igb->igb_state, IGB_STALL);
4366 }
4367
4368 return (DDI_INTR_CLAIMED);
4369 }
4370
4371 /*
4372 * igb_alloc_intrs - Allocate interrupts for the driver
4373 *
4374 * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4375 * if not successful, try Legacy.
4376 * igb->intr_force can be used to force sequence to start with
4377 * any of the 3 types.
4378 * If MSI-X is not used, number of tx/rx rings is forced to 1.
4379 */
4380 static int
igb_alloc_intrs(igb_t * igb)4381 igb_alloc_intrs(igb_t *igb)
4382 {
4383 dev_info_t *devinfo;
4384 int intr_types;
4385 int rc;
4386
4387 devinfo = igb->dip;
4388
4389 /* Get supported interrupt types */
4390 rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4391
4392 if (rc != DDI_SUCCESS) {
4393 igb_log(igb, IGB_LOG_ERROR,
4394 "Get supported interrupt types failed: %d", rc);
4395 return (IGB_FAILURE);
4396 }
4397 igb_log(igb, IGB_LOG_INFO, "Supported interrupt types: %x",
4398 intr_types);
4399
4400 igb->intr_type = 0;
4401
4402 /* Install MSI-X interrupts */
4403 if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4404 (igb->intr_force <= IGB_INTR_MSIX)) {
4405 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4406
4407 if (rc == IGB_SUCCESS)
4408 return (IGB_SUCCESS);
4409
4410 igb_log(igb, IGB_LOG_INFO,
4411 "Allocate MSI-X failed, trying MSI interrupts...");
4412 }
4413
4414 /* MSI-X not used, force rings to 1 */
4415 igb->num_rx_rings = 1;
4416 igb->num_tx_rings = 1;
4417 igb_log(igb, IGB_LOG_INFO,
4418 "MSI-X not used, force rx and tx queue number to 1");
4419
4420 /* Install MSI interrupts */
4421 if ((intr_types & DDI_INTR_TYPE_MSI) &&
4422 (igb->intr_force <= IGB_INTR_MSI)) {
4423 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4424
4425 if (rc == IGB_SUCCESS)
4426 return (IGB_SUCCESS);
4427
4428 igb_log(igb, IGB_LOG_INFO,
4429 "Allocate MSI failed, trying Legacy interrupts...");
4430 }
4431
4432 /* Install legacy interrupts */
4433 if (intr_types & DDI_INTR_TYPE_FIXED) {
4434 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4435
4436 if (rc == IGB_SUCCESS)
4437 return (IGB_SUCCESS);
4438
4439 igb_log(igb, IGB_LOG_INFO,
4440 "Allocate Legacy interrupts failed");
4441 }
4442
4443 /* If none of the 3 types succeeded, return failure */
4444 return (IGB_FAILURE);
4445 }
4446
4447 /*
4448 * igb_alloc_intr_handles - Allocate interrupt handles.
4449 *
4450 * For legacy and MSI, only 1 handle is needed. For MSI-X,
4451 * if fewer than 2 handles are available, return failure.
4452 * Upon success, this sets the number of Rx rings to a number that
4453 * matches the handles available for Rx interrupts.
4454 */
4455 static int
igb_alloc_intr_handles(igb_t * igb,int intr_type)4456 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4457 {
4458 dev_info_t *devinfo;
4459 int orig, request, count, avail, actual;
4460 int diff, minimum;
4461 int rc;
4462
4463 devinfo = igb->dip;
4464
4465 switch (intr_type) {
4466 case DDI_INTR_TYPE_FIXED:
4467 request = 1; /* Request 1 legacy interrupt handle */
4468 minimum = 1;
4469 igb_log(igb, IGB_LOG_INFO, "interrupt type: legacy");
4470 break;
4471
4472 case DDI_INTR_TYPE_MSI:
4473 request = 1; /* Request 1 MSI interrupt handle */
4474 minimum = 1;
4475 igb_log(igb, IGB_LOG_INFO, "interrupt type: MSI");
4476 break;
4477
4478 case DDI_INTR_TYPE_MSIX:
4479 /*
4480 * Number of vectors for the adapter is
4481 * # rx rings + # tx rings
4482 * One of tx vectors is for tx & other
4483 */
4484 request = igb->num_rx_rings + igb->num_tx_rings;
4485 orig = request;
4486 minimum = 2;
4487 igb_log(igb, IGB_LOG_INFO, "interrupt type: MSI-X");
4488 break;
4489
4490 default:
4491 igb_log(igb, IGB_LOG_INFO,
4492 "invalid call to igb_alloc_intr_handles(): %d\n",
4493 intr_type);
4494 return (IGB_FAILURE);
4495 }
4496 igb_log(igb, IGB_LOG_INFO,
4497 "interrupt handles requested: %d minimum: %d",
4498 request, minimum);
4499
4500 /*
4501 * Get number of supported interrupts
4502 */
4503 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4504 if ((rc != DDI_SUCCESS) || (count < minimum)) {
4505 igb_log(igb, IGB_LOG_INFO,
4506 "Get supported interrupt number failed. "
4507 "Return: %d, count: %d", rc, count);
4508 return (IGB_FAILURE);
4509 }
4510 igb_log(igb, IGB_LOG_INFO, "interrupts supported: %d", count);
4511
4512 /*
4513 * Get number of available interrupts
4514 */
4515 rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4516 if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4517 igb_log(igb, IGB_LOG_INFO,
4518 "Get available interrupt number failed. "
4519 "Return: %d, available: %d", rc, avail);
4520 return (IGB_FAILURE);
4521 }
4522 igb_log(igb, IGB_LOG_INFO, "interrupts available: %d", avail);
4523
4524 if (avail < request) {
4525 igb_log(igb, IGB_LOG_INFO,
4526 "Request %d handles, %d available",
4527 request, avail);
4528 request = avail;
4529 }
4530
4531 actual = 0;
4532 igb->intr_cnt = 0;
4533
4534 /*
4535 * Allocate an array of interrupt handles
4536 */
4537 igb->intr_size = request * sizeof (ddi_intr_handle_t);
4538 igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4539
4540 rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4541 request, &actual, DDI_INTR_ALLOC_NORMAL);
4542 if (rc != DDI_SUCCESS) {
4543 igb_log(igb, IGB_LOG_INFO, "Allocate interrupts failed. "
4544 "return: %d, request: %d, actual: %d",
4545 rc, request, actual);
4546 goto alloc_handle_fail;
4547 }
4548 igb_log(igb, IGB_LOG_INFO, "interrupts actually allocated: %d", actual);
4549
4550 igb->intr_cnt = actual;
4551
4552 if (actual < minimum) {
4553 igb_log(igb, IGB_LOG_INFO,
4554 "Insufficient interrupt handles allocated: %d",
4555 actual);
4556 goto alloc_handle_fail;
4557 }
4558
4559 /*
4560 * For MSI-X, actual might force us to reduce number of tx & rx rings
4561 */
4562 if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4563 diff = orig - actual;
4564 if (diff < igb->num_tx_rings) {
4565 igb_log(igb, IGB_LOG_INFO,
4566 "MSI-X vectors force Tx queue number to %d",
4567 igb->num_tx_rings - diff);
4568 igb->num_tx_rings -= diff;
4569 } else {
4570 igb_log(igb, IGB_LOG_INFO,
4571 "MSI-X vectors force Tx queue number to 1");
4572 igb->num_tx_rings = 1;
4573
4574 igb_log(igb, IGB_LOG_INFO,
4575 "MSI-X vectors force Rx queue number to %d",
4576 actual - 1);
4577 igb->num_rx_rings = actual - 1;
4578 }
4579 }
4580
4581 /*
4582 * Get priority for first vector, assume remaining are all the same
4583 */
4584 rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4585 if (rc != DDI_SUCCESS) {
4586 igb_log(igb, IGB_LOG_INFO,
4587 "Get interrupt priority failed: %d", rc);
4588 goto alloc_handle_fail;
4589 }
4590
4591 rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4592 if (rc != DDI_SUCCESS) {
4593 igb_log(igb, IGB_LOG_INFO,
4594 "Get interrupt cap failed: %d", rc);
4595 goto alloc_handle_fail;
4596 }
4597
4598 igb->intr_type = intr_type;
4599
4600 return (IGB_SUCCESS);
4601
4602 alloc_handle_fail:
4603 igb_rem_intrs(igb);
4604
4605 return (IGB_FAILURE);
4606 }
4607
4608 /*
4609 * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4610 *
4611 * Before adding the interrupt handlers, the interrupt vectors have
4612 * been allocated, and the rx/tx rings have also been allocated.
4613 */
4614 static int
igb_add_intr_handlers(igb_t * igb)4615 igb_add_intr_handlers(igb_t *igb)
4616 {
4617 igb_rx_ring_t *rx_ring;
4618 igb_tx_ring_t *tx_ring;
4619 int vector;
4620 int rc;
4621 int i;
4622
4623 vector = 0;
4624
4625 switch (igb->intr_type) {
4626 case DDI_INTR_TYPE_MSIX:
4627 /* Add interrupt handler for tx + other */
4628 tx_ring = &igb->tx_rings[0];
4629 rc = ddi_intr_add_handler(igb->htable[vector],
4630 (ddi_intr_handler_t *)igb_intr_tx_other,
4631 (void *)igb, NULL);
4632
4633 if (rc != DDI_SUCCESS) {
4634 igb_log(igb, IGB_LOG_INFO,
4635 "Add tx/other interrupt handler failed: %d", rc);
4636 return (IGB_FAILURE);
4637 }
4638 tx_ring->intr_vector = vector;
4639 vector++;
4640
4641 /* Add interrupt handler for each rx ring */
4642 for (i = 0; i < igb->num_rx_rings; i++) {
4643 rx_ring = &igb->rx_rings[i];
4644
4645 rc = ddi_intr_add_handler(igb->htable[vector],
4646 (ddi_intr_handler_t *)igb_intr_rx,
4647 (void *)rx_ring, NULL);
4648
4649 if (rc != DDI_SUCCESS) {
4650 igb_log(igb, IGB_LOG_INFO,
4651 "Add rx interrupt handler failed. "
4652 "return: %d, rx ring: %d", rc, i);
4653 for (vector--; vector >= 0; vector--) {
4654 (void) ddi_intr_remove_handler(
4655 igb->htable[vector]);
4656 }
4657 return (IGB_FAILURE);
4658 }
4659
4660 rx_ring->intr_vector = vector;
4661
4662 vector++;
4663 }
4664
4665 /* Add interrupt handler for each tx ring from 2nd ring */
4666 for (i = 1; i < igb->num_tx_rings; i++) {
4667 tx_ring = &igb->tx_rings[i];
4668
4669 rc = ddi_intr_add_handler(igb->htable[vector],
4670 (ddi_intr_handler_t *)igb_intr_tx,
4671 (void *)tx_ring, NULL);
4672
4673 if (rc != DDI_SUCCESS) {
4674 igb_log(igb, IGB_LOG_INFO,
4675 "Add tx interrupt handler failed. "
4676 "return: %d, tx ring: %d", rc, i);
4677 for (vector--; vector >= 0; vector--) {
4678 (void) ddi_intr_remove_handler(
4679 igb->htable[vector]);
4680 }
4681 return (IGB_FAILURE);
4682 }
4683
4684 tx_ring->intr_vector = vector;
4685
4686 vector++;
4687 }
4688
4689 break;
4690
4691 case DDI_INTR_TYPE_MSI:
4692 /* Add interrupt handlers for the only vector */
4693 rc = ddi_intr_add_handler(igb->htable[vector],
4694 (ddi_intr_handler_t *)igb_intr_msi,
4695 (void *)igb, NULL);
4696
4697 if (rc != DDI_SUCCESS) {
4698 igb_log(igb, IGB_LOG_INFO,
4699 "Add MSI interrupt handler failed: %d", rc);
4700 return (IGB_FAILURE);
4701 }
4702
4703 rx_ring = &igb->rx_rings[0];
4704 rx_ring->intr_vector = vector;
4705
4706 vector++;
4707 break;
4708
4709 case DDI_INTR_TYPE_FIXED:
4710 /* Add interrupt handlers for the only vector */
4711 rc = ddi_intr_add_handler(igb->htable[vector],
4712 (ddi_intr_handler_t *)igb_intr_legacy,
4713 (void *)igb, NULL);
4714
4715 if (rc != DDI_SUCCESS) {
4716 igb_log(igb, IGB_LOG_INFO,
4717 "Add legacy interrupt handler failed: %d", rc);
4718 return (IGB_FAILURE);
4719 }
4720
4721 rx_ring = &igb->rx_rings[0];
4722 rx_ring->intr_vector = vector;
4723
4724 vector++;
4725 break;
4726
4727 default:
4728 return (IGB_FAILURE);
4729 }
4730
4731 ASSERT(vector == igb->intr_cnt);
4732
4733 return (IGB_SUCCESS);
4734 }
4735
4736 /*
4737 * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4738 *
4739 * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4740 */
4741 static void
igb_setup_msix_82575(igb_t * igb)4742 igb_setup_msix_82575(igb_t *igb)
4743 {
4744 uint32_t eims = 0;
4745 int i, vector;
4746 struct e1000_hw *hw = &igb->hw;
4747
4748 /*
4749 * Set vector for tx ring 0 and other causes.
4750 * NOTE assumption that it is vector 0.
4751 */
4752 vector = 0;
4753
4754 igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4755 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4756 vector++;
4757
4758 for (i = 0; i < igb->num_rx_rings; i++) {
4759 /*
4760 * Set vector for each rx ring
4761 */
4762 eims = (E1000_EICR_RX_QUEUE0 << i);
4763 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4764
4765 /*
4766 * Accumulate bits to enable in
4767 * igb_enable_adapter_interrupts_82575()
4768 */
4769 igb->eims_mask |= eims;
4770
4771 vector++;
4772 }
4773
4774 for (i = 1; i < igb->num_tx_rings; i++) {
4775 /*
4776 * Set vector for each tx ring from 2nd tx ring
4777 */
4778 eims = (E1000_EICR_TX_QUEUE0 << i);
4779 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4780
4781 /*
4782 * Accumulate bits to enable in
4783 * igb_enable_adapter_interrupts_82575()
4784 */
4785 igb->eims_mask |= eims;
4786
4787 vector++;
4788 }
4789
4790 ASSERT(vector == igb->intr_cnt);
4791
4792 /*
4793 * Disable IAM for ICR interrupt bits
4794 */
4795 E1000_WRITE_REG(hw, E1000_IAM, 0);
4796 E1000_WRITE_FLUSH(hw);
4797 }
4798
4799 /*
4800 * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4801 *
4802 * 82576 uses a table based method for assigning vectors. Each queue has a
4803 * single entry in the table to which we write a vector number along with a
4804 * "valid" bit. The entry is a single byte in a 4-byte register. Vectors
4805 * take a different position in the 4-byte register depending on whether
4806 * they are numbered above or below 8.
4807 */
4808 static void
igb_setup_msix_82576(igb_t * igb)4809 igb_setup_msix_82576(igb_t *igb)
4810 {
4811 struct e1000_hw *hw = &igb->hw;
4812 uint32_t ivar, index, vector;
4813 int i;
4814
4815 /* must enable msi-x capability before IVAR settings */
4816 E1000_WRITE_REG(hw, E1000_GPIE,
4817 (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4818
4819 /*
4820 * Set vector for tx ring 0 and other causes.
4821 * NOTE assumption that it is vector 0.
4822 * This is also interdependent with installation of interrupt service
4823 * routines in igb_add_intr_handlers().
4824 */
4825
4826 /* assign "other" causes to vector 0 */
4827 vector = 0;
4828 ivar = ((vector | E1000_IVAR_VALID) << 8);
4829 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4830
4831 /* assign tx ring 0 to vector 0 */
4832 ivar = ((vector | E1000_IVAR_VALID) << 8);
4833 E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4834
4835 /* prepare to enable tx & other interrupt causes */
4836 igb->eims_mask = (1 << vector);
4837
4838 vector ++;
4839 for (i = 0; i < igb->num_rx_rings; i++) {
4840 /*
4841 * Set vector for each rx ring
4842 */
4843 index = (i & 0x7);
4844 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4845
4846 if (i < 8) {
4847 /* vector goes into low byte of register */
4848 ivar = ivar & 0xFFFFFF00;
4849 ivar |= (vector | E1000_IVAR_VALID);
4850 } else {
4851 /* vector goes into third byte of register */
4852 ivar = ivar & 0xFF00FFFF;
4853 ivar |= ((vector | E1000_IVAR_VALID) << 16);
4854 }
4855 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4856
4857 /* Accumulate interrupt-cause bits to enable */
4858 igb->eims_mask |= (1 << vector);
4859
4860 vector ++;
4861 }
4862
4863 for (i = 1; i < igb->num_tx_rings; i++) {
4864 /*
4865 * Set vector for each tx ring from 2nd tx ring.
4866 * Note assumption that tx vectors numericall follow rx vectors.
4867 */
4868 index = (i & 0x7);
4869 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4870
4871 if (i < 8) {
4872 /* vector goes into second byte of register */
4873 ivar = ivar & 0xFFFF00FF;
4874 ivar |= ((vector | E1000_IVAR_VALID) << 8);
4875 } else {
4876 /* vector goes into fourth byte of register */
4877 ivar = ivar & 0x00FFFFFF;
4878 ivar |= (vector | E1000_IVAR_VALID) << 24;
4879 }
4880 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4881
4882 /* Accumulate interrupt-cause bits to enable */
4883 igb->eims_mask |= (1 << vector);
4884
4885 vector ++;
4886 }
4887
4888 ASSERT(vector == igb->intr_cnt);
4889 }
4890
4891 /*
4892 * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4893 *
4894 * 82580 uses same table approach at 82576 but has fewer entries. Each
4895 * queue has a single entry in the table to which we write a vector number
4896 * along with a "valid" bit. Vectors take a different position in the
4897 * register depending on * whether * they are numbered above or below 4.
4898 */
4899 static void
igb_setup_msix_82580(igb_t * igb)4900 igb_setup_msix_82580(igb_t *igb)
4901 {
4902 struct e1000_hw *hw = &igb->hw;
4903 uint32_t ivar, index, vector;
4904 int i;
4905
4906 /* must enable msi-x capability before IVAR settings */
4907 E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4908 E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4909 /*
4910 * Set vector for tx ring 0 and other causes.
4911 * NOTE assumption that it is vector 0.
4912 * This is also interdependent with installation of interrupt service
4913 * routines in igb_add_intr_handlers().
4914 */
4915
4916 /* assign "other" causes to vector 0 */
4917 vector = 0;
4918 ivar = ((vector | E1000_IVAR_VALID) << 8);
4919 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4920
4921 /* assign tx ring 0 to vector 0 */
4922 ivar = ((vector | E1000_IVAR_VALID) << 8);
4923 E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4924
4925 /* prepare to enable tx & other interrupt causes */
4926 igb->eims_mask = (1 << vector);
4927
4928 vector ++;
4929
4930 for (i = 0; i < igb->num_rx_rings; i++) {
4931 /*
4932 * Set vector for each rx ring
4933 */
4934 index = (i >> 1);
4935 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4936
4937 if (i & 1) {
4938 /* vector goes into third byte of register */
4939 ivar = ivar & 0xFF00FFFF;
4940 ivar |= ((vector | E1000_IVAR_VALID) << 16);
4941 } else {
4942 /* vector goes into low byte of register */
4943 ivar = ivar & 0xFFFFFF00;
4944 ivar |= (vector | E1000_IVAR_VALID);
4945 }
4946 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4947
4948 /* Accumulate interrupt-cause bits to enable */
4949 igb->eims_mask |= (1 << vector);
4950
4951 vector ++;
4952 }
4953
4954 for (i = 1; i < igb->num_tx_rings; i++) {
4955 /*
4956 * Set vector for each tx ring from 2nd tx ring.
4957 * Note assumption that tx vectors numericall follow rx vectors.
4958 */
4959 index = (i >> 1);
4960 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4961
4962 if (i & 1) {
4963 /* vector goes into high byte of register */
4964 ivar = ivar & 0x00FFFFFF;
4965 ivar |= ((vector | E1000_IVAR_VALID) << 24);
4966 } else {
4967 /* vector goes into second byte of register */
4968 ivar = ivar & 0xFFFF00FF;
4969 ivar |= (vector | E1000_IVAR_VALID) << 8;
4970 }
4971 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4972
4973 /* Accumulate interrupt-cause bits to enable */
4974 igb->eims_mask |= (1 << vector);
4975
4976 vector ++;
4977 }
4978 ASSERT(vector == igb->intr_cnt);
4979 }
4980
4981 /*
4982 * igb_rem_intr_handlers - remove the interrupt handlers
4983 */
4984 static void
igb_rem_intr_handlers(igb_t * igb)4985 igb_rem_intr_handlers(igb_t *igb)
4986 {
4987 int i;
4988 int rc;
4989
4990 for (i = 0; i < igb->intr_cnt; i++) {
4991 rc = ddi_intr_remove_handler(igb->htable[i]);
4992 if (rc != DDI_SUCCESS) {
4993 igb_log(igb, IGB_LOG_INFO,
4994 "Remove intr handler failed: %d", rc);
4995 }
4996 }
4997 }
4998
4999 /*
5000 * igb_rem_intrs - remove the allocated interrupts
5001 */
5002 static void
igb_rem_intrs(igb_t * igb)5003 igb_rem_intrs(igb_t *igb)
5004 {
5005 int i;
5006 int rc;
5007
5008 for (i = 0; i < igb->intr_cnt; i++) {
5009 rc = ddi_intr_free(igb->htable[i]);
5010 if (rc != DDI_SUCCESS) {
5011 igb_log(igb, IGB_LOG_INFO,
5012 "Free intr failed: %d", rc);
5013 }
5014 }
5015
5016 kmem_free(igb->htable, igb->intr_size);
5017 igb->htable = NULL;
5018 }
5019
5020 /*
5021 * igb_enable_intrs - enable all the ddi interrupts
5022 */
5023 static int
igb_enable_intrs(igb_t * igb)5024 igb_enable_intrs(igb_t *igb)
5025 {
5026 int i;
5027 int rc;
5028
5029 /* Enable interrupts */
5030 if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
5031 /* Call ddi_intr_block_enable() for MSI */
5032 rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
5033 if (rc != DDI_SUCCESS) {
5034 igb_log(igb, IGB_LOG_ERROR,
5035 "Enable block intr failed: %d", rc);
5036 return (IGB_FAILURE);
5037 }
5038 } else {
5039 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
5040 for (i = 0; i < igb->intr_cnt; i++) {
5041 rc = ddi_intr_enable(igb->htable[i]);
5042 if (rc != DDI_SUCCESS) {
5043 igb_log(igb, IGB_LOG_ERROR,
5044 "Enable intr failed: %d", rc);
5045 return (IGB_FAILURE);
5046 }
5047 }
5048 }
5049
5050 return (IGB_SUCCESS);
5051 }
5052
5053 /*
5054 * igb_disable_intrs - disable all the ddi interrupts
5055 */
5056 static int
igb_disable_intrs(igb_t * igb)5057 igb_disable_intrs(igb_t *igb)
5058 {
5059 int i;
5060 int rc;
5061
5062 /* Disable all interrupts */
5063 if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
5064 rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
5065 if (rc != DDI_SUCCESS) {
5066 igb_log(igb, IGB_LOG_ERROR,
5067 "Disable block intr failed: %d", rc);
5068 return (IGB_FAILURE);
5069 }
5070 } else {
5071 for (i = 0; i < igb->intr_cnt; i++) {
5072 rc = ddi_intr_disable(igb->htable[i]);
5073 if (rc != DDI_SUCCESS) {
5074 igb_log(igb, IGB_LOG_ERROR,
5075 "Disable intr failed: %d", rc);
5076 return (IGB_FAILURE);
5077 }
5078 }
5079 }
5080
5081 return (IGB_SUCCESS);
5082 }
5083
5084 /*
5085 * igb_get_phy_state - Get and save the parameters read from PHY registers
5086 */
5087 static void
igb_get_phy_state(igb_t * igb)5088 igb_get_phy_state(igb_t *igb)
5089 {
5090 struct e1000_hw *hw = &igb->hw;
5091 uint16_t phy_ctrl;
5092 uint16_t phy_status;
5093 uint16_t phy_an_adv;
5094 uint16_t phy_an_exp;
5095 uint16_t phy_ext_status;
5096 uint16_t phy_1000t_ctrl;
5097 uint16_t phy_1000t_status;
5098 uint16_t phy_lp_able;
5099
5100 ASSERT(mutex_owned(&igb->gen_lock));
5101
5102 if (hw->phy.media_type == e1000_media_type_copper) {
5103 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5104 (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
5105 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
5106 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
5107 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
5108 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
5109 (void) e1000_read_phy_reg(hw,
5110 PHY_1000T_STATUS, &phy_1000t_status);
5111 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
5112
5113 igb->param_autoneg_cap =
5114 (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5115 igb->param_pause_cap =
5116 (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5117 igb->param_asym_pause_cap =
5118 (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5119 igb->param_1000fdx_cap =
5120 ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5121 (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5122 igb->param_1000hdx_cap =
5123 ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5124 (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5125 igb->param_100t4_cap =
5126 (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5127 igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
5128 (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5129 igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
5130 (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5131 igb->param_10fdx_cap =
5132 (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5133 igb->param_10hdx_cap =
5134 (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5135 igb->param_rem_fault =
5136 (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
5137
5138 igb->param_adv_autoneg_cap = hw->mac.autoneg;
5139 igb->param_adv_pause_cap =
5140 (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5141 igb->param_adv_asym_pause_cap =
5142 (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5143 igb->param_adv_1000hdx_cap =
5144 (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5145 igb->param_adv_100t4_cap =
5146 (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5147 igb->param_adv_rem_fault =
5148 (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
5149 if (igb->param_adv_autoneg_cap == 1) {
5150 igb->param_adv_1000fdx_cap =
5151 (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5152 igb->param_adv_100fdx_cap =
5153 (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5154 igb->param_adv_100hdx_cap =
5155 (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5156 igb->param_adv_10fdx_cap =
5157 (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5158 igb->param_adv_10hdx_cap =
5159 (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5160 }
5161
5162 igb->param_lp_autoneg_cap =
5163 (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5164 igb->param_lp_pause_cap =
5165 (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5166 igb->param_lp_asym_pause_cap =
5167 (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5168 igb->param_lp_1000fdx_cap =
5169 (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5170 igb->param_lp_1000hdx_cap =
5171 (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5172 igb->param_lp_100t4_cap =
5173 (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5174 igb->param_lp_100fdx_cap =
5175 (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5176 igb->param_lp_100hdx_cap =
5177 (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5178 igb->param_lp_10fdx_cap =
5179 (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5180 igb->param_lp_10hdx_cap =
5181 (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5182 igb->param_lp_rem_fault =
5183 (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5184 } else {
5185 /*
5186 * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5187 */
5188 igb->param_autoneg_cap = 0;
5189 igb->param_pause_cap = 1;
5190 igb->param_asym_pause_cap = 1;
5191 igb->param_1000fdx_cap = 1;
5192 igb->param_1000hdx_cap = 0;
5193 igb->param_100t4_cap = 0;
5194 igb->param_100fdx_cap = 0;
5195 igb->param_100hdx_cap = 0;
5196 igb->param_10fdx_cap = 0;
5197 igb->param_10hdx_cap = 0;
5198
5199 igb->param_adv_autoneg_cap = 0;
5200 igb->param_adv_pause_cap = 1;
5201 igb->param_adv_asym_pause_cap = 1;
5202 igb->param_adv_1000fdx_cap = 1;
5203 igb->param_adv_1000hdx_cap = 0;
5204 igb->param_adv_100t4_cap = 0;
5205 igb->param_adv_100fdx_cap = 0;
5206 igb->param_adv_100hdx_cap = 0;
5207 igb->param_adv_10fdx_cap = 0;
5208 igb->param_adv_10hdx_cap = 0;
5209
5210 igb->param_lp_autoneg_cap = 0;
5211 igb->param_lp_pause_cap = 0;
5212 igb->param_lp_asym_pause_cap = 0;
5213 igb->param_lp_1000fdx_cap = 0;
5214 igb->param_lp_1000hdx_cap = 0;
5215 igb->param_lp_100t4_cap = 0;
5216 igb->param_lp_100fdx_cap = 0;
5217 igb->param_lp_100hdx_cap = 0;
5218 igb->param_lp_10fdx_cap = 0;
5219 igb->param_lp_10hdx_cap = 0;
5220 igb->param_lp_rem_fault = 0;
5221 }
5222 }
5223
5224 /*
5225 * synchronize the adv* and en* parameters.
5226 *
5227 * See comments in <sys/dld.h> for details of the *_en_*
5228 * parameters. The usage of ndd for setting adv parameters will
5229 * synchronize all the en parameters with the e1000g parameters,
5230 * implicitly disabling any settings made via dladm.
5231 */
5232 static void
igb_param_sync(igb_t * igb)5233 igb_param_sync(igb_t *igb)
5234 {
5235 igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5236 igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5237 igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5238 igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5239 igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5240 igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5241 igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5242 }
5243
5244 /*
5245 * igb_get_driver_control
5246 */
5247 static void
igb_get_driver_control(struct e1000_hw * hw)5248 igb_get_driver_control(struct e1000_hw *hw)
5249 {
5250 uint32_t ctrl_ext;
5251
5252 /* Notify firmware that driver is in control of device */
5253 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5254 ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5255 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5256 }
5257
5258 /*
5259 * igb_release_driver_control
5260 */
5261 static void
igb_release_driver_control(struct e1000_hw * hw)5262 igb_release_driver_control(struct e1000_hw *hw)
5263 {
5264 uint32_t ctrl_ext;
5265
5266 /* Notify firmware that driver is no longer in control of device */
5267 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5268 ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5269 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5270 }
5271
5272 /*
5273 * igb_atomic_reserve - Atomic decrease operation
5274 */
5275 int
igb_atomic_reserve(uint32_t * count_p,uint32_t n)5276 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5277 {
5278 uint32_t oldval;
5279 uint32_t newval;
5280
5281 /* ATOMICALLY */
5282 do {
5283 oldval = *count_p;
5284 if (oldval < n)
5285 return (-1);
5286 newval = oldval - n;
5287 } while (atomic_cas_32(count_p, oldval, newval) != oldval);
5288
5289 return (newval);
5290 }
5291
5292 /*
5293 * FMA support
5294 */
5295
5296 int
igb_check_acc_handle(ddi_acc_handle_t handle)5297 igb_check_acc_handle(ddi_acc_handle_t handle)
5298 {
5299 ddi_fm_error_t de;
5300
5301 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5302 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5303 return (de.fme_status);
5304 }
5305
5306 int
igb_check_dma_handle(ddi_dma_handle_t handle)5307 igb_check_dma_handle(ddi_dma_handle_t handle)
5308 {
5309 ddi_fm_error_t de;
5310
5311 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5312 return (de.fme_status);
5313 }
5314
5315 /*
5316 * The IO fault service error handling callback function
5317 */
5318 /*ARGSUSED*/
5319 static int
igb_fm_error_cb(dev_info_t * dip,ddi_fm_error_t * err,const void * impl_data)5320 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5321 {
5322 /*
5323 * as the driver can always deal with an error in any dma or
5324 * access handle, we can just return the fme_status value.
5325 */
5326 pci_ereport_post(dip, err, NULL);
5327 return (err->fme_status);
5328 }
5329
5330 static void
igb_fm_init(igb_t * igb)5331 igb_fm_init(igb_t *igb)
5332 {
5333 ddi_iblock_cookie_t iblk;
5334 int fma_dma_flag;
5335
5336 /* Only register with IO Fault Services if we have some capability */
5337 if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5338 igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5339 } else {
5340 igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5341 }
5342
5343 if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5344 fma_dma_flag = 1;
5345 } else {
5346 fma_dma_flag = 0;
5347 }
5348
5349 (void) igb_set_fma_flags(fma_dma_flag);
5350
5351 if (igb->fm_capabilities) {
5352
5353 /* Register capabilities with IO Fault Services */
5354 ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5355
5356 /*
5357 * Initialize pci ereport capabilities if ereport capable
5358 */
5359 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5360 DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5361 pci_ereport_setup(igb->dip);
5362
5363 /*
5364 * Register error callback if error callback capable
5365 */
5366 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5367 ddi_fm_handler_register(igb->dip,
5368 igb_fm_error_cb, (void*) igb);
5369 }
5370 }
5371
5372 static void
igb_fm_fini(igb_t * igb)5373 igb_fm_fini(igb_t *igb)
5374 {
5375 /* Only unregister FMA capabilities if we registered some */
5376 if (igb->fm_capabilities) {
5377
5378 /*
5379 * Release any resources allocated by pci_ereport_setup()
5380 */
5381 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5382 DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5383 pci_ereport_teardown(igb->dip);
5384
5385 /*
5386 * Un-register error callback if error callback capable
5387 */
5388 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5389 ddi_fm_handler_unregister(igb->dip);
5390
5391 /* Unregister from IO Fault Services */
5392 ddi_fm_fini(igb->dip);
5393 }
5394 }
5395
5396 void
igb_fm_ereport(igb_t * igb,char * detail)5397 igb_fm_ereport(igb_t *igb, char *detail)
5398 {
5399 uint64_t ena;
5400 char buf[FM_MAX_CLASS];
5401
5402 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5403 ena = fm_ena_generate(0, FM_ENA_FMT1);
5404 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5405 ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5406 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5407 }
5408 }
5409
5410 static int
igb_ufm_fill_image(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,ddi_ufm_image_t * imgp)5411 igb_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5412 ddi_ufm_image_t *imgp)
5413 {
5414 igb_t *igb = arg;
5415 const char *type;
5416
5417 if (imgno != 0) {
5418 return (EINVAL);
5419 }
5420
5421 ddi_ufm_image_set_desc(imgp, "NVM");
5422 ddi_ufm_image_set_nslots(imgp, 1);
5423 switch (igb->hw.nvm.type) {
5424 case e1000_nvm_eeprom_spi:
5425 type = "SPI EEPROM";
5426 break;
5427 case e1000_nvm_eeprom_microwire:
5428 type = "Microwire EEPROM";
5429 break;
5430 case e1000_nvm_invm:
5431 type = "Internal NVM";
5432 break;
5433 case e1000_nvm_flash_hw:
5434 case e1000_nvm_flash_sw:
5435 type = "Flash";
5436 break;
5437 default:
5438 type = NULL;
5439 break;
5440 }
5441
5442 if (type != NULL) {
5443 nvlist_t *nvl;
5444
5445 nvl = fnvlist_alloc();
5446 fnvlist_add_string(nvl, "image-type", type);
5447 /*
5448 * The DDI takes ownership of the nvlist_t at this point.
5449 */
5450 ddi_ufm_image_set_misc(imgp, nvl);
5451 }
5452
5453 return (0);
5454 }
5455
5456 static int
igb_ufm_fill_slot(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,uint_t slotno,ddi_ufm_slot_t * slotp)5457 igb_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5458 uint_t slotno, ddi_ufm_slot_t *slotp)
5459 {
5460 igb_t *igb = arg;
5461 char *ver;
5462
5463 if (imgno != 0 || slotno != 0) {
5464 return (EINVAL);
5465 }
5466
5467 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS,
5468 "nvm-version", &ver) == 0) {
5469 ddi_ufm_slot_set_version(slotp, ver);
5470 ddi_prop_free(ver);
5471 } else {
5472 ddi_ufm_slot_set_version(slotp, "unknown");
5473 }
5474
5475 ddi_ufm_slot_set_attrs(slotp, DDI_UFM_ATTR_ACTIVE |
5476 DDI_UFM_ATTR_READABLE | DDI_UFM_ATTR_WRITEABLE);
5477 ddi_ufm_slot_set_imgsize(slotp, igb->hw.nvm.word_size * 2);
5478 return (0);
5479 }
5480
5481 static int
igb_ufm_getcaps(ddi_ufm_handle_t * ufmh,void * arg,ddi_ufm_cap_t * caps)5482 igb_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5483 {
5484 igb_t *igb = arg;
5485
5486 *caps = 0;
5487 if (igb->hw.nvm.type != e1000_nvm_none &&
5488 igb->hw.nvm.type != e1000_nvm_unknown) {
5489 *caps |= DDI_UFM_CAP_REPORT;
5490
5491 if (igb->hw.nvm.ops.read != NULL) {
5492 *caps |= DDI_UFM_CAP_READIMG;
5493 }
5494 }
5495
5496 return (0);
5497 }
5498
5499 static int
igb_ufm_readimg(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,uint_t slotno,uint64_t len,uint64_t offset,void * buf,uint64_t * nread)5500 igb_ufm_readimg(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, uint_t slotno,
5501 uint64_t len, uint64_t offset, void *buf, uint64_t *nread)
5502 {
5503 igb_t *igb = arg;
5504 uint16_t wordoff, nwords, *buf16 = buf;
5505 uint32_t imgsize = igb->hw.nvm.word_size * 2;
5506 int ret;
5507
5508 if (imgno != 0 || slotno != 0) {
5509 return (EINVAL);
5510 }
5511
5512 if (len > imgsize || offset > imgsize || len + offset > imgsize) {
5513 return (EINVAL);
5514 }
5515
5516 if (igb->hw.nvm.ops.read == NULL) {
5517 return (ENOTSUP);
5518 }
5519
5520 /*
5521 * Hardware provides us a means to read 16-bit words. For the time
5522 * being, restrict offset and length to be 2 byte aligned. We should
5523 * probably reduce this restriction. We could probably just use a bounce
5524 * buffer.
5525 */
5526 if ((offset % 2) != 0 || (len % 2) != 0) {
5527 return (EINVAL);
5528 }
5529
5530 wordoff = offset >> 1;
5531 nwords = len >> 1;
5532 mutex_enter(&igb->gen_lock);
5533 ret = e1000_read_nvm(&igb->hw, wordoff, nwords, buf16);
5534 mutex_exit(&igb->gen_lock);
5535
5536 if (ret == 0) {
5537 uint16_t i;
5538 *nread = len;
5539 for (i = 0; i < nwords; i++) {
5540 buf16[i] = LE_16(buf16[i]);
5541 }
5542 } else {
5543 ret = EIO;
5544 }
5545
5546 return (ret);
5547 }
5548