xref: /illumos-gate/usr/src/uts/common/io/igb/igb_main.c (revision 3cf6f95f0e20ed31de99608fdb0a120190d5438f)
1 /*
2  * CDDL HEADER START
3  *
4  * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at:
10  *	http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When using or redistributing this file, you may do so under the
15  * License only. No other modification of this header is permitted.
16  *
17  * If applicable, add the following below this CDDL HEADER, with the
18  * fields enclosed by brackets "[]" replaced with your own identifying
19  * information: Portions Copyright [yyyy] [name of copyright owner]
20  *
21  * CDDL HEADER END
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms of the CDDL.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include "igb_sw.h"
32 
33 static char ident[] = "Intel 1Gb Ethernet 1.1.3";
34 
35 /*
36  * Local function protoypes
37  */
38 static int igb_register_mac(igb_t *);
39 static int igb_identify_hardware(igb_t *);
40 static int igb_regs_map(igb_t *);
41 static void igb_init_properties(igb_t *);
42 static int igb_init_driver_settings(igb_t *);
43 static void igb_init_locks(igb_t *);
44 static void igb_destroy_locks(igb_t *);
45 static int igb_init(igb_t *);
46 static int igb_chip_start(igb_t *);
47 static void igb_chip_stop(igb_t *);
48 static int igb_reset(igb_t *);
49 static void igb_tx_clean(igb_t *);
50 static boolean_t igb_tx_drain(igb_t *);
51 static boolean_t igb_rx_drain(igb_t *);
52 static int igb_alloc_rings(igb_t *);
53 static int igb_init_rings(igb_t *);
54 static void igb_free_rings(igb_t *);
55 static void igb_fini_rings(igb_t *);
56 static void igb_setup_rings(igb_t *);
57 static void igb_setup_rx(igb_t *);
58 static void igb_setup_tx(igb_t *);
59 static void igb_setup_rx_ring(igb_rx_ring_t *);
60 static void igb_setup_tx_ring(igb_tx_ring_t *);
61 static void igb_setup_rss(igb_t *);
62 static void igb_init_unicst(igb_t *);
63 static void igb_setup_multicst(igb_t *);
64 static void igb_get_phy_state(igb_t *);
65 static void igb_get_conf(igb_t *);
66 static int igb_get_prop(igb_t *, char *, int, int, int);
67 static boolean_t igb_is_link_up(igb_t *);
68 static boolean_t igb_link_check(igb_t *);
69 static void igb_local_timer(void *);
70 static void igb_arm_watchdog_timer(igb_t *);
71 static void igb_start_watchdog_timer(igb_t *);
72 static void igb_restart_watchdog_timer(igb_t *);
73 static void igb_stop_watchdog_timer(igb_t *);
74 static void igb_disable_adapter_interrupts(igb_t *);
75 static void igb_enable_adapter_interrupts(igb_t *);
76 static boolean_t is_valid_mac_addr(uint8_t *);
77 static boolean_t igb_stall_check(igb_t *);
78 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
79 static void igb_set_external_loopback(igb_t *);
80 static void igb_set_internal_mac_loopback(igb_t *);
81 static void igb_set_internal_phy_loopback(igb_t *);
82 static void igb_set_internal_serdes_loopback(igb_t *);
83 static boolean_t igb_find_mac_address(igb_t *);
84 static int igb_alloc_intrs(igb_t *);
85 static int igb_alloc_intr_handles(igb_t *, int);
86 static int igb_add_intr_handlers(igb_t *);
87 static void igb_rem_intr_handlers(igb_t *);
88 static void igb_rem_intrs(igb_t *);
89 static int igb_enable_intrs(igb_t *);
90 static int igb_disable_intrs(igb_t *);
91 static void igb_setup_adapter_msix(igb_t *);
92 static uint_t igb_intr_legacy(void *, void *);
93 static uint_t igb_intr_msi(void *, void *);
94 static uint_t igb_intr_rx(void *, void *);
95 static uint_t igb_intr_tx_other(void *, void *);
96 static void igb_intr_rx_work(igb_rx_ring_t *);
97 static void igb_intr_tx_work(igb_tx_ring_t *);
98 static void igb_intr_other_work(igb_t *);
99 static void igb_get_driver_control(struct e1000_hw *);
100 static void igb_release_driver_control(struct e1000_hw *);
101 
102 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
103 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
104 static int igb_resume(dev_info_t *);
105 static int igb_suspend(dev_info_t *);
106 static void igb_unconfigure(dev_info_t *, igb_t *);
107 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
108     const void *);
109 static void igb_fm_init(igb_t *);
110 static void igb_fm_fini(igb_t *);
111 
112 
113 static struct cb_ops igb_cb_ops = {
114 	nulldev,		/* cb_open */
115 	nulldev,		/* cb_close */
116 	nodev,			/* cb_strategy */
117 	nodev,			/* cb_print */
118 	nodev,			/* cb_dump */
119 	nodev,			/* cb_read */
120 	nodev,			/* cb_write */
121 	nodev,			/* cb_ioctl */
122 	nodev,			/* cb_devmap */
123 	nodev,			/* cb_mmap */
124 	nodev,			/* cb_segmap */
125 	nochpoll,		/* cb_chpoll */
126 	ddi_prop_op,		/* cb_prop_op */
127 	NULL,			/* cb_stream */
128 	D_MP | D_HOTPLUG,	/* cb_flag */
129 	CB_REV,			/* cb_rev */
130 	nodev,			/* cb_aread */
131 	nodev			/* cb_awrite */
132 };
133 
134 static struct dev_ops igb_dev_ops = {
135 	DEVO_REV,		/* devo_rev */
136 	0,			/* devo_refcnt */
137 	NULL,			/* devo_getinfo */
138 	nulldev,		/* devo_identify */
139 	nulldev,		/* devo_probe */
140 	igb_attach,		/* devo_attach */
141 	igb_detach,		/* devo_detach */
142 	nodev,			/* devo_reset */
143 	&igb_cb_ops,		/* devo_cb_ops */
144 	NULL,			/* devo_bus_ops */
145 	ddi_power		/* devo_power */
146 };
147 
148 static struct modldrv igb_modldrv = {
149 	&mod_driverops,		/* Type of module.  This one is a driver */
150 	ident,			/* Discription string */
151 	&igb_dev_ops,		/* driver ops */
152 };
153 
154 static struct modlinkage igb_modlinkage = {
155 	MODREV_1, &igb_modldrv, NULL
156 };
157 
158 /* Access attributes for register mapping */
159 ddi_device_acc_attr_t igb_regs_acc_attr = {
160 	DDI_DEVICE_ATTR_V0,
161 	DDI_STRUCTURE_LE_ACC,
162 	DDI_STRICTORDER_ACC,
163 	DDI_FLAGERR_ACC
164 };
165 
166 #define	IGB_M_CALLBACK_FLAGS	(MC_IOCTL | MC_GETCAPAB)
167 
168 static mac_callbacks_t igb_m_callbacks = {
169 	IGB_M_CALLBACK_FLAGS,
170 	igb_m_stat,
171 	igb_m_start,
172 	igb_m_stop,
173 	igb_m_promisc,
174 	igb_m_multicst,
175 	igb_m_unicst,
176 	igb_m_tx,
177 	NULL,
178 	igb_m_ioctl,
179 	igb_m_getcapab
180 };
181 
182 
183 /*
184  * Module Initialization Functions
185  */
186 
187 int
188 _init(void)
189 {
190 	int status;
191 
192 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
193 
194 	status = mod_install(&igb_modlinkage);
195 
196 	if (status != DDI_SUCCESS) {
197 		mac_fini_ops(&igb_dev_ops);
198 	}
199 
200 	return (status);
201 }
202 
203 int
204 _fini(void)
205 {
206 	int status;
207 
208 	status = mod_remove(&igb_modlinkage);
209 
210 	if (status == DDI_SUCCESS) {
211 		mac_fini_ops(&igb_dev_ops);
212 	}
213 
214 	return (status);
215 
216 }
217 
218 int
219 _info(struct modinfo *modinfop)
220 {
221 	int status;
222 
223 	status = mod_info(&igb_modlinkage, modinfop);
224 
225 	return (status);
226 }
227 
228 /*
229  * igb_attach - driver attach
230  *
231  * This function is the device specific initialization entry
232  * point. This entry point is required and must be written.
233  * The DDI_ATTACH command must be provided in the attach entry
234  * point. When attach() is called with cmd set to DDI_ATTACH,
235  * all normal kernel services (such as kmem_alloc(9F)) are
236  * available for use by the driver.
237  *
238  * The attach() function will be called once for each instance
239  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
240  * Until attach() succeeds, the only driver entry points which
241  * may be called are open(9E) and getinfo(9E).
242  */
243 static int
244 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
245 {
246 	igb_t *igb;
247 	struct igb_osdep *osdep;
248 	struct e1000_hw *hw;
249 	int instance;
250 
251 	/*
252 	 * Check the command and perform corresponding operations
253 	 */
254 	switch (cmd) {
255 	default:
256 		return (DDI_FAILURE);
257 
258 	case DDI_RESUME:
259 		return (igb_resume(devinfo));
260 
261 	case DDI_ATTACH:
262 		break;
263 	}
264 
265 	/* Get the device instance */
266 	instance = ddi_get_instance(devinfo);
267 
268 	/* Allocate memory for the instance data structure */
269 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
270 
271 	igb->dip = devinfo;
272 	igb->instance = instance;
273 
274 	hw = &igb->hw;
275 	osdep = &igb->osdep;
276 	hw->back = osdep;
277 	osdep->igb = igb;
278 
279 	/* Attach the instance pointer to the dev_info data structure */
280 	ddi_set_driver_private(devinfo, igb);
281 
282 
283 	/* Initialize for fma support */
284 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
285 	    0, 0x0f,
286 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
287 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
288 	igb_fm_init(igb);
289 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
290 
291 	/*
292 	 * Map PCI config space registers
293 	 */
294 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
295 		igb_error(igb, "Failed to map PCI configurations");
296 		goto attach_fail;
297 	}
298 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
299 
300 	/*
301 	 * Identify the chipset family
302 	 */
303 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
304 		igb_error(igb, "Failed to identify hardware");
305 		goto attach_fail;
306 	}
307 
308 	/*
309 	 * Map device registers
310 	 */
311 	if (igb_regs_map(igb) != IGB_SUCCESS) {
312 		igb_error(igb, "Failed to map device registers");
313 		goto attach_fail;
314 	}
315 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
316 
317 	/*
318 	 * Initialize driver parameters
319 	 */
320 	igb_init_properties(igb);
321 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
322 
323 	/*
324 	 * Allocate interrupts
325 	 */
326 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
327 		igb_error(igb, "Failed to allocate interrupts");
328 		goto attach_fail;
329 	}
330 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
331 
332 	/*
333 	 * Allocate rx/tx rings based on the ring numbers.
334 	 * The actual numbers of rx/tx rings are decided by the number of
335 	 * allocated interrupt vectors, so we should allocate the rings after
336 	 * interrupts are allocated.
337 	 */
338 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
339 		igb_error(igb, "Failed to allocate rx and tx rings");
340 		goto attach_fail;
341 	}
342 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
343 
344 	/*
345 	 * Add interrupt handlers
346 	 */
347 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
348 		igb_error(igb, "Failed to add interrupt handlers");
349 		goto attach_fail;
350 	}
351 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
352 
353 	/*
354 	 * Initialize driver parameters
355 	 */
356 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
357 		igb_error(igb, "Failed to initialize driver settings");
358 		goto attach_fail;
359 	}
360 
361 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
362 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
363 		goto attach_fail;
364 	}
365 
366 	/*
367 	 * Initialize mutexes for this device.
368 	 * Do this before enabling the interrupt handler and
369 	 * register the softint to avoid the condition where
370 	 * interrupt handler can try using uninitialized mutex
371 	 */
372 	igb_init_locks(igb);
373 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
374 
375 	/*
376 	 * Initialize chipset hardware
377 	 */
378 	if (igb_init(igb) != IGB_SUCCESS) {
379 		igb_error(igb, "Failed to initialize adapter");
380 		goto attach_fail;
381 	}
382 	igb->attach_progress |= ATTACH_PROGRESS_INIT;
383 
384 	/*
385 	 * Initialize DMA and hardware settings for rx/tx rings
386 	 */
387 	if (igb_init_rings(igb) != IGB_SUCCESS) {
388 		igb_error(igb, "Failed to initialize rings");
389 		goto attach_fail;
390 	}
391 	igb->attach_progress |= ATTACH_PROGRESS_INIT_RINGS;
392 
393 	/*
394 	 * Initialize statistics
395 	 */
396 	if (igb_init_stats(igb) != IGB_SUCCESS) {
397 		igb_error(igb, "Failed to initialize statistics");
398 		goto attach_fail;
399 	}
400 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
401 
402 	/*
403 	 * Initialize NDD parameters
404 	 */
405 	if (igb_nd_init(igb) != IGB_SUCCESS) {
406 		igb_error(igb, "Failed to initialize ndd");
407 		goto attach_fail;
408 	}
409 	igb->attach_progress |= ATTACH_PROGRESS_NDD;
410 
411 	/*
412 	 * Register the driver to the MAC
413 	 */
414 	if (igb_register_mac(igb) != IGB_SUCCESS) {
415 		igb_error(igb, "Failed to register MAC");
416 		goto attach_fail;
417 	}
418 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
419 
420 	/*
421 	 * Now that mutex locks are initialized, and the chip is also
422 	 * initialized, enable interrupts.
423 	 */
424 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
425 		igb_error(igb, "Failed to enable DDI interrupts");
426 		goto attach_fail;
427 	}
428 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
429 
430 	igb->igb_state |= IGB_INITIALIZED;
431 
432 	return (DDI_SUCCESS);
433 
434 attach_fail:
435 	igb_unconfigure(devinfo, igb);
436 	return (DDI_FAILURE);
437 }
438 
439 /*
440  * igb_detach - driver detach
441  *
442  * The detach() function is the complement of the attach routine.
443  * If cmd is set to DDI_DETACH, detach() is used to remove  the
444  * state  associated  with  a  given  instance of a device node
445  * prior to the removal of that instance from the system.
446  *
447  * The detach() function will be called once for each  instance
448  * of the device for which there has been a successful attach()
449  * once there are no longer  any  opens  on  the  device.
450  *
451  * Interrupts routine are disabled, All memory allocated by this
452  * driver are freed.
453  */
454 static int
455 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
456 {
457 	igb_t *igb;
458 
459 	/*
460 	 * Check detach command
461 	 */
462 	switch (cmd) {
463 	default:
464 		return (DDI_FAILURE);
465 
466 	case DDI_SUSPEND:
467 		return (igb_suspend(devinfo));
468 
469 	case DDI_DETACH:
470 		break;
471 	}
472 
473 
474 	/*
475 	 * Get the pointer to the driver private data structure
476 	 */
477 	igb = (igb_t *)ddi_get_driver_private(devinfo);
478 	if (igb == NULL)
479 		return (DDI_FAILURE);
480 
481 	/*
482 	 * Unregister MAC. If failed, we have to fail the detach
483 	 */
484 	if (mac_unregister(igb->mac_hdl) != 0) {
485 		igb_error(igb, "Failed to unregister MAC");
486 		return (DDI_FAILURE);
487 	}
488 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
489 
490 	/*
491 	 * If the device is still running, it needs to be stopped first.
492 	 * This check is necessary because under some specific circumstances,
493 	 * the detach routine can be called without stopping the interface
494 	 * first.
495 	 */
496 	mutex_enter(&igb->gen_lock);
497 	if (igb->igb_state & IGB_STARTED) {
498 		igb->igb_state &= ~IGB_STARTED;
499 		igb_stop(igb);
500 		mutex_exit(&igb->gen_lock);
501 		/* Disable and stop the watchdog timer */
502 		igb_disable_watchdog_timer(igb);
503 	} else
504 		mutex_exit(&igb->gen_lock);
505 
506 	/*
507 	 * Check if there are still rx buffers held by the upper layer.
508 	 * If so, fail the detach.
509 	 */
510 	if (!igb_rx_drain(igb))
511 		return (DDI_FAILURE);
512 
513 	/*
514 	 * Do the remaining unconfigure routines
515 	 */
516 	igb_unconfigure(devinfo, igb);
517 
518 	return (DDI_SUCCESS);
519 }
520 
521 static void
522 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
523 {
524 	/*
525 	 * Disable interrupt
526 	 */
527 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
528 		(void) igb_disable_intrs(igb);
529 	}
530 
531 	/*
532 	 * Unregister MAC
533 	 */
534 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
535 		(void) mac_unregister(igb->mac_hdl);
536 	}
537 
538 	/*
539 	 * Free ndd parameters
540 	 */
541 	if (igb->attach_progress & ATTACH_PROGRESS_NDD) {
542 		igb_nd_cleanup(igb);
543 	}
544 
545 	/*
546 	 * Free statistics
547 	 */
548 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
549 		kstat_delete((kstat_t *)igb->igb_ks);
550 	}
551 
552 	/*
553 	 * Remove interrupt handlers
554 	 */
555 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
556 		igb_rem_intr_handlers(igb);
557 	}
558 
559 	/*
560 	 * Remove interrupts
561 	 */
562 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
563 		igb_rem_intrs(igb);
564 	}
565 
566 	/*
567 	 * Remove driver properties
568 	 */
569 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
570 		(void) ddi_prop_remove_all(devinfo);
571 	}
572 
573 	/*
574 	 * Release the DMA resources of rx/tx rings
575 	 */
576 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_RINGS) {
577 		igb_fini_rings(igb);
578 	}
579 
580 	/*
581 	 * Stop the chipset
582 	 */
583 	if (igb->attach_progress & ATTACH_PROGRESS_INIT) {
584 		mutex_enter(&igb->gen_lock);
585 		igb_chip_stop(igb);
586 		mutex_exit(&igb->gen_lock);
587 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
588 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
589 	}
590 
591 	/*
592 	 * Free register handle
593 	 */
594 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
595 		if (igb->osdep.reg_handle != NULL)
596 			ddi_regs_map_free(&igb->osdep.reg_handle);
597 	}
598 
599 	/*
600 	 * Free PCI config handle
601 	 */
602 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
603 		if (igb->osdep.cfg_handle != NULL)
604 			pci_config_teardown(&igb->osdep.cfg_handle);
605 	}
606 
607 	/*
608 	 * Free locks
609 	 */
610 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
611 		igb_destroy_locks(igb);
612 	}
613 
614 	/*
615 	 * Free the rx/tx rings
616 	 */
617 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
618 		igb_free_rings(igb);
619 	}
620 
621 	/*
622 	 * Remove FMA
623 	 */
624 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
625 		igb_fm_fini(igb);
626 	}
627 
628 	/*
629 	 * Free device specific structure
630 	 */
631 	e1000_remove_device(&igb->hw);
632 
633 	/*
634 	 * Free the driver data structure
635 	 */
636 	kmem_free(igb, sizeof (igb_t));
637 
638 	ddi_set_driver_private(devinfo, NULL);
639 }
640 
641 /*
642  * igb_register_mac - Register the driver and its function pointers with
643  * the GLD interface
644  */
645 static int
646 igb_register_mac(igb_t *igb)
647 {
648 	struct e1000_hw *hw = &igb->hw;
649 	mac_register_t *mac;
650 	int status;
651 
652 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
653 		return (IGB_FAILURE);
654 
655 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
656 	mac->m_driver = igb;
657 	mac->m_dip = igb->dip;
658 	mac->m_src_addr = hw->mac.addr;
659 	mac->m_callbacks = &igb_m_callbacks;
660 	mac->m_min_sdu = 0;
661 	mac->m_max_sdu = igb->max_frame_size -
662 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
663 	mac->m_margin = VLAN_TAGSZ;
664 
665 	status = mac_register(mac, &igb->mac_hdl);
666 
667 	mac_free(mac);
668 
669 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
670 }
671 
672 /*
673  * igb_identify_hardware - Identify the type of the chipset
674  */
675 static int
676 igb_identify_hardware(igb_t *igb)
677 {
678 	struct e1000_hw *hw = &igb->hw;
679 	struct igb_osdep *osdep = &igb->osdep;
680 
681 	/*
682 	 * Get the device id
683 	 */
684 	hw->vendor_id =
685 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
686 	hw->device_id =
687 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
688 	hw->revision_id =
689 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
690 	hw->subsystem_device_id =
691 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
692 	hw->subsystem_vendor_id =
693 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
694 
695 	/*
696 	 * Set the mac type of the adapter based on the device id
697 	 */
698 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
699 		return (IGB_FAILURE);
700 	}
701 
702 	return (IGB_SUCCESS);
703 }
704 
705 /*
706  * igb_regs_map - Map the device registers
707  */
708 static int
709 igb_regs_map(igb_t *igb)
710 {
711 	dev_info_t *devinfo = igb->dip;
712 	struct e1000_hw *hw = &igb->hw;
713 	struct igb_osdep *osdep = &igb->osdep;
714 	off_t mem_size;
715 
716 	/*
717 	 * First get the size of device registers to be mapped.
718 	 */
719 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
720 		return (IGB_FAILURE);
721 	}
722 
723 	/*
724 	 * Call ddi_regs_map_setup() to map registers
725 	 */
726 	if ((ddi_regs_map_setup(devinfo, 1,
727 	    (caddr_t *)&hw->hw_addr, 0,
728 	    mem_size, &igb_regs_acc_attr,
729 	    &osdep->reg_handle)) != DDI_SUCCESS) {
730 		return (IGB_FAILURE);
731 	}
732 
733 	return (IGB_SUCCESS);
734 }
735 
736 /*
737  * igb_init_properties - Initialize driver properties
738  */
739 static void
740 igb_init_properties(igb_t *igb)
741 {
742 	/*
743 	 * Get conf file properties, including link settings
744 	 * jumbo frames, ring number, descriptor number, etc.
745 	 */
746 	igb_get_conf(igb);
747 }
748 
749 /*
750  * igb_init_driver_settings - Initialize driver settings
751  *
752  * The settings include hardware function pointers, bus information,
753  * rx/tx rings settings, link state, and any other parameters that
754  * need to be setup during driver initialization.
755  */
756 static int
757 igb_init_driver_settings(igb_t *igb)
758 {
759 	struct e1000_hw *hw = &igb->hw;
760 	igb_rx_ring_t *rx_ring;
761 	igb_tx_ring_t *tx_ring;
762 	uint32_t rx_size;
763 	uint32_t tx_size;
764 	int i;
765 
766 	/*
767 	 * Initialize chipset specific hardware function pointers
768 	 */
769 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
770 		return (IGB_FAILURE);
771 	}
772 
773 	/*
774 	 * Get bus information
775 	 */
776 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
777 		return (IGB_FAILURE);
778 	}
779 
780 	/*
781 	 * Set rx buffer size
782 	 * The IP header alignment room is counted in the calculation.
783 	 * The rx buffer size is in unit of 1K that is required by the
784 	 * chipset hardware.
785 	 */
786 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
787 	igb->rx_buf_size = ((rx_size >> 10) +
788 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
789 
790 	/*
791 	 * Set tx buffer size
792 	 */
793 	tx_size = igb->max_frame_size;
794 	igb->tx_buf_size = ((tx_size >> 10) +
795 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
796 
797 	/*
798 	 * Initialize rx/tx rings parameters
799 	 */
800 	for (i = 0; i < igb->num_rx_rings; i++) {
801 		rx_ring = &igb->rx_rings[i];
802 		rx_ring->index = i;
803 		rx_ring->igb = igb;
804 
805 		rx_ring->ring_size = igb->rx_ring_size;
806 		rx_ring->free_list_size = igb->rx_ring_size;
807 		rx_ring->copy_thresh = igb->rx_copy_thresh;
808 		rx_ring->limit_per_intr = igb->rx_limit_per_intr;
809 	}
810 
811 	for (i = 0; i < igb->num_tx_rings; i++) {
812 		tx_ring = &igb->tx_rings[i];
813 		tx_ring->index = i;
814 		tx_ring->igb = igb;
815 		if (igb->tx_head_wb_enable)
816 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
817 		else
818 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
819 
820 		tx_ring->ring_size = igb->tx_ring_size;
821 		tx_ring->free_list_size = igb->tx_ring_size +
822 		    (igb->tx_ring_size >> 1);
823 		tx_ring->copy_thresh = igb->tx_copy_thresh;
824 		tx_ring->recycle_thresh = igb->tx_recycle_thresh;
825 		tx_ring->overload_thresh = igb->tx_overload_thresh;
826 		tx_ring->resched_thresh = igb->tx_resched_thresh;
827 	}
828 
829 	/*
830 	 * Initialize values of interrupt throttling rate
831 	 */
832 	for (i = 1; i < MAX_NUM_EITR; i++)
833 		igb->intr_throttling[i] = igb->intr_throttling[0];
834 
835 	/*
836 	 * The initial link state should be "unknown"
837 	 */
838 	igb->link_state = LINK_STATE_UNKNOWN;
839 
840 	return (IGB_SUCCESS);
841 }
842 
843 /*
844  * igb_init_locks - Initialize locks
845  */
846 static void
847 igb_init_locks(igb_t *igb)
848 {
849 	igb_rx_ring_t *rx_ring;
850 	igb_tx_ring_t *tx_ring;
851 	int i;
852 
853 	for (i = 0; i < igb->num_rx_rings; i++) {
854 		rx_ring = &igb->rx_rings[i];
855 		mutex_init(&rx_ring->rx_lock, NULL,
856 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
857 		mutex_init(&rx_ring->recycle_lock, NULL,
858 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
859 	}
860 
861 	for (i = 0; i < igb->num_tx_rings; i++) {
862 		tx_ring = &igb->tx_rings[i];
863 		mutex_init(&tx_ring->tx_lock, NULL,
864 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
865 		mutex_init(&tx_ring->recycle_lock, NULL,
866 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
867 		mutex_init(&tx_ring->tcb_head_lock, NULL,
868 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
869 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
870 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
871 	}
872 
873 	mutex_init(&igb->gen_lock, NULL,
874 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
875 
876 	mutex_init(&igb->watchdog_lock, NULL,
877 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
878 }
879 
880 /*
881  * igb_destroy_locks - Destroy locks
882  */
883 static void
884 igb_destroy_locks(igb_t *igb)
885 {
886 	igb_rx_ring_t *rx_ring;
887 	igb_tx_ring_t *tx_ring;
888 	int i;
889 
890 	for (i = 0; i < igb->num_rx_rings; i++) {
891 		rx_ring = &igb->rx_rings[i];
892 		mutex_destroy(&rx_ring->rx_lock);
893 		mutex_destroy(&rx_ring->recycle_lock);
894 	}
895 
896 	for (i = 0; i < igb->num_tx_rings; i++) {
897 		tx_ring = &igb->tx_rings[i];
898 		mutex_destroy(&tx_ring->tx_lock);
899 		mutex_destroy(&tx_ring->recycle_lock);
900 		mutex_destroy(&tx_ring->tcb_head_lock);
901 		mutex_destroy(&tx_ring->tcb_tail_lock);
902 	}
903 
904 	mutex_destroy(&igb->gen_lock);
905 	mutex_destroy(&igb->watchdog_lock);
906 }
907 
908 static int
909 igb_resume(dev_info_t *devinfo)
910 {
911 	igb_t *igb;
912 
913 	igb = (igb_t *)ddi_get_driver_private(devinfo);
914 	if (igb == NULL)
915 		return (DDI_FAILURE);
916 
917 	mutex_enter(&igb->gen_lock);
918 
919 	if (igb->igb_state & IGB_STARTED) {
920 		if (igb_start(igb) != IGB_SUCCESS) {
921 			mutex_exit(&igb->gen_lock);
922 			return (DDI_FAILURE);
923 		}
924 
925 		/*
926 		 * Enable and start the watchdog timer
927 		 */
928 		igb_enable_watchdog_timer(igb);
929 	}
930 
931 	igb->igb_state &= ~IGB_SUSPENDED;
932 
933 	mutex_exit(&igb->gen_lock);
934 
935 	return (DDI_SUCCESS);
936 }
937 
938 static int
939 igb_suspend(dev_info_t *devinfo)
940 {
941 	igb_t *igb;
942 
943 	igb = (igb_t *)ddi_get_driver_private(devinfo);
944 	if (igb == NULL)
945 		return (DDI_FAILURE);
946 
947 	mutex_enter(&igb->gen_lock);
948 
949 	igb->igb_state |= IGB_SUSPENDED;
950 
951 	igb_stop(igb);
952 
953 	mutex_exit(&igb->gen_lock);
954 
955 	/*
956 	 * Disable and stop the watchdog timer
957 	 */
958 	igb_disable_watchdog_timer(igb);
959 
960 	return (DDI_SUCCESS);
961 }
962 
963 /*
964  * igb_init - Initialize the device
965  */
966 static int
967 igb_init(igb_t *igb)
968 {
969 	struct e1000_hw *hw = &igb->hw;
970 	uint32_t pba;
971 	uint32_t high_water;
972 
973 	mutex_enter(&igb->gen_lock);
974 
975 	/*
976 	 * Reset chipset to put the hardware in a known state
977 	 * before we try to do anything with the eeprom
978 	 */
979 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
980 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
981 		goto init_fail;
982 	}
983 
984 	/*
985 	 * NVM validation
986 	 */
987 	if (e1000_validate_nvm_checksum(hw) < 0) {
988 		/*
989 		 * Some PCI-E parts fail the first check due to
990 		 * the link being in sleep state.  Call it again,
991 		 * if it fails a second time its a real issue.
992 		 */
993 		if (e1000_validate_nvm_checksum(hw) < 0) {
994 			igb_error(igb,
995 			    "Invalid NVM checksum. Please contact "
996 			    "the vendor to update the NVM.");
997 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
998 			goto init_fail;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Set the FIFO size
1004 	 */
1005 	pba = E1000_PBA_32K;	/* 32K for Rx, 16K for Tx */
1006 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1007 
1008 	/*
1009 	 * Setup flow control
1010 	 *
1011 	 * These parameters set thresholds for the adapter's generation(Tx)
1012 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1013 	 * settings.  Flow control is enabled or disabled in the configuration
1014 	 * file.
1015 	 * High-water mark is set down from the top of the rx fifo (not
1016 	 * sensitive to max_frame_size) and low-water is set just below
1017 	 * high-water mark.
1018 	 * The high water mark must be low enough to fit one full frame above
1019 	 * it in the rx FIFO.  Should be the lower of:
1020 	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1021 	 * frame.
1022 	 */
1023 	high_water = min(((pba << 10) * 9 / 10),
1024 	    ((pba << 10) - igb->max_frame_size));
1025 
1026 	hw->fc.high_water = high_water & 0xFFF8;
1027 	hw->fc.low_water = hw->fc.high_water - 8;
1028 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1029 	hw->fc.send_xon = B_TRUE;
1030 
1031 	/*
1032 	 * Reset the chipset hardware the second time to validate
1033 	 * the PBA setting.
1034 	 */
1035 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1036 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1037 		goto init_fail;
1038 	}
1039 
1040 	/*
1041 	 * Don't wait for auto-negotiation to complete
1042 	 */
1043 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1044 
1045 	/*
1046 	 * Copper options
1047 	 */
1048 	if (hw->phy.media_type == e1000_media_type_copper) {
1049 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1050 		hw->phy.disable_polarity_correction = B_FALSE;
1051 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1052 	}
1053 
1054 	/*
1055 	 * Initialize link settings
1056 	 */
1057 	(void) igb_setup_link(igb, B_FALSE);
1058 
1059 	/*
1060 	 * Initialize the chipset hardware
1061 	 */
1062 	if (igb_chip_start(igb) != IGB_SUCCESS) {
1063 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1064 		goto init_fail;
1065 	}
1066 
1067 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
1068 		goto init_fail;
1069 	}
1070 
1071 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
1072 		goto init_fail;
1073 	}
1074 
1075 	mutex_exit(&igb->gen_lock);
1076 	return (IGB_SUCCESS);
1077 
1078 init_fail:
1079 	/*
1080 	 * Reset PHY if possible
1081 	 */
1082 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1083 		(void) e1000_phy_hw_reset(hw);
1084 
1085 	mutex_exit(&igb->gen_lock);
1086 
1087 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1088 
1089 	return (IGB_FAILURE);
1090 }
1091 
1092 /*
1093  * igb_init_rings - Allocate DMA resources for all rx/tx rings and
1094  * initialize relevant hardware settings.
1095  */
1096 static int
1097 igb_init_rings(igb_t *igb)
1098 {
1099 	int i;
1100 
1101 	/*
1102 	 * Allocate buffers for all the rx/tx rings
1103 	 */
1104 	if (igb_alloc_dma(igb) != IGB_SUCCESS)
1105 		return (IGB_FAILURE);
1106 
1107 	/*
1108 	 * Setup the rx/tx rings
1109 	 */
1110 	mutex_enter(&igb->gen_lock);
1111 
1112 	for (i = 0; i < igb->num_rx_rings; i++)
1113 		mutex_enter(&igb->rx_rings[i].rx_lock);
1114 	for (i = 0; i < igb->num_tx_rings; i++)
1115 		mutex_enter(&igb->tx_rings[i].tx_lock);
1116 
1117 	igb_setup_rings(igb);
1118 
1119 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1120 		mutex_exit(&igb->tx_rings[i].tx_lock);
1121 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1122 		mutex_exit(&igb->rx_rings[i].rx_lock);
1123 
1124 	mutex_exit(&igb->gen_lock);
1125 
1126 	return (IGB_SUCCESS);
1127 }
1128 
1129 /*
1130  * igb_fini_rings - Release DMA resources of all rx/tx rings
1131  */
1132 static void
1133 igb_fini_rings(igb_t *igb)
1134 {
1135 	/*
1136 	 * Release the DMA/memory resources of rx/tx rings
1137 	 */
1138 	igb_free_dma(igb);
1139 }
1140 
1141 /*
1142  * igb_chip_start - Initialize and start the chipset hardware
1143  */
1144 static int
1145 igb_chip_start(igb_t *igb)
1146 {
1147 	struct e1000_hw *hw = &igb->hw;
1148 	int i;
1149 
1150 	ASSERT(mutex_owned(&igb->gen_lock));
1151 
1152 	/*
1153 	 * Get the mac address
1154 	 * This function should handle SPARC case correctly.
1155 	 */
1156 	if (!igb_find_mac_address(igb)) {
1157 		igb_error(igb, "Failed to get the mac address");
1158 		return (IGB_FAILURE);
1159 	}
1160 
1161 	/* Validate mac address */
1162 	if (!is_valid_mac_addr(hw->mac.addr)) {
1163 		igb_error(igb, "Invalid mac address");
1164 		return (IGB_FAILURE);
1165 	}
1166 
1167 	/* Disable wakeup control by default */
1168 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1169 
1170 	/*
1171 	 * Configure/Initialize hardware
1172 	 */
1173 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1174 		igb_error(igb, "Failed to initialize hardware");
1175 		return (IGB_FAILURE);
1176 	}
1177 
1178 	/*
1179 	 * Make sure driver has control
1180 	 */
1181 	igb_get_driver_control(hw);
1182 
1183 	/*
1184 	 * Setup MSI-X interrupts
1185 	 */
1186 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1187 		igb_setup_adapter_msix(igb);
1188 
1189 	/*
1190 	 * Initialize unicast addresses.
1191 	 */
1192 	igb_init_unicst(igb);
1193 
1194 	/*
1195 	 * Setup and initialize the mctable structures.
1196 	 */
1197 	igb_setup_multicst(igb);
1198 
1199 	/*
1200 	 * Set interrupt throttling rate
1201 	 */
1202 	for (i = 0; i < igb->intr_cnt; i++)
1203 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1204 
1205 	/* Enable PCI-E master */
1206 	if (hw->bus.type == e1000_bus_type_pci_express) {
1207 		e1000_enable_pciex_master(hw);
1208 	}
1209 
1210 	/*
1211 	 * Save the state of the phy
1212 	 */
1213 	igb_get_phy_state(igb);
1214 
1215 	return (IGB_SUCCESS);
1216 }
1217 
1218 /*
1219  * igb_chip_stop - Stop the chipset hardware
1220  */
1221 static void
1222 igb_chip_stop(igb_t *igb)
1223 {
1224 	struct e1000_hw *hw = &igb->hw;
1225 
1226 	ASSERT(mutex_owned(&igb->gen_lock));
1227 
1228 	/* Tell firmware driver is no longer in control */
1229 	igb_release_driver_control(hw);
1230 
1231 	/*
1232 	 * Reset the chipset
1233 	 */
1234 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1235 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1236 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1237 	}
1238 
1239 	/*
1240 	 * Reset PHY if possible
1241 	 */
1242 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1243 		(void) e1000_phy_hw_reset(hw);
1244 }
1245 
1246 /*
1247  * igb_reset - Reset the chipset and restart the driver.
1248  *
1249  * It involves stopping and re-starting the chipset,
1250  * and re-configuring the rx/tx rings.
1251  */
1252 static int
1253 igb_reset(igb_t *igb)
1254 {
1255 	int i;
1256 
1257 	mutex_enter(&igb->gen_lock);
1258 
1259 	ASSERT(igb->igb_state & IGB_STARTED);
1260 
1261 	/*
1262 	 * Disable the adapter interrupts to stop any rx/tx activities
1263 	 * before draining pending data and resetting hardware.
1264 	 */
1265 	igb_disable_adapter_interrupts(igb);
1266 
1267 	/*
1268 	 * Drain the pending transmit packets
1269 	 */
1270 	(void) igb_tx_drain(igb);
1271 
1272 	for (i = 0; i < igb->num_rx_rings; i++)
1273 		mutex_enter(&igb->rx_rings[i].rx_lock);
1274 	for (i = 0; i < igb->num_tx_rings; i++)
1275 		mutex_enter(&igb->tx_rings[i].tx_lock);
1276 
1277 	/*
1278 	 * Stop the chipset hardware
1279 	 */
1280 	igb_chip_stop(igb);
1281 
1282 	/*
1283 	 * Clean the pending tx data/resources
1284 	 */
1285 	igb_tx_clean(igb);
1286 
1287 	/*
1288 	 * Start the chipset hardware
1289 	 */
1290 	if (igb_chip_start(igb) != IGB_SUCCESS) {
1291 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1292 		goto reset_failure;
1293 	}
1294 
1295 	/*
1296 	 * Setup the rx/tx rings
1297 	 */
1298 	igb_setup_rings(igb);
1299 
1300 	/*
1301 	 * Enable adapter interrupts
1302 	 * The interrupts must be enabled after the driver state is START
1303 	 */
1304 	igb_enable_adapter_interrupts(igb);
1305 
1306 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1307 		goto reset_failure;
1308 
1309 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1310 		goto reset_failure;
1311 
1312 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1313 		mutex_exit(&igb->tx_rings[i].tx_lock);
1314 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1315 		mutex_exit(&igb->rx_rings[i].rx_lock);
1316 
1317 	mutex_exit(&igb->gen_lock);
1318 
1319 	return (IGB_SUCCESS);
1320 
1321 reset_failure:
1322 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1323 		mutex_exit(&igb->tx_rings[i].tx_lock);
1324 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1325 		mutex_exit(&igb->rx_rings[i].rx_lock);
1326 
1327 	mutex_exit(&igb->gen_lock);
1328 
1329 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1330 
1331 	return (IGB_FAILURE);
1332 }
1333 
1334 /*
1335  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1336  */
1337 static void
1338 igb_tx_clean(igb_t *igb)
1339 {
1340 	igb_tx_ring_t *tx_ring;
1341 	tx_control_block_t *tcb;
1342 	link_list_t pending_list;
1343 	uint32_t desc_num;
1344 	int i, j;
1345 
1346 	LINK_LIST_INIT(&pending_list);
1347 
1348 	for (i = 0; i < igb->num_tx_rings; i++) {
1349 		tx_ring = &igb->tx_rings[i];
1350 
1351 		mutex_enter(&tx_ring->recycle_lock);
1352 
1353 		/*
1354 		 * Clean the pending tx data - the pending packets in the
1355 		 * work_list that have no chances to be transmitted again.
1356 		 *
1357 		 * We must ensure the chipset is stopped or the link is down
1358 		 * before cleaning the transmit packets.
1359 		 */
1360 		desc_num = 0;
1361 		for (j = 0; j < tx_ring->ring_size; j++) {
1362 			tcb = tx_ring->work_list[j];
1363 			if (tcb != NULL) {
1364 				desc_num += tcb->desc_num;
1365 
1366 				tx_ring->work_list[j] = NULL;
1367 
1368 				igb_free_tcb(tcb);
1369 
1370 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1371 			}
1372 		}
1373 
1374 		if (desc_num > 0) {
1375 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1376 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1377 
1378 			/*
1379 			 * Reset the head and tail pointers of the tbd ring;
1380 			 * Reset the head write-back if it is enabled.
1381 			 */
1382 			tx_ring->tbd_head = 0;
1383 			tx_ring->tbd_tail = 0;
1384 			if (igb->tx_head_wb_enable)
1385 				*tx_ring->tbd_head_wb = 0;
1386 
1387 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1388 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1389 		}
1390 
1391 		mutex_exit(&tx_ring->recycle_lock);
1392 
1393 		/*
1394 		 * Add the tx control blocks in the pending list to
1395 		 * the free list.
1396 		 */
1397 		igb_put_free_list(tx_ring, &pending_list);
1398 	}
1399 }
1400 
1401 /*
1402  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1403  */
1404 static boolean_t
1405 igb_tx_drain(igb_t *igb)
1406 {
1407 	igb_tx_ring_t *tx_ring;
1408 	boolean_t done;
1409 	int i, j;
1410 
1411 	/*
1412 	 * Wait for a specific time to allow pending tx packets
1413 	 * to be transmitted.
1414 	 *
1415 	 * Check the counter tbd_free to see if transmission is done.
1416 	 * No lock protection is needed here.
1417 	 *
1418 	 * Return B_TRUE if all pending packets have been transmitted;
1419 	 * Otherwise return B_FALSE;
1420 	 */
1421 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1422 
1423 		done = B_TRUE;
1424 		for (j = 0; j < igb->num_tx_rings; j++) {
1425 			tx_ring = &igb->tx_rings[j];
1426 			done = done &&
1427 			    (tx_ring->tbd_free == tx_ring->ring_size);
1428 		}
1429 
1430 		if (done)
1431 			break;
1432 
1433 		msec_delay(1);
1434 	}
1435 
1436 	return (done);
1437 }
1438 
1439 /*
1440  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1441  */
1442 static boolean_t
1443 igb_rx_drain(igb_t *igb)
1444 {
1445 	igb_rx_ring_t *rx_ring;
1446 	boolean_t done;
1447 	int i, j;
1448 
1449 	/*
1450 	 * Polling the rx free list to check if those rx buffers held by
1451 	 * the upper layer are released.
1452 	 *
1453 	 * Check the counter rcb_free to see if all pending buffers are
1454 	 * released. No lock protection is needed here.
1455 	 *
1456 	 * Return B_TRUE if all pending buffers have been released;
1457 	 * Otherwise return B_FALSE;
1458 	 */
1459 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1460 
1461 		done = B_TRUE;
1462 		for (j = 0; j < igb->num_rx_rings; j++) {
1463 			rx_ring = &igb->rx_rings[j];
1464 			done = done &&
1465 			    (rx_ring->rcb_free == rx_ring->free_list_size);
1466 		}
1467 
1468 		if (done)
1469 			break;
1470 
1471 		msec_delay(1);
1472 	}
1473 
1474 	return (done);
1475 }
1476 
1477 /*
1478  * igb_start - Start the driver/chipset
1479  */
1480 int
1481 igb_start(igb_t *igb)
1482 {
1483 	int i;
1484 
1485 	ASSERT(mutex_owned(&igb->gen_lock));
1486 
1487 	for (i = 0; i < igb->num_rx_rings; i++)
1488 		mutex_enter(&igb->rx_rings[i].rx_lock);
1489 	for (i = 0; i < igb->num_tx_rings; i++)
1490 		mutex_enter(&igb->tx_rings[i].tx_lock);
1491 
1492 	/*
1493 	 * Start the chipset hardware
1494 	 */
1495 	if (igb_chip_start(igb) != IGB_SUCCESS) {
1496 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1497 		goto start_failure;
1498 	}
1499 
1500 	/*
1501 	 * Setup the rx/tx rings
1502 	 */
1503 	igb_setup_rings(igb);
1504 
1505 	/*
1506 	 * Enable adapter interrupts
1507 	 * The interrupts must be enabled after the driver state is START
1508 	 */
1509 	igb_enable_adapter_interrupts(igb);
1510 
1511 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1512 		goto start_failure;
1513 
1514 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1515 		goto start_failure;
1516 
1517 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1518 		mutex_exit(&igb->tx_rings[i].tx_lock);
1519 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1520 		mutex_exit(&igb->rx_rings[i].rx_lock);
1521 
1522 	return (IGB_SUCCESS);
1523 
1524 start_failure:
1525 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1526 		mutex_exit(&igb->tx_rings[i].tx_lock);
1527 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1528 		mutex_exit(&igb->rx_rings[i].rx_lock);
1529 
1530 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1531 
1532 	return (IGB_FAILURE);
1533 }
1534 
1535 /*
1536  * igb_stop - Stop the driver/chipset
1537  */
1538 void
1539 igb_stop(igb_t *igb)
1540 {
1541 	int i;
1542 
1543 	ASSERT(mutex_owned(&igb->gen_lock));
1544 
1545 	/*
1546 	 * Disable the adapter interrupts
1547 	 */
1548 	igb_disable_adapter_interrupts(igb);
1549 
1550 	/*
1551 	 * Drain the pending tx packets
1552 	 */
1553 	(void) igb_tx_drain(igb);
1554 
1555 	for (i = 0; i < igb->num_rx_rings; i++)
1556 		mutex_enter(&igb->rx_rings[i].rx_lock);
1557 	for (i = 0; i < igb->num_tx_rings; i++)
1558 		mutex_enter(&igb->tx_rings[i].tx_lock);
1559 
1560 	/*
1561 	 * Stop the chipset hardware
1562 	 */
1563 	igb_chip_stop(igb);
1564 
1565 	/*
1566 	 * Clean the pending tx data/resources
1567 	 */
1568 	igb_tx_clean(igb);
1569 
1570 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1571 		mutex_exit(&igb->tx_rings[i].tx_lock);
1572 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1573 		mutex_exit(&igb->rx_rings[i].rx_lock);
1574 
1575 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1576 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1577 }
1578 
1579 /*
1580  * igb_alloc_rings - Allocate memory space for rx/tx rings
1581  */
1582 static int
1583 igb_alloc_rings(igb_t *igb)
1584 {
1585 	/*
1586 	 * Allocate memory space for rx rings
1587 	 */
1588 	igb->rx_rings = kmem_zalloc(
1589 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1590 	    KM_NOSLEEP);
1591 
1592 	if (igb->rx_rings == NULL) {
1593 		return (IGB_FAILURE);
1594 	}
1595 
1596 	/*
1597 	 * Allocate memory space for tx rings
1598 	 */
1599 	igb->tx_rings = kmem_zalloc(
1600 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1601 	    KM_NOSLEEP);
1602 
1603 	if (igb->tx_rings == NULL) {
1604 		kmem_free(igb->rx_rings,
1605 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1606 		igb->rx_rings = NULL;
1607 		return (IGB_FAILURE);
1608 	}
1609 
1610 	return (IGB_SUCCESS);
1611 }
1612 
1613 /*
1614  * igb_free_rings - Free the memory space of rx/tx rings.
1615  */
1616 static void
1617 igb_free_rings(igb_t *igb)
1618 {
1619 	if (igb->rx_rings != NULL) {
1620 		kmem_free(igb->rx_rings,
1621 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1622 		igb->rx_rings = NULL;
1623 	}
1624 
1625 	if (igb->tx_rings != NULL) {
1626 		kmem_free(igb->tx_rings,
1627 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1628 		igb->tx_rings = NULL;
1629 	}
1630 }
1631 
1632 /*
1633  * igb_setup_rings - Setup rx/tx rings
1634  */
1635 static void
1636 igb_setup_rings(igb_t *igb)
1637 {
1638 	/*
1639 	 * Setup the rx/tx rings, including the following:
1640 	 *
1641 	 * 1. Setup the descriptor ring and the control block buffers;
1642 	 * 2. Initialize necessary registers for receive/transmit;
1643 	 * 3. Initialize software pointers/parameters for receive/transmit;
1644 	 */
1645 	igb_setup_rx(igb);
1646 
1647 	igb_setup_tx(igb);
1648 
1649 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1650 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1651 }
1652 
1653 static void
1654 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1655 {
1656 	igb_t *igb = rx_ring->igb;
1657 	struct e1000_hw *hw = &igb->hw;
1658 	rx_control_block_t *rcb;
1659 	union e1000_adv_rx_desc	*rbd;
1660 	uint32_t size;
1661 	uint32_t buf_low;
1662 	uint32_t buf_high;
1663 	uint32_t reg_val;
1664 	int i;
1665 
1666 	ASSERT(mutex_owned(&rx_ring->rx_lock));
1667 	ASSERT(mutex_owned(&igb->gen_lock));
1668 
1669 	for (i = 0; i < igb->rx_ring_size; i++) {
1670 		rcb = rx_ring->work_list[i];
1671 		rbd = &rx_ring->rbd_ring[i];
1672 
1673 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1674 		rbd->read.hdr_addr = NULL;
1675 	}
1676 
1677 	/*
1678 	 * Initialize the length register
1679 	 */
1680 	size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc);
1681 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1682 
1683 	/*
1684 	 * Initialize the base address registers
1685 	 */
1686 	buf_low = (uint32_t)rx_ring->rbd_area.dma_address;
1687 	buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32);
1688 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1689 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1690 
1691 	/*
1692 	 * Setup head & tail pointers
1693 	 */
1694 	E1000_WRITE_REG(hw, E1000_RDT(rx_ring->index), rx_ring->ring_size - 1);
1695 	E1000_WRITE_REG(hw, E1000_RDH(rx_ring->index), 0);
1696 
1697 	rx_ring->rbd_next = 0;
1698 
1699 	/*
1700 	 * Note: Considering the case that the chipset is being reset
1701 	 * and there are still some buffers held by the upper layer,
1702 	 * we should not reset the values of rcb_head, rcb_tail and
1703 	 * rcb_free;
1704 	 */
1705 	if (igb->igb_state == IGB_UNKNOWN) {
1706 		rx_ring->rcb_head = 0;
1707 		rx_ring->rcb_tail = 0;
1708 		rx_ring->rcb_free = rx_ring->free_list_size;
1709 	}
1710 
1711 	/*
1712 	 * Setup the Receive Descriptor Control Register (RXDCTL)
1713 	 */
1714 	reg_val = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
1715 	reg_val |= E1000_RXDCTL_QUEUE_ENABLE;
1716 	reg_val &= 0xFFF00000;
1717 	reg_val |= 16;		/* pthresh */
1718 	reg_val |= 8 << 8;	/* hthresh */
1719 	reg_val |= 1 << 16;	/* wthresh */
1720 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), reg_val);
1721 
1722 	/*
1723 	 * Setup the Split and Replication Receive Control Register.
1724 	 * Set the rx buffer size and the advanced descriptor type.
1725 	 */
1726 	reg_val = (igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
1727 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1728 
1729 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index), reg_val);
1730 }
1731 
1732 static void
1733 igb_setup_rx(igb_t *igb)
1734 {
1735 	igb_rx_ring_t *rx_ring;
1736 	struct e1000_hw *hw = &igb->hw;
1737 	uint32_t reg_val;
1738 	int i;
1739 
1740 	/*
1741 	 * Setup the Receive Control Register (RCTL), and ENABLE the
1742 	 * receiver. The initial configuration is to: Enable the receiver,
1743 	 * accept broadcasts, discard bad packets (and long packets),
1744 	 * disable VLAN filter checking, set the receive descriptor
1745 	 * minimum threshold size to 1/2, and the receive buffer size to
1746 	 * 2k.
1747 	 */
1748 	reg_val = E1000_RCTL_EN |	/* Enable Receive Unit */
1749 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
1750 	    E1000_RCTL_LPE |		/* Large Packet Enable bit */
1751 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
1752 	    E1000_RCTL_RDMTS_HALF |
1753 	    E1000_RCTL_SECRC |		/* Strip Ethernet CRC */
1754 	    E1000_RCTL_LBM_NO;		/* Loopback Mode = none */
1755 
1756 	E1000_WRITE_REG(hw, E1000_RCTL, reg_val);
1757 
1758 	/*
1759 	 * igb_setup_rx_ring must be called after configuring RCTL
1760 	 */
1761 	for (i = 0; i < igb->num_rx_rings; i++) {
1762 		rx_ring = &igb->rx_rings[i];
1763 		igb_setup_rx_ring(rx_ring);
1764 	}
1765 
1766 	/*
1767 	 * Setup the Rx Long Packet Max Length register
1768 	 */
1769 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
1770 
1771 	/*
1772 	 * Hardware checksum settings
1773 	 */
1774 	if (igb->rx_hcksum_enable) {
1775 		reg_val =
1776 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
1777 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
1778 
1779 		E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val);
1780 	}
1781 
1782 	/*
1783 	 * Setup RSS for multiple receive queues
1784 	 */
1785 	if (igb->num_rx_rings > 1)
1786 		igb_setup_rss(igb);
1787 }
1788 
1789 static void
1790 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
1791 {
1792 	igb_t *igb = tx_ring->igb;
1793 	struct e1000_hw *hw = &igb->hw;
1794 	uint32_t size;
1795 	uint32_t buf_low;
1796 	uint32_t buf_high;
1797 	uint32_t reg_val;
1798 
1799 	ASSERT(mutex_owned(&tx_ring->tx_lock));
1800 	ASSERT(mutex_owned(&igb->gen_lock));
1801 
1802 	/*
1803 	 * Initialize the length register
1804 	 */
1805 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
1806 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
1807 
1808 	/*
1809 	 * Initialize the base address registers
1810 	 */
1811 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
1812 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
1813 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
1814 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
1815 
1816 	/*
1817 	 * Setup head & tail pointers
1818 	 */
1819 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
1820 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
1821 
1822 	/*
1823 	 * Setup head write-back
1824 	 */
1825 	if (igb->tx_head_wb_enable) {
1826 		/*
1827 		 * The memory of the head write-back is allocated using
1828 		 * the extra tbd beyond the tail of the tbd ring.
1829 		 */
1830 		tx_ring->tbd_head_wb = (uint32_t *)
1831 		    ((uintptr_t)tx_ring->tbd_area.address + size);
1832 		*tx_ring->tbd_head_wb = 0;
1833 
1834 		buf_low = (uint32_t)
1835 		    (tx_ring->tbd_area.dma_address + size);
1836 		buf_high = (uint32_t)
1837 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
1838 
1839 		/* Set the head write-back enable bit */
1840 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
1841 
1842 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
1843 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
1844 
1845 		/*
1846 		 * Turn off relaxed ordering for head write back or it will
1847 		 * cause problems with the tx recycling
1848 		 */
1849 		reg_val = E1000_READ_REG(hw,
1850 		    E1000_DCA_TXCTRL(tx_ring->index));
1851 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1852 		E1000_WRITE_REG(hw,
1853 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
1854 	} else {
1855 		tx_ring->tbd_head_wb = NULL;
1856 	}
1857 
1858 	tx_ring->tbd_head = 0;
1859 	tx_ring->tbd_tail = 0;
1860 	tx_ring->tbd_free = tx_ring->ring_size;
1861 
1862 	/*
1863 	 * Note: Considering the case that the chipset is being reset,
1864 	 * and there are still some buffers held by the upper layer,
1865 	 * we should not reset the values of tcb_head, tcb_tail.
1866 	 */
1867 	if (igb->igb_state == IGB_UNKNOWN) {
1868 		tx_ring->tcb_head = 0;
1869 		tx_ring->tcb_tail = 0;
1870 		tx_ring->tcb_free = tx_ring->free_list_size;
1871 	} else {
1872 		ASSERT(tx_ring->tcb_free == tx_ring->free_list_size);
1873 	}
1874 
1875 	/*
1876 	 * Initialize hardware checksum offload settings
1877 	 */
1878 	tx_ring->hcksum_context.hcksum_flags = 0;
1879 	tx_ring->hcksum_context.ip_hdr_len = 0;
1880 	tx_ring->hcksum_context.mac_hdr_len = 0;
1881 	tx_ring->hcksum_context.l4_proto = 0;
1882 }
1883 
1884 static void
1885 igb_setup_tx(igb_t *igb)
1886 {
1887 	igb_tx_ring_t *tx_ring;
1888 	struct e1000_hw *hw = &igb->hw;
1889 	uint32_t reg_val;
1890 	int i;
1891 
1892 	for (i = 0; i < igb->num_tx_rings; i++) {
1893 		tx_ring = &igb->tx_rings[i];
1894 		igb_setup_tx_ring(tx_ring);
1895 	}
1896 
1897 	/*
1898 	 * Setup the Transmit Control Register (TCTL)
1899 	 */
1900 	reg_val = E1000_TCTL_PSP | E1000_TCTL_EN |
1901 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
1902 	    (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT) |
1903 	    E1000_TCTL_RTLC;
1904 
1905 	/* Enable the MULR bit */
1906 	if (hw->bus.type == e1000_bus_type_pci_express)
1907 		reg_val |= E1000_TCTL_MULR;
1908 
1909 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
1910 
1911 	/*
1912 	 * Set the default values for the Tx Inter Packet Gap timer
1913 	 */
1914 	if (hw->phy.media_type == e1000_media_type_fiber)
1915 		reg_val = DEFAULT_82543_TIPG_IPGT_FIBER;
1916 	else
1917 		reg_val = DEFAULT_82543_TIPG_IPGT_COPPER;
1918 	reg_val |=
1919 	    DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1920 	reg_val |=
1921 	    DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1922 
1923 	E1000_WRITE_REG(hw, E1000_TIPG, reg_val);
1924 }
1925 
1926 /*
1927  * igb_setup_rss - Setup receive-side scaling feature
1928  */
1929 static void
1930 igb_setup_rss(igb_t *igb)
1931 {
1932 	struct e1000_hw *hw = &igb->hw;
1933 	uint32_t i, mrqc, rxcsum;
1934 	int shift;
1935 	uint32_t random;
1936 	union e1000_reta {
1937 		uint32_t	dword;
1938 		uint8_t		bytes[4];
1939 	} reta;
1940 
1941 	/* Setup the Redirection Table */
1942 	shift = 6;
1943 	for (i = 0; i < (32 * 4); i++) {
1944 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
1945 		if ((i & 3) == 3) {
1946 			E1000_WRITE_REG(hw,
1947 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
1948 		}
1949 	}
1950 
1951 	/* Fill out hash function seeds */
1952 	for (i = 0; i < 10; i++) {
1953 		(void) random_get_pseudo_bytes((uint8_t *)&random,
1954 		    sizeof (uint32_t));
1955 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
1956 	}
1957 
1958 	/* Setup the Multiple Receive Queue Control register */
1959 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1960 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1961 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
1962 	    E1000_MRQC_RSS_FIELD_IPV6 |
1963 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
1964 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
1965 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
1966 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1967 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1968 
1969 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1970 
1971 	/*
1972 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
1973 	 *
1974 	 * The Packet Checksum is not ethernet CRC. It is another kind of
1975 	 * checksum offloading provided by the 82575 chipset besides the IP
1976 	 * header checksum offloading and the TCP/UDP checksum offloading.
1977 	 * The Packet Checksum is by default computed over the entire packet
1978 	 * from the first byte of the DA through the last byte of the CRC,
1979 	 * including the Ethernet and IP headers.
1980 	 *
1981 	 * It is a hardware limitation that Packet Checksum is mutually
1982 	 * exclusive with RSS.
1983 	 */
1984 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
1985 	rxcsum |= E1000_RXCSUM_PCSD;
1986 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1987 }
1988 
1989 /*
1990  * igb_init_unicst - Initialize the unicast addresses
1991  */
1992 static void
1993 igb_init_unicst(igb_t *igb)
1994 {
1995 	struct e1000_hw *hw = &igb->hw;
1996 	int slot;
1997 
1998 	/*
1999 	 * Here we should consider two situations:
2000 	 *
2001 	 * 1. Chipset is initialized the first time
2002 	 *    Initialize the multiple unicast addresses, and
2003 	 *    save the default mac address.
2004 	 *
2005 	 * 2. Chipset is reset
2006 	 *    Recover the multiple unicast addresses from the
2007 	 *    software data structure to the RAR registers.
2008 	 */
2009 	if (!igb->unicst_init) {
2010 		/* Initialize the multiple unicast addresses */
2011 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2012 
2013 		igb->unicst_avail = igb->unicst_total - 1;
2014 
2015 		/* Store the default mac address */
2016 		e1000_rar_set(hw, hw->mac.addr, 0);
2017 
2018 		bcopy(hw->mac.addr, igb->unicst_addr[0].mac.addr,
2019 		    ETHERADDRL);
2020 		igb->unicst_addr[0].mac.set = 1;
2021 
2022 		for (slot = 1; slot < igb->unicst_total; slot++)
2023 			igb->unicst_addr[slot].mac.set = 0;
2024 
2025 		igb->unicst_init = B_TRUE;
2026 	} else {
2027 		/* Recover the default mac address */
2028 		bcopy(igb->unicst_addr[0].mac.addr, hw->mac.addr,
2029 		    ETHERADDRL);
2030 
2031 		/* Store the default mac address */
2032 		e1000_rar_set(hw, hw->mac.addr, 0);
2033 
2034 		/* Re-configure the RAR registers */
2035 		for (slot = 1; slot < igb->unicst_total; slot++)
2036 			e1000_rar_set(hw,
2037 			    igb->unicst_addr[slot].mac.addr, slot);
2038 	}
2039 
2040 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
2041 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2042 }
2043 
2044 /*
2045  * igb_unicst_set - Set the unicast address to the specified slot
2046  */
2047 int
2048 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2049     mac_addr_slot_t slot)
2050 {
2051 	struct e1000_hw *hw = &igb->hw;
2052 
2053 	ASSERT(mutex_owned(&igb->gen_lock));
2054 
2055 	/*
2056 	 * Save the unicast address in the software data structure
2057 	 */
2058 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2059 
2060 	/*
2061 	 * Set the unicast address to the RAR register
2062 	 */
2063 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2064 
2065 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2066 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2067 		return (EIO);
2068 	}
2069 
2070 	return (0);
2071 }
2072 
2073 /*
2074  * igb_multicst_add - Add a multicst address
2075  */
2076 int
2077 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2078 {
2079 	ASSERT(mutex_owned(&igb->gen_lock));
2080 
2081 	if ((multiaddr[0] & 01) == 0) {
2082 		return (EINVAL);
2083 	}
2084 
2085 	if (igb->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2086 		return (ENOENT);
2087 	}
2088 
2089 	bcopy(multiaddr,
2090 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2091 	igb->mcast_count++;
2092 
2093 	/*
2094 	 * Update the multicast table in the hardware
2095 	 */
2096 	igb_setup_multicst(igb);
2097 
2098 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2099 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2100 		return (EIO);
2101 	}
2102 
2103 	return (0);
2104 }
2105 
2106 /*
2107  * igb_multicst_remove - Remove a multicst address
2108  */
2109 int
2110 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2111 {
2112 	int i;
2113 
2114 	ASSERT(mutex_owned(&igb->gen_lock));
2115 
2116 	for (i = 0; i < igb->mcast_count; i++) {
2117 		if (bcmp(multiaddr, &igb->mcast_table[i],
2118 		    ETHERADDRL) == 0) {
2119 			for (i++; i < igb->mcast_count; i++) {
2120 				igb->mcast_table[i - 1] =
2121 				    igb->mcast_table[i];
2122 			}
2123 			igb->mcast_count--;
2124 			break;
2125 		}
2126 	}
2127 
2128 	/*
2129 	 * Update the multicast table in the hardware
2130 	 */
2131 	igb_setup_multicst(igb);
2132 
2133 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2134 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2135 		return (EIO);
2136 	}
2137 
2138 	return (0);
2139 }
2140 
2141 /*
2142  * igb_setup_multicast - setup multicast data structures
2143  *
2144  * This routine initializes all of the multicast related structures
2145  * and save them in the hardware registers.
2146  */
2147 static void
2148 igb_setup_multicst(igb_t *igb)
2149 {
2150 	uint8_t *mc_addr_list;
2151 	uint32_t mc_addr_count;
2152 	struct e1000_hw *hw = &igb->hw;
2153 
2154 	ASSERT(mutex_owned(&igb->gen_lock));
2155 
2156 	ASSERT(igb->mcast_count <= MAX_NUM_MULTICAST_ADDRESSES);
2157 
2158 	mc_addr_list = (uint8_t *)igb->mcast_table;
2159 	mc_addr_count = igb->mcast_count;
2160 
2161 	/*
2162 	 * Update the multicase addresses to the MTA registers
2163 	 */
2164 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2165 	    igb->unicst_total, hw->mac.rar_entry_count);
2166 }
2167 
2168 /*
2169  * igb_get_conf - Get driver configurations set in driver.conf
2170  *
2171  * This routine gets user-configured values out of the configuration
2172  * file igb.conf.
2173  *
2174  * For each configurable value, there is a minimum, a maximum, and a
2175  * default.
2176  * If user does not configure a value, use the default.
2177  * If user configures below the minimum, use the minumum.
2178  * If user configures above the maximum, use the maxumum.
2179  */
2180 static void
2181 igb_get_conf(igb_t *igb)
2182 {
2183 	struct e1000_hw *hw = &igb->hw;
2184 	uint32_t default_mtu;
2185 	uint32_t flow_control;
2186 
2187 	/*
2188 	 * igb driver supports the following user configurations:
2189 	 *
2190 	 * Link configurations:
2191 	 *    adv_autoneg_cap
2192 	 *    adv_1000fdx_cap
2193 	 *    adv_100fdx_cap
2194 	 *    adv_100hdx_cap
2195 	 *    adv_10fdx_cap
2196 	 *    adv_10hdx_cap
2197 	 * Note: 1000hdx is not supported.
2198 	 *
2199 	 * Jumbo frame configuration:
2200 	 *    default_mtu
2201 	 *
2202 	 * Ethernet flow control configuration:
2203 	 *    flow_control
2204 	 *
2205 	 * Multiple rings configurations:
2206 	 *    tx_queue_number
2207 	 *    tx_ring_size
2208 	 *    rx_queue_number
2209 	 *    rx_ring_size
2210 	 *
2211 	 * Call igb_get_prop() to get the value for a specific
2212 	 * configuration parameter.
2213 	 */
2214 
2215 	/*
2216 	 * Link configurations
2217 	 */
2218 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2219 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2220 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2221 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2222 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2223 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2224 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2225 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2226 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2227 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2228 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2229 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2230 
2231 	/*
2232 	 * Jumbo frame configurations
2233 	 */
2234 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2235 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2236 
2237 	igb->max_frame_size = default_mtu +
2238 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2239 
2240 	/*
2241 	 * Ethernet flow control configuration
2242 	 */
2243 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2244 	    e1000_fc_none, 4, e1000_fc_full);
2245 	if (flow_control == 4)
2246 		flow_control = e1000_fc_default;
2247 
2248 	hw->fc.type = flow_control;
2249 
2250 	/*
2251 	 * Multiple rings configurations
2252 	 */
2253 	igb->num_tx_rings = igb_get_prop(igb, PROP_TX_QUEUE_NUM,
2254 	    MIN_TX_QUEUE_NUM, MAX_TX_QUEUE_NUM, DEFAULT_TX_QUEUE_NUM);
2255 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2256 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2257 
2258 	igb->num_rx_rings = igb_get_prop(igb, PROP_RX_QUEUE_NUM,
2259 	    MIN_RX_QUEUE_NUM, MAX_RX_QUEUE_NUM, DEFAULT_RX_QUEUE_NUM);
2260 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2261 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2262 
2263 	/*
2264 	 * Tunable used to force an interrupt type. The only use is
2265 	 * for testing of the lesser interrupt types.
2266 	 * 0 = don't force interrupt type
2267 	 * 1 = force interrupt type MSIX
2268 	 * 2 = force interrupt type MSI
2269 	 * 3 = force interrupt type Legacy
2270 	 */
2271 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2272 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2273 
2274 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2275 	    0, 1, 1);
2276 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2277 	    0, 1, 1);
2278 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2279 	    0, 1, 0);
2280 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2281 	    0, 1, 1);
2282 
2283 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2284 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2285 	    DEFAULT_TX_COPY_THRESHOLD);
2286 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2287 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2288 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2289 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2290 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2291 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2292 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2293 	    MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD,
2294 	    DEFAULT_TX_RESCHED_THRESHOLD);
2295 
2296 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2297 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2298 	    DEFAULT_RX_COPY_THRESHOLD);
2299 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2300 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2301 	    DEFAULT_RX_LIMIT_PER_INTR);
2302 
2303 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2304 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
2305 	    DEFAULT_INTR_THROTTLING);
2306 }
2307 
2308 /*
2309  * igb_get_prop - Get a property value out of the configuration file igb.conf
2310  *
2311  * Caller provides the name of the property, a default value, a minimum
2312  * value, and a maximum value.
2313  *
2314  * Return configured value of the property, with default, minimum and
2315  * maximum properly applied.
2316  */
2317 static int
2318 igb_get_prop(igb_t *igb,
2319     char *propname,	/* name of the property */
2320     int minval,		/* minimum acceptable value */
2321     int maxval,		/* maximim acceptable value */
2322     int defval)		/* default value */
2323 {
2324 	int value;
2325 
2326 	/*
2327 	 * Call ddi_prop_get_int() to read the conf settings
2328 	 */
2329 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2330 	    DDI_PROP_DONTPASS, propname, defval);
2331 
2332 	if (value > maxval)
2333 		value = maxval;
2334 
2335 	if (value < minval)
2336 		value = minval;
2337 
2338 	return (value);
2339 }
2340 
2341 /*
2342  * igb_setup_link - Using the link properties to setup the link
2343  */
2344 int
2345 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2346 {
2347 	struct e1000_mac_info *mac;
2348 	struct e1000_phy_info *phy;
2349 	boolean_t invalid;
2350 
2351 	mac = &igb->hw.mac;
2352 	phy = &igb->hw.phy;
2353 	invalid = B_FALSE;
2354 
2355 	if (igb->param_adv_autoneg_cap == 1) {
2356 		mac->autoneg = B_TRUE;
2357 		phy->autoneg_advertised = 0;
2358 
2359 		/*
2360 		 * 1000hdx is not supported for autonegotiation
2361 		 */
2362 		if (igb->param_adv_1000fdx_cap == 1)
2363 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2364 
2365 		if (igb->param_adv_100fdx_cap == 1)
2366 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2367 
2368 		if (igb->param_adv_100hdx_cap == 1)
2369 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
2370 
2371 		if (igb->param_adv_10fdx_cap == 1)
2372 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
2373 
2374 		if (igb->param_adv_10hdx_cap == 1)
2375 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
2376 
2377 		if (phy->autoneg_advertised == 0)
2378 			invalid = B_TRUE;
2379 	} else {
2380 		mac->autoneg = B_FALSE;
2381 
2382 		/*
2383 		 * 1000fdx and 1000hdx are not supported for forced link
2384 		 */
2385 		if (igb->param_adv_100fdx_cap == 1)
2386 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
2387 		else if (igb->param_adv_100hdx_cap == 1)
2388 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
2389 		else if (igb->param_adv_10fdx_cap == 1)
2390 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
2391 		else if (igb->param_adv_10hdx_cap == 1)
2392 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
2393 		else
2394 			invalid = B_TRUE;
2395 	}
2396 
2397 	if (invalid) {
2398 		igb_notice(igb, "Invalid link settings. Setup link to "
2399 		    "autonegotiation with full link capabilities.");
2400 		mac->autoneg = B_TRUE;
2401 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
2402 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
2403 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
2404 	}
2405 
2406 	if (setup_hw) {
2407 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
2408 			return (IGB_FAILURE);
2409 	}
2410 
2411 	return (IGB_SUCCESS);
2412 }
2413 
2414 
2415 /*
2416  * igb_is_link_up - Check if the link is up
2417  */
2418 static boolean_t
2419 igb_is_link_up(igb_t *igb)
2420 {
2421 	struct e1000_hw *hw = &igb->hw;
2422 	boolean_t link_up;
2423 
2424 	ASSERT(mutex_owned(&igb->gen_lock));
2425 
2426 	(void) e1000_check_for_link(hw);
2427 
2428 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
2429 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2430 	    (hw->mac.serdes_has_link))) {
2431 		link_up = B_TRUE;
2432 	} else {
2433 		link_up = B_FALSE;
2434 	}
2435 
2436 	return (link_up);
2437 }
2438 
2439 /*
2440  * igb_link_check - Link status processing
2441  */
2442 static boolean_t
2443 igb_link_check(igb_t *igb)
2444 {
2445 	struct e1000_hw *hw = &igb->hw;
2446 	uint16_t speed = 0, duplex = 0;
2447 	boolean_t link_changed = B_FALSE;
2448 
2449 	ASSERT(mutex_owned(&igb->gen_lock));
2450 
2451 	if (igb_is_link_up(igb)) {
2452 		/*
2453 		 * The Link is up, check whether it was marked as down earlier
2454 		 */
2455 		if (igb->link_state != LINK_STATE_UP) {
2456 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
2457 			igb->link_speed = speed;
2458 			igb->link_duplex = duplex;
2459 			igb->link_state = LINK_STATE_UP;
2460 			igb->link_down_timeout = 0;
2461 			link_changed = B_TRUE;
2462 		}
2463 	} else {
2464 		if (igb->link_state != LINK_STATE_DOWN) {
2465 			igb->link_speed = 0;
2466 			igb->link_duplex = 0;
2467 			igb->link_state = LINK_STATE_DOWN;
2468 			link_changed = B_TRUE;
2469 		}
2470 
2471 		if (igb->igb_state & IGB_STARTED) {
2472 			if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) {
2473 				igb->link_down_timeout++;
2474 			} else if (igb->link_down_timeout ==
2475 			    MAX_LINK_DOWN_TIMEOUT) {
2476 				igb_tx_clean(igb);
2477 				igb->link_down_timeout++;
2478 			}
2479 		}
2480 	}
2481 
2482 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
2483 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2484 
2485 	return (link_changed);
2486 }
2487 
2488 /*
2489  * igb_local_timer - driver watchdog function
2490  *
2491  * This function will handle the transmit stall check, link status check and
2492  * other routines.
2493  */
2494 static void
2495 igb_local_timer(void *arg)
2496 {
2497 	igb_t *igb = (igb_t *)arg;
2498 	struct e1000_hw *hw = &igb->hw;
2499 	boolean_t link_changed;
2500 
2501 	if (igb_stall_check(igb)) {
2502 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
2503 		igb->reset_count++;
2504 		if (igb_reset(igb) == IGB_SUCCESS)
2505 			ddi_fm_service_impact(igb->dip,
2506 			    DDI_SERVICE_RESTORED);
2507 	}
2508 
2509 	mutex_enter(&igb->gen_lock);
2510 	link_changed = igb_link_check(igb);
2511 	mutex_exit(&igb->gen_lock);
2512 
2513 	if (link_changed)
2514 		mac_link_update(igb->mac_hdl, igb->link_state);
2515 
2516 	/*
2517 	 * Set Timer Interrupts
2518 	 */
2519 	if (igb->intr_type != DDI_INTR_TYPE_MSIX)
2520 		E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2521 
2522 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
2523 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2524 
2525 	igb_restart_watchdog_timer(igb);
2526 }
2527 
2528 /*
2529  * igb_stall_check - check for transmit stall
2530  *
2531  * This function checks if the adapter is stalled (in transmit).
2532  *
2533  * It is called each time the watchdog timeout is invoked.
2534  * If the transmit descriptor reclaim continuously fails,
2535  * the watchdog value will increment by 1. If the watchdog
2536  * value exceeds the threshold, the igb is assumed to
2537  * have stalled and need to be reset.
2538  */
2539 static boolean_t
2540 igb_stall_check(igb_t *igb)
2541 {
2542 	igb_tx_ring_t *tx_ring;
2543 	boolean_t result;
2544 	int i;
2545 
2546 	if (igb->link_state != LINK_STATE_UP)
2547 		return (B_FALSE);
2548 
2549 	/*
2550 	 * If any tx ring is stalled, we'll reset the chipset
2551 	 */
2552 	result = B_FALSE;
2553 	for (i = 0; i < igb->num_tx_rings; i++) {
2554 		tx_ring = &igb->tx_rings[i];
2555 
2556 		if (tx_ring->recycle_fail > 0)
2557 			tx_ring->stall_watchdog++;
2558 		else
2559 			tx_ring->stall_watchdog = 0;
2560 
2561 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
2562 			result = B_TRUE;
2563 			break;
2564 		}
2565 	}
2566 
2567 	if (result) {
2568 		tx_ring->stall_watchdog = 0;
2569 		tx_ring->recycle_fail = 0;
2570 	}
2571 
2572 	return (result);
2573 }
2574 
2575 
2576 /*
2577  * is_valid_mac_addr - Check if the mac address is valid
2578  */
2579 static boolean_t
2580 is_valid_mac_addr(uint8_t *mac_addr)
2581 {
2582 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
2583 	const uint8_t addr_test2[6] =
2584 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
2585 
2586 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
2587 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
2588 		return (B_FALSE);
2589 
2590 	return (B_TRUE);
2591 }
2592 
2593 static boolean_t
2594 igb_find_mac_address(igb_t *igb)
2595 {
2596 	struct e1000_hw *hw = &igb->hw;
2597 #ifdef __sparc
2598 	uchar_t *bytes;
2599 	struct ether_addr sysaddr;
2600 	uint_t nelts;
2601 	int err;
2602 	boolean_t found = B_FALSE;
2603 
2604 	/*
2605 	 * The "vendor's factory-set address" may already have
2606 	 * been extracted from the chip, but if the property
2607 	 * "local-mac-address" is set we use that instead.
2608 	 *
2609 	 * We check whether it looks like an array of 6
2610 	 * bytes (which it should, if OBP set it).  If we can't
2611 	 * make sense of it this way, we'll ignore it.
2612 	 */
2613 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
2614 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
2615 	if (err == DDI_PROP_SUCCESS) {
2616 		if (nelts == ETHERADDRL) {
2617 			while (nelts--)
2618 				hw->mac.addr[nelts] = bytes[nelts];
2619 			found = B_TRUE;
2620 		}
2621 		ddi_prop_free(bytes);
2622 	}
2623 
2624 	/*
2625 	 * Look up the OBP property "local-mac-address?". If the user has set
2626 	 * 'local-mac-address? = false', use "the system address" instead.
2627 	 */
2628 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
2629 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
2630 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
2631 			if (localetheraddr(NULL, &sysaddr) != 0) {
2632 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
2633 				found = B_TRUE;
2634 			}
2635 		}
2636 		ddi_prop_free(bytes);
2637 	}
2638 
2639 	/*
2640 	 * Finally(!), if there's a valid "mac-address" property (created
2641 	 * if we netbooted from this interface), we must use this instead
2642 	 * of any of the above to ensure that the NFS/install server doesn't
2643 	 * get confused by the address changing as Solaris takes over!
2644 	 */
2645 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
2646 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
2647 	if (err == DDI_PROP_SUCCESS) {
2648 		if (nelts == ETHERADDRL) {
2649 			while (nelts--)
2650 				hw->mac.addr[nelts] = bytes[nelts];
2651 			found = B_TRUE;
2652 		}
2653 		ddi_prop_free(bytes);
2654 	}
2655 
2656 	if (found) {
2657 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
2658 		return (B_TRUE);
2659 	}
2660 #endif
2661 
2662 	/*
2663 	 * Read the device MAC address from the EEPROM
2664 	 */
2665 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
2666 		return (B_FALSE);
2667 
2668 	return (B_TRUE);
2669 }
2670 
2671 #pragma inline(igb_arm_watchdog_timer)
2672 
2673 static void
2674 igb_arm_watchdog_timer(igb_t *igb)
2675 {
2676 	/*
2677 	 * Fire a watchdog timer
2678 	 */
2679 	igb->watchdog_tid =
2680 	    timeout(igb_local_timer,
2681 	    (void *)igb, 1 * drv_usectohz(1000000));
2682 
2683 }
2684 
2685 /*
2686  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
2687  */
2688 void
2689 igb_enable_watchdog_timer(igb_t *igb)
2690 {
2691 	mutex_enter(&igb->watchdog_lock);
2692 
2693 	if (!igb->watchdog_enable) {
2694 		igb->watchdog_enable = B_TRUE;
2695 		igb->watchdog_start = B_TRUE;
2696 		igb_arm_watchdog_timer(igb);
2697 	}
2698 
2699 	mutex_exit(&igb->watchdog_lock);
2700 
2701 }
2702 
2703 /*
2704  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
2705  */
2706 void
2707 igb_disable_watchdog_timer(igb_t *igb)
2708 {
2709 	timeout_id_t tid;
2710 
2711 	mutex_enter(&igb->watchdog_lock);
2712 
2713 	igb->watchdog_enable = B_FALSE;
2714 	igb->watchdog_start = B_FALSE;
2715 	tid = igb->watchdog_tid;
2716 	igb->watchdog_tid = 0;
2717 
2718 	mutex_exit(&igb->watchdog_lock);
2719 
2720 	if (tid != 0)
2721 		(void) untimeout(tid);
2722 
2723 }
2724 
2725 /*
2726  * igb_start_watchdog_timer - Start the driver watchdog timer
2727  */
2728 static void
2729 igb_start_watchdog_timer(igb_t *igb)
2730 {
2731 	mutex_enter(&igb->watchdog_lock);
2732 
2733 	if (igb->watchdog_enable) {
2734 		if (!igb->watchdog_start) {
2735 			igb->watchdog_start = B_TRUE;
2736 			igb_arm_watchdog_timer(igb);
2737 		}
2738 	}
2739 
2740 	mutex_exit(&igb->watchdog_lock);
2741 }
2742 
2743 /*
2744  * igb_restart_watchdog_timer - Restart the driver watchdog timer
2745  */
2746 static void
2747 igb_restart_watchdog_timer(igb_t *igb)
2748 {
2749 	mutex_enter(&igb->watchdog_lock);
2750 
2751 	if (igb->watchdog_start)
2752 		igb_arm_watchdog_timer(igb);
2753 
2754 	mutex_exit(&igb->watchdog_lock);
2755 }
2756 
2757 /*
2758  * igb_stop_watchdog_timer - Stop the driver watchdog timer
2759  */
2760 static void
2761 igb_stop_watchdog_timer(igb_t *igb)
2762 {
2763 	timeout_id_t tid;
2764 
2765 	mutex_enter(&igb->watchdog_lock);
2766 
2767 	igb->watchdog_start = B_FALSE;
2768 	tid = igb->watchdog_tid;
2769 	igb->watchdog_tid = 0;
2770 
2771 	mutex_exit(&igb->watchdog_lock);
2772 
2773 	if (tid != 0)
2774 		(void) untimeout(tid);
2775 }
2776 
2777 /*
2778  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
2779  */
2780 static void
2781 igb_disable_adapter_interrupts(igb_t *igb)
2782 {
2783 	struct e1000_hw *hw = &igb->hw;
2784 
2785 	/*
2786 	 * Set the IMC register to mask all the interrupts,
2787 	 * including the tx interrupts.
2788 	 */
2789 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2790 
2791 	/*
2792 	 * Additional disabling for MSI-X
2793 	 */
2794 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
2795 		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
2796 		E1000_WRITE_REG(hw, E1000_EIAC, 0x0);
2797 	}
2798 
2799 	E1000_WRITE_FLUSH(hw);
2800 }
2801 
2802 /*
2803  * igb_enable_adapter_interrupts - Mask/enable all hardware interrupts
2804  */
2805 static void
2806 igb_enable_adapter_interrupts(igb_t *igb)
2807 {
2808 	struct e1000_hw *hw = &igb->hw;
2809 	uint32_t reg;
2810 
2811 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
2812 		/* Interrupt enabling for MSI-X */
2813 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
2814 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
2815 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
2816 
2817 		/* Enable MSI-X PBA support */
2818 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2819 		reg |= E1000_CTRL_EXT_PBA_CLR;
2820 
2821 		/* Non-selective interrupt clear-on-read */
2822 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
2823 
2824 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2825 	} else {
2826 		/* Interrupt enabling for MSI and legacy */
2827 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
2828 	}
2829 
2830 	E1000_WRITE_FLUSH(hw);
2831 }
2832 
2833 /*
2834  * Loopback Support
2835  */
2836 static lb_property_t lb_normal =
2837 	{ normal,	"normal",	IGB_LB_NONE		};
2838 static lb_property_t lb_external =
2839 	{ external,	"External",	IGB_LB_EXTERNAL		};
2840 static lb_property_t lb_mac =
2841 	{ internal,	"MAC",		IGB_LB_INTERNAL_MAC	};
2842 static lb_property_t lb_phy =
2843 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
2844 static lb_property_t lb_serdes =
2845 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
2846 
2847 enum ioc_reply
2848 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
2849 {
2850 	lb_info_sz_t *lbsp;
2851 	lb_property_t *lbpp;
2852 	struct e1000_hw *hw;
2853 	uint32_t *lbmp;
2854 	uint32_t size;
2855 	uint32_t value;
2856 
2857 	hw = &igb->hw;
2858 
2859 	if (mp->b_cont == NULL)
2860 		return (IOC_INVAL);
2861 
2862 	switch (iocp->ioc_cmd) {
2863 	default:
2864 		return (IOC_INVAL);
2865 
2866 	case LB_GET_INFO_SIZE:
2867 		size = sizeof (lb_info_sz_t);
2868 		if (iocp->ioc_count != size)
2869 			return (IOC_INVAL);
2870 
2871 		value = sizeof (lb_normal);
2872 		value += sizeof (lb_mac);
2873 		if (hw->phy.media_type == e1000_media_type_copper)
2874 			value += sizeof (lb_phy);
2875 		else
2876 			value += sizeof (lb_serdes);
2877 		value += sizeof (lb_external);
2878 
2879 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
2880 		*lbsp = value;
2881 		break;
2882 
2883 	case LB_GET_INFO:
2884 		value = sizeof (lb_normal);
2885 		value += sizeof (lb_mac);
2886 		if (hw->phy.media_type == e1000_media_type_copper)
2887 			value += sizeof (lb_phy);
2888 		else
2889 			value += sizeof (lb_serdes);
2890 		value += sizeof (lb_external);
2891 
2892 		size = value;
2893 		if (iocp->ioc_count != size)
2894 			return (IOC_INVAL);
2895 
2896 		value = 0;
2897 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
2898 
2899 		lbpp[value++] = lb_normal;
2900 		lbpp[value++] = lb_mac;
2901 		if (hw->phy.media_type == e1000_media_type_copper)
2902 			lbpp[value++] = lb_phy;
2903 		else
2904 			lbpp[value++] = lb_serdes;
2905 		lbpp[value++] = lb_external;
2906 		break;
2907 
2908 	case LB_GET_MODE:
2909 		size = sizeof (uint32_t);
2910 		if (iocp->ioc_count != size)
2911 			return (IOC_INVAL);
2912 
2913 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
2914 		*lbmp = igb->loopback_mode;
2915 		break;
2916 
2917 	case LB_SET_MODE:
2918 		size = 0;
2919 		if (iocp->ioc_count != sizeof (uint32_t))
2920 			return (IOC_INVAL);
2921 
2922 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
2923 		if (!igb_set_loopback_mode(igb, *lbmp))
2924 			return (IOC_INVAL);
2925 		break;
2926 	}
2927 
2928 	iocp->ioc_count = size;
2929 	iocp->ioc_error = 0;
2930 
2931 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2932 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2933 		return (IOC_INVAL);
2934 	}
2935 
2936 	return (IOC_REPLY);
2937 }
2938 
2939 /*
2940  * igb_set_loopback_mode - Setup loopback based on the loopback mode
2941  */
2942 static boolean_t
2943 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
2944 {
2945 	struct e1000_hw *hw;
2946 
2947 	if (mode == igb->loopback_mode)
2948 		return (B_TRUE);
2949 
2950 	hw = &igb->hw;
2951 
2952 	igb->loopback_mode = mode;
2953 
2954 	if (mode == IGB_LB_NONE) {
2955 		/* Reset the chip */
2956 		hw->phy.autoneg_wait_to_complete = B_TRUE;
2957 		(void) igb_reset(igb);
2958 		hw->phy.autoneg_wait_to_complete = B_FALSE;
2959 		return (B_TRUE);
2960 	}
2961 
2962 	mutex_enter(&igb->gen_lock);
2963 
2964 	switch (mode) {
2965 	default:
2966 		mutex_exit(&igb->gen_lock);
2967 		return (B_FALSE);
2968 
2969 	case IGB_LB_EXTERNAL:
2970 		igb_set_external_loopback(igb);
2971 		break;
2972 
2973 	case IGB_LB_INTERNAL_MAC:
2974 		igb_set_internal_mac_loopback(igb);
2975 		break;
2976 
2977 	case IGB_LB_INTERNAL_PHY:
2978 		igb_set_internal_phy_loopback(igb);
2979 		break;
2980 
2981 	case IGB_LB_INTERNAL_SERDES:
2982 		igb_set_internal_serdes_loopback(igb);
2983 		break;
2984 	}
2985 
2986 	mutex_exit(&igb->gen_lock);
2987 
2988 	return (B_TRUE);
2989 }
2990 
2991 /*
2992  * igb_set_external_loopback - Set the external loopback mode
2993  */
2994 static void
2995 igb_set_external_loopback(igb_t *igb)
2996 {
2997 	struct e1000_hw *hw;
2998 
2999 	hw = &igb->hw;
3000 
3001 	/* Set phy to known state */
3002 	(void) e1000_phy_hw_reset(hw);
3003 
3004 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3005 	(void) e1000_write_phy_reg(hw, 0x9, 0x1b00);
3006 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3007 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3008 }
3009 
3010 /*
3011  * igb_set_internal_mac_loopback - Set the internal MAC loopback mode
3012  */
3013 static void
3014 igb_set_internal_mac_loopback(igb_t *igb)
3015 {
3016 	struct e1000_hw *hw;
3017 	uint32_t ctrl;
3018 	uint32_t rctl;
3019 
3020 	hw = &igb->hw;
3021 
3022 	/* Set the Receive Control register */
3023 	rctl = E1000_READ_REG(hw, E1000_RCTL);
3024 	rctl &= ~E1000_RCTL_LBM_TCVR;
3025 	rctl |= E1000_RCTL_LBM_MAC;
3026 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3027 
3028 	/* Set the Device Control register */
3029 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3030 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3031 	ctrl |= (E1000_CTRL_SLU |	/* Force link up */
3032 	    E1000_CTRL_FRCSPD |		/* Force speed */
3033 	    E1000_CTRL_FRCDPX |		/* Force duplex */
3034 	    E1000_CTRL_SPD_1000 |	/* Force speed to 1000 */
3035 	    E1000_CTRL_FD);		/* Force full duplex */
3036 	ctrl &= ~E1000_CTRL_ILOS;	/* Clear ILOS when there's a link */
3037 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3038 }
3039 
3040 /*
3041  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3042  */
3043 static void
3044 igb_set_internal_phy_loopback(igb_t *igb)
3045 {
3046 	struct e1000_hw *hw;
3047 	uint32_t ctrl_ext;
3048 	uint16_t phy_ctrl;
3049 	uint16_t phy_pconf;
3050 
3051 	hw = &igb->hw;
3052 
3053 	/* Set link mode to PHY (00b) in the Extended Control register */
3054 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3055 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3056 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3057 
3058 	/*
3059 	 * Set PHY control register (0x4140):
3060 	 *    Set full duplex mode
3061 	 *    Set loopback bit
3062 	 *    Clear auto-neg enable bit
3063 	 *    Set PHY speed
3064 	 */
3065 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3066 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3067 
3068 	/* Set the link disable bit in the Port Configuration register */
3069 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3070 	phy_pconf |= (uint16_t)1 << 14;
3071 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3072 }
3073 
3074 /*
3075  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3076  */
3077 static void
3078 igb_set_internal_serdes_loopback(igb_t *igb)
3079 {
3080 	struct e1000_hw *hw;
3081 	uint32_t ctrl_ext;
3082 	uint32_t ctrl;
3083 	uint32_t pcs_lctl;
3084 	uint32_t connsw;
3085 
3086 	hw = &igb->hw;
3087 
3088 	/* Set link mode to SerDes (11b) in the Extended Control register */
3089 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3090 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3091 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3092 
3093 	/* Configure the SerDes to loopback */
3094 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3095 
3096 	/* Set Device Control register */
3097 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3098 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3099 	    E1000_CTRL_SLU);		/* Force link up */
3100 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3101 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3102 	    E1000_CTRL_LRST);		/* Clear link reset */
3103 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3104 
3105 	/* Set PCS Link Control register */
3106 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3107 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3108 	    E1000_PCS_LCTL_FSD |
3109 	    E1000_PCS_LCTL_FDV_FULL |
3110 	    E1000_PCS_LCTL_FLV_LINK_UP);
3111 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3112 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3113 
3114 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3115 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3116 	connsw &= ~E1000_CONNSW_ENRGSRC;
3117 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3118 }
3119 
3120 #pragma inline(igb_intr_rx_work)
3121 /*
3122  * igb_intr_rx_work - rx processing of ISR
3123  */
3124 static void
3125 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3126 {
3127 	mblk_t *mp;
3128 
3129 	mutex_enter(&rx_ring->rx_lock);
3130 	mp = igb_rx(rx_ring);
3131 	mutex_exit(&rx_ring->rx_lock);
3132 
3133 	if (mp != NULL)
3134 		mac_rx(rx_ring->igb->mac_hdl, NULL, mp);
3135 }
3136 
3137 #pragma inline(igb_intr_tx_work)
3138 /*
3139  * igb_intr_tx_work - tx processing of ISR
3140  */
3141 static void
3142 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3143 {
3144 	/* Recycle the tx descriptors */
3145 	tx_ring->tx_recycle(tx_ring);
3146 
3147 	/* Schedule the re-transmit */
3148 	if (tx_ring->reschedule &&
3149 	    (tx_ring->tbd_free >= tx_ring->resched_thresh)) {
3150 		tx_ring->reschedule = B_FALSE;
3151 		mac_tx_update(tx_ring->igb->mac_hdl);
3152 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3153 	}
3154 }
3155 
3156 #pragma inline(igb_intr_other_work)
3157 /*
3158  * igb_intr_other_work - other processing of ISR
3159  */
3160 static void
3161 igb_intr_other_work(igb_t *igb)
3162 {
3163 	boolean_t link_changed;
3164 
3165 	igb_stop_watchdog_timer(igb);
3166 
3167 	mutex_enter(&igb->gen_lock);
3168 
3169 	/*
3170 	 * Because we got a link-status-change interrupt, force
3171 	 * e1000_check_for_link() to look at phy
3172 	 */
3173 	igb->hw.mac.get_link_status = B_TRUE;
3174 
3175 	/* igb_link_check takes care of link status change */
3176 	link_changed = igb_link_check(igb);
3177 
3178 	/* Get new phy state */
3179 	igb_get_phy_state(igb);
3180 
3181 	mutex_exit(&igb->gen_lock);
3182 
3183 	if (link_changed)
3184 		mac_link_update(igb->mac_hdl, igb->link_state);
3185 
3186 	igb_start_watchdog_timer(igb);
3187 }
3188 
3189 /*
3190  * igb_intr_legacy - Interrupt handler for legacy interrupts
3191  */
3192 static uint_t
3193 igb_intr_legacy(void *arg1, void *arg2)
3194 {
3195 	igb_t *igb = (igb_t *)arg1;
3196 	igb_tx_ring_t *tx_ring;
3197 	uint32_t icr;
3198 	mblk_t *mp;
3199 	boolean_t tx_reschedule;
3200 	boolean_t link_changed;
3201 	uint_t result;
3202 
3203 	_NOTE(ARGUNUSED(arg2));
3204 
3205 	mutex_enter(&igb->gen_lock);
3206 
3207 	if (igb->igb_state & IGB_SUSPENDED) {
3208 		mutex_exit(&igb->gen_lock);
3209 		return (DDI_INTR_UNCLAIMED);
3210 	}
3211 
3212 	mp = NULL;
3213 	tx_reschedule = B_FALSE;
3214 	link_changed = B_FALSE;
3215 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3216 
3217 	if (icr & E1000_ICR_INT_ASSERTED) {
3218 		/*
3219 		 * E1000_ICR_INT_ASSERTED bit was set:
3220 		 * Read(Clear) the ICR, claim this interrupt,
3221 		 * look for work to do.
3222 		 */
3223 		ASSERT(igb->num_rx_rings == 1);
3224 		ASSERT(igb->num_tx_rings == 1);
3225 
3226 		if (icr & E1000_ICR_RXT0) {
3227 			mp = igb_rx(&igb->rx_rings[0]);
3228 		}
3229 
3230 		if (icr & E1000_ICR_TXDW) {
3231 			tx_ring = &igb->tx_rings[0];
3232 
3233 			/* Recycle the tx descriptors */
3234 			tx_ring->tx_recycle(tx_ring);
3235 
3236 			/* Schedule the re-transmit */
3237 			tx_reschedule = (tx_ring->reschedule &&
3238 			    (tx_ring->tbd_free >= tx_ring->resched_thresh));
3239 		}
3240 
3241 		if (icr & E1000_ICR_LSC) {
3242 			/*
3243 			 * Because we got a link-status-change interrupt, force
3244 			 * e1000_check_for_link() to look at phy
3245 			 */
3246 			igb->hw.mac.get_link_status = B_TRUE;
3247 
3248 			/* igb_link_check takes care of link status change */
3249 			link_changed = igb_link_check(igb);
3250 
3251 			/* Get new phy state */
3252 			igb_get_phy_state(igb);
3253 		}
3254 
3255 		result = DDI_INTR_CLAIMED;
3256 	} else {
3257 		/*
3258 		 * E1000_ICR_INT_ASSERTED bit was not set:
3259 		 * Don't claim this interrupt.
3260 		 */
3261 		result = DDI_INTR_UNCLAIMED;
3262 	}
3263 
3264 	mutex_exit(&igb->gen_lock);
3265 
3266 	/*
3267 	 * Do the following work outside of the gen_lock
3268 	 */
3269 	if (mp != NULL)
3270 		mac_rx(igb->mac_hdl, NULL, mp);
3271 
3272 	if (tx_reschedule)  {
3273 		tx_ring->reschedule = B_FALSE;
3274 		mac_tx_update(igb->mac_hdl);
3275 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3276 	}
3277 
3278 	if (link_changed)
3279 		mac_link_update(igb->mac_hdl, igb->link_state);
3280 
3281 	return (result);
3282 }
3283 
3284 /*
3285  * igb_intr_msi - Interrupt handler for MSI
3286  */
3287 static uint_t
3288 igb_intr_msi(void *arg1, void *arg2)
3289 {
3290 	igb_t *igb = (igb_t *)arg1;
3291 	uint32_t icr;
3292 
3293 	_NOTE(ARGUNUSED(arg2));
3294 
3295 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3296 
3297 	/*
3298 	 * For MSI interrupt, we have only one vector,
3299 	 * so we have only one rx ring and one tx ring enabled.
3300 	 */
3301 	ASSERT(igb->num_rx_rings == 1);
3302 	ASSERT(igb->num_tx_rings == 1);
3303 
3304 	if (icr & E1000_ICR_RXT0) {
3305 		igb_intr_rx_work(&igb->rx_rings[0]);
3306 	}
3307 
3308 	if (icr & E1000_ICR_TXDW) {
3309 		igb_intr_tx_work(&igb->tx_rings[0]);
3310 	}
3311 
3312 	if (icr & E1000_ICR_LSC) {
3313 		igb_intr_other_work(igb);
3314 	}
3315 
3316 	return (DDI_INTR_CLAIMED);
3317 }
3318 
3319 /*
3320  * igb_intr_rx - Interrupt handler for rx
3321  */
3322 static uint_t
3323 igb_intr_rx(void *arg1, void *arg2)
3324 {
3325 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
3326 
3327 	_NOTE(ARGUNUSED(arg2));
3328 
3329 	/*
3330 	 * Only used via MSI-X vector so don't check cause bits
3331 	 * and only clean the given ring.
3332 	 */
3333 	igb_intr_rx_work(rx_ring);
3334 
3335 	return (DDI_INTR_CLAIMED);
3336 }
3337 
3338 /*
3339  * igb_intr_tx_other - Interrupt handler for both tx and other
3340  *
3341  * Always look for Tx cleanup work.  Only look for other work if the right
3342  * bits are set in the Interrupt Cause Register.
3343  */
3344 static uint_t
3345 igb_intr_tx_other(void *arg1, void *arg2)
3346 {
3347 	igb_t *igb = (igb_t *)arg1;
3348 	uint32_t icr;
3349 
3350 	_NOTE(ARGUNUSED(arg2));
3351 
3352 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3353 
3354 	/*
3355 	 * Always look for Tx cleanup work.  We don't have separate
3356 	 * transmit vectors, so we have only one tx ring enabled.
3357 	 */
3358 	ASSERT(igb->num_tx_rings == 1);
3359 	igb_intr_tx_work(&igb->tx_rings[0]);
3360 
3361 	/*
3362 	 * Check for "other" causes.
3363 	 */
3364 	if (icr & E1000_ICR_LSC) {
3365 		igb_intr_other_work(igb);
3366 	}
3367 
3368 	return (DDI_INTR_CLAIMED);
3369 }
3370 
3371 /*
3372  * igb_alloc_intrs - Allocate interrupts for the driver
3373  *
3374  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
3375  * if not successful, try Legacy.
3376  * igb->intr_force can be used to force sequence to start with
3377  * any of the 3 types.
3378  * If MSI-X is not used, number of tx/rx rings is forced to 1.
3379  */
3380 static int
3381 igb_alloc_intrs(igb_t *igb)
3382 {
3383 	dev_info_t *devinfo;
3384 	int intr_types;
3385 	int rc;
3386 
3387 	devinfo = igb->dip;
3388 
3389 	/* Get supported interrupt types */
3390 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
3391 
3392 	if (rc != DDI_SUCCESS) {
3393 		igb_log(igb,
3394 		    "Get supported interrupt types failed: %d", rc);
3395 		return (IGB_FAILURE);
3396 	}
3397 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
3398 
3399 	igb->intr_type = 0;
3400 
3401 	/* Install MSI-X interrupts */
3402 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
3403 	    (igb->intr_force <= IGB_INTR_MSIX)) {
3404 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
3405 
3406 		if (rc == IGB_SUCCESS)
3407 			return (IGB_SUCCESS);
3408 
3409 		igb_log(igb,
3410 		    "Allocate MSI-X failed, trying MSI interrupts...");
3411 	}
3412 
3413 	/* MSI-X not used, force rings to 1 */
3414 	igb->num_rx_rings = 1;
3415 	igb->num_tx_rings = 1;
3416 	igb_log(igb,
3417 	    "MSI-X not used, force rx and tx queue number to 1");
3418 
3419 	/* Install MSI interrupts */
3420 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
3421 	    (igb->intr_force <= IGB_INTR_MSI)) {
3422 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
3423 
3424 		if (rc == IGB_SUCCESS)
3425 			return (IGB_SUCCESS);
3426 
3427 		igb_log(igb,
3428 		    "Allocate MSI failed, trying Legacy interrupts...");
3429 	}
3430 
3431 	/* Install legacy interrupts */
3432 	if (intr_types & DDI_INTR_TYPE_FIXED) {
3433 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
3434 
3435 		if (rc == IGB_SUCCESS)
3436 			return (IGB_SUCCESS);
3437 
3438 		igb_log(igb,
3439 		    "Allocate Legacy interrupts failed");
3440 	}
3441 
3442 	/* If none of the 3 types succeeded, return failure */
3443 	return (IGB_FAILURE);
3444 }
3445 
3446 /*
3447  * igb_alloc_intr_handles - Allocate interrupt handles.
3448  *
3449  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
3450  * if fewer than 2 handles are available, return failure.
3451  * Upon success, this sets the number of Rx rings to a number that
3452  * matches the handles available for Rx interrupts.
3453  */
3454 static int
3455 igb_alloc_intr_handles(igb_t *igb, int intr_type)
3456 {
3457 	dev_info_t *devinfo;
3458 	int request, count, avail, actual;
3459 	int rx_rings, minimum;
3460 	int rc;
3461 
3462 	devinfo = igb->dip;
3463 
3464 	/*
3465 	 * Currently only 1 tx ring is supported. More tx rings
3466 	 * will be supported with future enhancement.
3467 	 */
3468 	if (igb->num_tx_rings > 1) {
3469 		igb->num_tx_rings = 1;
3470 		igb_log(igb,
3471 		    "Use only 1 MSI-X vector for tx, "
3472 		    "force tx queue number to 1");
3473 	}
3474 
3475 	switch (intr_type) {
3476 	case DDI_INTR_TYPE_FIXED:
3477 		request = 1;	/* Request 1 legacy interrupt handle */
3478 		minimum = 1;
3479 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
3480 		break;
3481 
3482 	case DDI_INTR_TYPE_MSI:
3483 		request = 1;	/* Request 1 MSI interrupt handle */
3484 		minimum = 1;
3485 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
3486 		break;
3487 
3488 	case DDI_INTR_TYPE_MSIX:
3489 		/*
3490 		 * Best number of vectors for the adapter is
3491 		 * # rx rings + # tx rings + 1 for other
3492 		 * But currently we only support number of vectors of
3493 		 * # rx rings + 1 for tx & other
3494 		 */
3495 		request = igb->num_rx_rings + 1;
3496 		minimum = 2;
3497 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
3498 		break;
3499 
3500 	default:
3501 		igb_log(igb,
3502 		    "invalid call to igb_alloc_intr_handles(): %d\n",
3503 		    intr_type);
3504 		return (IGB_FAILURE);
3505 	}
3506 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
3507 	    request, minimum);
3508 
3509 	/*
3510 	 * Get number of supported interrupts
3511 	 */
3512 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
3513 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
3514 		igb_log(igb,
3515 		    "Get supported interrupt number failed. "
3516 		    "Return: %d, count: %d", rc, count);
3517 		return (IGB_FAILURE);
3518 	}
3519 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
3520 
3521 	/*
3522 	 * Get number of available interrupts
3523 	 */
3524 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
3525 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
3526 		igb_log(igb,
3527 		    "Get available interrupt number failed. "
3528 		    "Return: %d, available: %d", rc, avail);
3529 		return (IGB_FAILURE);
3530 	}
3531 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
3532 
3533 	if (avail < request) {
3534 		igb_log(igb, "Request %d handles, %d available",
3535 		    request, avail);
3536 		request = avail;
3537 	}
3538 
3539 	actual = 0;
3540 	igb->intr_cnt = 0;
3541 
3542 	/*
3543 	 * Allocate an array of interrupt handles
3544 	 */
3545 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
3546 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
3547 
3548 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
3549 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
3550 	if (rc != DDI_SUCCESS) {
3551 		igb_log(igb, "Allocate interrupts failed. "
3552 		    "return: %d, request: %d, actual: %d",
3553 		    rc, request, actual);
3554 		goto alloc_handle_fail;
3555 	}
3556 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
3557 
3558 	igb->intr_cnt = actual;
3559 
3560 	if (actual < minimum) {
3561 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
3562 		    actual);
3563 		goto alloc_handle_fail;
3564 	}
3565 
3566 	/*
3567 	 * For MSI-X, actual might force us to reduce number of rx rings
3568 	 */
3569 	if (intr_type == DDI_INTR_TYPE_MSIX) {
3570 		rx_rings = actual - 1;
3571 		if (rx_rings < igb->num_rx_rings) {
3572 			igb_log(igb,
3573 			    "MSI-X vectors force Rx queue number to %d",
3574 			    rx_rings);
3575 			igb->num_rx_rings = rx_rings;
3576 		}
3577 	}
3578 
3579 	/*
3580 	 * Get priority for first vector, assume remaining are all the same
3581 	 */
3582 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
3583 	if (rc != DDI_SUCCESS) {
3584 		igb_log(igb,
3585 		    "Get interrupt priority failed: %d", rc);
3586 		goto alloc_handle_fail;
3587 	}
3588 
3589 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
3590 	if (rc != DDI_SUCCESS) {
3591 		igb_log(igb,
3592 		    "Get interrupt cap failed: %d", rc);
3593 		goto alloc_handle_fail;
3594 	}
3595 
3596 	igb->intr_type = intr_type;
3597 
3598 	return (IGB_SUCCESS);
3599 
3600 alloc_handle_fail:
3601 	igb_rem_intrs(igb);
3602 
3603 	return (IGB_FAILURE);
3604 }
3605 
3606 /*
3607  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
3608  *
3609  * Before adding the interrupt handlers, the interrupt vectors have
3610  * been allocated, and the rx/tx rings have also been allocated.
3611  */
3612 static int
3613 igb_add_intr_handlers(igb_t *igb)
3614 {
3615 	igb_rx_ring_t *rx_ring;
3616 	int vector;
3617 	int rc;
3618 	int i;
3619 
3620 	vector = 0;
3621 
3622 	switch (igb->intr_type) {
3623 	case DDI_INTR_TYPE_MSIX:
3624 		/* Add interrupt handler for tx + other */
3625 		rc = ddi_intr_add_handler(igb->htable[vector],
3626 		    (ddi_intr_handler_t *)igb_intr_tx_other,
3627 		    (void *)igb, NULL);
3628 		if (rc != DDI_SUCCESS) {
3629 			igb_log(igb,
3630 			    "Add tx/other interrupt handler failed: %d", rc);
3631 			return (IGB_FAILURE);
3632 		}
3633 		vector++;
3634 
3635 		/* Add interrupt handler for each rx ring */
3636 		for (i = 0; i < igb->num_rx_rings; i++) {
3637 			rx_ring = &igb->rx_rings[i];
3638 
3639 			rc = ddi_intr_add_handler(igb->htable[vector],
3640 			    (ddi_intr_handler_t *)igb_intr_rx,
3641 			    (void *)rx_ring, NULL);
3642 
3643 			if (rc != DDI_SUCCESS) {
3644 				igb_log(igb,
3645 				    "Add rx interrupt handler failed. "
3646 				    "return: %d, rx ring: %d", rc, i);
3647 				for (vector--; vector >= 0; vector--) {
3648 					(void) ddi_intr_remove_handler(
3649 					    igb->htable[vector]);
3650 				}
3651 				return (IGB_FAILURE);
3652 			}
3653 
3654 			rx_ring->intr_vector = vector;
3655 
3656 			vector++;
3657 		}
3658 		break;
3659 
3660 	case DDI_INTR_TYPE_MSI:
3661 		/* Add interrupt handlers for the only vector */
3662 		rc = ddi_intr_add_handler(igb->htable[vector],
3663 		    (ddi_intr_handler_t *)igb_intr_msi,
3664 		    (void *)igb, NULL);
3665 
3666 		if (rc != DDI_SUCCESS) {
3667 			igb_log(igb,
3668 			    "Add MSI interrupt handler failed: %d", rc);
3669 			return (IGB_FAILURE);
3670 		}
3671 
3672 		rx_ring = &igb->rx_rings[0];
3673 		rx_ring->intr_vector = vector;
3674 
3675 		vector++;
3676 		break;
3677 
3678 	case DDI_INTR_TYPE_FIXED:
3679 		/* Add interrupt handlers for the only vector */
3680 		rc = ddi_intr_add_handler(igb->htable[vector],
3681 		    (ddi_intr_handler_t *)igb_intr_legacy,
3682 		    (void *)igb, NULL);
3683 
3684 		if (rc != DDI_SUCCESS) {
3685 			igb_log(igb,
3686 			    "Add legacy interrupt handler failed: %d", rc);
3687 			return (IGB_FAILURE);
3688 		}
3689 
3690 		rx_ring = &igb->rx_rings[0];
3691 		rx_ring->intr_vector = vector;
3692 
3693 		vector++;
3694 		break;
3695 
3696 	default:
3697 		return (IGB_FAILURE);
3698 	}
3699 
3700 	ASSERT(vector == igb->intr_cnt);
3701 
3702 	return (IGB_SUCCESS);
3703 }
3704 
3705 /*
3706  * igb_setup_adapter_msix - setup the adapter to use MSI-X interrupts
3707  *
3708  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
3709  */
3710 static void
3711 igb_setup_adapter_msix(igb_t *igb)
3712 {
3713 	uint32_t eims = 0;
3714 	int i, vector;
3715 	struct e1000_hw *hw = &igb->hw;
3716 
3717 	/*
3718 	 * Set vector for Tx + Other causes
3719 	 * NOTE assumption that there is only one of these and it is vector 0
3720 	 */
3721 	vector = 0;
3722 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
3723 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
3724 
3725 	vector++;
3726 	for (i = 0; i < igb->num_rx_rings; i++) {
3727 		/*
3728 		 * Set vector for each rx ring
3729 		 */
3730 		eims = (E1000_EICR_RX_QUEUE0 << i);
3731 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
3732 
3733 		/*
3734 		 * Accumulate bits to enable in igb_enable_adapter_interrupts()
3735 		 */
3736 		igb->eims_mask |= eims;
3737 
3738 		vector++;
3739 	}
3740 
3741 	ASSERT(vector == igb->intr_cnt);
3742 
3743 	/*
3744 	 * Disable IAM for ICR interrupt bits
3745 	 */
3746 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3747 	E1000_WRITE_FLUSH(hw);
3748 }
3749 
3750 /*
3751  * igb_rem_intr_handlers - remove the interrupt handlers
3752  */
3753 static void
3754 igb_rem_intr_handlers(igb_t *igb)
3755 {
3756 	int i;
3757 	int rc;
3758 
3759 	for (i = 0; i < igb->intr_cnt; i++) {
3760 		rc = ddi_intr_remove_handler(igb->htable[i]);
3761 		if (rc != DDI_SUCCESS) {
3762 			IGB_DEBUGLOG_1(igb,
3763 			    "Remove intr handler failed: %d", rc);
3764 		}
3765 	}
3766 }
3767 
3768 /*
3769  * igb_rem_intrs - remove the allocated interrupts
3770  */
3771 static void
3772 igb_rem_intrs(igb_t *igb)
3773 {
3774 	int i;
3775 	int rc;
3776 
3777 	for (i = 0; i < igb->intr_cnt; i++) {
3778 		rc = ddi_intr_free(igb->htable[i]);
3779 		if (rc != DDI_SUCCESS) {
3780 			IGB_DEBUGLOG_1(igb,
3781 			    "Free intr failed: %d", rc);
3782 		}
3783 	}
3784 
3785 	kmem_free(igb->htable, igb->intr_size);
3786 	igb->htable = NULL;
3787 }
3788 
3789 /*
3790  * igb_enable_intrs - enable all the ddi interrupts
3791  */
3792 static int
3793 igb_enable_intrs(igb_t *igb)
3794 {
3795 	int i;
3796 	int rc;
3797 
3798 	/* Enable interrupts */
3799 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
3800 		/* Call ddi_intr_block_enable() for MSI */
3801 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
3802 		if (rc != DDI_SUCCESS) {
3803 			igb_log(igb,
3804 			    "Enable block intr failed: %d", rc);
3805 			return (IGB_FAILURE);
3806 		}
3807 	} else {
3808 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
3809 		for (i = 0; i < igb->intr_cnt; i++) {
3810 			rc = ddi_intr_enable(igb->htable[i]);
3811 			if (rc != DDI_SUCCESS) {
3812 				igb_log(igb,
3813 				    "Enable intr failed: %d", rc);
3814 				return (IGB_FAILURE);
3815 			}
3816 		}
3817 	}
3818 
3819 	return (IGB_SUCCESS);
3820 }
3821 
3822 /*
3823  * igb_disable_intrs - disable all the ddi interrupts
3824  */
3825 static int
3826 igb_disable_intrs(igb_t *igb)
3827 {
3828 	int i;
3829 	int rc;
3830 
3831 	/* Disable all interrupts */
3832 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
3833 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
3834 		if (rc != DDI_SUCCESS) {
3835 			igb_log(igb,
3836 			    "Disable block intr failed: %d", rc);
3837 			return (IGB_FAILURE);
3838 		}
3839 	} else {
3840 		for (i = 0; i < igb->intr_cnt; i++) {
3841 			rc = ddi_intr_disable(igb->htable[i]);
3842 			if (rc != DDI_SUCCESS) {
3843 				igb_log(igb,
3844 				    "Disable intr failed: %d", rc);
3845 				return (IGB_FAILURE);
3846 			}
3847 		}
3848 	}
3849 
3850 	return (IGB_SUCCESS);
3851 }
3852 
3853 /*
3854  * igb_get_phy_state - Get and save the parameters read from PHY registers
3855  */
3856 static void
3857 igb_get_phy_state(igb_t *igb)
3858 {
3859 	struct e1000_hw *hw = &igb->hw;
3860 	uint16_t phy_ctrl;
3861 	uint16_t phy_status;
3862 	uint16_t phy_an_adv;
3863 	uint16_t phy_an_exp;
3864 	uint16_t phy_ext_status;
3865 	uint16_t phy_1000t_ctrl;
3866 	uint16_t phy_1000t_status;
3867 	uint16_t phy_lp_able;
3868 
3869 	ASSERT(mutex_owned(&igb->gen_lock));
3870 
3871 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
3872 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3873 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
3874 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
3875 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3876 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
3877 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status);
3878 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
3879 
3880 	igb->param_autoneg_cap =
3881 	    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
3882 	igb->param_pause_cap =
3883 	    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
3884 	igb->param_asym_pause_cap =
3885 	    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
3886 	igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3887 	    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
3888 	igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
3889 	    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
3890 	igb->param_100t4_cap =
3891 	    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
3892 	igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
3893 	    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
3894 	igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
3895 	    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
3896 	igb->param_10fdx_cap =
3897 	    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
3898 	igb->param_10hdx_cap =
3899 	    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
3900 	igb->param_rem_fault =
3901 	    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
3902 
3903 	igb->param_adv_autoneg_cap = hw->mac.autoneg;
3904 	igb->param_adv_pause_cap =
3905 	    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
3906 	igb->param_adv_asym_pause_cap =
3907 	    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
3908 	igb->param_adv_1000hdx_cap =
3909 	    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
3910 	igb->param_adv_100t4_cap =
3911 	    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
3912 	igb->param_adv_rem_fault =
3913 	    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
3914 	if (igb->param_adv_autoneg_cap == 1) {
3915 		igb->param_adv_1000fdx_cap =
3916 		    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
3917 		igb->param_adv_100fdx_cap =
3918 		    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
3919 		igb->param_adv_100hdx_cap =
3920 		    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
3921 		igb->param_adv_10fdx_cap =
3922 		    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
3923 		igb->param_adv_10hdx_cap =
3924 		    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
3925 	}
3926 
3927 	igb->param_lp_autoneg_cap =
3928 	    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
3929 	igb->param_lp_pause_cap =
3930 	    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
3931 	igb->param_lp_asym_pause_cap =
3932 	    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
3933 	igb->param_lp_1000fdx_cap =
3934 	    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
3935 	igb->param_lp_1000hdx_cap =
3936 	    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
3937 	igb->param_lp_100t4_cap =
3938 	    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
3939 	igb->param_lp_100fdx_cap =
3940 	    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
3941 	igb->param_lp_100hdx_cap =
3942 	    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
3943 	igb->param_lp_10fdx_cap =
3944 	    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
3945 	igb->param_lp_10hdx_cap =
3946 	    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
3947 	igb->param_lp_rem_fault =
3948 	    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
3949 }
3950 
3951 /*
3952  * igb_get_driver_control
3953  */
3954 static void
3955 igb_get_driver_control(struct e1000_hw *hw)
3956 {
3957 	uint32_t ctrl_ext;
3958 
3959 	/* Notify firmware that driver is in control of device */
3960 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3961 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
3962 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3963 }
3964 
3965 /*
3966  * igb_release_driver_control
3967  */
3968 static void
3969 igb_release_driver_control(struct e1000_hw *hw)
3970 {
3971 	uint32_t ctrl_ext;
3972 
3973 	/* Notify firmware that driver is no longer in control of device */
3974 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3975 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
3976 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3977 }
3978 
3979 /*
3980  * igb_atomic_reserve - Atomic decrease operation
3981  */
3982 int
3983 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
3984 {
3985 	uint32_t oldval;
3986 	uint32_t newval;
3987 
3988 	/* ATOMICALLY */
3989 	do {
3990 		oldval = *count_p;
3991 		if (oldval < n)
3992 			return (-1);
3993 		newval = oldval - n;
3994 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
3995 
3996 	return (newval);
3997 }
3998 
3999 /*
4000  * FMA support
4001  */
4002 
4003 int
4004 igb_check_acc_handle(ddi_acc_handle_t handle)
4005 {
4006 	ddi_fm_error_t de;
4007 
4008 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4009 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
4010 	return (de.fme_status);
4011 }
4012 
4013 int
4014 igb_check_dma_handle(ddi_dma_handle_t handle)
4015 {
4016 	ddi_fm_error_t de;
4017 
4018 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4019 	return (de.fme_status);
4020 }
4021 
4022 /*
4023  * The IO fault service error handling callback function
4024  */
4025 /*ARGSUSED*/
4026 static int
4027 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4028 {
4029 	/*
4030 	 * as the driver can always deal with an error in any dma or
4031 	 * access handle, we can just return the fme_status value.
4032 	 */
4033 	pci_ereport_post(dip, err, NULL);
4034 	return (err->fme_status);
4035 }
4036 
4037 static void
4038 igb_fm_init(igb_t *igb)
4039 {
4040 	ddi_iblock_cookie_t iblk;
4041 	int fma_acc_flag, fma_dma_flag;
4042 
4043 	/* Only register with IO Fault Services if we have some capability */
4044 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
4045 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4046 		fma_acc_flag = 1;
4047 	} else {
4048 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4049 		fma_acc_flag = 0;
4050 	}
4051 
4052 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
4053 		fma_dma_flag = 1;
4054 	} else {
4055 		fma_dma_flag = 0;
4056 	}
4057 
4058 	(void) igb_set_fma_flags(fma_acc_flag, fma_dma_flag);
4059 
4060 	if (igb->fm_capabilities) {
4061 
4062 		/* Register capabilities with IO Fault Services */
4063 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
4064 
4065 		/*
4066 		 * Initialize pci ereport capabilities if ereport capable
4067 		 */
4068 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
4069 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4070 			pci_ereport_setup(igb->dip);
4071 
4072 		/*
4073 		 * Register error callback if error callback capable
4074 		 */
4075 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4076 			ddi_fm_handler_register(igb->dip,
4077 			    igb_fm_error_cb, (void*) igb);
4078 	}
4079 }
4080 
4081 static void
4082 igb_fm_fini(igb_t *igb)
4083 {
4084 	/* Only unregister FMA capabilities if we registered some */
4085 	if (igb->fm_capabilities) {
4086 
4087 		/*
4088 		 * Release any resources allocated by pci_ereport_setup()
4089 		 */
4090 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
4091 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4092 			pci_ereport_teardown(igb->dip);
4093 
4094 		/*
4095 		 * Un-register error callback if error callback capable
4096 		 */
4097 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
4098 			ddi_fm_handler_unregister(igb->dip);
4099 
4100 		/* Unregister from IO Fault Services */
4101 		ddi_fm_fini(igb->dip);
4102 	}
4103 }
4104 
4105 void
4106 igb_fm_ereport(igb_t *igb, char *detail)
4107 {
4108 	uint64_t ena;
4109 	char buf[FM_MAX_CLASS];
4110 
4111 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4112 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4113 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
4114 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
4115 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
4116 	}
4117 }
4118