xref: /illumos-gate/usr/src/uts/common/io/igb/igb_main.c (revision 187670a04e7557914566fc449b4d3af38caea282)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
29  */
30 
31 #include "igb_sw.h"
32 
33 static char ident[] = "Intel 1Gb Ethernet";
34 static char igb_version[] = "igb 1.1.18";
35 
36 /*
37  * Local function protoypes
38  */
39 static int igb_register_mac(igb_t *);
40 static int igb_identify_hardware(igb_t *);
41 static int igb_regs_map(igb_t *);
42 static void igb_init_properties(igb_t *);
43 static int igb_init_driver_settings(igb_t *);
44 static void igb_init_locks(igb_t *);
45 static void igb_destroy_locks(igb_t *);
46 static int igb_init_mac_address(igb_t *);
47 static int igb_init(igb_t *);
48 static int igb_init_adapter(igb_t *);
49 static void igb_stop_adapter(igb_t *);
50 static int igb_reset(igb_t *);
51 static void igb_tx_clean(igb_t *);
52 static boolean_t igb_tx_drain(igb_t *);
53 static boolean_t igb_rx_drain(igb_t *);
54 static int igb_alloc_rings(igb_t *);
55 static int igb_alloc_rx_data(igb_t *);
56 static void igb_free_rx_data(igb_t *);
57 static void igb_free_rings(igb_t *);
58 static void igb_setup_rings(igb_t *);
59 static void igb_setup_rx(igb_t *);
60 static void igb_setup_tx(igb_t *);
61 static void igb_setup_rx_ring(igb_rx_ring_t *);
62 static void igb_setup_tx_ring(igb_tx_ring_t *);
63 static void igb_setup_rss(igb_t *);
64 static void igb_setup_mac_rss_classify(igb_t *);
65 static void igb_setup_mac_classify(igb_t *);
66 static void igb_init_unicst(igb_t *);
67 static void igb_setup_multicst(igb_t *);
68 static void igb_get_phy_state(igb_t *);
69 static void igb_param_sync(igb_t *);
70 static void igb_get_conf(igb_t *);
71 static int igb_get_prop(igb_t *, char *, int, int, int);
72 static boolean_t igb_is_link_up(igb_t *);
73 static boolean_t igb_link_check(igb_t *);
74 static void igb_local_timer(void *);
75 static void igb_link_timer(void *);
76 static void igb_arm_watchdog_timer(igb_t *);
77 static void igb_start_watchdog_timer(igb_t *);
78 static void igb_restart_watchdog_timer(igb_t *);
79 static void igb_stop_watchdog_timer(igb_t *);
80 static void igb_start_link_timer(igb_t *);
81 static void igb_stop_link_timer(igb_t *);
82 static void igb_disable_adapter_interrupts(igb_t *);
83 static void igb_enable_adapter_interrupts_82575(igb_t *);
84 static void igb_enable_adapter_interrupts_82576(igb_t *);
85 static void igb_enable_adapter_interrupts_82580(igb_t *);
86 static boolean_t is_valid_mac_addr(uint8_t *);
87 static boolean_t igb_stall_check(igb_t *);
88 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
89 static void igb_set_external_loopback(igb_t *);
90 static void igb_set_internal_phy_loopback(igb_t *);
91 static void igb_set_internal_serdes_loopback(igb_t *);
92 static boolean_t igb_find_mac_address(igb_t *);
93 static int igb_alloc_intrs(igb_t *);
94 static int igb_alloc_intr_handles(igb_t *, int);
95 static int igb_add_intr_handlers(igb_t *);
96 static void igb_rem_intr_handlers(igb_t *);
97 static void igb_rem_intrs(igb_t *);
98 static int igb_enable_intrs(igb_t *);
99 static int igb_disable_intrs(igb_t *);
100 static void igb_setup_msix_82575(igb_t *);
101 static void igb_setup_msix_82576(igb_t *);
102 static void igb_setup_msix_82580(igb_t *);
103 static uint_t igb_intr_legacy(void *, void *);
104 static uint_t igb_intr_msi(void *, void *);
105 static uint_t igb_intr_rx(void *, void *);
106 static uint_t igb_intr_tx(void *, void *);
107 static uint_t igb_intr_tx_other(void *, void *);
108 static void igb_intr_rx_work(igb_rx_ring_t *);
109 static void igb_intr_tx_work(igb_tx_ring_t *);
110 static void igb_intr_link_work(igb_t *);
111 static void igb_get_driver_control(struct e1000_hw *);
112 static void igb_release_driver_control(struct e1000_hw *);
113 
114 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
115 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
116 static int igb_resume(dev_info_t *);
117 static int igb_suspend(dev_info_t *);
118 static int igb_quiesce(dev_info_t *);
119 static void igb_unconfigure(dev_info_t *, igb_t *);
120 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
121     const void *);
122 static void igb_fm_init(igb_t *);
123 static void igb_fm_fini(igb_t *);
124 static void igb_release_multicast(igb_t *);
125 
126 char *igb_priv_props[] = {
127 	"_eee_support",
128 	"_tx_copy_thresh",
129 	"_tx_recycle_thresh",
130 	"_tx_overload_thresh",
131 	"_tx_resched_thresh",
132 	"_rx_copy_thresh",
133 	"_rx_limit_per_intr",
134 	"_intr_throttling",
135 	"_adv_pause_cap",
136 	"_adv_asym_pause_cap",
137 	NULL
138 };
139 
140 static struct cb_ops igb_cb_ops = {
141 	nulldev,		/* cb_open */
142 	nulldev,		/* cb_close */
143 	nodev,			/* cb_strategy */
144 	nodev,			/* cb_print */
145 	nodev,			/* cb_dump */
146 	nodev,			/* cb_read */
147 	nodev,			/* cb_write */
148 	nodev,			/* cb_ioctl */
149 	nodev,			/* cb_devmap */
150 	nodev,			/* cb_mmap */
151 	nodev,			/* cb_segmap */
152 	nochpoll,		/* cb_chpoll */
153 	ddi_prop_op,		/* cb_prop_op */
154 	NULL,			/* cb_stream */
155 	D_MP | D_HOTPLUG,	/* cb_flag */
156 	CB_REV,			/* cb_rev */
157 	nodev,			/* cb_aread */
158 	nodev			/* cb_awrite */
159 };
160 
161 static struct dev_ops igb_dev_ops = {
162 	DEVO_REV,		/* devo_rev */
163 	0,			/* devo_refcnt */
164 	NULL,			/* devo_getinfo */
165 	nulldev,		/* devo_identify */
166 	nulldev,		/* devo_probe */
167 	igb_attach,		/* devo_attach */
168 	igb_detach,		/* devo_detach */
169 	nodev,			/* devo_reset */
170 	&igb_cb_ops,		/* devo_cb_ops */
171 	NULL,			/* devo_bus_ops */
172 	ddi_power,		/* devo_power */
173 	igb_quiesce,	/* devo_quiesce */
174 };
175 
176 static struct modldrv igb_modldrv = {
177 	&mod_driverops,		/* Type of module.  This one is a driver */
178 	ident,			/* Discription string */
179 	&igb_dev_ops,		/* driver ops */
180 };
181 
182 static struct modlinkage igb_modlinkage = {
183 	MODREV_1, &igb_modldrv, NULL
184 };
185 
186 /* Access attributes for register mapping */
187 ddi_device_acc_attr_t igb_regs_acc_attr = {
188 	DDI_DEVICE_ATTR_V1,
189 	DDI_STRUCTURE_LE_ACC,
190 	DDI_STRICTORDER_ACC,
191 	DDI_FLAGERR_ACC
192 };
193 
194 #define	IGB_M_CALLBACK_FLAGS \
195 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
196 
197 static mac_callbacks_t igb_m_callbacks = {
198 	IGB_M_CALLBACK_FLAGS,
199 	igb_m_stat,
200 	igb_m_start,
201 	igb_m_stop,
202 	igb_m_promisc,
203 	igb_m_multicst,
204 	NULL,
205 	NULL,
206 	NULL,
207 	igb_m_ioctl,
208 	igb_m_getcapab,
209 	NULL,
210 	NULL,
211 	igb_m_setprop,
212 	igb_m_getprop,
213 	igb_m_propinfo
214 };
215 
216 /*
217  * Initialize capabilities of each supported adapter type
218  */
219 static adapter_info_t igb_82575_cap = {
220 	/* limits */
221 	4,		/* maximum number of rx queues */
222 	1,		/* minimum number of rx queues */
223 	4,		/* default number of rx queues */
224 	4,		/* maximum number of tx queues */
225 	1,		/* minimum number of tx queues */
226 	4,		/* default number of tx queues */
227 	65535,		/* maximum interrupt throttle rate */
228 	0,		/* minimum interrupt throttle rate */
229 	200,		/* default interrupt throttle rate */
230 
231 	/* function pointers */
232 	igb_enable_adapter_interrupts_82575,
233 	igb_setup_msix_82575,
234 
235 	/* capabilities */
236 	(IGB_FLAG_HAS_DCA |	/* capability flags */
237 	IGB_FLAG_VMDQ_POOL),
238 
239 	0xffc00000		/* mask for RXDCTL register */
240 };
241 
242 static adapter_info_t igb_82576_cap = {
243 	/* limits */
244 	16,		/* maximum number of rx queues */
245 	1,		/* minimum number of rx queues */
246 	4,		/* default number of rx queues */
247 	16,		/* maximum number of tx queues */
248 	1,		/* minimum number of tx queues */
249 	4,		/* default number of tx queues */
250 	65535,		/* maximum interrupt throttle rate */
251 	0,		/* minimum interrupt throttle rate */
252 	200,		/* default interrupt throttle rate */
253 
254 	/* function pointers */
255 	igb_enable_adapter_interrupts_82576,
256 	igb_setup_msix_82576,
257 
258 	/* capabilities */
259 	(IGB_FLAG_HAS_DCA |	/* capability flags */
260 	IGB_FLAG_VMDQ_POOL |
261 	IGB_FLAG_NEED_CTX_IDX),
262 
263 	0xffe00000		/* mask for RXDCTL register */
264 };
265 
266 static adapter_info_t igb_82580_cap = {
267 	/* limits */
268 	8,		/* maximum number of rx queues */
269 	1,		/* minimum number of rx queues */
270 	4,		/* default number of rx queues */
271 	8,		/* maximum number of tx queues */
272 	1,		/* minimum number of tx queues */
273 	4,		/* default number of tx queues */
274 	65535,		/* maximum interrupt throttle rate */
275 	0,		/* minimum interrupt throttle rate */
276 	200,		/* default interrupt throttle rate */
277 
278 	/* function pointers */
279 	igb_enable_adapter_interrupts_82580,
280 	igb_setup_msix_82580,
281 
282 	/* capabilities */
283 	(IGB_FLAG_HAS_DCA |	/* capability flags */
284 	IGB_FLAG_VMDQ_POOL |
285 	IGB_FLAG_NEED_CTX_IDX),
286 
287 	0xffe00000		/* mask for RXDCTL register */
288 };
289 
290 static adapter_info_t igb_i350_cap = {
291 	/* limits */
292 	8,		/* maximum number of rx queues */
293 	1,		/* minimum number of rx queues */
294 	4,		/* default number of rx queues */
295 	8,		/* maximum number of tx queues */
296 	1,		/* minimum number of tx queues */
297 	4,		/* default number of tx queues */
298 	65535,		/* maximum interrupt throttle rate */
299 	0,		/* minimum interrupt throttle rate */
300 	200,		/* default interrupt throttle rate */
301 
302 	/* function pointers */
303 	igb_enable_adapter_interrupts_82580,
304 	igb_setup_msix_82580,
305 
306 	/* capabilities */
307 	(IGB_FLAG_HAS_DCA |	/* capability flags */
308 	IGB_FLAG_VMDQ_POOL |
309 	IGB_FLAG_NEED_CTX_IDX),
310 
311 	0xffe00000		/* mask for RXDCTL register */
312 };
313 
314 /*
315  * Module Initialization Functions
316  */
317 
318 int
319 _init(void)
320 {
321 	int status;
322 
323 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
324 
325 	status = mod_install(&igb_modlinkage);
326 
327 	if (status != DDI_SUCCESS) {
328 		mac_fini_ops(&igb_dev_ops);
329 	}
330 
331 	return (status);
332 }
333 
334 int
335 _fini(void)
336 {
337 	int status;
338 
339 	status = mod_remove(&igb_modlinkage);
340 
341 	if (status == DDI_SUCCESS) {
342 		mac_fini_ops(&igb_dev_ops);
343 	}
344 
345 	return (status);
346 
347 }
348 
349 int
350 _info(struct modinfo *modinfop)
351 {
352 	int status;
353 
354 	status = mod_info(&igb_modlinkage, modinfop);
355 
356 	return (status);
357 }
358 
359 /*
360  * igb_attach - driver attach
361  *
362  * This function is the device specific initialization entry
363  * point. This entry point is required and must be written.
364  * The DDI_ATTACH command must be provided in the attach entry
365  * point. When attach() is called with cmd set to DDI_ATTACH,
366  * all normal kernel services (such as kmem_alloc(9F)) are
367  * available for use by the driver.
368  *
369  * The attach() function will be called once for each instance
370  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
371  * Until attach() succeeds, the only driver entry points which
372  * may be called are open(9E) and getinfo(9E).
373  */
374 static int
375 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
376 {
377 	igb_t *igb;
378 	struct igb_osdep *osdep;
379 	struct e1000_hw *hw;
380 	int instance;
381 
382 	/*
383 	 * Check the command and perform corresponding operations
384 	 */
385 	switch (cmd) {
386 	default:
387 		return (DDI_FAILURE);
388 
389 	case DDI_RESUME:
390 		return (igb_resume(devinfo));
391 
392 	case DDI_ATTACH:
393 		break;
394 	}
395 
396 	/* Get the device instance */
397 	instance = ddi_get_instance(devinfo);
398 
399 	/* Allocate memory for the instance data structure */
400 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
401 
402 	igb->dip = devinfo;
403 	igb->instance = instance;
404 
405 	hw = &igb->hw;
406 	osdep = &igb->osdep;
407 	hw->back = osdep;
408 	osdep->igb = igb;
409 
410 	/* Attach the instance pointer to the dev_info data structure */
411 	ddi_set_driver_private(devinfo, igb);
412 
413 
414 	/* Initialize for fma support */
415 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
416 	    0, 0x0f,
417 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
418 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
419 	igb_fm_init(igb);
420 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
421 
422 	/*
423 	 * Map PCI config space registers
424 	 */
425 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
426 		igb_error(igb, "Failed to map PCI configurations");
427 		goto attach_fail;
428 	}
429 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
430 
431 	/*
432 	 * Identify the chipset family
433 	 */
434 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
435 		igb_error(igb, "Failed to identify hardware");
436 		goto attach_fail;
437 	}
438 
439 	/*
440 	 * Map device registers
441 	 */
442 	if (igb_regs_map(igb) != IGB_SUCCESS) {
443 		igb_error(igb, "Failed to map device registers");
444 		goto attach_fail;
445 	}
446 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
447 
448 	/*
449 	 * Initialize driver parameters
450 	 */
451 	igb_init_properties(igb);
452 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
453 
454 	/*
455 	 * Allocate interrupts
456 	 */
457 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
458 		igb_error(igb, "Failed to allocate interrupts");
459 		goto attach_fail;
460 	}
461 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
462 
463 	/*
464 	 * Allocate rx/tx rings based on the ring numbers.
465 	 * The actual numbers of rx/tx rings are decided by the number of
466 	 * allocated interrupt vectors, so we should allocate the rings after
467 	 * interrupts are allocated.
468 	 */
469 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
470 		igb_error(igb, "Failed to allocate rx/tx rings or groups");
471 		goto attach_fail;
472 	}
473 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
474 
475 	/*
476 	 * Add interrupt handlers
477 	 */
478 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
479 		igb_error(igb, "Failed to add interrupt handlers");
480 		goto attach_fail;
481 	}
482 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
483 
484 	/*
485 	 * Initialize driver parameters
486 	 */
487 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
488 		igb_error(igb, "Failed to initialize driver settings");
489 		goto attach_fail;
490 	}
491 
492 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
493 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
494 		goto attach_fail;
495 	}
496 
497 	/*
498 	 * Initialize mutexes for this device.
499 	 * Do this before enabling the interrupt handler and
500 	 * register the softint to avoid the condition where
501 	 * interrupt handler can try using uninitialized mutex
502 	 */
503 	igb_init_locks(igb);
504 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
505 
506 	/*
507 	 * Initialize the adapter
508 	 */
509 	if (igb_init(igb) != IGB_SUCCESS) {
510 		igb_error(igb, "Failed to initialize adapter");
511 		goto attach_fail;
512 	}
513 	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
514 
515 	/*
516 	 * Initialize statistics
517 	 */
518 	if (igb_init_stats(igb) != IGB_SUCCESS) {
519 		igb_error(igb, "Failed to initialize statistics");
520 		goto attach_fail;
521 	}
522 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
523 
524 	/*
525 	 * Register the driver to the MAC
526 	 */
527 	if (igb_register_mac(igb) != IGB_SUCCESS) {
528 		igb_error(igb, "Failed to register MAC");
529 		goto attach_fail;
530 	}
531 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
532 
533 	/*
534 	 * Now that mutex locks are initialized, and the chip is also
535 	 * initialized, enable interrupts.
536 	 */
537 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
538 		igb_error(igb, "Failed to enable DDI interrupts");
539 		goto attach_fail;
540 	}
541 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
542 
543 	igb_log(igb, "%s", igb_version);
544 	atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
545 
546 	/*
547 	 * Newer models have Energy Efficient Ethernet, let's disable this by
548 	 * default.
549 	 */
550 	if (igb->hw.mac.type == e1000_i350)
551 		(void) e1000_set_eee_i350(&igb->hw);
552 
553 	return (DDI_SUCCESS);
554 
555 attach_fail:
556 	igb_unconfigure(devinfo, igb);
557 	return (DDI_FAILURE);
558 }
559 
560 /*
561  * igb_detach - driver detach
562  *
563  * The detach() function is the complement of the attach routine.
564  * If cmd is set to DDI_DETACH, detach() is used to remove  the
565  * state  associated  with  a  given  instance of a device node
566  * prior to the removal of that instance from the system.
567  *
568  * The detach() function will be called once for each  instance
569  * of the device for which there has been a successful attach()
570  * once there are no longer  any  opens  on  the  device.
571  *
572  * Interrupts routine are disabled, All memory allocated by this
573  * driver are freed.
574  */
575 static int
576 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
577 {
578 	igb_t *igb;
579 
580 	/*
581 	 * Check detach command
582 	 */
583 	switch (cmd) {
584 	default:
585 		return (DDI_FAILURE);
586 
587 	case DDI_SUSPEND:
588 		return (igb_suspend(devinfo));
589 
590 	case DDI_DETACH:
591 		break;
592 	}
593 
594 
595 	/*
596 	 * Get the pointer to the driver private data structure
597 	 */
598 	igb = (igb_t *)ddi_get_driver_private(devinfo);
599 	if (igb == NULL)
600 		return (DDI_FAILURE);
601 
602 	/*
603 	 * Unregister MAC. If failed, we have to fail the detach
604 	 */
605 	if (mac_unregister(igb->mac_hdl) != 0) {
606 		igb_error(igb, "Failed to unregister MAC");
607 		return (DDI_FAILURE);
608 	}
609 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
610 
611 	/*
612 	 * If the device is still running, it needs to be stopped first.
613 	 * This check is necessary because under some specific circumstances,
614 	 * the detach routine can be called without stopping the interface
615 	 * first.
616 	 */
617 	mutex_enter(&igb->gen_lock);
618 	if (igb->igb_state & IGB_STARTED) {
619 		atomic_and_32(&igb->igb_state, ~IGB_STARTED);
620 		igb_stop(igb, B_TRUE);
621 		mutex_exit(&igb->gen_lock);
622 		/* Disable and stop the watchdog timer */
623 		igb_disable_watchdog_timer(igb);
624 	} else
625 		mutex_exit(&igb->gen_lock);
626 
627 	/*
628 	 * Check if there are still rx buffers held by the upper layer.
629 	 * If so, fail the detach.
630 	 */
631 	if (!igb_rx_drain(igb))
632 		return (DDI_FAILURE);
633 
634 	/*
635 	 * Do the remaining unconfigure routines
636 	 */
637 	igb_unconfigure(devinfo, igb);
638 
639 	return (DDI_SUCCESS);
640 }
641 
642 /*
643  * quiesce(9E) entry point.
644  *
645  * This function is called when the system is single-threaded at high
646  * PIL with preemption disabled. Therefore, this function must not be
647  * blocked.
648  *
649  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
650  * DDI_FAILURE indicates an error condition and should almost never happen.
651  */
652 static int
653 igb_quiesce(dev_info_t *devinfo)
654 {
655 	igb_t *igb;
656 	struct e1000_hw *hw;
657 
658 	igb = (igb_t *)ddi_get_driver_private(devinfo);
659 
660 	if (igb == NULL)
661 		return (DDI_FAILURE);
662 
663 	hw = &igb->hw;
664 
665 	/*
666 	 * Disable the adapter interrupts
667 	 */
668 	igb_disable_adapter_interrupts(igb);
669 
670 	/* Tell firmware driver is no longer in control */
671 	igb_release_driver_control(hw);
672 
673 	/*
674 	 * Reset the chipset
675 	 */
676 	(void) e1000_reset_hw(hw);
677 
678 	/*
679 	 * Reset PHY if possible
680 	 */
681 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
682 		(void) e1000_phy_hw_reset(hw);
683 
684 	return (DDI_SUCCESS);
685 }
686 
687 /*
688  * igb_unconfigure - release all resources held by this instance
689  */
690 static void
691 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
692 {
693 	/*
694 	 * Disable interrupt
695 	 */
696 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
697 		(void) igb_disable_intrs(igb);
698 	}
699 
700 	/*
701 	 * Unregister MAC
702 	 */
703 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
704 		(void) mac_unregister(igb->mac_hdl);
705 	}
706 
707 	/*
708 	 * Free statistics
709 	 */
710 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
711 		kstat_delete((kstat_t *)igb->igb_ks);
712 	}
713 
714 	/*
715 	 * Remove interrupt handlers
716 	 */
717 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
718 		igb_rem_intr_handlers(igb);
719 	}
720 
721 	/*
722 	 * Remove interrupts
723 	 */
724 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
725 		igb_rem_intrs(igb);
726 	}
727 
728 	/*
729 	 * Remove driver properties
730 	 */
731 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
732 		(void) ddi_prop_remove_all(devinfo);
733 	}
734 
735 	/*
736 	 * Stop the adapter
737 	 */
738 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
739 		mutex_enter(&igb->gen_lock);
740 		igb_stop_adapter(igb);
741 		mutex_exit(&igb->gen_lock);
742 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
743 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
744 	}
745 
746 	/*
747 	 * Free multicast table
748 	 */
749 	igb_release_multicast(igb);
750 
751 	/*
752 	 * Free register handle
753 	 */
754 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
755 		if (igb->osdep.reg_handle != NULL)
756 			ddi_regs_map_free(&igb->osdep.reg_handle);
757 	}
758 
759 	/*
760 	 * Free PCI config handle
761 	 */
762 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
763 		if (igb->osdep.cfg_handle != NULL)
764 			pci_config_teardown(&igb->osdep.cfg_handle);
765 	}
766 
767 	/*
768 	 * Free locks
769 	 */
770 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
771 		igb_destroy_locks(igb);
772 	}
773 
774 	/*
775 	 * Free the rx/tx rings
776 	 */
777 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
778 		igb_free_rings(igb);
779 	}
780 
781 	/*
782 	 * Remove FMA
783 	 */
784 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
785 		igb_fm_fini(igb);
786 	}
787 
788 	/*
789 	 * Free the driver data structure
790 	 */
791 	kmem_free(igb, sizeof (igb_t));
792 
793 	ddi_set_driver_private(devinfo, NULL);
794 }
795 
796 /*
797  * igb_register_mac - Register the driver and its function pointers with
798  * the GLD interface
799  */
800 static int
801 igb_register_mac(igb_t *igb)
802 {
803 	struct e1000_hw *hw = &igb->hw;
804 	mac_register_t *mac;
805 	int status;
806 
807 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
808 		return (IGB_FAILURE);
809 
810 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
811 	mac->m_driver = igb;
812 	mac->m_dip = igb->dip;
813 	mac->m_src_addr = hw->mac.addr;
814 	mac->m_callbacks = &igb_m_callbacks;
815 	mac->m_min_sdu = 0;
816 	mac->m_max_sdu = igb->max_frame_size -
817 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
818 	mac->m_margin = VLAN_TAGSZ;
819 	mac->m_priv_props = igb_priv_props;
820 	mac->m_v12n = MAC_VIRT_LEVEL1;
821 
822 	status = mac_register(mac, &igb->mac_hdl);
823 
824 	mac_free(mac);
825 
826 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
827 }
828 
829 /*
830  * igb_identify_hardware - Identify the type of the chipset
831  */
832 static int
833 igb_identify_hardware(igb_t *igb)
834 {
835 	struct e1000_hw *hw = &igb->hw;
836 	struct igb_osdep *osdep = &igb->osdep;
837 
838 	/*
839 	 * Get the device id
840 	 */
841 	hw->vendor_id =
842 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
843 	hw->device_id =
844 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
845 	hw->revision_id =
846 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
847 	hw->subsystem_device_id =
848 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
849 	hw->subsystem_vendor_id =
850 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
851 
852 	/*
853 	 * Set the mac type of the adapter based on the device id
854 	 */
855 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
856 		return (IGB_FAILURE);
857 	}
858 
859 	/*
860 	 * Install adapter capabilities based on mac type
861 	 */
862 	switch (hw->mac.type) {
863 	case e1000_82575:
864 		igb->capab = &igb_82575_cap;
865 		break;
866 	case e1000_82576:
867 		igb->capab = &igb_82576_cap;
868 		break;
869 	case e1000_82580:
870 		igb->capab = &igb_82580_cap;
871 		break;
872 	case e1000_i350:
873 		igb->capab = &igb_i350_cap;
874 		break;
875 	default:
876 		return (IGB_FAILURE);
877 	}
878 
879 	return (IGB_SUCCESS);
880 }
881 
882 /*
883  * igb_regs_map - Map the device registers
884  */
885 static int
886 igb_regs_map(igb_t *igb)
887 {
888 	dev_info_t *devinfo = igb->dip;
889 	struct e1000_hw *hw = &igb->hw;
890 	struct igb_osdep *osdep = &igb->osdep;
891 	off_t mem_size;
892 
893 	/*
894 	 * First get the size of device registers to be mapped.
895 	 */
896 	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
897 	    DDI_SUCCESS) {
898 		return (IGB_FAILURE);
899 	}
900 
901 	/*
902 	 * Call ddi_regs_map_setup() to map registers
903 	 */
904 	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
905 	    (caddr_t *)&hw->hw_addr, 0,
906 	    mem_size, &igb_regs_acc_attr,
907 	    &osdep->reg_handle)) != DDI_SUCCESS) {
908 		return (IGB_FAILURE);
909 	}
910 
911 	return (IGB_SUCCESS);
912 }
913 
914 /*
915  * igb_init_properties - Initialize driver properties
916  */
917 static void
918 igb_init_properties(igb_t *igb)
919 {
920 	/*
921 	 * Get conf file properties, including link settings
922 	 * jumbo frames, ring number, descriptor number, etc.
923 	 */
924 	igb_get_conf(igb);
925 }
926 
927 /*
928  * igb_init_driver_settings - Initialize driver settings
929  *
930  * The settings include hardware function pointers, bus information,
931  * rx/tx rings settings, link state, and any other parameters that
932  * need to be setup during driver initialization.
933  */
934 static int
935 igb_init_driver_settings(igb_t *igb)
936 {
937 	struct e1000_hw *hw = &igb->hw;
938 	igb_rx_ring_t *rx_ring;
939 	igb_tx_ring_t *tx_ring;
940 	uint32_t rx_size;
941 	uint32_t tx_size;
942 	int i;
943 
944 	/*
945 	 * Initialize chipset specific hardware function pointers
946 	 */
947 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
948 		return (IGB_FAILURE);
949 	}
950 
951 	/*
952 	 * Get bus information
953 	 */
954 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
955 		return (IGB_FAILURE);
956 	}
957 
958 	/*
959 	 * Get the system page size
960 	 */
961 	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
962 
963 	/*
964 	 * Set rx buffer size
965 	 * The IP header alignment room is counted in the calculation.
966 	 * The rx buffer size is in unit of 1K that is required by the
967 	 * chipset hardware.
968 	 */
969 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
970 	igb->rx_buf_size = ((rx_size >> 10) +
971 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
972 
973 	/*
974 	 * Set tx buffer size
975 	 */
976 	tx_size = igb->max_frame_size;
977 	igb->tx_buf_size = ((tx_size >> 10) +
978 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
979 
980 	/*
981 	 * Initialize rx/tx rings parameters
982 	 */
983 	for (i = 0; i < igb->num_rx_rings; i++) {
984 		rx_ring = &igb->rx_rings[i];
985 		rx_ring->index = i;
986 		rx_ring->igb = igb;
987 	}
988 
989 	for (i = 0; i < igb->num_tx_rings; i++) {
990 		tx_ring = &igb->tx_rings[i];
991 		tx_ring->index = i;
992 		tx_ring->igb = igb;
993 		if (igb->tx_head_wb_enable)
994 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
995 		else
996 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
997 
998 		tx_ring->ring_size = igb->tx_ring_size;
999 		tx_ring->free_list_size = igb->tx_ring_size +
1000 		    (igb->tx_ring_size >> 1);
1001 	}
1002 
1003 	/*
1004 	 * Initialize values of interrupt throttling rates
1005 	 */
1006 	for (i = 1; i < MAX_NUM_EITR; i++)
1007 		igb->intr_throttling[i] = igb->intr_throttling[0];
1008 
1009 	/*
1010 	 * The initial link state should be "unknown"
1011 	 */
1012 	igb->link_state = LINK_STATE_UNKNOWN;
1013 
1014 	return (IGB_SUCCESS);
1015 }
1016 
1017 /*
1018  * igb_init_locks - Initialize locks
1019  */
1020 static void
1021 igb_init_locks(igb_t *igb)
1022 {
1023 	igb_rx_ring_t *rx_ring;
1024 	igb_tx_ring_t *tx_ring;
1025 	int i;
1026 
1027 	for (i = 0; i < igb->num_rx_rings; i++) {
1028 		rx_ring = &igb->rx_rings[i];
1029 		mutex_init(&rx_ring->rx_lock, NULL,
1030 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1031 	}
1032 
1033 	for (i = 0; i < igb->num_tx_rings; i++) {
1034 		tx_ring = &igb->tx_rings[i];
1035 		mutex_init(&tx_ring->tx_lock, NULL,
1036 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1037 		mutex_init(&tx_ring->recycle_lock, NULL,
1038 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1039 		mutex_init(&tx_ring->tcb_head_lock, NULL,
1040 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1041 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
1042 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1043 	}
1044 
1045 	mutex_init(&igb->gen_lock, NULL,
1046 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1047 
1048 	mutex_init(&igb->watchdog_lock, NULL,
1049 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1050 
1051 	mutex_init(&igb->link_lock, NULL,
1052 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1053 }
1054 
1055 /*
1056  * igb_destroy_locks - Destroy locks
1057  */
1058 static void
1059 igb_destroy_locks(igb_t *igb)
1060 {
1061 	igb_rx_ring_t *rx_ring;
1062 	igb_tx_ring_t *tx_ring;
1063 	int i;
1064 
1065 	for (i = 0; i < igb->num_rx_rings; i++) {
1066 		rx_ring = &igb->rx_rings[i];
1067 		mutex_destroy(&rx_ring->rx_lock);
1068 	}
1069 
1070 	for (i = 0; i < igb->num_tx_rings; i++) {
1071 		tx_ring = &igb->tx_rings[i];
1072 		mutex_destroy(&tx_ring->tx_lock);
1073 		mutex_destroy(&tx_ring->recycle_lock);
1074 		mutex_destroy(&tx_ring->tcb_head_lock);
1075 		mutex_destroy(&tx_ring->tcb_tail_lock);
1076 	}
1077 
1078 	mutex_destroy(&igb->gen_lock);
1079 	mutex_destroy(&igb->watchdog_lock);
1080 	mutex_destroy(&igb->link_lock);
1081 }
1082 
1083 static int
1084 igb_resume(dev_info_t *devinfo)
1085 {
1086 	igb_t *igb;
1087 
1088 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1089 	if (igb == NULL)
1090 		return (DDI_FAILURE);
1091 
1092 	mutex_enter(&igb->gen_lock);
1093 
1094 	/*
1095 	 * Enable interrupts
1096 	 */
1097 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1098 		if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1099 			igb_error(igb, "Failed to enable DDI interrupts");
1100 			mutex_exit(&igb->gen_lock);
1101 			return (DDI_FAILURE);
1102 		}
1103 	}
1104 
1105 	if (igb->igb_state & IGB_STARTED) {
1106 		if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1107 			mutex_exit(&igb->gen_lock);
1108 			return (DDI_FAILURE);
1109 		}
1110 
1111 		/*
1112 		 * Enable and start the watchdog timer
1113 		 */
1114 		igb_enable_watchdog_timer(igb);
1115 	}
1116 
1117 	atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1118 
1119 	mutex_exit(&igb->gen_lock);
1120 
1121 	return (DDI_SUCCESS);
1122 }
1123 
1124 static int
1125 igb_suspend(dev_info_t *devinfo)
1126 {
1127 	igb_t *igb;
1128 
1129 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1130 	if (igb == NULL)
1131 		return (DDI_FAILURE);
1132 
1133 	mutex_enter(&igb->gen_lock);
1134 
1135 	atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1136 
1137 	/*
1138 	 * Disable interrupts
1139 	 */
1140 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1141 		(void) igb_disable_intrs(igb);
1142 	}
1143 
1144 	if (!(igb->igb_state & IGB_STARTED)) {
1145 		mutex_exit(&igb->gen_lock);
1146 		return (DDI_SUCCESS);
1147 	}
1148 
1149 	igb_stop(igb, B_FALSE);
1150 
1151 	mutex_exit(&igb->gen_lock);
1152 
1153 	/*
1154 	 * Disable and stop the watchdog timer
1155 	 */
1156 	igb_disable_watchdog_timer(igb);
1157 
1158 	return (DDI_SUCCESS);
1159 }
1160 
1161 static int
1162 igb_init(igb_t *igb)
1163 {
1164 	mutex_enter(&igb->gen_lock);
1165 
1166 	/*
1167 	 * Initilize the adapter
1168 	 */
1169 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1170 		mutex_exit(&igb->gen_lock);
1171 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1172 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1173 		return (IGB_FAILURE);
1174 	}
1175 
1176 	mutex_exit(&igb->gen_lock);
1177 
1178 	return (IGB_SUCCESS);
1179 }
1180 
1181 /*
1182  * igb_init_mac_address - Initialize the default MAC address
1183  *
1184  * On success, the MAC address is entered in the igb->hw.mac.addr
1185  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1186  * address register.
1187  *
1188  * Important side effects:
1189  * 1. adapter is reset - this is required to put it in a known state.
1190  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1191  * MAC address and all default settings are stored, so a valid checksum
1192  * is required.
1193  */
1194 static int
1195 igb_init_mac_address(igb_t *igb)
1196 {
1197 	struct e1000_hw *hw = &igb->hw;
1198 
1199 	ASSERT(mutex_owned(&igb->gen_lock));
1200 
1201 	/*
1202 	 * Reset chipset to put the hardware in a known state
1203 	 * before we try to get MAC address from NVM.
1204 	 */
1205 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1206 		igb_error(igb, "Adapter reset failed.");
1207 		goto init_mac_fail;
1208 	}
1209 
1210 	/*
1211 	 * NVM validation
1212 	 */
1213 	if (e1000_validate_nvm_checksum(hw) < 0) {
1214 		/*
1215 		 * Some PCI-E parts fail the first check due to
1216 		 * the link being in sleep state.  Call it again,
1217 		 * if it fails a second time its a real issue.
1218 		 */
1219 		if (e1000_validate_nvm_checksum(hw) < 0) {
1220 			igb_error(igb,
1221 			    "Invalid NVM checksum. Please contact "
1222 			    "the vendor to update the NVM.");
1223 			goto init_mac_fail;
1224 		}
1225 	}
1226 
1227 	/*
1228 	 * Get the mac address
1229 	 * This function should handle SPARC case correctly.
1230 	 */
1231 	if (!igb_find_mac_address(igb)) {
1232 		igb_error(igb, "Failed to get the mac address");
1233 		goto init_mac_fail;
1234 	}
1235 
1236 	/* Validate mac address */
1237 	if (!is_valid_mac_addr(hw->mac.addr)) {
1238 		igb_error(igb, "Invalid mac address");
1239 		goto init_mac_fail;
1240 	}
1241 
1242 	return (IGB_SUCCESS);
1243 
1244 init_mac_fail:
1245 	return (IGB_FAILURE);
1246 }
1247 
1248 /*
1249  * igb_init_adapter - Initialize the adapter
1250  */
1251 static int
1252 igb_init_adapter(igb_t *igb)
1253 {
1254 	struct e1000_hw *hw = &igb->hw;
1255 	uint32_t pba;
1256 	uint32_t high_water;
1257 	int i;
1258 
1259 	ASSERT(mutex_owned(&igb->gen_lock));
1260 
1261 	/*
1262 	 * In order to obtain the default MAC address, this will reset the
1263 	 * adapter and validate the NVM that the address and many other
1264 	 * default settings come from.
1265 	 */
1266 	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1267 		igb_error(igb, "Failed to initialize MAC address");
1268 		goto init_adapter_fail;
1269 	}
1270 
1271 	/*
1272 	 * Setup flow control
1273 	 *
1274 	 * These parameters set thresholds for the adapter's generation(Tx)
1275 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1276 	 * settings.  Flow control is enabled or disabled in the configuration
1277 	 * file.
1278 	 * High-water mark is set down from the top of the rx fifo (not
1279 	 * sensitive to max_frame_size) and low-water is set just below
1280 	 * high-water mark.
1281 	 * The high water mark must be low enough to fit one full frame above
1282 	 * it in the rx FIFO.  Should be the lower of:
1283 	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1284 	 * frame.
1285 	 */
1286 	/*
1287 	 * The default setting of PBA is correct for 82575 and other supported
1288 	 * adapters do not have the E1000_PBA register, so PBA value is only
1289 	 * used for calculation here and is never written to the adapter.
1290 	 */
1291 	if (hw->mac.type == e1000_82575) {
1292 		pba = E1000_PBA_34K;
1293 	} else {
1294 		pba = E1000_PBA_64K;
1295 	}
1296 
1297 	high_water = min(((pba << 10) * 9 / 10),
1298 	    ((pba << 10) - igb->max_frame_size));
1299 
1300 	if (hw->mac.type == e1000_82575) {
1301 		/* 8-byte granularity */
1302 		hw->fc.high_water = high_water & 0xFFF8;
1303 		hw->fc.low_water = hw->fc.high_water - 8;
1304 	} else {
1305 		/* 16-byte granularity */
1306 		hw->fc.high_water = high_water & 0xFFF0;
1307 		hw->fc.low_water = hw->fc.high_water - 16;
1308 	}
1309 
1310 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1311 	hw->fc.send_xon = B_TRUE;
1312 
1313 	(void) e1000_validate_mdi_setting(hw);
1314 
1315 	/*
1316 	 * Reset the chipset hardware the second time to put PBA settings
1317 	 * into effect.
1318 	 */
1319 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1320 		igb_error(igb, "Second reset failed");
1321 		goto init_adapter_fail;
1322 	}
1323 
1324 	/*
1325 	 * Don't wait for auto-negotiation to complete
1326 	 */
1327 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1328 
1329 	/*
1330 	 * Copper options
1331 	 */
1332 	if (hw->phy.media_type == e1000_media_type_copper) {
1333 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1334 		hw->phy.disable_polarity_correction = B_FALSE;
1335 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1336 	}
1337 
1338 	/*
1339 	 * Initialize link settings
1340 	 */
1341 	(void) igb_setup_link(igb, B_FALSE);
1342 
1343 	/*
1344 	 * Configure/Initialize hardware
1345 	 */
1346 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1347 		igb_error(igb, "Failed to initialize hardware");
1348 		goto init_adapter_fail;
1349 	}
1350 
1351 	/*
1352 	 *  Start the link setup timer
1353 	 */
1354 	igb_start_link_timer(igb);
1355 
1356 	/*
1357 	 * Disable wakeup control by default
1358 	 */
1359 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1360 
1361 	/*
1362 	 * Record phy info in hw struct
1363 	 */
1364 	(void) e1000_get_phy_info(hw);
1365 
1366 	/*
1367 	 * Make sure driver has control
1368 	 */
1369 	igb_get_driver_control(hw);
1370 
1371 	/*
1372 	 * Restore LED settings to the default from EEPROM
1373 	 * to meet the standard for Sun platforms.
1374 	 */
1375 	(void) e1000_cleanup_led(hw);
1376 
1377 	/*
1378 	 * Setup MSI-X interrupts
1379 	 */
1380 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1381 		igb->capab->setup_msix(igb);
1382 
1383 	/*
1384 	 * Initialize unicast addresses.
1385 	 */
1386 	igb_init_unicst(igb);
1387 
1388 	/*
1389 	 * Setup and initialize the mctable structures.
1390 	 */
1391 	igb_setup_multicst(igb);
1392 
1393 	/*
1394 	 * Set interrupt throttling rate
1395 	 */
1396 	for (i = 0; i < igb->intr_cnt; i++)
1397 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1398 
1399 	/*
1400 	 * Save the state of the phy
1401 	 */
1402 	igb_get_phy_state(igb);
1403 
1404 	igb_param_sync(igb);
1405 
1406 	return (IGB_SUCCESS);
1407 
1408 init_adapter_fail:
1409 	/*
1410 	 * Reset PHY if possible
1411 	 */
1412 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1413 		(void) e1000_phy_hw_reset(hw);
1414 
1415 	return (IGB_FAILURE);
1416 }
1417 
1418 /*
1419  * igb_stop_adapter - Stop the adapter
1420  */
1421 static void
1422 igb_stop_adapter(igb_t *igb)
1423 {
1424 	struct e1000_hw *hw = &igb->hw;
1425 
1426 	ASSERT(mutex_owned(&igb->gen_lock));
1427 
1428 	/* Stop the link setup timer */
1429 	igb_stop_link_timer(igb);
1430 
1431 	/* Tell firmware driver is no longer in control */
1432 	igb_release_driver_control(hw);
1433 
1434 	/*
1435 	 * Reset the chipset
1436 	 */
1437 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1438 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1439 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1440 	}
1441 
1442 	/*
1443 	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1444 	 */
1445 }
1446 
1447 /*
1448  * igb_reset - Reset the chipset and restart the driver.
1449  *
1450  * It involves stopping and re-starting the chipset,
1451  * and re-configuring the rx/tx rings.
1452  */
1453 static int
1454 igb_reset(igb_t *igb)
1455 {
1456 	int i;
1457 
1458 	mutex_enter(&igb->gen_lock);
1459 
1460 	ASSERT(igb->igb_state & IGB_STARTED);
1461 	atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1462 
1463 	/*
1464 	 * Disable the adapter interrupts to stop any rx/tx activities
1465 	 * before draining pending data and resetting hardware.
1466 	 */
1467 	igb_disable_adapter_interrupts(igb);
1468 
1469 	/*
1470 	 * Drain the pending transmit packets
1471 	 */
1472 	(void) igb_tx_drain(igb);
1473 
1474 	for (i = 0; i < igb->num_rx_rings; i++)
1475 		mutex_enter(&igb->rx_rings[i].rx_lock);
1476 	for (i = 0; i < igb->num_tx_rings; i++)
1477 		mutex_enter(&igb->tx_rings[i].tx_lock);
1478 
1479 	/*
1480 	 * Stop the adapter
1481 	 */
1482 	igb_stop_adapter(igb);
1483 
1484 	/*
1485 	 * Clean the pending tx data/resources
1486 	 */
1487 	igb_tx_clean(igb);
1488 
1489 	/*
1490 	 * Start the adapter
1491 	 */
1492 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1493 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1494 		goto reset_failure;
1495 	}
1496 
1497 	/*
1498 	 * Setup the rx/tx rings
1499 	 */
1500 	igb->tx_ring_init = B_FALSE;
1501 	igb_setup_rings(igb);
1502 
1503 	atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1504 
1505 	/*
1506 	 * Enable adapter interrupts
1507 	 * The interrupts must be enabled after the driver state is START
1508 	 */
1509 	igb->capab->enable_intr(igb);
1510 
1511 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1512 		goto reset_failure;
1513 
1514 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1515 		goto reset_failure;
1516 
1517 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1518 		mutex_exit(&igb->tx_rings[i].tx_lock);
1519 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1520 		mutex_exit(&igb->rx_rings[i].rx_lock);
1521 
1522 	atomic_or_32(&igb->igb_state, IGB_STARTED);
1523 
1524 	mutex_exit(&igb->gen_lock);
1525 
1526 	return (IGB_SUCCESS);
1527 
1528 reset_failure:
1529 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1530 		mutex_exit(&igb->tx_rings[i].tx_lock);
1531 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1532 		mutex_exit(&igb->rx_rings[i].rx_lock);
1533 
1534 	mutex_exit(&igb->gen_lock);
1535 
1536 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1537 
1538 	return (IGB_FAILURE);
1539 }
1540 
1541 /*
1542  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1543  */
1544 static void
1545 igb_tx_clean(igb_t *igb)
1546 {
1547 	igb_tx_ring_t *tx_ring;
1548 	tx_control_block_t *tcb;
1549 	link_list_t pending_list;
1550 	uint32_t desc_num;
1551 	int i, j;
1552 
1553 	LINK_LIST_INIT(&pending_list);
1554 
1555 	for (i = 0; i < igb->num_tx_rings; i++) {
1556 		tx_ring = &igb->tx_rings[i];
1557 
1558 		mutex_enter(&tx_ring->recycle_lock);
1559 
1560 		/*
1561 		 * Clean the pending tx data - the pending packets in the
1562 		 * work_list that have no chances to be transmitted again.
1563 		 *
1564 		 * We must ensure the chipset is stopped or the link is down
1565 		 * before cleaning the transmit packets.
1566 		 */
1567 		desc_num = 0;
1568 		for (j = 0; j < tx_ring->ring_size; j++) {
1569 			tcb = tx_ring->work_list[j];
1570 			if (tcb != NULL) {
1571 				desc_num += tcb->desc_num;
1572 
1573 				tx_ring->work_list[j] = NULL;
1574 
1575 				igb_free_tcb(tcb);
1576 
1577 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1578 			}
1579 		}
1580 
1581 		if (desc_num > 0) {
1582 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1583 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1584 
1585 			/*
1586 			 * Reset the head and tail pointers of the tbd ring;
1587 			 * Reset the head write-back if it is enabled.
1588 			 */
1589 			tx_ring->tbd_head = 0;
1590 			tx_ring->tbd_tail = 0;
1591 			if (igb->tx_head_wb_enable)
1592 				*tx_ring->tbd_head_wb = 0;
1593 
1594 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1595 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1596 		}
1597 
1598 		mutex_exit(&tx_ring->recycle_lock);
1599 
1600 		/*
1601 		 * Add the tx control blocks in the pending list to
1602 		 * the free list.
1603 		 */
1604 		igb_put_free_list(tx_ring, &pending_list);
1605 	}
1606 }
1607 
1608 /*
1609  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1610  */
1611 static boolean_t
1612 igb_tx_drain(igb_t *igb)
1613 {
1614 	igb_tx_ring_t *tx_ring;
1615 	boolean_t done;
1616 	int i, j;
1617 
1618 	/*
1619 	 * Wait for a specific time to allow pending tx packets
1620 	 * to be transmitted.
1621 	 *
1622 	 * Check the counter tbd_free to see if transmission is done.
1623 	 * No lock protection is needed here.
1624 	 *
1625 	 * Return B_TRUE if all pending packets have been transmitted;
1626 	 * Otherwise return B_FALSE;
1627 	 */
1628 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1629 
1630 		done = B_TRUE;
1631 		for (j = 0; j < igb->num_tx_rings; j++) {
1632 			tx_ring = &igb->tx_rings[j];
1633 			done = done &&
1634 			    (tx_ring->tbd_free == tx_ring->ring_size);
1635 		}
1636 
1637 		if (done)
1638 			break;
1639 
1640 		msec_delay(1);
1641 	}
1642 
1643 	return (done);
1644 }
1645 
1646 /*
1647  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1648  */
1649 static boolean_t
1650 igb_rx_drain(igb_t *igb)
1651 {
1652 	boolean_t done;
1653 	int i;
1654 
1655 	/*
1656 	 * Polling the rx free list to check if those rx buffers held by
1657 	 * the upper layer are released.
1658 	 *
1659 	 * Check the counter rcb_free to see if all pending buffers are
1660 	 * released. No lock protection is needed here.
1661 	 *
1662 	 * Return B_TRUE if all pending buffers have been released;
1663 	 * Otherwise return B_FALSE;
1664 	 */
1665 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1666 		done = (igb->rcb_pending == 0);
1667 
1668 		if (done)
1669 			break;
1670 
1671 		msec_delay(1);
1672 	}
1673 
1674 	return (done);
1675 }
1676 
1677 /*
1678  * igb_start - Start the driver/chipset
1679  */
1680 int
1681 igb_start(igb_t *igb, boolean_t alloc_buffer)
1682 {
1683 	int i;
1684 
1685 	ASSERT(mutex_owned(&igb->gen_lock));
1686 
1687 	if (alloc_buffer) {
1688 		if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1689 			igb_error(igb,
1690 			    "Failed to allocate software receive rings");
1691 			return (IGB_FAILURE);
1692 		}
1693 
1694 		/* Allocate buffers for all the rx/tx rings */
1695 		if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1696 			igb_error(igb, "Failed to allocate DMA resource");
1697 			return (IGB_FAILURE);
1698 		}
1699 
1700 		igb->tx_ring_init = B_TRUE;
1701 	} else {
1702 		igb->tx_ring_init = B_FALSE;
1703 	}
1704 
1705 	for (i = 0; i < igb->num_rx_rings; i++)
1706 		mutex_enter(&igb->rx_rings[i].rx_lock);
1707 	for (i = 0; i < igb->num_tx_rings; i++)
1708 		mutex_enter(&igb->tx_rings[i].tx_lock);
1709 
1710 	/*
1711 	 * Start the adapter
1712 	 */
1713 	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1714 		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1715 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1716 			goto start_failure;
1717 		}
1718 		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1719 	}
1720 
1721 	/*
1722 	 * Setup the rx/tx rings
1723 	 */
1724 	igb_setup_rings(igb);
1725 
1726 	/*
1727 	 * Enable adapter interrupts
1728 	 * The interrupts must be enabled after the driver state is START
1729 	 */
1730 	igb->capab->enable_intr(igb);
1731 
1732 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1733 		goto start_failure;
1734 
1735 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1736 		goto start_failure;
1737 
1738 	if (igb->hw.mac.type == e1000_i350)
1739 		(void) e1000_set_eee_i350(&igb->hw);
1740 
1741 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1742 		mutex_exit(&igb->tx_rings[i].tx_lock);
1743 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1744 		mutex_exit(&igb->rx_rings[i].rx_lock);
1745 
1746 	return (IGB_SUCCESS);
1747 
1748 start_failure:
1749 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1750 		mutex_exit(&igb->tx_rings[i].tx_lock);
1751 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1752 		mutex_exit(&igb->rx_rings[i].rx_lock);
1753 
1754 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1755 
1756 	return (IGB_FAILURE);
1757 }
1758 
1759 /*
1760  * igb_stop - Stop the driver/chipset
1761  */
1762 void
1763 igb_stop(igb_t *igb, boolean_t free_buffer)
1764 {
1765 	int i;
1766 
1767 	ASSERT(mutex_owned(&igb->gen_lock));
1768 
1769 	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1770 
1771 	/*
1772 	 * Disable the adapter interrupts
1773 	 */
1774 	igb_disable_adapter_interrupts(igb);
1775 
1776 	/*
1777 	 * Drain the pending tx packets
1778 	 */
1779 	(void) igb_tx_drain(igb);
1780 
1781 	for (i = 0; i < igb->num_rx_rings; i++)
1782 		mutex_enter(&igb->rx_rings[i].rx_lock);
1783 	for (i = 0; i < igb->num_tx_rings; i++)
1784 		mutex_enter(&igb->tx_rings[i].tx_lock);
1785 
1786 	/*
1787 	 * Stop the adapter
1788 	 */
1789 	igb_stop_adapter(igb);
1790 
1791 	/*
1792 	 * Clean the pending tx data/resources
1793 	 */
1794 	igb_tx_clean(igb);
1795 
1796 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1797 		mutex_exit(&igb->tx_rings[i].tx_lock);
1798 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1799 		mutex_exit(&igb->rx_rings[i].rx_lock);
1800 
1801 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1802 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1803 
1804 	if (igb->link_state == LINK_STATE_UP) {
1805 		igb->link_state = LINK_STATE_UNKNOWN;
1806 		mac_link_update(igb->mac_hdl, igb->link_state);
1807 	}
1808 
1809 	if (free_buffer) {
1810 		/*
1811 		 * Release the DMA/memory resources of rx/tx rings
1812 		 */
1813 		igb_free_dma(igb);
1814 		igb_free_rx_data(igb);
1815 	}
1816 }
1817 
1818 /*
1819  * igb_alloc_rings - Allocate memory space for rx/tx rings
1820  */
1821 static int
1822 igb_alloc_rings(igb_t *igb)
1823 {
1824 	/*
1825 	 * Allocate memory space for rx rings
1826 	 */
1827 	igb->rx_rings = kmem_zalloc(
1828 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1829 	    KM_NOSLEEP);
1830 
1831 	if (igb->rx_rings == NULL) {
1832 		return (IGB_FAILURE);
1833 	}
1834 
1835 	/*
1836 	 * Allocate memory space for tx rings
1837 	 */
1838 	igb->tx_rings = kmem_zalloc(
1839 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1840 	    KM_NOSLEEP);
1841 
1842 	if (igb->tx_rings == NULL) {
1843 		kmem_free(igb->rx_rings,
1844 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1845 		igb->rx_rings = NULL;
1846 		return (IGB_FAILURE);
1847 	}
1848 
1849 	/*
1850 	 * Allocate memory space for rx ring groups
1851 	 */
1852 	igb->rx_groups = kmem_zalloc(
1853 	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1854 	    KM_NOSLEEP);
1855 
1856 	if (igb->rx_groups == NULL) {
1857 		kmem_free(igb->rx_rings,
1858 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1859 		kmem_free(igb->tx_rings,
1860 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1861 		igb->rx_rings = NULL;
1862 		igb->tx_rings = NULL;
1863 		return (IGB_FAILURE);
1864 	}
1865 
1866 	return (IGB_SUCCESS);
1867 }
1868 
1869 /*
1870  * igb_free_rings - Free the memory space of rx/tx rings.
1871  */
1872 static void
1873 igb_free_rings(igb_t *igb)
1874 {
1875 	if (igb->rx_rings != NULL) {
1876 		kmem_free(igb->rx_rings,
1877 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1878 		igb->rx_rings = NULL;
1879 	}
1880 
1881 	if (igb->tx_rings != NULL) {
1882 		kmem_free(igb->tx_rings,
1883 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1884 		igb->tx_rings = NULL;
1885 	}
1886 
1887 	if (igb->rx_groups != NULL) {
1888 		kmem_free(igb->rx_groups,
1889 		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1890 		igb->rx_groups = NULL;
1891 	}
1892 }
1893 
1894 static int
1895 igb_alloc_rx_data(igb_t *igb)
1896 {
1897 	igb_rx_ring_t *rx_ring;
1898 	int i;
1899 
1900 	for (i = 0; i < igb->num_rx_rings; i++) {
1901 		rx_ring = &igb->rx_rings[i];
1902 		if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
1903 			goto alloc_rx_rings_failure;
1904 	}
1905 	return (IGB_SUCCESS);
1906 
1907 alloc_rx_rings_failure:
1908 	igb_free_rx_data(igb);
1909 	return (IGB_FAILURE);
1910 }
1911 
1912 static void
1913 igb_free_rx_data(igb_t *igb)
1914 {
1915 	igb_rx_ring_t *rx_ring;
1916 	igb_rx_data_t *rx_data;
1917 	int i;
1918 
1919 	for (i = 0; i < igb->num_rx_rings; i++) {
1920 		rx_ring = &igb->rx_rings[i];
1921 
1922 		mutex_enter(&igb->rx_pending_lock);
1923 		rx_data = rx_ring->rx_data;
1924 
1925 		if (rx_data != NULL) {
1926 			rx_data->flag |= IGB_RX_STOPPED;
1927 
1928 			if (rx_data->rcb_pending == 0) {
1929 				igb_free_rx_ring_data(rx_data);
1930 				rx_ring->rx_data = NULL;
1931 			}
1932 		}
1933 
1934 		mutex_exit(&igb->rx_pending_lock);
1935 	}
1936 }
1937 
1938 /*
1939  * igb_setup_rings - Setup rx/tx rings
1940  */
1941 static void
1942 igb_setup_rings(igb_t *igb)
1943 {
1944 	/*
1945 	 * Setup the rx/tx rings, including the following:
1946 	 *
1947 	 * 1. Setup the descriptor ring and the control block buffers;
1948 	 * 2. Initialize necessary registers for receive/transmit;
1949 	 * 3. Initialize software pointers/parameters for receive/transmit;
1950 	 */
1951 	igb_setup_rx(igb);
1952 
1953 	igb_setup_tx(igb);
1954 }
1955 
1956 static void
1957 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1958 {
1959 	igb_t *igb = rx_ring->igb;
1960 	igb_rx_data_t *rx_data = rx_ring->rx_data;
1961 	struct e1000_hw *hw = &igb->hw;
1962 	rx_control_block_t *rcb;
1963 	union e1000_adv_rx_desc	*rbd;
1964 	uint32_t size;
1965 	uint32_t buf_low;
1966 	uint32_t buf_high;
1967 	uint32_t rxdctl;
1968 	int i;
1969 
1970 	ASSERT(mutex_owned(&rx_ring->rx_lock));
1971 	ASSERT(mutex_owned(&igb->gen_lock));
1972 
1973 	/*
1974 	 * Initialize descriptor ring with buffer addresses
1975 	 */
1976 	for (i = 0; i < igb->rx_ring_size; i++) {
1977 		rcb = rx_data->work_list[i];
1978 		rbd = &rx_data->rbd_ring[i];
1979 
1980 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1981 		rbd->read.hdr_addr = NULL;
1982 	}
1983 
1984 	/*
1985 	 * Initialize the base address registers
1986 	 */
1987 	buf_low = (uint32_t)rx_data->rbd_area.dma_address;
1988 	buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
1989 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1990 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1991 
1992 	/*
1993 	 * Initialize the length register
1994 	 */
1995 	size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
1996 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1997 
1998 	/*
1999 	 * Initialize buffer size & descriptor type
2000 	 */
2001 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2002 	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2003 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2004 
2005 	/*
2006 	 * Setup the Receive Descriptor Control Register (RXDCTL)
2007 	 */
2008 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2009 	rxdctl &= igb->capab->rxdctl_mask;
2010 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2011 	rxdctl |= 16;		/* pthresh */
2012 	rxdctl |= 8 << 8;	/* hthresh */
2013 	rxdctl |= 1 << 16;	/* wthresh */
2014 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2015 
2016 	rx_data->rbd_next = 0;
2017 }
2018 
2019 static void
2020 igb_setup_rx(igb_t *igb)
2021 {
2022 	igb_rx_ring_t *rx_ring;
2023 	igb_rx_data_t *rx_data;
2024 	igb_rx_group_t *rx_group;
2025 	struct e1000_hw *hw = &igb->hw;
2026 	uint32_t rctl, rxcsum;
2027 	uint32_t ring_per_group;
2028 	int i;
2029 
2030 	/*
2031 	 * Setup the Receive Control Register (RCTL), and enable the
2032 	 * receiver. The initial configuration is to: enable the receiver,
2033 	 * accept broadcasts, discard bad packets, accept long packets,
2034 	 * disable VLAN filter checking, and set receive buffer size to
2035 	 * 2k.  For 82575, also set the receive descriptor minimum
2036 	 * threshold size to 1/2 the ring.
2037 	 */
2038 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2039 
2040 	/*
2041 	 * Clear the field used for wakeup control.  This driver doesn't do
2042 	 * wakeup but leave this here for completeness.
2043 	 */
2044 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2045 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2046 
2047 	rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
2048 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
2049 	    E1000_RCTL_LPE |		/* Large Packet Enable */
2050 					/* Multicast filter offset */
2051 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2052 	    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
2053 	    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
2054 
2055 	for (i = 0; i < igb->num_rx_groups; i++) {
2056 		rx_group = &igb->rx_groups[i];
2057 		rx_group->index = i;
2058 		rx_group->igb = igb;
2059 	}
2060 
2061 	/*
2062 	 * Set up all rx descriptor rings - must be called before receive unit
2063 	 * enabled.
2064 	 */
2065 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2066 	for (i = 0; i < igb->num_rx_rings; i++) {
2067 		rx_ring = &igb->rx_rings[i];
2068 		igb_setup_rx_ring(rx_ring);
2069 
2070 		/*
2071 		 * Map a ring to a group by assigning a group index
2072 		 */
2073 		rx_ring->group_index = i / ring_per_group;
2074 	}
2075 
2076 	/*
2077 	 * Setup the Rx Long Packet Max Length register
2078 	 */
2079 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2080 
2081 	/*
2082 	 * Hardware checksum settings
2083 	 */
2084 	if (igb->rx_hcksum_enable) {
2085 		rxcsum =
2086 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
2087 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
2088 
2089 		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2090 	}
2091 
2092 	/*
2093 	 * Setup classify and RSS for multiple receive queues
2094 	 */
2095 	switch (igb->vmdq_mode) {
2096 	case E1000_VMDQ_OFF:
2097 		/*
2098 		 * One ring group, only RSS is needed when more than
2099 		 * one ring enabled.
2100 		 */
2101 		if (igb->num_rx_rings > 1)
2102 			igb_setup_rss(igb);
2103 		break;
2104 	case E1000_VMDQ_MAC:
2105 		/*
2106 		 * Multiple groups, each group has one ring,
2107 		 * only the MAC classification is needed.
2108 		 */
2109 		igb_setup_mac_classify(igb);
2110 		break;
2111 	case E1000_VMDQ_MAC_RSS:
2112 		/*
2113 		 * Multiple groups and multiple rings, both
2114 		 * MAC classification and RSS are needed.
2115 		 */
2116 		igb_setup_mac_rss_classify(igb);
2117 		break;
2118 	}
2119 
2120 	/*
2121 	 * Enable the receive unit - must be done after all
2122 	 * the rx setup above.
2123 	 */
2124 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2125 
2126 	/*
2127 	 * Initialize all adapter ring head & tail pointers - must
2128 	 * be done after receive unit is enabled
2129 	 */
2130 	for (i = 0; i < igb->num_rx_rings; i++) {
2131 		rx_ring = &igb->rx_rings[i];
2132 		rx_data = rx_ring->rx_data;
2133 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2134 		E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2135 	}
2136 
2137 	/*
2138 	 * 82575 with manageability enabled needs a special flush to make
2139 	 * sure the fifos start clean.
2140 	 */
2141 	if ((hw->mac.type == e1000_82575) &&
2142 	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2143 		e1000_rx_fifo_flush_82575(hw);
2144 	}
2145 }
2146 
2147 static void
2148 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2149 {
2150 	igb_t *igb = tx_ring->igb;
2151 	struct e1000_hw *hw = &igb->hw;
2152 	uint32_t size;
2153 	uint32_t buf_low;
2154 	uint32_t buf_high;
2155 	uint32_t reg_val;
2156 
2157 	ASSERT(mutex_owned(&tx_ring->tx_lock));
2158 	ASSERT(mutex_owned(&igb->gen_lock));
2159 
2160 
2161 	/*
2162 	 * Initialize the length register
2163 	 */
2164 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2165 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2166 
2167 	/*
2168 	 * Initialize the base address registers
2169 	 */
2170 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2171 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2172 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2173 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2174 
2175 	/*
2176 	 * Setup head & tail pointers
2177 	 */
2178 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2179 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2180 
2181 	/*
2182 	 * Setup head write-back
2183 	 */
2184 	if (igb->tx_head_wb_enable) {
2185 		/*
2186 		 * The memory of the head write-back is allocated using
2187 		 * the extra tbd beyond the tail of the tbd ring.
2188 		 */
2189 		tx_ring->tbd_head_wb = (uint32_t *)
2190 		    ((uintptr_t)tx_ring->tbd_area.address + size);
2191 		*tx_ring->tbd_head_wb = 0;
2192 
2193 		buf_low = (uint32_t)
2194 		    (tx_ring->tbd_area.dma_address + size);
2195 		buf_high = (uint32_t)
2196 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2197 
2198 		/* Set the head write-back enable bit */
2199 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2200 
2201 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2202 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2203 
2204 		/*
2205 		 * Turn off relaxed ordering for head write back or it will
2206 		 * cause problems with the tx recycling
2207 		 */
2208 		reg_val = E1000_READ_REG(hw,
2209 		    E1000_DCA_TXCTRL(tx_ring->index));
2210 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2211 		E1000_WRITE_REG(hw,
2212 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2213 	} else {
2214 		tx_ring->tbd_head_wb = NULL;
2215 	}
2216 
2217 	tx_ring->tbd_head = 0;
2218 	tx_ring->tbd_tail = 0;
2219 	tx_ring->tbd_free = tx_ring->ring_size;
2220 
2221 	if (igb->tx_ring_init == B_TRUE) {
2222 		tx_ring->tcb_head = 0;
2223 		tx_ring->tcb_tail = 0;
2224 		tx_ring->tcb_free = tx_ring->free_list_size;
2225 	}
2226 
2227 	/*
2228 	 * Enable TXDCTL per queue
2229 	 */
2230 	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2231 	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2232 	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2233 
2234 	/*
2235 	 * Initialize hardware checksum offload settings
2236 	 */
2237 	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2238 }
2239 
2240 static void
2241 igb_setup_tx(igb_t *igb)
2242 {
2243 	igb_tx_ring_t *tx_ring;
2244 	struct e1000_hw *hw = &igb->hw;
2245 	uint32_t reg_val;
2246 	int i;
2247 
2248 	for (i = 0; i < igb->num_tx_rings; i++) {
2249 		tx_ring = &igb->tx_rings[i];
2250 		igb_setup_tx_ring(tx_ring);
2251 	}
2252 
2253 	/*
2254 	 * Setup the Transmit Control Register (TCTL)
2255 	 */
2256 	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2257 	reg_val &= ~E1000_TCTL_CT;
2258 	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2259 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2260 
2261 	/* Enable transmits */
2262 	reg_val |= E1000_TCTL_EN;
2263 
2264 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2265 }
2266 
2267 /*
2268  * igb_setup_rss - Setup receive-side scaling feature
2269  */
2270 static void
2271 igb_setup_rss(igb_t *igb)
2272 {
2273 	struct e1000_hw *hw = &igb->hw;
2274 	uint32_t i, mrqc, rxcsum;
2275 	int shift = 0;
2276 	uint32_t random;
2277 	union e1000_reta {
2278 		uint32_t	dword;
2279 		uint8_t		bytes[4];
2280 	} reta;
2281 
2282 	/* Setup the Redirection Table */
2283 	if (hw->mac.type == e1000_82576) {
2284 		shift = 3;
2285 	} else if (hw->mac.type == e1000_82575) {
2286 		shift = 6;
2287 	}
2288 	for (i = 0; i < (32 * 4); i++) {
2289 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2290 		if ((i & 3) == 3) {
2291 			E1000_WRITE_REG(hw,
2292 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2293 		}
2294 	}
2295 
2296 	/* Fill out hash function seeds */
2297 	for (i = 0; i < 10; i++) {
2298 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2299 		    sizeof (uint32_t));
2300 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2301 	}
2302 
2303 	/* Setup the Multiple Receive Queue Control register */
2304 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2305 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2306 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2307 	    E1000_MRQC_RSS_FIELD_IPV6 |
2308 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2309 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2310 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2311 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2312 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2313 
2314 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2315 
2316 	/*
2317 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2318 	 *
2319 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2320 	 * checksum offloading provided by the 82575 chipset besides the IP
2321 	 * header checksum offloading and the TCP/UDP checksum offloading.
2322 	 * The Packet Checksum is by default computed over the entire packet
2323 	 * from the first byte of the DA through the last byte of the CRC,
2324 	 * including the Ethernet and IP headers.
2325 	 *
2326 	 * It is a hardware limitation that Packet Checksum is mutually
2327 	 * exclusive with RSS.
2328 	 */
2329 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2330 	rxcsum |= E1000_RXCSUM_PCSD;
2331 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2332 }
2333 
2334 /*
2335  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2336  */
2337 static void
2338 igb_setup_mac_rss_classify(igb_t *igb)
2339 {
2340 	struct e1000_hw *hw = &igb->hw;
2341 	uint32_t i, mrqc, vmdctl, rxcsum;
2342 	uint32_t ring_per_group;
2343 	int shift_group0, shift_group1;
2344 	uint32_t random;
2345 	union e1000_reta {
2346 		uint32_t	dword;
2347 		uint8_t		bytes[4];
2348 	} reta;
2349 
2350 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2351 
2352 	/* Setup the Redirection Table, it is shared between two groups */
2353 	shift_group0 = 2;
2354 	shift_group1 = 6;
2355 	for (i = 0; i < (32 * 4); i++) {
2356 		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2357 		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2358 		if ((i & 3) == 3) {
2359 			E1000_WRITE_REG(hw,
2360 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2361 		}
2362 	}
2363 
2364 	/* Fill out hash function seeds */
2365 	for (i = 0; i < 10; i++) {
2366 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2367 		    sizeof (uint32_t));
2368 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2369 	}
2370 
2371 	/*
2372 	 * Setup the Multiple Receive Queue Control register,
2373 	 * enable VMDq based on packet destination MAC address and RSS.
2374 	 */
2375 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2376 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2377 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2378 	    E1000_MRQC_RSS_FIELD_IPV6 |
2379 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2380 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2381 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2382 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2383 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2384 
2385 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2386 
2387 
2388 	/* Define the default group and default queues */
2389 	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2390 	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2391 
2392 	/*
2393 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2394 	 *
2395 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2396 	 * checksum offloading provided by the 82575 chipset besides the IP
2397 	 * header checksum offloading and the TCP/UDP checksum offloading.
2398 	 * The Packet Checksum is by default computed over the entire packet
2399 	 * from the first byte of the DA through the last byte of the CRC,
2400 	 * including the Ethernet and IP headers.
2401 	 *
2402 	 * It is a hardware limitation that Packet Checksum is mutually
2403 	 * exclusive with RSS.
2404 	 */
2405 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2406 	rxcsum |= E1000_RXCSUM_PCSD;
2407 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2408 }
2409 
2410 /*
2411  * igb_setup_mac_classify - Setup MAC classification feature
2412  */
2413 static void
2414 igb_setup_mac_classify(igb_t *igb)
2415 {
2416 	struct e1000_hw *hw = &igb->hw;
2417 	uint32_t mrqc, rxcsum;
2418 
2419 	/*
2420 	 * Setup the Multiple Receive Queue Control register,
2421 	 * enable VMDq based on packet destination MAC address.
2422 	 */
2423 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2424 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2425 
2426 	/*
2427 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2428 	 *
2429 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2430 	 * checksum offloading provided by the 82575 chipset besides the IP
2431 	 * header checksum offloading and the TCP/UDP checksum offloading.
2432 	 * The Packet Checksum is by default computed over the entire packet
2433 	 * from the first byte of the DA through the last byte of the CRC,
2434 	 * including the Ethernet and IP headers.
2435 	 *
2436 	 * It is a hardware limitation that Packet Checksum is mutually
2437 	 * exclusive with RSS.
2438 	 */
2439 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2440 	rxcsum |= E1000_RXCSUM_PCSD;
2441 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2442 
2443 }
2444 
2445 /*
2446  * igb_init_unicst - Initialize the unicast addresses
2447  */
2448 static void
2449 igb_init_unicst(igb_t *igb)
2450 {
2451 	struct e1000_hw *hw = &igb->hw;
2452 	int slot;
2453 
2454 	/*
2455 	 * Here we should consider two situations:
2456 	 *
2457 	 * 1. Chipset is initialized the first time
2458 	 *    Initialize the multiple unicast addresses, and
2459 	 *    save the default MAC address.
2460 	 *
2461 	 * 2. Chipset is reset
2462 	 *    Recover the multiple unicast addresses from the
2463 	 *    software data structure to the RAR registers.
2464 	 */
2465 
2466 	/*
2467 	 * Clear the default MAC address in the RAR0 rgister,
2468 	 * which is loaded from EEPROM when system boot or chipreset,
2469 	 * this will cause the conficts with add_mac/rem_mac entry
2470 	 * points when VMDq is enabled. For this reason, the RAR0
2471 	 * must be cleared for both cases mentioned above.
2472 	 */
2473 	e1000_rar_clear(hw, 0);
2474 
2475 	if (!igb->unicst_init) {
2476 
2477 		/* Initialize the multiple unicast addresses */
2478 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2479 		igb->unicst_avail = igb->unicst_total;
2480 
2481 		for (slot = 0; slot < igb->unicst_total; slot++)
2482 			igb->unicst_addr[slot].mac.set = 0;
2483 
2484 		igb->unicst_init = B_TRUE;
2485 	} else {
2486 		/* Re-configure the RAR registers */
2487 		for (slot = 0; slot < igb->unicst_total; slot++) {
2488 			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2489 			    slot, igb->vmdq_mode,
2490 			    igb->unicst_addr[slot].mac.group_index);
2491 		}
2492 	}
2493 }
2494 
2495 /*
2496  * igb_unicst_find - Find the slot for the specified unicast address
2497  */
2498 int
2499 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2500 {
2501 	int slot;
2502 
2503 	ASSERT(mutex_owned(&igb->gen_lock));
2504 
2505 	for (slot = 0; slot < igb->unicst_total; slot++) {
2506 		if (bcmp(igb->unicst_addr[slot].mac.addr,
2507 		    mac_addr, ETHERADDRL) == 0)
2508 			return (slot);
2509 	}
2510 
2511 	return (-1);
2512 }
2513 
2514 /*
2515  * igb_unicst_set - Set the unicast address to the specified slot
2516  */
2517 int
2518 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2519     int slot)
2520 {
2521 	struct e1000_hw *hw = &igb->hw;
2522 
2523 	ASSERT(mutex_owned(&igb->gen_lock));
2524 
2525 	/*
2526 	 * Save the unicast address in the software data structure
2527 	 */
2528 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2529 
2530 	/*
2531 	 * Set the unicast address to the RAR register
2532 	 */
2533 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2534 
2535 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2536 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2537 		return (EIO);
2538 	}
2539 
2540 	return (0);
2541 }
2542 
2543 /*
2544  * igb_multicst_add - Add a multicst address
2545  */
2546 int
2547 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2548 {
2549 	struct ether_addr *new_table;
2550 	size_t new_len;
2551 	size_t old_len;
2552 
2553 	ASSERT(mutex_owned(&igb->gen_lock));
2554 
2555 	if ((multiaddr[0] & 01) == 0) {
2556 		igb_error(igb, "Illegal multicast address");
2557 		return (EINVAL);
2558 	}
2559 
2560 	if (igb->mcast_count >= igb->mcast_max_num) {
2561 		igb_error(igb, "Adapter requested more than %d mcast addresses",
2562 		    igb->mcast_max_num);
2563 		return (ENOENT);
2564 	}
2565 
2566 	if (igb->mcast_count == igb->mcast_alloc_count) {
2567 		old_len = igb->mcast_alloc_count *
2568 		    sizeof (struct ether_addr);
2569 		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2570 		    sizeof (struct ether_addr);
2571 
2572 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2573 		if (new_table == NULL) {
2574 			igb_error(igb,
2575 			    "Not enough memory to alloc mcast table");
2576 			return (ENOMEM);
2577 		}
2578 
2579 		if (igb->mcast_table != NULL) {
2580 			bcopy(igb->mcast_table, new_table, old_len);
2581 			kmem_free(igb->mcast_table, old_len);
2582 		}
2583 		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2584 		igb->mcast_table = new_table;
2585 	}
2586 
2587 	bcopy(multiaddr,
2588 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2589 	igb->mcast_count++;
2590 
2591 	/*
2592 	 * Update the multicast table in the hardware
2593 	 */
2594 	igb_setup_multicst(igb);
2595 
2596 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2597 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2598 		return (EIO);
2599 	}
2600 
2601 	return (0);
2602 }
2603 
2604 /*
2605  * igb_multicst_remove - Remove a multicst address
2606  */
2607 int
2608 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2609 {
2610 	struct ether_addr *new_table;
2611 	size_t new_len;
2612 	size_t old_len;
2613 	int i;
2614 
2615 	ASSERT(mutex_owned(&igb->gen_lock));
2616 
2617 	for (i = 0; i < igb->mcast_count; i++) {
2618 		if (bcmp(multiaddr, &igb->mcast_table[i],
2619 		    ETHERADDRL) == 0) {
2620 			for (i++; i < igb->mcast_count; i++) {
2621 				igb->mcast_table[i - 1] =
2622 				    igb->mcast_table[i];
2623 			}
2624 			igb->mcast_count--;
2625 			break;
2626 		}
2627 	}
2628 
2629 	if ((igb->mcast_alloc_count - igb->mcast_count) >
2630 	    MCAST_ALLOC_COUNT) {
2631 		old_len = igb->mcast_alloc_count *
2632 		    sizeof (struct ether_addr);
2633 		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2634 		    sizeof (struct ether_addr);
2635 
2636 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2637 		if (new_table != NULL) {
2638 			bcopy(igb->mcast_table, new_table, new_len);
2639 			kmem_free(igb->mcast_table, old_len);
2640 			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2641 			igb->mcast_table = new_table;
2642 		}
2643 	}
2644 
2645 	/*
2646 	 * Update the multicast table in the hardware
2647 	 */
2648 	igb_setup_multicst(igb);
2649 
2650 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2651 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2652 		return (EIO);
2653 	}
2654 
2655 	return (0);
2656 }
2657 
2658 static void
2659 igb_release_multicast(igb_t *igb)
2660 {
2661 	if (igb->mcast_table != NULL) {
2662 		kmem_free(igb->mcast_table,
2663 		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2664 		igb->mcast_table = NULL;
2665 	}
2666 }
2667 
2668 /*
2669  * igb_setup_multicast - setup multicast data structures
2670  *
2671  * This routine initializes all of the multicast related structures
2672  * and save them in the hardware registers.
2673  */
2674 static void
2675 igb_setup_multicst(igb_t *igb)
2676 {
2677 	uint8_t *mc_addr_list;
2678 	uint32_t mc_addr_count;
2679 	struct e1000_hw *hw = &igb->hw;
2680 
2681 	ASSERT(mutex_owned(&igb->gen_lock));
2682 	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2683 
2684 	mc_addr_list = (uint8_t *)igb->mcast_table;
2685 	mc_addr_count = igb->mcast_count;
2686 
2687 	/*
2688 	 * Update the multicase addresses to the MTA registers
2689 	 */
2690 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2691 }
2692 
2693 /*
2694  * igb_get_conf - Get driver configurations set in driver.conf
2695  *
2696  * This routine gets user-configured values out of the configuration
2697  * file igb.conf.
2698  *
2699  * For each configurable value, there is a minimum, a maximum, and a
2700  * default.
2701  * If user does not configure a value, use the default.
2702  * If user configures below the minimum, use the minumum.
2703  * If user configures above the maximum, use the maxumum.
2704  */
2705 static void
2706 igb_get_conf(igb_t *igb)
2707 {
2708 	struct e1000_hw *hw = &igb->hw;
2709 	uint32_t default_mtu;
2710 	uint32_t flow_control;
2711 	uint32_t ring_per_group;
2712 	int i;
2713 
2714 	/*
2715 	 * igb driver supports the following user configurations:
2716 	 *
2717 	 * Link configurations:
2718 	 *    adv_autoneg_cap
2719 	 *    adv_1000fdx_cap
2720 	 *    adv_100fdx_cap
2721 	 *    adv_100hdx_cap
2722 	 *    adv_10fdx_cap
2723 	 *    adv_10hdx_cap
2724 	 * Note: 1000hdx is not supported.
2725 	 *
2726 	 * Jumbo frame configuration:
2727 	 *    default_mtu
2728 	 *
2729 	 * Ethernet flow control configuration:
2730 	 *    flow_control
2731 	 *
2732 	 * Multiple rings configurations:
2733 	 *    tx_queue_number
2734 	 *    tx_ring_size
2735 	 *    rx_queue_number
2736 	 *    rx_ring_size
2737 	 *
2738 	 * Call igb_get_prop() to get the value for a specific
2739 	 * configuration parameter.
2740 	 */
2741 
2742 	/*
2743 	 * Link configurations
2744 	 */
2745 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2746 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2747 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2748 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2749 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2750 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2751 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2752 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2753 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2754 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2755 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2756 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2757 
2758 	/*
2759 	 * Jumbo frame configurations
2760 	 */
2761 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2762 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2763 
2764 	igb->max_frame_size = default_mtu +
2765 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2766 
2767 	/*
2768 	 * Ethernet flow control configuration
2769 	 */
2770 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2771 	    e1000_fc_none, 4, e1000_fc_full);
2772 	if (flow_control == 4)
2773 		flow_control = e1000_fc_default;
2774 
2775 	hw->fc.requested_mode = flow_control;
2776 
2777 	/*
2778 	 * Multiple rings configurations
2779 	 */
2780 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2781 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2782 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2783 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2784 
2785 	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2786 	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2787 	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2788 	/*
2789 	 * Currently we do not support VMDq for 82576 and 82580.
2790 	 * If it is e1000_82576, set num_rx_groups to 1.
2791 	 */
2792 	if (hw->mac.type >= e1000_82576)
2793 		igb->num_rx_groups = 1;
2794 
2795 	if (igb->mr_enable) {
2796 		igb->num_tx_rings = igb->capab->def_tx_que_num;
2797 		igb->num_rx_rings = igb->capab->def_rx_que_num;
2798 	} else {
2799 		igb->num_tx_rings = 1;
2800 		igb->num_rx_rings = 1;
2801 
2802 		if (igb->num_rx_groups > 1) {
2803 			igb_error(igb,
2804 			    "Invalid rx groups number. Please enable multiple "
2805 			    "rings first");
2806 			igb->num_rx_groups = 1;
2807 		}
2808 	}
2809 
2810 	/*
2811 	 * Check the divisibility between rx rings and rx groups.
2812 	 */
2813 	for (i = igb->num_rx_groups; i > 0; i--) {
2814 		if ((igb->num_rx_rings % i) == 0)
2815 			break;
2816 	}
2817 	if (i != igb->num_rx_groups) {
2818 		igb_error(igb,
2819 		    "Invalid rx groups number. Downgrade the rx group "
2820 		    "number to %d.", i);
2821 		igb->num_rx_groups = i;
2822 	}
2823 
2824 	/*
2825 	 * Get the ring number per group.
2826 	 */
2827 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2828 
2829 	if (igb->num_rx_groups == 1) {
2830 		/*
2831 		 * One rx ring group, the rx ring number is num_rx_rings.
2832 		 */
2833 		igb->vmdq_mode = E1000_VMDQ_OFF;
2834 	} else if (ring_per_group == 1) {
2835 		/*
2836 		 * Multiple rx groups, each group has one rx ring.
2837 		 */
2838 		igb->vmdq_mode = E1000_VMDQ_MAC;
2839 	} else {
2840 		/*
2841 		 * Multiple groups and multiple rings.
2842 		 */
2843 		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2844 	}
2845 
2846 	/*
2847 	 * Tunable used to force an interrupt type. The only use is
2848 	 * for testing of the lesser interrupt types.
2849 	 * 0 = don't force interrupt type
2850 	 * 1 = force interrupt type MSIX
2851 	 * 2 = force interrupt type MSI
2852 	 * 3 = force interrupt type Legacy
2853 	 */
2854 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2855 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2856 
2857 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2858 	    0, 1, 1);
2859 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2860 	    0, 1, 1);
2861 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2862 	    0, 1, 1);
2863 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2864 	    0, 1, 1);
2865 
2866 	/*
2867 	 * igb LSO needs the tx h/w checksum support.
2868 	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2869 	 */
2870 	if (igb->tx_hcksum_enable == B_FALSE)
2871 		igb->lso_enable = B_FALSE;
2872 
2873 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2874 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2875 	    DEFAULT_TX_COPY_THRESHOLD);
2876 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2877 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2878 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2879 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2880 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2881 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2882 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2883 	    MIN_TX_RESCHED_THRESHOLD,
2884 	    MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
2885 	    igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
2886 	    DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
2887 
2888 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2889 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2890 	    DEFAULT_RX_COPY_THRESHOLD);
2891 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2892 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2893 	    DEFAULT_RX_LIMIT_PER_INTR);
2894 
2895 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2896 	    igb->capab->min_intr_throttle,
2897 	    igb->capab->max_intr_throttle,
2898 	    igb->capab->def_intr_throttle);
2899 
2900 	/*
2901 	 * Max number of multicast addresses
2902 	 */
2903 	igb->mcast_max_num =
2904 	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2905 	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2906 }
2907 
2908 /*
2909  * igb_get_prop - Get a property value out of the configuration file igb.conf
2910  *
2911  * Caller provides the name of the property, a default value, a minimum
2912  * value, and a maximum value.
2913  *
2914  * Return configured value of the property, with default, minimum and
2915  * maximum properly applied.
2916  */
2917 static int
2918 igb_get_prop(igb_t *igb,
2919     char *propname,	/* name of the property */
2920     int minval,		/* minimum acceptable value */
2921     int maxval,		/* maximim acceptable value */
2922     int defval)		/* default value */
2923 {
2924 	int value;
2925 
2926 	/*
2927 	 * Call ddi_prop_get_int() to read the conf settings
2928 	 */
2929 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2930 	    DDI_PROP_DONTPASS, propname, defval);
2931 
2932 	if (value > maxval)
2933 		value = maxval;
2934 
2935 	if (value < minval)
2936 		value = minval;
2937 
2938 	return (value);
2939 }
2940 
2941 /*
2942  * igb_setup_link - Using the link properties to setup the link
2943  */
2944 int
2945 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2946 {
2947 	struct e1000_mac_info *mac;
2948 	struct e1000_phy_info *phy;
2949 	boolean_t invalid;
2950 
2951 	mac = &igb->hw.mac;
2952 	phy = &igb->hw.phy;
2953 	invalid = B_FALSE;
2954 
2955 	if (igb->param_adv_autoneg_cap == 1) {
2956 		mac->autoneg = B_TRUE;
2957 		phy->autoneg_advertised = 0;
2958 
2959 		/*
2960 		 * 1000hdx is not supported for autonegotiation
2961 		 */
2962 		if (igb->param_adv_1000fdx_cap == 1)
2963 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2964 
2965 		if (igb->param_adv_100fdx_cap == 1)
2966 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2967 
2968 		if (igb->param_adv_100hdx_cap == 1)
2969 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
2970 
2971 		if (igb->param_adv_10fdx_cap == 1)
2972 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
2973 
2974 		if (igb->param_adv_10hdx_cap == 1)
2975 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
2976 
2977 		if (phy->autoneg_advertised == 0)
2978 			invalid = B_TRUE;
2979 	} else {
2980 		mac->autoneg = B_FALSE;
2981 
2982 		/*
2983 		 * 1000fdx and 1000hdx are not supported for forced link
2984 		 */
2985 		if (igb->param_adv_100fdx_cap == 1)
2986 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
2987 		else if (igb->param_adv_100hdx_cap == 1)
2988 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
2989 		else if (igb->param_adv_10fdx_cap == 1)
2990 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
2991 		else if (igb->param_adv_10hdx_cap == 1)
2992 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
2993 		else
2994 			invalid = B_TRUE;
2995 	}
2996 
2997 	if (invalid) {
2998 		igb_notice(igb, "Invalid link settings. Setup link to "
2999 		    "autonegotiation with full link capabilities.");
3000 		mac->autoneg = B_TRUE;
3001 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3002 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3003 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3004 	}
3005 
3006 	if (setup_hw) {
3007 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3008 			return (IGB_FAILURE);
3009 	}
3010 
3011 	return (IGB_SUCCESS);
3012 }
3013 
3014 
3015 /*
3016  * igb_is_link_up - Check if the link is up
3017  */
3018 static boolean_t
3019 igb_is_link_up(igb_t *igb)
3020 {
3021 	struct e1000_hw *hw = &igb->hw;
3022 	boolean_t link_up = B_FALSE;
3023 
3024 	ASSERT(mutex_owned(&igb->gen_lock));
3025 
3026 	/*
3027 	 * get_link_status is set in the interrupt handler on link-status-change
3028 	 * or rx sequence error interrupt.  get_link_status will stay
3029 	 * false until the e1000_check_for_link establishes link only
3030 	 * for copper adapters.
3031 	 */
3032 	switch (hw->phy.media_type) {
3033 	case e1000_media_type_copper:
3034 		if (hw->mac.get_link_status) {
3035 			(void) e1000_check_for_link(hw);
3036 			link_up = !hw->mac.get_link_status;
3037 		} else {
3038 			link_up = B_TRUE;
3039 		}
3040 		break;
3041 	case e1000_media_type_fiber:
3042 		(void) e1000_check_for_link(hw);
3043 		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3044 		break;
3045 	case e1000_media_type_internal_serdes:
3046 		(void) e1000_check_for_link(hw);
3047 		link_up = hw->mac.serdes_has_link;
3048 		break;
3049 	}
3050 
3051 	return (link_up);
3052 }
3053 
3054 /*
3055  * igb_link_check - Link status processing
3056  */
3057 static boolean_t
3058 igb_link_check(igb_t *igb)
3059 {
3060 	struct e1000_hw *hw = &igb->hw;
3061 	uint16_t speed = 0, duplex = 0;
3062 	boolean_t link_changed = B_FALSE;
3063 
3064 	ASSERT(mutex_owned(&igb->gen_lock));
3065 
3066 	if (igb_is_link_up(igb)) {
3067 		/*
3068 		 * The Link is up, check whether it was marked as down earlier
3069 		 */
3070 		if (igb->link_state != LINK_STATE_UP) {
3071 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3072 			igb->link_speed = speed;
3073 			igb->link_duplex = duplex;
3074 			igb->link_state = LINK_STATE_UP;
3075 			link_changed = B_TRUE;
3076 			if (!igb->link_complete)
3077 				igb_stop_link_timer(igb);
3078 		}
3079 	} else if (igb->link_complete) {
3080 		if (igb->link_state != LINK_STATE_DOWN) {
3081 			igb->link_speed = 0;
3082 			igb->link_duplex = 0;
3083 			igb->link_state = LINK_STATE_DOWN;
3084 			link_changed = B_TRUE;
3085 		}
3086 	}
3087 
3088 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3089 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3090 		return (B_FALSE);
3091 	}
3092 
3093 	return (link_changed);
3094 }
3095 
3096 /*
3097  * igb_local_timer - driver watchdog function
3098  *
3099  * This function will handle the hardware stall check, link status
3100  * check and other routines.
3101  */
3102 static void
3103 igb_local_timer(void *arg)
3104 {
3105 	igb_t *igb = (igb_t *)arg;
3106 	boolean_t link_changed = B_FALSE;
3107 
3108 	if (igb->igb_state & IGB_ERROR) {
3109 		igb->reset_count++;
3110 		if (igb_reset(igb) == IGB_SUCCESS)
3111 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3112 
3113 		igb_restart_watchdog_timer(igb);
3114 		return;
3115 	}
3116 
3117 	if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3118 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3119 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3120 		igb->reset_count++;
3121 		if (igb_reset(igb) == IGB_SUCCESS)
3122 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3123 
3124 		igb_restart_watchdog_timer(igb);
3125 		return;
3126 	}
3127 
3128 	mutex_enter(&igb->gen_lock);
3129 	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3130 		link_changed = igb_link_check(igb);
3131 	mutex_exit(&igb->gen_lock);
3132 
3133 	if (link_changed)
3134 		mac_link_update(igb->mac_hdl, igb->link_state);
3135 
3136 	igb_restart_watchdog_timer(igb);
3137 }
3138 
3139 /*
3140  * igb_link_timer - link setup timer function
3141  *
3142  * It is called when the timer for link setup is expired, which indicates
3143  * the completion of the link setup. The link state will not be updated
3144  * until the link setup is completed. And the link state will not be sent
3145  * to the upper layer through mac_link_update() in this function. It will
3146  * be updated in the local timer routine or the interrupts service routine
3147  * after the interface is started (plumbed).
3148  */
3149 static void
3150 igb_link_timer(void *arg)
3151 {
3152 	igb_t *igb = (igb_t *)arg;
3153 
3154 	mutex_enter(&igb->link_lock);
3155 	igb->link_complete = B_TRUE;
3156 	igb->link_tid = 0;
3157 	mutex_exit(&igb->link_lock);
3158 }
3159 /*
3160  * igb_stall_check - check for transmit stall
3161  *
3162  * This function checks if the adapter is stalled (in transmit).
3163  *
3164  * It is called each time the watchdog timeout is invoked.
3165  * If the transmit descriptor reclaim continuously fails,
3166  * the watchdog value will increment by 1. If the watchdog
3167  * value exceeds the threshold, the igb is assumed to
3168  * have stalled and need to be reset.
3169  */
3170 static boolean_t
3171 igb_stall_check(igb_t *igb)
3172 {
3173 	igb_tx_ring_t *tx_ring;
3174 	struct e1000_hw *hw = &igb->hw;
3175 	boolean_t result;
3176 	int i;
3177 
3178 	if (igb->link_state != LINK_STATE_UP)
3179 		return (B_FALSE);
3180 
3181 	/*
3182 	 * If any tx ring is stalled, we'll reset the chipset
3183 	 */
3184 	result = B_FALSE;
3185 	for (i = 0; i < igb->num_tx_rings; i++) {
3186 		tx_ring = &igb->tx_rings[i];
3187 
3188 		if (tx_ring->recycle_fail > 0)
3189 			tx_ring->stall_watchdog++;
3190 		else
3191 			tx_ring->stall_watchdog = 0;
3192 
3193 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3194 			result = B_TRUE;
3195 			if (hw->mac.type == e1000_82580) {
3196 				hw->dev_spec._82575.global_device_reset
3197 				    = B_TRUE;
3198 			}
3199 			break;
3200 		}
3201 	}
3202 
3203 	if (result) {
3204 		tx_ring->stall_watchdog = 0;
3205 		tx_ring->recycle_fail = 0;
3206 	}
3207 
3208 	return (result);
3209 }
3210 
3211 
3212 /*
3213  * is_valid_mac_addr - Check if the mac address is valid
3214  */
3215 static boolean_t
3216 is_valid_mac_addr(uint8_t *mac_addr)
3217 {
3218 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3219 	const uint8_t addr_test2[6] =
3220 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3221 
3222 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3223 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3224 		return (B_FALSE);
3225 
3226 	return (B_TRUE);
3227 }
3228 
3229 static boolean_t
3230 igb_find_mac_address(igb_t *igb)
3231 {
3232 	struct e1000_hw *hw = &igb->hw;
3233 #ifdef __sparc
3234 	uchar_t *bytes;
3235 	struct ether_addr sysaddr;
3236 	uint_t nelts;
3237 	int err;
3238 	boolean_t found = B_FALSE;
3239 
3240 	/*
3241 	 * The "vendor's factory-set address" may already have
3242 	 * been extracted from the chip, but if the property
3243 	 * "local-mac-address" is set we use that instead.
3244 	 *
3245 	 * We check whether it looks like an array of 6
3246 	 * bytes (which it should, if OBP set it).  If we can't
3247 	 * make sense of it this way, we'll ignore it.
3248 	 */
3249 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3250 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3251 	if (err == DDI_PROP_SUCCESS) {
3252 		if (nelts == ETHERADDRL) {
3253 			while (nelts--)
3254 				hw->mac.addr[nelts] = bytes[nelts];
3255 			found = B_TRUE;
3256 		}
3257 		ddi_prop_free(bytes);
3258 	}
3259 
3260 	/*
3261 	 * Look up the OBP property "local-mac-address?". If the user has set
3262 	 * 'local-mac-address? = false', use "the system address" instead.
3263 	 */
3264 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3265 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3266 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3267 			if (localetheraddr(NULL, &sysaddr) != 0) {
3268 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3269 				found = B_TRUE;
3270 			}
3271 		}
3272 		ddi_prop_free(bytes);
3273 	}
3274 
3275 	/*
3276 	 * Finally(!), if there's a valid "mac-address" property (created
3277 	 * if we netbooted from this interface), we must use this instead
3278 	 * of any of the above to ensure that the NFS/install server doesn't
3279 	 * get confused by the address changing as Solaris takes over!
3280 	 */
3281 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3282 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3283 	if (err == DDI_PROP_SUCCESS) {
3284 		if (nelts == ETHERADDRL) {
3285 			while (nelts--)
3286 				hw->mac.addr[nelts] = bytes[nelts];
3287 			found = B_TRUE;
3288 		}
3289 		ddi_prop_free(bytes);
3290 	}
3291 
3292 	if (found) {
3293 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3294 		return (B_TRUE);
3295 	}
3296 #endif
3297 
3298 	/*
3299 	 * Read the device MAC address from the EEPROM
3300 	 */
3301 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3302 		return (B_FALSE);
3303 
3304 	return (B_TRUE);
3305 }
3306 
3307 #pragma inline(igb_arm_watchdog_timer)
3308 
3309 static void
3310 igb_arm_watchdog_timer(igb_t *igb)
3311 {
3312 	/*
3313 	 * Fire a watchdog timer
3314 	 */
3315 	igb->watchdog_tid =
3316 	    timeout(igb_local_timer,
3317 	    (void *)igb, 1 * drv_usectohz(1000000));
3318 
3319 }
3320 
3321 /*
3322  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3323  */
3324 void
3325 igb_enable_watchdog_timer(igb_t *igb)
3326 {
3327 	mutex_enter(&igb->watchdog_lock);
3328 
3329 	if (!igb->watchdog_enable) {
3330 		igb->watchdog_enable = B_TRUE;
3331 		igb->watchdog_start = B_TRUE;
3332 		igb_arm_watchdog_timer(igb);
3333 	}
3334 
3335 	mutex_exit(&igb->watchdog_lock);
3336 
3337 }
3338 
3339 /*
3340  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3341  */
3342 void
3343 igb_disable_watchdog_timer(igb_t *igb)
3344 {
3345 	timeout_id_t tid;
3346 
3347 	mutex_enter(&igb->watchdog_lock);
3348 
3349 	igb->watchdog_enable = B_FALSE;
3350 	igb->watchdog_start = B_FALSE;
3351 	tid = igb->watchdog_tid;
3352 	igb->watchdog_tid = 0;
3353 
3354 	mutex_exit(&igb->watchdog_lock);
3355 
3356 	if (tid != 0)
3357 		(void) untimeout(tid);
3358 
3359 }
3360 
3361 /*
3362  * igb_start_watchdog_timer - Start the driver watchdog timer
3363  */
3364 static void
3365 igb_start_watchdog_timer(igb_t *igb)
3366 {
3367 	mutex_enter(&igb->watchdog_lock);
3368 
3369 	if (igb->watchdog_enable) {
3370 		if (!igb->watchdog_start) {
3371 			igb->watchdog_start = B_TRUE;
3372 			igb_arm_watchdog_timer(igb);
3373 		}
3374 	}
3375 
3376 	mutex_exit(&igb->watchdog_lock);
3377 }
3378 
3379 /*
3380  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3381  */
3382 static void
3383 igb_restart_watchdog_timer(igb_t *igb)
3384 {
3385 	mutex_enter(&igb->watchdog_lock);
3386 
3387 	if (igb->watchdog_start)
3388 		igb_arm_watchdog_timer(igb);
3389 
3390 	mutex_exit(&igb->watchdog_lock);
3391 }
3392 
3393 /*
3394  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3395  */
3396 static void
3397 igb_stop_watchdog_timer(igb_t *igb)
3398 {
3399 	timeout_id_t tid;
3400 
3401 	mutex_enter(&igb->watchdog_lock);
3402 
3403 	igb->watchdog_start = B_FALSE;
3404 	tid = igb->watchdog_tid;
3405 	igb->watchdog_tid = 0;
3406 
3407 	mutex_exit(&igb->watchdog_lock);
3408 
3409 	if (tid != 0)
3410 		(void) untimeout(tid);
3411 }
3412 
3413 /*
3414  * igb_start_link_timer - Start the link setup timer
3415  */
3416 static void
3417 igb_start_link_timer(struct igb *igb)
3418 {
3419 	struct e1000_hw *hw = &igb->hw;
3420 	clock_t link_timeout;
3421 
3422 	if (hw->mac.autoneg)
3423 		link_timeout = PHY_AUTO_NEG_LIMIT *
3424 		    drv_usectohz(100000);
3425 	else
3426 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3427 
3428 	mutex_enter(&igb->link_lock);
3429 	if (hw->phy.autoneg_wait_to_complete) {
3430 		igb->link_complete = B_TRUE;
3431 	} else {
3432 		igb->link_complete = B_FALSE;
3433 		igb->link_tid = timeout(igb_link_timer, (void *)igb,
3434 		    link_timeout);
3435 	}
3436 	mutex_exit(&igb->link_lock);
3437 }
3438 
3439 /*
3440  * igb_stop_link_timer - Stop the link setup timer
3441  */
3442 static void
3443 igb_stop_link_timer(struct igb *igb)
3444 {
3445 	timeout_id_t tid;
3446 
3447 	mutex_enter(&igb->link_lock);
3448 	igb->link_complete = B_TRUE;
3449 	tid = igb->link_tid;
3450 	igb->link_tid = 0;
3451 	mutex_exit(&igb->link_lock);
3452 
3453 	if (tid != 0)
3454 		(void) untimeout(tid);
3455 }
3456 
3457 /*
3458  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3459  */
3460 static void
3461 igb_disable_adapter_interrupts(igb_t *igb)
3462 {
3463 	struct e1000_hw *hw = &igb->hw;
3464 
3465 	/*
3466 	 * Set the IMC register to mask all the interrupts,
3467 	 * including the tx interrupts.
3468 	 */
3469 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3470 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3471 
3472 	/*
3473 	 * Additional disabling for MSI-X
3474 	 */
3475 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3476 		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3477 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3478 		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3479 	}
3480 
3481 	E1000_WRITE_FLUSH(hw);
3482 }
3483 
3484 /*
3485  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3486  */
3487 static void
3488 igb_enable_adapter_interrupts_82580(igb_t *igb)
3489 {
3490 	struct e1000_hw *hw = &igb->hw;
3491 
3492 	/* Clear any pending interrupts */
3493 	(void) E1000_READ_REG(hw, E1000_ICR);
3494 	igb->ims_mask |= E1000_IMS_DRSTA;
3495 
3496 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3497 
3498 		/* Interrupt enabling for MSI-X */
3499 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3500 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3501 		igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3502 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3503 	} else { /* Interrupt enabling for MSI and legacy */
3504 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3505 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3506 		igb->ims_mask |= E1000_IMS_DRSTA;
3507 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3508 	}
3509 
3510 	/* Disable auto-mask for ICR interrupt bits */
3511 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3512 
3513 	E1000_WRITE_FLUSH(hw);
3514 }
3515 
3516 /*
3517  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3518  */
3519 static void
3520 igb_enable_adapter_interrupts_82576(igb_t *igb)
3521 {
3522 	struct e1000_hw *hw = &igb->hw;
3523 
3524 	/* Clear any pending interrupts */
3525 	(void) E1000_READ_REG(hw, E1000_ICR);
3526 
3527 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3528 
3529 		/* Interrupt enabling for MSI-X */
3530 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3531 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3532 		igb->ims_mask = E1000_IMS_LSC;
3533 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3534 	} else {
3535 		/* Interrupt enabling for MSI and legacy */
3536 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3537 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3538 		E1000_WRITE_REG(hw, E1000_IMS,
3539 		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3540 	}
3541 
3542 	/* Disable auto-mask for ICR interrupt bits */
3543 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3544 
3545 	E1000_WRITE_FLUSH(hw);
3546 }
3547 
3548 /*
3549  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3550  */
3551 static void
3552 igb_enable_adapter_interrupts_82575(igb_t *igb)
3553 {
3554 	struct e1000_hw *hw = &igb->hw;
3555 	uint32_t reg;
3556 
3557 	/* Clear any pending interrupts */
3558 	(void) E1000_READ_REG(hw, E1000_ICR);
3559 
3560 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3561 		/* Interrupt enabling for MSI-X */
3562 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3563 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3564 		igb->ims_mask = E1000_IMS_LSC;
3565 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3566 
3567 		/* Enable MSI-X PBA support */
3568 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3569 		reg |= E1000_CTRL_EXT_PBA_CLR;
3570 
3571 		/* Non-selective interrupt clear-on-read */
3572 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3573 
3574 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3575 	} else {
3576 		/* Interrupt enabling for MSI and legacy */
3577 		igb->ims_mask = IMS_ENABLE_MASK;
3578 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3579 	}
3580 
3581 	E1000_WRITE_FLUSH(hw);
3582 }
3583 
3584 /*
3585  * Loopback Support
3586  */
3587 static lb_property_t lb_normal =
3588 	{ normal,	"normal",	IGB_LB_NONE		};
3589 static lb_property_t lb_external =
3590 	{ external,	"External",	IGB_LB_EXTERNAL		};
3591 static lb_property_t lb_phy =
3592 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3593 static lb_property_t lb_serdes =
3594 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3595 
3596 enum ioc_reply
3597 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3598 {
3599 	lb_info_sz_t *lbsp;
3600 	lb_property_t *lbpp;
3601 	struct e1000_hw *hw;
3602 	uint32_t *lbmp;
3603 	uint32_t size;
3604 	uint32_t value;
3605 
3606 	hw = &igb->hw;
3607 
3608 	if (mp->b_cont == NULL)
3609 		return (IOC_INVAL);
3610 
3611 	switch (iocp->ioc_cmd) {
3612 	default:
3613 		return (IOC_INVAL);
3614 
3615 	case LB_GET_INFO_SIZE:
3616 		size = sizeof (lb_info_sz_t);
3617 		if (iocp->ioc_count != size)
3618 			return (IOC_INVAL);
3619 
3620 		value = sizeof (lb_normal);
3621 		if (hw->phy.media_type == e1000_media_type_copper)
3622 			value += sizeof (lb_phy);
3623 		else
3624 			value += sizeof (lb_serdes);
3625 		value += sizeof (lb_external);
3626 
3627 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3628 		*lbsp = value;
3629 		break;
3630 
3631 	case LB_GET_INFO:
3632 		value = sizeof (lb_normal);
3633 		if (hw->phy.media_type == e1000_media_type_copper)
3634 			value += sizeof (lb_phy);
3635 		else
3636 			value += sizeof (lb_serdes);
3637 		value += sizeof (lb_external);
3638 
3639 		size = value;
3640 		if (iocp->ioc_count != size)
3641 			return (IOC_INVAL);
3642 
3643 		value = 0;
3644 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3645 
3646 		lbpp[value++] = lb_normal;
3647 		if (hw->phy.media_type == e1000_media_type_copper)
3648 			lbpp[value++] = lb_phy;
3649 		else
3650 			lbpp[value++] = lb_serdes;
3651 		lbpp[value++] = lb_external;
3652 		break;
3653 
3654 	case LB_GET_MODE:
3655 		size = sizeof (uint32_t);
3656 		if (iocp->ioc_count != size)
3657 			return (IOC_INVAL);
3658 
3659 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3660 		*lbmp = igb->loopback_mode;
3661 		break;
3662 
3663 	case LB_SET_MODE:
3664 		size = 0;
3665 		if (iocp->ioc_count != sizeof (uint32_t))
3666 			return (IOC_INVAL);
3667 
3668 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3669 		if (!igb_set_loopback_mode(igb, *lbmp))
3670 			return (IOC_INVAL);
3671 		break;
3672 	}
3673 
3674 	iocp->ioc_count = size;
3675 	iocp->ioc_error = 0;
3676 
3677 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3678 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3679 		return (IOC_INVAL);
3680 	}
3681 
3682 	return (IOC_REPLY);
3683 }
3684 
3685 /*
3686  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3687  */
3688 static boolean_t
3689 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3690 {
3691 	struct e1000_hw *hw;
3692 	int i;
3693 
3694 	if (mode == igb->loopback_mode)
3695 		return (B_TRUE);
3696 
3697 	hw = &igb->hw;
3698 
3699 	igb->loopback_mode = mode;
3700 
3701 	if (mode == IGB_LB_NONE) {
3702 		/* Reset the chip */
3703 		hw->phy.autoneg_wait_to_complete = B_TRUE;
3704 		(void) igb_reset(igb);
3705 		hw->phy.autoneg_wait_to_complete = B_FALSE;
3706 		return (B_TRUE);
3707 	}
3708 
3709 	mutex_enter(&igb->gen_lock);
3710 
3711 	switch (mode) {
3712 	default:
3713 		mutex_exit(&igb->gen_lock);
3714 		return (B_FALSE);
3715 
3716 	case IGB_LB_EXTERNAL:
3717 		igb_set_external_loopback(igb);
3718 		break;
3719 
3720 	case IGB_LB_INTERNAL_PHY:
3721 		igb_set_internal_phy_loopback(igb);
3722 		break;
3723 
3724 	case IGB_LB_INTERNAL_SERDES:
3725 		igb_set_internal_serdes_loopback(igb);
3726 		break;
3727 	}
3728 
3729 	mutex_exit(&igb->gen_lock);
3730 
3731 	/*
3732 	 * When external loopback is set, wait up to 1000ms to get the link up.
3733 	 * According to test, 1000ms can work and it's an experimental value.
3734 	 */
3735 	if (mode == IGB_LB_EXTERNAL) {
3736 		for (i = 0; i <= 10; i++) {
3737 			mutex_enter(&igb->gen_lock);
3738 			(void) igb_link_check(igb);
3739 			mutex_exit(&igb->gen_lock);
3740 
3741 			if (igb->link_state == LINK_STATE_UP)
3742 				break;
3743 
3744 			msec_delay(100);
3745 		}
3746 
3747 		if (igb->link_state != LINK_STATE_UP) {
3748 			/*
3749 			 * Does not support external loopback.
3750 			 * Reset driver to loopback none.
3751 			 */
3752 			igb->loopback_mode = IGB_LB_NONE;
3753 
3754 			/* Reset the chip */
3755 			hw->phy.autoneg_wait_to_complete = B_TRUE;
3756 			(void) igb_reset(igb);
3757 			hw->phy.autoneg_wait_to_complete = B_FALSE;
3758 
3759 			IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3760 			    "reset to loopback none.");
3761 
3762 			return (B_FALSE);
3763 		}
3764 	}
3765 
3766 	return (B_TRUE);
3767 }
3768 
3769 /*
3770  * igb_set_external_loopback - Set the external loopback mode
3771  */
3772 static void
3773 igb_set_external_loopback(igb_t *igb)
3774 {
3775 	struct e1000_hw *hw;
3776 	uint32_t ctrl_ext;
3777 
3778 	hw = &igb->hw;
3779 
3780 	/* Set link mode to PHY (00b) in the Extended Control register */
3781 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3782 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3783 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3784 
3785 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3786 	(void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3787 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3788 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3789 }
3790 
3791 /*
3792  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3793  */
3794 static void
3795 igb_set_internal_phy_loopback(igb_t *igb)
3796 {
3797 	struct e1000_hw *hw;
3798 	uint32_t ctrl_ext;
3799 	uint16_t phy_ctrl;
3800 	uint16_t phy_pconf;
3801 
3802 	hw = &igb->hw;
3803 
3804 	/* Set link mode to PHY (00b) in the Extended Control register */
3805 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3806 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3807 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3808 
3809 	/*
3810 	 * Set PHY control register (0x4140):
3811 	 *    Set full duplex mode
3812 	 *    Set loopback bit
3813 	 *    Clear auto-neg enable bit
3814 	 *    Set PHY speed
3815 	 */
3816 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3817 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3818 
3819 	/* Set the link disable bit in the Port Configuration register */
3820 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3821 	phy_pconf |= (uint16_t)1 << 14;
3822 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3823 }
3824 
3825 /*
3826  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3827  */
3828 static void
3829 igb_set_internal_serdes_loopback(igb_t *igb)
3830 {
3831 	struct e1000_hw *hw;
3832 	uint32_t ctrl_ext;
3833 	uint32_t ctrl;
3834 	uint32_t pcs_lctl;
3835 	uint32_t connsw;
3836 
3837 	hw = &igb->hw;
3838 
3839 	/* Set link mode to SerDes (11b) in the Extended Control register */
3840 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3841 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3842 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3843 
3844 	/* Configure the SerDes to loopback */
3845 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3846 
3847 	/* Set Device Control register */
3848 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3849 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3850 	    E1000_CTRL_SLU);		/* Force link up */
3851 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3852 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3853 	    E1000_CTRL_LRST);		/* Clear link reset */
3854 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3855 
3856 	/* Set PCS Link Control register */
3857 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3858 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3859 	    E1000_PCS_LCTL_FSD |
3860 	    E1000_PCS_LCTL_FDV_FULL |
3861 	    E1000_PCS_LCTL_FLV_LINK_UP);
3862 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3863 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3864 
3865 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3866 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3867 	connsw &= ~E1000_CONNSW_ENRGSRC;
3868 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3869 }
3870 
3871 #pragma inline(igb_intr_rx_work)
3872 /*
3873  * igb_intr_rx_work - rx processing of ISR
3874  */
3875 static void
3876 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3877 {
3878 	mblk_t *mp;
3879 
3880 	mutex_enter(&rx_ring->rx_lock);
3881 	mp = igb_rx(rx_ring, IGB_NO_POLL);
3882 	mutex_exit(&rx_ring->rx_lock);
3883 
3884 	if (mp != NULL)
3885 		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3886 		    rx_ring->ring_gen_num);
3887 }
3888 
3889 #pragma inline(igb_intr_tx_work)
3890 /*
3891  * igb_intr_tx_work - tx processing of ISR
3892  */
3893 static void
3894 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3895 {
3896 	igb_t *igb = tx_ring->igb;
3897 
3898 	/* Recycle the tx descriptors */
3899 	tx_ring->tx_recycle(tx_ring);
3900 
3901 	/* Schedule the re-transmit */
3902 	if (tx_ring->reschedule &&
3903 	    (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
3904 		tx_ring->reschedule = B_FALSE;
3905 		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3906 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3907 	}
3908 }
3909 
3910 #pragma inline(igb_intr_link_work)
3911 /*
3912  * igb_intr_link_work - link-status-change processing of ISR
3913  */
3914 static void
3915 igb_intr_link_work(igb_t *igb)
3916 {
3917 	boolean_t link_changed;
3918 
3919 	igb_stop_watchdog_timer(igb);
3920 
3921 	mutex_enter(&igb->gen_lock);
3922 
3923 	/*
3924 	 * Because we got a link-status-change interrupt, force
3925 	 * e1000_check_for_link() to look at phy
3926 	 */
3927 	igb->hw.mac.get_link_status = B_TRUE;
3928 
3929 	/* igb_link_check takes care of link status change */
3930 	link_changed = igb_link_check(igb);
3931 
3932 	/* Get new phy state */
3933 	igb_get_phy_state(igb);
3934 
3935 	mutex_exit(&igb->gen_lock);
3936 
3937 	if (link_changed)
3938 		mac_link_update(igb->mac_hdl, igb->link_state);
3939 
3940 	igb_start_watchdog_timer(igb);
3941 }
3942 
3943 /*
3944  * igb_intr_legacy - Interrupt handler for legacy interrupts
3945  */
3946 static uint_t
3947 igb_intr_legacy(void *arg1, void *arg2)
3948 {
3949 	igb_t *igb = (igb_t *)arg1;
3950 	igb_tx_ring_t *tx_ring;
3951 	uint32_t icr;
3952 	mblk_t *mp;
3953 	boolean_t tx_reschedule;
3954 	boolean_t link_changed;
3955 	uint_t result;
3956 
3957 	_NOTE(ARGUNUSED(arg2));
3958 
3959 	mutex_enter(&igb->gen_lock);
3960 
3961 	if (igb->igb_state & IGB_SUSPENDED) {
3962 		mutex_exit(&igb->gen_lock);
3963 		return (DDI_INTR_UNCLAIMED);
3964 	}
3965 
3966 	mp = NULL;
3967 	tx_reschedule = B_FALSE;
3968 	link_changed = B_FALSE;
3969 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3970 
3971 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3972 		mutex_exit(&igb->gen_lock);
3973 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3974 		atomic_or_32(&igb->igb_state, IGB_ERROR);
3975 		return (DDI_INTR_UNCLAIMED);
3976 	}
3977 
3978 	if (icr & E1000_ICR_INT_ASSERTED) {
3979 		/*
3980 		 * E1000_ICR_INT_ASSERTED bit was set:
3981 		 * Read(Clear) the ICR, claim this interrupt,
3982 		 * look for work to do.
3983 		 */
3984 		ASSERT(igb->num_rx_rings == 1);
3985 		ASSERT(igb->num_tx_rings == 1);
3986 
3987 		/* Make sure all interrupt causes cleared */
3988 		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3989 
3990 		if (icr & E1000_ICR_RXT0) {
3991 			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3992 		}
3993 
3994 		if (icr & E1000_ICR_TXDW) {
3995 			tx_ring = &igb->tx_rings[0];
3996 
3997 			/* Recycle the tx descriptors */
3998 			tx_ring->tx_recycle(tx_ring);
3999 
4000 			/* Schedule the re-transmit */
4001 			tx_reschedule = (tx_ring->reschedule &&
4002 			    (tx_ring->tbd_free >= igb->tx_resched_thresh));
4003 		}
4004 
4005 		if (icr & E1000_ICR_LSC) {
4006 			/*
4007 			 * Because we got a link-status-change interrupt, force
4008 			 * e1000_check_for_link() to look at phy
4009 			 */
4010 			igb->hw.mac.get_link_status = B_TRUE;
4011 
4012 			/* igb_link_check takes care of link status change */
4013 			link_changed = igb_link_check(igb);
4014 
4015 			/* Get new phy state */
4016 			igb_get_phy_state(igb);
4017 		}
4018 
4019 		if (icr & E1000_ICR_DRSTA) {
4020 			/* 82580 Full Device Reset needed */
4021 			atomic_or_32(&igb->igb_state, IGB_STALL);
4022 		}
4023 
4024 		result = DDI_INTR_CLAIMED;
4025 	} else {
4026 		/*
4027 		 * E1000_ICR_INT_ASSERTED bit was not set:
4028 		 * Don't claim this interrupt.
4029 		 */
4030 		result = DDI_INTR_UNCLAIMED;
4031 	}
4032 
4033 	mutex_exit(&igb->gen_lock);
4034 
4035 	/*
4036 	 * Do the following work outside of the gen_lock
4037 	 */
4038 	if (mp != NULL)
4039 		mac_rx(igb->mac_hdl, NULL, mp);
4040 
4041 	if (tx_reschedule)  {
4042 		tx_ring->reschedule = B_FALSE;
4043 		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4044 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4045 	}
4046 
4047 	if (link_changed)
4048 		mac_link_update(igb->mac_hdl, igb->link_state);
4049 
4050 	return (result);
4051 }
4052 
4053 /*
4054  * igb_intr_msi - Interrupt handler for MSI
4055  */
4056 static uint_t
4057 igb_intr_msi(void *arg1, void *arg2)
4058 {
4059 	igb_t *igb = (igb_t *)arg1;
4060 	uint32_t icr;
4061 
4062 	_NOTE(ARGUNUSED(arg2));
4063 
4064 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4065 
4066 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4067 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4068 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4069 		return (DDI_INTR_CLAIMED);
4070 	}
4071 
4072 	/* Make sure all interrupt causes cleared */
4073 	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4074 
4075 	/*
4076 	 * For MSI interrupt, we have only one vector,
4077 	 * so we have only one rx ring and one tx ring enabled.
4078 	 */
4079 	ASSERT(igb->num_rx_rings == 1);
4080 	ASSERT(igb->num_tx_rings == 1);
4081 
4082 	if (icr & E1000_ICR_RXT0) {
4083 		igb_intr_rx_work(&igb->rx_rings[0]);
4084 	}
4085 
4086 	if (icr & E1000_ICR_TXDW) {
4087 		igb_intr_tx_work(&igb->tx_rings[0]);
4088 	}
4089 
4090 	if (icr & E1000_ICR_LSC) {
4091 		igb_intr_link_work(igb);
4092 	}
4093 
4094 	if (icr & E1000_ICR_DRSTA) {
4095 		/* 82580 Full Device Reset needed */
4096 		atomic_or_32(&igb->igb_state, IGB_STALL);
4097 	}
4098 
4099 	return (DDI_INTR_CLAIMED);
4100 }
4101 
4102 /*
4103  * igb_intr_rx - Interrupt handler for rx
4104  */
4105 static uint_t
4106 igb_intr_rx(void *arg1, void *arg2)
4107 {
4108 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4109 
4110 	_NOTE(ARGUNUSED(arg2));
4111 
4112 	/*
4113 	 * Only used via MSI-X vector so don't check cause bits
4114 	 * and only clean the given ring.
4115 	 */
4116 	igb_intr_rx_work(rx_ring);
4117 
4118 	return (DDI_INTR_CLAIMED);
4119 }
4120 
4121 /*
4122  * igb_intr_tx - Interrupt handler for tx
4123  */
4124 static uint_t
4125 igb_intr_tx(void *arg1, void *arg2)
4126 {
4127 	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4128 
4129 	_NOTE(ARGUNUSED(arg2));
4130 
4131 	/*
4132 	 * Only used via MSI-X vector so don't check cause bits
4133 	 * and only clean the given ring.
4134 	 */
4135 	igb_intr_tx_work(tx_ring);
4136 
4137 	return (DDI_INTR_CLAIMED);
4138 }
4139 
4140 /*
4141  * igb_intr_tx_other - Interrupt handler for both tx and other
4142  *
4143  */
4144 static uint_t
4145 igb_intr_tx_other(void *arg1, void *arg2)
4146 {
4147 	igb_t *igb = (igb_t *)arg1;
4148 	uint32_t icr;
4149 
4150 	_NOTE(ARGUNUSED(arg2));
4151 
4152 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4153 
4154 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4155 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4156 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4157 		return (DDI_INTR_CLAIMED);
4158 	}
4159 
4160 	/*
4161 	 * Look for tx reclaiming work first. Remember, in the
4162 	 * case of only interrupt sharing, only one tx ring is
4163 	 * used
4164 	 */
4165 	igb_intr_tx_work(&igb->tx_rings[0]);
4166 
4167 	/*
4168 	 * Check for "other" causes.
4169 	 */
4170 	if (icr & E1000_ICR_LSC) {
4171 		igb_intr_link_work(igb);
4172 	}
4173 
4174 	/*
4175 	 * The DOUTSYNC bit indicates a tx packet dropped because
4176 	 * DMA engine gets "out of sync". There isn't a real fix
4177 	 * for this. The Intel recommendation is to count the number
4178 	 * of occurrences so user can detect when it is happening.
4179 	 * The issue is non-fatal and there's no recovery action
4180 	 * available.
4181 	 */
4182 	if (icr & E1000_ICR_DOUTSYNC) {
4183 		IGB_STAT(igb->dout_sync);
4184 	}
4185 
4186 	if (icr & E1000_ICR_DRSTA) {
4187 		/* 82580 Full Device Reset needed */
4188 		atomic_or_32(&igb->igb_state, IGB_STALL);
4189 	}
4190 
4191 	return (DDI_INTR_CLAIMED);
4192 }
4193 
4194 /*
4195  * igb_alloc_intrs - Allocate interrupts for the driver
4196  *
4197  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4198  * if not successful, try Legacy.
4199  * igb->intr_force can be used to force sequence to start with
4200  * any of the 3 types.
4201  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4202  */
4203 static int
4204 igb_alloc_intrs(igb_t *igb)
4205 {
4206 	dev_info_t *devinfo;
4207 	int intr_types;
4208 	int rc;
4209 
4210 	devinfo = igb->dip;
4211 
4212 	/* Get supported interrupt types */
4213 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4214 
4215 	if (rc != DDI_SUCCESS) {
4216 		igb_log(igb,
4217 		    "Get supported interrupt types failed: %d", rc);
4218 		return (IGB_FAILURE);
4219 	}
4220 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4221 
4222 	igb->intr_type = 0;
4223 
4224 	/* Install MSI-X interrupts */
4225 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4226 	    (igb->intr_force <= IGB_INTR_MSIX)) {
4227 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4228 
4229 		if (rc == IGB_SUCCESS)
4230 			return (IGB_SUCCESS);
4231 
4232 		igb_log(igb,
4233 		    "Allocate MSI-X failed, trying MSI interrupts...");
4234 	}
4235 
4236 	/* MSI-X not used, force rings to 1 */
4237 	igb->num_rx_rings = 1;
4238 	igb->num_tx_rings = 1;
4239 	igb_log(igb,
4240 	    "MSI-X not used, force rx and tx queue number to 1");
4241 
4242 	/* Install MSI interrupts */
4243 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4244 	    (igb->intr_force <= IGB_INTR_MSI)) {
4245 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4246 
4247 		if (rc == IGB_SUCCESS)
4248 			return (IGB_SUCCESS);
4249 
4250 		igb_log(igb,
4251 		    "Allocate MSI failed, trying Legacy interrupts...");
4252 	}
4253 
4254 	/* Install legacy interrupts */
4255 	if (intr_types & DDI_INTR_TYPE_FIXED) {
4256 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4257 
4258 		if (rc == IGB_SUCCESS)
4259 			return (IGB_SUCCESS);
4260 
4261 		igb_log(igb,
4262 		    "Allocate Legacy interrupts failed");
4263 	}
4264 
4265 	/* If none of the 3 types succeeded, return failure */
4266 	return (IGB_FAILURE);
4267 }
4268 
4269 /*
4270  * igb_alloc_intr_handles - Allocate interrupt handles.
4271  *
4272  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4273  * if fewer than 2 handles are available, return failure.
4274  * Upon success, this sets the number of Rx rings to a number that
4275  * matches the handles available for Rx interrupts.
4276  */
4277 static int
4278 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4279 {
4280 	dev_info_t *devinfo;
4281 	int orig, request, count, avail, actual;
4282 	int diff, minimum;
4283 	int rc;
4284 
4285 	devinfo = igb->dip;
4286 
4287 	switch (intr_type) {
4288 	case DDI_INTR_TYPE_FIXED:
4289 		request = 1;	/* Request 1 legacy interrupt handle */
4290 		minimum = 1;
4291 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4292 		break;
4293 
4294 	case DDI_INTR_TYPE_MSI:
4295 		request = 1;	/* Request 1 MSI interrupt handle */
4296 		minimum = 1;
4297 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4298 		break;
4299 
4300 	case DDI_INTR_TYPE_MSIX:
4301 		/*
4302 		 * Number of vectors for the adapter is
4303 		 * # rx rings + # tx rings
4304 		 * One of tx vectors is for tx & other
4305 		 */
4306 		request = igb->num_rx_rings + igb->num_tx_rings;
4307 		orig = request;
4308 		minimum = 2;
4309 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4310 		break;
4311 
4312 	default:
4313 		igb_log(igb,
4314 		    "invalid call to igb_alloc_intr_handles(): %d\n",
4315 		    intr_type);
4316 		return (IGB_FAILURE);
4317 	}
4318 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4319 	    request, minimum);
4320 
4321 	/*
4322 	 * Get number of supported interrupts
4323 	 */
4324 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4325 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4326 		igb_log(igb,
4327 		    "Get supported interrupt number failed. "
4328 		    "Return: %d, count: %d", rc, count);
4329 		return (IGB_FAILURE);
4330 	}
4331 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4332 
4333 	/*
4334 	 * Get number of available interrupts
4335 	 */
4336 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4337 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4338 		igb_log(igb,
4339 		    "Get available interrupt number failed. "
4340 		    "Return: %d, available: %d", rc, avail);
4341 		return (IGB_FAILURE);
4342 	}
4343 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4344 
4345 	if (avail < request) {
4346 		igb_log(igb, "Request %d handles, %d available",
4347 		    request, avail);
4348 		request = avail;
4349 	}
4350 
4351 	actual = 0;
4352 	igb->intr_cnt = 0;
4353 
4354 	/*
4355 	 * Allocate an array of interrupt handles
4356 	 */
4357 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4358 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4359 
4360 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4361 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4362 	if (rc != DDI_SUCCESS) {
4363 		igb_log(igb, "Allocate interrupts failed. "
4364 		    "return: %d, request: %d, actual: %d",
4365 		    rc, request, actual);
4366 		goto alloc_handle_fail;
4367 	}
4368 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4369 
4370 	igb->intr_cnt = actual;
4371 
4372 	if (actual < minimum) {
4373 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4374 		    actual);
4375 		goto alloc_handle_fail;
4376 	}
4377 
4378 	/*
4379 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4380 	 */
4381 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4382 		diff = orig - actual;
4383 		if (diff < igb->num_tx_rings) {
4384 			igb_log(igb,
4385 			    "MSI-X vectors force Tx queue number to %d",
4386 			    igb->num_tx_rings - diff);
4387 			igb->num_tx_rings -= diff;
4388 		} else {
4389 			igb_log(igb,
4390 			    "MSI-X vectors force Tx queue number to 1");
4391 			igb->num_tx_rings = 1;
4392 
4393 			igb_log(igb,
4394 			    "MSI-X vectors force Rx queue number to %d",
4395 			    actual - 1);
4396 			igb->num_rx_rings = actual - 1;
4397 		}
4398 	}
4399 
4400 	/*
4401 	 * Get priority for first vector, assume remaining are all the same
4402 	 */
4403 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4404 	if (rc != DDI_SUCCESS) {
4405 		igb_log(igb,
4406 		    "Get interrupt priority failed: %d", rc);
4407 		goto alloc_handle_fail;
4408 	}
4409 
4410 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4411 	if (rc != DDI_SUCCESS) {
4412 		igb_log(igb,
4413 		    "Get interrupt cap failed: %d", rc);
4414 		goto alloc_handle_fail;
4415 	}
4416 
4417 	igb->intr_type = intr_type;
4418 
4419 	return (IGB_SUCCESS);
4420 
4421 alloc_handle_fail:
4422 	igb_rem_intrs(igb);
4423 
4424 	return (IGB_FAILURE);
4425 }
4426 
4427 /*
4428  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4429  *
4430  * Before adding the interrupt handlers, the interrupt vectors have
4431  * been allocated, and the rx/tx rings have also been allocated.
4432  */
4433 static int
4434 igb_add_intr_handlers(igb_t *igb)
4435 {
4436 	igb_rx_ring_t *rx_ring;
4437 	igb_tx_ring_t *tx_ring;
4438 	int vector;
4439 	int rc;
4440 	int i;
4441 
4442 	vector = 0;
4443 
4444 	switch (igb->intr_type) {
4445 	case DDI_INTR_TYPE_MSIX:
4446 		/* Add interrupt handler for tx + other */
4447 		tx_ring = &igb->tx_rings[0];
4448 		rc = ddi_intr_add_handler(igb->htable[vector],
4449 		    (ddi_intr_handler_t *)igb_intr_tx_other,
4450 		    (void *)igb, NULL);
4451 
4452 		if (rc != DDI_SUCCESS) {
4453 			igb_log(igb,
4454 			    "Add tx/other interrupt handler failed: %d", rc);
4455 			return (IGB_FAILURE);
4456 		}
4457 		tx_ring->intr_vector = vector;
4458 		vector++;
4459 
4460 		/* Add interrupt handler for each rx ring */
4461 		for (i = 0; i < igb->num_rx_rings; i++) {
4462 			rx_ring = &igb->rx_rings[i];
4463 
4464 			rc = ddi_intr_add_handler(igb->htable[vector],
4465 			    (ddi_intr_handler_t *)igb_intr_rx,
4466 			    (void *)rx_ring, NULL);
4467 
4468 			if (rc != DDI_SUCCESS) {
4469 				igb_log(igb,
4470 				    "Add rx interrupt handler failed. "
4471 				    "return: %d, rx ring: %d", rc, i);
4472 				for (vector--; vector >= 0; vector--) {
4473 					(void) ddi_intr_remove_handler(
4474 					    igb->htable[vector]);
4475 				}
4476 				return (IGB_FAILURE);
4477 			}
4478 
4479 			rx_ring->intr_vector = vector;
4480 
4481 			vector++;
4482 		}
4483 
4484 		/* Add interrupt handler for each tx ring from 2nd ring */
4485 		for (i = 1; i < igb->num_tx_rings; i++) {
4486 			tx_ring = &igb->tx_rings[i];
4487 
4488 			rc = ddi_intr_add_handler(igb->htable[vector],
4489 			    (ddi_intr_handler_t *)igb_intr_tx,
4490 			    (void *)tx_ring, NULL);
4491 
4492 			if (rc != DDI_SUCCESS) {
4493 				igb_log(igb,
4494 				    "Add tx interrupt handler failed. "
4495 				    "return: %d, tx ring: %d", rc, i);
4496 				for (vector--; vector >= 0; vector--) {
4497 					(void) ddi_intr_remove_handler(
4498 					    igb->htable[vector]);
4499 				}
4500 				return (IGB_FAILURE);
4501 			}
4502 
4503 			tx_ring->intr_vector = vector;
4504 
4505 			vector++;
4506 		}
4507 
4508 		break;
4509 
4510 	case DDI_INTR_TYPE_MSI:
4511 		/* Add interrupt handlers for the only vector */
4512 		rc = ddi_intr_add_handler(igb->htable[vector],
4513 		    (ddi_intr_handler_t *)igb_intr_msi,
4514 		    (void *)igb, NULL);
4515 
4516 		if (rc != DDI_SUCCESS) {
4517 			igb_log(igb,
4518 			    "Add MSI interrupt handler failed: %d", rc);
4519 			return (IGB_FAILURE);
4520 		}
4521 
4522 		rx_ring = &igb->rx_rings[0];
4523 		rx_ring->intr_vector = vector;
4524 
4525 		vector++;
4526 		break;
4527 
4528 	case DDI_INTR_TYPE_FIXED:
4529 		/* Add interrupt handlers for the only vector */
4530 		rc = ddi_intr_add_handler(igb->htable[vector],
4531 		    (ddi_intr_handler_t *)igb_intr_legacy,
4532 		    (void *)igb, NULL);
4533 
4534 		if (rc != DDI_SUCCESS) {
4535 			igb_log(igb,
4536 			    "Add legacy interrupt handler failed: %d", rc);
4537 			return (IGB_FAILURE);
4538 		}
4539 
4540 		rx_ring = &igb->rx_rings[0];
4541 		rx_ring->intr_vector = vector;
4542 
4543 		vector++;
4544 		break;
4545 
4546 	default:
4547 		return (IGB_FAILURE);
4548 	}
4549 
4550 	ASSERT(vector == igb->intr_cnt);
4551 
4552 	return (IGB_SUCCESS);
4553 }
4554 
4555 /*
4556  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4557  *
4558  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4559  */
4560 static void
4561 igb_setup_msix_82575(igb_t *igb)
4562 {
4563 	uint32_t eims = 0;
4564 	int i, vector;
4565 	struct e1000_hw *hw = &igb->hw;
4566 
4567 	/*
4568 	 * Set vector for tx ring 0 and other causes.
4569 	 * NOTE assumption that it is vector 0.
4570 	 */
4571 	vector = 0;
4572 
4573 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4574 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4575 	vector++;
4576 
4577 	for (i = 0; i < igb->num_rx_rings; i++) {
4578 		/*
4579 		 * Set vector for each rx ring
4580 		 */
4581 		eims = (E1000_EICR_RX_QUEUE0 << i);
4582 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4583 
4584 		/*
4585 		 * Accumulate bits to enable in
4586 		 * igb_enable_adapter_interrupts_82575()
4587 		 */
4588 		igb->eims_mask |= eims;
4589 
4590 		vector++;
4591 	}
4592 
4593 	for (i = 1; i < igb->num_tx_rings; i++) {
4594 		/*
4595 		 * Set vector for each tx ring from 2nd tx ring
4596 		 */
4597 		eims = (E1000_EICR_TX_QUEUE0 << i);
4598 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4599 
4600 		/*
4601 		 * Accumulate bits to enable in
4602 		 * igb_enable_adapter_interrupts_82575()
4603 		 */
4604 		igb->eims_mask |= eims;
4605 
4606 		vector++;
4607 	}
4608 
4609 	ASSERT(vector == igb->intr_cnt);
4610 
4611 	/*
4612 	 * Disable IAM for ICR interrupt bits
4613 	 */
4614 	E1000_WRITE_REG(hw, E1000_IAM, 0);
4615 	E1000_WRITE_FLUSH(hw);
4616 }
4617 
4618 /*
4619  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4620  *
4621  * 82576 uses a table based method for assigning vectors.  Each queue has a
4622  * single entry in the table to which we write a vector number along with a
4623  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4624  * take a different position in the 4-byte register depending on whether
4625  * they are numbered above or below 8.
4626  */
4627 static void
4628 igb_setup_msix_82576(igb_t *igb)
4629 {
4630 	struct e1000_hw *hw = &igb->hw;
4631 	uint32_t ivar, index, vector;
4632 	int i;
4633 
4634 	/* must enable msi-x capability before IVAR settings */
4635 	E1000_WRITE_REG(hw, E1000_GPIE,
4636 	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4637 
4638 	/*
4639 	 * Set vector for tx ring 0 and other causes.
4640 	 * NOTE assumption that it is vector 0.
4641 	 * This is also interdependent with installation of interrupt service
4642 	 * routines in igb_add_intr_handlers().
4643 	 */
4644 
4645 	/* assign "other" causes to vector 0 */
4646 	vector = 0;
4647 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4648 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4649 
4650 	/* assign tx ring 0 to vector 0 */
4651 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4652 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4653 
4654 	/* prepare to enable tx & other interrupt causes */
4655 	igb->eims_mask = (1 << vector);
4656 
4657 	vector ++;
4658 	for (i = 0; i < igb->num_rx_rings; i++) {
4659 		/*
4660 		 * Set vector for each rx ring
4661 		 */
4662 		index = (i & 0x7);
4663 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4664 
4665 		if (i < 8) {
4666 			/* vector goes into low byte of register */
4667 			ivar = ivar & 0xFFFFFF00;
4668 			ivar |= (vector | E1000_IVAR_VALID);
4669 		} else {
4670 			/* vector goes into third byte of register */
4671 			ivar = ivar & 0xFF00FFFF;
4672 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4673 		}
4674 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4675 
4676 		/* Accumulate interrupt-cause bits to enable */
4677 		igb->eims_mask |= (1 << vector);
4678 
4679 		vector ++;
4680 	}
4681 
4682 	for (i = 1; i < igb->num_tx_rings; i++) {
4683 		/*
4684 		 * Set vector for each tx ring from 2nd tx ring.
4685 		 * Note assumption that tx vectors numericall follow rx vectors.
4686 		 */
4687 		index = (i & 0x7);
4688 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4689 
4690 		if (i < 8) {
4691 			/* vector goes into second byte of register */
4692 			ivar = ivar & 0xFFFF00FF;
4693 			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4694 		} else {
4695 			/* vector goes into fourth byte of register */
4696 			ivar = ivar & 0x00FFFFFF;
4697 			ivar |= (vector | E1000_IVAR_VALID) << 24;
4698 		}
4699 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4700 
4701 		/* Accumulate interrupt-cause bits to enable */
4702 		igb->eims_mask |= (1 << vector);
4703 
4704 		vector ++;
4705 	}
4706 
4707 	ASSERT(vector == igb->intr_cnt);
4708 }
4709 
4710 /*
4711  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4712  *
4713  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4714  * queue has a single entry in the table to which we write a vector number
4715  * along with a "valid" bit.  Vectors take a different position in the
4716  * register depending on * whether * they are numbered above or below 4.
4717  */
4718 static void
4719 igb_setup_msix_82580(igb_t *igb)
4720 {
4721 	struct e1000_hw *hw = &igb->hw;
4722 	uint32_t ivar, index, vector;
4723 	int i;
4724 
4725 	/* must enable msi-x capability before IVAR settings */
4726 	E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4727 	    E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4728 	/*
4729 	 * Set vector for tx ring 0 and other causes.
4730 	 * NOTE assumption that it is vector 0.
4731 	 * This is also interdependent with installation of interrupt service
4732 	 * routines in igb_add_intr_handlers().
4733 	 */
4734 
4735 	/* assign "other" causes to vector 0 */
4736 	vector = 0;
4737 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4738 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4739 
4740 	/* assign tx ring 0 to vector 0 */
4741 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4742 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4743 
4744 	/* prepare to enable tx & other interrupt causes */
4745 	igb->eims_mask = (1 << vector);
4746 
4747 	vector ++;
4748 
4749 	for (i = 0; i < igb->num_rx_rings; i++) {
4750 		/*
4751 		 * Set vector for each rx ring
4752 		 */
4753 		index = (i >> 1);
4754 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4755 
4756 		if (i & 1) {
4757 			/* vector goes into third byte of register */
4758 			ivar = ivar & 0xFF00FFFF;
4759 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4760 		} else {
4761 			/* vector goes into low byte of register */
4762 			ivar = ivar & 0xFFFFFF00;
4763 			ivar |= (vector | E1000_IVAR_VALID);
4764 		}
4765 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4766 
4767 		/* Accumulate interrupt-cause bits to enable */
4768 		igb->eims_mask |= (1 << vector);
4769 
4770 		vector ++;
4771 	}
4772 
4773 	for (i = 1; i < igb->num_tx_rings; i++) {
4774 		/*
4775 		 * Set vector for each tx ring from 2nd tx ring.
4776 		 * Note assumption that tx vectors numericall follow rx vectors.
4777 		 */
4778 		index = (i >> 1);
4779 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4780 
4781 		if (i & 1) {
4782 			/* vector goes into high byte of register */
4783 			ivar = ivar & 0x00FFFFFF;
4784 			ivar |= ((vector | E1000_IVAR_VALID) << 24);
4785 		} else {
4786 			/* vector goes into second byte of register */
4787 			ivar = ivar & 0xFFFF00FF;
4788 			ivar |= (vector | E1000_IVAR_VALID) << 8;
4789 		}
4790 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4791 
4792 		/* Accumulate interrupt-cause bits to enable */
4793 		igb->eims_mask |= (1 << vector);
4794 
4795 		vector ++;
4796 	}
4797 	ASSERT(vector == igb->intr_cnt);
4798 }
4799 
4800 /*
4801  * igb_rem_intr_handlers - remove the interrupt handlers
4802  */
4803 static void
4804 igb_rem_intr_handlers(igb_t *igb)
4805 {
4806 	int i;
4807 	int rc;
4808 
4809 	for (i = 0; i < igb->intr_cnt; i++) {
4810 		rc = ddi_intr_remove_handler(igb->htable[i]);
4811 		if (rc != DDI_SUCCESS) {
4812 			IGB_DEBUGLOG_1(igb,
4813 			    "Remove intr handler failed: %d", rc);
4814 		}
4815 	}
4816 }
4817 
4818 /*
4819  * igb_rem_intrs - remove the allocated interrupts
4820  */
4821 static void
4822 igb_rem_intrs(igb_t *igb)
4823 {
4824 	int i;
4825 	int rc;
4826 
4827 	for (i = 0; i < igb->intr_cnt; i++) {
4828 		rc = ddi_intr_free(igb->htable[i]);
4829 		if (rc != DDI_SUCCESS) {
4830 			IGB_DEBUGLOG_1(igb,
4831 			    "Free intr failed: %d", rc);
4832 		}
4833 	}
4834 
4835 	kmem_free(igb->htable, igb->intr_size);
4836 	igb->htable = NULL;
4837 }
4838 
4839 /*
4840  * igb_enable_intrs - enable all the ddi interrupts
4841  */
4842 static int
4843 igb_enable_intrs(igb_t *igb)
4844 {
4845 	int i;
4846 	int rc;
4847 
4848 	/* Enable interrupts */
4849 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4850 		/* Call ddi_intr_block_enable() for MSI */
4851 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4852 		if (rc != DDI_SUCCESS) {
4853 			igb_log(igb,
4854 			    "Enable block intr failed: %d", rc);
4855 			return (IGB_FAILURE);
4856 		}
4857 	} else {
4858 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4859 		for (i = 0; i < igb->intr_cnt; i++) {
4860 			rc = ddi_intr_enable(igb->htable[i]);
4861 			if (rc != DDI_SUCCESS) {
4862 				igb_log(igb,
4863 				    "Enable intr failed: %d", rc);
4864 				return (IGB_FAILURE);
4865 			}
4866 		}
4867 	}
4868 
4869 	return (IGB_SUCCESS);
4870 }
4871 
4872 /*
4873  * igb_disable_intrs - disable all the ddi interrupts
4874  */
4875 static int
4876 igb_disable_intrs(igb_t *igb)
4877 {
4878 	int i;
4879 	int rc;
4880 
4881 	/* Disable all interrupts */
4882 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4883 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4884 		if (rc != DDI_SUCCESS) {
4885 			igb_log(igb,
4886 			    "Disable block intr failed: %d", rc);
4887 			return (IGB_FAILURE);
4888 		}
4889 	} else {
4890 		for (i = 0; i < igb->intr_cnt; i++) {
4891 			rc = ddi_intr_disable(igb->htable[i]);
4892 			if (rc != DDI_SUCCESS) {
4893 				igb_log(igb,
4894 				    "Disable intr failed: %d", rc);
4895 				return (IGB_FAILURE);
4896 			}
4897 		}
4898 	}
4899 
4900 	return (IGB_SUCCESS);
4901 }
4902 
4903 /*
4904  * igb_get_phy_state - Get and save the parameters read from PHY registers
4905  */
4906 static void
4907 igb_get_phy_state(igb_t *igb)
4908 {
4909 	struct e1000_hw *hw = &igb->hw;
4910 	uint16_t phy_ctrl;
4911 	uint16_t phy_status;
4912 	uint16_t phy_an_adv;
4913 	uint16_t phy_an_exp;
4914 	uint16_t phy_ext_status;
4915 	uint16_t phy_1000t_ctrl;
4916 	uint16_t phy_1000t_status;
4917 	uint16_t phy_lp_able;
4918 
4919 	ASSERT(mutex_owned(&igb->gen_lock));
4920 
4921 	if (hw->phy.media_type == e1000_media_type_copper) {
4922 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4923 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4924 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4925 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4926 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4927 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4928 		(void) e1000_read_phy_reg(hw,
4929 		    PHY_1000T_STATUS, &phy_1000t_status);
4930 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4931 
4932 		igb->param_autoneg_cap =
4933 		    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4934 		igb->param_pause_cap =
4935 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4936 		igb->param_asym_pause_cap =
4937 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4938 		igb->param_1000fdx_cap =
4939 		    ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4940 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4941 		igb->param_1000hdx_cap =
4942 		    ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4943 		    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4944 		igb->param_100t4_cap =
4945 		    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4946 		igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4947 		    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4948 		igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4949 		    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4950 		igb->param_10fdx_cap =
4951 		    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4952 		igb->param_10hdx_cap =
4953 		    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4954 		igb->param_rem_fault =
4955 		    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4956 
4957 		igb->param_adv_autoneg_cap = hw->mac.autoneg;
4958 		igb->param_adv_pause_cap =
4959 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4960 		igb->param_adv_asym_pause_cap =
4961 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4962 		igb->param_adv_1000hdx_cap =
4963 		    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4964 		igb->param_adv_100t4_cap =
4965 		    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4966 		igb->param_adv_rem_fault =
4967 		    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4968 		if (igb->param_adv_autoneg_cap == 1) {
4969 			igb->param_adv_1000fdx_cap =
4970 			    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4971 			igb->param_adv_100fdx_cap =
4972 			    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4973 			igb->param_adv_100hdx_cap =
4974 			    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4975 			igb->param_adv_10fdx_cap =
4976 			    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4977 			igb->param_adv_10hdx_cap =
4978 			    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4979 		}
4980 
4981 		igb->param_lp_autoneg_cap =
4982 		    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4983 		igb->param_lp_pause_cap =
4984 		    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4985 		igb->param_lp_asym_pause_cap =
4986 		    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4987 		igb->param_lp_1000fdx_cap =
4988 		    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4989 		igb->param_lp_1000hdx_cap =
4990 		    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4991 		igb->param_lp_100t4_cap =
4992 		    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4993 		igb->param_lp_100fdx_cap =
4994 		    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4995 		igb->param_lp_100hdx_cap =
4996 		    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4997 		igb->param_lp_10fdx_cap =
4998 		    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4999 		igb->param_lp_10hdx_cap =
5000 		    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5001 		igb->param_lp_rem_fault =
5002 		    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5003 	} else {
5004 		/*
5005 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5006 		 */
5007 		igb->param_autoneg_cap = 0;
5008 		igb->param_pause_cap = 1;
5009 		igb->param_asym_pause_cap = 1;
5010 		igb->param_1000fdx_cap = 1;
5011 		igb->param_1000hdx_cap = 0;
5012 		igb->param_100t4_cap = 0;
5013 		igb->param_100fdx_cap = 0;
5014 		igb->param_100hdx_cap = 0;
5015 		igb->param_10fdx_cap = 0;
5016 		igb->param_10hdx_cap = 0;
5017 
5018 		igb->param_adv_autoneg_cap = 0;
5019 		igb->param_adv_pause_cap = 1;
5020 		igb->param_adv_asym_pause_cap = 1;
5021 		igb->param_adv_1000fdx_cap = 1;
5022 		igb->param_adv_1000hdx_cap = 0;
5023 		igb->param_adv_100t4_cap = 0;
5024 		igb->param_adv_100fdx_cap = 0;
5025 		igb->param_adv_100hdx_cap = 0;
5026 		igb->param_adv_10fdx_cap = 0;
5027 		igb->param_adv_10hdx_cap = 0;
5028 
5029 		igb->param_lp_autoneg_cap = 0;
5030 		igb->param_lp_pause_cap = 0;
5031 		igb->param_lp_asym_pause_cap = 0;
5032 		igb->param_lp_1000fdx_cap = 0;
5033 		igb->param_lp_1000hdx_cap = 0;
5034 		igb->param_lp_100t4_cap = 0;
5035 		igb->param_lp_100fdx_cap = 0;
5036 		igb->param_lp_100hdx_cap = 0;
5037 		igb->param_lp_10fdx_cap = 0;
5038 		igb->param_lp_10hdx_cap = 0;
5039 		igb->param_lp_rem_fault = 0;
5040 	}
5041 }
5042 
5043 /*
5044  * synchronize the adv* and en* parameters.
5045  *
5046  * See comments in <sys/dld.h> for details of the *_en_*
5047  * parameters. The usage of ndd for setting adv parameters will
5048  * synchronize all the en parameters with the e1000g parameters,
5049  * implicitly disabling any settings made via dladm.
5050  */
5051 static void
5052 igb_param_sync(igb_t *igb)
5053 {
5054 	igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5055 	igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5056 	igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5057 	igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5058 	igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5059 	igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5060 	igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5061 }
5062 
5063 /*
5064  * igb_get_driver_control
5065  */
5066 static void
5067 igb_get_driver_control(struct e1000_hw *hw)
5068 {
5069 	uint32_t ctrl_ext;
5070 
5071 	/* Notify firmware that driver is in control of device */
5072 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5073 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5074 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5075 }
5076 
5077 /*
5078  * igb_release_driver_control
5079  */
5080 static void
5081 igb_release_driver_control(struct e1000_hw *hw)
5082 {
5083 	uint32_t ctrl_ext;
5084 
5085 	/* Notify firmware that driver is no longer in control of device */
5086 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5087 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5088 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5089 }
5090 
5091 /*
5092  * igb_atomic_reserve - Atomic decrease operation
5093  */
5094 int
5095 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5096 {
5097 	uint32_t oldval;
5098 	uint32_t newval;
5099 
5100 	/* ATOMICALLY */
5101 	do {
5102 		oldval = *count_p;
5103 		if (oldval < n)
5104 			return (-1);
5105 		newval = oldval - n;
5106 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
5107 
5108 	return (newval);
5109 }
5110 
5111 /*
5112  * FMA support
5113  */
5114 
5115 int
5116 igb_check_acc_handle(ddi_acc_handle_t handle)
5117 {
5118 	ddi_fm_error_t de;
5119 
5120 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5121 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5122 	return (de.fme_status);
5123 }
5124 
5125 int
5126 igb_check_dma_handle(ddi_dma_handle_t handle)
5127 {
5128 	ddi_fm_error_t de;
5129 
5130 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5131 	return (de.fme_status);
5132 }
5133 
5134 /*
5135  * The IO fault service error handling callback function
5136  */
5137 /*ARGSUSED*/
5138 static int
5139 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5140 {
5141 	/*
5142 	 * as the driver can always deal with an error in any dma or
5143 	 * access handle, we can just return the fme_status value.
5144 	 */
5145 	pci_ereport_post(dip, err, NULL);
5146 	return (err->fme_status);
5147 }
5148 
5149 static void
5150 igb_fm_init(igb_t *igb)
5151 {
5152 	ddi_iblock_cookie_t iblk;
5153 	int fma_dma_flag;
5154 
5155 	/* Only register with IO Fault Services if we have some capability */
5156 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5157 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5158 	} else {
5159 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5160 	}
5161 
5162 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5163 		fma_dma_flag = 1;
5164 	} else {
5165 		fma_dma_flag = 0;
5166 	}
5167 
5168 	(void) igb_set_fma_flags(fma_dma_flag);
5169 
5170 	if (igb->fm_capabilities) {
5171 
5172 		/* Register capabilities with IO Fault Services */
5173 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5174 
5175 		/*
5176 		 * Initialize pci ereport capabilities if ereport capable
5177 		 */
5178 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5179 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5180 			pci_ereport_setup(igb->dip);
5181 
5182 		/*
5183 		 * Register error callback if error callback capable
5184 		 */
5185 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5186 			ddi_fm_handler_register(igb->dip,
5187 			    igb_fm_error_cb, (void*) igb);
5188 	}
5189 }
5190 
5191 static void
5192 igb_fm_fini(igb_t *igb)
5193 {
5194 	/* Only unregister FMA capabilities if we registered some */
5195 	if (igb->fm_capabilities) {
5196 
5197 		/*
5198 		 * Release any resources allocated by pci_ereport_setup()
5199 		 */
5200 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5201 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5202 			pci_ereport_teardown(igb->dip);
5203 
5204 		/*
5205 		 * Un-register error callback if error callback capable
5206 		 */
5207 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5208 			ddi_fm_handler_unregister(igb->dip);
5209 
5210 		/* Unregister from IO Fault Services */
5211 		ddi_fm_fini(igb->dip);
5212 	}
5213 }
5214 
5215 void
5216 igb_fm_ereport(igb_t *igb, char *detail)
5217 {
5218 	uint64_t ena;
5219 	char buf[FM_MAX_CLASS];
5220 
5221 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5222 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5223 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5224 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5225 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5226 	}
5227 }
5228