1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 #include <sys/cpuvar.h> 27 #include <sys/conf.h> 28 #include <sys/file.h> 29 #include <sys/ddi.h> 30 #include <sys/sunddi.h> 31 #include <sys/modctl.h> 32 33 #include <sys/socket.h> 34 #include <sys/strsubr.h> 35 #include <sys/sysmacros.h> 36 37 #include <sys/socketvar.h> 38 #include <netinet/in.h> 39 40 #include <sys/idm/idm.h> 41 #include <sys/idm/idm_so.h> 42 43 #define IDM_NAME_VERSION "iSCSI Data Mover" 44 45 extern struct mod_ops mod_miscops; 46 extern struct mod_ops mod_miscops; 47 48 static struct modlmisc modlmisc = { 49 &mod_miscops, /* Type of module */ 50 IDM_NAME_VERSION 51 }; 52 53 static struct modlinkage modlinkage = { 54 MODREV_1, (void *)&modlmisc, NULL 55 }; 56 57 extern void idm_wd_thread(void *arg); 58 59 static int _idm_init(void); 60 static int _idm_fini(void); 61 static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf); 62 static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf); 63 static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf); 64 static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf); 65 static stmf_status_t idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, 66 idm_abort_type_t abort_type); 67 static void idm_task_aborted(idm_task_t *idt, idm_status_t status); 68 static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, 69 int sleepflag); 70 71 boolean_t idm_conn_logging = 0; 72 boolean_t idm_svc_logging = 0; 73 #ifdef DEBUG 74 boolean_t idm_pattern_checking = 1; 75 #else 76 boolean_t idm_pattern_checking = 0; 77 #endif 78 79 /* 80 * Potential tuneable for the maximum number of tasks. Default to 81 * IDM_TASKIDS_MAX 82 */ 83 84 uint32_t idm_max_taskids = IDM_TASKIDS_MAX; 85 86 /* 87 * Global list of transport handles 88 * These are listed in preferential order, so we can simply take the 89 * first "it_conn_is_capable" hit. Note also that the order maps to 90 * the order of the idm_transport_type_t list. 91 */ 92 idm_transport_t idm_transport_list[] = { 93 94 /* iSER on InfiniBand transport handle */ 95 {IDM_TRANSPORT_TYPE_ISER, /* type */ 96 "/devices/ib/iser@0:iser", /* device path */ 97 NULL, /* LDI handle */ 98 NULL, /* transport ops */ 99 NULL}, /* transport caps */ 100 101 /* IDM native sockets transport handle */ 102 {IDM_TRANSPORT_TYPE_SOCKETS, /* type */ 103 NULL, /* device path */ 104 NULL, /* LDI handle */ 105 NULL, /* transport ops */ 106 NULL} /* transport caps */ 107 108 }; 109 110 int 111 _init(void) 112 { 113 int rc; 114 115 if ((rc = _idm_init()) != 0) { 116 return (rc); 117 } 118 119 return (mod_install(&modlinkage)); 120 } 121 122 int 123 _fini(void) 124 { 125 int rc; 126 127 if ((rc = _idm_fini()) != 0) { 128 return (rc); 129 } 130 131 if ((rc = mod_remove(&modlinkage)) != 0) { 132 return (rc); 133 } 134 135 return (rc); 136 } 137 138 int 139 _info(struct modinfo *modinfop) 140 { 141 return (mod_info(&modlinkage, modinfop)); 142 } 143 144 /* 145 * idm_transport_register() 146 * 147 * Provides a mechanism for an IDM transport driver to register its 148 * transport ops and caps with the IDM kernel module. Invoked during 149 * a transport driver's attach routine. 150 */ 151 idm_status_t 152 idm_transport_register(idm_transport_attr_t *attr) 153 { 154 ASSERT(attr->it_ops != NULL); 155 ASSERT(attr->it_caps != NULL); 156 157 switch (attr->type) { 158 /* All known non-native transports here; for now, iSER */ 159 case IDM_TRANSPORT_TYPE_ISER: 160 idm_transport_list[attr->type].it_ops = attr->it_ops; 161 idm_transport_list[attr->type].it_caps = attr->it_caps; 162 return (IDM_STATUS_SUCCESS); 163 164 default: 165 cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in " 166 "idm_transport_register", attr->type); 167 return (IDM_STATUS_SUCCESS); 168 } 169 } 170 171 /* 172 * idm_ini_conn_create 173 * 174 * This function is invoked by the iSCSI layer to create a connection context. 175 * This does not actually establish the socket connection. 176 * 177 * cr - Connection request parameters 178 * new_con - Output parameter that contains the new request if successful 179 * 180 */ 181 idm_status_t 182 idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con) 183 { 184 idm_transport_t *it; 185 idm_conn_t *ic; 186 int rc; 187 188 it = idm_transport_lookup(cr); 189 190 retry: 191 ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type, 192 &cr->icr_conn_ops); 193 194 bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr, 195 sizeof (cr->cr_ini_dst_addr)); 196 197 /* create the transport-specific connection components */ 198 rc = it->it_ops->it_ini_conn_create(cr, ic); 199 if (rc != IDM_STATUS_SUCCESS) { 200 /* cleanup the failed connection */ 201 idm_conn_destroy_common(ic); 202 203 /* 204 * It is possible for an IB client to connect to 205 * an ethernet-only client via an IB-eth gateway. 206 * Therefore, if we are attempting to use iSER and 207 * fail, retry with sockets before ultimately 208 * failing the connection. 209 */ 210 if (it->it_type == IDM_TRANSPORT_TYPE_ISER) { 211 it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]; 212 goto retry; 213 } 214 215 return (IDM_STATUS_FAIL); 216 } 217 218 *new_con = ic; 219 220 mutex_enter(&idm.idm_global_mutex); 221 list_insert_tail(&idm.idm_ini_conn_list, ic); 222 mutex_exit(&idm.idm_global_mutex); 223 224 return (IDM_STATUS_SUCCESS); 225 } 226 227 /* 228 * idm_ini_conn_destroy 229 * 230 * Releases any resources associated with the connection. This is the 231 * complement to idm_ini_conn_create. 232 * ic - idm_conn_t structure representing the relevant connection 233 * 234 */ 235 void 236 idm_ini_conn_destroy_task(void *ic_void) 237 { 238 idm_conn_t *ic = ic_void; 239 240 ic->ic_transport_ops->it_ini_conn_destroy(ic); 241 idm_conn_destroy_common(ic); 242 } 243 244 void 245 idm_ini_conn_destroy(idm_conn_t *ic) 246 { 247 /* 248 * It's reasonable for the initiator to call idm_ini_conn_destroy 249 * from within the context of the CN_CONNECT_DESTROY notification. 250 * That's a problem since we want to destroy the taskq for the 251 * state machine associated with the connection. Remove the 252 * connection from the list right away then handle the remaining 253 * work via the idm_global_taskq. 254 */ 255 mutex_enter(&idm.idm_global_mutex); 256 list_remove(&idm.idm_ini_conn_list, ic); 257 mutex_exit(&idm.idm_global_mutex); 258 259 if (taskq_dispatch(idm.idm_global_taskq, 260 &idm_ini_conn_destroy_task, ic, TQ_SLEEP) == TASKQID_INVALID) { 261 cmn_err(CE_WARN, 262 "idm_ini_conn_destroy: Couldn't dispatch task"); 263 } 264 } 265 266 /* 267 * idm_ini_conn_connect 268 * 269 * Establish connection to the remote system identified in idm_conn_t. 270 * The connection parameters including the remote IP address were established 271 * in the call to idm_ini_conn_create. The IDM state machine will 272 * perform client notifications as necessary to prompt the initiator through 273 * the login process. IDM also keeps a timer running so that if the login 274 * process doesn't complete in a timely manner it will fail. 275 * 276 * ic - idm_conn_t structure representing the relevant connection 277 * 278 * Returns success if the connection was established, otherwise some kind 279 * of meaningful error code. 280 * 281 * Upon return the login has either failed or is loggin in (ffp) 282 */ 283 idm_status_t 284 idm_ini_conn_connect(idm_conn_t *ic) 285 { 286 idm_status_t rc; 287 288 rc = idm_conn_sm_init(ic); 289 if (rc != IDM_STATUS_SUCCESS) { 290 return (ic->ic_conn_sm_status); 291 } 292 293 /* Hold connection until we return */ 294 idm_conn_hold(ic); 295 296 /* Kick state machine */ 297 idm_conn_event(ic, CE_CONNECT_REQ, (uintptr_t)NULL); 298 299 /* Wait for login flag */ 300 mutex_enter(&ic->ic_state_mutex); 301 while (!(ic->ic_state_flags & CF_LOGIN_READY) && 302 !(ic->ic_state_flags & CF_ERROR)) { 303 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex); 304 } 305 306 /* 307 * The CN_READY_TO_LOGIN and/or the CN_CONNECT_FAIL call to 308 * idm_notify_client has already been generated by the idm conn 309 * state machine. If connection fails any time after this 310 * check, we will detect it in iscsi_login. 311 */ 312 if (ic->ic_state_flags & CF_ERROR) { 313 rc = ic->ic_conn_sm_status; 314 } 315 mutex_exit(&ic->ic_state_mutex); 316 idm_conn_rele(ic); 317 318 return (rc); 319 } 320 321 /* 322 * idm_ini_conn_disconnect 323 * 324 * Forces a connection (previously established using idm_ini_conn_connect) 325 * to perform a controlled shutdown, cleaning up any outstanding requests. 326 * 327 * ic - idm_conn_t structure representing the relevant connection 328 * 329 * This is asynchronous and will return before the connection is properly 330 * shutdown 331 */ 332 /* ARGSUSED */ 333 void 334 idm_ini_conn_disconnect(idm_conn_t *ic) 335 { 336 idm_conn_event(ic, CE_TRANSPORT_FAIL, (uintptr_t)NULL); 337 } 338 339 /* 340 * idm_ini_conn_disconnect_wait 341 * 342 * Forces a connection (previously established using idm_ini_conn_connect) 343 * to perform a controlled shutdown. Blocks until the connection is 344 * disconnected. 345 * 346 * ic - idm_conn_t structure representing the relevant connection 347 */ 348 /* ARGSUSED */ 349 void 350 idm_ini_conn_disconnect_sync(idm_conn_t *ic) 351 { 352 mutex_enter(&ic->ic_state_mutex); 353 if ((ic->ic_state != CS_S9_INIT_ERROR) && 354 (ic->ic_state != CS_S11_COMPLETE)) { 355 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, (uintptr_t)NULL, 356 CT_NONE); 357 while ((ic->ic_state != CS_S9_INIT_ERROR) && 358 (ic->ic_state != CS_S11_COMPLETE)) 359 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex); 360 } 361 mutex_exit(&ic->ic_state_mutex); 362 } 363 364 /* 365 * idm_tgt_svc_create 366 * 367 * The target calls this service to obtain a service context for each available 368 * transport, starting a service of each type related to the IP address and port 369 * passed. The idm_svc_req_t contains the service parameters. 370 */ 371 idm_status_t 372 idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc) 373 { 374 idm_transport_type_t type; 375 idm_transport_t *it; 376 idm_svc_t *is; 377 int rc; 378 379 *new_svc = NULL; 380 is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP); 381 382 /* Initialize transport-agnostic components of the service handle */ 383 is->is_svc_req = *sr; 384 mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL); 385 cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL); 386 mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL); 387 cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL); 388 idm_refcnt_init(&is->is_refcnt, is); 389 390 /* 391 * Make sure all available transports are setup. We call this now 392 * instead of at initialization time in case IB has become available 393 * since we started (hotplug, etc). 394 */ 395 idm_transport_setup(sr->sr_li, B_FALSE); 396 397 /* 398 * Loop through the transports, configuring the transport-specific 399 * components of each one. 400 */ 401 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 402 403 it = &idm_transport_list[type]; 404 /* 405 * If it_ops is NULL then the transport is unconfigured 406 * and we shouldn't try to start the service. 407 */ 408 if (it->it_ops == NULL) { 409 continue; 410 } 411 412 rc = it->it_ops->it_tgt_svc_create(sr, is); 413 if (rc != IDM_STATUS_SUCCESS) { 414 /* Teardown any configured services */ 415 while (type--) { 416 it = &idm_transport_list[type]; 417 if (it->it_ops == NULL) { 418 continue; 419 } 420 it->it_ops->it_tgt_svc_destroy(is); 421 } 422 /* Free the svc context and return */ 423 kmem_free(is, sizeof (idm_svc_t)); 424 return (rc); 425 } 426 } 427 428 *new_svc = is; 429 430 mutex_enter(&idm.idm_global_mutex); 431 list_insert_tail(&idm.idm_tgt_svc_list, is); 432 mutex_exit(&idm.idm_global_mutex); 433 434 return (IDM_STATUS_SUCCESS); 435 } 436 437 /* 438 * idm_tgt_svc_destroy 439 * 440 * is - idm_svc_t returned by the call to idm_tgt_svc_create 441 * 442 * Cleanup any resources associated with the idm_svc_t. 443 */ 444 void 445 idm_tgt_svc_destroy(idm_svc_t *is) 446 { 447 idm_transport_type_t type; 448 idm_transport_t *it; 449 450 mutex_enter(&idm.idm_global_mutex); 451 /* remove this service from the global list */ 452 list_remove(&idm.idm_tgt_svc_list, is); 453 /* wakeup any waiters for service change */ 454 cv_broadcast(&idm.idm_tgt_svc_cv); 455 mutex_exit(&idm.idm_global_mutex); 456 457 /* teardown each transport-specific service */ 458 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 459 it = &idm_transport_list[type]; 460 if (it->it_ops == NULL) { 461 continue; 462 } 463 464 it->it_ops->it_tgt_svc_destroy(is); 465 } 466 467 /* tear down the svc resources */ 468 idm_refcnt_destroy(&is->is_refcnt); 469 cv_destroy(&is->is_count_cv); 470 mutex_destroy(&is->is_count_mutex); 471 cv_destroy(&is->is_cv); 472 mutex_destroy(&is->is_mutex); 473 474 /* free the svc handle */ 475 kmem_free(is, sizeof (idm_svc_t)); 476 } 477 478 void 479 idm_tgt_svc_hold(idm_svc_t *is) 480 { 481 idm_refcnt_hold(&is->is_refcnt); 482 } 483 484 void 485 idm_tgt_svc_rele_and_destroy(idm_svc_t *is) 486 { 487 idm_refcnt_rele_and_destroy(&is->is_refcnt, 488 (idm_refcnt_cb_t *)&idm_tgt_svc_destroy); 489 } 490 491 /* 492 * idm_tgt_svc_online 493 * 494 * is - idm_svc_t returned by the call to idm_tgt_svc_create 495 * 496 * Online each transport service, as we want this target to be accessible 497 * via any configured transport. 498 * 499 * When the initiator establishes a new connection to the target, IDM will 500 * call the "new connect" callback defined in the idm_svc_req_t structure 501 * and it will pass an idm_conn_t structure representing that new connection. 502 */ 503 idm_status_t 504 idm_tgt_svc_online(idm_svc_t *is) 505 { 506 507 idm_transport_type_t type, last_type; 508 idm_transport_t *it; 509 int rc = IDM_STATUS_SUCCESS; 510 511 mutex_enter(&is->is_mutex); 512 if (is->is_online == 0) { 513 /* Walk through each of the transports and online them */ 514 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 515 it = &idm_transport_list[type]; 516 if (it->it_ops == NULL) { 517 /* transport is not registered */ 518 continue; 519 } 520 521 mutex_exit(&is->is_mutex); 522 rc = it->it_ops->it_tgt_svc_online(is); 523 mutex_enter(&is->is_mutex); 524 if (rc != IDM_STATUS_SUCCESS) { 525 last_type = type; 526 break; 527 } 528 } 529 if (rc != IDM_STATUS_SUCCESS) { 530 /* 531 * The last transport failed to online. 532 * Offline any transport onlined above and 533 * do not online the target. 534 */ 535 for (type = 0; type < last_type; type++) { 536 it = &idm_transport_list[type]; 537 if (it->it_ops == NULL) { 538 /* transport is not registered */ 539 continue; 540 } 541 542 mutex_exit(&is->is_mutex); 543 it->it_ops->it_tgt_svc_offline(is); 544 mutex_enter(&is->is_mutex); 545 } 546 } else { 547 /* Target service now online */ 548 is->is_online = 1; 549 } 550 } else { 551 /* Target service already online, just bump the count */ 552 is->is_online++; 553 } 554 mutex_exit(&is->is_mutex); 555 556 return (rc); 557 } 558 559 /* 560 * idm_tgt_svc_offline 561 * 562 * is - idm_svc_t returned by the call to idm_tgt_svc_create 563 * 564 * Shutdown any online target services. 565 */ 566 void 567 idm_tgt_svc_offline(idm_svc_t *is) 568 { 569 idm_transport_type_t type; 570 idm_transport_t *it; 571 572 mutex_enter(&is->is_mutex); 573 is->is_online--; 574 if (is->is_online == 0) { 575 /* Walk through each of the transports and offline them */ 576 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 577 it = &idm_transport_list[type]; 578 if (it->it_ops == NULL) { 579 /* transport is not registered */ 580 continue; 581 } 582 583 mutex_exit(&is->is_mutex); 584 it->it_ops->it_tgt_svc_offline(is); 585 mutex_enter(&is->is_mutex); 586 } 587 } 588 mutex_exit(&is->is_mutex); 589 } 590 591 /* 592 * idm_tgt_svc_lookup 593 * 594 * Lookup a service instance listening on the specified port 595 */ 596 597 idm_svc_t * 598 idm_tgt_svc_lookup(uint16_t port) 599 { 600 idm_svc_t *result; 601 602 retry: 603 mutex_enter(&idm.idm_global_mutex); 604 for (result = list_head(&idm.idm_tgt_svc_list); 605 result != NULL; 606 result = list_next(&idm.idm_tgt_svc_list, result)) { 607 if (result->is_svc_req.sr_port == port) { 608 if (result->is_online == 0) { 609 /* 610 * A service exists on this port, but it 611 * is going away, wait for it to cleanup. 612 */ 613 cv_wait(&idm.idm_tgt_svc_cv, 614 &idm.idm_global_mutex); 615 mutex_exit(&idm.idm_global_mutex); 616 goto retry; 617 } 618 idm_tgt_svc_hold(result); 619 mutex_exit(&idm.idm_global_mutex); 620 return (result); 621 } 622 } 623 mutex_exit(&idm.idm_global_mutex); 624 625 return (NULL); 626 } 627 628 /* 629 * idm_negotiate_key_values() 630 * Give IDM level a chance to negotiate any login parameters it should own. 631 * -- leave unhandled parameters alone on request_nvl 632 * -- move all handled parameters to response_nvl with an appropriate response 633 * -- also add an entry to negotiated_nvl for any accepted parameters 634 */ 635 kv_status_t 636 idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl, 637 nvlist_t *response_nvl, nvlist_t *negotiated_nvl) 638 { 639 ASSERT(ic->ic_transport_ops != NULL); 640 return (ic->ic_transport_ops->it_negotiate_key_values(ic, 641 request_nvl, response_nvl, negotiated_nvl)); 642 } 643 644 /* 645 * idm_notice_key_values() 646 * Activate at the IDM level any parameters that have been negotiated. 647 * Passes the set of key value pairs to the transport for activation. 648 * This will be invoked as the connection is entering full-feature mode. 649 */ 650 void 651 idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl) 652 { 653 ASSERT(ic->ic_transport_ops != NULL); 654 ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl); 655 } 656 657 /* 658 * idm_declare_key_values() 659 * Activate an operational set of declarative parameters from the config_nvl, 660 * and return the selected values in the outgoing_nvl. 661 */ 662 kv_status_t 663 idm_declare_key_values(idm_conn_t *ic, nvlist_t *config_nvl, 664 nvlist_t *outgoing_nvl) 665 { 666 ASSERT(ic->ic_transport_ops != NULL); 667 return (ic->ic_transport_ops->it_declare_key_values(ic, config_nvl, 668 outgoing_nvl)); 669 } 670 671 /* 672 * idm_buf_tx_to_ini 673 * 674 * This is IDM's implementation of the 'Put_Data' operational primitive. 675 * 676 * This function is invoked by a target iSCSI layer to request its local 677 * Datamover layer to transmit the Data-In PDU to the peer iSCSI layer 678 * on the remote iSCSI node. The I/O buffer represented by 'idb' is 679 * transferred to the initiator associated with task 'idt'. The connection 680 * info, contents of the Data-In PDU header, the DataDescriptorIn, BHS, 681 * and the callback (idb->idb_buf_cb) at transfer completion are 682 * provided as input. 683 * 684 * This data transfer takes place transparently to the remote iSCSI layer, 685 * i.e. without its participation. 686 * 687 * Using sockets, IDM implements the data transfer by segmenting the data 688 * buffer into appropriately sized iSCSI PDUs and transmitting them to the 689 * initiator. iSER performs the transfer using RDMA write. 690 * 691 */ 692 idm_status_t 693 idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb, 694 uint32_t offset, uint32_t xfer_len, 695 idm_buf_cb_t idb_buf_cb, void *cb_arg) 696 { 697 idm_status_t rc; 698 699 idb->idb_bufoffset = offset; 700 idb->idb_xfer_len = xfer_len; 701 idb->idb_buf_cb = idb_buf_cb; 702 idb->idb_cb_arg = cb_arg; 703 gethrestime(&idb->idb_xfer_start); 704 705 /* 706 * Buffer should not contain the pattern. If the pattern is 707 * present then we've been asked to transmit initialized data 708 */ 709 IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT); 710 711 mutex_enter(&idt->idt_mutex); 712 switch (idt->idt_state) { 713 case TASK_ACTIVE: 714 idt->idt_tx_to_ini_start++; 715 idm_task_hold(idt); 716 idm_buf_bind_in_locked(idt, idb); 717 idb->idb_in_transport = B_TRUE; 718 rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini) 719 (idt, idb); 720 return (rc); 721 722 case TASK_SUSPENDING: 723 case TASK_SUSPENDED: 724 /* 725 * Bind buffer but don't start a transfer since the task 726 * is suspended 727 */ 728 idm_buf_bind_in_locked(idt, idb); 729 mutex_exit(&idt->idt_mutex); 730 return (IDM_STATUS_SUCCESS); 731 732 case TASK_ABORTING: 733 case TASK_ABORTED: 734 /* 735 * Once the task is aborted, any buffers added to the 736 * idt_inbufv will never get cleaned up, so just return 737 * SUCCESS. The buffer should get cleaned up by the 738 * client or framework once task_aborted has completed. 739 */ 740 mutex_exit(&idt->idt_mutex); 741 return (IDM_STATUS_SUCCESS); 742 743 default: 744 ASSERT(0); 745 break; 746 } 747 mutex_exit(&idt->idt_mutex); 748 749 return (IDM_STATUS_FAIL); 750 } 751 752 /* 753 * idm_buf_rx_from_ini 754 * 755 * This is IDM's implementation of the 'Get_Data' operational primitive. 756 * 757 * This function is invoked by a target iSCSI layer to request its local 758 * Datamover layer to retrieve certain data identified by the R2T PDU from the 759 * peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be 760 * mapped to the respective buffer by the task tags (ITT & TTT). 761 * The connection information, contents of an R2T PDU, DataDescriptor, BHS, and 762 * the callback (idb->idb_buf_cb) notification for data transfer completion are 763 * are provided as input. 764 * 765 * When an iSCSI node sends an R2T PDU to its local Datamover layer, the local 766 * Datamover layer, the local and remote Datamover layers transparently bring 767 * about the data transfer requested by the R2T PDU, without the participation 768 * of the iSCSI layers. 769 * 770 * Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out() 771 * assembles the Data-Out PDUs into the buffer. iSER uses RDMA read. 772 * 773 */ 774 idm_status_t 775 idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb, 776 uint32_t offset, uint32_t xfer_len, 777 idm_buf_cb_t idb_buf_cb, void *cb_arg) 778 { 779 idm_status_t rc; 780 781 idb->idb_bufoffset = offset; 782 idb->idb_xfer_len = xfer_len; 783 idb->idb_buf_cb = idb_buf_cb; 784 idb->idb_cb_arg = cb_arg; 785 gethrestime(&idb->idb_xfer_start); 786 787 /* 788 * "In" buf list is for "Data In" PDU's, "Out" buf list is for 789 * "Data Out" PDU's 790 */ 791 mutex_enter(&idt->idt_mutex); 792 switch (idt->idt_state) { 793 case TASK_ACTIVE: 794 idt->idt_rx_from_ini_start++; 795 idm_task_hold(idt); 796 idm_buf_bind_out_locked(idt, idb); 797 idb->idb_in_transport = B_TRUE; 798 rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini) 799 (idt, idb); 800 return (rc); 801 case TASK_SUSPENDING: 802 case TASK_SUSPENDED: 803 case TASK_ABORTING: 804 case TASK_ABORTED: 805 /* 806 * Bind buffer but don't start a transfer since the task 807 * is suspended 808 */ 809 idm_buf_bind_out_locked(idt, idb); 810 mutex_exit(&idt->idt_mutex); 811 return (IDM_STATUS_SUCCESS); 812 default: 813 ASSERT(0); 814 break; 815 } 816 mutex_exit(&idt->idt_mutex); 817 818 return (IDM_STATUS_FAIL); 819 } 820 821 /* 822 * idm_buf_tx_to_ini_done 823 * 824 * The transport calls this after it has completed a transfer requested by 825 * a call to transport_buf_tx_to_ini 826 * 827 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning. 828 * idt may be freed after the call to idb->idb_buf_cb. 829 */ 830 void 831 idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status) 832 { 833 ASSERT(mutex_owned(&idt->idt_mutex)); 834 idb->idb_in_transport = B_FALSE; 835 idb->idb_tx_thread = B_FALSE; 836 idt->idt_tx_to_ini_done++; 837 gethrestime(&idb->idb_xfer_done); 838 839 /* 840 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or 841 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes 842 * to 0. 843 */ 844 idm_task_rele(idt); 845 idb->idb_status = status; 846 847 switch (idt->idt_state) { 848 case TASK_ACTIVE: 849 idt->idt_ic->ic_timestamp = ddi_get_lbolt(); 850 idm_buf_unbind_in_locked(idt, idb); 851 mutex_exit(&idt->idt_mutex); 852 (*idb->idb_buf_cb)(idb, status); 853 return; 854 case TASK_SUSPENDING: 855 case TASK_SUSPENDED: 856 case TASK_ABORTING: 857 case TASK_ABORTED: 858 /* 859 * To keep things simple we will ignore the case where the 860 * transfer was successful and leave all buffers bound to the 861 * task. This allows us to also ignore the case where we've 862 * been asked to abort a task but the last transfer of the 863 * task has completed. IDM has no idea whether this was, in 864 * fact, the last transfer of the task so it would be difficult 865 * to handle this case. Everything should get sorted out again 866 * after task reassignment is complete. 867 * 868 * In the case of TASK_ABORTING we could conceivably call the 869 * buffer callback here but the timing of when the client's 870 * client_task_aborted callback is invoked vs. when the client's 871 * buffer callback gets invoked gets sticky. We don't want 872 * the client to here from us again after the call to 873 * client_task_aborted() but we don't want to give it a bunch 874 * of failed buffer transfers until we've called 875 * client_task_aborted(). Instead we'll just leave all the 876 * buffers bound and allow the client to cleanup. 877 */ 878 break; 879 default: 880 ASSERT(0); 881 } 882 mutex_exit(&idt->idt_mutex); 883 } 884 885 /* 886 * idm_buf_rx_from_ini_done 887 * 888 * The transport calls this after it has completed a transfer requested by 889 * a call totransport_buf_tx_to_ini 890 * 891 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning. 892 * idt may be freed after the call to idb->idb_buf_cb. 893 */ 894 void 895 idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status) 896 { 897 ASSERT(mutex_owned(&idt->idt_mutex)); 898 idb->idb_in_transport = B_FALSE; 899 idt->idt_rx_from_ini_done++; 900 gethrestime(&idb->idb_xfer_done); 901 902 /* 903 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or 904 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes 905 * to 0. 906 */ 907 idm_task_rele(idt); 908 idb->idb_status = status; 909 910 if (status == IDM_STATUS_SUCCESS) { 911 /* 912 * Buffer should not contain the pattern. If it does then 913 * we did not get the data from the remote host. 914 */ 915 IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT); 916 } 917 918 switch (idt->idt_state) { 919 case TASK_ACTIVE: 920 idt->idt_ic->ic_timestamp = ddi_get_lbolt(); 921 idm_buf_unbind_out_locked(idt, idb); 922 mutex_exit(&idt->idt_mutex); 923 (*idb->idb_buf_cb)(idb, status); 924 return; 925 case TASK_SUSPENDING: 926 case TASK_SUSPENDED: 927 case TASK_ABORTING: 928 case TASK_ABORTED: 929 /* 930 * To keep things simple we will ignore the case where the 931 * transfer was successful and leave all buffers bound to the 932 * task. This allows us to also ignore the case where we've 933 * been asked to abort a task but the last transfer of the 934 * task has completed. IDM has no idea whether this was, in 935 * fact, the last transfer of the task so it would be difficult 936 * to handle this case. Everything should get sorted out again 937 * after task reassignment is complete. 938 * 939 * In the case of TASK_ABORTING we could conceivably call the 940 * buffer callback here but the timing of when the client's 941 * client_task_aborted callback is invoked vs. when the client's 942 * buffer callback gets invoked gets sticky. We don't want 943 * the client to here from us again after the call to 944 * client_task_aborted() but we don't want to give it a bunch 945 * of failed buffer transfers until we've called 946 * client_task_aborted(). Instead we'll just leave all the 947 * buffers bound and allow the client to cleanup. 948 */ 949 break; 950 default: 951 ASSERT(0); 952 } 953 mutex_exit(&idt->idt_mutex); 954 } 955 956 /* 957 * idm_buf_alloc 958 * 959 * Allocates a buffer handle and registers it for use with the transport 960 * layer. If a buffer is not passed on bufptr, the buffer will be allocated 961 * as well as the handle. 962 * 963 * ic - connection on which the buffer will be transferred 964 * bufptr - allocate memory for buffer if NULL, else assign to buffer 965 * buflen - length of buffer 966 * 967 * Returns idm_buf_t handle if successful, otherwise NULL 968 */ 969 idm_buf_t * 970 idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen) 971 { 972 idm_buf_t *buf = NULL; 973 int rc; 974 975 ASSERT(ic != NULL); 976 ASSERT(idm.idm_buf_cache != NULL); 977 ASSERT(buflen > 0); 978 979 /* Don't allocate new buffers if we are not in FFP */ 980 mutex_enter(&ic->ic_state_mutex); 981 if (!ic->ic_ffp) { 982 mutex_exit(&ic->ic_state_mutex); 983 return (NULL); 984 } 985 986 987 idm_conn_hold(ic); 988 mutex_exit(&ic->ic_state_mutex); 989 990 buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP); 991 if (buf == NULL) { 992 idm_conn_rele(ic); 993 return (NULL); 994 } 995 996 buf->idb_ic = ic; 997 buf->idb_buflen = buflen; 998 buf->idb_exp_offset = 0; 999 buf->idb_bufoffset = 0; 1000 buf->idb_xfer_len = 0; 1001 buf->idb_magic = IDM_BUF_MAGIC; 1002 buf->idb_in_transport = B_FALSE; 1003 buf->idb_bufbcopy = B_FALSE; 1004 1005 /* 1006 * If bufptr is NULL, we have an implicit request to allocate 1007 * memory for this IDM buffer handle and register it for use 1008 * with the transport. To simplify this, and to give more freedom 1009 * to the transport layer for it's own buffer management, both of 1010 * these actions will take place in the transport layer. 1011 * If bufptr is set, then the caller has allocated memory (or more 1012 * likely it's been passed from an upper layer), and we need only 1013 * register the buffer for use with the transport layer. 1014 */ 1015 if (bufptr == NULL) { 1016 /* 1017 * Allocate a buffer from the transport layer (which 1018 * will also register the buffer for use). 1019 */ 1020 rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen); 1021 if (rc != 0) { 1022 idm_conn_rele(ic); 1023 kmem_cache_free(idm.idm_buf_cache, buf); 1024 return (NULL); 1025 } 1026 /* Set the bufalloc'd flag */ 1027 buf->idb_bufalloc = B_TRUE; 1028 } else { 1029 /* 1030 * For large transfers, Set the passed bufptr into 1031 * the buf handle, and register the handle with the 1032 * transport layer. As memory registration with the 1033 * transport layer is a time/cpu intensive operation, 1034 * for small transfers (up to a pre-defined bcopy 1035 * threshold), use pre-registered memory buffers 1036 * and bcopy data at the appropriate time. 1037 */ 1038 buf->idb_buf = bufptr; 1039 1040 rc = ic->ic_transport_ops->it_buf_setup(buf); 1041 if (rc != 0) { 1042 idm_conn_rele(ic); 1043 kmem_cache_free(idm.idm_buf_cache, buf); 1044 return (NULL); 1045 } 1046 /* 1047 * The transport layer is now expected to set the idb_bufalloc 1048 * correctly to indicate if resources have been allocated. 1049 */ 1050 } 1051 1052 IDM_BUFPAT_SET(buf); 1053 1054 return (buf); 1055 } 1056 1057 /* 1058 * idm_buf_free 1059 * 1060 * Release a buffer handle along with the associated buffer that was allocated 1061 * or assigned with idm_buf_alloc 1062 */ 1063 void 1064 idm_buf_free(idm_buf_t *buf) 1065 { 1066 idm_conn_t *ic = buf->idb_ic; 1067 1068 1069 buf->idb_task_binding = NULL; 1070 1071 if (buf->idb_bufalloc) { 1072 ic->ic_transport_ops->it_buf_free(buf); 1073 } else { 1074 ic->ic_transport_ops->it_buf_teardown(buf); 1075 } 1076 kmem_cache_free(idm.idm_buf_cache, buf); 1077 idm_conn_rele(ic); 1078 } 1079 1080 /* 1081 * idm_buf_bind_in 1082 * 1083 * This function associates a buffer with a task. This is only for use by the 1084 * iSCSI initiator that will have only one buffer per transfer direction 1085 * 1086 */ 1087 void 1088 idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf) 1089 { 1090 mutex_enter(&idt->idt_mutex); 1091 idm_buf_bind_in_locked(idt, buf); 1092 mutex_exit(&idt->idt_mutex); 1093 } 1094 1095 static void 1096 idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf) 1097 { 1098 buf->idb_task_binding = idt; 1099 buf->idb_ic = idt->idt_ic; 1100 idm_listbuf_insert(&idt->idt_inbufv, buf); 1101 } 1102 1103 void 1104 idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf) 1105 { 1106 /* 1107 * For small transfers, the iSER transport delegates the IDM 1108 * layer to bcopy the SCSI Write data for faster IOPS. 1109 */ 1110 if (buf->idb_bufbcopy == B_TRUE) { 1111 1112 bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen); 1113 } 1114 mutex_enter(&idt->idt_mutex); 1115 idm_buf_bind_out_locked(idt, buf); 1116 mutex_exit(&idt->idt_mutex); 1117 } 1118 1119 static void 1120 idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf) 1121 { 1122 buf->idb_task_binding = idt; 1123 buf->idb_ic = idt->idt_ic; 1124 idm_listbuf_insert(&idt->idt_outbufv, buf); 1125 } 1126 1127 void 1128 idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf) 1129 { 1130 /* 1131 * For small transfers, the iSER transport delegates the IDM 1132 * layer to bcopy the SCSI Read data into the read buufer 1133 * for faster IOPS. 1134 */ 1135 if (buf->idb_bufbcopy == B_TRUE) { 1136 bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen); 1137 } 1138 mutex_enter(&idt->idt_mutex); 1139 idm_buf_unbind_in_locked(idt, buf); 1140 mutex_exit(&idt->idt_mutex); 1141 } 1142 1143 static void 1144 idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf) 1145 { 1146 list_remove(&idt->idt_inbufv, buf); 1147 } 1148 1149 void 1150 idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf) 1151 { 1152 mutex_enter(&idt->idt_mutex); 1153 idm_buf_unbind_out_locked(idt, buf); 1154 mutex_exit(&idt->idt_mutex); 1155 } 1156 1157 static void 1158 idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf) 1159 { 1160 list_remove(&idt->idt_outbufv, buf); 1161 } 1162 1163 /* 1164 * idm_buf_find() will lookup the idm_buf_t based on the relative offset in the 1165 * iSCSI PDU 1166 */ 1167 idm_buf_t * 1168 idm_buf_find(void *lbuf, size_t data_offset) 1169 { 1170 idm_buf_t *idb; 1171 list_t *lst = (list_t *)lbuf; 1172 1173 /* iterate through the list to find the buffer */ 1174 for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) { 1175 1176 ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) || 1177 (idb->idb_bufoffset == 0)); 1178 1179 if ((data_offset >= idb->idb_bufoffset) && 1180 (data_offset < (idb->idb_bufoffset + idb->idb_buflen))) { 1181 1182 return (idb); 1183 } 1184 } 1185 1186 return (NULL); 1187 } 1188 1189 void 1190 idm_bufpat_set(idm_buf_t *idb) 1191 { 1192 idm_bufpat_t *bufpat; 1193 int len, i; 1194 1195 len = idb->idb_buflen; 1196 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t); 1197 1198 bufpat = idb->idb_buf; 1199 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) { 1200 bufpat->bufpat_idb = idb; 1201 bufpat->bufpat_bufmagic = IDM_BUF_MAGIC; 1202 bufpat->bufpat_offset = i; 1203 bufpat++; 1204 } 1205 } 1206 1207 boolean_t 1208 idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type) 1209 { 1210 idm_bufpat_t *bufpat; 1211 int len, i; 1212 1213 len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len; 1214 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t); 1215 ASSERT(len <= idb->idb_buflen); 1216 bufpat = idb->idb_buf; 1217 1218 /* 1219 * Don't check the pattern in buffers that came from outside IDM 1220 * (these will be buffers from the initiator that we opted not 1221 * to double-buffer) 1222 */ 1223 if (!idb->idb_bufalloc) 1224 return (B_FALSE); 1225 1226 /* 1227 * Return true if we find the pattern anywhere in the buffer 1228 */ 1229 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) { 1230 if (BUFPAT_MATCH(bufpat, idb)) { 1231 IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: " 1232 "idb %p bufpat %p " 1233 "bufpat_idb=%p bufmagic=%08x offset=%08x", 1234 (void *)idb, (void *)bufpat, bufpat->bufpat_idb, 1235 bufpat->bufpat_bufmagic, bufpat->bufpat_offset); 1236 DTRACE_PROBE2(bufpat__pattern__found, 1237 idm_buf_t *, idb, idm_bufpat_t *, bufpat); 1238 if (type == BP_CHECK_ASSERT) { 1239 ASSERT(0); 1240 } 1241 return (B_TRUE); 1242 } 1243 bufpat++; 1244 } 1245 1246 return (B_FALSE); 1247 } 1248 1249 /* 1250 * idm_task_alloc 1251 * 1252 * This function will allocate a idm_task_t structure. A task tag is also 1253 * generated and saved in idt_tt. The task is not active. 1254 */ 1255 idm_task_t * 1256 idm_task_alloc(idm_conn_t *ic) 1257 { 1258 idm_task_t *idt; 1259 1260 ASSERT(ic != NULL); 1261 1262 /* Don't allocate new tasks if we are not in FFP */ 1263 if (!ic->ic_ffp) { 1264 return (NULL); 1265 } 1266 idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP); 1267 if (idt == NULL) { 1268 return (NULL); 1269 } 1270 1271 ASSERT(list_is_empty(&idt->idt_inbufv)); 1272 ASSERT(list_is_empty(&idt->idt_outbufv)); 1273 1274 mutex_enter(&ic->ic_state_mutex); 1275 if (!ic->ic_ffp) { 1276 mutex_exit(&ic->ic_state_mutex); 1277 kmem_cache_free(idm.idm_task_cache, idt); 1278 return (NULL); 1279 } 1280 idm_conn_hold(ic); 1281 mutex_exit(&ic->ic_state_mutex); 1282 1283 idt->idt_state = TASK_IDLE; 1284 idt->idt_ic = ic; 1285 idt->idt_private = NULL; 1286 idt->idt_exp_datasn = 0; 1287 idt->idt_exp_rttsn = 0; 1288 idt->idt_flags = 0; 1289 return (idt); 1290 } 1291 1292 /* 1293 * idm_task_start 1294 * 1295 * Mark the task active and initialize some stats. The caller 1296 * sets up the idm_task_t structure with a prior call to idm_task_alloc(). 1297 * The task service does not function as a task/work engine, it is the 1298 * responsibility of the initiator to start the data transfer and free the 1299 * resources. 1300 */ 1301 void 1302 idm_task_start(idm_task_t *idt, uintptr_t handle) 1303 { 1304 ASSERT(idt != NULL); 1305 1306 /* mark the task as ACTIVE */ 1307 idt->idt_state = TASK_ACTIVE; 1308 idt->idt_client_handle = handle; 1309 idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done = 1310 idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done = 1311 idt->idt_tx_bytes = idt->idt_rx_bytes = 0; 1312 } 1313 1314 /* 1315 * idm_task_done 1316 * 1317 * This function sets the state to indicate that the task is no longer active. 1318 */ 1319 void 1320 idm_task_done(idm_task_t *idt) 1321 { 1322 ASSERT(idt != NULL); 1323 1324 mutex_enter(&idt->idt_mutex); 1325 idt->idt_state = TASK_IDLE; 1326 mutex_exit(&idt->idt_mutex); 1327 1328 /* 1329 * Although unlikely it is possible for a reference to come in after 1330 * the client has decided the task is over but before we've marked 1331 * the task idle. One specific unavoidable scenario is the case where 1332 * received PDU with the matching ITT/TTT results in a successful 1333 * lookup of this task. We are at the mercy of the remote node in 1334 * that case so we need to handle it. Now that the task state 1335 * has changed no more references will occur so a simple call to 1336 * idm_refcnt_wait_ref should deal with the situation. 1337 */ 1338 idm_refcnt_wait_ref(&idt->idt_refcnt); 1339 idm_refcnt_reset(&idt->idt_refcnt); 1340 } 1341 1342 /* 1343 * idm_task_free 1344 * 1345 * This function will free the Task Tag and the memory allocated for the task 1346 * idm_task_done should be called prior to this call 1347 */ 1348 void 1349 idm_task_free(idm_task_t *idt) 1350 { 1351 idm_conn_t *ic; 1352 1353 ASSERT(idt != NULL); 1354 ASSERT(idt->idt_refcnt.ir_refcnt == 0); 1355 ASSERT(idt->idt_state == TASK_IDLE); 1356 1357 ic = idt->idt_ic; 1358 1359 /* 1360 * It's possible for items to still be in the idt_inbufv list if 1361 * they were added after idm_free_task_rsrc was called. We rely on 1362 * STMF to free all buffers associated with the task however STMF 1363 * doesn't know that we have this reference to the buffers. 1364 * Use list_create so that we don't end up with stale references 1365 * to these buffers. 1366 */ 1367 list_create(&idt->idt_inbufv, sizeof (idm_buf_t), 1368 offsetof(idm_buf_t, idb_buflink)); 1369 list_create(&idt->idt_outbufv, sizeof (idm_buf_t), 1370 offsetof(idm_buf_t, idb_buflink)); 1371 1372 kmem_cache_free(idm.idm_task_cache, idt); 1373 1374 idm_conn_rele(ic); 1375 } 1376 1377 /* 1378 * idm_task_find_common 1379 * common code for idm_task_find() and idm_task_find_and_complete() 1380 */ 1381 /*ARGSUSED*/ 1382 static idm_task_t * 1383 idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt, 1384 boolean_t complete) 1385 { 1386 uint32_t tt, client_handle; 1387 idm_task_t *idt; 1388 1389 /* 1390 * Must match both itt and ttt. The table is indexed by itt 1391 * for initiator connections and ttt for target connections. 1392 */ 1393 if (IDM_CONN_ISTGT(ic)) { 1394 tt = ttt; 1395 client_handle = itt; 1396 } else { 1397 tt = itt; 1398 client_handle = ttt; 1399 } 1400 1401 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1402 if (tt >= idm.idm_taskid_max) { 1403 rw_exit(&idm.idm_taskid_table_lock); 1404 return (NULL); 1405 } 1406 1407 idt = idm.idm_taskid_table[tt]; 1408 1409 if (idt != NULL) { 1410 mutex_enter(&idt->idt_mutex); 1411 if ((idt->idt_state != TASK_ACTIVE) || 1412 (idt->idt_ic != ic) || 1413 (IDM_CONN_ISTGT(ic) && 1414 (idt->idt_client_handle != client_handle))) { 1415 /* 1416 * Task doesn't match or task is aborting and 1417 * we don't want any more references. 1418 */ 1419 if ((idt->idt_ic != ic) && 1420 (idt->idt_state == TASK_ACTIVE) && 1421 (IDM_CONN_ISINI(ic) || idt->idt_client_handle == 1422 client_handle)) { 1423 IDM_CONN_LOG(CE_WARN, 1424 "idm_task_find: wrong connection %p != %p", 1425 (void *)ic, (void *)idt->idt_ic); 1426 } 1427 mutex_exit(&idt->idt_mutex); 1428 rw_exit(&idm.idm_taskid_table_lock); 1429 return (NULL); 1430 } 1431 idm_task_hold(idt); 1432 /* 1433 * Set the task state to TASK_COMPLETE so it can no longer 1434 * be found or aborted. 1435 */ 1436 if (B_TRUE == complete) 1437 idt->idt_state = TASK_COMPLETE; 1438 mutex_exit(&idt->idt_mutex); 1439 } 1440 rw_exit(&idm.idm_taskid_table_lock); 1441 1442 return (idt); 1443 } 1444 1445 /* 1446 * This function looks up a task by task tag. 1447 */ 1448 idm_task_t * 1449 idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt) 1450 { 1451 return (idm_task_find_common(ic, itt, ttt, B_FALSE)); 1452 } 1453 1454 /* 1455 * This function looks up a task by task tag. If found, the task state 1456 * is atomically set to TASK_COMPLETE so it can longer be found or aborted. 1457 */ 1458 idm_task_t * 1459 idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt) 1460 { 1461 return (idm_task_find_common(ic, itt, ttt, B_TRUE)); 1462 } 1463 1464 /* 1465 * idm_task_find_by_handle 1466 * 1467 * This function looks up a task by the client-private idt_client_handle. 1468 * 1469 * This function should NEVER be called in the performance path. It is 1470 * intended strictly for error recovery/task management. 1471 */ 1472 /*ARGSUSED*/ 1473 void * 1474 idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle) 1475 { 1476 idm_task_t *idt = NULL; 1477 int idx = 0; 1478 1479 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1480 1481 for (idx = 0; idx < idm.idm_taskid_max; idx++) { 1482 idt = idm.idm_taskid_table[idx]; 1483 1484 if (idt == NULL) 1485 continue; 1486 1487 mutex_enter(&idt->idt_mutex); 1488 1489 if (idt->idt_state != TASK_ACTIVE) { 1490 /* 1491 * Task is either in suspend, abort, or already 1492 * complete. 1493 */ 1494 mutex_exit(&idt->idt_mutex); 1495 continue; 1496 } 1497 1498 if (idt->idt_client_handle == handle) { 1499 idm_task_hold(idt); 1500 mutex_exit(&idt->idt_mutex); 1501 break; 1502 } 1503 1504 mutex_exit(&idt->idt_mutex); 1505 } 1506 1507 rw_exit(&idm.idm_taskid_table_lock); 1508 1509 if ((idt == NULL) || (idx == idm.idm_taskid_max)) 1510 return (NULL); 1511 1512 return (idt->idt_private); 1513 } 1514 1515 void 1516 idm_task_hold(idm_task_t *idt) 1517 { 1518 idm_refcnt_hold(&idt->idt_refcnt); 1519 } 1520 1521 void 1522 idm_task_rele(idm_task_t *idt) 1523 { 1524 idm_refcnt_rele(&idt->idt_refcnt); 1525 } 1526 1527 stmf_status_t 1528 idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type) 1529 { 1530 idm_task_t *task; 1531 int idx; 1532 stmf_status_t s = STMF_SUCCESS; 1533 1534 /* 1535 * Passing NULL as the task indicates that all tasks 1536 * for this connection should be aborted. 1537 */ 1538 if (idt == NULL) { 1539 /* 1540 * Only the connection state machine should ask for 1541 * all tasks to abort and this should never happen in FFP. 1542 */ 1543 ASSERT(!ic->ic_ffp); 1544 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1545 for (idx = 0; idx < idm.idm_taskid_max; idx++) { 1546 task = idm.idm_taskid_table[idx]; 1547 if (task == NULL) 1548 continue; 1549 mutex_enter(&task->idt_mutex); 1550 if ((task->idt_state != TASK_IDLE) && 1551 (task->idt_state != TASK_COMPLETE) && 1552 (task->idt_ic == ic)) { 1553 rw_exit(&idm.idm_taskid_table_lock); 1554 s = idm_task_abort_one(ic, task, abort_type); 1555 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1556 } else 1557 mutex_exit(&task->idt_mutex); 1558 } 1559 rw_exit(&idm.idm_taskid_table_lock); 1560 } else { 1561 mutex_enter(&idt->idt_mutex); 1562 s = idm_task_abort_one(ic, idt, abort_type); 1563 } 1564 return (s); 1565 } 1566 1567 static void 1568 idm_task_abort_unref_cb(void *ref) 1569 { 1570 idm_task_t *idt = ref; 1571 1572 mutex_enter(&idt->idt_mutex); 1573 switch (idt->idt_state) { 1574 case TASK_SUSPENDING: 1575 idt->idt_state = TASK_SUSPENDED; 1576 mutex_exit(&idt->idt_mutex); 1577 idm_task_aborted(idt, IDM_STATUS_SUSPENDED); 1578 return; 1579 case TASK_ABORTING: 1580 idt->idt_state = TASK_ABORTED; 1581 mutex_exit(&idt->idt_mutex); 1582 idm_task_aborted(idt, IDM_STATUS_ABORTED); 1583 return; 1584 default: 1585 mutex_exit(&idt->idt_mutex); 1586 ASSERT(0); 1587 break; 1588 } 1589 } 1590 1591 /* 1592 * Abort the idm task. 1593 * Caller must hold the task mutex, which will be released before return 1594 */ 1595 static stmf_status_t 1596 idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type) 1597 { 1598 stmf_status_t s = STMF_SUCCESS; 1599 1600 /* Caller must hold connection mutex */ 1601 ASSERT(mutex_owned(&idt->idt_mutex)); 1602 switch (idt->idt_state) { 1603 case TASK_ACTIVE: 1604 switch (abort_type) { 1605 case AT_INTERNAL_SUSPEND: 1606 /* Call transport to release any resources */ 1607 idt->idt_state = TASK_SUSPENDING; 1608 mutex_exit(&idt->idt_mutex); 1609 ic->ic_transport_ops->it_free_task_rsrc(idt); 1610 1611 /* 1612 * Wait for outstanding references. When all 1613 * references are released the callback will call 1614 * idm_task_aborted(). 1615 */ 1616 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1617 &idm_task_abort_unref_cb); 1618 return (s); 1619 case AT_INTERNAL_ABORT: 1620 case AT_TASK_MGMT_ABORT: 1621 idt->idt_state = TASK_ABORTING; 1622 mutex_exit(&idt->idt_mutex); 1623 ic->ic_transport_ops->it_free_task_rsrc(idt); 1624 1625 /* 1626 * Wait for outstanding references. When all 1627 * references are released the callback will call 1628 * idm_task_aborted(). 1629 */ 1630 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1631 &idm_task_abort_unref_cb); 1632 return (s); 1633 default: 1634 ASSERT(0); 1635 } 1636 break; 1637 case TASK_SUSPENDING: 1638 /* Already called transport_free_task_rsrc(); */ 1639 switch (abort_type) { 1640 case AT_INTERNAL_SUSPEND: 1641 /* Already doing it */ 1642 break; 1643 case AT_INTERNAL_ABORT: 1644 case AT_TASK_MGMT_ABORT: 1645 idt->idt_state = TASK_ABORTING; 1646 break; 1647 default: 1648 ASSERT(0); 1649 } 1650 break; 1651 case TASK_SUSPENDED: 1652 /* Already called transport_free_task_rsrc(); */ 1653 switch (abort_type) { 1654 case AT_INTERNAL_SUSPEND: 1655 /* Already doing it */ 1656 break; 1657 case AT_INTERNAL_ABORT: 1658 case AT_TASK_MGMT_ABORT: 1659 idt->idt_state = TASK_ABORTING; 1660 mutex_exit(&idt->idt_mutex); 1661 1662 /* 1663 * We could probably call idm_task_aborted directly 1664 * here but we may be holding the conn lock. It's 1665 * easier to just switch contexts. Even though 1666 * we shouldn't really have any references we'll 1667 * set the state to TASK_ABORTING instead of 1668 * TASK_ABORTED so we can use the same code path. 1669 */ 1670 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1671 &idm_task_abort_unref_cb); 1672 return (s); 1673 default: 1674 ASSERT(0); 1675 } 1676 break; 1677 case TASK_ABORTING: 1678 case TASK_ABORTED: 1679 switch (abort_type) { 1680 case AT_INTERNAL_SUSPEND: 1681 /* We're already past this point... */ 1682 case AT_INTERNAL_ABORT: 1683 case AT_TASK_MGMT_ABORT: 1684 /* Already doing it */ 1685 break; 1686 default: 1687 ASSERT(0); 1688 } 1689 break; 1690 case TASK_COMPLETE: 1691 idm_refcnt_wait_ref(&idt->idt_refcnt); 1692 s = STMF_ABORT_SUCCESS; 1693 break; 1694 default: 1695 ASSERT(0); 1696 } 1697 mutex_exit(&idt->idt_mutex); 1698 1699 return (s); 1700 } 1701 1702 static void 1703 idm_task_aborted(idm_task_t *idt, idm_status_t status) 1704 { 1705 (*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status); 1706 } 1707 1708 /* 1709 * idm_pdu_tx 1710 * 1711 * This is IDM's implementation of the 'Send_Control' operational primitive. 1712 * This function is invoked by an initiator iSCSI layer requesting the transfer 1713 * of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a 1714 * iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover 1715 * layer to the peer iSCSI layer in the remote iSCSI node. The connection info 1716 * and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size 1717 * are provided as input. 1718 * 1719 */ 1720 void 1721 idm_pdu_tx(idm_pdu_t *pdu) 1722 { 1723 idm_conn_t *ic = pdu->isp_ic; 1724 iscsi_async_evt_hdr_t *async_evt; 1725 1726 /* 1727 * If we are in full-featured mode then route SCSI-related 1728 * commands to the appropriate function vector without checking 1729 * the connection state. We will only be in full-feature mode 1730 * when we are in an acceptable state for SCSI PDU's. 1731 * 1732 * We also need to ensure that there are no PDU events outstanding 1733 * on the state machine. Any non-SCSI PDU's received in full-feature 1734 * mode will result in PDU events and until these have been handled 1735 * we need to route all PDU's through the state machine as PDU 1736 * events to maintain ordering. 1737 * 1738 * Note that IDM cannot enter FFP mode until it processes in 1739 * its state machine the last xmit of the login process. 1740 * Hence, checking the IDM_PDU_LOGIN_TX flag here would be 1741 * superfluous. 1742 */ 1743 mutex_enter(&ic->ic_state_mutex); 1744 if (ic->ic_ffp && (ic->ic_pdu_events == 0)) { 1745 mutex_exit(&ic->ic_state_mutex); 1746 switch (IDM_PDU_OPCODE(pdu)) { 1747 case ISCSI_OP_SCSI_RSP: 1748 /* Target only */ 1749 DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic, 1750 iscsi_scsi_rsp_hdr_t *, 1751 (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr); 1752 idm_pdu_tx_forward(ic, pdu); 1753 return; 1754 case ISCSI_OP_SCSI_TASK_MGT_RSP: 1755 /* Target only */ 1756 DTRACE_ISCSI_2(task__response, idm_conn_t *, ic, 1757 iscsi_text_rsp_hdr_t *, 1758 (iscsi_text_rsp_hdr_t *)pdu->isp_hdr); 1759 idm_pdu_tx_forward(ic, pdu); 1760 return; 1761 case ISCSI_OP_SCSI_DATA_RSP: 1762 /* Target only */ 1763 DTRACE_ISCSI_2(data__send, idm_conn_t *, ic, 1764 iscsi_data_rsp_hdr_t *, 1765 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr); 1766 idm_pdu_tx_forward(ic, pdu); 1767 return; 1768 case ISCSI_OP_RTT_RSP: 1769 /* Target only */ 1770 DTRACE_ISCSI_2(data__request, idm_conn_t *, ic, 1771 iscsi_rtt_hdr_t *, 1772 (iscsi_rtt_hdr_t *)pdu->isp_hdr); 1773 idm_pdu_tx_forward(ic, pdu); 1774 return; 1775 case ISCSI_OP_NOOP_IN: 1776 /* Target only */ 1777 DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic, 1778 iscsi_nop_in_hdr_t *, 1779 (iscsi_nop_in_hdr_t *)pdu->isp_hdr); 1780 idm_pdu_tx_forward(ic, pdu); 1781 return; 1782 case ISCSI_OP_TEXT_RSP: 1783 /* Target only */ 1784 DTRACE_ISCSI_2(text__response, idm_conn_t *, ic, 1785 iscsi_text_rsp_hdr_t *, 1786 (iscsi_text_rsp_hdr_t *)pdu->isp_hdr); 1787 idm_pdu_tx_forward(ic, pdu); 1788 return; 1789 case ISCSI_OP_TEXT_CMD: 1790 case ISCSI_OP_NOOP_OUT: 1791 case ISCSI_OP_SCSI_CMD: 1792 case ISCSI_OP_SCSI_DATA: 1793 case ISCSI_OP_SCSI_TASK_MGT_MSG: 1794 /* Initiator only */ 1795 idm_pdu_tx_forward(ic, pdu); 1796 return; 1797 default: 1798 break; 1799 } 1800 1801 mutex_enter(&ic->ic_state_mutex); 1802 } 1803 1804 /* 1805 * Any PDU's processed outside of full-feature mode and non-SCSI 1806 * PDU's in full-feature mode are handled by generating an 1807 * event to the connection state machine. The state machine 1808 * will validate the PDU against the current state and either 1809 * transmit the PDU if the opcode is allowed or handle an 1810 * error if the PDU is not allowed. 1811 * 1812 * This code-path will also generate any events that are implied 1813 * by the PDU opcode. For example a "login response" with success 1814 * status generates a CE_LOGOUT_SUCCESS_SND event. 1815 */ 1816 switch (IDM_PDU_OPCODE(pdu)) { 1817 case ISCSI_OP_LOGIN_CMD: 1818 idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu); 1819 break; 1820 case ISCSI_OP_LOGIN_RSP: 1821 DTRACE_ISCSI_2(login__response, idm_conn_t *, ic, 1822 iscsi_login_rsp_hdr_t *, 1823 (iscsi_login_rsp_hdr_t *)pdu->isp_hdr); 1824 idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE); 1825 break; 1826 case ISCSI_OP_LOGOUT_CMD: 1827 idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE); 1828 break; 1829 case ISCSI_OP_LOGOUT_RSP: 1830 DTRACE_ISCSI_2(logout__response, idm_conn_t *, ic, 1831 iscsi_logout_rsp_hdr_t *, 1832 (iscsi_logout_rsp_hdr_t *)pdu->isp_hdr); 1833 idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE); 1834 break; 1835 case ISCSI_OP_ASYNC_EVENT: 1836 DTRACE_ISCSI_2(async__send, idm_conn_t *, ic, 1837 iscsi_async_evt_hdr_t *, 1838 (iscsi_async_evt_hdr_t *)pdu->isp_hdr); 1839 async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr; 1840 switch (async_evt->async_event) { 1841 case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT: 1842 idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND, 1843 (uintptr_t)pdu); 1844 break; 1845 case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION: 1846 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND, 1847 (uintptr_t)pdu); 1848 break; 1849 case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS: 1850 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND, 1851 (uintptr_t)pdu); 1852 break; 1853 case ISCSI_ASYNC_EVENT_SCSI_EVENT: 1854 case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION: 1855 default: 1856 idm_conn_tx_pdu_event(ic, CE_MISC_TX, 1857 (uintptr_t)pdu); 1858 break; 1859 } 1860 break; 1861 case ISCSI_OP_SCSI_RSP: 1862 /* Target only */ 1863 DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic, 1864 iscsi_scsi_rsp_hdr_t *, 1865 (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr); 1866 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1867 break; 1868 case ISCSI_OP_SCSI_TASK_MGT_RSP: 1869 /* Target only */ 1870 DTRACE_ISCSI_2(task__response, idm_conn_t *, ic, 1871 iscsi_scsi_task_mgt_rsp_hdr_t *, 1872 (iscsi_scsi_task_mgt_rsp_hdr_t *)pdu->isp_hdr); 1873 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1874 break; 1875 case ISCSI_OP_SCSI_DATA_RSP: 1876 /* Target only */ 1877 DTRACE_ISCSI_2(data__send, idm_conn_t *, ic, 1878 iscsi_data_rsp_hdr_t *, 1879 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr); 1880 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1881 break; 1882 case ISCSI_OP_RTT_RSP: 1883 /* Target only */ 1884 DTRACE_ISCSI_2(data__request, idm_conn_t *, ic, 1885 iscsi_rtt_hdr_t *, 1886 (iscsi_rtt_hdr_t *)pdu->isp_hdr); 1887 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1888 break; 1889 case ISCSI_OP_NOOP_IN: 1890 /* Target only */ 1891 DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic, 1892 iscsi_nop_in_hdr_t *, 1893 (iscsi_nop_in_hdr_t *)pdu->isp_hdr); 1894 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1895 break; 1896 case ISCSI_OP_TEXT_RSP: 1897 /* Target only */ 1898 DTRACE_ISCSI_2(text__response, idm_conn_t *, ic, 1899 iscsi_text_rsp_hdr_t *, 1900 (iscsi_text_rsp_hdr_t *)pdu->isp_hdr); 1901 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1902 break; 1903 /* Initiator only */ 1904 case ISCSI_OP_SCSI_CMD: 1905 case ISCSI_OP_SCSI_TASK_MGT_MSG: 1906 case ISCSI_OP_SCSI_DATA: 1907 case ISCSI_OP_NOOP_OUT: 1908 case ISCSI_OP_TEXT_CMD: 1909 case ISCSI_OP_SNACK_CMD: 1910 case ISCSI_OP_REJECT_MSG: 1911 default: 1912 /* 1913 * Connection state machine will validate these PDU's against 1914 * the current state. A PDU not allowed in the current 1915 * state will cause a protocol error. 1916 */ 1917 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1918 break; 1919 } 1920 mutex_exit(&ic->ic_state_mutex); 1921 } 1922 1923 /* 1924 * Common allocation of a PDU along with memory for header and data. 1925 */ 1926 static idm_pdu_t * 1927 idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag) 1928 { 1929 idm_pdu_t *result; 1930 1931 /* 1932 * IDM clients should cache these structures for performance 1933 * critical paths. We can't cache effectively in IDM because we 1934 * don't know the correct header and data size. 1935 * 1936 * Valid header length is assumed to be hdrlen and valid data 1937 * length is assumed to be datalen. isp_hdrlen and isp_datalen 1938 * can be adjusted after the PDU is returned if necessary. 1939 */ 1940 result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag); 1941 if (result != NULL) { 1942 /* For idm_pdu_free sanity check */ 1943 result->isp_flags |= IDM_PDU_ALLOC; 1944 /* pointer arithmetic */ 1945 result->isp_hdr = (iscsi_hdr_t *)(result + 1); 1946 result->isp_hdrlen = hdrlen; 1947 result->isp_hdrbuflen = hdrlen; 1948 result->isp_transport_hdrlen = 0; 1949 if (datalen != 0) 1950 result->isp_data = (uint8_t *)result->isp_hdr + hdrlen; 1951 result->isp_datalen = datalen; 1952 result->isp_databuflen = datalen; 1953 result->isp_magic = IDM_PDU_MAGIC; 1954 } 1955 1956 return (result); 1957 } 1958 1959 /* 1960 * Typical idm_pdu_alloc invocation, will block for resources. 1961 */ 1962 idm_pdu_t * 1963 idm_pdu_alloc(uint_t hdrlen, uint_t datalen) 1964 { 1965 return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP)); 1966 } 1967 1968 /* 1969 * Non-blocking idm_pdu_alloc implementation, returns NULL if resources 1970 * are not available. Needed for transport-layer allocations which may 1971 * be invoking in interrupt context. 1972 */ 1973 idm_pdu_t * 1974 idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen) 1975 { 1976 return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP)); 1977 } 1978 1979 /* 1980 * Free a PDU previously allocated with idm_pdu_alloc() including any 1981 * header and data space allocated as part of the original request. 1982 * Additional memory regions referenced by subsequent modification of 1983 * the isp_hdr and/or isp_data fields will not be freed. 1984 */ 1985 void 1986 idm_pdu_free(idm_pdu_t *pdu) 1987 { 1988 /* Make sure the structure was allocated using idm_pdu_alloc() */ 1989 ASSERT(pdu->isp_flags & IDM_PDU_ALLOC); 1990 kmem_free(pdu, 1991 sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen); 1992 } 1993 1994 /* 1995 * Initialize the connection, private and callback fields in a PDU. 1996 */ 1997 void 1998 idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb) 1999 { 2000 /* 2001 * idm_pdu_complete() will call idm_pdu_free if the callback is 2002 * NULL. This will only work if the PDU was originally allocated 2003 * with idm_pdu_alloc(). 2004 */ 2005 ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) || 2006 (cb != NULL)); 2007 pdu->isp_magic = IDM_PDU_MAGIC; 2008 pdu->isp_ic = ic; 2009 pdu->isp_private = private; 2010 pdu->isp_callback = cb; 2011 } 2012 2013 /* 2014 * Initialize the header and header length field. This function should 2015 * not be used to adjust the header length in a buffer allocated via 2016 * pdu_pdu_alloc since it overwrites the existing header pointer. 2017 */ 2018 void 2019 idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen) 2020 { 2021 pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr); 2022 pdu->isp_hdrlen = hdrlen; 2023 } 2024 2025 /* 2026 * Initialize the data and data length fields. This function should 2027 * not be used to adjust the data length of a buffer allocated via 2028 * idm_pdu_alloc since it overwrites the existing data pointer. 2029 */ 2030 void 2031 idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen) 2032 { 2033 pdu->isp_data = data; 2034 pdu->isp_datalen = datalen; 2035 } 2036 2037 void 2038 idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status) 2039 { 2040 if (pdu->isp_callback) { 2041 pdu->isp_status = status; 2042 (*pdu->isp_callback)(pdu, status); 2043 } else { 2044 idm_pdu_free(pdu); 2045 } 2046 } 2047 2048 /* 2049 * State machine auditing 2050 */ 2051 2052 void 2053 idm_sm_audit_init(sm_audit_buf_t *audit_buf) 2054 { 2055 bzero(audit_buf, sizeof (sm_audit_buf_t)); 2056 audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1; 2057 } 2058 2059 static 2060 sm_audit_record_t * 2061 idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type, 2062 sm_audit_sm_type_t sm_type, 2063 int current_state) 2064 { 2065 sm_audit_record_t *sar; 2066 2067 sar = audit_buf->sab_records; 2068 sar += audit_buf->sab_index; 2069 audit_buf->sab_index++; 2070 audit_buf->sab_index &= audit_buf->sab_max_index; 2071 2072 sar->sar_type = r_type; 2073 gethrestime(&sar->sar_timestamp); 2074 sar->sar_sm_type = sm_type; 2075 sar->sar_state = current_state; 2076 2077 return (sar); 2078 } 2079 2080 void 2081 idm_sm_audit_event(sm_audit_buf_t *audit_buf, 2082 sm_audit_sm_type_t sm_type, int current_state, 2083 int event, uintptr_t event_info) 2084 { 2085 sm_audit_record_t *sar; 2086 2087 sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT, 2088 sm_type, current_state); 2089 sar->sar_event = event; 2090 sar->sar_event_info = event_info; 2091 } 2092 2093 void 2094 idm_sm_audit_state_change(sm_audit_buf_t *audit_buf, 2095 sm_audit_sm_type_t sm_type, int current_state, int new_state) 2096 { 2097 sm_audit_record_t *sar; 2098 2099 sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE, 2100 sm_type, current_state); 2101 sar->sar_new_state = new_state; 2102 } 2103 2104 2105 /* 2106 * Object reference tracking 2107 */ 2108 2109 void 2110 idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj) 2111 { 2112 bzero(refcnt, sizeof (*refcnt)); 2113 idm_refcnt_reset(refcnt); 2114 refcnt->ir_referenced_obj = referenced_obj; 2115 bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t)); 2116 refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1; 2117 mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL); 2118 cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL); 2119 } 2120 2121 void 2122 idm_refcnt_destroy(idm_refcnt_t *refcnt) 2123 { 2124 /* 2125 * Grab the mutex to there are no other lingering threads holding 2126 * the mutex before we destroy it (e.g. idm_refcnt_rele just after 2127 * the refcnt goes to zero if ir_waiting == REF_WAIT_ASYNC) 2128 */ 2129 mutex_enter(&refcnt->ir_mutex); 2130 ASSERT(refcnt->ir_refcnt == 0); 2131 cv_destroy(&refcnt->ir_cv); 2132 mutex_destroy(&refcnt->ir_mutex); 2133 } 2134 2135 void 2136 idm_refcnt_reset(idm_refcnt_t *refcnt) 2137 { 2138 refcnt->ir_waiting = REF_NOWAIT; 2139 refcnt->ir_refcnt = 0; 2140 } 2141 2142 void 2143 idm_refcnt_hold(idm_refcnt_t *refcnt) 2144 { 2145 /* 2146 * Nothing should take a hold on an object after a call to 2147 * idm_refcnt_wait_ref or idm_refcnd_async_wait_ref 2148 */ 2149 ASSERT(refcnt->ir_waiting == REF_NOWAIT); 2150 2151 mutex_enter(&refcnt->ir_mutex); 2152 refcnt->ir_refcnt++; 2153 REFCNT_AUDIT(refcnt); 2154 mutex_exit(&refcnt->ir_mutex); 2155 } 2156 2157 static void 2158 idm_refcnt_unref_task(void *refcnt_void) 2159 { 2160 idm_refcnt_t *refcnt = refcnt_void; 2161 2162 REFCNT_AUDIT(refcnt); 2163 (*refcnt->ir_cb)(refcnt->ir_referenced_obj); 2164 } 2165 2166 void 2167 idm_refcnt_rele(idm_refcnt_t *refcnt) 2168 { 2169 mutex_enter(&refcnt->ir_mutex); 2170 ASSERT(refcnt->ir_refcnt > 0); 2171 refcnt->ir_refcnt--; 2172 REFCNT_AUDIT(refcnt); 2173 if (refcnt->ir_waiting == REF_NOWAIT) { 2174 /* No one is waiting on this object */ 2175 mutex_exit(&refcnt->ir_mutex); 2176 return; 2177 } 2178 2179 /* 2180 * Someone is waiting for this object to go idle so check if 2181 * refcnt is 0. Waiting on an object then later grabbing another 2182 * reference is not allowed so we don't need to handle that case. 2183 */ 2184 if (refcnt->ir_refcnt == 0) { 2185 if (refcnt->ir_waiting == REF_WAIT_ASYNC) { 2186 if (taskq_dispatch(idm.idm_global_taskq, 2187 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == 2188 TASKQID_INVALID) { 2189 cmn_err(CE_WARN, 2190 "idm_refcnt_rele: Couldn't dispatch task"); 2191 } 2192 } else if (refcnt->ir_waiting == REF_WAIT_SYNC) { 2193 cv_signal(&refcnt->ir_cv); 2194 } 2195 } 2196 mutex_exit(&refcnt->ir_mutex); 2197 } 2198 2199 void 2200 idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func) 2201 { 2202 mutex_enter(&refcnt->ir_mutex); 2203 ASSERT(refcnt->ir_refcnt > 0); 2204 refcnt->ir_refcnt--; 2205 REFCNT_AUDIT(refcnt); 2206 2207 /* 2208 * Someone is waiting for this object to go idle so check if 2209 * refcnt is 0. Waiting on an object then later grabbing another 2210 * reference is not allowed so we don't need to handle that case. 2211 */ 2212 if (refcnt->ir_refcnt == 0) { 2213 refcnt->ir_cb = cb_func; 2214 refcnt->ir_waiting = REF_WAIT_ASYNC; 2215 if (taskq_dispatch(idm.idm_global_taskq, 2216 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == 2217 TASKQID_INVALID) { 2218 cmn_err(CE_WARN, 2219 "idm_refcnt_rele: Couldn't dispatch task"); 2220 } 2221 } 2222 mutex_exit(&refcnt->ir_mutex); 2223 } 2224 2225 void 2226 idm_refcnt_wait_ref(idm_refcnt_t *refcnt) 2227 { 2228 mutex_enter(&refcnt->ir_mutex); 2229 refcnt->ir_waiting = REF_WAIT_SYNC; 2230 REFCNT_AUDIT(refcnt); 2231 while (refcnt->ir_refcnt != 0) 2232 cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex); 2233 mutex_exit(&refcnt->ir_mutex); 2234 } 2235 2236 void 2237 idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func) 2238 { 2239 mutex_enter(&refcnt->ir_mutex); 2240 refcnt->ir_waiting = REF_WAIT_ASYNC; 2241 refcnt->ir_cb = cb_func; 2242 REFCNT_AUDIT(refcnt); 2243 /* 2244 * It's possible we don't have any references. To make things easier 2245 * on the caller use a taskq to call the callback instead of 2246 * calling it synchronously 2247 */ 2248 if (refcnt->ir_refcnt == 0) { 2249 if (taskq_dispatch(idm.idm_global_taskq, 2250 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == 2251 TASKQID_INVALID) { 2252 cmn_err(CE_WARN, 2253 "idm_refcnt_async_wait_ref: " 2254 "Couldn't dispatch task"); 2255 } 2256 } 2257 mutex_exit(&refcnt->ir_mutex); 2258 } 2259 2260 void 2261 idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt, 2262 idm_refcnt_cb_t *cb_func) 2263 { 2264 mutex_enter(&refcnt->ir_mutex); 2265 if (refcnt->ir_refcnt == 0) { 2266 mutex_exit(&refcnt->ir_mutex); 2267 (*cb_func)(refcnt->ir_referenced_obj); 2268 return; 2269 } 2270 mutex_exit(&refcnt->ir_mutex); 2271 } 2272 2273 /* 2274 * used to determine the status of the refcnt. 2275 * 2276 * if refcnt is 0 return is 0 2277 * if refcnt is negative return is -1 2278 * if refcnt > 0 and no waiters return is 1 2279 * if refcnt > 0 and waiters return is 2 2280 */ 2281 int 2282 idm_refcnt_is_held(idm_refcnt_t *refcnt) 2283 { 2284 if (refcnt->ir_refcnt < 0) 2285 return (-1); 2286 2287 if (refcnt->ir_refcnt == 0) 2288 return (0); 2289 2290 if (refcnt->ir_waiting == REF_NOWAIT && refcnt->ir_refcnt > 0) 2291 return (1); 2292 2293 return (2); 2294 } 2295 2296 void 2297 idm_conn_hold(idm_conn_t *ic) 2298 { 2299 idm_refcnt_hold(&ic->ic_refcnt); 2300 } 2301 2302 void 2303 idm_conn_rele(idm_conn_t *ic) 2304 { 2305 idm_refcnt_rele(&ic->ic_refcnt); 2306 } 2307 2308 void 2309 idm_conn_set_target_name(idm_conn_t *ic, char *target_name) 2310 { 2311 (void) strlcpy(ic->ic_target_name, target_name, ISCSI_MAX_NAME_LEN + 1); 2312 } 2313 2314 void 2315 idm_conn_set_initiator_name(idm_conn_t *ic, char *initiator_name) 2316 { 2317 (void) strlcpy(ic->ic_initiator_name, initiator_name, 2318 ISCSI_MAX_NAME_LEN + 1); 2319 } 2320 2321 void 2322 idm_conn_set_isid(idm_conn_t *ic, uint8_t isid[ISCSI_ISID_LEN]) 2323 { 2324 (void) snprintf(ic->ic_isid, ISCSI_MAX_ISID_LEN + 1, 2325 "%02x%02x%02x%02x%02x%02x", 2326 isid[0], isid[1], isid[2], isid[3], isid[4], isid[5]); 2327 } 2328 2329 static int 2330 _idm_init(void) 2331 { 2332 /* Initialize the rwlock for the taskid table */ 2333 rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL); 2334 2335 /* Initialize the global mutex and taskq */ 2336 mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL); 2337 2338 cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL); 2339 cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL); 2340 2341 /* 2342 * The maximum allocation needs to be high here since there can be 2343 * many concurrent tasks using the global taskq. 2344 */ 2345 idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri, 2346 128, 16384, TASKQ_PREPOPULATE); 2347 if (idm.idm_global_taskq == NULL) { 2348 cv_destroy(&idm.idm_wd_cv); 2349 cv_destroy(&idm.idm_tgt_svc_cv); 2350 mutex_destroy(&idm.idm_global_mutex); 2351 rw_destroy(&idm.idm_taskid_table_lock); 2352 return (ENOMEM); 2353 } 2354 2355 /* Start watchdog thread */ 2356 idm.idm_wd_thread = thread_create(NULL, 0, 2357 idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri); 2358 if (idm.idm_wd_thread == NULL) { 2359 /* Couldn't create the watchdog thread */ 2360 taskq_destroy(idm.idm_global_taskq); 2361 cv_destroy(&idm.idm_wd_cv); 2362 cv_destroy(&idm.idm_tgt_svc_cv); 2363 mutex_destroy(&idm.idm_global_mutex); 2364 rw_destroy(&idm.idm_taskid_table_lock); 2365 return (ENOMEM); 2366 } 2367 2368 /* Pause until the watchdog thread is running */ 2369 mutex_enter(&idm.idm_global_mutex); 2370 while (!idm.idm_wd_thread_running) 2371 cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex); 2372 mutex_exit(&idm.idm_global_mutex); 2373 2374 /* 2375 * Allocate the task ID table and set "next" to 0. 2376 */ 2377 2378 idm.idm_taskid_max = idm_max_taskids; 2379 idm.idm_taskid_table = (idm_task_t **) 2380 kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP); 2381 idm.idm_taskid_next = 0; 2382 2383 /* Create the global buffer and task kmem caches */ 2384 idm.idm_buf_cache = kmem_cache_create("idm_buf_cache", 2385 sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP); 2386 2387 /* 2388 * Note, we're explicitly allocating an additional iSER header- 2389 * sized chunk for each of these elements. See idm_task_constructor(). 2390 */ 2391 idm.idm_task_cache = kmem_cache_create("idm_task_cache", 2392 sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8, 2393 &idm_task_constructor, &idm_task_destructor, 2394 NULL, NULL, NULL, KM_SLEEP); 2395 2396 /* Create the service and connection context lists */ 2397 list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t), 2398 offsetof(idm_svc_t, is_list_node)); 2399 list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t), 2400 offsetof(idm_conn_t, ic_list_node)); 2401 list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t), 2402 offsetof(idm_conn_t, ic_list_node)); 2403 2404 /* Initialize the native sockets transport */ 2405 idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]); 2406 2407 /* Create connection ID pool */ 2408 (void) idm_idpool_create(&idm.idm_conn_id_pool); 2409 2410 return (DDI_SUCCESS); 2411 } 2412 2413 static int 2414 _idm_fini(void) 2415 { 2416 if (!list_is_empty(&idm.idm_ini_conn_list) || 2417 !list_is_empty(&idm.idm_tgt_conn_list) || 2418 !list_is_empty(&idm.idm_tgt_svc_list)) { 2419 return (EBUSY); 2420 } 2421 2422 mutex_enter(&idm.idm_global_mutex); 2423 idm.idm_wd_thread_running = B_FALSE; 2424 cv_signal(&idm.idm_wd_cv); 2425 mutex_exit(&idm.idm_global_mutex); 2426 2427 thread_join(idm.idm_wd_thread_did); 2428 2429 idm_idpool_destroy(&idm.idm_conn_id_pool); 2430 2431 /* Close any LDI handles we have open on transport drivers */ 2432 mutex_enter(&idm.idm_global_mutex); 2433 idm_transport_teardown(); 2434 mutex_exit(&idm.idm_global_mutex); 2435 2436 /* Teardown the native sockets transport */ 2437 idm_so_fini(); 2438 2439 list_destroy(&idm.idm_ini_conn_list); 2440 list_destroy(&idm.idm_tgt_conn_list); 2441 list_destroy(&idm.idm_tgt_svc_list); 2442 kmem_cache_destroy(idm.idm_task_cache); 2443 kmem_cache_destroy(idm.idm_buf_cache); 2444 kmem_free(idm.idm_taskid_table, 2445 idm.idm_taskid_max * sizeof (idm_task_t *)); 2446 mutex_destroy(&idm.idm_global_mutex); 2447 cv_destroy(&idm.idm_wd_cv); 2448 cv_destroy(&idm.idm_tgt_svc_cv); 2449 rw_destroy(&idm.idm_taskid_table_lock); 2450 2451 return (0); 2452 } 2453