xref: /illumos-gate/usr/src/uts/common/io/idm/idm.c (revision 4eaa471005973e11a6110b69fe990530b3b95a38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/cpuvar.h>
27 #include <sys/conf.h>
28 #include <sys/file.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/modctl.h>
32 
33 #include <sys/socket.h>
34 #include <sys/strsubr.h>
35 #include <sys/sysmacros.h>
36 
37 #include <sys/socketvar.h>
38 #include <netinet/in.h>
39 
40 #include <sys/idm/idm.h>
41 #include <sys/idm/idm_so.h>
42 
43 #define	IDM_NAME_VERSION	"iSCSI Data Mover"
44 
45 extern struct mod_ops mod_miscops;
46 extern struct mod_ops mod_miscops;
47 
48 static struct modlmisc modlmisc = {
49 	&mod_miscops,	/* Type of module */
50 	IDM_NAME_VERSION
51 };
52 
53 static struct modlinkage modlinkage = {
54 	MODREV_1, (void *)&modlmisc, NULL
55 };
56 
57 extern int idm_task_compare(const void *t1, const void *t2);
58 extern void idm_wd_thread(void *arg);
59 
60 static int _idm_init(void);
61 static int _idm_fini(void);
62 static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf);
63 static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf);
64 static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf);
65 static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf);
66 static void idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt,
67     idm_abort_type_t abort_type);
68 static void idm_task_aborted(idm_task_t *idt, idm_status_t status);
69 static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen,
70     int sleepflag);
71 
72 boolean_t idm_conn_logging = 0;
73 boolean_t idm_svc_logging = 0;
74 #ifdef DEBUG
75 boolean_t idm_pattern_checking = 1;
76 #else
77 boolean_t idm_pattern_checking = 0;
78 #endif
79 
80 /*
81  * Potential tuneable for the maximum number of tasks.  Default to
82  * IDM_TASKIDS_MAX
83  */
84 
85 uint32_t	idm_max_taskids = IDM_TASKIDS_MAX;
86 
87 /*
88  * Global list of transport handles
89  *   These are listed in preferential order, so we can simply take the
90  *   first "it_conn_is_capable" hit. Note also that the order maps to
91  *   the order of the idm_transport_type_t list.
92  */
93 idm_transport_t idm_transport_list[] = {
94 
95 	/* iSER on InfiniBand transport handle */
96 	{IDM_TRANSPORT_TYPE_ISER,	/* type */
97 	"/devices/ib/iser@0:iser",	/* device path */
98 	NULL,				/* LDI handle */
99 	NULL,				/* transport ops */
100 	NULL},				/* transport caps */
101 
102 	/* IDM native sockets transport handle */
103 	{IDM_TRANSPORT_TYPE_SOCKETS,	/* type */
104 	NULL,				/* device path */
105 	NULL,				/* LDI handle */
106 	NULL,				/* transport ops */
107 	NULL}				/* transport caps */
108 
109 };
110 
111 int
112 _init(void)
113 {
114 	int rc;
115 
116 	if ((rc = _idm_init()) != 0) {
117 		return (rc);
118 	}
119 
120 	return (mod_install(&modlinkage));
121 }
122 
123 int
124 _fini(void)
125 {
126 	int rc;
127 
128 	if ((rc = _idm_fini()) != 0) {
129 		return (rc);
130 	}
131 
132 	if ((rc = mod_remove(&modlinkage)) != 0) {
133 		return (rc);
134 	}
135 
136 	return (rc);
137 }
138 
139 int
140 _info(struct modinfo *modinfop)
141 {
142 	return (mod_info(&modlinkage, modinfop));
143 }
144 
145 /*
146  * idm_transport_register()
147  *
148  * Provides a mechanism for an IDM transport driver to register its
149  * transport ops and caps with the IDM kernel module. Invoked during
150  * a transport driver's attach routine.
151  */
152 idm_status_t
153 idm_transport_register(idm_transport_attr_t *attr)
154 {
155 	ASSERT(attr->it_ops != NULL);
156 	ASSERT(attr->it_caps != NULL);
157 
158 	switch (attr->type) {
159 	/* All known non-native transports here; for now, iSER */
160 	case IDM_TRANSPORT_TYPE_ISER:
161 		idm_transport_list[attr->type].it_ops	= attr->it_ops;
162 		idm_transport_list[attr->type].it_caps	= attr->it_caps;
163 		return (IDM_STATUS_SUCCESS);
164 
165 	default:
166 		cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in "
167 		    "idm_transport_register", attr->type);
168 		return (IDM_STATUS_SUCCESS);
169 	}
170 }
171 
172 /*
173  * idm_ini_conn_create
174  *
175  * This function is invoked by the iSCSI layer to create a connection context.
176  * This does not actually establish the socket connection.
177  *
178  * cr - Connection request parameters
179  * new_con - Output parameter that contains the new request if successful
180  *
181  */
182 idm_status_t
183 idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con)
184 {
185 	idm_transport_t		*it;
186 	idm_conn_t		*ic;
187 	int			rc;
188 
189 	it = idm_transport_lookup(cr);
190 
191 retry:
192 	ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type,
193 	    &cr->icr_conn_ops);
194 
195 	bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr,
196 	    sizeof (cr->cr_ini_dst_addr));
197 
198 	/* create the transport-specific connection components */
199 	rc = it->it_ops->it_ini_conn_create(cr, ic);
200 	if (rc != IDM_STATUS_SUCCESS) {
201 		/* cleanup the failed connection */
202 		idm_conn_destroy_common(ic);
203 
204 		/*
205 		 * It is possible for an IB client to connect to
206 		 * an ethernet-only client via an IB-eth gateway.
207 		 * Therefore, if we are attempting to use iSER and
208 		 * fail, retry with sockets before ultimately
209 		 * failing the connection.
210 		 */
211 		if (it->it_type == IDM_TRANSPORT_TYPE_ISER) {
212 			it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS];
213 			goto retry;
214 		}
215 
216 		return (IDM_STATUS_FAIL);
217 	}
218 
219 	*new_con = ic;
220 
221 	mutex_enter(&idm.idm_global_mutex);
222 	list_insert_tail(&idm.idm_ini_conn_list, ic);
223 	mutex_exit(&idm.idm_global_mutex);
224 
225 	return (IDM_STATUS_SUCCESS);
226 }
227 
228 /*
229  * idm_ini_conn_destroy
230  *
231  * Releases any resources associated with the connection.  This is the
232  * complement to idm_ini_conn_create.
233  * ic - idm_conn_t structure representing the relevant connection
234  *
235  */
236 void
237 idm_ini_conn_destroy_task(void *ic_void)
238 {
239 	idm_conn_t *ic = ic_void;
240 
241 	ic->ic_transport_ops->it_ini_conn_destroy(ic);
242 	idm_conn_destroy_common(ic);
243 }
244 
245 void
246 idm_ini_conn_destroy(idm_conn_t *ic)
247 {
248 	/*
249 	 * It's reasonable for the initiator to call idm_ini_conn_destroy
250 	 * from within the context of the CN_CONNECT_DESTROY notification.
251 	 * That's a problem since we want to destroy the taskq for the
252 	 * state machine associated with the connection.  Remove the
253 	 * connection from the list right away then handle the remaining
254 	 * work via the idm_global_taskq.
255 	 */
256 	mutex_enter(&idm.idm_global_mutex);
257 	list_remove(&idm.idm_ini_conn_list, ic);
258 	mutex_exit(&idm.idm_global_mutex);
259 
260 	if (taskq_dispatch(idm.idm_global_taskq,
261 	    &idm_ini_conn_destroy_task, ic, TQ_SLEEP) == NULL) {
262 		cmn_err(CE_WARN,
263 		    "idm_ini_conn_destroy: Couldn't dispatch task");
264 	}
265 }
266 
267 /*
268  * idm_ini_conn_connect
269  *
270  * Establish connection to the remote system identified in idm_conn_t.
271  * The connection parameters including the remote IP address were established
272  * in the call to idm_ini_conn_create.  The IDM state machine will
273  * perform client notifications as necessary to prompt the initiator through
274  * the login process.  IDM also keeps a timer running so that if the login
275  * process doesn't complete in a timely manner it will fail.
276  *
277  * ic - idm_conn_t structure representing the relevant connection
278  *
279  * Returns success if the connection was established, otherwise some kind
280  * of meaningful error code.
281  *
282  * Upon return the login has either failed or is loggin in (ffp)
283  */
284 idm_status_t
285 idm_ini_conn_connect(idm_conn_t *ic)
286 {
287 	idm_status_t	rc = IDM_STATUS_SUCCESS;
288 
289 	rc = idm_conn_sm_init(ic);
290 	if (rc != IDM_STATUS_SUCCESS) {
291 		return (ic->ic_conn_sm_status);
292 	}
293 
294 	/* Hold connection until we return */
295 	idm_conn_hold(ic);
296 
297 	/* Kick state machine */
298 	idm_conn_event(ic, CE_CONNECT_REQ, NULL);
299 
300 	/* Wait for login flag */
301 	mutex_enter(&ic->ic_state_mutex);
302 	while (!(ic->ic_state_flags & CF_LOGIN_READY) &&
303 	    !(ic->ic_state_flags & CF_ERROR)) {
304 		cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
305 	}
306 	mutex_exit(&ic->ic_state_mutex);
307 
308 	if (ic->ic_state_flags & CF_ERROR) {
309 		/* ic->ic_conn_sm_status will contains failure status */
310 		idm_conn_rele(ic);
311 		return (ic->ic_conn_sm_status);
312 	}
313 
314 	/* Ready to login */
315 	ASSERT(ic->ic_state_flags & CF_LOGIN_READY);
316 	(void) idm_notify_client(ic, CN_READY_FOR_LOGIN, NULL);
317 
318 	idm_conn_rele(ic);
319 
320 	return (rc);
321 }
322 
323 /*
324  * idm_ini_conn_disconnect
325  *
326  * Forces a connection (previously established using idm_ini_conn_connect)
327  * to perform a controlled shutdown, cleaning up any outstanding requests.
328  *
329  * ic - idm_conn_t structure representing the relevant connection
330  *
331  * This is asynchronous and will return before the connection is properly
332  * shutdown
333  */
334 /* ARGSUSED */
335 void
336 idm_ini_conn_disconnect(idm_conn_t *ic)
337 {
338 	idm_conn_event(ic, CE_TRANSPORT_FAIL, NULL);
339 }
340 
341 /*
342  * idm_ini_conn_disconnect_wait
343  *
344  * Forces a connection (previously established using idm_ini_conn_connect)
345  * to perform a controlled shutdown.  Blocks until the connection is
346  * disconnected.
347  *
348  * ic - idm_conn_t structure representing the relevant connection
349  */
350 /* ARGSUSED */
351 void
352 idm_ini_conn_disconnect_sync(idm_conn_t *ic)
353 {
354 	mutex_enter(&ic->ic_state_mutex);
355 	if ((ic->ic_state != CS_S9_INIT_ERROR) &&
356 	    (ic->ic_state != CS_S11_COMPLETE)) {
357 		idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, NULL, CT_NONE);
358 		while ((ic->ic_state != CS_S9_INIT_ERROR) &&
359 		    (ic->ic_state != CS_S11_COMPLETE))
360 			cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
361 	}
362 	mutex_exit(&ic->ic_state_mutex);
363 }
364 
365 /*
366  * idm_tgt_svc_create
367  *
368  * The target calls this service to obtain a service context for each available
369  * transport, starting a service of each type related to the IP address and port
370  * passed. The idm_svc_req_t contains the service parameters.
371  */
372 idm_status_t
373 idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc)
374 {
375 	idm_transport_type_t	type;
376 	idm_transport_t		*it;
377 	idm_svc_t		*is;
378 	int			rc;
379 
380 	*new_svc = NULL;
381 	is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP);
382 
383 	/* Initialize transport-agnostic components of the service handle */
384 	is->is_svc_req = *sr;
385 	mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL);
386 	cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL);
387 	mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL);
388 	cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL);
389 	idm_refcnt_init(&is->is_refcnt, is);
390 
391 	/*
392 	 * Make sure all available transports are setup.  We call this now
393 	 * instead of at initialization time in case IB has become available
394 	 * since we started (hotplug, etc).
395 	 */
396 	idm_transport_setup(sr->sr_li);
397 
398 	/*
399 	 * Loop through the transports, configuring the transport-specific
400 	 * components of each one.
401 	 */
402 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
403 
404 		it = &idm_transport_list[type];
405 		/*
406 		 * If it_ops is NULL then the transport is unconfigured
407 		 * and we shouldn't try to start the service.
408 		 */
409 		if (it->it_ops == NULL) {
410 			continue;
411 		}
412 
413 		rc = it->it_ops->it_tgt_svc_create(sr, is);
414 		if (rc != IDM_STATUS_SUCCESS) {
415 			/* Teardown any configured services */
416 			while (type--) {
417 				it = &idm_transport_list[type];
418 				if (it->it_ops == NULL) {
419 					continue;
420 				}
421 				it->it_ops->it_tgt_svc_destroy(is);
422 			}
423 			/* Free the svc context and return */
424 			kmem_free(is, sizeof (idm_svc_t));
425 			return (rc);
426 		}
427 	}
428 
429 	*new_svc = is;
430 
431 	mutex_enter(&idm.idm_global_mutex);
432 	list_insert_tail(&idm.idm_tgt_svc_list, is);
433 	mutex_exit(&idm.idm_global_mutex);
434 
435 	return (IDM_STATUS_SUCCESS);
436 }
437 
438 /*
439  * idm_tgt_svc_destroy
440  *
441  * is - idm_svc_t returned by the call to idm_tgt_svc_create
442  *
443  * Cleanup any resources associated with the idm_svc_t.
444  */
445 void
446 idm_tgt_svc_destroy(idm_svc_t *is)
447 {
448 	idm_transport_type_t	type;
449 	idm_transport_t		*it;
450 
451 	mutex_enter(&idm.idm_global_mutex);
452 	/* remove this service from the global list */
453 	list_remove(&idm.idm_tgt_svc_list, is);
454 	/* wakeup any waiters for service change */
455 	cv_broadcast(&idm.idm_tgt_svc_cv);
456 	mutex_exit(&idm.idm_global_mutex);
457 
458 	/* teardown each transport-specific service */
459 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
460 		it = &idm_transport_list[type];
461 		if (it->it_ops == NULL) {
462 			continue;
463 		}
464 
465 		it->it_ops->it_tgt_svc_destroy(is);
466 	}
467 
468 	/* tear down the svc resources */
469 	idm_refcnt_destroy(&is->is_refcnt);
470 	cv_destroy(&is->is_count_cv);
471 	mutex_destroy(&is->is_count_mutex);
472 	cv_destroy(&is->is_cv);
473 	mutex_destroy(&is->is_mutex);
474 
475 	/* free the svc handle */
476 	kmem_free(is, sizeof (idm_svc_t));
477 }
478 
479 void
480 idm_tgt_svc_hold(idm_svc_t *is)
481 {
482 	idm_refcnt_hold(&is->is_refcnt);
483 }
484 
485 void
486 idm_tgt_svc_rele_and_destroy(idm_svc_t *is)
487 {
488 	idm_refcnt_rele_and_destroy(&is->is_refcnt,
489 	    (idm_refcnt_cb_t *)&idm_tgt_svc_destroy);
490 }
491 
492 /*
493  * idm_tgt_svc_online
494  *
495  * is - idm_svc_t returned by the call to idm_tgt_svc_create
496  *
497  * Online each transport service, as we want this target to be accessible
498  * via any configured transport.
499  *
500  * When the initiator establishes a new connection to the target, IDM will
501  * call the "new connect" callback defined in the idm_svc_req_t structure
502  * and it will pass an idm_conn_t structure representing that new connection.
503  */
504 idm_status_t
505 idm_tgt_svc_online(idm_svc_t *is)
506 {
507 
508 	idm_transport_type_t	type, last_type;
509 	idm_transport_t		*it;
510 	int			rc = IDM_STATUS_SUCCESS;
511 
512 	mutex_enter(&is->is_mutex);
513 	if (is->is_online == 0) {
514 		/* Walk through each of the transports and online them */
515 		for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
516 			it = &idm_transport_list[type];
517 			if (it->it_ops == NULL) {
518 				/* transport is not registered */
519 				continue;
520 			}
521 
522 			mutex_exit(&is->is_mutex);
523 			rc = it->it_ops->it_tgt_svc_online(is);
524 			mutex_enter(&is->is_mutex);
525 			if (rc != IDM_STATUS_SUCCESS) {
526 				last_type = type;
527 				break;
528 			}
529 		}
530 		if (rc != IDM_STATUS_SUCCESS) {
531 			/*
532 			 * The last transport failed to online.
533 			 * Offline any transport onlined above and
534 			 * do not online the target.
535 			 */
536 			for (type = 0; type < last_type; type++) {
537 				it = &idm_transport_list[type];
538 				if (it->it_ops == NULL) {
539 					/* transport is not registered */
540 					continue;
541 				}
542 
543 				mutex_exit(&is->is_mutex);
544 				it->it_ops->it_tgt_svc_offline(is);
545 				mutex_enter(&is->is_mutex);
546 			}
547 		} else {
548 			/* Target service now online */
549 			is->is_online = 1;
550 		}
551 	} else {
552 		/* Target service already online, just bump the count */
553 		is->is_online++;
554 	}
555 	mutex_exit(&is->is_mutex);
556 
557 	return (rc);
558 }
559 
560 /*
561  * idm_tgt_svc_offline
562  *
563  * is - idm_svc_t returned by the call to idm_tgt_svc_create
564  *
565  * Shutdown any online target services.
566  */
567 void
568 idm_tgt_svc_offline(idm_svc_t *is)
569 {
570 	idm_transport_type_t	type;
571 	idm_transport_t		*it;
572 
573 	mutex_enter(&is->is_mutex);
574 	is->is_online--;
575 	if (is->is_online == 0) {
576 		/* Walk through each of the transports and offline them */
577 		for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
578 			it = &idm_transport_list[type];
579 			if (it->it_ops == NULL) {
580 				/* transport is not registered */
581 				continue;
582 			}
583 
584 			mutex_exit(&is->is_mutex);
585 			it->it_ops->it_tgt_svc_offline(is);
586 			mutex_enter(&is->is_mutex);
587 		}
588 	}
589 	mutex_exit(&is->is_mutex);
590 }
591 
592 /*
593  * idm_tgt_svc_lookup
594  *
595  * Lookup a service instance listening on the specified port
596  */
597 
598 idm_svc_t *
599 idm_tgt_svc_lookup(uint16_t port)
600 {
601 	idm_svc_t *result;
602 
603 retry:
604 	mutex_enter(&idm.idm_global_mutex);
605 	for (result = list_head(&idm.idm_tgt_svc_list);
606 	    result != NULL;
607 	    result = list_next(&idm.idm_tgt_svc_list, result)) {
608 		if (result->is_svc_req.sr_port == port) {
609 			if (result->is_online == 0) {
610 				/*
611 				 * A service exists on this port, but it
612 				 * is going away, wait for it to cleanup.
613 				 */
614 				cv_wait(&idm.idm_tgt_svc_cv,
615 				    &idm.idm_global_mutex);
616 				mutex_exit(&idm.idm_global_mutex);
617 				goto retry;
618 			}
619 			idm_tgt_svc_hold(result);
620 			mutex_exit(&idm.idm_global_mutex);
621 			return (result);
622 		}
623 	}
624 	mutex_exit(&idm.idm_global_mutex);
625 
626 	return (NULL);
627 }
628 
629 /*
630  * idm_negotiate_key_values()
631  * Give IDM level a chance to negotiate any login parameters it should own.
632  *  -- leave unhandled parameters alone on request_nvl
633  *  -- move all handled parameters to response_nvl with an appropriate response
634  *  -- also add an entry to negotiated_nvl for any accepted parameters
635  */
636 kv_status_t
637 idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl,
638     nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
639 {
640 	ASSERT(ic->ic_transport_ops != NULL);
641 	return (ic->ic_transport_ops->it_negotiate_key_values(ic,
642 	    request_nvl, response_nvl, negotiated_nvl));
643 }
644 
645 /*
646  * idm_notice_key_values()
647  * Activate at the IDM level any parameters that have been negotiated.
648  * Passes the set of key value pairs to the transport for activation.
649  * This will be invoked as the connection is entering full-feature mode.
650  */
651 void
652 idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl)
653 {
654 	ASSERT(ic->ic_transport_ops != NULL);
655 	ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl);
656 }
657 
658 /*
659  * idm_declare_key_values()
660  * Activate an operational set of declarative parameters from the config_nvl,
661  * and return the selected values in the outgoing_nvl.
662  */
663 kv_status_t
664 idm_declare_key_values(idm_conn_t *ic, nvlist_t *config_nvl,
665     nvlist_t *outgoing_nvl)
666 {
667 	ASSERT(ic->ic_transport_ops != NULL);
668 	return (ic->ic_transport_ops->it_declare_key_values(ic, config_nvl,
669 	    outgoing_nvl));
670 }
671 
672 /*
673  * idm_buf_tx_to_ini
674  *
675  * This is IDM's implementation of the 'Put_Data' operational primitive.
676  *
677  * This function is invoked by a target iSCSI layer to request its local
678  * Datamover layer to transmit the Data-In PDU to the peer iSCSI layer
679  * on the remote iSCSI node. The I/O buffer represented by 'idb' is
680  * transferred to the initiator associated with task 'idt'. The connection
681  * info, contents of the Data-In PDU header, the DataDescriptorIn, BHS,
682  * and the callback (idb->idb_buf_cb) at transfer completion are
683  * provided as input.
684  *
685  * This data transfer takes place transparently to the remote iSCSI layer,
686  * i.e. without its participation.
687  *
688  * Using sockets, IDM implements the data transfer by segmenting the data
689  * buffer into appropriately sized iSCSI PDUs and transmitting them to the
690  * initiator. iSER performs the transfer using RDMA write.
691  *
692  */
693 idm_status_t
694 idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb,
695     uint32_t offset, uint32_t xfer_len,
696     idm_buf_cb_t idb_buf_cb, void *cb_arg)
697 {
698 	idm_status_t rc;
699 
700 	idb->idb_bufoffset = offset;
701 	idb->idb_xfer_len = xfer_len;
702 	idb->idb_buf_cb = idb_buf_cb;
703 	idb->idb_cb_arg = cb_arg;
704 	gethrestime(&idb->idb_xfer_start);
705 
706 	/*
707 	 * Buffer should not contain the pattern.  If the pattern is
708 	 * present then we've been asked to transmit initialized data
709 	 */
710 	IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT);
711 
712 	mutex_enter(&idt->idt_mutex);
713 	switch (idt->idt_state) {
714 	case TASK_ACTIVE:
715 		idt->idt_tx_to_ini_start++;
716 		idm_task_hold(idt);
717 		idm_buf_bind_in_locked(idt, idb);
718 		idb->idb_in_transport = B_TRUE;
719 		rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini)
720 		    (idt, idb);
721 		return (rc);
722 
723 	case TASK_SUSPENDING:
724 	case TASK_SUSPENDED:
725 		/*
726 		 * Bind buffer but don't start a transfer since the task
727 		 * is suspended
728 		 */
729 		idm_buf_bind_in_locked(idt, idb);
730 		mutex_exit(&idt->idt_mutex);
731 		return (IDM_STATUS_SUCCESS);
732 
733 	case TASK_ABORTING:
734 	case TASK_ABORTED:
735 		/*
736 		 * Once the task is aborted, any buffers added to the
737 		 * idt_inbufv will never get cleaned up, so just return
738 		 * SUCCESS.  The buffer should get cleaned up by the
739 		 * client or framework once task_aborted has completed.
740 		 */
741 		mutex_exit(&idt->idt_mutex);
742 		return (IDM_STATUS_SUCCESS);
743 
744 	default:
745 		ASSERT(0);
746 		break;
747 	}
748 	mutex_exit(&idt->idt_mutex);
749 
750 	return (IDM_STATUS_FAIL);
751 }
752 
753 /*
754  * idm_buf_rx_from_ini
755  *
756  * This is IDM's implementation of the 'Get_Data' operational primitive.
757  *
758  * This function is invoked by a target iSCSI layer to request its local
759  * Datamover layer to retrieve certain data identified by the R2T PDU from the
760  * peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be
761  * mapped to the respective buffer by the task tags (ITT & TTT).
762  * The connection information, contents of an R2T PDU, DataDescriptor, BHS, and
763  * the callback (idb->idb_buf_cb) notification for data transfer completion are
764  * are provided as input.
765  *
766  * When an iSCSI node sends an R2T PDU to its local Datamover layer, the local
767  * Datamover layer, the local and remote Datamover layers transparently bring
768  * about the data transfer requested by the R2T PDU, without the participation
769  * of the iSCSI layers.
770  *
771  * Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out()
772  * assembles the Data-Out PDUs into the buffer. iSER uses RDMA read.
773  *
774  */
775 idm_status_t
776 idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb,
777     uint32_t offset, uint32_t xfer_len,
778     idm_buf_cb_t idb_buf_cb, void *cb_arg)
779 {
780 	idm_status_t rc;
781 
782 	idb->idb_bufoffset = offset;
783 	idb->idb_xfer_len = xfer_len;
784 	idb->idb_buf_cb = idb_buf_cb;
785 	idb->idb_cb_arg = cb_arg;
786 	gethrestime(&idb->idb_xfer_start);
787 
788 	/*
789 	 * "In" buf list is for "Data In" PDU's, "Out" buf list is for
790 	 * "Data Out" PDU's
791 	 */
792 	mutex_enter(&idt->idt_mutex);
793 	switch (idt->idt_state) {
794 	case TASK_ACTIVE:
795 		idt->idt_rx_from_ini_start++;
796 		idm_task_hold(idt);
797 		idm_buf_bind_out_locked(idt, idb);
798 		idb->idb_in_transport = B_TRUE;
799 		rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini)
800 		    (idt, idb);
801 		return (rc);
802 	case TASK_SUSPENDING:
803 	case TASK_SUSPENDED:
804 	case TASK_ABORTING:
805 	case TASK_ABORTED:
806 		/*
807 		 * Bind buffer but don't start a transfer since the task
808 		 * is suspended
809 		 */
810 		idm_buf_bind_out_locked(idt, idb);
811 		mutex_exit(&idt->idt_mutex);
812 		return (IDM_STATUS_SUCCESS);
813 	default:
814 		ASSERT(0);
815 		break;
816 	}
817 	mutex_exit(&idt->idt_mutex);
818 
819 	return (IDM_STATUS_FAIL);
820 }
821 
822 /*
823  * idm_buf_tx_to_ini_done
824  *
825  * The transport calls this after it has completed a transfer requested by
826  * a call to transport_buf_tx_to_ini
827  *
828  * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
829  * idt may be freed after the call to idb->idb_buf_cb.
830  */
831 void
832 idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
833 {
834 	ASSERT(mutex_owned(&idt->idt_mutex));
835 	idb->idb_in_transport = B_FALSE;
836 	idb->idb_tx_thread = B_FALSE;
837 	idt->idt_tx_to_ini_done++;
838 	gethrestime(&idb->idb_xfer_done);
839 
840 	/*
841 	 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
842 	 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
843 	 * to 0.
844 	 */
845 	idm_task_rele(idt);
846 	idb->idb_status = status;
847 
848 	switch (idt->idt_state) {
849 	case TASK_ACTIVE:
850 		idt->idt_ic->ic_timestamp = ddi_get_lbolt();
851 		idm_buf_unbind_in_locked(idt, idb);
852 		mutex_exit(&idt->idt_mutex);
853 		(*idb->idb_buf_cb)(idb, status);
854 		return;
855 	case TASK_SUSPENDING:
856 	case TASK_SUSPENDED:
857 	case TASK_ABORTING:
858 	case TASK_ABORTED:
859 		/*
860 		 * To keep things simple we will ignore the case where the
861 		 * transfer was successful and leave all buffers bound to the
862 		 * task.  This allows us to also ignore the case where we've
863 		 * been asked to abort a task but the last transfer of the
864 		 * task has completed.  IDM has no idea whether this was, in
865 		 * fact, the last transfer of the task so it would be difficult
866 		 * to handle this case.  Everything should get sorted out again
867 		 * after task reassignment is complete.
868 		 *
869 		 * In the case of TASK_ABORTING we could conceivably call the
870 		 * buffer callback here but the timing of when the client's
871 		 * client_task_aborted callback is invoked vs. when the client's
872 		 * buffer callback gets invoked gets sticky.  We don't want
873 		 * the client to here from us again after the call to
874 		 * client_task_aborted() but we don't want to give it a bunch
875 		 * of failed buffer transfers until we've called
876 		 * client_task_aborted().  Instead we'll just leave all the
877 		 * buffers bound and allow the client to cleanup.
878 		 */
879 		break;
880 	default:
881 		ASSERT(0);
882 	}
883 	mutex_exit(&idt->idt_mutex);
884 }
885 
886 /*
887  * idm_buf_rx_from_ini_done
888  *
889  * The transport calls this after it has completed a transfer requested by
890  * a call totransport_buf_tx_to_ini
891  *
892  * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
893  * idt may be freed after the call to idb->idb_buf_cb.
894  */
895 void
896 idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
897 {
898 	ASSERT(mutex_owned(&idt->idt_mutex));
899 	idb->idb_in_transport = B_FALSE;
900 	idt->idt_rx_from_ini_done++;
901 	gethrestime(&idb->idb_xfer_done);
902 
903 	/*
904 	 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
905 	 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
906 	 * to 0.
907 	 */
908 	idm_task_rele(idt);
909 	idb->idb_status = status;
910 
911 	if (status == IDM_STATUS_SUCCESS) {
912 		/*
913 		 * Buffer should not contain the pattern.  If it does then
914 		 * we did not get the data from the remote host.
915 		 */
916 		IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT);
917 	}
918 
919 	switch (idt->idt_state) {
920 	case TASK_ACTIVE:
921 		idt->idt_ic->ic_timestamp = ddi_get_lbolt();
922 		idm_buf_unbind_out_locked(idt, idb);
923 		mutex_exit(&idt->idt_mutex);
924 		(*idb->idb_buf_cb)(idb, status);
925 		return;
926 	case TASK_SUSPENDING:
927 	case TASK_SUSPENDED:
928 	case TASK_ABORTING:
929 	case TASK_ABORTED:
930 		/*
931 		 * To keep things simple we will ignore the case where the
932 		 * transfer was successful and leave all buffers bound to the
933 		 * task.  This allows us to also ignore the case where we've
934 		 * been asked to abort a task but the last transfer of the
935 		 * task has completed.  IDM has no idea whether this was, in
936 		 * fact, the last transfer of the task so it would be difficult
937 		 * to handle this case.  Everything should get sorted out again
938 		 * after task reassignment is complete.
939 		 *
940 		 * In the case of TASK_ABORTING we could conceivably call the
941 		 * buffer callback here but the timing of when the client's
942 		 * client_task_aborted callback is invoked vs. when the client's
943 		 * buffer callback gets invoked gets sticky.  We don't want
944 		 * the client to here from us again after the call to
945 		 * client_task_aborted() but we don't want to give it a bunch
946 		 * of failed buffer transfers until we've called
947 		 * client_task_aborted().  Instead we'll just leave all the
948 		 * buffers bound and allow the client to cleanup.
949 		 */
950 		break;
951 	default:
952 		ASSERT(0);
953 	}
954 	mutex_exit(&idt->idt_mutex);
955 }
956 
957 /*
958  * idm_buf_alloc
959  *
960  * Allocates a buffer handle and registers it for use with the transport
961  * layer. If a buffer is not passed on bufptr, the buffer will be allocated
962  * as well as the handle.
963  *
964  * ic		- connection on which the buffer will be transferred
965  * bufptr	- allocate memory for buffer if NULL, else assign to buffer
966  * buflen	- length of buffer
967  *
968  * Returns idm_buf_t handle if successful, otherwise NULL
969  */
970 idm_buf_t *
971 idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen)
972 {
973 	idm_buf_t	*buf = NULL;
974 	int		rc;
975 
976 	ASSERT(ic != NULL);
977 	ASSERT(idm.idm_buf_cache != NULL);
978 	ASSERT(buflen > 0);
979 
980 	/* Don't allocate new buffers if we are not in FFP */
981 	mutex_enter(&ic->ic_state_mutex);
982 	if (!ic->ic_ffp) {
983 		mutex_exit(&ic->ic_state_mutex);
984 		return (NULL);
985 	}
986 
987 
988 	idm_conn_hold(ic);
989 	mutex_exit(&ic->ic_state_mutex);
990 
991 	buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP);
992 	if (buf == NULL) {
993 		idm_conn_rele(ic);
994 		return (NULL);
995 	}
996 
997 	buf->idb_ic		= ic;
998 	buf->idb_buflen		= buflen;
999 	buf->idb_exp_offset	= 0;
1000 	buf->idb_bufoffset	= 0;
1001 	buf->idb_xfer_len 	= 0;
1002 	buf->idb_magic		= IDM_BUF_MAGIC;
1003 	buf->idb_in_transport	= B_FALSE;
1004 	buf->idb_bufbcopy	= B_FALSE;
1005 
1006 	/*
1007 	 * If bufptr is NULL, we have an implicit request to allocate
1008 	 * memory for this IDM buffer handle and register it for use
1009 	 * with the transport. To simplify this, and to give more freedom
1010 	 * to the transport layer for it's own buffer management, both of
1011 	 * these actions will take place in the transport layer.
1012 	 * If bufptr is set, then the caller has allocated memory (or more
1013 	 * likely it's been passed from an upper layer), and we need only
1014 	 * register the buffer for use with the transport layer.
1015 	 */
1016 	if (bufptr == NULL) {
1017 		/*
1018 		 * Allocate a buffer from the transport layer (which
1019 		 * will also register the buffer for use).
1020 		 */
1021 		rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen);
1022 		if (rc != 0) {
1023 			idm_conn_rele(ic);
1024 			kmem_cache_free(idm.idm_buf_cache, buf);
1025 			return (NULL);
1026 		}
1027 		/* Set the bufalloc'd flag */
1028 		buf->idb_bufalloc = B_TRUE;
1029 	} else {
1030 		/*
1031 		 * For large transfers, Set the passed bufptr into
1032 		 * the buf handle, and register the handle with the
1033 		 * transport layer. As memory registration with the
1034 		 * transport layer is a time/cpu intensive operation,
1035 		 * for small transfers (up to a pre-defined bcopy
1036 		 * threshold), use pre-registered memory buffers
1037 		 * and bcopy data at the appropriate time.
1038 		 */
1039 		buf->idb_buf = bufptr;
1040 
1041 		rc = ic->ic_transport_ops->it_buf_setup(buf);
1042 		if (rc != 0) {
1043 			idm_conn_rele(ic);
1044 			kmem_cache_free(idm.idm_buf_cache, buf);
1045 			return (NULL);
1046 		}
1047 		/*
1048 		 * The transport layer is now expected to set the idb_bufalloc
1049 		 * correctly to indicate if resources have been allocated.
1050 		 */
1051 	}
1052 
1053 	IDM_BUFPAT_SET(buf);
1054 
1055 	return (buf);
1056 }
1057 
1058 /*
1059  * idm_buf_free
1060  *
1061  * Release a buffer handle along with the associated buffer that was allocated
1062  * or assigned with idm_buf_alloc
1063  */
1064 void
1065 idm_buf_free(idm_buf_t *buf)
1066 {
1067 	idm_conn_t *ic = buf->idb_ic;
1068 
1069 
1070 	buf->idb_task_binding	= NULL;
1071 
1072 	if (buf->idb_bufalloc) {
1073 		ic->ic_transport_ops->it_buf_free(buf);
1074 	} else {
1075 		ic->ic_transport_ops->it_buf_teardown(buf);
1076 	}
1077 	kmem_cache_free(idm.idm_buf_cache, buf);
1078 	idm_conn_rele(ic);
1079 }
1080 
1081 /*
1082  * idm_buf_bind_in
1083  *
1084  * This function associates a buffer with a task. This is only for use by the
1085  * iSCSI initiator that will have only one buffer per transfer direction
1086  *
1087  */
1088 void
1089 idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf)
1090 {
1091 	mutex_enter(&idt->idt_mutex);
1092 	idm_buf_bind_in_locked(idt, buf);
1093 	mutex_exit(&idt->idt_mutex);
1094 }
1095 
1096 static void
1097 idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf)
1098 {
1099 	buf->idb_task_binding = idt;
1100 	buf->idb_ic = idt->idt_ic;
1101 	idm_listbuf_insert(&idt->idt_inbufv, buf);
1102 }
1103 
1104 void
1105 idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf)
1106 {
1107 	/*
1108 	 * For small transfers, the iSER transport delegates the IDM
1109 	 * layer to bcopy the SCSI Write data for faster IOPS.
1110 	 */
1111 	if (buf->idb_bufbcopy == B_TRUE) {
1112 
1113 		bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen);
1114 	}
1115 	mutex_enter(&idt->idt_mutex);
1116 	idm_buf_bind_out_locked(idt, buf);
1117 	mutex_exit(&idt->idt_mutex);
1118 }
1119 
1120 static void
1121 idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf)
1122 {
1123 	buf->idb_task_binding = idt;
1124 	buf->idb_ic = idt->idt_ic;
1125 	idm_listbuf_insert(&idt->idt_outbufv, buf);
1126 }
1127 
1128 void
1129 idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf)
1130 {
1131 	/*
1132 	 * For small transfers, the iSER transport delegates the IDM
1133 	 * layer to bcopy the SCSI Read data into the read buufer
1134 	 * for faster IOPS.
1135 	 */
1136 	if (buf->idb_bufbcopy == B_TRUE) {
1137 		bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen);
1138 	}
1139 	mutex_enter(&idt->idt_mutex);
1140 	idm_buf_unbind_in_locked(idt, buf);
1141 	mutex_exit(&idt->idt_mutex);
1142 }
1143 
1144 static void
1145 idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf)
1146 {
1147 	list_remove(&idt->idt_inbufv, buf);
1148 }
1149 
1150 void
1151 idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf)
1152 {
1153 	mutex_enter(&idt->idt_mutex);
1154 	idm_buf_unbind_out_locked(idt, buf);
1155 	mutex_exit(&idt->idt_mutex);
1156 }
1157 
1158 static void
1159 idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf)
1160 {
1161 	list_remove(&idt->idt_outbufv, buf);
1162 }
1163 
1164 /*
1165  * idm_buf_find() will lookup the idm_buf_t based on the relative offset in the
1166  * iSCSI PDU
1167  */
1168 idm_buf_t *
1169 idm_buf_find(void *lbuf, size_t data_offset)
1170 {
1171 	idm_buf_t	*idb;
1172 	list_t		*lst = (list_t *)lbuf;
1173 
1174 	/* iterate through the list to find the buffer */
1175 	for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) {
1176 
1177 		ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) ||
1178 		    (idb->idb_bufoffset == 0));
1179 
1180 		if ((data_offset >= idb->idb_bufoffset) &&
1181 		    (data_offset < (idb->idb_bufoffset + idb->idb_buflen))) {
1182 
1183 			return (idb);
1184 		}
1185 	}
1186 
1187 	return (NULL);
1188 }
1189 
1190 void
1191 idm_bufpat_set(idm_buf_t *idb)
1192 {
1193 	idm_bufpat_t	*bufpat;
1194 	int		len, i;
1195 
1196 	len = idb->idb_buflen;
1197 	len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
1198 
1199 	bufpat = idb->idb_buf;
1200 	for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
1201 		bufpat->bufpat_idb = idb;
1202 		bufpat->bufpat_bufmagic = IDM_BUF_MAGIC;
1203 		bufpat->bufpat_offset = i;
1204 		bufpat++;
1205 	}
1206 }
1207 
1208 boolean_t
1209 idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type)
1210 {
1211 	idm_bufpat_t	*bufpat;
1212 	int		len, i;
1213 
1214 	len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len;
1215 	len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
1216 	ASSERT(len <= idb->idb_buflen);
1217 	bufpat = idb->idb_buf;
1218 
1219 	/*
1220 	 * Don't check the pattern in buffers that came from outside IDM
1221 	 * (these will be buffers from the initiator that we opted not
1222 	 * to double-buffer)
1223 	 */
1224 	if (!idb->idb_bufalloc)
1225 		return (B_FALSE);
1226 
1227 	/*
1228 	 * Return true if we find the pattern anywhere in the buffer
1229 	 */
1230 	for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
1231 		if (BUFPAT_MATCH(bufpat, idb)) {
1232 			IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: "
1233 			    "idb %p bufpat %p "
1234 			    "bufpat_idb=%p bufmagic=%08x offset=%08x",
1235 			    (void *)idb, (void *)bufpat, bufpat->bufpat_idb,
1236 			    bufpat->bufpat_bufmagic, bufpat->bufpat_offset);
1237 			DTRACE_PROBE2(bufpat__pattern__found,
1238 			    idm_buf_t *, idb, idm_bufpat_t *, bufpat);
1239 			if (type == BP_CHECK_ASSERT) {
1240 				ASSERT(0);
1241 			}
1242 			return (B_TRUE);
1243 		}
1244 		bufpat++;
1245 	}
1246 
1247 	return (B_FALSE);
1248 }
1249 
1250 /*
1251  * idm_task_alloc
1252  *
1253  * This function will allocate a idm_task_t structure. A task tag is also
1254  * generated and saved in idt_tt. The task is not active.
1255  */
1256 idm_task_t *
1257 idm_task_alloc(idm_conn_t *ic)
1258 {
1259 	idm_task_t	*idt;
1260 
1261 	ASSERT(ic != NULL);
1262 
1263 	/* Don't allocate new tasks if we are not in FFP */
1264 	mutex_enter(&ic->ic_state_mutex);
1265 	if (!ic->ic_ffp) {
1266 		mutex_exit(&ic->ic_state_mutex);
1267 		return (NULL);
1268 	}
1269 	idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP);
1270 	if (idt == NULL) {
1271 		mutex_exit(&ic->ic_state_mutex);
1272 		return (NULL);
1273 	}
1274 
1275 	ASSERT(list_is_empty(&idt->idt_inbufv));
1276 	ASSERT(list_is_empty(&idt->idt_outbufv));
1277 
1278 	idm_conn_hold(ic);
1279 	mutex_exit(&ic->ic_state_mutex);
1280 
1281 	idt->idt_state		= TASK_IDLE;
1282 	idt->idt_ic		= ic;
1283 	idt->idt_private 	= NULL;
1284 	idt->idt_exp_datasn	= 0;
1285 	idt->idt_exp_rttsn	= 0;
1286 
1287 	return (idt);
1288 }
1289 
1290 /*
1291  * idm_task_start
1292  *
1293  * Mark the task active and initialize some stats. The caller
1294  * sets up the idm_task_t structure with a prior call to idm_task_alloc().
1295  * The task service does not function as a task/work engine, it is the
1296  * responsibility of the initiator to start the data transfer and free the
1297  * resources.
1298  */
1299 void
1300 idm_task_start(idm_task_t *idt, uintptr_t handle)
1301 {
1302 	ASSERT(idt != NULL);
1303 
1304 	/* mark the task as ACTIVE */
1305 	idt->idt_state = TASK_ACTIVE;
1306 	idt->idt_client_handle = handle;
1307 	idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done =
1308 	    idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done =
1309 	    idt->idt_tx_bytes = idt->idt_rx_bytes = 0;
1310 }
1311 
1312 /*
1313  * idm_task_done
1314  *
1315  * This function sets the state to indicate that the task is no longer active.
1316  */
1317 void
1318 idm_task_done(idm_task_t *idt)
1319 {
1320 	ASSERT(idt != NULL);
1321 
1322 	mutex_enter(&idt->idt_mutex);
1323 	idt->idt_state = TASK_IDLE;
1324 	mutex_exit(&idt->idt_mutex);
1325 
1326 	/*
1327 	 * Although unlikely it is possible for a reference to come in after
1328 	 * the client has decided the task is over but before we've marked
1329 	 * the task idle.  One specific unavoidable scenario is the case where
1330 	 * received PDU with the matching ITT/TTT results in a successful
1331 	 * lookup of this task.  We are at the mercy of the remote node in
1332 	 * that case so we need to handle it.  Now that the task state
1333 	 * has changed no more references will occur so a simple call to
1334 	 * idm_refcnt_wait_ref should deal with the situation.
1335 	 */
1336 	idm_refcnt_wait_ref(&idt->idt_refcnt);
1337 	idm_refcnt_reset(&idt->idt_refcnt);
1338 }
1339 
1340 /*
1341  * idm_task_free
1342  *
1343  * This function will free the Task Tag and the memory allocated for the task
1344  * idm_task_done should be called prior to this call
1345  */
1346 void
1347 idm_task_free(idm_task_t *idt)
1348 {
1349 	idm_conn_t *ic;
1350 
1351 	ASSERT(idt != NULL);
1352 	ASSERT(idt->idt_refcnt.ir_refcnt == 0);
1353 	ASSERT(idt->idt_state == TASK_IDLE);
1354 
1355 	ic = idt->idt_ic;
1356 
1357 	/*
1358 	 * It's possible for items to still be in the idt_inbufv list if
1359 	 * they were added after idm_task_cleanup was called.  We rely on
1360 	 * STMF to free all buffers associated with the task however STMF
1361 	 * doesn't know that we have this reference to the buffers.
1362 	 * Use list_create so that we don't end up with stale references
1363 	 * to these buffers.
1364 	 */
1365 	list_create(&idt->idt_inbufv, sizeof (idm_buf_t),
1366 	    offsetof(idm_buf_t, idb_buflink));
1367 	list_create(&idt->idt_outbufv, sizeof (idm_buf_t),
1368 	    offsetof(idm_buf_t, idb_buflink));
1369 
1370 	kmem_cache_free(idm.idm_task_cache, idt);
1371 
1372 	idm_conn_rele(ic);
1373 }
1374 
1375 /*
1376  * idm_task_find_common
1377  *	common code for idm_task_find() and idm_task_find_and_complete()
1378  */
1379 /*ARGSUSED*/
1380 static idm_task_t *
1381 idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt,
1382     boolean_t complete)
1383 {
1384 	uint32_t	tt, client_handle;
1385 	idm_task_t	*idt;
1386 
1387 	/*
1388 	 * Must match both itt and ttt.  The table is indexed by itt
1389 	 * for initiator connections and ttt for target connections.
1390 	 */
1391 	if (IDM_CONN_ISTGT(ic)) {
1392 		tt = ttt;
1393 		client_handle = itt;
1394 	} else {
1395 		tt = itt;
1396 		client_handle = ttt;
1397 	}
1398 
1399 	rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1400 	if (tt >= idm.idm_taskid_max) {
1401 		rw_exit(&idm.idm_taskid_table_lock);
1402 		return (NULL);
1403 	}
1404 
1405 	idt = idm.idm_taskid_table[tt];
1406 
1407 	if (idt != NULL) {
1408 		mutex_enter(&idt->idt_mutex);
1409 		if ((idt->idt_state != TASK_ACTIVE) ||
1410 		    (idt->idt_ic != ic) ||
1411 		    (IDM_CONN_ISTGT(ic) &&
1412 		    (idt->idt_client_handle != client_handle))) {
1413 			/*
1414 			 * Task doesn't match or task is aborting and
1415 			 * we don't want any more references.
1416 			 */
1417 			if ((idt->idt_ic != ic) &&
1418 			    (idt->idt_state == TASK_ACTIVE) &&
1419 			    (IDM_CONN_ISINI(ic) || idt->idt_client_handle ==
1420 			    client_handle)) {
1421 				IDM_CONN_LOG(CE_WARN,
1422 				"idm_task_find: wrong connection %p != %p",
1423 				    (void *)ic, (void *)idt->idt_ic);
1424 			}
1425 			mutex_exit(&idt->idt_mutex);
1426 			rw_exit(&idm.idm_taskid_table_lock);
1427 			return (NULL);
1428 		}
1429 		idm_task_hold(idt);
1430 		/*
1431 		 * Set the task state to TASK_COMPLETE so it can no longer
1432 		 * be found or aborted.
1433 		 */
1434 		if (B_TRUE == complete)
1435 			idt->idt_state = TASK_COMPLETE;
1436 		mutex_exit(&idt->idt_mutex);
1437 	}
1438 	rw_exit(&idm.idm_taskid_table_lock);
1439 
1440 	return (idt);
1441 }
1442 
1443 /*
1444  * This function looks up a task by task tag.
1445  */
1446 idm_task_t *
1447 idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
1448 {
1449 	return (idm_task_find_common(ic, itt, ttt, B_FALSE));
1450 }
1451 
1452 /*
1453  * This function looks up a task by task tag. If found, the task state
1454  * is atomically set to TASK_COMPLETE so it can longer be found or aborted.
1455  */
1456 idm_task_t *
1457 idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
1458 {
1459 	return (idm_task_find_common(ic, itt, ttt, B_TRUE));
1460 }
1461 
1462 /*
1463  * idm_task_find_by_handle
1464  *
1465  * This function looks up a task by the client-private idt_client_handle.
1466  *
1467  * This function should NEVER be called in the performance path.  It is
1468  * intended strictly for error recovery/task management.
1469  */
1470 /*ARGSUSED*/
1471 void *
1472 idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle)
1473 {
1474 	idm_task_t	*idt = NULL;
1475 	int		idx = 0;
1476 
1477 	rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1478 
1479 	for (idx = 0; idx < idm.idm_taskid_max; idx++) {
1480 		idt = idm.idm_taskid_table[idx];
1481 
1482 		if (idt == NULL)
1483 			continue;
1484 
1485 		mutex_enter(&idt->idt_mutex);
1486 
1487 		if (idt->idt_state != TASK_ACTIVE) {
1488 			/*
1489 			 * Task is either in suspend, abort, or already
1490 			 * complete.
1491 			 */
1492 			mutex_exit(&idt->idt_mutex);
1493 			continue;
1494 		}
1495 
1496 		if (idt->idt_client_handle == handle) {
1497 			idm_task_hold(idt);
1498 			mutex_exit(&idt->idt_mutex);
1499 			break;
1500 		}
1501 
1502 		mutex_exit(&idt->idt_mutex);
1503 	}
1504 
1505 	rw_exit(&idm.idm_taskid_table_lock);
1506 
1507 	if ((idt == NULL) || (idx == idm.idm_taskid_max))
1508 		return (NULL);
1509 
1510 	return (idt->idt_private);
1511 }
1512 
1513 void
1514 idm_task_hold(idm_task_t *idt)
1515 {
1516 	idm_refcnt_hold(&idt->idt_refcnt);
1517 }
1518 
1519 void
1520 idm_task_rele(idm_task_t *idt)
1521 {
1522 	idm_refcnt_rele(&idt->idt_refcnt);
1523 }
1524 
1525 void
1526 idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
1527 {
1528 	idm_task_t	*task;
1529 	int		idx;
1530 
1531 	/*
1532 	 * Passing NULL as the task indicates that all tasks
1533 	 * for this connection should be aborted.
1534 	 */
1535 	if (idt == NULL) {
1536 		/*
1537 		 * Only the connection state machine should ask for
1538 		 * all tasks to abort and this should never happen in FFP.
1539 		 */
1540 		ASSERT(!ic->ic_ffp);
1541 		rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1542 		for (idx = 0; idx < idm.idm_taskid_max; idx++) {
1543 			task = idm.idm_taskid_table[idx];
1544 			if (task == NULL)
1545 				continue;
1546 			mutex_enter(&task->idt_mutex);
1547 			if ((task->idt_state != TASK_IDLE) &&
1548 			    (task->idt_state != TASK_COMPLETE) &&
1549 			    (task->idt_ic == ic)) {
1550 				rw_exit(&idm.idm_taskid_table_lock);
1551 				idm_task_abort_one(ic, task, abort_type);
1552 				rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1553 			} else
1554 				mutex_exit(&task->idt_mutex);
1555 		}
1556 		rw_exit(&idm.idm_taskid_table_lock);
1557 	} else {
1558 		mutex_enter(&idt->idt_mutex);
1559 		idm_task_abort_one(ic, idt, abort_type);
1560 	}
1561 }
1562 
1563 static void
1564 idm_task_abort_unref_cb(void *ref)
1565 {
1566 	idm_task_t *idt = ref;
1567 
1568 	mutex_enter(&idt->idt_mutex);
1569 	switch (idt->idt_state) {
1570 	case TASK_SUSPENDING:
1571 		idt->idt_state = TASK_SUSPENDED;
1572 		mutex_exit(&idt->idt_mutex);
1573 		idm_task_aborted(idt, IDM_STATUS_SUSPENDED);
1574 		return;
1575 	case TASK_ABORTING:
1576 		idt->idt_state = TASK_ABORTED;
1577 		mutex_exit(&idt->idt_mutex);
1578 		idm_task_aborted(idt, IDM_STATUS_ABORTED);
1579 		return;
1580 	default:
1581 		mutex_exit(&idt->idt_mutex);
1582 		ASSERT(0);
1583 		break;
1584 	}
1585 }
1586 
1587 /*
1588  * Abort the idm task.
1589  *    Caller must hold the task mutex, which will be released before return
1590  */
1591 static void
1592 idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
1593 {
1594 	/* Caller must hold connection mutex */
1595 	ASSERT(mutex_owned(&idt->idt_mutex));
1596 	switch (idt->idt_state) {
1597 	case TASK_ACTIVE:
1598 		switch (abort_type) {
1599 		case AT_INTERNAL_SUSPEND:
1600 			/* Call transport to release any resources */
1601 			idt->idt_state = TASK_SUSPENDING;
1602 			mutex_exit(&idt->idt_mutex);
1603 			ic->ic_transport_ops->it_free_task_rsrc(idt);
1604 
1605 			/*
1606 			 * Wait for outstanding references.  When all
1607 			 * references are released the callback will call
1608 			 * idm_task_aborted().
1609 			 */
1610 			idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1611 			    &idm_task_abort_unref_cb);
1612 			return;
1613 		case AT_INTERNAL_ABORT:
1614 		case AT_TASK_MGMT_ABORT:
1615 			idt->idt_state = TASK_ABORTING;
1616 			mutex_exit(&idt->idt_mutex);
1617 			ic->ic_transport_ops->it_free_task_rsrc(idt);
1618 
1619 			/*
1620 			 * Wait for outstanding references.  When all
1621 			 * references are released the callback will call
1622 			 * idm_task_aborted().
1623 			 */
1624 			idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1625 			    &idm_task_abort_unref_cb);
1626 			return;
1627 		default:
1628 			ASSERT(0);
1629 		}
1630 		break;
1631 	case TASK_SUSPENDING:
1632 		/* Already called transport_free_task_rsrc(); */
1633 		switch (abort_type) {
1634 		case AT_INTERNAL_SUSPEND:
1635 			/* Already doing it */
1636 			break;
1637 		case AT_INTERNAL_ABORT:
1638 		case AT_TASK_MGMT_ABORT:
1639 			idt->idt_state = TASK_ABORTING;
1640 			break;
1641 		default:
1642 			ASSERT(0);
1643 		}
1644 		break;
1645 	case TASK_SUSPENDED:
1646 		/* Already called transport_free_task_rsrc(); */
1647 		switch (abort_type) {
1648 		case AT_INTERNAL_SUSPEND:
1649 			/* Already doing it */
1650 			break;
1651 		case AT_INTERNAL_ABORT:
1652 		case AT_TASK_MGMT_ABORT:
1653 			idt->idt_state = TASK_ABORTING;
1654 			mutex_exit(&idt->idt_mutex);
1655 
1656 			/*
1657 			 * We could probably call idm_task_aborted directly
1658 			 * here but we may be holding the conn lock. It's
1659 			 * easier to just switch contexts.  Even though
1660 			 * we shouldn't really have any references we'll
1661 			 * set the state to TASK_ABORTING instead of
1662 			 * TASK_ABORTED so we can use the same code path.
1663 			 */
1664 			idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1665 			    &idm_task_abort_unref_cb);
1666 			return;
1667 		default:
1668 			ASSERT(0);
1669 		}
1670 		break;
1671 	case TASK_ABORTING:
1672 	case TASK_ABORTED:
1673 		switch (abort_type) {
1674 		case AT_INTERNAL_SUSPEND:
1675 			/* We're already past this point... */
1676 		case AT_INTERNAL_ABORT:
1677 		case AT_TASK_MGMT_ABORT:
1678 			/* Already doing it */
1679 			break;
1680 		default:
1681 			ASSERT(0);
1682 		}
1683 		break;
1684 	case TASK_COMPLETE:
1685 		/*
1686 		 * In this case, let it go.  The status has already been
1687 		 * sent (which may or may not get successfully transmitted)
1688 		 * and we don't want to end up in a race between completing
1689 		 * the status PDU and marking the task suspended.
1690 		 */
1691 		break;
1692 	default:
1693 		ASSERT(0);
1694 	}
1695 	mutex_exit(&idt->idt_mutex);
1696 }
1697 
1698 static void
1699 idm_task_aborted(idm_task_t *idt, idm_status_t status)
1700 {
1701 	(*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status);
1702 }
1703 
1704 void
1705 idm_task_cleanup(idm_task_t *idt)
1706 {
1707 	idm_buf_t *idb, *next_idb;
1708 	list_t		tmp_buflist;
1709 	ASSERT((idt->idt_state == TASK_SUSPENDED) ||
1710 	    (idt->idt_state == TASK_ABORTED));
1711 
1712 	list_create(&tmp_buflist, sizeof (idm_buf_t),
1713 	    offsetof(idm_buf_t, idb_buflink));
1714 
1715 	/*
1716 	 * Remove all the buffers from the task and add them to a
1717 	 * temporary local list -- we do this so that we can hold
1718 	 * the task lock and prevent the task from going away if
1719 	 * the client decides to call idm_task_done/idm_task_free.
1720 	 * This could happen during abort in iscsit.
1721 	 */
1722 	mutex_enter(&idt->idt_mutex);
1723 	for (idb = list_head(&idt->idt_inbufv);
1724 	    idb != NULL;
1725 	    idb = next_idb) {
1726 		next_idb = list_next(&idt->idt_inbufv, idb);
1727 		idm_buf_unbind_in_locked(idt, idb);
1728 		list_insert_tail(&tmp_buflist, idb);
1729 	}
1730 
1731 	for (idb = list_head(&idt->idt_outbufv);
1732 	    idb != NULL;
1733 	    idb = next_idb) {
1734 		next_idb = list_next(&idt->idt_outbufv, idb);
1735 		idm_buf_unbind_out_locked(idt, idb);
1736 		list_insert_tail(&tmp_buflist, idb);
1737 	}
1738 	mutex_exit(&idt->idt_mutex);
1739 
1740 	for (idb = list_head(&tmp_buflist); idb != NULL; idb = next_idb) {
1741 		next_idb = list_next(&tmp_buflist, idb);
1742 		list_remove(&tmp_buflist, idb);
1743 		(*idb->idb_buf_cb)(idb, IDM_STATUS_ABORTED);
1744 	}
1745 	list_destroy(&tmp_buflist);
1746 }
1747 
1748 
1749 /*
1750  * idm_pdu_tx
1751  *
1752  * This is IDM's implementation of the 'Send_Control' operational primitive.
1753  * This function is invoked by an initiator iSCSI layer requesting the transfer
1754  * of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a
1755  * iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover
1756  * layer to the peer iSCSI layer in the remote iSCSI node. The connection info
1757  * and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size
1758  * are provided as input.
1759  *
1760  */
1761 void
1762 idm_pdu_tx(idm_pdu_t *pdu)
1763 {
1764 	idm_conn_t		*ic = pdu->isp_ic;
1765 	iscsi_async_evt_hdr_t	*async_evt;
1766 
1767 	/*
1768 	 * If we are in full-featured mode then route SCSI-related
1769 	 * commands to the appropriate function vector without checking
1770 	 * the connection state.  We will only be in full-feature mode
1771 	 * when we are in an acceptable state for SCSI PDU's.
1772 	 *
1773 	 * We also need to ensure that there are no PDU events outstanding
1774 	 * on the state machine.  Any non-SCSI PDU's received in full-feature
1775 	 * mode will result in PDU events and until these have been handled
1776 	 * we need to route all PDU's through the state machine as PDU
1777 	 * events to maintain ordering.
1778 	 *
1779 	 * Note that IDM cannot enter FFP mode until it processes in
1780 	 * its state machine the last xmit of the login process.
1781 	 * Hence, checking the IDM_PDU_LOGIN_TX flag here would be
1782 	 * superfluous.
1783 	 */
1784 	mutex_enter(&ic->ic_state_mutex);
1785 	if (ic->ic_ffp && (ic->ic_pdu_events == 0)) {
1786 		mutex_exit(&ic->ic_state_mutex);
1787 		switch (IDM_PDU_OPCODE(pdu)) {
1788 		case ISCSI_OP_SCSI_RSP:
1789 			/* Target only */
1790 			DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
1791 			    iscsi_scsi_rsp_hdr_t *,
1792 			    (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
1793 			idm_pdu_tx_forward(ic, pdu);
1794 			return;
1795 		case ISCSI_OP_SCSI_TASK_MGT_RSP:
1796 			/* Target only */
1797 			DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
1798 			    iscsi_text_rsp_hdr_t *,
1799 			    (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1800 			idm_pdu_tx_forward(ic, pdu);
1801 			return;
1802 		case ISCSI_OP_SCSI_DATA_RSP:
1803 			/* Target only */
1804 			DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
1805 			    iscsi_data_rsp_hdr_t *,
1806 			    (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
1807 			idm_pdu_tx_forward(ic, pdu);
1808 			return;
1809 		case ISCSI_OP_RTT_RSP:
1810 			/* Target only */
1811 			DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
1812 			    iscsi_rtt_hdr_t *,
1813 			    (iscsi_rtt_hdr_t *)pdu->isp_hdr);
1814 			idm_pdu_tx_forward(ic, pdu);
1815 			return;
1816 		case ISCSI_OP_NOOP_IN:
1817 			/* Target only */
1818 			DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
1819 			    iscsi_nop_in_hdr_t *,
1820 			    (iscsi_nop_in_hdr_t *)pdu->isp_hdr);
1821 			idm_pdu_tx_forward(ic, pdu);
1822 			return;
1823 		case ISCSI_OP_TEXT_RSP:
1824 			/* Target only */
1825 			DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
1826 			    iscsi_text_rsp_hdr_t *,
1827 			    (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1828 			idm_pdu_tx_forward(ic, pdu);
1829 			return;
1830 		case ISCSI_OP_TEXT_CMD:
1831 		case ISCSI_OP_NOOP_OUT:
1832 		case ISCSI_OP_SCSI_CMD:
1833 		case ISCSI_OP_SCSI_DATA:
1834 		case ISCSI_OP_SCSI_TASK_MGT_MSG:
1835 			/* Initiator only */
1836 			idm_pdu_tx_forward(ic, pdu);
1837 			return;
1838 		default:
1839 			break;
1840 		}
1841 
1842 		mutex_enter(&ic->ic_state_mutex);
1843 	}
1844 
1845 	/*
1846 	 * Any PDU's processed outside of full-feature mode and non-SCSI
1847 	 * PDU's in full-feature mode are handled by generating an
1848 	 * event to the connection state machine.  The state machine
1849 	 * will validate the PDU against the current state and either
1850 	 * transmit the PDU if the opcode is allowed or handle an
1851 	 * error if the PDU is not allowed.
1852 	 *
1853 	 * This code-path will also generate any events that are implied
1854 	 * by the PDU opcode.  For example a "login response" with success
1855 	 * status generates a CE_LOGOUT_SUCCESS_SND event.
1856 	 */
1857 	switch (IDM_PDU_OPCODE(pdu)) {
1858 	case ISCSI_OP_LOGIN_CMD:
1859 		idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu);
1860 		break;
1861 	case ISCSI_OP_LOGIN_RSP:
1862 		DTRACE_ISCSI_2(login__response, idm_conn_t *, ic,
1863 		    iscsi_login_rsp_hdr_t *,
1864 		    (iscsi_login_rsp_hdr_t *)pdu->isp_hdr);
1865 		idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE);
1866 		break;
1867 	case ISCSI_OP_LOGOUT_CMD:
1868 		idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE);
1869 		break;
1870 	case ISCSI_OP_LOGOUT_RSP:
1871 		DTRACE_ISCSI_2(logout__response, idm_conn_t *, ic,
1872 		    iscsi_logout_rsp_hdr_t *,
1873 		    (iscsi_logout_rsp_hdr_t *)pdu->isp_hdr);
1874 		idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE);
1875 		break;
1876 	case ISCSI_OP_ASYNC_EVENT:
1877 		DTRACE_ISCSI_2(async__send, idm_conn_t *, ic,
1878 		    iscsi_async_evt_hdr_t *,
1879 		    (iscsi_async_evt_hdr_t *)pdu->isp_hdr);
1880 		async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr;
1881 		switch (async_evt->async_event) {
1882 		case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT:
1883 			idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND,
1884 			    (uintptr_t)pdu);
1885 			break;
1886 		case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION:
1887 			idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND,
1888 			    (uintptr_t)pdu);
1889 			break;
1890 		case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS:
1891 			idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND,
1892 			    (uintptr_t)pdu);
1893 			break;
1894 		case ISCSI_ASYNC_EVENT_SCSI_EVENT:
1895 		case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION:
1896 		default:
1897 			idm_conn_tx_pdu_event(ic, CE_MISC_TX,
1898 			    (uintptr_t)pdu);
1899 			break;
1900 		}
1901 		break;
1902 	case ISCSI_OP_SCSI_RSP:
1903 		/* Target only */
1904 		DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
1905 		    iscsi_scsi_rsp_hdr_t *,
1906 		    (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
1907 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1908 		break;
1909 	case ISCSI_OP_SCSI_TASK_MGT_RSP:
1910 		/* Target only */
1911 		DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
1912 		    iscsi_scsi_task_mgt_rsp_hdr_t *,
1913 		    (iscsi_scsi_task_mgt_rsp_hdr_t *)pdu->isp_hdr);
1914 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1915 		break;
1916 	case ISCSI_OP_SCSI_DATA_RSP:
1917 		/* Target only */
1918 		DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
1919 		    iscsi_data_rsp_hdr_t *,
1920 		    (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
1921 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1922 		break;
1923 	case ISCSI_OP_RTT_RSP:
1924 		/* Target only */
1925 		DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
1926 		    iscsi_rtt_hdr_t *,
1927 		    (iscsi_rtt_hdr_t *)pdu->isp_hdr);
1928 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1929 		break;
1930 	case ISCSI_OP_NOOP_IN:
1931 		/* Target only */
1932 		DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
1933 		    iscsi_nop_in_hdr_t *,
1934 		    (iscsi_nop_in_hdr_t *)pdu->isp_hdr);
1935 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1936 		break;
1937 	case ISCSI_OP_TEXT_RSP:
1938 		/* Target only */
1939 		DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
1940 		    iscsi_text_rsp_hdr_t *,
1941 		    (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1942 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1943 		break;
1944 		/* Initiator only */
1945 	case ISCSI_OP_SCSI_CMD:
1946 	case ISCSI_OP_SCSI_TASK_MGT_MSG:
1947 	case ISCSI_OP_SCSI_DATA:
1948 	case ISCSI_OP_NOOP_OUT:
1949 	case ISCSI_OP_TEXT_CMD:
1950 	case ISCSI_OP_SNACK_CMD:
1951 	case ISCSI_OP_REJECT_MSG:
1952 	default:
1953 		/*
1954 		 * Connection state machine will validate these PDU's against
1955 		 * the current state.  A PDU not allowed in the current
1956 		 * state will cause a protocol error.
1957 		 */
1958 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1959 		break;
1960 	}
1961 	mutex_exit(&ic->ic_state_mutex);
1962 }
1963 
1964 /*
1965  * Common allocation of a PDU along with memory for header and data.
1966  */
1967 static idm_pdu_t *
1968 idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag)
1969 {
1970 	idm_pdu_t *result;
1971 
1972 	/*
1973 	 * IDM clients should cache these structures for performance
1974 	 * critical paths.  We can't cache effectively in IDM because we
1975 	 * don't know the correct header and data size.
1976 	 *
1977 	 * Valid header length is assumed to be hdrlen and valid data
1978 	 * length is assumed to be datalen.  isp_hdrlen and isp_datalen
1979 	 * can be adjusted after the PDU is returned if necessary.
1980 	 */
1981 	result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag);
1982 	if (result != NULL) {
1983 		/* For idm_pdu_free sanity check */
1984 		result->isp_flags |= IDM_PDU_ALLOC;
1985 		/* pointer arithmetic */
1986 		result->isp_hdr = (iscsi_hdr_t *)(result + 1);
1987 		result->isp_hdrlen = hdrlen;
1988 		result->isp_hdrbuflen = hdrlen;
1989 		result->isp_transport_hdrlen = 0;
1990 		if (datalen != 0)
1991 			result->isp_data = (uint8_t *)result->isp_hdr + hdrlen;
1992 		result->isp_datalen = datalen;
1993 		result->isp_databuflen = datalen;
1994 		result->isp_magic = IDM_PDU_MAGIC;
1995 	}
1996 
1997 	return (result);
1998 }
1999 
2000 /*
2001  * Typical idm_pdu_alloc invocation, will block for resources.
2002  */
2003 idm_pdu_t *
2004 idm_pdu_alloc(uint_t hdrlen, uint_t datalen)
2005 {
2006 	return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP));
2007 }
2008 
2009 /*
2010  * Non-blocking idm_pdu_alloc implementation, returns NULL if resources
2011  * are not available.  Needed for transport-layer allocations which may
2012  * be invoking in interrupt context.
2013  */
2014 idm_pdu_t *
2015 idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen)
2016 {
2017 	return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP));
2018 }
2019 
2020 /*
2021  * Free a PDU previously allocated with idm_pdu_alloc() including any
2022  * header and data space allocated as part of the original request.
2023  * Additional memory regions referenced by subsequent modification of
2024  * the isp_hdr and/or isp_data fields will not be freed.
2025  */
2026 void
2027 idm_pdu_free(idm_pdu_t *pdu)
2028 {
2029 	/* Make sure the structure was allocated using idm_pdu_alloc() */
2030 	ASSERT(pdu->isp_flags & IDM_PDU_ALLOC);
2031 	kmem_free(pdu,
2032 	    sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen);
2033 }
2034 
2035 /*
2036  * Initialize the connection, private and callback fields in a PDU.
2037  */
2038 void
2039 idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb)
2040 {
2041 	/*
2042 	 * idm_pdu_complete() will call idm_pdu_free if the callback is
2043 	 * NULL.  This will only work if the PDU was originally allocated
2044 	 * with idm_pdu_alloc().
2045 	 */
2046 	ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) ||
2047 	    (cb != NULL));
2048 	pdu->isp_magic = IDM_PDU_MAGIC;
2049 	pdu->isp_ic = ic;
2050 	pdu->isp_private = private;
2051 	pdu->isp_callback = cb;
2052 }
2053 
2054 /*
2055  * Initialize the header and header length field.  This function should
2056  * not be used to adjust the header length in a buffer allocated via
2057  * pdu_pdu_alloc since it overwrites the existing header pointer.
2058  */
2059 void
2060 idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen)
2061 {
2062 	pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr);
2063 	pdu->isp_hdrlen = hdrlen;
2064 }
2065 
2066 /*
2067  * Initialize the data and data length fields.  This function should
2068  * not be used to adjust the data length of a buffer allocated via
2069  * idm_pdu_alloc since it overwrites the existing data pointer.
2070  */
2071 void
2072 idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen)
2073 {
2074 	pdu->isp_data = data;
2075 	pdu->isp_datalen = datalen;
2076 }
2077 
2078 void
2079 idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status)
2080 {
2081 	if (pdu->isp_callback) {
2082 		pdu->isp_status = status;
2083 		(*pdu->isp_callback)(pdu, status);
2084 	} else {
2085 		idm_pdu_free(pdu);
2086 	}
2087 }
2088 
2089 /*
2090  * State machine auditing
2091  */
2092 
2093 void
2094 idm_sm_audit_init(sm_audit_buf_t *audit_buf)
2095 {
2096 	bzero(audit_buf, sizeof (sm_audit_buf_t));
2097 	audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1;
2098 }
2099 
2100 static
2101 sm_audit_record_t *
2102 idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type,
2103     sm_audit_sm_type_t sm_type,
2104     int current_state)
2105 {
2106 	sm_audit_record_t *sar;
2107 
2108 	sar = audit_buf->sab_records;
2109 	sar += audit_buf->sab_index;
2110 	audit_buf->sab_index++;
2111 	audit_buf->sab_index &= audit_buf->sab_max_index;
2112 
2113 	sar->sar_type = r_type;
2114 	gethrestime(&sar->sar_timestamp);
2115 	sar->sar_sm_type = sm_type;
2116 	sar->sar_state = current_state;
2117 
2118 	return (sar);
2119 }
2120 
2121 void
2122 idm_sm_audit_event(sm_audit_buf_t *audit_buf,
2123     sm_audit_sm_type_t sm_type, int current_state,
2124     int event, uintptr_t event_info)
2125 {
2126 	sm_audit_record_t *sar;
2127 
2128 	sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT,
2129 	    sm_type, current_state);
2130 	sar->sar_event = event;
2131 	sar->sar_event_info = event_info;
2132 }
2133 
2134 void
2135 idm_sm_audit_state_change(sm_audit_buf_t *audit_buf,
2136     sm_audit_sm_type_t sm_type, int current_state, int new_state)
2137 {
2138 	sm_audit_record_t *sar;
2139 
2140 	sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE,
2141 	    sm_type, current_state);
2142 	sar->sar_new_state = new_state;
2143 }
2144 
2145 
2146 /*
2147  * Object reference tracking
2148  */
2149 
2150 void
2151 idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj)
2152 {
2153 	bzero(refcnt, sizeof (*refcnt));
2154 	idm_refcnt_reset(refcnt);
2155 	refcnt->ir_referenced_obj = referenced_obj;
2156 	bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t));
2157 	refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1;
2158 	mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL);
2159 	cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL);
2160 }
2161 
2162 void
2163 idm_refcnt_destroy(idm_refcnt_t *refcnt)
2164 {
2165 	/*
2166 	 * Grab the mutex to there are no other lingering threads holding
2167 	 * the mutex before we destroy it (e.g. idm_refcnt_rele just after
2168 	 * the refcnt goes to zero if ir_waiting == REF_WAIT_ASYNC)
2169 	 */
2170 	mutex_enter(&refcnt->ir_mutex);
2171 	ASSERT(refcnt->ir_refcnt == 0);
2172 	cv_destroy(&refcnt->ir_cv);
2173 	mutex_destroy(&refcnt->ir_mutex);
2174 }
2175 
2176 void
2177 idm_refcnt_reset(idm_refcnt_t *refcnt)
2178 {
2179 	refcnt->ir_waiting = REF_NOWAIT;
2180 	refcnt->ir_refcnt = 0;
2181 }
2182 
2183 void
2184 idm_refcnt_hold(idm_refcnt_t *refcnt)
2185 {
2186 	/*
2187 	 * Nothing should take a hold on an object after a call to
2188 	 * idm_refcnt_wait_ref or idm_refcnd_async_wait_ref
2189 	 */
2190 	ASSERT(refcnt->ir_waiting == REF_NOWAIT);
2191 
2192 	mutex_enter(&refcnt->ir_mutex);
2193 	refcnt->ir_refcnt++;
2194 	REFCNT_AUDIT(refcnt);
2195 	mutex_exit(&refcnt->ir_mutex);
2196 }
2197 
2198 static void
2199 idm_refcnt_unref_task(void *refcnt_void)
2200 {
2201 	idm_refcnt_t *refcnt = refcnt_void;
2202 
2203 	REFCNT_AUDIT(refcnt);
2204 	(*refcnt->ir_cb)(refcnt->ir_referenced_obj);
2205 }
2206 
2207 void
2208 idm_refcnt_rele(idm_refcnt_t *refcnt)
2209 {
2210 	mutex_enter(&refcnt->ir_mutex);
2211 	ASSERT(refcnt->ir_refcnt > 0);
2212 	refcnt->ir_refcnt--;
2213 	REFCNT_AUDIT(refcnt);
2214 	if (refcnt->ir_waiting == REF_NOWAIT) {
2215 		/* No one is waiting on this object */
2216 		mutex_exit(&refcnt->ir_mutex);
2217 		return;
2218 	}
2219 
2220 	/*
2221 	 * Someone is waiting for this object to go idle so check if
2222 	 * refcnt is 0.  Waiting on an object then later grabbing another
2223 	 * reference is not allowed so we don't need to handle that case.
2224 	 */
2225 	if (refcnt->ir_refcnt == 0) {
2226 		if (refcnt->ir_waiting == REF_WAIT_ASYNC) {
2227 			if (taskq_dispatch(idm.idm_global_taskq,
2228 			    &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) {
2229 				cmn_err(CE_WARN,
2230 				    "idm_refcnt_rele: Couldn't dispatch task");
2231 			}
2232 		} else if (refcnt->ir_waiting == REF_WAIT_SYNC) {
2233 			cv_signal(&refcnt->ir_cv);
2234 		}
2235 	}
2236 	mutex_exit(&refcnt->ir_mutex);
2237 }
2238 
2239 void
2240 idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
2241 {
2242 	mutex_enter(&refcnt->ir_mutex);
2243 	ASSERT(refcnt->ir_refcnt > 0);
2244 	refcnt->ir_refcnt--;
2245 	REFCNT_AUDIT(refcnt);
2246 
2247 	/*
2248 	 * Someone is waiting for this object to go idle so check if
2249 	 * refcnt is 0.  Waiting on an object then later grabbing another
2250 	 * reference is not allowed so we don't need to handle that case.
2251 	 */
2252 	if (refcnt->ir_refcnt == 0) {
2253 		refcnt->ir_cb = cb_func;
2254 		refcnt->ir_waiting = REF_WAIT_ASYNC;
2255 		if (taskq_dispatch(idm.idm_global_taskq,
2256 		    &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) {
2257 			cmn_err(CE_WARN,
2258 			    "idm_refcnt_rele: Couldn't dispatch task");
2259 		}
2260 	}
2261 	mutex_exit(&refcnt->ir_mutex);
2262 }
2263 
2264 void
2265 idm_refcnt_wait_ref(idm_refcnt_t *refcnt)
2266 {
2267 	mutex_enter(&refcnt->ir_mutex);
2268 	refcnt->ir_waiting = REF_WAIT_SYNC;
2269 	REFCNT_AUDIT(refcnt);
2270 	while (refcnt->ir_refcnt != 0)
2271 		cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex);
2272 	mutex_exit(&refcnt->ir_mutex);
2273 }
2274 
2275 void
2276 idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
2277 {
2278 	mutex_enter(&refcnt->ir_mutex);
2279 	refcnt->ir_waiting = REF_WAIT_ASYNC;
2280 	refcnt->ir_cb = cb_func;
2281 	REFCNT_AUDIT(refcnt);
2282 	/*
2283 	 * It's possible we don't have any references.  To make things easier
2284 	 * on the caller use a taskq to call the callback instead of
2285 	 * calling it synchronously
2286 	 */
2287 	if (refcnt->ir_refcnt == 0) {
2288 		if (taskq_dispatch(idm.idm_global_taskq,
2289 		    &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) {
2290 			cmn_err(CE_WARN,
2291 			    "idm_refcnt_async_wait_ref: "
2292 			    "Couldn't dispatch task");
2293 		}
2294 	}
2295 	mutex_exit(&refcnt->ir_mutex);
2296 }
2297 
2298 void
2299 idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt,
2300     idm_refcnt_cb_t *cb_func)
2301 {
2302 	mutex_enter(&refcnt->ir_mutex);
2303 	if (refcnt->ir_refcnt == 0) {
2304 		mutex_exit(&refcnt->ir_mutex);
2305 		(*cb_func)(refcnt->ir_referenced_obj);
2306 		return;
2307 	}
2308 	mutex_exit(&refcnt->ir_mutex);
2309 }
2310 
2311 void
2312 idm_conn_hold(idm_conn_t *ic)
2313 {
2314 	idm_refcnt_hold(&ic->ic_refcnt);
2315 }
2316 
2317 void
2318 idm_conn_rele(idm_conn_t *ic)
2319 {
2320 	idm_refcnt_rele(&ic->ic_refcnt);
2321 }
2322 
2323 void
2324 idm_conn_set_target_name(idm_conn_t *ic, char *target_name)
2325 {
2326 	(void) strlcpy(ic->ic_target_name, target_name, ISCSI_MAX_NAME_LEN + 1);
2327 }
2328 
2329 void
2330 idm_conn_set_initiator_name(idm_conn_t *ic, char *initiator_name)
2331 {
2332 	(void) strlcpy(ic->ic_initiator_name, initiator_name,
2333 	    ISCSI_MAX_NAME_LEN + 1);
2334 }
2335 
2336 void
2337 idm_conn_set_isid(idm_conn_t *ic, uint8_t isid[ISCSI_ISID_LEN])
2338 {
2339 	(void) snprintf(ic->ic_isid, ISCSI_MAX_ISID_LEN + 1,
2340 	    "%02x%02x%02x%02x%02x%02x",
2341 	    isid[0], isid[1], isid[2], isid[3], isid[4], isid[5]);
2342 }
2343 
2344 static int
2345 _idm_init(void)
2346 {
2347 	/* Initialize the rwlock for the taskid table */
2348 	rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL);
2349 
2350 	/* Initialize the global mutex and taskq */
2351 	mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL);
2352 
2353 	cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL);
2354 	cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL);
2355 
2356 	/*
2357 	 * The maximum allocation needs to be high here since there can be
2358 	 * many concurrent tasks using the global taskq.
2359 	 */
2360 	idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri,
2361 	    128, 16384, TASKQ_PREPOPULATE);
2362 	if (idm.idm_global_taskq == NULL) {
2363 		cv_destroy(&idm.idm_wd_cv);
2364 		cv_destroy(&idm.idm_tgt_svc_cv);
2365 		mutex_destroy(&idm.idm_global_mutex);
2366 		rw_destroy(&idm.idm_taskid_table_lock);
2367 		return (ENOMEM);
2368 	}
2369 
2370 	/* Start watchdog thread */
2371 	idm.idm_wd_thread = thread_create(NULL, 0,
2372 	    idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri);
2373 	if (idm.idm_wd_thread == NULL) {
2374 		/* Couldn't create the watchdog thread */
2375 		taskq_destroy(idm.idm_global_taskq);
2376 		cv_destroy(&idm.idm_wd_cv);
2377 		cv_destroy(&idm.idm_tgt_svc_cv);
2378 		mutex_destroy(&idm.idm_global_mutex);
2379 		rw_destroy(&idm.idm_taskid_table_lock);
2380 		return (ENOMEM);
2381 	}
2382 
2383 	/* Pause until the watchdog thread is running */
2384 	mutex_enter(&idm.idm_global_mutex);
2385 	while (!idm.idm_wd_thread_running)
2386 		cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex);
2387 	mutex_exit(&idm.idm_global_mutex);
2388 
2389 	/*
2390 	 * Allocate the task ID table and set "next" to 0.
2391 	 */
2392 
2393 	idm.idm_taskid_max = idm_max_taskids;
2394 	idm.idm_taskid_table = (idm_task_t **)
2395 	    kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP);
2396 	idm.idm_taskid_next = 0;
2397 
2398 	/* Create the global buffer and task kmem caches */
2399 	idm.idm_buf_cache = kmem_cache_create("idm_buf_cache",
2400 	    sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP);
2401 
2402 	/*
2403 	 * Note, we're explicitly allocating an additional iSER header-
2404 	 * sized chunk for each of these elements. See idm_task_constructor().
2405 	 */
2406 	idm.idm_task_cache = kmem_cache_create("idm_task_cache",
2407 	    sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8,
2408 	    &idm_task_constructor, &idm_task_destructor,
2409 	    NULL, NULL, NULL, KM_SLEEP);
2410 
2411 	/* Create the service and connection context lists */
2412 	list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t),
2413 	    offsetof(idm_svc_t, is_list_node));
2414 	list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t),
2415 	    offsetof(idm_conn_t, ic_list_node));
2416 	list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t),
2417 	    offsetof(idm_conn_t, ic_list_node));
2418 
2419 	/* Initialize the native sockets transport */
2420 	idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]);
2421 
2422 	/* Create connection ID pool */
2423 	(void) idm_idpool_create(&idm.idm_conn_id_pool);
2424 
2425 	return (DDI_SUCCESS);
2426 }
2427 
2428 static int
2429 _idm_fini(void)
2430 {
2431 	if (!list_is_empty(&idm.idm_ini_conn_list) ||
2432 	    !list_is_empty(&idm.idm_tgt_conn_list) ||
2433 	    !list_is_empty(&idm.idm_tgt_svc_list)) {
2434 		return (EBUSY);
2435 	}
2436 
2437 	mutex_enter(&idm.idm_global_mutex);
2438 	idm.idm_wd_thread_running = B_FALSE;
2439 	cv_signal(&idm.idm_wd_cv);
2440 	mutex_exit(&idm.idm_global_mutex);
2441 
2442 	thread_join(idm.idm_wd_thread_did);
2443 
2444 	idm_idpool_destroy(&idm.idm_conn_id_pool);
2445 
2446 	/* Close any LDI handles we have open on transport drivers */
2447 	mutex_enter(&idm.idm_global_mutex);
2448 	idm_transport_teardown();
2449 	mutex_exit(&idm.idm_global_mutex);
2450 
2451 	/* Teardown the native sockets transport */
2452 	idm_so_fini();
2453 
2454 	list_destroy(&idm.idm_ini_conn_list);
2455 	list_destroy(&idm.idm_tgt_conn_list);
2456 	list_destroy(&idm.idm_tgt_svc_list);
2457 	kmem_cache_destroy(idm.idm_task_cache);
2458 	kmem_cache_destroy(idm.idm_buf_cache);
2459 	kmem_free(idm.idm_taskid_table,
2460 	    idm.idm_taskid_max * sizeof (idm_task_t *));
2461 	mutex_destroy(&idm.idm_global_mutex);
2462 	cv_destroy(&idm.idm_wd_cv);
2463 	cv_destroy(&idm.idm_tgt_svc_cv);
2464 	rw_destroy(&idm.idm_taskid_table_lock);
2465 
2466 	return (0);
2467 }
2468