xref: /illumos-gate/usr/src/uts/common/io/idm/idm.c (revision 2570281cf351044b6936651ce26dbe1f801dcbd8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
24  */
25 
26 #include <sys/cpuvar.h>
27 #include <sys/conf.h>
28 #include <sys/file.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/modctl.h>
32 
33 #include <sys/socket.h>
34 #include <sys/strsubr.h>
35 #include <sys/sysmacros.h>
36 
37 #include <sys/socketvar.h>
38 #include <netinet/in.h>
39 
40 #include <sys/idm/idm.h>
41 #include <sys/idm/idm_so.h>
42 
43 #define	IDM_NAME_VERSION	"iSCSI Data Mover"
44 
45 extern struct mod_ops mod_miscops;
46 extern struct mod_ops mod_miscops;
47 
48 static struct modlmisc modlmisc = {
49 	&mod_miscops,	/* Type of module */
50 	IDM_NAME_VERSION
51 };
52 
53 static struct modlinkage modlinkage = {
54 	MODREV_1, (void *)&modlmisc, NULL
55 };
56 
57 extern void idm_wd_thread(void *arg);
58 
59 static int _idm_init(void);
60 static int _idm_fini(void);
61 static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf);
62 static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf);
63 static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf);
64 static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf);
65 static stmf_status_t idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt,
66     idm_abort_type_t abort_type);
67 static void idm_task_aborted(idm_task_t *idt, idm_status_t status);
68 static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen,
69     int sleepflag);
70 
71 boolean_t idm_conn_logging = 0;
72 boolean_t idm_svc_logging = 0;
73 #ifdef DEBUG
74 boolean_t idm_pattern_checking = 1;
75 #else
76 boolean_t idm_pattern_checking = 0;
77 #endif
78 
79 /*
80  * Potential tuneable for the maximum number of tasks.  Default to
81  * IDM_TASKIDS_MAX
82  */
83 
84 uint32_t	idm_max_taskids = IDM_TASKIDS_MAX;
85 
86 /*
87  * Global list of transport handles
88  *   These are listed in preferential order, so we can simply take the
89  *   first "it_conn_is_capable" hit. Note also that the order maps to
90  *   the order of the idm_transport_type_t list.
91  */
92 idm_transport_t idm_transport_list[] = {
93 
94 	/* iSER on InfiniBand transport handle */
95 	{IDM_TRANSPORT_TYPE_ISER,	/* type */
96 	"/devices/ib/iser@0:iser",	/* device path */
97 	NULL,				/* LDI handle */
98 	NULL,				/* transport ops */
99 	NULL},				/* transport caps */
100 
101 	/* IDM native sockets transport handle */
102 	{IDM_TRANSPORT_TYPE_SOCKETS,	/* type */
103 	NULL,				/* device path */
104 	NULL,				/* LDI handle */
105 	NULL,				/* transport ops */
106 	NULL}				/* transport caps */
107 
108 };
109 
110 idm_global_t idm;	/* Global state */
111 
112 int
113 _init(void)
114 {
115 	int rc;
116 
117 	if ((rc = _idm_init()) != 0) {
118 		return (rc);
119 	}
120 
121 	return (mod_install(&modlinkage));
122 }
123 
124 int
125 _fini(void)
126 {
127 	int rc;
128 
129 	if ((rc = _idm_fini()) != 0) {
130 		return (rc);
131 	}
132 
133 	if ((rc = mod_remove(&modlinkage)) != 0) {
134 		return (rc);
135 	}
136 
137 	return (rc);
138 }
139 
140 int
141 _info(struct modinfo *modinfop)
142 {
143 	return (mod_info(&modlinkage, modinfop));
144 }
145 
146 /*
147  * idm_transport_register()
148  *
149  * Provides a mechanism for an IDM transport driver to register its
150  * transport ops and caps with the IDM kernel module. Invoked during
151  * a transport driver's attach routine.
152  */
153 idm_status_t
154 idm_transport_register(idm_transport_attr_t *attr)
155 {
156 	ASSERT(attr->it_ops != NULL);
157 	ASSERT(attr->it_caps != NULL);
158 
159 	switch (attr->type) {
160 	/* All known non-native transports here; for now, iSER */
161 	case IDM_TRANSPORT_TYPE_ISER:
162 		idm_transport_list[attr->type].it_ops	= attr->it_ops;
163 		idm_transport_list[attr->type].it_caps	= attr->it_caps;
164 		return (IDM_STATUS_SUCCESS);
165 
166 	default:
167 		cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in "
168 		    "idm_transport_register", attr->type);
169 		return (IDM_STATUS_SUCCESS);
170 	}
171 }
172 
173 /*
174  * idm_ini_conn_create
175  *
176  * This function is invoked by the iSCSI layer to create a connection context.
177  * This does not actually establish the socket connection.
178  *
179  * cr - Connection request parameters
180  * new_con - Output parameter that contains the new request if successful
181  *
182  */
183 idm_status_t
184 idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con)
185 {
186 	idm_transport_t		*it;
187 	idm_conn_t		*ic;
188 	int			rc;
189 
190 	it = idm_transport_lookup(cr);
191 
192 retry:
193 	ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type,
194 	    &cr->icr_conn_ops);
195 
196 	bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr,
197 	    sizeof (cr->cr_ini_dst_addr));
198 
199 	/* create the transport-specific connection components */
200 	rc = it->it_ops->it_ini_conn_create(cr, ic);
201 	if (rc != IDM_STATUS_SUCCESS) {
202 		/* cleanup the failed connection */
203 		idm_conn_destroy_common(ic);
204 
205 		/*
206 		 * It is possible for an IB client to connect to
207 		 * an ethernet-only client via an IB-eth gateway.
208 		 * Therefore, if we are attempting to use iSER and
209 		 * fail, retry with sockets before ultimately
210 		 * failing the connection.
211 		 */
212 		if (it->it_type == IDM_TRANSPORT_TYPE_ISER) {
213 			it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS];
214 			goto retry;
215 		}
216 
217 		return (IDM_STATUS_FAIL);
218 	}
219 
220 	*new_con = ic;
221 
222 	mutex_enter(&idm.idm_global_mutex);
223 	list_insert_tail(&idm.idm_ini_conn_list, ic);
224 	mutex_exit(&idm.idm_global_mutex);
225 
226 	return (IDM_STATUS_SUCCESS);
227 }
228 
229 /*
230  * idm_ini_conn_destroy
231  *
232  * Releases any resources associated with the connection.  This is the
233  * complement to idm_ini_conn_create.
234  * ic - idm_conn_t structure representing the relevant connection
235  *
236  */
237 void
238 idm_ini_conn_destroy_task(void *ic_void)
239 {
240 	idm_conn_t *ic = ic_void;
241 
242 	ic->ic_transport_ops->it_ini_conn_destroy(ic);
243 	idm_conn_destroy_common(ic);
244 }
245 
246 void
247 idm_ini_conn_destroy(idm_conn_t *ic)
248 {
249 	/*
250 	 * It's reasonable for the initiator to call idm_ini_conn_destroy
251 	 * from within the context of the CN_CONNECT_DESTROY notification.
252 	 * That's a problem since we want to destroy the taskq for the
253 	 * state machine associated with the connection.  Remove the
254 	 * connection from the list right away then handle the remaining
255 	 * work via the idm_global_taskq.
256 	 */
257 	mutex_enter(&idm.idm_global_mutex);
258 	list_remove(&idm.idm_ini_conn_list, ic);
259 	mutex_exit(&idm.idm_global_mutex);
260 
261 	if (taskq_dispatch(idm.idm_global_taskq,
262 	    &idm_ini_conn_destroy_task, ic, TQ_SLEEP) == TASKQID_INVALID) {
263 		cmn_err(CE_WARN,
264 		    "idm_ini_conn_destroy: Couldn't dispatch task");
265 	}
266 }
267 
268 /*
269  * idm_ini_conn_connect
270  *
271  * Establish connection to the remote system identified in idm_conn_t.
272  * The connection parameters including the remote IP address were established
273  * in the call to idm_ini_conn_create.  The IDM state machine will
274  * perform client notifications as necessary to prompt the initiator through
275  * the login process.  IDM also keeps a timer running so that if the login
276  * process doesn't complete in a timely manner it will fail.
277  *
278  * ic - idm_conn_t structure representing the relevant connection
279  *
280  * Returns success if the connection was established, otherwise some kind
281  * of meaningful error code.
282  *
283  * Upon return the login has either failed or is loggin in (ffp)
284  */
285 idm_status_t
286 idm_ini_conn_connect(idm_conn_t *ic)
287 {
288 	idm_status_t	rc;
289 
290 	rc = idm_conn_sm_init(ic);
291 	if (rc != IDM_STATUS_SUCCESS) {
292 		return (ic->ic_conn_sm_status);
293 	}
294 
295 	/* Hold connection until we return */
296 	idm_conn_hold(ic);
297 
298 	/* Kick state machine */
299 	idm_conn_event(ic, CE_CONNECT_REQ, (uintptr_t)NULL);
300 
301 	/* Wait for login flag */
302 	mutex_enter(&ic->ic_state_mutex);
303 	while (!(ic->ic_state_flags & CF_LOGIN_READY) &&
304 	    !(ic->ic_state_flags & CF_ERROR)) {
305 		cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
306 	}
307 
308 	/*
309 	 * The CN_READY_TO_LOGIN and/or the CN_CONNECT_FAIL call to
310 	 * idm_notify_client has already been generated by the idm conn
311 	 * state machine.  If connection fails any time after this
312 	 * check, we will detect it in iscsi_login.
313 	 */
314 	if (ic->ic_state_flags & CF_ERROR) {
315 		rc = ic->ic_conn_sm_status;
316 	}
317 	mutex_exit(&ic->ic_state_mutex);
318 	idm_conn_rele(ic);
319 
320 	return (rc);
321 }
322 
323 /*
324  * idm_ini_conn_disconnect
325  *
326  * Forces a connection (previously established using idm_ini_conn_connect)
327  * to perform a controlled shutdown, cleaning up any outstanding requests.
328  *
329  * ic - idm_conn_t structure representing the relevant connection
330  *
331  * This is asynchronous and will return before the connection is properly
332  * shutdown
333  */
334 /* ARGSUSED */
335 void
336 idm_ini_conn_disconnect(idm_conn_t *ic)
337 {
338 	idm_conn_event(ic, CE_TRANSPORT_FAIL, (uintptr_t)NULL);
339 }
340 
341 /*
342  * idm_ini_conn_disconnect_wait
343  *
344  * Forces a connection (previously established using idm_ini_conn_connect)
345  * to perform a controlled shutdown.  Blocks until the connection is
346  * disconnected.
347  *
348  * ic - idm_conn_t structure representing the relevant connection
349  */
350 /* ARGSUSED */
351 void
352 idm_ini_conn_disconnect_sync(idm_conn_t *ic)
353 {
354 	mutex_enter(&ic->ic_state_mutex);
355 	if ((ic->ic_state != CS_S9_INIT_ERROR) &&
356 	    (ic->ic_state != CS_S11_COMPLETE)) {
357 		idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, (uintptr_t)NULL,
358 		    CT_NONE);
359 		while ((ic->ic_state != CS_S9_INIT_ERROR) &&
360 		    (ic->ic_state != CS_S11_COMPLETE))
361 			cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
362 	}
363 	mutex_exit(&ic->ic_state_mutex);
364 }
365 
366 /*
367  * idm_tgt_svc_create
368  *
369  * The target calls this service to obtain a service context for each available
370  * transport, starting a service of each type related to the IP address and port
371  * passed. The idm_svc_req_t contains the service parameters.
372  */
373 idm_status_t
374 idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc)
375 {
376 	idm_transport_type_t	type;
377 	idm_transport_t		*it;
378 	idm_svc_t		*is;
379 	int			rc;
380 
381 	*new_svc = NULL;
382 	is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP);
383 
384 	/* Initialize transport-agnostic components of the service handle */
385 	is->is_svc_req = *sr;
386 	mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL);
387 	cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL);
388 	mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL);
389 	cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL);
390 	idm_refcnt_init(&is->is_refcnt, is);
391 
392 	/*
393 	 * Make sure all available transports are setup.  We call this now
394 	 * instead of at initialization time in case IB has become available
395 	 * since we started (hotplug, etc).
396 	 */
397 	idm_transport_setup(sr->sr_li, B_FALSE);
398 
399 	/*
400 	 * Loop through the transports, configuring the transport-specific
401 	 * components of each one.
402 	 */
403 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
404 
405 		it = &idm_transport_list[type];
406 		/*
407 		 * If it_ops is NULL then the transport is unconfigured
408 		 * and we shouldn't try to start the service.
409 		 */
410 		if (it->it_ops == NULL) {
411 			continue;
412 		}
413 
414 		rc = it->it_ops->it_tgt_svc_create(sr, is);
415 		if (rc != IDM_STATUS_SUCCESS) {
416 			/* Teardown any configured services */
417 			while (type--) {
418 				it = &idm_transport_list[type];
419 				if (it->it_ops == NULL) {
420 					continue;
421 				}
422 				it->it_ops->it_tgt_svc_destroy(is);
423 			}
424 			/* Free the svc context and return */
425 			kmem_free(is, sizeof (idm_svc_t));
426 			return (rc);
427 		}
428 	}
429 
430 	*new_svc = is;
431 
432 	mutex_enter(&idm.idm_global_mutex);
433 	list_insert_tail(&idm.idm_tgt_svc_list, is);
434 	mutex_exit(&idm.idm_global_mutex);
435 
436 	return (IDM_STATUS_SUCCESS);
437 }
438 
439 /*
440  * idm_tgt_svc_destroy
441  *
442  * is - idm_svc_t returned by the call to idm_tgt_svc_create
443  *
444  * Cleanup any resources associated with the idm_svc_t.
445  */
446 void
447 idm_tgt_svc_destroy(idm_svc_t *is)
448 {
449 	idm_transport_type_t	type;
450 	idm_transport_t		*it;
451 
452 	mutex_enter(&idm.idm_global_mutex);
453 	/* remove this service from the global list */
454 	list_remove(&idm.idm_tgt_svc_list, is);
455 	/* wakeup any waiters for service change */
456 	cv_broadcast(&idm.idm_tgt_svc_cv);
457 	mutex_exit(&idm.idm_global_mutex);
458 
459 	/* teardown each transport-specific service */
460 	for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
461 		it = &idm_transport_list[type];
462 		if (it->it_ops == NULL) {
463 			continue;
464 		}
465 
466 		it->it_ops->it_tgt_svc_destroy(is);
467 	}
468 
469 	/* tear down the svc resources */
470 	idm_refcnt_destroy(&is->is_refcnt);
471 	cv_destroy(&is->is_count_cv);
472 	mutex_destroy(&is->is_count_mutex);
473 	cv_destroy(&is->is_cv);
474 	mutex_destroy(&is->is_mutex);
475 
476 	/* free the svc handle */
477 	kmem_free(is, sizeof (idm_svc_t));
478 }
479 
480 void
481 idm_tgt_svc_hold(idm_svc_t *is)
482 {
483 	idm_refcnt_hold(&is->is_refcnt);
484 }
485 
486 void
487 idm_tgt_svc_rele_and_destroy(idm_svc_t *is)
488 {
489 	idm_refcnt_rele_and_destroy(&is->is_refcnt,
490 	    (idm_refcnt_cb_t *)&idm_tgt_svc_destroy);
491 }
492 
493 /*
494  * idm_tgt_svc_online
495  *
496  * is - idm_svc_t returned by the call to idm_tgt_svc_create
497  *
498  * Online each transport service, as we want this target to be accessible
499  * via any configured transport.
500  *
501  * When the initiator establishes a new connection to the target, IDM will
502  * call the "new connect" callback defined in the idm_svc_req_t structure
503  * and it will pass an idm_conn_t structure representing that new connection.
504  */
505 idm_status_t
506 idm_tgt_svc_online(idm_svc_t *is)
507 {
508 
509 	idm_transport_type_t	type, last_type;
510 	idm_transport_t		*it;
511 	int			rc = IDM_STATUS_SUCCESS;
512 
513 	mutex_enter(&is->is_mutex);
514 	if (is->is_online == 0) {
515 		/* Walk through each of the transports and online them */
516 		for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
517 			it = &idm_transport_list[type];
518 			if (it->it_ops == NULL) {
519 				/* transport is not registered */
520 				continue;
521 			}
522 
523 			mutex_exit(&is->is_mutex);
524 			rc = it->it_ops->it_tgt_svc_online(is);
525 			mutex_enter(&is->is_mutex);
526 			if (rc != IDM_STATUS_SUCCESS) {
527 				last_type = type;
528 				break;
529 			}
530 		}
531 		if (rc != IDM_STATUS_SUCCESS) {
532 			/*
533 			 * The last transport failed to online.
534 			 * Offline any transport onlined above and
535 			 * do not online the target.
536 			 */
537 			for (type = 0; type < last_type; type++) {
538 				it = &idm_transport_list[type];
539 				if (it->it_ops == NULL) {
540 					/* transport is not registered */
541 					continue;
542 				}
543 
544 				mutex_exit(&is->is_mutex);
545 				it->it_ops->it_tgt_svc_offline(is);
546 				mutex_enter(&is->is_mutex);
547 			}
548 		} else {
549 			/* Target service now online */
550 			is->is_online = 1;
551 		}
552 	} else {
553 		/* Target service already online, just bump the count */
554 		is->is_online++;
555 	}
556 	mutex_exit(&is->is_mutex);
557 
558 	return (rc);
559 }
560 
561 /*
562  * idm_tgt_svc_offline
563  *
564  * is - idm_svc_t returned by the call to idm_tgt_svc_create
565  *
566  * Shutdown any online target services.
567  */
568 void
569 idm_tgt_svc_offline(idm_svc_t *is)
570 {
571 	idm_transport_type_t	type;
572 	idm_transport_t		*it;
573 
574 	mutex_enter(&is->is_mutex);
575 	is->is_online--;
576 	if (is->is_online == 0) {
577 		/* Walk through each of the transports and offline them */
578 		for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
579 			it = &idm_transport_list[type];
580 			if (it->it_ops == NULL) {
581 				/* transport is not registered */
582 				continue;
583 			}
584 
585 			mutex_exit(&is->is_mutex);
586 			it->it_ops->it_tgt_svc_offline(is);
587 			mutex_enter(&is->is_mutex);
588 		}
589 	}
590 	mutex_exit(&is->is_mutex);
591 }
592 
593 /*
594  * idm_tgt_svc_lookup
595  *
596  * Lookup a service instance listening on the specified port
597  */
598 
599 idm_svc_t *
600 idm_tgt_svc_lookup(uint16_t port)
601 {
602 	idm_svc_t *result;
603 
604 retry:
605 	mutex_enter(&idm.idm_global_mutex);
606 	for (result = list_head(&idm.idm_tgt_svc_list);
607 	    result != NULL;
608 	    result = list_next(&idm.idm_tgt_svc_list, result)) {
609 		if (result->is_svc_req.sr_port == port) {
610 			if (result->is_online == 0) {
611 				/*
612 				 * A service exists on this port, but it
613 				 * is going away, wait for it to cleanup.
614 				 */
615 				cv_wait(&idm.idm_tgt_svc_cv,
616 				    &idm.idm_global_mutex);
617 				mutex_exit(&idm.idm_global_mutex);
618 				goto retry;
619 			}
620 			idm_tgt_svc_hold(result);
621 			mutex_exit(&idm.idm_global_mutex);
622 			return (result);
623 		}
624 	}
625 	mutex_exit(&idm.idm_global_mutex);
626 
627 	return (NULL);
628 }
629 
630 /*
631  * idm_negotiate_key_values()
632  * Give IDM level a chance to negotiate any login parameters it should own.
633  *  -- leave unhandled parameters alone on request_nvl
634  *  -- move all handled parameters to response_nvl with an appropriate response
635  *  -- also add an entry to negotiated_nvl for any accepted parameters
636  */
637 kv_status_t
638 idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl,
639     nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
640 {
641 	ASSERT(ic->ic_transport_ops != NULL);
642 	return (ic->ic_transport_ops->it_negotiate_key_values(ic,
643 	    request_nvl, response_nvl, negotiated_nvl));
644 }
645 
646 /*
647  * idm_notice_key_values()
648  * Activate at the IDM level any parameters that have been negotiated.
649  * Passes the set of key value pairs to the transport for activation.
650  * This will be invoked as the connection is entering full-feature mode.
651  */
652 void
653 idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl)
654 {
655 	ASSERT(ic->ic_transport_ops != NULL);
656 	ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl);
657 }
658 
659 /*
660  * idm_declare_key_values()
661  * Activate an operational set of declarative parameters from the config_nvl,
662  * and return the selected values in the outgoing_nvl.
663  */
664 kv_status_t
665 idm_declare_key_values(idm_conn_t *ic, nvlist_t *config_nvl,
666     nvlist_t *outgoing_nvl)
667 {
668 	ASSERT(ic->ic_transport_ops != NULL);
669 	return (ic->ic_transport_ops->it_declare_key_values(ic, config_nvl,
670 	    outgoing_nvl));
671 }
672 
673 /*
674  * idm_buf_tx_to_ini
675  *
676  * This is IDM's implementation of the 'Put_Data' operational primitive.
677  *
678  * This function is invoked by a target iSCSI layer to request its local
679  * Datamover layer to transmit the Data-In PDU to the peer iSCSI layer
680  * on the remote iSCSI node. The I/O buffer represented by 'idb' is
681  * transferred to the initiator associated with task 'idt'. The connection
682  * info, contents of the Data-In PDU header, the DataDescriptorIn, BHS,
683  * and the callback (idb->idb_buf_cb) at transfer completion are
684  * provided as input.
685  *
686  * This data transfer takes place transparently to the remote iSCSI layer,
687  * i.e. without its participation.
688  *
689  * Using sockets, IDM implements the data transfer by segmenting the data
690  * buffer into appropriately sized iSCSI PDUs and transmitting them to the
691  * initiator. iSER performs the transfer using RDMA write.
692  *
693  */
694 idm_status_t
695 idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb,
696     uint32_t offset, uint32_t xfer_len,
697     idm_buf_cb_t idb_buf_cb, void *cb_arg)
698 {
699 	idm_status_t rc;
700 
701 	idb->idb_bufoffset = offset;
702 	idb->idb_xfer_len = xfer_len;
703 	idb->idb_buf_cb = idb_buf_cb;
704 	idb->idb_cb_arg = cb_arg;
705 	gethrestime(&idb->idb_xfer_start);
706 
707 	/*
708 	 * Buffer should not contain the pattern.  If the pattern is
709 	 * present then we've been asked to transmit initialized data
710 	 */
711 	IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT);
712 
713 	mutex_enter(&idt->idt_mutex);
714 	switch (idt->idt_state) {
715 	case TASK_ACTIVE:
716 		idt->idt_tx_to_ini_start++;
717 		idm_task_hold(idt);
718 		idm_buf_bind_in_locked(idt, idb);
719 		idb->idb_in_transport = B_TRUE;
720 		rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini)
721 		    (idt, idb);
722 		return (rc);
723 
724 	case TASK_SUSPENDING:
725 	case TASK_SUSPENDED:
726 		/*
727 		 * Bind buffer but don't start a transfer since the task
728 		 * is suspended
729 		 */
730 		idm_buf_bind_in_locked(idt, idb);
731 		mutex_exit(&idt->idt_mutex);
732 		return (IDM_STATUS_SUCCESS);
733 
734 	case TASK_ABORTING:
735 	case TASK_ABORTED:
736 		/*
737 		 * Once the task is aborted, any buffers added to the
738 		 * idt_inbufv will never get cleaned up, so just return
739 		 * SUCCESS.  The buffer should get cleaned up by the
740 		 * client or framework once task_aborted has completed.
741 		 */
742 		mutex_exit(&idt->idt_mutex);
743 		return (IDM_STATUS_SUCCESS);
744 
745 	default:
746 		ASSERT(0);
747 		break;
748 	}
749 	mutex_exit(&idt->idt_mutex);
750 
751 	return (IDM_STATUS_FAIL);
752 }
753 
754 /*
755  * idm_buf_rx_from_ini
756  *
757  * This is IDM's implementation of the 'Get_Data' operational primitive.
758  *
759  * This function is invoked by a target iSCSI layer to request its local
760  * Datamover layer to retrieve certain data identified by the R2T PDU from the
761  * peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be
762  * mapped to the respective buffer by the task tags (ITT & TTT).
763  * The connection information, contents of an R2T PDU, DataDescriptor, BHS, and
764  * the callback (idb->idb_buf_cb) notification for data transfer completion are
765  * are provided as input.
766  *
767  * When an iSCSI node sends an R2T PDU to its local Datamover layer, the local
768  * Datamover layer, the local and remote Datamover layers transparently bring
769  * about the data transfer requested by the R2T PDU, without the participation
770  * of the iSCSI layers.
771  *
772  * Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out()
773  * assembles the Data-Out PDUs into the buffer. iSER uses RDMA read.
774  *
775  */
776 idm_status_t
777 idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb,
778     uint32_t offset, uint32_t xfer_len,
779     idm_buf_cb_t idb_buf_cb, void *cb_arg)
780 {
781 	idm_status_t rc;
782 
783 	idb->idb_bufoffset = offset;
784 	idb->idb_xfer_len = xfer_len;
785 	idb->idb_buf_cb = idb_buf_cb;
786 	idb->idb_cb_arg = cb_arg;
787 	gethrestime(&idb->idb_xfer_start);
788 
789 	/*
790 	 * "In" buf list is for "Data In" PDU's, "Out" buf list is for
791 	 * "Data Out" PDU's
792 	 */
793 	mutex_enter(&idt->idt_mutex);
794 	switch (idt->idt_state) {
795 	case TASK_ACTIVE:
796 		idt->idt_rx_from_ini_start++;
797 		idm_task_hold(idt);
798 		idm_buf_bind_out_locked(idt, idb);
799 		idb->idb_in_transport = B_TRUE;
800 		rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini)
801 		    (idt, idb);
802 		return (rc);
803 	case TASK_SUSPENDING:
804 	case TASK_SUSPENDED:
805 	case TASK_ABORTING:
806 	case TASK_ABORTED:
807 		/*
808 		 * Bind buffer but don't start a transfer since the task
809 		 * is suspended
810 		 */
811 		idm_buf_bind_out_locked(idt, idb);
812 		mutex_exit(&idt->idt_mutex);
813 		return (IDM_STATUS_SUCCESS);
814 	default:
815 		ASSERT(0);
816 		break;
817 	}
818 	mutex_exit(&idt->idt_mutex);
819 
820 	return (IDM_STATUS_FAIL);
821 }
822 
823 /*
824  * idm_buf_tx_to_ini_done
825  *
826  * The transport calls this after it has completed a transfer requested by
827  * a call to transport_buf_tx_to_ini
828  *
829  * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
830  * idt may be freed after the call to idb->idb_buf_cb.
831  */
832 void
833 idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
834 {
835 	ASSERT(mutex_owned(&idt->idt_mutex));
836 	idb->idb_in_transport = B_FALSE;
837 	idb->idb_tx_thread = B_FALSE;
838 	idt->idt_tx_to_ini_done++;
839 	gethrestime(&idb->idb_xfer_done);
840 
841 	/*
842 	 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
843 	 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
844 	 * to 0.
845 	 */
846 	idm_task_rele(idt);
847 	idb->idb_status = status;
848 
849 	switch (idt->idt_state) {
850 	case TASK_ACTIVE:
851 		idt->idt_ic->ic_timestamp = ddi_get_lbolt();
852 		idm_buf_unbind_in_locked(idt, idb);
853 		mutex_exit(&idt->idt_mutex);
854 		(*idb->idb_buf_cb)(idb, status);
855 		return;
856 	case TASK_SUSPENDING:
857 	case TASK_SUSPENDED:
858 	case TASK_ABORTING:
859 	case TASK_ABORTED:
860 		/*
861 		 * To keep things simple we will ignore the case where the
862 		 * transfer was successful and leave all buffers bound to the
863 		 * task.  This allows us to also ignore the case where we've
864 		 * been asked to abort a task but the last transfer of the
865 		 * task has completed.  IDM has no idea whether this was, in
866 		 * fact, the last transfer of the task so it would be difficult
867 		 * to handle this case.  Everything should get sorted out again
868 		 * after task reassignment is complete.
869 		 *
870 		 * In the case of TASK_ABORTING we could conceivably call the
871 		 * buffer callback here but the timing of when the client's
872 		 * client_task_aborted callback is invoked vs. when the client's
873 		 * buffer callback gets invoked gets sticky.  We don't want
874 		 * the client to here from us again after the call to
875 		 * client_task_aborted() but we don't want to give it a bunch
876 		 * of failed buffer transfers until we've called
877 		 * client_task_aborted().  Instead we'll just leave all the
878 		 * buffers bound and allow the client to cleanup.
879 		 */
880 		break;
881 	default:
882 		ASSERT(0);
883 	}
884 	mutex_exit(&idt->idt_mutex);
885 }
886 
887 /*
888  * idm_buf_rx_from_ini_done
889  *
890  * The transport calls this after it has completed a transfer requested by
891  * a call totransport_buf_tx_to_ini
892  *
893  * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
894  * idt may be freed after the call to idb->idb_buf_cb.
895  */
896 void
897 idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
898 {
899 	ASSERT(mutex_owned(&idt->idt_mutex));
900 	idb->idb_in_transport = B_FALSE;
901 	idt->idt_rx_from_ini_done++;
902 	gethrestime(&idb->idb_xfer_done);
903 
904 	/*
905 	 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
906 	 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
907 	 * to 0.
908 	 */
909 	idm_task_rele(idt);
910 	idb->idb_status = status;
911 
912 	if (status == IDM_STATUS_SUCCESS) {
913 		/*
914 		 * Buffer should not contain the pattern.  If it does then
915 		 * we did not get the data from the remote host.
916 		 */
917 		IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT);
918 	}
919 
920 	switch (idt->idt_state) {
921 	case TASK_ACTIVE:
922 		idt->idt_ic->ic_timestamp = ddi_get_lbolt();
923 		idm_buf_unbind_out_locked(idt, idb);
924 		mutex_exit(&idt->idt_mutex);
925 		(*idb->idb_buf_cb)(idb, status);
926 		return;
927 	case TASK_SUSPENDING:
928 	case TASK_SUSPENDED:
929 	case TASK_ABORTING:
930 	case TASK_ABORTED:
931 		/*
932 		 * To keep things simple we will ignore the case where the
933 		 * transfer was successful and leave all buffers bound to the
934 		 * task.  This allows us to also ignore the case where we've
935 		 * been asked to abort a task but the last transfer of the
936 		 * task has completed.  IDM has no idea whether this was, in
937 		 * fact, the last transfer of the task so it would be difficult
938 		 * to handle this case.  Everything should get sorted out again
939 		 * after task reassignment is complete.
940 		 *
941 		 * In the case of TASK_ABORTING we could conceivably call the
942 		 * buffer callback here but the timing of when the client's
943 		 * client_task_aborted callback is invoked vs. when the client's
944 		 * buffer callback gets invoked gets sticky.  We don't want
945 		 * the client to here from us again after the call to
946 		 * client_task_aborted() but we don't want to give it a bunch
947 		 * of failed buffer transfers until we've called
948 		 * client_task_aborted().  Instead we'll just leave all the
949 		 * buffers bound and allow the client to cleanup.
950 		 */
951 		break;
952 	default:
953 		ASSERT(0);
954 	}
955 	mutex_exit(&idt->idt_mutex);
956 }
957 
958 /*
959  * idm_buf_alloc
960  *
961  * Allocates a buffer handle and registers it for use with the transport
962  * layer. If a buffer is not passed on bufptr, the buffer will be allocated
963  * as well as the handle.
964  *
965  * ic		- connection on which the buffer will be transferred
966  * bufptr	- allocate memory for buffer if NULL, else assign to buffer
967  * buflen	- length of buffer
968  *
969  * Returns idm_buf_t handle if successful, otherwise NULL
970  */
971 idm_buf_t *
972 idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen)
973 {
974 	idm_buf_t	*buf = NULL;
975 	int		rc;
976 
977 	ASSERT(ic != NULL);
978 	ASSERT(idm.idm_buf_cache != NULL);
979 	ASSERT(buflen > 0);
980 
981 	/* Don't allocate new buffers if we are not in FFP */
982 	mutex_enter(&ic->ic_state_mutex);
983 	if (!ic->ic_ffp) {
984 		mutex_exit(&ic->ic_state_mutex);
985 		return (NULL);
986 	}
987 
988 
989 	idm_conn_hold(ic);
990 	mutex_exit(&ic->ic_state_mutex);
991 
992 	buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP);
993 	if (buf == NULL) {
994 		idm_conn_rele(ic);
995 		return (NULL);
996 	}
997 
998 	buf->idb_ic		= ic;
999 	buf->idb_buflen		= buflen;
1000 	buf->idb_exp_offset	= 0;
1001 	buf->idb_bufoffset	= 0;
1002 	buf->idb_xfer_len	= 0;
1003 	buf->idb_magic		= IDM_BUF_MAGIC;
1004 	buf->idb_in_transport	= B_FALSE;
1005 	buf->idb_bufbcopy	= B_FALSE;
1006 
1007 	/*
1008 	 * If bufptr is NULL, we have an implicit request to allocate
1009 	 * memory for this IDM buffer handle and register it for use
1010 	 * with the transport. To simplify this, and to give more freedom
1011 	 * to the transport layer for it's own buffer management, both of
1012 	 * these actions will take place in the transport layer.
1013 	 * If bufptr is set, then the caller has allocated memory (or more
1014 	 * likely it's been passed from an upper layer), and we need only
1015 	 * register the buffer for use with the transport layer.
1016 	 */
1017 	if (bufptr == NULL) {
1018 		/*
1019 		 * Allocate a buffer from the transport layer (which
1020 		 * will also register the buffer for use).
1021 		 */
1022 		rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen);
1023 		if (rc != 0) {
1024 			idm_conn_rele(ic);
1025 			kmem_cache_free(idm.idm_buf_cache, buf);
1026 			return (NULL);
1027 		}
1028 		/* Set the bufalloc'd flag */
1029 		buf->idb_bufalloc = B_TRUE;
1030 	} else {
1031 		/*
1032 		 * For large transfers, Set the passed bufptr into
1033 		 * the buf handle, and register the handle with the
1034 		 * transport layer. As memory registration with the
1035 		 * transport layer is a time/cpu intensive operation,
1036 		 * for small transfers (up to a pre-defined bcopy
1037 		 * threshold), use pre-registered memory buffers
1038 		 * and bcopy data at the appropriate time.
1039 		 */
1040 		buf->idb_buf = bufptr;
1041 
1042 		rc = ic->ic_transport_ops->it_buf_setup(buf);
1043 		if (rc != 0) {
1044 			idm_conn_rele(ic);
1045 			kmem_cache_free(idm.idm_buf_cache, buf);
1046 			return (NULL);
1047 		}
1048 		/*
1049 		 * The transport layer is now expected to set the idb_bufalloc
1050 		 * correctly to indicate if resources have been allocated.
1051 		 */
1052 	}
1053 
1054 	IDM_BUFPAT_SET(buf);
1055 
1056 	return (buf);
1057 }
1058 
1059 /*
1060  * idm_buf_free
1061  *
1062  * Release a buffer handle along with the associated buffer that was allocated
1063  * or assigned with idm_buf_alloc
1064  */
1065 void
1066 idm_buf_free(idm_buf_t *buf)
1067 {
1068 	idm_conn_t *ic = buf->idb_ic;
1069 
1070 
1071 	buf->idb_task_binding	= NULL;
1072 
1073 	if (buf->idb_bufalloc) {
1074 		ic->ic_transport_ops->it_buf_free(buf);
1075 	} else {
1076 		ic->ic_transport_ops->it_buf_teardown(buf);
1077 	}
1078 	kmem_cache_free(idm.idm_buf_cache, buf);
1079 	idm_conn_rele(ic);
1080 }
1081 
1082 /*
1083  * idm_buf_bind_in
1084  *
1085  * This function associates a buffer with a task. This is only for use by the
1086  * iSCSI initiator that will have only one buffer per transfer direction
1087  *
1088  */
1089 void
1090 idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf)
1091 {
1092 	mutex_enter(&idt->idt_mutex);
1093 	idm_buf_bind_in_locked(idt, buf);
1094 	mutex_exit(&idt->idt_mutex);
1095 }
1096 
1097 static void
1098 idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf)
1099 {
1100 	buf->idb_task_binding = idt;
1101 	buf->idb_ic = idt->idt_ic;
1102 	idm_listbuf_insert(&idt->idt_inbufv, buf);
1103 }
1104 
1105 void
1106 idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf)
1107 {
1108 	/*
1109 	 * For small transfers, the iSER transport delegates the IDM
1110 	 * layer to bcopy the SCSI Write data for faster IOPS.
1111 	 */
1112 	if (buf->idb_bufbcopy == B_TRUE) {
1113 
1114 		bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen);
1115 	}
1116 	mutex_enter(&idt->idt_mutex);
1117 	idm_buf_bind_out_locked(idt, buf);
1118 	mutex_exit(&idt->idt_mutex);
1119 }
1120 
1121 static void
1122 idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf)
1123 {
1124 	buf->idb_task_binding = idt;
1125 	buf->idb_ic = idt->idt_ic;
1126 	idm_listbuf_insert(&idt->idt_outbufv, buf);
1127 }
1128 
1129 void
1130 idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf)
1131 {
1132 	/*
1133 	 * For small transfers, the iSER transport delegates the IDM
1134 	 * layer to bcopy the SCSI Read data into the read buufer
1135 	 * for faster IOPS.
1136 	 */
1137 	if (buf->idb_bufbcopy == B_TRUE) {
1138 		bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen);
1139 	}
1140 	mutex_enter(&idt->idt_mutex);
1141 	idm_buf_unbind_in_locked(idt, buf);
1142 	mutex_exit(&idt->idt_mutex);
1143 }
1144 
1145 static void
1146 idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf)
1147 {
1148 	list_remove(&idt->idt_inbufv, buf);
1149 }
1150 
1151 void
1152 idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf)
1153 {
1154 	mutex_enter(&idt->idt_mutex);
1155 	idm_buf_unbind_out_locked(idt, buf);
1156 	mutex_exit(&idt->idt_mutex);
1157 }
1158 
1159 static void
1160 idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf)
1161 {
1162 	list_remove(&idt->idt_outbufv, buf);
1163 }
1164 
1165 /*
1166  * idm_buf_find() will lookup the idm_buf_t based on the relative offset in the
1167  * iSCSI PDU
1168  */
1169 idm_buf_t *
1170 idm_buf_find(void *lbuf, size_t data_offset)
1171 {
1172 	idm_buf_t	*idb;
1173 	list_t		*lst = (list_t *)lbuf;
1174 
1175 	/* iterate through the list to find the buffer */
1176 	for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) {
1177 
1178 		ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) ||
1179 		    (idb->idb_bufoffset == 0));
1180 
1181 		if ((data_offset >= idb->idb_bufoffset) &&
1182 		    (data_offset < (idb->idb_bufoffset + idb->idb_buflen))) {
1183 
1184 			return (idb);
1185 		}
1186 	}
1187 
1188 	return (NULL);
1189 }
1190 
1191 void
1192 idm_bufpat_set(idm_buf_t *idb)
1193 {
1194 	idm_bufpat_t	*bufpat;
1195 	int		len, i;
1196 
1197 	len = idb->idb_buflen;
1198 	len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
1199 
1200 	bufpat = idb->idb_buf;
1201 	for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
1202 		bufpat->bufpat_idb = idb;
1203 		bufpat->bufpat_bufmagic = IDM_BUF_MAGIC;
1204 		bufpat->bufpat_offset = i;
1205 		bufpat++;
1206 	}
1207 }
1208 
1209 boolean_t
1210 idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type)
1211 {
1212 	idm_bufpat_t	*bufpat;
1213 	int		len, i;
1214 
1215 	len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len;
1216 	len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
1217 	ASSERT(len <= idb->idb_buflen);
1218 	bufpat = idb->idb_buf;
1219 
1220 	/*
1221 	 * Don't check the pattern in buffers that came from outside IDM
1222 	 * (these will be buffers from the initiator that we opted not
1223 	 * to double-buffer)
1224 	 */
1225 	if (!idb->idb_bufalloc)
1226 		return (B_FALSE);
1227 
1228 	/*
1229 	 * Return true if we find the pattern anywhere in the buffer
1230 	 */
1231 	for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
1232 		if (BUFPAT_MATCH(bufpat, idb)) {
1233 			IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: "
1234 			    "idb %p bufpat %p "
1235 			    "bufpat_idb=%p bufmagic=%08x offset=%08x",
1236 			    (void *)idb, (void *)bufpat, bufpat->bufpat_idb,
1237 			    bufpat->bufpat_bufmagic, bufpat->bufpat_offset);
1238 			DTRACE_PROBE2(bufpat__pattern__found,
1239 			    idm_buf_t *, idb, idm_bufpat_t *, bufpat);
1240 			if (type == BP_CHECK_ASSERT) {
1241 				ASSERT(0);
1242 			}
1243 			return (B_TRUE);
1244 		}
1245 		bufpat++;
1246 	}
1247 
1248 	return (B_FALSE);
1249 }
1250 
1251 /*
1252  * idm_task_alloc
1253  *
1254  * This function will allocate a idm_task_t structure. A task tag is also
1255  * generated and saved in idt_tt. The task is not active.
1256  */
1257 idm_task_t *
1258 idm_task_alloc(idm_conn_t *ic)
1259 {
1260 	idm_task_t	*idt;
1261 
1262 	ASSERT(ic != NULL);
1263 
1264 	/* Don't allocate new tasks if we are not in FFP */
1265 	if (!ic->ic_ffp) {
1266 		return (NULL);
1267 	}
1268 	idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP);
1269 	if (idt == NULL) {
1270 		return (NULL);
1271 	}
1272 
1273 	ASSERT(list_is_empty(&idt->idt_inbufv));
1274 	ASSERT(list_is_empty(&idt->idt_outbufv));
1275 
1276 	mutex_enter(&ic->ic_state_mutex);
1277 	if (!ic->ic_ffp) {
1278 		mutex_exit(&ic->ic_state_mutex);
1279 		kmem_cache_free(idm.idm_task_cache, idt);
1280 		return (NULL);
1281 	}
1282 	idm_conn_hold(ic);
1283 	mutex_exit(&ic->ic_state_mutex);
1284 
1285 	idt->idt_state		= TASK_IDLE;
1286 	idt->idt_ic		= ic;
1287 	idt->idt_private	= NULL;
1288 	idt->idt_exp_datasn	= 0;
1289 	idt->idt_exp_rttsn	= 0;
1290 	idt->idt_flags		= 0;
1291 	return (idt);
1292 }
1293 
1294 /*
1295  * idm_task_start
1296  *
1297  * Mark the task active and initialize some stats. The caller
1298  * sets up the idm_task_t structure with a prior call to idm_task_alloc().
1299  * The task service does not function as a task/work engine, it is the
1300  * responsibility of the initiator to start the data transfer and free the
1301  * resources.
1302  */
1303 void
1304 idm_task_start(idm_task_t *idt, uintptr_t handle)
1305 {
1306 	ASSERT(idt != NULL);
1307 
1308 	/* mark the task as ACTIVE */
1309 	idt->idt_state = TASK_ACTIVE;
1310 	idt->idt_client_handle = handle;
1311 	idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done =
1312 	    idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done =
1313 	    idt->idt_tx_bytes = idt->idt_rx_bytes = 0;
1314 }
1315 
1316 /*
1317  * idm_task_done
1318  *
1319  * This function sets the state to indicate that the task is no longer active.
1320  */
1321 void
1322 idm_task_done(idm_task_t *idt)
1323 {
1324 	ASSERT(idt != NULL);
1325 
1326 	mutex_enter(&idt->idt_mutex);
1327 	idt->idt_state = TASK_IDLE;
1328 	mutex_exit(&idt->idt_mutex);
1329 
1330 	/*
1331 	 * Although unlikely it is possible for a reference to come in after
1332 	 * the client has decided the task is over but before we've marked
1333 	 * the task idle.  One specific unavoidable scenario is the case where
1334 	 * received PDU with the matching ITT/TTT results in a successful
1335 	 * lookup of this task.  We are at the mercy of the remote node in
1336 	 * that case so we need to handle it.  Now that the task state
1337 	 * has changed no more references will occur so a simple call to
1338 	 * idm_refcnt_wait_ref should deal with the situation.
1339 	 */
1340 	idm_refcnt_wait_ref(&idt->idt_refcnt);
1341 	idm_refcnt_reset(&idt->idt_refcnt);
1342 }
1343 
1344 /*
1345  * idm_task_free
1346  *
1347  * This function will free the Task Tag and the memory allocated for the task
1348  * idm_task_done should be called prior to this call
1349  */
1350 void
1351 idm_task_free(idm_task_t *idt)
1352 {
1353 	idm_conn_t *ic;
1354 
1355 	ASSERT(idt != NULL);
1356 	ASSERT(idt->idt_refcnt.ir_refcnt == 0);
1357 	ASSERT(idt->idt_state == TASK_IDLE);
1358 
1359 	ic = idt->idt_ic;
1360 
1361 	/*
1362 	 * It's possible for items to still be in the idt_inbufv list if
1363 	 * they were added after idm_free_task_rsrc was called.  We rely on
1364 	 * STMF to free all buffers associated with the task however STMF
1365 	 * doesn't know that we have this reference to the buffers.
1366 	 * Use list_create so that we don't end up with stale references
1367 	 * to these buffers.
1368 	 */
1369 	list_create(&idt->idt_inbufv, sizeof (idm_buf_t),
1370 	    offsetof(idm_buf_t, idb_buflink));
1371 	list_create(&idt->idt_outbufv, sizeof (idm_buf_t),
1372 	    offsetof(idm_buf_t, idb_buflink));
1373 
1374 	kmem_cache_free(idm.idm_task_cache, idt);
1375 
1376 	idm_conn_rele(ic);
1377 }
1378 
1379 /*
1380  * idm_task_find_common
1381  *	common code for idm_task_find() and idm_task_find_and_complete()
1382  */
1383 /*ARGSUSED*/
1384 static idm_task_t *
1385 idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt,
1386     boolean_t complete)
1387 {
1388 	uint32_t	tt, client_handle;
1389 	idm_task_t	*idt;
1390 
1391 	/*
1392 	 * Must match both itt and ttt.  The table is indexed by itt
1393 	 * for initiator connections and ttt for target connections.
1394 	 */
1395 	if (IDM_CONN_ISTGT(ic)) {
1396 		tt = ttt;
1397 		client_handle = itt;
1398 	} else {
1399 		tt = itt;
1400 		client_handle = ttt;
1401 	}
1402 
1403 	rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1404 	if (tt >= idm.idm_taskid_max) {
1405 		rw_exit(&idm.idm_taskid_table_lock);
1406 		return (NULL);
1407 	}
1408 
1409 	idt = idm.idm_taskid_table[tt];
1410 
1411 	if (idt != NULL) {
1412 		mutex_enter(&idt->idt_mutex);
1413 		if ((idt->idt_state != TASK_ACTIVE) ||
1414 		    (idt->idt_ic != ic) ||
1415 		    (IDM_CONN_ISTGT(ic) &&
1416 		    (idt->idt_client_handle != client_handle))) {
1417 			/*
1418 			 * Task doesn't match or task is aborting and
1419 			 * we don't want any more references.
1420 			 */
1421 			if ((idt->idt_ic != ic) &&
1422 			    (idt->idt_state == TASK_ACTIVE) &&
1423 			    (IDM_CONN_ISINI(ic) || idt->idt_client_handle ==
1424 			    client_handle)) {
1425 				IDM_CONN_LOG(CE_WARN,
1426 				"idm_task_find: wrong connection %p != %p",
1427 				    (void *)ic, (void *)idt->idt_ic);
1428 			}
1429 			mutex_exit(&idt->idt_mutex);
1430 			rw_exit(&idm.idm_taskid_table_lock);
1431 			return (NULL);
1432 		}
1433 		idm_task_hold(idt);
1434 		/*
1435 		 * Set the task state to TASK_COMPLETE so it can no longer
1436 		 * be found or aborted.
1437 		 */
1438 		if (B_TRUE == complete)
1439 			idt->idt_state = TASK_COMPLETE;
1440 		mutex_exit(&idt->idt_mutex);
1441 	}
1442 	rw_exit(&idm.idm_taskid_table_lock);
1443 
1444 	return (idt);
1445 }
1446 
1447 /*
1448  * This function looks up a task by task tag.
1449  */
1450 idm_task_t *
1451 idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
1452 {
1453 	return (idm_task_find_common(ic, itt, ttt, B_FALSE));
1454 }
1455 
1456 /*
1457  * This function looks up a task by task tag. If found, the task state
1458  * is atomically set to TASK_COMPLETE so it can longer be found or aborted.
1459  */
1460 idm_task_t *
1461 idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
1462 {
1463 	return (idm_task_find_common(ic, itt, ttt, B_TRUE));
1464 }
1465 
1466 /*
1467  * idm_task_find_by_handle
1468  *
1469  * This function looks up a task by the client-private idt_client_handle.
1470  *
1471  * This function should NEVER be called in the performance path.  It is
1472  * intended strictly for error recovery/task management.
1473  */
1474 /*ARGSUSED*/
1475 void *
1476 idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle)
1477 {
1478 	idm_task_t	*idt = NULL;
1479 	int		idx = 0;
1480 
1481 	rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1482 
1483 	for (idx = 0; idx < idm.idm_taskid_max; idx++) {
1484 		idt = idm.idm_taskid_table[idx];
1485 
1486 		if (idt == NULL)
1487 			continue;
1488 
1489 		mutex_enter(&idt->idt_mutex);
1490 
1491 		if (idt->idt_state != TASK_ACTIVE) {
1492 			/*
1493 			 * Task is either in suspend, abort, or already
1494 			 * complete.
1495 			 */
1496 			mutex_exit(&idt->idt_mutex);
1497 			continue;
1498 		}
1499 
1500 		if (idt->idt_client_handle == handle) {
1501 			idm_task_hold(idt);
1502 			mutex_exit(&idt->idt_mutex);
1503 			break;
1504 		}
1505 
1506 		mutex_exit(&idt->idt_mutex);
1507 	}
1508 
1509 	rw_exit(&idm.idm_taskid_table_lock);
1510 
1511 	if ((idt == NULL) || (idx == idm.idm_taskid_max))
1512 		return (NULL);
1513 
1514 	return (idt->idt_private);
1515 }
1516 
1517 void
1518 idm_task_hold(idm_task_t *idt)
1519 {
1520 	idm_refcnt_hold(&idt->idt_refcnt);
1521 }
1522 
1523 void
1524 idm_task_rele(idm_task_t *idt)
1525 {
1526 	idm_refcnt_rele(&idt->idt_refcnt);
1527 }
1528 
1529 stmf_status_t
1530 idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
1531 {
1532 	idm_task_t	*task;
1533 	int		idx;
1534 	stmf_status_t	s = STMF_SUCCESS;
1535 
1536 	/*
1537 	 * Passing NULL as the task indicates that all tasks
1538 	 * for this connection should be aborted.
1539 	 */
1540 	if (idt == NULL) {
1541 		/*
1542 		 * Only the connection state machine should ask for
1543 		 * all tasks to abort and this should never happen in FFP.
1544 		 */
1545 		ASSERT(!ic->ic_ffp);
1546 		rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1547 		for (idx = 0; idx < idm.idm_taskid_max; idx++) {
1548 			task = idm.idm_taskid_table[idx];
1549 			if (task == NULL)
1550 				continue;
1551 			mutex_enter(&task->idt_mutex);
1552 			if ((task->idt_state != TASK_IDLE) &&
1553 			    (task->idt_state != TASK_COMPLETE) &&
1554 			    (task->idt_ic == ic)) {
1555 				rw_exit(&idm.idm_taskid_table_lock);
1556 				s = idm_task_abort_one(ic, task, abort_type);
1557 				rw_enter(&idm.idm_taskid_table_lock, RW_READER);
1558 			} else
1559 				mutex_exit(&task->idt_mutex);
1560 		}
1561 		rw_exit(&idm.idm_taskid_table_lock);
1562 	} else {
1563 		mutex_enter(&idt->idt_mutex);
1564 		s = idm_task_abort_one(ic, idt, abort_type);
1565 	}
1566 	return (s);
1567 }
1568 
1569 static void
1570 idm_task_abort_unref_cb(void *ref)
1571 {
1572 	idm_task_t *idt = ref;
1573 
1574 	mutex_enter(&idt->idt_mutex);
1575 	switch (idt->idt_state) {
1576 	case TASK_SUSPENDING:
1577 		idt->idt_state = TASK_SUSPENDED;
1578 		mutex_exit(&idt->idt_mutex);
1579 		idm_task_aborted(idt, IDM_STATUS_SUSPENDED);
1580 		return;
1581 	case TASK_ABORTING:
1582 		idt->idt_state = TASK_ABORTED;
1583 		mutex_exit(&idt->idt_mutex);
1584 		idm_task_aborted(idt, IDM_STATUS_ABORTED);
1585 		return;
1586 	default:
1587 		mutex_exit(&idt->idt_mutex);
1588 		ASSERT(0);
1589 		break;
1590 	}
1591 }
1592 
1593 /*
1594  * Abort the idm task.
1595  *    Caller must hold the task mutex, which will be released before return
1596  */
1597 static stmf_status_t
1598 idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
1599 {
1600 	stmf_status_t	s = STMF_SUCCESS;
1601 
1602 	/* Caller must hold connection mutex */
1603 	ASSERT(mutex_owned(&idt->idt_mutex));
1604 	switch (idt->idt_state) {
1605 	case TASK_ACTIVE:
1606 		switch (abort_type) {
1607 		case AT_INTERNAL_SUSPEND:
1608 			/* Call transport to release any resources */
1609 			idt->idt_state = TASK_SUSPENDING;
1610 			mutex_exit(&idt->idt_mutex);
1611 			ic->ic_transport_ops->it_free_task_rsrc(idt);
1612 
1613 			/*
1614 			 * Wait for outstanding references.  When all
1615 			 * references are released the callback will call
1616 			 * idm_task_aborted().
1617 			 */
1618 			idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1619 			    &idm_task_abort_unref_cb);
1620 			return (s);
1621 		case AT_INTERNAL_ABORT:
1622 		case AT_TASK_MGMT_ABORT:
1623 			idt->idt_state = TASK_ABORTING;
1624 			mutex_exit(&idt->idt_mutex);
1625 			ic->ic_transport_ops->it_free_task_rsrc(idt);
1626 
1627 			/*
1628 			 * Wait for outstanding references.  When all
1629 			 * references are released the callback will call
1630 			 * idm_task_aborted().
1631 			 */
1632 			idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1633 			    &idm_task_abort_unref_cb);
1634 			return (s);
1635 		default:
1636 			ASSERT(0);
1637 		}
1638 		break;
1639 	case TASK_SUSPENDING:
1640 		/* Already called transport_free_task_rsrc(); */
1641 		switch (abort_type) {
1642 		case AT_INTERNAL_SUSPEND:
1643 			/* Already doing it */
1644 			break;
1645 		case AT_INTERNAL_ABORT:
1646 		case AT_TASK_MGMT_ABORT:
1647 			idt->idt_state = TASK_ABORTING;
1648 			break;
1649 		default:
1650 			ASSERT(0);
1651 		}
1652 		break;
1653 	case TASK_SUSPENDED:
1654 		/* Already called transport_free_task_rsrc(); */
1655 		switch (abort_type) {
1656 		case AT_INTERNAL_SUSPEND:
1657 			/* Already doing it */
1658 			break;
1659 		case AT_INTERNAL_ABORT:
1660 		case AT_TASK_MGMT_ABORT:
1661 			idt->idt_state = TASK_ABORTING;
1662 			mutex_exit(&idt->idt_mutex);
1663 
1664 			/*
1665 			 * We could probably call idm_task_aborted directly
1666 			 * here but we may be holding the conn lock. It's
1667 			 * easier to just switch contexts.  Even though
1668 			 * we shouldn't really have any references we'll
1669 			 * set the state to TASK_ABORTING instead of
1670 			 * TASK_ABORTED so we can use the same code path.
1671 			 */
1672 			idm_refcnt_async_wait_ref(&idt->idt_refcnt,
1673 			    &idm_task_abort_unref_cb);
1674 			return (s);
1675 		default:
1676 			ASSERT(0);
1677 		}
1678 		break;
1679 	case TASK_ABORTING:
1680 	case TASK_ABORTED:
1681 		switch (abort_type) {
1682 		case AT_INTERNAL_SUSPEND:
1683 			/* We're already past this point... */
1684 		case AT_INTERNAL_ABORT:
1685 		case AT_TASK_MGMT_ABORT:
1686 			/* Already doing it */
1687 			break;
1688 		default:
1689 			ASSERT(0);
1690 		}
1691 		break;
1692 	case TASK_COMPLETE:
1693 		idm_refcnt_wait_ref(&idt->idt_refcnt);
1694 		s = STMF_ABORT_SUCCESS;
1695 		break;
1696 	default:
1697 		ASSERT(0);
1698 	}
1699 	mutex_exit(&idt->idt_mutex);
1700 
1701 	return (s);
1702 }
1703 
1704 static void
1705 idm_task_aborted(idm_task_t *idt, idm_status_t status)
1706 {
1707 	(*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status);
1708 }
1709 
1710 /*
1711  * idm_pdu_tx
1712  *
1713  * This is IDM's implementation of the 'Send_Control' operational primitive.
1714  * This function is invoked by an initiator iSCSI layer requesting the transfer
1715  * of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a
1716  * iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover
1717  * layer to the peer iSCSI layer in the remote iSCSI node. The connection info
1718  * and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size
1719  * are provided as input.
1720  *
1721  */
1722 void
1723 idm_pdu_tx(idm_pdu_t *pdu)
1724 {
1725 	idm_conn_t		*ic = pdu->isp_ic;
1726 	iscsi_async_evt_hdr_t	*async_evt;
1727 
1728 	/*
1729 	 * If we are in full-featured mode then route SCSI-related
1730 	 * commands to the appropriate function vector without checking
1731 	 * the connection state.  We will only be in full-feature mode
1732 	 * when we are in an acceptable state for SCSI PDU's.
1733 	 *
1734 	 * We also need to ensure that there are no PDU events outstanding
1735 	 * on the state machine.  Any non-SCSI PDU's received in full-feature
1736 	 * mode will result in PDU events and until these have been handled
1737 	 * we need to route all PDU's through the state machine as PDU
1738 	 * events to maintain ordering.
1739 	 *
1740 	 * Note that IDM cannot enter FFP mode until it processes in
1741 	 * its state machine the last xmit of the login process.
1742 	 * Hence, checking the IDM_PDU_LOGIN_TX flag here would be
1743 	 * superfluous.
1744 	 */
1745 	mutex_enter(&ic->ic_state_mutex);
1746 	if (ic->ic_ffp && (ic->ic_pdu_events == 0)) {
1747 		mutex_exit(&ic->ic_state_mutex);
1748 		switch (IDM_PDU_OPCODE(pdu)) {
1749 		case ISCSI_OP_SCSI_RSP:
1750 			/* Target only */
1751 			DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
1752 			    iscsi_scsi_rsp_hdr_t *,
1753 			    (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
1754 			idm_pdu_tx_forward(ic, pdu);
1755 			return;
1756 		case ISCSI_OP_SCSI_TASK_MGT_RSP:
1757 			/* Target only */
1758 			DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
1759 			    iscsi_text_rsp_hdr_t *,
1760 			    (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1761 			idm_pdu_tx_forward(ic, pdu);
1762 			return;
1763 		case ISCSI_OP_SCSI_DATA_RSP:
1764 			/* Target only */
1765 			DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
1766 			    iscsi_data_rsp_hdr_t *,
1767 			    (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
1768 			idm_pdu_tx_forward(ic, pdu);
1769 			return;
1770 		case ISCSI_OP_RTT_RSP:
1771 			/* Target only */
1772 			DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
1773 			    iscsi_rtt_hdr_t *,
1774 			    (iscsi_rtt_hdr_t *)pdu->isp_hdr);
1775 			idm_pdu_tx_forward(ic, pdu);
1776 			return;
1777 		case ISCSI_OP_NOOP_IN:
1778 			/* Target only */
1779 			DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
1780 			    iscsi_nop_in_hdr_t *,
1781 			    (iscsi_nop_in_hdr_t *)pdu->isp_hdr);
1782 			idm_pdu_tx_forward(ic, pdu);
1783 			return;
1784 		case ISCSI_OP_TEXT_RSP:
1785 			/* Target only */
1786 			DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
1787 			    iscsi_text_rsp_hdr_t *,
1788 			    (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1789 			idm_pdu_tx_forward(ic, pdu);
1790 			return;
1791 		case ISCSI_OP_TEXT_CMD:
1792 		case ISCSI_OP_NOOP_OUT:
1793 		case ISCSI_OP_SCSI_CMD:
1794 		case ISCSI_OP_SCSI_DATA:
1795 		case ISCSI_OP_SCSI_TASK_MGT_MSG:
1796 			/* Initiator only */
1797 			idm_pdu_tx_forward(ic, pdu);
1798 			return;
1799 		default:
1800 			break;
1801 		}
1802 
1803 		mutex_enter(&ic->ic_state_mutex);
1804 	}
1805 
1806 	/*
1807 	 * Any PDU's processed outside of full-feature mode and non-SCSI
1808 	 * PDU's in full-feature mode are handled by generating an
1809 	 * event to the connection state machine.  The state machine
1810 	 * will validate the PDU against the current state and either
1811 	 * transmit the PDU if the opcode is allowed or handle an
1812 	 * error if the PDU is not allowed.
1813 	 *
1814 	 * This code-path will also generate any events that are implied
1815 	 * by the PDU opcode.  For example a "login response" with success
1816 	 * status generates a CE_LOGOUT_SUCCESS_SND event.
1817 	 */
1818 	switch (IDM_PDU_OPCODE(pdu)) {
1819 	case ISCSI_OP_LOGIN_CMD:
1820 		idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu);
1821 		break;
1822 	case ISCSI_OP_LOGIN_RSP:
1823 		DTRACE_ISCSI_2(login__response, idm_conn_t *, ic,
1824 		    iscsi_login_rsp_hdr_t *,
1825 		    (iscsi_login_rsp_hdr_t *)pdu->isp_hdr);
1826 		idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE);
1827 		break;
1828 	case ISCSI_OP_LOGOUT_CMD:
1829 		idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE);
1830 		break;
1831 	case ISCSI_OP_LOGOUT_RSP:
1832 		DTRACE_ISCSI_2(logout__response, idm_conn_t *, ic,
1833 		    iscsi_logout_rsp_hdr_t *,
1834 		    (iscsi_logout_rsp_hdr_t *)pdu->isp_hdr);
1835 		idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE);
1836 		break;
1837 	case ISCSI_OP_ASYNC_EVENT:
1838 		DTRACE_ISCSI_2(async__send, idm_conn_t *, ic,
1839 		    iscsi_async_evt_hdr_t *,
1840 		    (iscsi_async_evt_hdr_t *)pdu->isp_hdr);
1841 		async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr;
1842 		switch (async_evt->async_event) {
1843 		case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT:
1844 			idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND,
1845 			    (uintptr_t)pdu);
1846 			break;
1847 		case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION:
1848 			idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND,
1849 			    (uintptr_t)pdu);
1850 			break;
1851 		case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS:
1852 			idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND,
1853 			    (uintptr_t)pdu);
1854 			break;
1855 		case ISCSI_ASYNC_EVENT_SCSI_EVENT:
1856 		case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION:
1857 		default:
1858 			idm_conn_tx_pdu_event(ic, CE_MISC_TX,
1859 			    (uintptr_t)pdu);
1860 			break;
1861 		}
1862 		break;
1863 	case ISCSI_OP_SCSI_RSP:
1864 		/* Target only */
1865 		DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
1866 		    iscsi_scsi_rsp_hdr_t *,
1867 		    (iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
1868 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1869 		break;
1870 	case ISCSI_OP_SCSI_TASK_MGT_RSP:
1871 		/* Target only */
1872 		DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
1873 		    iscsi_scsi_task_mgt_rsp_hdr_t *,
1874 		    (iscsi_scsi_task_mgt_rsp_hdr_t *)pdu->isp_hdr);
1875 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1876 		break;
1877 	case ISCSI_OP_SCSI_DATA_RSP:
1878 		/* Target only */
1879 		DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
1880 		    iscsi_data_rsp_hdr_t *,
1881 		    (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
1882 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1883 		break;
1884 	case ISCSI_OP_RTT_RSP:
1885 		/* Target only */
1886 		DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
1887 		    iscsi_rtt_hdr_t *,
1888 		    (iscsi_rtt_hdr_t *)pdu->isp_hdr);
1889 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1890 		break;
1891 	case ISCSI_OP_NOOP_IN:
1892 		/* Target only */
1893 		DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
1894 		    iscsi_nop_in_hdr_t *,
1895 		    (iscsi_nop_in_hdr_t *)pdu->isp_hdr);
1896 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1897 		break;
1898 	case ISCSI_OP_TEXT_RSP:
1899 		/* Target only */
1900 		DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
1901 		    iscsi_text_rsp_hdr_t *,
1902 		    (iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
1903 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1904 		break;
1905 		/* Initiator only */
1906 	case ISCSI_OP_SCSI_CMD:
1907 	case ISCSI_OP_SCSI_TASK_MGT_MSG:
1908 	case ISCSI_OP_SCSI_DATA:
1909 	case ISCSI_OP_NOOP_OUT:
1910 	case ISCSI_OP_TEXT_CMD:
1911 	case ISCSI_OP_SNACK_CMD:
1912 	case ISCSI_OP_REJECT_MSG:
1913 	default:
1914 		/*
1915 		 * Connection state machine will validate these PDU's against
1916 		 * the current state.  A PDU not allowed in the current
1917 		 * state will cause a protocol error.
1918 		 */
1919 		idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
1920 		break;
1921 	}
1922 	mutex_exit(&ic->ic_state_mutex);
1923 }
1924 
1925 /*
1926  * Common allocation of a PDU along with memory for header and data.
1927  */
1928 static idm_pdu_t *
1929 idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag)
1930 {
1931 	idm_pdu_t *result;
1932 
1933 	/*
1934 	 * IDM clients should cache these structures for performance
1935 	 * critical paths.  We can't cache effectively in IDM because we
1936 	 * don't know the correct header and data size.
1937 	 *
1938 	 * Valid header length is assumed to be hdrlen and valid data
1939 	 * length is assumed to be datalen.  isp_hdrlen and isp_datalen
1940 	 * can be adjusted after the PDU is returned if necessary.
1941 	 */
1942 	result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag);
1943 	if (result != NULL) {
1944 		/* For idm_pdu_free sanity check */
1945 		result->isp_flags |= IDM_PDU_ALLOC;
1946 		/* pointer arithmetic */
1947 		result->isp_hdr = (iscsi_hdr_t *)(result + 1);
1948 		result->isp_hdrlen = hdrlen;
1949 		result->isp_hdrbuflen = hdrlen;
1950 		result->isp_transport_hdrlen = 0;
1951 		if (datalen != 0)
1952 			result->isp_data = (uint8_t *)result->isp_hdr + hdrlen;
1953 		result->isp_datalen = datalen;
1954 		result->isp_databuflen = datalen;
1955 		result->isp_magic = IDM_PDU_MAGIC;
1956 	}
1957 
1958 	return (result);
1959 }
1960 
1961 /*
1962  * Typical idm_pdu_alloc invocation, will block for resources.
1963  */
1964 idm_pdu_t *
1965 idm_pdu_alloc(uint_t hdrlen, uint_t datalen)
1966 {
1967 	return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP));
1968 }
1969 
1970 /*
1971  * Non-blocking idm_pdu_alloc implementation, returns NULL if resources
1972  * are not available.  Needed for transport-layer allocations which may
1973  * be invoking in interrupt context.
1974  */
1975 idm_pdu_t *
1976 idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen)
1977 {
1978 	return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP));
1979 }
1980 
1981 /*
1982  * Free a PDU previously allocated with idm_pdu_alloc() including any
1983  * header and data space allocated as part of the original request.
1984  * Additional memory regions referenced by subsequent modification of
1985  * the isp_hdr and/or isp_data fields will not be freed.
1986  */
1987 void
1988 idm_pdu_free(idm_pdu_t *pdu)
1989 {
1990 	/* Make sure the structure was allocated using idm_pdu_alloc() */
1991 	ASSERT(pdu->isp_flags & IDM_PDU_ALLOC);
1992 	kmem_free(pdu,
1993 	    sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen);
1994 }
1995 
1996 /*
1997  * Initialize the connection, private and callback fields in a PDU.
1998  */
1999 void
2000 idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb)
2001 {
2002 	/*
2003 	 * idm_pdu_complete() will call idm_pdu_free if the callback is
2004 	 * NULL.  This will only work if the PDU was originally allocated
2005 	 * with idm_pdu_alloc().
2006 	 */
2007 	ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) ||
2008 	    (cb != NULL));
2009 	pdu->isp_magic = IDM_PDU_MAGIC;
2010 	pdu->isp_ic = ic;
2011 	pdu->isp_private = private;
2012 	pdu->isp_callback = cb;
2013 }
2014 
2015 /*
2016  * Initialize the header and header length field.  This function should
2017  * not be used to adjust the header length in a buffer allocated via
2018  * pdu_pdu_alloc since it overwrites the existing header pointer.
2019  */
2020 void
2021 idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen)
2022 {
2023 	pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr);
2024 	pdu->isp_hdrlen = hdrlen;
2025 }
2026 
2027 /*
2028  * Initialize the data and data length fields.  This function should
2029  * not be used to adjust the data length of a buffer allocated via
2030  * idm_pdu_alloc since it overwrites the existing data pointer.
2031  */
2032 void
2033 idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen)
2034 {
2035 	pdu->isp_data = data;
2036 	pdu->isp_datalen = datalen;
2037 }
2038 
2039 void
2040 idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status)
2041 {
2042 	if (pdu->isp_callback) {
2043 		pdu->isp_status = status;
2044 		(*pdu->isp_callback)(pdu, status);
2045 	} else {
2046 		idm_pdu_free(pdu);
2047 	}
2048 }
2049 
2050 /*
2051  * State machine auditing
2052  */
2053 
2054 void
2055 idm_sm_audit_init(sm_audit_buf_t *audit_buf)
2056 {
2057 	bzero(audit_buf, sizeof (sm_audit_buf_t));
2058 	audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1;
2059 }
2060 
2061 static
2062 sm_audit_record_t *
2063 idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type,
2064     sm_audit_sm_type_t sm_type,
2065     int current_state)
2066 {
2067 	sm_audit_record_t *sar;
2068 
2069 	sar = audit_buf->sab_records;
2070 	sar += audit_buf->sab_index;
2071 	audit_buf->sab_index++;
2072 	audit_buf->sab_index &= audit_buf->sab_max_index;
2073 
2074 	sar->sar_type = r_type;
2075 	gethrestime(&sar->sar_timestamp);
2076 	sar->sar_sm_type = sm_type;
2077 	sar->sar_state = current_state;
2078 
2079 	return (sar);
2080 }
2081 
2082 void
2083 idm_sm_audit_event(sm_audit_buf_t *audit_buf,
2084     sm_audit_sm_type_t sm_type, int current_state,
2085     int event, uintptr_t event_info)
2086 {
2087 	sm_audit_record_t *sar;
2088 
2089 	sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT,
2090 	    sm_type, current_state);
2091 	sar->sar_event = event;
2092 	sar->sar_event_info = event_info;
2093 }
2094 
2095 void
2096 idm_sm_audit_state_change(sm_audit_buf_t *audit_buf,
2097     sm_audit_sm_type_t sm_type, int current_state, int new_state)
2098 {
2099 	sm_audit_record_t *sar;
2100 
2101 	sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE,
2102 	    sm_type, current_state);
2103 	sar->sar_new_state = new_state;
2104 }
2105 
2106 
2107 /*
2108  * Object reference tracking
2109  */
2110 
2111 void
2112 idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj)
2113 {
2114 	bzero(refcnt, sizeof (*refcnt));
2115 	idm_refcnt_reset(refcnt);
2116 	refcnt->ir_referenced_obj = referenced_obj;
2117 	bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t));
2118 	refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1;
2119 	mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL);
2120 	cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL);
2121 }
2122 
2123 void
2124 idm_refcnt_destroy(idm_refcnt_t *refcnt)
2125 {
2126 	/*
2127 	 * Grab the mutex to there are no other lingering threads holding
2128 	 * the mutex before we destroy it (e.g. idm_refcnt_rele just after
2129 	 * the refcnt goes to zero if ir_waiting == REF_WAIT_ASYNC)
2130 	 */
2131 	mutex_enter(&refcnt->ir_mutex);
2132 	ASSERT(refcnt->ir_refcnt == 0);
2133 	cv_destroy(&refcnt->ir_cv);
2134 	mutex_destroy(&refcnt->ir_mutex);
2135 }
2136 
2137 void
2138 idm_refcnt_reset(idm_refcnt_t *refcnt)
2139 {
2140 	refcnt->ir_waiting = REF_NOWAIT;
2141 	refcnt->ir_refcnt = 0;
2142 }
2143 
2144 void
2145 idm_refcnt_hold(idm_refcnt_t *refcnt)
2146 {
2147 	/*
2148 	 * Nothing should take a hold on an object after a call to
2149 	 * idm_refcnt_wait_ref or idm_refcnd_async_wait_ref
2150 	 */
2151 	ASSERT(refcnt->ir_waiting == REF_NOWAIT);
2152 
2153 	mutex_enter(&refcnt->ir_mutex);
2154 	refcnt->ir_refcnt++;
2155 	REFCNT_AUDIT(refcnt);
2156 	mutex_exit(&refcnt->ir_mutex);
2157 }
2158 
2159 static void
2160 idm_refcnt_unref_task(void *refcnt_void)
2161 {
2162 	idm_refcnt_t *refcnt = refcnt_void;
2163 
2164 	REFCNT_AUDIT(refcnt);
2165 	(*refcnt->ir_cb)(refcnt->ir_referenced_obj);
2166 }
2167 
2168 void
2169 idm_refcnt_rele(idm_refcnt_t *refcnt)
2170 {
2171 	mutex_enter(&refcnt->ir_mutex);
2172 	ASSERT(refcnt->ir_refcnt > 0);
2173 	refcnt->ir_refcnt--;
2174 	REFCNT_AUDIT(refcnt);
2175 	if (refcnt->ir_waiting == REF_NOWAIT) {
2176 		/* No one is waiting on this object */
2177 		mutex_exit(&refcnt->ir_mutex);
2178 		return;
2179 	}
2180 
2181 	/*
2182 	 * Someone is waiting for this object to go idle so check if
2183 	 * refcnt is 0.  Waiting on an object then later grabbing another
2184 	 * reference is not allowed so we don't need to handle that case.
2185 	 */
2186 	if (refcnt->ir_refcnt == 0) {
2187 		if (refcnt->ir_waiting == REF_WAIT_ASYNC) {
2188 			if (taskq_dispatch(idm.idm_global_taskq,
2189 			    &idm_refcnt_unref_task, refcnt, TQ_SLEEP) ==
2190 			    TASKQID_INVALID) {
2191 				cmn_err(CE_WARN,
2192 				    "idm_refcnt_rele: Couldn't dispatch task");
2193 			}
2194 		} else if (refcnt->ir_waiting == REF_WAIT_SYNC) {
2195 			cv_signal(&refcnt->ir_cv);
2196 		}
2197 	}
2198 	mutex_exit(&refcnt->ir_mutex);
2199 }
2200 
2201 void
2202 idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
2203 {
2204 	mutex_enter(&refcnt->ir_mutex);
2205 	ASSERT(refcnt->ir_refcnt > 0);
2206 	refcnt->ir_refcnt--;
2207 	REFCNT_AUDIT(refcnt);
2208 
2209 	/*
2210 	 * Someone is waiting for this object to go idle so check if
2211 	 * refcnt is 0.  Waiting on an object then later grabbing another
2212 	 * reference is not allowed so we don't need to handle that case.
2213 	 */
2214 	if (refcnt->ir_refcnt == 0) {
2215 		refcnt->ir_cb = cb_func;
2216 		refcnt->ir_waiting = REF_WAIT_ASYNC;
2217 		if (taskq_dispatch(idm.idm_global_taskq,
2218 		    &idm_refcnt_unref_task, refcnt, TQ_SLEEP) ==
2219 		    TASKQID_INVALID) {
2220 			cmn_err(CE_WARN,
2221 			    "idm_refcnt_rele: Couldn't dispatch task");
2222 		}
2223 	}
2224 	mutex_exit(&refcnt->ir_mutex);
2225 }
2226 
2227 void
2228 idm_refcnt_wait_ref(idm_refcnt_t *refcnt)
2229 {
2230 	mutex_enter(&refcnt->ir_mutex);
2231 	refcnt->ir_waiting = REF_WAIT_SYNC;
2232 	REFCNT_AUDIT(refcnt);
2233 	while (refcnt->ir_refcnt != 0)
2234 		cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex);
2235 	mutex_exit(&refcnt->ir_mutex);
2236 }
2237 
2238 void
2239 idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
2240 {
2241 	mutex_enter(&refcnt->ir_mutex);
2242 	refcnt->ir_waiting = REF_WAIT_ASYNC;
2243 	refcnt->ir_cb = cb_func;
2244 	REFCNT_AUDIT(refcnt);
2245 	/*
2246 	 * It's possible we don't have any references.  To make things easier
2247 	 * on the caller use a taskq to call the callback instead of
2248 	 * calling it synchronously
2249 	 */
2250 	if (refcnt->ir_refcnt == 0) {
2251 		if (taskq_dispatch(idm.idm_global_taskq,
2252 		    &idm_refcnt_unref_task, refcnt, TQ_SLEEP) ==
2253 		    TASKQID_INVALID) {
2254 			cmn_err(CE_WARN,
2255 			    "idm_refcnt_async_wait_ref: "
2256 			    "Couldn't dispatch task");
2257 		}
2258 	}
2259 	mutex_exit(&refcnt->ir_mutex);
2260 }
2261 
2262 void
2263 idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt,
2264     idm_refcnt_cb_t *cb_func)
2265 {
2266 	mutex_enter(&refcnt->ir_mutex);
2267 	if (refcnt->ir_refcnt == 0) {
2268 		mutex_exit(&refcnt->ir_mutex);
2269 		(*cb_func)(refcnt->ir_referenced_obj);
2270 		return;
2271 	}
2272 	mutex_exit(&refcnt->ir_mutex);
2273 }
2274 
2275 /*
2276  * used to determine the status of the refcnt.
2277  *
2278  * if refcnt is 0 return is 0
2279  * if refcnt is negative return is -1
2280  * if refcnt > 0 and no waiters return is 1
2281  * if refcnt > 0 and waiters return is 2
2282  */
2283 int
2284 idm_refcnt_is_held(idm_refcnt_t *refcnt)
2285 {
2286 	if (refcnt->ir_refcnt < 0)
2287 		return (-1);
2288 
2289 	if (refcnt->ir_refcnt == 0)
2290 		return (0);
2291 
2292 	if (refcnt->ir_waiting == REF_NOWAIT && refcnt->ir_refcnt > 0)
2293 		return (1);
2294 
2295 	return (2);
2296 }
2297 
2298 void
2299 idm_conn_hold(idm_conn_t *ic)
2300 {
2301 	idm_refcnt_hold(&ic->ic_refcnt);
2302 }
2303 
2304 void
2305 idm_conn_rele(idm_conn_t *ic)
2306 {
2307 	idm_refcnt_rele(&ic->ic_refcnt);
2308 }
2309 
2310 void
2311 idm_conn_set_target_name(idm_conn_t *ic, char *target_name)
2312 {
2313 	(void) strlcpy(ic->ic_target_name, target_name, ISCSI_MAX_NAME_LEN + 1);
2314 }
2315 
2316 void
2317 idm_conn_set_initiator_name(idm_conn_t *ic, char *initiator_name)
2318 {
2319 	(void) strlcpy(ic->ic_initiator_name, initiator_name,
2320 	    ISCSI_MAX_NAME_LEN + 1);
2321 }
2322 
2323 void
2324 idm_conn_set_isid(idm_conn_t *ic, uint8_t isid[ISCSI_ISID_LEN])
2325 {
2326 	(void) snprintf(ic->ic_isid, ISCSI_MAX_ISID_LEN + 1,
2327 	    "%02x%02x%02x%02x%02x%02x",
2328 	    isid[0], isid[1], isid[2], isid[3], isid[4], isid[5]);
2329 }
2330 
2331 static int
2332 _idm_init(void)
2333 {
2334 	/* Initialize the rwlock for the taskid table */
2335 	rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL);
2336 
2337 	/* Initialize the global mutex and taskq */
2338 	mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL);
2339 
2340 	cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL);
2341 	cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL);
2342 
2343 	/*
2344 	 * The maximum allocation needs to be high here since there can be
2345 	 * many concurrent tasks using the global taskq.
2346 	 */
2347 	idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri,
2348 	    128, 16384, TASKQ_PREPOPULATE);
2349 	if (idm.idm_global_taskq == NULL) {
2350 		cv_destroy(&idm.idm_wd_cv);
2351 		cv_destroy(&idm.idm_tgt_svc_cv);
2352 		mutex_destroy(&idm.idm_global_mutex);
2353 		rw_destroy(&idm.idm_taskid_table_lock);
2354 		return (ENOMEM);
2355 	}
2356 
2357 	/* Start watchdog thread */
2358 	idm.idm_wd_thread = thread_create(NULL, 0,
2359 	    idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri);
2360 	if (idm.idm_wd_thread == NULL) {
2361 		/* Couldn't create the watchdog thread */
2362 		taskq_destroy(idm.idm_global_taskq);
2363 		cv_destroy(&idm.idm_wd_cv);
2364 		cv_destroy(&idm.idm_tgt_svc_cv);
2365 		mutex_destroy(&idm.idm_global_mutex);
2366 		rw_destroy(&idm.idm_taskid_table_lock);
2367 		return (ENOMEM);
2368 	}
2369 
2370 	/* Pause until the watchdog thread is running */
2371 	mutex_enter(&idm.idm_global_mutex);
2372 	while (!idm.idm_wd_thread_running)
2373 		cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex);
2374 	mutex_exit(&idm.idm_global_mutex);
2375 
2376 	/*
2377 	 * Allocate the task ID table and set "next" to 0.
2378 	 */
2379 
2380 	idm.idm_taskid_max = idm_max_taskids;
2381 	idm.idm_taskid_table = (idm_task_t **)
2382 	    kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP);
2383 	idm.idm_taskid_next = 0;
2384 
2385 	/* Create the global buffer and task kmem caches */
2386 	idm.idm_buf_cache = kmem_cache_create("idm_buf_cache",
2387 	    sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP);
2388 
2389 	/*
2390 	 * Note, we're explicitly allocating an additional iSER header-
2391 	 * sized chunk for each of these elements. See idm_task_constructor().
2392 	 */
2393 	idm.idm_task_cache = kmem_cache_create("idm_task_cache",
2394 	    sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8,
2395 	    &idm_task_constructor, &idm_task_destructor,
2396 	    NULL, NULL, NULL, KM_SLEEP);
2397 
2398 	/* Create the service and connection context lists */
2399 	list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t),
2400 	    offsetof(idm_svc_t, is_list_node));
2401 	list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t),
2402 	    offsetof(idm_conn_t, ic_list_node));
2403 	list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t),
2404 	    offsetof(idm_conn_t, ic_list_node));
2405 
2406 	/* Initialize the native sockets transport */
2407 	idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]);
2408 
2409 	/* Create connection ID pool */
2410 	(void) idm_idpool_create(&idm.idm_conn_id_pool);
2411 
2412 	return (DDI_SUCCESS);
2413 }
2414 
2415 static int
2416 _idm_fini(void)
2417 {
2418 	if (!list_is_empty(&idm.idm_ini_conn_list) ||
2419 	    !list_is_empty(&idm.idm_tgt_conn_list) ||
2420 	    !list_is_empty(&idm.idm_tgt_svc_list)) {
2421 		return (EBUSY);
2422 	}
2423 
2424 	mutex_enter(&idm.idm_global_mutex);
2425 	idm.idm_wd_thread_running = B_FALSE;
2426 	cv_signal(&idm.idm_wd_cv);
2427 	mutex_exit(&idm.idm_global_mutex);
2428 
2429 	thread_join(idm.idm_wd_thread_did);
2430 
2431 	idm_idpool_destroy(&idm.idm_conn_id_pool);
2432 
2433 	/* Close any LDI handles we have open on transport drivers */
2434 	mutex_enter(&idm.idm_global_mutex);
2435 	idm_transport_teardown();
2436 	mutex_exit(&idm.idm_global_mutex);
2437 
2438 	/* Teardown the native sockets transport */
2439 	idm_so_fini();
2440 
2441 	list_destroy(&idm.idm_ini_conn_list);
2442 	list_destroy(&idm.idm_tgt_conn_list);
2443 	list_destroy(&idm.idm_tgt_svc_list);
2444 	kmem_cache_destroy(idm.idm_task_cache);
2445 	kmem_cache_destroy(idm.idm_buf_cache);
2446 	kmem_free(idm.idm_taskid_table,
2447 	    idm.idm_taskid_max * sizeof (idm_task_t *));
2448 	mutex_destroy(&idm.idm_global_mutex);
2449 	cv_destroy(&idm.idm_wd_cv);
2450 	cv_destroy(&idm.idm_tgt_svc_cv);
2451 	rw_destroy(&idm.idm_taskid_table_lock);
2452 
2453 	return (0);
2454 }
2455