1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * Copyright (c) 2007 Oracle. All rights reserved. 27 * 28 * This software is available to you under a choice of one of two 29 * licenses. You may choose to be licensed under the terms of the GNU 30 * General Public License (GPL) Version 2, available from the file 31 * COPYING in the main directory of this source tree, or the 32 * OpenIB.org BSD license below: 33 * 34 * Redistribution and use in source and binary forms, with or 35 * without modification, are permitted provided that the following 36 * conditions are met: 37 * 38 * - Redistributions of source code must retain the above 39 * copyright notice, this list of conditions and the following 40 * disclaimer. 41 * 42 * - Redistributions in binary form must reproduce the above 43 * copyright notice, this list of conditions and the following 44 * disclaimer in the documentation and/or other materials 45 * provided with the distribution. 46 * 47 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 48 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 49 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 50 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 51 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 52 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 53 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 54 * SOFTWARE. 55 * 56 */ 57 #include <sys/ib/clients/of/rdma/ib_verbs.h> 58 #include <sys/ib/clients/of/rdma/ib_addr.h> 59 #include <sys/ib/clients/of/rdma/rdma_cm.h> 60 61 #include <sys/ib/clients/rdsv3/ib.h> 62 #include <sys/ib/clients/rdsv3/rdma.h> 63 #include <sys/ib/clients/rdsv3/rdsv3_debug.h> 64 65 #define DMA_TO_DEVICE 0 66 #define DMA_FROM_DEVICE 1 67 #define RB_CLEAR_NODE(nodep) AVL_SETPARENT(nodep, nodep); 68 69 /* 70 * XXX 71 * - build with sparse 72 * - should we limit the size of a mr region? let transport return failure? 73 * - should we detect duplicate keys on a socket? hmm. 74 * - an rdma is an mlock, apply rlimit? 75 */ 76 77 /* 78 * get the number of pages by looking at the page indices that the start and 79 * end addresses fall in. 80 * 81 * Returns 0 if the vec is invalid. It is invalid if the number of bytes 82 * causes the address to wrap or overflows an unsigned int. This comes 83 * from being stored in the 'length' member of 'struct rdsv3_scatterlist'. 84 */ 85 static unsigned int 86 rdsv3_pages_in_vec(struct rdsv3_iovec *vec) 87 { 88 if ((vec->addr + vec->bytes <= vec->addr) || 89 (vec->bytes > (uint64_t)UINT_MAX)) { 90 return (0); 91 } 92 93 return (((vec->addr + vec->bytes + PAGESIZE - 1) >> 94 PAGESHIFT) - (vec->addr >> PAGESHIFT)); 95 } 96 97 static struct rdsv3_mr * 98 rdsv3_mr_tree_walk(struct avl_tree *root, uint32_t key, 99 struct rdsv3_mr *insert) 100 { 101 struct rdsv3_mr *mr; 102 avl_index_t where; 103 104 mr = avl_find(root, &key, &where); 105 if ((mr == NULL) && (insert != NULL)) { 106 avl_insert(root, (void *)insert, where); 107 atomic_add_32(&insert->r_refcount, 1); 108 return (NULL); 109 } 110 111 return (mr); 112 } 113 114 /* 115 * Destroy the transport-specific part of a MR. 116 */ 117 static void 118 rdsv3_destroy_mr(struct rdsv3_mr *mr) 119 { 120 struct rdsv3_sock *rs = mr->r_sock; 121 void *trans_private = NULL; 122 avl_node_t *np; 123 124 RDSV3_DPRINTF5("rdsv3_destroy_mr", 125 "RDS: destroy mr key is %x refcnt %u", 126 mr->r_key, atomic_get(&mr->r_refcount)); 127 128 if (test_and_set_bit(RDSV3_MR_DEAD, &mr->r_state)) 129 return; 130 131 mutex_enter(&rs->rs_rdma_lock); 132 np = &mr->r_rb_node; 133 if (AVL_XPARENT(np) != np) 134 avl_remove(&rs->rs_rdma_keys, mr); 135 trans_private = mr->r_trans_private; 136 mr->r_trans_private = NULL; 137 mutex_exit(&rs->rs_rdma_lock); 138 139 if (trans_private) 140 mr->r_trans->free_mr(trans_private, mr->r_invalidate); 141 } 142 143 void 144 __rdsv3_put_mr_final(struct rdsv3_mr *mr) 145 { 146 rdsv3_destroy_mr(mr); 147 kmem_free(mr, sizeof (*mr)); 148 } 149 150 /* 151 * By the time this is called we can't have any more ioctls called on 152 * the socket so we don't need to worry about racing with others. 153 */ 154 void 155 rdsv3_rdma_drop_keys(struct rdsv3_sock *rs) 156 { 157 struct rdsv3_mr *mr; 158 struct avl_node *node; 159 160 /* Release any MRs associated with this socket */ 161 mutex_enter(&rs->rs_rdma_lock); 162 while ((node = avl_first(&rs->rs_rdma_keys))) { 163 mr = container_of(node, struct rdsv3_mr, r_rb_node); 164 if (mr->r_trans == rs->rs_transport) 165 mr->r_invalidate = 0; 166 avl_remove(&rs->rs_rdma_keys, &mr->r_rb_node); 167 RB_CLEAR_NODE(&mr->r_rb_node) 168 mutex_exit(&rs->rs_rdma_lock); 169 rdsv3_destroy_mr(mr); 170 rdsv3_mr_put(mr); 171 mutex_enter(&rs->rs_rdma_lock); 172 } 173 mutex_exit(&rs->rs_rdma_lock); 174 175 if (rs->rs_transport && rs->rs_transport->flush_mrs) 176 rs->rs_transport->flush_mrs(); 177 } 178 179 /* 180 * Helper function to pin user pages. 181 */ 182 #if 0 183 static int 184 rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, 185 struct page **pages, int write) 186 { 187 unsigned long l_user_addr = user_addr; 188 unsigned int l_nr_pages = nr_pages; 189 struct page **l_pages = pages; 190 int l_write = write; 191 192 /* memory pin in rds_ib_get_mr() */ 193 return (0); 194 } 195 #endif 196 197 static int 198 __rdsv3_rdma_map(struct rdsv3_sock *rs, struct rdsv3_get_mr_args *args, 199 uint64_t *cookie_ret, struct rdsv3_mr **mr_ret) 200 { 201 struct rdsv3_mr *mr = NULL, *found; 202 void *trans_private; 203 rdsv3_rdma_cookie_t cookie; 204 unsigned int nents = 0; 205 int ret; 206 207 if (rs->rs_bound_addr == 0) { 208 ret = -ENOTCONN; /* XXX not a great errno */ 209 goto out; 210 } 211 212 if (rs->rs_transport->get_mr == NULL) { 213 ret = -EOPNOTSUPP; 214 goto out; 215 } 216 217 mr = kmem_zalloc(sizeof (struct rdsv3_mr), KM_NOSLEEP); 218 if (mr == NULL) { 219 ret = -ENOMEM; 220 goto out; 221 } 222 223 mr->r_refcount = 1; 224 RB_CLEAR_NODE(&mr->r_rb_node); 225 mr->r_trans = rs->rs_transport; 226 mr->r_sock = rs; 227 228 if (args->flags & RDSV3_RDMA_USE_ONCE) 229 mr->r_use_once = 1; 230 if (args->flags & RDSV3_RDMA_INVALIDATE) 231 mr->r_invalidate = 1; 232 if (args->flags & RDSV3_RDMA_READWRITE) 233 mr->r_write = 1; 234 235 /* 236 * Obtain a transport specific MR. If this succeeds, the 237 * s/g list is now owned by the MR. 238 * Note that dma_map() implies that pending writes are 239 * flushed to RAM, so no dma_sync is needed here. 240 */ 241 trans_private = rs->rs_transport->get_mr(&args->vec, nents, rs, 242 &mr->r_key); 243 244 if (IS_ERR(trans_private)) { 245 ret = PTR_ERR(trans_private); 246 goto out; 247 } 248 249 mr->r_trans_private = trans_private; 250 251 /* 252 * The user may pass us an unaligned address, but we can only 253 * map page aligned regions. So we keep the offset, and build 254 * a 64bit cookie containing <R_Key, offset> and pass that 255 * around. 256 */ 257 cookie = rdsv3_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGEMASK); 258 if (cookie_ret) 259 *cookie_ret = cookie; 260 261 /* 262 * copy value of cookie to user address at args->cookie_addr 263 */ 264 if (args->cookie_addr) { 265 ret = ddi_copyout((void *)&cookie, 266 (void *)((intptr_t)args->cookie_addr), 267 sizeof (rdsv3_rdma_cookie_t), 0); 268 if (ret != 0) { 269 ret = -EFAULT; 270 goto out; 271 } 272 } 273 274 RDSV3_DPRINTF5("__rdsv3_rdma_map", 275 "RDS: get_mr mr 0x%p addr 0x%llx key 0x%x", 276 mr, args->vec.addr, mr->r_key); 277 /* 278 * Inserting the new MR into the rbtree bumps its 279 * reference count. 280 */ 281 mutex_enter(&rs->rs_rdma_lock); 282 found = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); 283 mutex_exit(&rs->rs_rdma_lock); 284 285 ASSERT(!(found && found != mr)); 286 287 if (mr_ret) { 288 atomic_add_32(&mr->r_refcount, 1); 289 *mr_ret = mr; 290 } 291 292 ret = 0; 293 out: 294 if (mr) 295 rdsv3_mr_put(mr); 296 return (ret); 297 } 298 299 int 300 rdsv3_get_mr(struct rdsv3_sock *rs, const void *optval, int optlen) 301 { 302 struct rdsv3_get_mr_args args; 303 304 if (optlen != sizeof (struct rdsv3_get_mr_args)) 305 return (-EINVAL); 306 307 #if 1 308 bcopy((struct rdsv3_get_mr_args *)optval, &args, 309 sizeof (struct rdsv3_get_mr_args)); 310 #else 311 if (ddi_copyin(optval, &args, optlen, 0)) 312 return (-EFAULT); 313 #endif 314 315 return (__rdsv3_rdma_map(rs, &args, NULL, NULL)); 316 } 317 318 /* 319 * Free the MR indicated by the given R_Key 320 */ 321 int 322 rdsv3_free_mr(struct rdsv3_sock *rs, const void *optval, int optlen) 323 { 324 struct rdsv3_free_mr_args args; 325 struct rdsv3_mr *mr; 326 327 if (optlen != sizeof (struct rdsv3_free_mr_args)) 328 return (-EINVAL); 329 330 #if 1 331 bcopy((struct rdsv3_free_mr_args *)optval, &args, 332 sizeof (struct rdsv3_free_mr_args)); 333 #else 334 if (ddi_copyin((struct rdsv3_free_mr_args *)optval, &args, 335 sizeof (struct rdsv3_free_mr_args), 0)) 336 return (-EFAULT); 337 #endif 338 339 /* Special case - a null cookie means flush all unused MRs */ 340 if (args.cookie == 0) { 341 if (!rs->rs_transport || !rs->rs_transport->flush_mrs) 342 return (-EINVAL); 343 rs->rs_transport->flush_mrs(); 344 return (0); 345 } 346 347 /* 348 * Look up the MR given its R_key and remove it from the rbtree 349 * so nobody else finds it. 350 * This should also prevent races with rdsv3_rdma_unuse. 351 */ 352 mutex_enter(&rs->rs_rdma_lock); 353 mr = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, 354 rdsv3_rdma_cookie_key(args.cookie), NULL); 355 if (mr) { 356 avl_remove(&rs->rs_rdma_keys, &mr->r_rb_node); 357 RB_CLEAR_NODE(&mr->r_rb_node); 358 if (args.flags & RDSV3_RDMA_INVALIDATE) 359 mr->r_invalidate = 1; 360 } 361 mutex_exit(&rs->rs_rdma_lock); 362 363 if (!mr) 364 return (-EINVAL); 365 366 /* 367 * call rdsv3_destroy_mr() ourselves so that we're sure it's done 368 * by time we return. If we let rdsv3_mr_put() do it it might not 369 * happen until someone else drops their ref. 370 */ 371 rdsv3_destroy_mr(mr); 372 rdsv3_mr_put(mr); 373 return (0); 374 } 375 376 /* 377 * This is called when we receive an extension header that 378 * tells us this MR was used. It allows us to implement 379 * use_once semantics 380 */ 381 void 382 rdsv3_rdma_unuse(struct rdsv3_sock *rs, uint32_t r_key, int force) 383 { 384 struct rdsv3_mr *mr; 385 int zot_me = 0; 386 387 RDSV3_DPRINTF4("rdsv3_rdma_unuse", "Enter rkey: 0x%x", r_key); 388 389 mutex_enter(&rs->rs_rdma_lock); 390 mr = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 391 if (mr && (mr->r_use_once || force)) { 392 avl_remove(&rs->rs_rdma_keys, &mr->r_rb_node); 393 RB_CLEAR_NODE(&mr->r_rb_node); 394 zot_me = 1; 395 } else if (mr) 396 atomic_add_32(&mr->r_refcount, 1); 397 mutex_exit(&rs->rs_rdma_lock); 398 399 /* 400 * May have to issue a dma_sync on this memory region. 401 * Note we could avoid this if the operation was a RDMA READ, 402 * but at this point we can't tell. 403 */ 404 if (mr != NULL) { 405 RDSV3_DPRINTF4("rdsv3_rdma_unuse", "mr: %p zot_me %d", 406 mr, zot_me); 407 if (mr->r_trans->sync_mr) 408 mr->r_trans->sync_mr(mr->r_trans_private, 409 DMA_FROM_DEVICE); 410 411 /* 412 * If the MR was marked as invalidate, this will 413 * trigger an async flush. 414 */ 415 if (zot_me) 416 rdsv3_destroy_mr(mr); 417 rdsv3_mr_put(mr); 418 } 419 RDSV3_DPRINTF4("rdsv3_rdma_unuse", "Return"); 420 } 421 422 void 423 rdsv3_rdma_free_op(struct rdsv3_rdma_op *ro) 424 { 425 unsigned int i; 426 427 /* deallocate RDMA resources on rdsv3_message */ 428 429 for (i = 0; i < ro->r_nents; i++) { 430 ddi_umem_unlock(ro->r_rdma_sg[i].umem_cookie); 431 } 432 433 if (ro->r_notifier) 434 kmem_free(ro->r_notifier, sizeof (*ro->r_notifier)); 435 kmem_free(ro, sizeof (*ro)); 436 } 437 438 extern struct umem_callback_ops rdsv3_umem_cbops; 439 /* 440 * args is a pointer to an in-kernel copy in the sendmsg cmsg. 441 */ 442 static struct rdsv3_rdma_op * 443 rdsv3_rdma_prepare(struct rdsv3_sock *rs, struct rdsv3_rdma_args *args) 444 { 445 struct rdsv3_iovec vec; 446 struct rdsv3_rdma_op *op = NULL; 447 unsigned int nr_bytes; 448 struct rdsv3_iovec *local_vec; 449 unsigned int nr; 450 unsigned int i; 451 ddi_umem_cookie_t umem_cookie; 452 size_t umem_len; 453 caddr_t umem_addr; 454 int umem_flags; 455 int ret; 456 457 if (rs->rs_bound_addr == 0) { 458 ret = -ENOTCONN; /* XXX not a great errno */ 459 goto out; 460 } 461 462 if (args->nr_local > (uint64_t)UINT_MAX) { 463 ret = -EMSGSIZE; 464 goto out; 465 } 466 467 op = kmem_zalloc(offsetof(struct rdsv3_rdma_op, 468 r_rdma_sg[args->nr_local]), KM_NOSLEEP); 469 if (op == NULL) { 470 ret = -ENOMEM; 471 goto out; 472 } 473 474 op->r_write = !!(args->flags & RDSV3_RDMA_READWRITE); 475 op->r_fence = !!(args->flags & RDSV3_RDMA_FENCE); 476 op->r_notify = !!(args->flags & RDSV3_RDMA_NOTIFY_ME); 477 op->r_recverr = rs->rs_recverr; 478 479 if (op->r_notify || op->r_recverr) { 480 /* 481 * We allocate an uninitialized notifier here, because 482 * we don't want to do that in the completion handler. We 483 * would have to use GFP_ATOMIC there, and don't want to deal 484 * with failed allocations. 485 */ 486 op->r_notifier = kmem_alloc(sizeof (struct rdsv3_notifier), 487 KM_NOSLEEP); 488 if (!op->r_notifier) { 489 ret = -ENOMEM; 490 goto out; 491 } 492 op->r_notifier->n_user_token = args->user_token; 493 op->r_notifier->n_status = RDSV3_RDMA_SUCCESS; 494 } 495 496 /* 497 * The cookie contains the R_Key of the remote memory region, and 498 * optionally an offset into it. This is how we implement RDMA into 499 * unaligned memory. 500 * When setting up the RDMA, we need to add that offset to the 501 * destination address (which is really an offset into the MR) 502 * FIXME: We may want to move this into ib_rdma.c 503 */ 504 op->r_key = rdsv3_rdma_cookie_key(args->cookie); 505 op->r_remote_addr = args->remote_vec.addr + 506 rdsv3_rdma_cookie_offset(args->cookie); 507 508 nr_bytes = 0; 509 510 RDSV3_DPRINTF5("rdsv3_rdma_prepare", 511 "RDS: rdma prepare nr_local %llu rva %llx rkey %x", 512 (unsigned long long)args->nr_local, 513 (unsigned long long)args->remote_vec.addr, 514 op->r_key); 515 516 local_vec = (struct rdsv3_iovec *)(unsigned long) args->local_vec_addr; 517 518 /* pin the scatter list of user buffers */ 519 for (i = 0; i < args->nr_local; i++) { 520 if (ddi_copyin(&local_vec[i], &vec, 521 sizeof (struct rdsv3_iovec), 0)) { 522 ret = -EFAULT; 523 goto out; 524 } 525 526 nr = rdsv3_pages_in_vec(&vec); 527 if (nr == 0) { 528 RDSV3_DPRINTF2("rdsv3_rdma_prepare", 529 "rdsv3_pages_in_vec returned 0"); 530 ret = -EINVAL; 531 goto out; 532 } 533 534 rs->rs_user_addr = vec.addr; 535 rs->rs_user_bytes = vec.bytes; 536 537 /* pin user memory pages */ 538 umem_len = ptob(btopr(vec.bytes + 539 ((uintptr_t)vec.addr & PAGEOFFSET))); 540 umem_addr = (caddr_t)((uintptr_t)vec.addr & ~PAGEOFFSET); 541 umem_flags = (DDI_UMEMLOCK_WRITE | DDI_UMEMLOCK_READ | 542 DDI_UMEMLOCK_LONGTERM); 543 ret = umem_lockmemory(umem_addr, umem_len, umem_flags, 544 &umem_cookie, &rdsv3_umem_cbops, NULL); 545 if (ret != 0) { 546 RDSV3_DPRINTF2("rdsv3_rdma_prepare", 547 "umem_lockmemory() returned %d", ret); 548 ret = -EFAULT; 549 goto out; 550 } 551 op->r_rdma_sg[i].umem_cookie = umem_cookie; 552 op->r_rdma_sg[i].iovec = vec; 553 nr_bytes += vec.bytes; 554 555 RDSV3_DPRINTF5("rdsv3_rdma_prepare", 556 "RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx", 557 nr_bytes, nr, vec.bytes, vec.addr); 558 } 559 op->r_nents = i; 560 561 if (nr_bytes > args->remote_vec.bytes) { 562 RDSV3_DPRINTF2("rdsv3_rdma_prepare", 563 "RDS nr_bytes %u remote_bytes %u do not match", 564 nr_bytes, (unsigned int) args->remote_vec.bytes); 565 ret = -EINVAL; 566 goto out; 567 } 568 op->r_bytes = nr_bytes; 569 570 ret = 0; 571 out: 572 if (ret) { 573 if (op) 574 rdsv3_rdma_free_op(op); 575 op = ERR_PTR(ret); 576 } 577 return (op); 578 } 579 580 /* 581 * The application asks for a RDMA transfer. 582 * Extract all arguments and set up the rdma_op 583 */ 584 int 585 rdsv3_cmsg_rdma_args(struct rdsv3_sock *rs, struct rdsv3_message *rm, 586 struct cmsghdr *cmsg) 587 { 588 struct rdsv3_rdma_op *op; 589 struct rdsv3_rdma_args *ap; 590 591 if (cmsg->cmsg_len < CMSG_LEN(sizeof (struct rdsv3_rdma_args)) || 592 rm->m_rdma_op != NULL) 593 return (-EINVAL); 594 595 /* uint64_t alignment on struct rdsv3_get_mr_args */ 596 ap = (struct rdsv3_rdma_args *)kmem_alloc(cmsg->cmsg_len, KM_SLEEP); 597 bcopy(CMSG_DATA(cmsg), ap, cmsg->cmsg_len); 598 op = rdsv3_rdma_prepare(rs, ap); 599 kmem_free(ap, cmsg->cmsg_len); 600 if (IS_ERR(op)) 601 return (PTR_ERR(op)); 602 rdsv3_stats_inc(s_send_rdma); 603 rm->m_rdma_op = op; 604 return (0); 605 } 606 607 /* 608 * The application wants us to pass an RDMA destination (aka MR) 609 * to the remote 610 */ 611 int 612 rdsv3_cmsg_rdma_dest(struct rdsv3_sock *rs, struct rdsv3_message *rm, 613 struct cmsghdr *cmsg) 614 { 615 struct rdsv3_mr *mr; 616 uint32_t r_key; 617 int err = 0; 618 619 if (cmsg->cmsg_len < CMSG_LEN(sizeof (rdsv3_rdma_cookie_t)) || 620 rm->m_rdma_cookie != 0) 621 return (-EINVAL); 622 623 (void) memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), 624 sizeof (rm->m_rdma_cookie)); 625 626 /* 627 * We are reusing a previously mapped MR here. Most likely, the 628 * application has written to the buffer, so we need to explicitly 629 * flush those writes to RAM. Otherwise the HCA may not see them 630 * when doing a DMA from that buffer. 631 */ 632 r_key = rdsv3_rdma_cookie_key(rm->m_rdma_cookie); 633 634 mutex_enter(&rs->rs_rdma_lock); 635 mr = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); 636 if (mr == NULL) 637 err = -EINVAL; /* invalid r_key */ 638 else 639 atomic_add_32(&mr->r_refcount, 1); 640 mutex_exit(&rs->rs_rdma_lock); 641 642 if (mr) { 643 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); 644 rm->m_rdma_mr = mr; 645 } 646 return (err); 647 } 648 649 /* 650 * The application passes us an address range it wants to enable RDMA 651 * to/from. We map the area, and save the <R_Key,offset> pair 652 * in rm->m_rdma_cookie. This causes it to be sent along to the peer 653 * in an extension header. 654 */ 655 int 656 rdsv3_cmsg_rdma_map(struct rdsv3_sock *rs, struct rdsv3_message *rm, 657 struct cmsghdr *cmsg) 658 { 659 struct rdsv3_get_mr_args *mrp; 660 int status; 661 662 if (cmsg->cmsg_len < CMSG_LEN(sizeof (struct rdsv3_get_mr_args)) || 663 rm->m_rdma_cookie != 0) 664 return (-EINVAL); 665 666 /* uint64_t alignment on struct rdsv3_get_mr_args */ 667 mrp = (struct rdsv3_get_mr_args *)kmem_alloc(cmsg->cmsg_len, KM_SLEEP); 668 bcopy(CMSG_DATA(cmsg), mrp, cmsg->cmsg_len); 669 status = __rdsv3_rdma_map(rs, mrp, &rm->m_rdma_cookie, &rm->m_rdma_mr); 670 kmem_free(mrp, cmsg->cmsg_len); 671 return (status); 672 } 673