xref: /illumos-gate/usr/src/uts/common/io/ib/clients/rdsv3/ib_send.c (revision 134379c07d59b848341b71d3c4819af39ad347cc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright (c) 2006 Oracle.  All rights reserved.
27  *
28  * This software is available to you under a choice of one of two
29  * licenses.  You may choose to be licensed under the terms of the GNU
30  * General Public License (GPL) Version 2, available from the file
31  * COPYING in the main directory of this source tree, or the
32  * OpenIB.org BSD license below:
33  *
34  *     Redistribution and use in source and binary forms, with or
35  *     without modification, are permitted provided that the following
36  *     conditions are met:
37  *
38  *      - Redistributions of source code must retain the above
39  *        copyright notice, this list of conditions and the following
40  *        disclaimer.
41  *
42  *      - Redistributions in binary form must reproduce the above
43  *        copyright notice, this list of conditions and the following
44  *        disclaimer in the documentation and/or other materials
45  *        provided with the distribution.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
48  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
49  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
50  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
51  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
52  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
53  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
54  * SOFTWARE.
55  *
56  */
57 #include <sys/rds.h>
58 
59 #include <sys/ib/clients/rdsv3/rdsv3.h>
60 #include <sys/ib/clients/rdsv3/rdma.h>
61 #include <sys/ib/clients/rdsv3/ib.h>
62 #include <sys/ib/clients/rdsv3/rdsv3_debug.h>
63 
64 static void
65 rdsv3_ib_send_rdma_complete(struct rdsv3_message *rm,
66     int wc_status)
67 {
68 	int notify_status;
69 
70 	RDSV3_DPRINTF4("rdsv3_ib_send_rdma_complete", "rm: %p, wc_status: %d",
71 	    rm, wc_status);
72 
73 	switch (wc_status) {
74 	case IBT_WC_WR_FLUSHED_ERR:
75 		return;
76 
77 	case IBT_WC_SUCCESS:
78 		notify_status = RDSV3_RDMA_SUCCESS;
79 		break;
80 
81 	case IBT_WC_REMOTE_ACCESS_ERR:
82 		notify_status = RDSV3_RDMA_REMOTE_ERROR;
83 		break;
84 
85 	default:
86 		notify_status = RDSV3_RDMA_OTHER_ERROR;
87 		break;
88 	}
89 	rdsv3_rdma_send_complete(rm, notify_status);
90 
91 	RDSV3_DPRINTF4("rdsv3_ib_send_rdma_complete", "rm: %p, wc_status: %d",
92 	    rm, wc_status);
93 }
94 
95 static void rdsv3_ib_dma_unmap_sg_rdma(struct ib_device *dev,
96     uint_t num, struct rdsv3_rdma_sg scat[]);
97 
98 void
99 rdsv3_ib_send_unmap_rdma(struct rdsv3_ib_connection *ic,
100     struct rdsv3_rdma_op *op)
101 {
102 	RDSV3_DPRINTF4("rdsv3_ib_send_unmap_rdma", "ic: %p, op: %p", ic, op);
103 	if (op->r_mapped) {
104 		op->r_mapped = 0;
105 		if (ic->i_cm_id) {
106 			rdsv3_ib_dma_unmap_sg_rdma(ic->i_cm_id->device,
107 			    op->r_nents, op->r_rdma_sg);
108 		} else {
109 			rdsv3_ib_dma_unmap_sg_rdma((struct ib_device *)NULL,
110 			    op->r_nents, op->r_rdma_sg);
111 		}
112 	}
113 }
114 
115 static void
116 rdsv3_ib_send_unmap_rm(struct rdsv3_ib_connection *ic,
117     struct rdsv3_ib_send_work *send,
118     int wc_status)
119 {
120 	struct rdsv3_message *rm = send->s_rm;
121 
122 	RDSV3_DPRINTF4("rdsv3_ib_send_unmap_rm", "ic %p send %p rm %p\n",
123 	    ic, send, rm);
124 
125 	rdsv3_ib_dma_unmap_sg(ic->i_cm_id->device,
126 	    rm->m_sg, rm->m_nents);
127 
128 	if (rm->m_rdma_op != NULL) {
129 		rdsv3_ib_send_unmap_rdma(ic, rm->m_rdma_op);
130 
131 		/*
132 		 * If the user asked for a completion notification on this
133 		 * message, we can implement three different semantics:
134 		 *  1.	Notify when we received the ACK on the RDS message
135 		 *	that was queued with the RDMA. This provides reliable
136 		 *	notification of RDMA status at the expense of a one-way
137 		 *	packet delay.
138 		 *  2.	Notify when the IB stack gives us the completion
139 		 *	event for the RDMA operation.
140 		 *  3.	Notify when the IB stack gives us the completion
141 		 *	event for the accompanying RDS messages.
142 		 * Here, we implement approach #3. To implement approach #2,
143 		 * call rdsv3_rdma_send_complete from the cq_handler.
144 		 * To implement #1,
145 		 * don't call rdsv3_rdma_send_complete at all, and fall back to
146 		 * the notify
147 		 * handling in the ACK processing code.
148 		 *
149 		 * Note: There's no need to explicitly sync any RDMA buffers
150 		 * using
151 		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
152 		 * operation itself unmapped the RDMA buffers, which takes care
153 		 * of synching.
154 		 */
155 		rdsv3_ib_send_rdma_complete(rm, wc_status);
156 
157 		if (rm->m_rdma_op->r_write)
158 			rdsv3_stats_add(s_send_rdma_bytes,
159 			    rm->m_rdma_op->r_bytes);
160 		else
161 			rdsv3_stats_add(s_recv_rdma_bytes,
162 			    rm->m_rdma_op->r_bytes);
163 	}
164 
165 	/*
166 	 * If anyone waited for this message to get flushed out, wake
167 	 * them up now
168 	 */
169 	rdsv3_message_unmapped(rm);
170 
171 	rdsv3_message_put(rm);
172 	send->s_rm = NULL;
173 }
174 
175 void
176 rdsv3_ib_send_init_ring(struct rdsv3_ib_connection *ic)
177 {
178 	struct rdsv3_ib_send_work *send;
179 	uint32_t i;
180 
181 	RDSV3_DPRINTF4("rdsv3_ib_send_init_ring", "ic: %p", ic);
182 
183 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
184 		send->s_rm = NULL;
185 		send->s_op = NULL;
186 	}
187 }
188 
189 void
190 rdsv3_ib_send_clear_ring(struct rdsv3_ib_connection *ic)
191 {
192 	struct rdsv3_ib_send_work *send;
193 	uint32_t i;
194 
195 	RDSV3_DPRINTF4("rdsv3_ib_send_clear_ring", "ic: %p", ic);
196 
197 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
198 		if (send->s_opcode == 0xdd)
199 			continue;
200 		if (send->s_rm)
201 			rdsv3_ib_send_unmap_rm(ic, send, IBT_WC_WR_FLUSHED_ERR);
202 		if (send->s_op)
203 			rdsv3_ib_send_unmap_rdma(ic, send->s_op);
204 	}
205 
206 	RDSV3_DPRINTF4("rdsv3_ib_send_clear_ring", "Return: ic: %p", ic);
207 }
208 
209 /*
210  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
211  * operations performed in the send path.  As the sender allocs and potentially
212  * unallocs the next free entry in the ring it doesn't alter which is
213  * the next to be freed, which is what this is concerned with.
214  */
215 void
216 rdsv3_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
217 {
218 	struct rdsv3_connection *conn = context;
219 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
220 	ibt_wc_t wc;
221 	struct rdsv3_ib_send_work *send;
222 	uint32_t completed, polled;
223 	uint32_t oldest;
224 	uint32_t i = 0;
225 	int ret;
226 
227 	RDSV3_DPRINTF4("rdsv3_ib_send_cq_comp_handler", "conn: %p cq: %p",
228 	    conn, cq);
229 
230 	rdsv3_ib_stats_inc(s_ib_tx_cq_call);
231 	ret = ibt_enable_cq_notify(RDSV3_CQ2CQHDL(cq), IBT_NEXT_COMPLETION);
232 	if (ret)
233 		RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
234 		    "ib_req_notify_cq send failed: %d", ret);
235 
236 	while (ibt_poll_cq(RDSV3_CQ2CQHDL(cq), &wc, 1, &polled) ==
237 	    IBT_SUCCESS) {
238 		RDSV3_DPRINTF5("rdsv3_ib_send_cq_comp_handler",
239 		    "swc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
240 		    (unsigned long long)wc.wc_id, wc.wc_status,
241 		    wc.wc_bytes_xfer, ntohl(wc.wc_immed_data));
242 		rdsv3_ib_stats_inc(s_ib_tx_cq_event);
243 
244 		if (wc.wc_id == RDSV3_IB_ACK_WR_ID) {
245 			if (ic->i_ack_queued + HZ/2 < jiffies)
246 				rdsv3_ib_stats_inc(s_ib_tx_stalled);
247 			rdsv3_ib_ack_send_complete(ic);
248 			continue;
249 		}
250 
251 		oldest = rdsv3_ib_ring_oldest(&ic->i_send_ring);
252 
253 		completed = rdsv3_ib_ring_completed(&ic->i_send_ring,
254 		    wc.wc_id, oldest);
255 
256 		for (i = 0; i < completed; i++) {
257 			send = &ic->i_sends[oldest];
258 
259 			/*
260 			 * In the error case, wc.opcode sometimes contains
261 			 * garbage
262 			 */
263 			switch (send->s_opcode) {
264 			case IBT_WRC_SEND:
265 				if (send->s_rm)
266 					rdsv3_ib_send_unmap_rm(ic, send,
267 					    wc.wc_status);
268 				break;
269 			case IBT_WRC_RDMAW:
270 			case IBT_WRC_RDMAR:
271 				/*
272 				 * Nothing to be done - the SG list will
273 				 * be unmapped
274 				 * when the SEND completes.
275 				 */
276 				break;
277 			default:
278 #ifndef __lock_lint
279 				RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
280 				    "RDS/IB: %s: unexpected opcode "
281 				    "0x%x in WR!",
282 				    __func__, send->s_opcode);
283 #endif
284 				break;
285 			}
286 
287 			send->s_opcode = 0xdd;
288 			if (send->s_queued + HZ/2 < jiffies)
289 				rdsv3_ib_stats_inc(s_ib_tx_stalled);
290 
291 			/*
292 			 * If a RDMA operation produced an error, signal
293 			 * this right
294 			 * away. If we don't, the subsequent SEND that goes
295 			 * with this
296 			 * RDMA will be canceled with ERR_WFLUSH, and the
297 			 * application
298 			 * never learn that the RDMA failed.
299 			 */
300 			if (wc.wc_status ==
301 			    IBT_WC_REMOTE_ACCESS_ERR && send->s_op) {
302 				struct rdsv3_message *rm;
303 
304 				rm = rdsv3_send_get_message(conn, send->s_op);
305 				if (rm) {
306 					if (rm->m_rdma_op != NULL)
307 						rdsv3_ib_send_unmap_rdma(ic,
308 						    rm->m_rdma_op);
309 					rdsv3_ib_send_rdma_complete(rm,
310 					    wc.wc_status);
311 					rdsv3_message_put(rm);
312 				}
313 			}
314 
315 			oldest = (oldest + 1) % ic->i_send_ring.w_nr;
316 		}
317 
318 		RDSV3_DPRINTF4("rdsv3_ib_send_cq_comp_handler", "compl: %d",
319 		    completed);
320 		rdsv3_ib_ring_free(&ic->i_send_ring, completed);
321 
322 		if (test_and_clear_bit(RDSV3_LL_SEND_FULL, &conn->c_flags) ||
323 		    test_bit(0, &conn->c_map_queued))
324 			rdsv3_queue_delayed_work(rdsv3_wq, &conn->c_send_w, 0);
325 
326 		/* We expect errors as the qp is drained during shutdown */
327 		if (wc.wc_status != IBT_WC_SUCCESS && rdsv3_conn_up(conn)) {
328 			RDSV3_DPRINTF2("rdsv3_ib_send_cq_comp_handler",
329 			    "send completion on %u.%u.%u.%u "
330 			    "had status %u, disconnecting and reconnecting\n",
331 			    NIPQUAD(conn->c_faddr), wc.wc_status);
332 			rdsv3_conn_drop(conn);
333 		}
334 	}
335 
336 	RDSV3_DPRINTF4("rdsv3_ib_send_cq_comp_handler",
337 	    "Return: conn: %p, cq: %p", conn, cq);
338 }
339 
340 /*
341  * This is the main function for allocating credits when sending
342  * messages.
343  *
344  * Conceptually, we have two counters:
345  *  -	send credits: this tells us how many WRs we're allowed
346  *	to submit without overruning the reciever's queue. For
347  *	each SEND WR we post, we decrement this by one.
348  *
349  *  -	posted credits: this tells us how many WRs we recently
350  *	posted to the receive queue. This value is transferred
351  *	to the peer as a "credit update" in a RDS header field.
352  *	Every time we transmit credits to the peer, we subtract
353  *	the amount of transferred credits from this counter.
354  *
355  * It is essential that we avoid situations where both sides have
356  * exhausted their send credits, and are unable to send new credits
357  * to the peer. We achieve this by requiring that we send at least
358  * one credit update to the peer before exhausting our credits.
359  * When new credits arrive, we subtract one credit that is withheld
360  * until we've posted new buffers and are ready to transmit these
361  * credits (see rdsv3_ib_send_add_credits below).
362  *
363  * The RDS send code is essentially single-threaded; rdsv3_send_xmit
364  * grabs c_send_lock to ensure exclusive access to the send ring.
365  * However, the ACK sending code is independent and can race with
366  * message SENDs.
367  *
368  * In the send path, we need to update the counters for send credits
369  * and the counter of posted buffers atomically - when we use the
370  * last available credit, we cannot allow another thread to race us
371  * and grab the posted credits counter.  Hence, we have to use a
372  * spinlock to protect the credit counter, or use atomics.
373  *
374  * Spinlocks shared between the send and the receive path are bad,
375  * because they create unnecessary delays. An early implementation
376  * using a spinlock showed a 5% degradation in throughput at some
377  * loads.
378  *
379  * This implementation avoids spinlocks completely, putting both
380  * counters into a single atomic, and updating that atomic using
381  * atomic_add (in the receive path, when receiving fresh credits),
382  * and using atomic_cmpxchg when updating the two counters.
383  */
384 int
385 rdsv3_ib_send_grab_credits(struct rdsv3_ib_connection *ic,
386     uint32_t wanted, uint32_t *adv_credits, int need_posted)
387 {
388 	unsigned int avail, posted, got = 0, advertise;
389 	long oldval, newval;
390 
391 	RDSV3_DPRINTF4("rdsv3_ib_send_grab_credits", "ic: %p, %d %d %d",
392 	    ic, wanted, *adv_credits, need_posted);
393 
394 	*adv_credits = 0;
395 	if (!ic->i_flowctl)
396 		return (wanted);
397 
398 try_again:
399 	advertise = 0;
400 	oldval = newval = atomic_get(&ic->i_credits);
401 	posted = IB_GET_POST_CREDITS(oldval);
402 	avail = IB_GET_SEND_CREDITS(oldval);
403 
404 	RDSV3_DPRINTF5("rdsv3_ib_send_grab_credits",
405 	    "wanted (%u): credits=%u posted=%u\n", wanted, avail, posted);
406 
407 	/* The last credit must be used to send a credit update. */
408 	if (avail && !posted)
409 		avail--;
410 
411 	if (avail < wanted) {
412 		struct rdsv3_connection *conn = ic->i_cm_id->context;
413 
414 		/* Oops, there aren't that many credits left! */
415 		set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
416 		got = avail;
417 	} else {
418 		/* Sometimes you get what you want, lalala. */
419 		got = wanted;
420 	}
421 	newval -= IB_SET_SEND_CREDITS(got);
422 
423 	/*
424 	 * If need_posted is non-zero, then the caller wants
425 	 * the posted regardless of whether any send credits are
426 	 * available.
427 	 */
428 	if (posted && (got || need_posted)) {
429 		advertise = min(posted, RDSV3_MAX_ADV_CREDIT);
430 		newval -= IB_SET_POST_CREDITS(advertise);
431 	}
432 
433 	/* Finally bill everything */
434 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
435 		goto try_again;
436 
437 	*adv_credits = advertise;
438 
439 	RDSV3_DPRINTF4("rdsv3_ib_send_grab_credits", "ic: %p, %d %d %d",
440 	    ic, got, *adv_credits, need_posted);
441 
442 	return (got);
443 }
444 
445 void
446 rdsv3_ib_send_add_credits(struct rdsv3_connection *conn, unsigned int credits)
447 {
448 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
449 
450 	if (credits == 0)
451 		return;
452 
453 	RDSV3_DPRINTF5("rdsv3_ib_send_add_credits",
454 	    "credits (%u): current=%u%s\n",
455 	    credits,
456 	    IB_GET_SEND_CREDITS(atomic_get(&ic->i_credits)),
457 	    test_bit(RDSV3_LL_SEND_FULL, &conn->c_flags) ?
458 	    ", ll_send_full" : "");
459 
460 	atomic_add_32(&ic->i_credits, IB_SET_SEND_CREDITS(credits));
461 	if (test_and_clear_bit(RDSV3_LL_SEND_FULL, &conn->c_flags))
462 		rdsv3_queue_delayed_work(rdsv3_wq, &conn->c_send_w, 0);
463 
464 	ASSERT(!(IB_GET_SEND_CREDITS(credits) >= 16384));
465 
466 	rdsv3_ib_stats_inc(s_ib_rx_credit_updates);
467 
468 	RDSV3_DPRINTF4("rdsv3_ib_send_add_credits",
469 	    "Return: conn: %p, credits: %d",
470 	    conn, credits);
471 }
472 
473 void
474 rdsv3_ib_advertise_credits(struct rdsv3_connection *conn, unsigned int posted)
475 {
476 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
477 
478 	RDSV3_DPRINTF4("rdsv3_ib_advertise_credits", "conn: %p, posted: %d",
479 	    conn, posted);
480 
481 	if (posted == 0)
482 		return;
483 
484 	atomic_add_32(&ic->i_credits, IB_SET_POST_CREDITS(posted));
485 
486 	/*
487 	 * Decide whether to send an update to the peer now.
488 	 * If we would send a credit update for every single buffer we
489 	 * post, we would end up with an ACK storm (ACK arrives,
490 	 * consumes buffer, we refill the ring, send ACK to remote
491 	 * advertising the newly posted buffer... ad inf)
492 	 *
493 	 * Performance pretty much depends on how often we send
494 	 * credit updates - too frequent updates mean lots of ACKs.
495 	 * Too infrequent updates, and the peer will run out of
496 	 * credits and has to throttle.
497 	 * For the time being, 16 seems to be a good compromise.
498 	 */
499 	if (IB_GET_POST_CREDITS(atomic_get(&ic->i_credits)) >= 16)
500 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
501 }
502 
503 static inline void
504 rdsv3_ib_xmit_populate_wr(struct rdsv3_ib_connection *ic,
505     ibt_send_wr_t *wr, unsigned int pos,
506     struct rdsv3_scatterlist *scat, unsigned int off, unsigned int length,
507     int send_flags)
508 {
509 	ibt_wr_ds_t *sge;
510 
511 	RDSV3_DPRINTF4("rdsv3_ib_xmit_populate_wr",
512 	    "ic: %p, wr: %p scat: %p %d %d %d %d",
513 	    ic, wr, scat, pos, off, length, send_flags);
514 
515 	wr->wr_id = pos;
516 	wr->wr_trans = IBT_RC_SRV;
517 	wr->wr_flags = send_flags;
518 	wr->wr_opcode = IBT_WRC_SEND;
519 
520 	if (length != 0) {
521 		int	ix, len, assigned;
522 		ibt_wr_ds_t *sgl;
523 
524 		ASSERT(length <= scat->length - off);
525 
526 		sgl = scat->sgl;
527 		if (off != 0) {
528 			/* find the right sgl to begin with */
529 			while (sgl->ds_len <= off) {
530 				off -= sgl->ds_len;
531 				sgl++;
532 			}
533 		}
534 
535 		ix = 1; /* first data sgl is at 1 */
536 		assigned = 0;
537 		len = length;
538 		do {
539 			sge = &wr->wr_sgl[ix++];
540 			sge->ds_va = sgl->ds_va + off;
541 			assigned = min(len, sgl->ds_len - off);
542 			sge->ds_len = assigned;
543 			sge->ds_key = sgl->ds_key;
544 			len -= assigned;
545 			if (len != 0) {
546 				sgl++;
547 				off = 0;
548 			}
549 		} while (len > 0);
550 
551 		wr->wr_nds = ix;
552 	} else {
553 		/*
554 		 * We're sending a packet with no payload. There is only
555 		 * one SGE
556 		 */
557 		wr->wr_nds = 1;
558 	}
559 
560 	sge = &wr->wr_sgl[0];
561 	sge->ds_va = ic->i_send_hdrs_dma + (pos * sizeof (struct rdsv3_header));
562 	sge->ds_len = sizeof (struct rdsv3_header);
563 	sge->ds_key = ic->i_mr->lkey;
564 
565 	RDSV3_DPRINTF4("rdsv3_ib_xmit_populate_wr",
566 	    "Return: ic: %p, wr: %p scat: %p", ic, wr, scat);
567 }
568 
569 /*
570  * This can be called multiple times for a given message.  The first time
571  * we see a message we map its scatterlist into the IB device so that
572  * we can provide that mapped address to the IB scatter gather entries
573  * in the IB work requests.  We translate the scatterlist into a series
574  * of work requests that fragment the message.  These work requests complete
575  * in order so we pass ownership of the message to the completion handler
576  * once we send the final fragment.
577  *
578  * The RDS core uses the c_send_lock to only enter this function once
579  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
580  * don't get out of sync and confuse the ring.
581  */
582 int
583 rdsv3_ib_xmit(struct rdsv3_connection *conn, struct rdsv3_message *rm,
584     unsigned int hdr_off, unsigned int sg, unsigned int off)
585 {
586 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
587 	struct ib_device *dev = ic->i_cm_id->device;
588 	struct rdsv3_ib_send_work *send = NULL;
589 	struct rdsv3_ib_send_work *first;
590 	struct rdsv3_ib_send_work *prev;
591 	ibt_send_wr_t *wr;
592 	struct rdsv3_scatterlist *scat;
593 	uint32_t pos;
594 	uint32_t i;
595 	uint32_t work_alloc;
596 	uint32_t credit_alloc;
597 	uint32_t posted;
598 	uint32_t adv_credits = 0;
599 	int send_flags = 0;
600 	int sent;
601 	int ret;
602 	int flow_controlled = 0;
603 
604 	RDSV3_DPRINTF4("rdsv3_ib_xmit", "conn: %p, rm: %p", conn, rm);
605 
606 	ASSERT(!(off % RDSV3_FRAG_SIZE));
607 	ASSERT(!(hdr_off != 0 && hdr_off != sizeof (struct rdsv3_header)));
608 
609 	/* Do not send cong updates to IB loopback */
610 	if (conn->c_loopback &&
611 	    rm->m_inc.i_hdr.h_flags & RDSV3_FLAG_CONG_BITMAP) {
612 		rdsv3_cong_map_updated(conn->c_fcong, ~(uint64_t)0);
613 		return (sizeof (struct rdsv3_header) + RDSV3_CONG_MAP_BYTES);
614 	}
615 
616 #ifndef __lock_lint
617 	/* FIXME we may overallocate here */
618 	if (ntohl(rm->m_inc.i_hdr.h_len) == 0)
619 		i = 1;
620 	else
621 		i = ceil(ntohl(rm->m_inc.i_hdr.h_len), RDSV3_FRAG_SIZE);
622 #endif
623 
624 	work_alloc = rdsv3_ib_ring_alloc(&ic->i_send_ring, i, &pos);
625 	if (work_alloc == 0) {
626 		set_bit(RDSV3_LL_SEND_FULL, &conn->c_flags);
627 		rdsv3_ib_stats_inc(s_ib_tx_ring_full);
628 		ret = -ENOMEM;
629 		goto out;
630 	}
631 
632 	credit_alloc = work_alloc;
633 	if (ic->i_flowctl) {
634 		credit_alloc = rdsv3_ib_send_grab_credits(ic, work_alloc,
635 		    &posted, 0);
636 		adv_credits += posted;
637 		if (credit_alloc < work_alloc) {
638 			rdsv3_ib_ring_unalloc(&ic->i_send_ring,
639 			    work_alloc - credit_alloc);
640 			work_alloc = credit_alloc;
641 			flow_controlled++;
642 		}
643 		if (work_alloc == 0) {
644 			rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
645 			rdsv3_ib_stats_inc(s_ib_tx_throttle);
646 			ret = -ENOMEM;
647 			goto out;
648 		}
649 	}
650 
651 	/* map the message the first time we see it */
652 	if (ic->i_rm == NULL) {
653 		/*
654 		 * printk(KERN_NOTICE
655 		 * "rdsv3_ib_xmit prep msg dport=%u flags=0x%x len=%d\n",
656 		 * be16_to_cpu(rm->m_inc.i_hdr.h_dport),
657 		 * rm->m_inc.i_hdr.h_flags,
658 		 * be32_to_cpu(rm->m_inc.i_hdr.h_len));
659 		 */
660 		if (rm->m_nents) {
661 			rm->m_count = rdsv3_ib_dma_map_sg(dev,
662 			    rm->m_sg, rm->m_nents);
663 			RDSV3_DPRINTF5("rdsv3_ib_xmit",
664 			    "ic %p mapping rm %p: %d\n", ic, rm, rm->m_count);
665 			if (rm->m_count == 0) {
666 				rdsv3_ib_stats_inc(s_ib_tx_sg_mapping_failure);
667 				rdsv3_ib_ring_unalloc(&ic->i_send_ring,
668 				    work_alloc);
669 				ret = -ENOMEM; /* XXX ? */
670 				RDSV3_DPRINTF2("rdsv3_ib_xmit",
671 				    "fail: ic %p mapping rm %p: %d\n",
672 				    ic, rm, rm->m_count);
673 				goto out;
674 			}
675 		} else {
676 			rm->m_count = 0;
677 		}
678 
679 		ic->i_unsignaled_wrs = rdsv3_ib_sysctl_max_unsig_wrs;
680 		ic->i_unsignaled_bytes = rdsv3_ib_sysctl_max_unsig_bytes;
681 		rdsv3_message_addref(rm);
682 		ic->i_rm = rm;
683 
684 		/* Finalize the header */
685 		if (test_bit(RDSV3_MSG_ACK_REQUIRED, &rm->m_flags))
686 			rm->m_inc.i_hdr.h_flags |= RDSV3_FLAG_ACK_REQUIRED;
687 		if (test_bit(RDSV3_MSG_RETRANSMITTED, &rm->m_flags))
688 			rm->m_inc.i_hdr.h_flags |= RDSV3_FLAG_RETRANSMITTED;
689 
690 		/*
691 		 * If it has a RDMA op, tell the peer we did it. This is
692 		 * used by the peer to release use-once RDMA MRs.
693 		 */
694 		if (rm->m_rdma_op) {
695 			struct rdsv3_ext_header_rdma ext_hdr;
696 
697 			ext_hdr.h_rdma_rkey = htonl(rm->m_rdma_op->r_key);
698 			(void) rdsv3_message_add_extension(&rm->m_inc.i_hdr,
699 			    RDSV3_EXTHDR_RDMA, &ext_hdr,
700 			    sizeof (ext_hdr));
701 		}
702 		if (rm->m_rdma_cookie) {
703 			(void) rdsv3_message_add_rdma_dest_extension(
704 			    &rm->m_inc.i_hdr,
705 			    rdsv3_rdma_cookie_key(rm->m_rdma_cookie),
706 			    rdsv3_rdma_cookie_offset(rm->m_rdma_cookie));
707 		}
708 
709 		/*
710 		 * Note - rdsv3_ib_piggyb_ack clears the ACK_REQUIRED bit, so
711 		 * we should not do this unless we have a chance of at least
712 		 * sticking the header into the send ring. Which is why we
713 		 * should call rdsv3_ib_ring_alloc first.
714 		 */
715 		rm->m_inc.i_hdr.h_ack = htonll(rdsv3_ib_piggyb_ack(ic));
716 		rdsv3_message_make_checksum(&rm->m_inc.i_hdr);
717 
718 		/*
719 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
720 		 */
721 		(void) rdsv3_ib_send_grab_credits(ic, 0, &posted, 1);
722 		adv_credits += posted;
723 		ASSERT(adv_credits <= 255);
724 	}
725 
726 	send = &ic->i_sends[pos];
727 	first = send;
728 	prev = NULL;
729 	scat = &rm->m_sg[sg];
730 	sent = 0;
731 	i = 0;
732 
733 	/*
734 	 * Sometimes you want to put a fence between an RDMA
735 	 * READ and the following SEND.
736 	 * We could either do this all the time
737 	 * or when requested by the user. Right now, we let
738 	 * the application choose.
739 	 */
740 	if (rm->m_rdma_op && rm->m_rdma_op->r_fence)
741 		send_flags = IBT_WR_SEND_FENCE;
742 
743 	/*
744 	 * We could be copying the header into the unused tail of the page.
745 	 * That would need to be changed in the future when those pages might
746 	 * be mapped userspace pages or page cache pages.  So instead we always
747 	 * use a second sge and our long-lived ring of mapped headers.  We send
748 	 * the header after the data so that the data payload can be aligned on
749 	 * the receiver.
750 	 */
751 
752 	/* handle a 0-len message */
753 	if (ntohl(rm->m_inc.i_hdr.h_len) == 0) {
754 		wr = &ic->i_send_wrs[0];
755 		rdsv3_ib_xmit_populate_wr(ic, wr, pos, NULL, 0, 0, send_flags);
756 		send->s_queued = jiffies;
757 		send->s_op = NULL;
758 		send->s_opcode = wr->wr_opcode;
759 		goto add_header;
760 	}
761 
762 	/* if there's data reference it with a chain of work reqs */
763 	for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) {
764 		unsigned int len;
765 
766 		send = &ic->i_sends[pos];
767 
768 		wr = &ic->i_send_wrs[i];
769 		len = min(RDSV3_FRAG_SIZE,
770 		    rdsv3_ib_sg_dma_len(dev, scat) - off);
771 		rdsv3_ib_xmit_populate_wr(ic, wr, pos, scat, off, len,
772 		    send_flags);
773 		send->s_queued = jiffies;
774 		send->s_op = NULL;
775 		send->s_opcode = wr->wr_opcode;
776 
777 		/*
778 		 * We want to delay signaling completions just enough to get
779 		 * the batching benefits but not so much that we create dead
780 		 * time
781 		 * on the wire.
782 		 */
783 		if (ic->i_unsignaled_wrs-- == 0) {
784 			ic->i_unsignaled_wrs = rdsv3_ib_sysctl_max_unsig_wrs;
785 			wr->wr_flags |=
786 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
787 		}
788 
789 		ic->i_unsignaled_bytes -= len;
790 		if (ic->i_unsignaled_bytes <= 0) {
791 			ic->i_unsignaled_bytes =
792 			    rdsv3_ib_sysctl_max_unsig_bytes;
793 			wr->wr_flags |=
794 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
795 		}
796 
797 		/*
798 		 * Always signal the last one if we're stopping due to flow
799 		 * control.
800 		 */
801 		if (flow_controlled && i == (work_alloc-1)) {
802 			wr->wr_flags |=
803 			    IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
804 		}
805 
806 		RDSV3_DPRINTF5("rdsv3_ib_xmit", "send %p wr %p num_sge %u \n",
807 		    send, wr, wr->wr_nds);
808 
809 		sent += len;
810 		off += len;
811 		if (off == rdsv3_ib_sg_dma_len(dev, scat)) {
812 			scat++;
813 			off = 0;
814 		}
815 
816 add_header:
817 		/*
818 		 * Tack on the header after the data. The header SGE
819 		 * should already
820 		 * have been set up to point to the right header buffer.
821 		 */
822 		(void) memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
823 		    sizeof (struct rdsv3_header));
824 
825 		if (0) {
826 			struct rdsv3_header *hdr = &ic->i_send_hdrs[pos];
827 
828 			RDSV3_DPRINTF2("rdsv3_ib_xmit",
829 			    "send WR dport=%u flags=0x%x len=%d",
830 			    ntohs(hdr->h_dport),
831 			    hdr->h_flags,
832 			    ntohl(hdr->h_len));
833 		}
834 		if (adv_credits) {
835 			struct rdsv3_header *hdr = &ic->i_send_hdrs[pos];
836 
837 			/* add credit and redo the header checksum */
838 			hdr->h_credit = adv_credits;
839 			rdsv3_message_make_checksum(hdr);
840 			adv_credits = 0;
841 			rdsv3_ib_stats_inc(s_ib_tx_credit_updates);
842 		}
843 
844 		prev = send;
845 
846 		pos = (pos + 1) % ic->i_send_ring.w_nr;
847 	}
848 
849 	/*
850 	 * Account the RDS header in the number of bytes we sent, but just once.
851 	 * The caller has no concept of fragmentation.
852 	 */
853 	if (hdr_off == 0)
854 		sent += sizeof (struct rdsv3_header);
855 
856 	/* if we finished the message then send completion owns it */
857 	if (scat == &rm->m_sg[rm->m_count]) {
858 		prev->s_rm = ic->i_rm;
859 		wr->wr_flags |= IBT_WR_SEND_SIGNAL | IBT_WR_SEND_SOLICIT;
860 		ic->i_rm = NULL;
861 	}
862 
863 	if (i < work_alloc) {
864 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
865 		work_alloc = i;
866 	}
867 	if (ic->i_flowctl && i < credit_alloc)
868 		rdsv3_ib_send_add_credits(conn, credit_alloc - i);
869 
870 	/* XXX need to worry about failed_wr and partial sends. */
871 	ret = ibt_post_send(ib_get_ibt_channel_hdl(ic->i_cm_id),
872 	    ic->i_send_wrs, i, &posted);
873 	if (posted != i) {
874 		RDSV3_DPRINTF2("rdsv3_ib_xmit",
875 		    "ic %p first %p nwr: %d ret %d:%d",
876 		    ic, first, i, ret, posted);
877 	}
878 	if (ret) {
879 		RDSV3_DPRINTF2("rdsv3_ib_xmit",
880 		    "RDS/IB: ib_post_send to %u.%u.%u.%u "
881 		    "returned %d\n", NIPQUAD(conn->c_faddr), ret);
882 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
883 		if (prev->s_rm) {
884 			ic->i_rm = prev->s_rm;
885 			prev->s_rm = NULL;
886 		}
887 		RDSV3_DPRINTF2("rdsv3_ib_xmit", "ibt_post_send failed\n");
888 		rdsv3_conn_drop(ic->conn);
889 		goto out;
890 	}
891 
892 	ret = sent;
893 
894 	RDSV3_DPRINTF4("rdsv3_ib_xmit", "Return: conn: %p, rm: %p", conn, rm);
895 out:
896 	ASSERT(!adv_credits);
897 	return (ret);
898 }
899 
900 static void
901 rdsv3_ib_dma_unmap_sg_rdma(struct ib_device *dev, uint_t num,
902 	struct rdsv3_rdma_sg scat[])
903 {
904 	ibt_hca_hdl_t hca_hdl;
905 	int i;
906 	int num_sgl;
907 
908 	RDSV3_DPRINTF4("rdsv3_ib_dma_unmap_sg", "rdma_sg: %p", scat);
909 
910 	if (dev) {
911 		hca_hdl = ib_get_ibt_hca_hdl(dev);
912 	} else {
913 		hca_hdl = scat[0].hca_hdl;
914 		RDSV3_DPRINTF2("rdsv3_ib_dma_unmap_sg_rdma",
915 		    "NULL dev use cached hca_hdl %p", hca_hdl);
916 	}
917 
918 	if (hca_hdl == NULL)
919 		return;
920 	scat[0].hca_hdl = NULL;
921 
922 	for (i = 0; i < num; i++) {
923 		if (scat[i].mihdl != NULL) {
924 			num_sgl = (scat[i].iovec.bytes / PAGESIZE) + 2;
925 			kmem_free(scat[i].swr.wr_sgl,
926 			    (num_sgl * sizeof (ibt_wr_ds_t)));
927 			scat[i].swr.wr_sgl = NULL;
928 			(void) ibt_unmap_mem_iov(hca_hdl, scat[i].mihdl);
929 			scat[i].mihdl = NULL;
930 		} else
931 			break;
932 	}
933 }
934 
935 /* ARGSUSED */
936 uint_t
937 rdsv3_ib_dma_map_sg_rdma(struct ib_device *dev, struct rdsv3_rdma_sg scat[],
938     uint_t num, struct rdsv3_scatterlist **scatl)
939 {
940 	ibt_hca_hdl_t hca_hdl;
941 	ibt_iov_attr_t iov_attr;
942 	struct buf *bp;
943 	uint_t i, j, k;
944 	uint_t count;
945 	struct rdsv3_scatterlist *sg;
946 	int ret;
947 
948 	RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma", "scat: %p, num: %d",
949 	    scat, num);
950 
951 	hca_hdl = ib_get_ibt_hca_hdl(dev);
952 	scat[0].hca_hdl = hca_hdl;
953 	bzero(&iov_attr, sizeof (ibt_iov_attr_t));
954 	iov_attr.iov_flags = IBT_IOV_BUF;
955 	iov_attr.iov_lso_hdr_sz = 0;
956 
957 	for (i = 0, count = 0; i < num; i++) {
958 		/* transpose umem_cookie  to buf structure */
959 		bp = ddi_umem_iosetup(scat[i].umem_cookie,
960 		    scat[i].iovec.addr & PAGEOFFSET, scat[i].iovec.bytes,
961 		    B_WRITE, 0, 0, NULL, DDI_UMEM_SLEEP);
962 		if (bp == NULL) {
963 			/* free resources  and return error */
964 			goto out;
965 		}
966 		/* setup ibt_map_mem_iov() attributes */
967 		iov_attr.iov_buf = bp;
968 		iov_attr.iov_wr_nds = (scat[i].iovec.bytes / PAGESIZE) + 2;
969 		scat[i].swr.wr_sgl =
970 		    kmem_zalloc(iov_attr.iov_wr_nds * sizeof (ibt_wr_ds_t),
971 		    KM_SLEEP);
972 
973 		ret = ibt_map_mem_iov(hca_hdl, &iov_attr,
974 		    (ibt_all_wr_t *)&scat[i].swr, &scat[i].mihdl);
975 		freerbuf(bp);
976 		if (ret != IBT_SUCCESS) {
977 			RDSV3_DPRINTF2("rdsv3_ib_dma_map_sg_rdma",
978 			    "ibt_map_mem_iov returned: %d", ret);
979 			/* free resources and return error */
980 			kmem_free(scat[i].swr.wr_sgl,
981 			    iov_attr.iov_wr_nds * sizeof (ibt_wr_ds_t));
982 			goto out;
983 		}
984 		count += scat[i].swr.wr_nds;
985 
986 #ifdef  DEBUG
987 		for (j = 0; j < scat[i].swr.wr_nds; j++) {
988 			RDSV3_DPRINTF5("rdsv3_ib_dma_map_sg_rdma",
989 			    "sgl[%d] va %llx len %x", j,
990 			    scat[i].swr.wr_sgl[j].ds_va,
991 			    scat[i].swr.wr_sgl[j].ds_len);
992 		}
993 #endif
994 		RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma",
995 		    "iovec.bytes: 0x%x scat[%d]swr.wr_nds: %d",
996 		    scat[i].iovec.bytes, i, scat[i].swr.wr_nds);
997 	}
998 
999 	count = ((count - 1) / RDSV3_IB_MAX_SGE) + 1;
1000 	RDSV3_DPRINTF4("rdsv3_ib_dma_map_sg_rdma", "Ret: num: %d", count);
1001 	return (count);
1002 
1003 out:
1004 	rdsv3_ib_dma_unmap_sg_rdma(dev, num, scat);
1005 	return (0);
1006 }
1007 
1008 int
1009 rdsv3_ib_xmit_rdma(struct rdsv3_connection *conn, struct rdsv3_rdma_op *op)
1010 {
1011 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
1012 	struct rdsv3_ib_send_work *send = NULL;
1013 	struct rdsv3_rdma_sg *scat;
1014 	uint64_t remote_addr;
1015 	uint32_t pos;
1016 	uint32_t work_alloc;
1017 	uint32_t i, j, k, idx;
1018 	uint32_t left, count;
1019 	uint32_t posted;
1020 	int sent;
1021 	ibt_status_t status;
1022 	ibt_send_wr_t *wr;
1023 	ibt_wr_ds_t *sge;
1024 
1025 	RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma", "rdsv3_ib_conn: %p", ic);
1026 
1027 	/* map the message the first time we see it */
1028 	if (!op->r_mapped) {
1029 		op->r_count = rdsv3_ib_dma_map_sg_rdma(ic->i_cm_id->device,
1030 		    op->r_rdma_sg, op->r_nents, &op->r_sg);
1031 		RDSV3_DPRINTF5("rdsv3_ib_xmit_rdma", "ic %p mapping op %p: %d",
1032 		    ic, op, op->r_count);
1033 		if (op->r_count == 0) {
1034 			rdsv3_ib_stats_inc(s_ib_tx_sg_mapping_failure);
1035 			RDSV3_DPRINTF2("rdsv3_ib_xmit_rdma",
1036 			    "fail: ic %p mapping op %p: %d",
1037 			    ic, op, op->r_count);
1038 			return (-ENOMEM); /* XXX ? */
1039 		}
1040 		op->r_mapped = 1;
1041 	}
1042 
1043 	/*
1044 	 * Instead of knowing how to return a partial rdma read/write
1045 	 * we insist that there
1046 	 * be enough work requests to send the entire message.
1047 	 */
1048 	work_alloc = rdsv3_ib_ring_alloc(&ic->i_send_ring, op->r_count, &pos);
1049 	if (work_alloc != op->r_count) {
1050 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1051 		rdsv3_ib_stats_inc(s_ib_tx_ring_full);
1052 		return (-ENOMEM);
1053 	}
1054 
1055 	/*
1056 	 * take the scatter list and transpose into a list of
1057 	 * send wr's each with a scatter list of RDSV3_IB_MAX_SGE
1058 	 */
1059 	scat = &op->r_rdma_sg[0];
1060 	sent = 0;
1061 	remote_addr = op->r_remote_addr;
1062 
1063 	for (i = 0, k = 0; i < op->r_nents; i++) {
1064 		left = scat[i].swr.wr_nds;
1065 		for (idx = 0; left > 0; k++) {
1066 			send = &ic->i_sends[pos];
1067 			send->s_queued = jiffies;
1068 			send->s_opcode = op->r_write ? IBT_WRC_RDMAW :
1069 			    IBT_WRC_RDMAR;
1070 			send->s_op = op;
1071 
1072 			wr = &ic->i_send_wrs[k];
1073 			wr->wr_flags = 0;
1074 			wr->wr_id = pos;
1075 			wr->wr_trans = IBT_RC_SRV;
1076 			wr->wr_opcode = op->r_write ? IBT_WRC_RDMAW :
1077 			    IBT_WRC_RDMAR;
1078 			wr->wr.rc.rcwr.rdma.rdma_raddr = remote_addr;
1079 			wr->wr.rc.rcwr.rdma.rdma_rkey = op->r_key;
1080 
1081 			if (left > RDSV3_IB_MAX_SGE) {
1082 				count = RDSV3_IB_MAX_SGE;
1083 				left -= RDSV3_IB_MAX_SGE;
1084 			} else {
1085 				count = left;
1086 				left = 0;
1087 			}
1088 			wr->wr_nds = count;
1089 
1090 			for (j = 0; j < count; j++) {
1091 				sge = &wr->wr_sgl[j];
1092 				*sge = scat[i].swr.wr_sgl[idx];
1093 				remote_addr += scat[i].swr.wr_sgl[idx].ds_len;
1094 				sent += scat[i].swr.wr_sgl[idx].ds_len;
1095 				idx++;
1096 				RDSV3_DPRINTF4("xmit_rdma",
1097 				    "send_wrs[%d]sgl[%d] va %llx len %x",
1098 				    k, j, sge->ds_va, sge->ds_len);
1099 			}
1100 			RDSV3_DPRINTF4("rdsv3_ib_xmit_rdma",
1101 			    "wr[%d] %p key: %x code: %d tlen: %d",
1102 			    k, wr, wr->wr.rc.rcwr.rdma.rdma_rkey,
1103 			    wr->wr_opcode, sent);
1104 
1105 			/*
1106 			 * We want to delay signaling completions just enough
1107 			 * to get the batching benefits but not so much that
1108 			 * we create dead time on the wire.
1109 			 */
1110 			if (ic->i_unsignaled_wrs-- == 0) {
1111 				ic->i_unsignaled_wrs =
1112 				    rdsv3_ib_sysctl_max_unsig_wrs;
1113 				wr->wr_flags = IBT_WR_SEND_SIGNAL;
1114 			}
1115 
1116 			pos = (pos + 1) % ic->i_send_ring.w_nr;
1117 		}
1118 	}
1119 
1120 	status = ibt_post_send(ib_get_ibt_channel_hdl(ic->i_cm_id),
1121 	    ic->i_send_wrs, k, &posted);
1122 	if (status != IBT_SUCCESS) {
1123 		RDSV3_DPRINTF2("rdsv3_ib_xmit_rdma",
1124 		    "RDS/IB: rdma ib_post_send to %u.%u.%u.%u "
1125 		    "returned %d", NIPQUAD(conn->c_faddr), status);
1126 		rdsv3_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1127 	}
1128 	return (status);
1129 }
1130 
1131 void
1132 rdsv3_ib_xmit_complete(struct rdsv3_connection *conn)
1133 {
1134 	struct rdsv3_ib_connection *ic = conn->c_transport_data;
1135 
1136 	RDSV3_DPRINTF4("rdsv3_ib_xmit_complete", "conn: %p", conn);
1137 
1138 	/*
1139 	 * We may have a pending ACK or window update we were unable
1140 	 * to send previously (due to flow control). Try again.
1141 	 */
1142 	rdsv3_ib_attempt_ack(ic);
1143 }
1144