1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * An implementation of the IPoIB standard based on PSARC 2001/289. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/conf.h> 33 #include <sys/ddi.h> 34 #include <sys/sunddi.h> 35 #include <sys/modctl.h> 36 #include <sys/stropts.h> 37 #include <sys/stream.h> 38 #include <sys/strsun.h> 39 #include <sys/strsubr.h> 40 #include <sys/dlpi.h> 41 #include <sys/mac_provider.h> 42 43 #include <sys/pattr.h> /* for HCK_FULLCKSUM */ 44 #include <sys/sysmacros.h> /* for offsetof */ 45 #include <sys/disp.h> /* for async thread pri */ 46 #include <sys/atomic.h> /* for atomic_add*() */ 47 #include <sys/ethernet.h> /* for ETHERTYPE_IP */ 48 #include <netinet/in.h> /* for netinet/ip.h below */ 49 #include <netinet/ip.h> /* for struct ip */ 50 #include <netinet/udp.h> /* for struct udphdr */ 51 #include <inet/common.h> /* for inet/ip.h below */ 52 #include <inet/ip.h> /* for ipha_t */ 53 #include <inet/ip_if.h> /* for IP6_DL_SAP */ 54 #include <inet/ip6.h> /* for ip6_t */ 55 #include <inet/tcp.h> /* for tcph_t */ 56 #include <netinet/icmp6.h> /* for icmp6_t */ 57 #include <sys/callb.h> 58 #include <sys/modhash.h> 59 60 #include <sys/ib/clients/ibd/ibd.h> 61 #include <sys/ib/mgt/sm_attr.h> /* for SM_INIT_TYPE_* */ 62 #include <sys/note.h> 63 #include <sys/multidata.h> 64 65 #include <sys/ib/mgt/ibmf/ibmf.h> /* for ibd_get_portspeed */ 66 67 /* 68 * Per-interface tunables 69 * 70 * ibd_tx_copy_thresh 71 * This sets the threshold at which ibd will attempt to do a bcopy of the 72 * outgoing data into a pre-mapped buffer. The IPoIB driver's send behavior 73 * is restricted by various parameters, so setting of this value must be 74 * made after careful considerations only. For instance, IB HCAs currently 75 * impose a relatively small limit (when compared to ethernet NICs) on the 76 * length of the SGL for transmit. On the other hand, the ip stack could 77 * send down mp chains that are quite long when LSO is enabled. 78 * 79 * ibd_num_swqe 80 * Number of "send WQE" elements that will be allocated and used by ibd. 81 * When tuning this parameter, the size of pre-allocated, pre-mapped copy 82 * buffer in each of these send wqes must be taken into account. This 83 * copy buffer size is determined by the value of IBD_TX_BUF_SZ (this is 84 * currently set to the same value of ibd_tx_copy_thresh, but may be 85 * changed independently if needed). 86 * 87 * ibd_num_rwqe 88 * Number of "receive WQE" elements that will be allocated and used by 89 * ibd. This parameter is limited by the maximum channel size of the HCA. 90 * Each buffer in the receive wqe will be of MTU size. 91 * 92 * ibd_num_lso_bufs 93 * Number of "larger-than-MTU" copy buffers to use for cases when the 94 * outgoing mblk chain is too fragmented to be used with ibt_map_mem_iov() 95 * and too large to be used with regular MTU-sized copy buffers. It is 96 * not recommended to tune this variable without understanding the 97 * application environment and/or memory resources. The size of each of 98 * these lso buffers is determined by the value of IBD_LSO_BUFSZ. 99 * 100 * ibd_num_ah 101 * Number of AH cache entries to allocate 102 * 103 * ibd_hash_size 104 * Hash table size for the active AH list 105 * 106 * ibd_separate_cqs 107 * ibd_txcomp_poll 108 * These boolean variables (1 or 0) may be used to tune the behavior of 109 * ibd in managing the send and receive completion queues and in deciding 110 * whether or not transmit completions should be polled or interrupt 111 * driven (when the completion queues are separate). If both the completion 112 * queues are interrupt driven, it may not be possible for the handlers to 113 * be invoked concurrently, depending on how the interrupts are tied on 114 * the PCI intr line. Note that some combination of these two parameters 115 * may not be meaningful (and therefore not allowed). 116 * 117 * ibd_tx_softintr 118 * ibd_rx_softintr 119 * The softintr mechanism allows ibd to avoid event queue overflows if 120 * the receive/completion handlers are to be expensive. These are enabled 121 * by default. 122 * 123 * ibd_log_sz 124 * This specifies the size of the ibd log buffer in bytes. The buffer is 125 * allocated and logging is enabled only when IBD_LOGGING is defined. 126 * 127 */ 128 uint_t ibd_tx_copy_thresh = 0x1000; 129 uint_t ibd_num_swqe = 4000; 130 uint_t ibd_num_rwqe = 4000; 131 uint_t ibd_num_lso_bufs = 0x400; 132 uint_t ibd_num_ah = 64; 133 uint_t ibd_hash_size = 32; 134 uint_t ibd_separate_cqs = 1; 135 uint_t ibd_txcomp_poll = 0; 136 uint_t ibd_rx_softintr = 1; 137 uint_t ibd_tx_softintr = 1; 138 #ifdef IBD_LOGGING 139 uint_t ibd_log_sz = 0x20000; 140 #endif 141 142 #define IBD_TX_COPY_THRESH ibd_tx_copy_thresh 143 #define IBD_TX_BUF_SZ ibd_tx_copy_thresh 144 #define IBD_NUM_SWQE ibd_num_swqe 145 #define IBD_NUM_RWQE ibd_num_rwqe 146 #define IBD_NUM_LSO_BUFS ibd_num_lso_bufs 147 #define IBD_NUM_AH ibd_num_ah 148 #define IBD_HASH_SIZE ibd_hash_size 149 #ifdef IBD_LOGGING 150 #define IBD_LOG_SZ ibd_log_sz 151 #endif 152 153 /* 154 * Receive CQ moderation parameters: NOT tunables 155 */ 156 static uint_t ibd_rxcomp_count = 4; 157 static uint_t ibd_rxcomp_usec = 10; 158 159 /* 160 * Thresholds 161 * 162 * When waiting for resources (swqes or lso buffers) to become available, 163 * the first two thresholds below determine how long to wait before informing 164 * the network layer to start sending packets again. The IBD_TX_POLL_THRESH 165 * determines how low the available swqes should go before we start polling 166 * the completion queue. 167 */ 168 #define IBD_FREE_LSOS_THRESH 8 169 #define IBD_FREE_SWQES_THRESH 20 170 #define IBD_TX_POLL_THRESH 80 171 172 /* 173 * When doing multiple-send-wr or multiple-recv-wr posts, this value 174 * determines how many to do at a time (in a single ibt_post_send/recv). 175 */ 176 #define IBD_MAX_POST_MULTIPLE 4 177 178 /* 179 * Maximum length for returning chained mps back to crossbow 180 */ 181 #define IBD_MAX_RX_MP_LEN 16 182 183 /* 184 * LSO parameters 185 */ 186 #define IBD_LSO_MAXLEN 65536 187 #define IBD_LSO_BUFSZ 8192 188 #define IBD_PROP_LSO_POLICY "lso-policy" 189 190 /* 191 * Completion queue polling control 192 */ 193 #define IBD_RX_CQ_POLLING 0x1 194 #define IBD_TX_CQ_POLLING 0x2 195 #define IBD_REDO_RX_CQ_POLLING 0x4 196 #define IBD_REDO_TX_CQ_POLLING 0x8 197 198 /* 199 * Flag bits for resources to reap 200 */ 201 #define IBD_RSRC_SWQE 0x1 202 #define IBD_RSRC_LSOBUF 0x2 203 204 /* 205 * Async operation types 206 */ 207 #define IBD_ASYNC_GETAH 1 208 #define IBD_ASYNC_JOIN 2 209 #define IBD_ASYNC_LEAVE 3 210 #define IBD_ASYNC_PROMON 4 211 #define IBD_ASYNC_PROMOFF 5 212 #define IBD_ASYNC_REAP 6 213 #define IBD_ASYNC_TRAP 7 214 #define IBD_ASYNC_SCHED 8 215 #define IBD_ASYNC_LINK 9 216 #define IBD_ASYNC_EXIT 10 217 218 /* 219 * Async operation states 220 */ 221 #define IBD_OP_NOTSTARTED 0 222 #define IBD_OP_ONGOING 1 223 #define IBD_OP_COMPLETED 2 224 #define IBD_OP_ERRORED 3 225 #define IBD_OP_ROUTERED 4 226 227 /* 228 * Miscellaneous constants 229 */ 230 #define IBD_SEND 0 231 #define IBD_RECV 1 232 #define IB_MGID_IPV4_LOWGRP_MASK 0xFFFFFFFF 233 #ifdef IBD_LOGGING 234 #define IBD_DMAX_LINE 100 235 #endif 236 237 /* 238 * Enumerations for link states 239 */ 240 typedef enum { 241 IBD_LINK_DOWN, 242 IBD_LINK_UP, 243 IBD_LINK_UP_ABSENT 244 } ibd_link_op_t; 245 246 /* 247 * Driver State Pointer 248 */ 249 void *ibd_list; 250 251 /* 252 * Logging 253 */ 254 #ifdef IBD_LOGGING 255 kmutex_t ibd_lbuf_lock; 256 uint8_t *ibd_lbuf; 257 uint32_t ibd_lbuf_ndx; 258 #endif 259 260 /* 261 * Required system entry points 262 */ 263 static int ibd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 264 static int ibd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 265 266 /* 267 * Required driver entry points for GLDv3 268 */ 269 static int ibd_m_stat(void *, uint_t, uint64_t *); 270 static int ibd_m_start(void *); 271 static void ibd_m_stop(void *); 272 static int ibd_m_promisc(void *, boolean_t); 273 static int ibd_m_multicst(void *, boolean_t, const uint8_t *); 274 static int ibd_m_unicst(void *, const uint8_t *); 275 static mblk_t *ibd_m_tx(void *, mblk_t *); 276 static boolean_t ibd_m_getcapab(void *, mac_capab_t, void *); 277 278 /* 279 * Private driver entry points for GLDv3 280 */ 281 282 /* 283 * Initialization 284 */ 285 static int ibd_state_init(ibd_state_t *, dev_info_t *); 286 static int ibd_drv_init(ibd_state_t *); 287 static int ibd_init_txlist(ibd_state_t *); 288 static int ibd_init_rxlist(ibd_state_t *); 289 static int ibd_acache_init(ibd_state_t *); 290 #ifdef IBD_LOGGING 291 static void ibd_log_init(void); 292 #endif 293 294 /* 295 * Termination/cleanup 296 */ 297 static void ibd_state_fini(ibd_state_t *); 298 static void ibd_drv_fini(ibd_state_t *); 299 static void ibd_fini_txlist(ibd_state_t *); 300 static void ibd_fini_rxlist(ibd_state_t *); 301 static void ibd_tx_cleanup(ibd_state_t *, ibd_swqe_t *); 302 static void ibd_acache_fini(ibd_state_t *); 303 #ifdef IBD_LOGGING 304 static void ibd_log_fini(void); 305 #endif 306 307 /* 308 * Allocation/acquire/map routines 309 */ 310 static int ibd_alloc_swqe(ibd_state_t *, ibd_swqe_t **, int, ibt_lkey_t); 311 static int ibd_alloc_rwqe(ibd_state_t *, ibd_rwqe_t **); 312 static int ibd_alloc_tx_copybufs(ibd_state_t *); 313 static int ibd_alloc_tx_lsobufs(ibd_state_t *); 314 static int ibd_acquire_swqe(ibd_state_t *, ibd_swqe_t **); 315 static int ibd_acquire_lsobufs(ibd_state_t *, uint_t, ibt_wr_ds_t *, 316 uint32_t *); 317 318 /* 319 * Free/release/unmap routines 320 */ 321 static void ibd_free_swqe(ibd_state_t *, ibd_swqe_t *); 322 static void ibd_free_rwqe(ibd_state_t *, ibd_rwqe_t *); 323 static void ibd_delete_rwqe(ibd_state_t *, ibd_rwqe_t *); 324 static void ibd_free_tx_copybufs(ibd_state_t *); 325 static void ibd_free_tx_lsobufs(ibd_state_t *); 326 static void ibd_release_swqe(ibd_state_t *, ibd_swqe_t *); 327 static void ibd_release_lsobufs(ibd_state_t *, ibt_wr_ds_t *, uint32_t); 328 static void ibd_free_lsohdr(ibd_swqe_t *, mblk_t *); 329 static void ibd_unmap_mem(ibd_state_t *, ibd_swqe_t *); 330 331 /* 332 * Handlers/callback routines 333 */ 334 static uint_t ibd_intr(char *); 335 static uint_t ibd_tx_recycle(char *); 336 static void ibd_rcq_handler(ibt_cq_hdl_t, void *); 337 static void ibd_scq_handler(ibt_cq_hdl_t, void *); 338 static void ibd_poll_compq(ibd_state_t *, ibt_cq_hdl_t); 339 static uint_t ibd_drain_cq(ibd_state_t *, ibt_cq_hdl_t, ibt_wc_t *, uint_t); 340 static void ibd_freemsg_cb(char *); 341 static void ibd_async_handler(void *, ibt_hca_hdl_t, ibt_async_code_t, 342 ibt_async_event_t *); 343 static void ibd_snet_notices_handler(void *, ib_gid_t, 344 ibt_subnet_event_code_t, ibt_subnet_event_t *); 345 346 /* 347 * Send/receive routines 348 */ 349 static boolean_t ibd_send(ibd_state_t *, mblk_t *); 350 static void ibd_post_send(ibd_state_t *, ibd_swqe_t *); 351 static int ibd_post_rwqe(ibd_state_t *, ibd_rwqe_t *, boolean_t); 352 static void ibd_process_rx(ibd_state_t *, ibd_rwqe_t *, ibt_wc_t *); 353 static void ibd_flush_rx(ibd_state_t *, mblk_t *); 354 355 /* 356 * Threads 357 */ 358 static void ibd_async_work(ibd_state_t *); 359 360 /* 361 * Async tasks 362 */ 363 static void ibd_async_acache(ibd_state_t *, ipoib_mac_t *); 364 static void ibd_async_multicast(ibd_state_t *, ib_gid_t, int); 365 static void ibd_async_setprom(ibd_state_t *); 366 static void ibd_async_unsetprom(ibd_state_t *); 367 static void ibd_async_reap_group(ibd_state_t *, ibd_mce_t *, ib_gid_t, uint8_t); 368 static void ibd_async_trap(ibd_state_t *, ibd_req_t *); 369 static void ibd_async_txsched(ibd_state_t *); 370 static void ibd_async_link(ibd_state_t *, ibd_req_t *); 371 372 /* 373 * Async task helpers 374 */ 375 static ibd_mce_t *ibd_async_mcache(ibd_state_t *, ipoib_mac_t *, boolean_t *); 376 static ibd_mce_t *ibd_join_group(ibd_state_t *, ib_gid_t, uint8_t); 377 static ibd_mce_t *ibd_mcache_find(ib_gid_t, struct list *); 378 static boolean_t ibd_get_allroutergroup(ibd_state_t *, 379 ipoib_mac_t *, ipoib_mac_t *); 380 static void ibd_leave_group(ibd_state_t *, ib_gid_t, uint8_t); 381 static void ibd_reacquire_group(ibd_state_t *, ibd_mce_t *); 382 static ibt_status_t ibd_iba_join(ibd_state_t *, ib_gid_t, ibd_mce_t *); 383 static ibt_status_t ibd_find_bgroup(ibd_state_t *); 384 static void ibd_n2h_gid(ipoib_mac_t *, ib_gid_t *); 385 static void ibd_h2n_mac(ipoib_mac_t *, ib_qpn_t, ib_sn_prefix_t, ib_guid_t); 386 static uint64_t ibd_get_portspeed(ibd_state_t *); 387 static int ibd_get_portpkey(ibd_state_t *, ib_guid_t *); 388 static boolean_t ibd_async_safe(ibd_state_t *); 389 static void ibd_async_done(ibd_state_t *); 390 static ibd_ace_t *ibd_acache_find(ibd_state_t *, ipoib_mac_t *, boolean_t, int); 391 static ibd_ace_t *ibd_acache_lookup(ibd_state_t *, ipoib_mac_t *, int *, int); 392 static ibd_ace_t *ibd_acache_get_unref(ibd_state_t *); 393 static boolean_t ibd_acache_recycle(ibd_state_t *, ipoib_mac_t *, boolean_t); 394 static void ibd_link_mod(ibd_state_t *, ibt_async_code_t); 395 396 /* 397 * Miscellaneous helpers 398 */ 399 static int ibd_sched_poll(ibd_state_t *, int, int); 400 static void ibd_queue_work_slot(ibd_state_t *, ibd_req_t *, int); 401 static int ibd_resume_transmission(ibd_state_t *); 402 static int ibd_setup_lso(ibd_swqe_t *, mblk_t *, uint32_t, ibt_ud_dest_hdl_t); 403 static int ibd_prepare_sgl(ibd_state_t *, mblk_t *, ibd_swqe_t *, uint_t); 404 static void *list_get_head(list_t *); 405 static int ibd_hash_key_cmp(mod_hash_key_t, mod_hash_key_t); 406 static uint_t ibd_hash_by_id(void *, mod_hash_key_t); 407 static void ibd_print_warn(ibd_state_t *, char *, ...); 408 #ifdef IBD_LOGGING 409 static void ibd_log(const char *, ...); 410 #endif 411 412 DDI_DEFINE_STREAM_OPS(ibd_dev_ops, nulldev, nulldev, ibd_attach, ibd_detach, 413 nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed); 414 415 /* Module Driver Info */ 416 static struct modldrv ibd_modldrv = { 417 &mod_driverops, /* This one is a driver */ 418 "InfiniBand GLDv3 Driver", /* short description */ 419 &ibd_dev_ops /* driver specific ops */ 420 }; 421 422 /* Module Linkage */ 423 static struct modlinkage ibd_modlinkage = { 424 MODREV_1, (void *)&ibd_modldrv, NULL 425 }; 426 427 /* 428 * Module (static) info passed to IBTL during ibt_attach 429 */ 430 static struct ibt_clnt_modinfo_s ibd_clnt_modinfo = { 431 IBTI_V_CURR, 432 IBT_NETWORK, 433 ibd_async_handler, 434 NULL, 435 "IPIB" 436 }; 437 438 /* 439 * GLDv3 entry points 440 */ 441 #define IBD_M_CALLBACK_FLAGS (MC_GETCAPAB) 442 static mac_callbacks_t ib_m_callbacks = { 443 IBD_M_CALLBACK_FLAGS, 444 ibd_m_stat, 445 ibd_m_start, 446 ibd_m_stop, 447 ibd_m_promisc, 448 ibd_m_multicst, 449 ibd_m_unicst, 450 ibd_m_tx, 451 NULL, 452 ibd_m_getcapab 453 }; 454 455 /* 456 * Fill/clear <scope> and <p_key> in multicast/broadcast address 457 */ 458 #define IBD_FILL_SCOPE_PKEY(maddr, scope, pkey) \ 459 { \ 460 *(uint32_t *)((char *)(maddr) + 4) |= \ 461 htonl((uint32_t)(scope) << 16); \ 462 *(uint32_t *)((char *)(maddr) + 8) |= \ 463 htonl((uint32_t)(pkey) << 16); \ 464 } 465 466 #define IBD_CLEAR_SCOPE_PKEY(maddr) \ 467 { \ 468 *(uint32_t *)((char *)(maddr) + 4) &= \ 469 htonl(~((uint32_t)0xF << 16)); \ 470 *(uint32_t *)((char *)(maddr) + 8) &= \ 471 htonl(~((uint32_t)0xFFFF << 16)); \ 472 } 473 474 /* 475 * Rudimentary debugging support 476 */ 477 #ifdef DEBUG 478 int ibd_debuglevel = 100; 479 static void 480 debug_print(int l, char *fmt, ...) 481 { 482 va_list ap; 483 484 if (l < ibd_debuglevel) 485 return; 486 va_start(ap, fmt); 487 vcmn_err(CE_CONT, fmt, ap); 488 va_end(ap); 489 } 490 #define DPRINT debug_print 491 #else 492 #define DPRINT 493 #endif 494 495 /* 496 * Common routine to print warning messages; adds in hca guid, port number 497 * and pkey to be able to identify the IBA interface. 498 */ 499 static void 500 ibd_print_warn(ibd_state_t *state, char *fmt, ...) 501 { 502 ib_guid_t hca_guid; 503 char ibd_print_buf[256]; 504 int len; 505 va_list ap; 506 507 hca_guid = ddi_prop_get_int64(DDI_DEV_T_ANY, state->id_dip, 508 0, "hca-guid", 0); 509 len = snprintf(ibd_print_buf, sizeof (ibd_print_buf), 510 "%s%d: HCA GUID %016llx port %d PKEY %02x ", 511 ddi_driver_name(state->id_dip), ddi_get_instance(state->id_dip), 512 (u_longlong_t)hca_guid, state->id_port, state->id_pkey); 513 va_start(ap, fmt); 514 (void) vsnprintf(ibd_print_buf + len, sizeof (ibd_print_buf) - len, 515 fmt, ap); 516 cmn_err(CE_NOTE, "!%s", ibd_print_buf); 517 va_end(ap); 518 } 519 520 /* 521 * Warlock directives 522 */ 523 524 /* 525 * id_lso_lock 526 * 527 * state->id_lso->bkt_nfree may be accessed without a lock to 528 * determine the threshold at which we have to ask the nw layer 529 * to resume transmission (see ibd_resume_transmission()). 530 */ 531 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_lso_lock, 532 ibd_state_t::id_lso)) 533 _NOTE(DATA_READABLE_WITHOUT_LOCK(ibd_state_t::id_lso)) 534 _NOTE(DATA_READABLE_WITHOUT_LOCK(ibd_lsobkt_t::bkt_nfree)) 535 536 /* 537 * id_cq_poll_lock 538 */ 539 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_cq_poll_lock, 540 ibd_state_t::id_cq_poll_busy)) 541 542 /* 543 * id_txpost_lock 544 */ 545 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_txpost_lock, 546 ibd_state_t::id_tx_head)) 547 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_txpost_lock, 548 ibd_state_t::id_tx_busy)) 549 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_txpost_lock, 550 ibd_state_t::id_tx_tailp)) 551 552 /* 553 * id_rxpost_lock 554 */ 555 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_rxpost_lock, 556 ibd_state_t::id_rx_head)) 557 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_rxpost_lock, 558 ibd_state_t::id_rx_busy)) 559 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_rxpost_lock, 560 ibd_state_t::id_rx_tailp)) 561 562 /* 563 * id_acache_req_lock 564 */ 565 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_acache_req_lock, 566 ibd_state_t::id_acache_req_cv)) 567 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_acache_req_lock, 568 ibd_state_t::id_req_list)) 569 570 /* 571 * id_ac_mutex 572 * 573 * This mutex is actually supposed to protect id_ah_op as well, 574 * but this path of the code isn't clean (see update of id_ah_op 575 * in ibd_async_acache(), immediately after the call to 576 * ibd_async_mcache()). For now, we'll skip this check by 577 * declaring that id_ah_op is protected by some internal scheme 578 * that warlock isn't aware of. 579 */ 580 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_ac_mutex, 581 ibd_state_t::id_ah_active)) 582 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_ac_mutex, 583 ibd_state_t::id_ah_free)) 584 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_ac_mutex, 585 ibd_state_t::id_ah_addr)) 586 _NOTE(SCHEME_PROTECTS_DATA("ac mutex should protect this", 587 ibd_state_t::id_ah_op)) 588 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_ac_mutex, 589 ibd_state_t::id_ah_error)) 590 _NOTE(DATA_READABLE_WITHOUT_LOCK(ibd_state_t::id_ah_error)) 591 592 /* 593 * id_mc_mutex 594 */ 595 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_mc_mutex, 596 ibd_state_t::id_mc_full)) 597 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_mc_mutex, 598 ibd_state_t::id_mc_non)) 599 600 /* 601 * id_trap_lock 602 */ 603 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_trap_lock, 604 ibd_state_t::id_trap_cv)) 605 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_trap_lock, 606 ibd_state_t::id_trap_stop)) 607 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_trap_lock, 608 ibd_state_t::id_trap_inprog)) 609 610 /* 611 * id_prom_op 612 */ 613 _NOTE(SCHEME_PROTECTS_DATA("only by async thread", 614 ibd_state_t::id_prom_op)) 615 616 /* 617 * id_sched_lock 618 */ 619 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_sched_lock, 620 ibd_state_t::id_sched_needed)) 621 622 /* 623 * id_link_mutex 624 */ 625 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_link_mutex, 626 ibd_state_t::id_link_state)) 627 _NOTE(DATA_READABLE_WITHOUT_LOCK(ibd_state_t::id_link_state)) 628 _NOTE(SCHEME_PROTECTS_DATA("only async thr and drv init", 629 ibd_state_t::id_link_speed)) 630 631 /* 632 * id_tx_list.dl_mutex 633 */ 634 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_tx_list.dl_mutex, 635 ibd_state_t::id_tx_list.dl_head)) 636 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_tx_list.dl_mutex, 637 ibd_state_t::id_tx_list.dl_tail)) 638 _NOTE(SCHEME_PROTECTS_DATA("atomic or dl mutex or single thr", 639 ibd_state_t::id_tx_list.dl_pending_sends)) 640 _NOTE(SCHEME_PROTECTS_DATA("atomic or dl mutex or single thr", 641 ibd_state_t::id_tx_list.dl_cnt)) 642 643 /* 644 * id_rx_list.dl_mutex 645 */ 646 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_rx_list.dl_mutex, 647 ibd_state_t::id_rx_list.dl_head)) 648 _NOTE(MUTEX_PROTECTS_DATA(ibd_state_t::id_rx_list.dl_mutex, 649 ibd_state_t::id_rx_list.dl_tail)) 650 _NOTE(SCHEME_PROTECTS_DATA("atomic or dl mutex or single thr", 651 ibd_state_t::id_rx_list.dl_bufs_outstanding)) 652 _NOTE(SCHEME_PROTECTS_DATA("atomic or dl mutex or single thr", 653 ibd_state_t::id_rx_list.dl_cnt)) 654 655 656 /* 657 * Items protected by atomic updates 658 */ 659 _NOTE(SCHEME_PROTECTS_DATA("atomic update only", 660 ibd_state_s::id_brd_rcv 661 ibd_state_s::id_brd_xmt 662 ibd_state_s::id_multi_rcv 663 ibd_state_s::id_multi_xmt 664 ibd_state_s::id_num_intrs 665 ibd_state_s::id_rcv_bytes 666 ibd_state_s::id_rcv_pkt 667 ibd_state_s::id_tx_short 668 ibd_state_s::id_xmt_bytes 669 ibd_state_s::id_xmt_pkt)) 670 671 /* 672 * Non-mutex protection schemes for data elements. Almost all of 673 * these are non-shared items. 674 */ 675 _NOTE(SCHEME_PROTECTS_DATA("unshared or single-threaded", 676 callb_cpr 677 ib_gid_s 678 ib_header_info 679 ibd_acache_rq 680 ibd_acache_s::ac_mce 681 ibd_mcache::mc_fullreap 682 ibd_mcache::mc_jstate 683 ibd_mcache::mc_req 684 ibd_rwqe_s 685 ibd_swqe_s 686 ibd_wqe_s 687 ibt_wr_ds_s::ds_va 688 ibt_wr_lso_s 689 ipoib_mac::ipoib_qpn 690 mac_capab_lso_s 691 msgb::b_next 692 msgb::b_rptr 693 msgb::b_wptr)) 694 695 int 696 _init() 697 { 698 int status; 699 700 /* 701 * Sanity check some parameter settings. Tx completion polling 702 * only makes sense with separate CQs for Tx and Rx. 703 */ 704 if ((ibd_txcomp_poll == 1) && (ibd_separate_cqs == 0)) { 705 cmn_err(CE_NOTE, "!ibd: %s", 706 "Setting ibd_txcomp_poll = 0 for combined CQ"); 707 ibd_txcomp_poll = 0; 708 } 709 710 status = ddi_soft_state_init(&ibd_list, sizeof (ibd_state_t), 0); 711 if (status != 0) { 712 DPRINT(10, "_init:failed in ddi_soft_state_init()"); 713 return (status); 714 } 715 716 mac_init_ops(&ibd_dev_ops, "ibd"); 717 status = mod_install(&ibd_modlinkage); 718 if (status != 0) { 719 DPRINT(10, "_init:failed in mod_install()"); 720 ddi_soft_state_fini(&ibd_list); 721 mac_fini_ops(&ibd_dev_ops); 722 return (status); 723 } 724 725 #ifdef IBD_LOGGING 726 ibd_log_init(); 727 #endif 728 return (0); 729 } 730 731 int 732 _info(struct modinfo *modinfop) 733 { 734 return (mod_info(&ibd_modlinkage, modinfop)); 735 } 736 737 int 738 _fini() 739 { 740 int status; 741 742 status = mod_remove(&ibd_modlinkage); 743 if (status != 0) 744 return (status); 745 746 mac_fini_ops(&ibd_dev_ops); 747 ddi_soft_state_fini(&ibd_list); 748 #ifdef IBD_LOGGING 749 ibd_log_fini(); 750 #endif 751 return (0); 752 } 753 754 /* 755 * Convert the GID part of the mac address from network byte order 756 * to host order. 757 */ 758 static void 759 ibd_n2h_gid(ipoib_mac_t *mac, ib_gid_t *dgid) 760 { 761 ib_sn_prefix_t nbopref; 762 ib_guid_t nboguid; 763 764 bcopy(mac->ipoib_gidpref, &nbopref, sizeof (ib_sn_prefix_t)); 765 bcopy(mac->ipoib_gidsuff, &nboguid, sizeof (ib_guid_t)); 766 dgid->gid_prefix = b2h64(nbopref); 767 dgid->gid_guid = b2h64(nboguid); 768 } 769 770 /* 771 * Create the IPoIB address in network byte order from host order inputs. 772 */ 773 static void 774 ibd_h2n_mac(ipoib_mac_t *mac, ib_qpn_t qpn, ib_sn_prefix_t prefix, 775 ib_guid_t guid) 776 { 777 ib_sn_prefix_t nbopref; 778 ib_guid_t nboguid; 779 780 mac->ipoib_qpn = htonl(qpn); 781 nbopref = h2b64(prefix); 782 nboguid = h2b64(guid); 783 bcopy(&nbopref, mac->ipoib_gidpref, sizeof (ib_sn_prefix_t)); 784 bcopy(&nboguid, mac->ipoib_gidsuff, sizeof (ib_guid_t)); 785 } 786 787 /* 788 * Send to the appropriate all-routers group when the IBA multicast group 789 * does not exist, based on whether the target group is v4 or v6. 790 */ 791 static boolean_t 792 ibd_get_allroutergroup(ibd_state_t *state, ipoib_mac_t *mcmac, 793 ipoib_mac_t *rmac) 794 { 795 boolean_t retval = B_TRUE; 796 uint32_t adjscope = state->id_scope << 16; 797 uint32_t topword; 798 799 /* 800 * Copy the first 4 bytes in without assuming any alignment of 801 * input mac address; this will have IPoIB signature, flags and 802 * scope bits. 803 */ 804 bcopy(mcmac->ipoib_gidpref, &topword, sizeof (uint32_t)); 805 topword = ntohl(topword); 806 807 /* 808 * Generate proper address for IPv4/v6, adding in the Pkey properly. 809 */ 810 if ((topword == (IB_MCGID_IPV4_PREFIX | adjscope)) || 811 (topword == (IB_MCGID_IPV6_PREFIX | adjscope))) 812 ibd_h2n_mac(rmac, IB_MC_QPN, (((uint64_t)topword << 32) | 813 ((uint32_t)(state->id_pkey << 16))), 814 (INADDR_ALLRTRS_GROUP - INADDR_UNSPEC_GROUP)); 815 else 816 /* 817 * Does not have proper bits in the mgid address. 818 */ 819 retval = B_FALSE; 820 821 return (retval); 822 } 823 824 /* 825 * Padding for nd6 Neighbor Solicitation and Advertisement needs to be at 826 * front of optional src/tgt link layer address. Right now Solaris inserts 827 * padding by default at the end. The routine which is doing is nce_xmit() 828 * in ip_ndp.c. It copies the nd_lla_addr after the nd_opt_hdr_t. So when 829 * the packet comes down from IP layer to the IBD driver, it is in the 830 * following format: [IPoIB_PTXHDR_T][INET6 packet][ICMP6][OPT_ND_HDR_T] 831 * This size is 2 bytes followed by [22 bytes of ipoib_machdr]. As a result 832 * machdr is not 4 byte aligned and had 2 bytes of padding at the end. 833 * 834 * The send routine at IBD driver changes this packet as follows: 835 * [IPoIB_HDR_T][INET6 packet][ICMP6][OPT_ND_HDR_T + 2 bytes of padding] 836 * followed by [22 bytes of ipoib_machdr] resulting in machdr 4 byte 837 * aligned. 838 * 839 * At the receiving side again ibd_process_rx takes the above packet and 840 * removes the two bytes of front padding and inserts it at the end. This 841 * is since the IP layer does not understand padding at the front. 842 */ 843 #define IBD_PAD_NSNA(ip6h, len, type) { \ 844 uchar_t *nd_lla_ptr; \ 845 icmp6_t *icmp6; \ 846 nd_opt_hdr_t *opt; \ 847 int i; \ 848 \ 849 icmp6 = (icmp6_t *)&ip6h[1]; \ 850 len -= sizeof (nd_neighbor_advert_t); \ 851 if (((icmp6->icmp6_type == ND_NEIGHBOR_SOLICIT) || \ 852 (icmp6->icmp6_type == ND_NEIGHBOR_ADVERT)) && \ 853 (len != 0)) { \ 854 opt = (nd_opt_hdr_t *)((uint8_t *)ip6h \ 855 + IPV6_HDR_LEN + sizeof (nd_neighbor_advert_t)); \ 856 ASSERT(opt != NULL); \ 857 nd_lla_ptr = (uchar_t *)&opt[1]; \ 858 if (type == IBD_SEND) { \ 859 for (i = IPOIB_ADDRL; i > 0; i--) \ 860 *(nd_lla_ptr + i + 1) = \ 861 *(nd_lla_ptr + i - 1); \ 862 } else { \ 863 for (i = 0; i < IPOIB_ADDRL; i++) \ 864 *(nd_lla_ptr + i) = \ 865 *(nd_lla_ptr + i + 2); \ 866 } \ 867 *(nd_lla_ptr + i) = 0; \ 868 *(nd_lla_ptr + i + 1) = 0; \ 869 } \ 870 } 871 872 /* 873 * Address handle entries maintained by the driver are kept in the 874 * free and active lists. Each entry starts out in the free list; 875 * it migrates to the active list when primed using ibt_get_paths() 876 * and ibt_modify_ud_dest() for transmission to a specific destination. 877 * In the active list, the entry has a reference count indicating the 878 * number of ongoing/uncompleted transmits that reference it. The 879 * entry is left in the active list even after the reference count 880 * goes to 0, since successive transmits can find it there and do 881 * not need to set up another entry (ie the path information is 882 * cached using the active list). Entries on the active list are 883 * also hashed using the destination link address as a key for faster 884 * lookups during transmits. 885 * 886 * For any destination address (unicast or multicast, whatever the 887 * join states), there will be at most one entry in the active list. 888 * Entries with a 0 reference count on the active list can be reused 889 * for a transmit to a new destination, if the free list is empty. 890 * 891 * The AH free list insertion/deletion is protected with the id_ac_mutex, 892 * since the async thread and Tx callback handlers insert/delete. The 893 * active list does not need a lock (all operations are done by the 894 * async thread) but updates to the reference count are atomically 895 * done (increments done by Tx path, decrements by the Tx callback handler). 896 */ 897 #define IBD_ACACHE_INSERT_FREE(state, ce) \ 898 list_insert_head(&state->id_ah_free, ce) 899 #define IBD_ACACHE_GET_FREE(state) \ 900 list_get_head(&state->id_ah_free) 901 #define IBD_ACACHE_INSERT_ACTIVE(state, ce) { \ 902 int _ret_; \ 903 list_insert_head(&state->id_ah_active, ce); \ 904 _ret_ = mod_hash_insert(state->id_ah_active_hash, \ 905 (mod_hash_key_t)&ce->ac_mac, (mod_hash_val_t)ce); \ 906 ASSERT(_ret_ == 0); \ 907 } 908 #define IBD_ACACHE_PULLOUT_ACTIVE(state, ce) { \ 909 list_remove(&state->id_ah_active, ce); \ 910 (void) mod_hash_remove(state->id_ah_active_hash, \ 911 (mod_hash_key_t)&ce->ac_mac, (mod_hash_val_t)ce); \ 912 } 913 #define IBD_ACACHE_GET_ACTIVE(state) \ 914 list_get_head(&state->id_ah_active) 915 916 /* 917 * Membership states for different mcg's are tracked by two lists: 918 * the "non" list is used for promiscuous mode, when all mcg traffic 919 * needs to be inspected. This type of membership is never used for 920 * transmission, so there can not be an AH in the active list 921 * corresponding to a member in this list. This list does not need 922 * any protection, since all operations are performed by the async 923 * thread. 924 * 925 * "Full" and "SendOnly" membership is tracked using a single list, 926 * the "full" list. This is because this single list can then be 927 * searched during transmit to a multicast group (if an AH for the 928 * mcg is not found in the active list), since at least one type 929 * of membership must be present before initiating the transmit. 930 * This list is also emptied during driver detach, since sendonly 931 * membership acquired during transmit is dropped at detach time 932 * alongwith ipv4 broadcast full membership. Insert/deletes to 933 * this list are done only by the async thread, but it is also 934 * searched in program context (see multicast disable case), thus 935 * the id_mc_mutex protects the list. The driver detach path also 936 * deconstructs the "full" list, but it ensures that the async 937 * thread will not be accessing the list (by blocking out mcg 938 * trap handling and making sure no more Tx reaping will happen). 939 * 940 * Currently, an IBA attach is done in the SendOnly case too, 941 * although this is not required. 942 */ 943 #define IBD_MCACHE_INSERT_FULL(state, mce) \ 944 list_insert_head(&state->id_mc_full, mce) 945 #define IBD_MCACHE_INSERT_NON(state, mce) \ 946 list_insert_head(&state->id_mc_non, mce) 947 #define IBD_MCACHE_FIND_FULL(state, mgid) \ 948 ibd_mcache_find(mgid, &state->id_mc_full) 949 #define IBD_MCACHE_FIND_NON(state, mgid) \ 950 ibd_mcache_find(mgid, &state->id_mc_non) 951 #define IBD_MCACHE_PULLOUT_FULL(state, mce) \ 952 list_remove(&state->id_mc_full, mce) 953 #define IBD_MCACHE_PULLOUT_NON(state, mce) \ 954 list_remove(&state->id_mc_non, mce) 955 956 /* 957 * AH and MCE active list manipulation: 958 * 959 * Multicast disable requests and MCG delete traps are two cases 960 * where the active AH entry for the mcg (if any unreferenced one exists) 961 * will be moved to the free list (to force the next Tx to the mcg to 962 * join the MCG in SendOnly mode). Port up handling will also move AHs 963 * from active to free list. 964 * 965 * In the case when some transmits are still pending on an entry 966 * for an mcg, but a multicast disable has already been issued on the 967 * mcg, there are some options to consider to preserve the join state 968 * to ensure the emitted packet is properly routed on the IBA fabric. 969 * For the AH, we can 970 * 1. take out of active list at multicast disable time. 971 * 2. take out of active list only when last pending Tx completes. 972 * For the MCE, we can 973 * 3. take out of active list at multicast disable time. 974 * 4. take out of active list only when last pending Tx completes. 975 * 5. move from active list to stale list at multicast disable time. 976 * We choose to use 2,4. We use option 4 so that if a multicast enable 977 * is tried before the pending Tx completes, the enable code finds the 978 * mce in the active list and just has to make sure it will not be reaped 979 * (ie the mcg leave done) when the pending Tx does complete. Alternatively, 980 * a stale list (#5) that would be checked in the enable code would need 981 * to be implemented. Option 2 is used, because otherwise, a Tx attempt 982 * after the multicast disable would try to put an AH in the active list, 983 * and associate the mce it finds in the active list to this new AH, 984 * whereas the mce is already associated with the previous AH (taken off 985 * the active list), and will be removed once the pending Tx's complete 986 * (unless a reference count on mce's is implemented). One implication of 987 * using 2,4 is that new Tx's posted before the pending Tx's complete will 988 * grab new references on the AH, further delaying the leave. 989 * 990 * In the case of mcg delete (or create) trap when the port is sendonly 991 * joined, the AH and MCE handling is different: the AH and MCE has to be 992 * immediately taken off the active lists (forcing a join and path lookup 993 * at the next Tx is the only guaranteed means of ensuring a proper Tx 994 * to an mcg as it is repeatedly created and deleted and goes thru 995 * reincarnations). 996 * 997 * When a port is already sendonly joined, and a multicast enable is 998 * attempted, the same mce structure is promoted; this ensures only a 999 * single mce on the active list tracks the most powerful join state. 1000 * 1001 * In the case of port up event handling, the MCE for sendonly membership 1002 * is freed up, and the ACE is put into the free list as soon as possible 1003 * (depending on whether posted Tx's have completed). For fullmembership 1004 * MCE's though, the ACE is similarly handled; but the MCE is kept around 1005 * (a re-JOIN is attempted) only if the DLPI leave has not already been 1006 * done; else the mce is deconstructed (mc_fullreap case). 1007 * 1008 * MCG creation and deletion trap handling: 1009 * 1010 * These traps are unreliable (meaning sometimes the trap might never 1011 * be delivered to the subscribed nodes) and may arrive out-of-order 1012 * since they use UD transport. An alternative to relying on these 1013 * unreliable traps is to poll for mcg presence every so often, but 1014 * instead of doing that, we try to be as conservative as possible 1015 * while handling the traps, and hope that the traps do arrive at 1016 * the subscribed nodes soon. Note that if a node is fullmember 1017 * joined to an mcg, it can not possibly receive a mcg create/delete 1018 * trap for that mcg (by fullmember definition); if it does, it is 1019 * an old trap from a previous incarnation of the mcg. 1020 * 1021 * Whenever a trap is received, the driver cleans up its sendonly 1022 * membership to the group; we choose to do a sendonly leave even 1023 * on a creation trap to handle the case of a prior deletion of the mcg 1024 * having gone unnoticed. Consider an example scenario: 1025 * T1: MCG M is deleted, and fires off deletion trap D1. 1026 * T2: MCG M is recreated, fires off creation trap C1, which is lost. 1027 * T3: Node N tries to transmit to M, joining in sendonly mode. 1028 * T4: MCG M is deleted, and fires off deletion trap D2. 1029 * T5: N receives a deletion trap, but can not distinguish D1 from D2. 1030 * If the trap is D2, then a LEAVE is not required, since the mcg 1031 * is already deleted; but if it is D1, a LEAVE is required. A safe 1032 * approach is to always LEAVE, but the SM may be confused if it 1033 * receives a LEAVE without a prior JOIN. 1034 * 1035 * Management of the non-membership to an mcg is similar to the above, 1036 * except that if the interface is in promiscuous mode, it is required 1037 * to attempt to re-join the mcg after receiving a trap. Unfortunately, 1038 * if the re-join attempt fails (in which case a warning message needs 1039 * to be printed), it is not clear whether it failed due to the mcg not 1040 * existing, or some fabric/hca issues, due to the delayed nature of 1041 * trap delivery. Querying the SA to establish presence/absence of the 1042 * mcg is also racy at best. Thus, the driver just prints a warning 1043 * message when it can not rejoin after receiving a create trap, although 1044 * this might be (on rare occassions) a mis-warning if the create trap is 1045 * received after the mcg was deleted. 1046 */ 1047 1048 /* 1049 * Implementation of atomic "recycle" bits and reference count 1050 * on address handles. This utilizes the fact that max reference 1051 * count on any handle is limited by number of send wqes, thus 1052 * high bits in the ac_ref field can be used as the recycle bits, 1053 * and only the low bits hold the number of pending Tx requests. 1054 * This atomic AH reference counting allows the Tx completion 1055 * handler not to acquire the id_ac_mutex to process every completion, 1056 * thus reducing lock contention problems between completion and 1057 * the Tx path. 1058 */ 1059 #define CYCLEVAL 0x80000 1060 #define CLEAR_REFCYCLE(ace) (ace)->ac_ref = 0 1061 #define CYCLE_SET(ace) (((ace)->ac_ref & CYCLEVAL) == CYCLEVAL) 1062 #define GET_REF(ace) ((ace)->ac_ref) 1063 #define GET_REF_CYCLE(ace) ( \ 1064 /* \ 1065 * Make sure "cycle" bit is set. \ 1066 */ \ 1067 ASSERT(CYCLE_SET(ace)), \ 1068 ((ace)->ac_ref & ~(CYCLEVAL)) \ 1069 ) 1070 #define INC_REF(ace, num) { \ 1071 atomic_add_32(&(ace)->ac_ref, num); \ 1072 } 1073 #define SET_CYCLE_IF_REF(ace) ( \ 1074 CYCLE_SET(ace) ? B_TRUE : \ 1075 atomic_add_32_nv(&ace->ac_ref, CYCLEVAL) == \ 1076 CYCLEVAL ? \ 1077 /* \ 1078 * Clear the "cycle" bit we just set; \ 1079 * ref count known to be 0 from above. \ 1080 */ \ 1081 CLEAR_REFCYCLE(ace), B_FALSE : \ 1082 /* \ 1083 * We set "cycle" bit; let caller know. \ 1084 */ \ 1085 B_TRUE \ 1086 ) 1087 #define DEC_REF_DO_CYCLE(ace) ( \ 1088 atomic_add_32_nv(&ace->ac_ref, -1) == \ 1089 CYCLEVAL ? \ 1090 /* \ 1091 * Ref count known to be 0 from above. \ 1092 */ \ 1093 B_TRUE : \ 1094 B_FALSE \ 1095 ) 1096 1097 static void * 1098 list_get_head(list_t *list) 1099 { 1100 list_node_t *lhead = list_head(list); 1101 1102 if (lhead != NULL) 1103 list_remove(list, lhead); 1104 return (lhead); 1105 } 1106 1107 /* 1108 * This is always guaranteed to be able to queue the work. 1109 */ 1110 static void 1111 ibd_queue_work_slot(ibd_state_t *state, ibd_req_t *ptr, int op) 1112 { 1113 /* Initialize request */ 1114 DPRINT(1, "ibd_queue_work_slot : op: %d \n", op); 1115 ptr->rq_op = op; 1116 1117 /* 1118 * Queue provided slot onto request pool. 1119 */ 1120 mutex_enter(&state->id_acache_req_lock); 1121 list_insert_tail(&state->id_req_list, ptr); 1122 1123 /* Go, fetch, async thread */ 1124 cv_signal(&state->id_acache_req_cv); 1125 mutex_exit(&state->id_acache_req_lock); 1126 } 1127 1128 /* 1129 * Main body of the per interface async thread. 1130 */ 1131 static void 1132 ibd_async_work(ibd_state_t *state) 1133 { 1134 ibd_req_t *ptr; 1135 callb_cpr_t cprinfo; 1136 1137 mutex_enter(&state->id_acache_req_lock); 1138 CALLB_CPR_INIT(&cprinfo, &state->id_acache_req_lock, 1139 callb_generic_cpr, "ibd_async_work"); 1140 1141 for (;;) { 1142 ptr = list_get_head(&state->id_req_list); 1143 if (ptr != NULL) { 1144 mutex_exit(&state->id_acache_req_lock); 1145 1146 /* 1147 * Once we have done the operation, there is no 1148 * guarantee the request slot is going to be valid, 1149 * it might be freed up (as in IBD_ASYNC_LEAVE, REAP, 1150 * TRAP). 1151 * 1152 * Perform the request. 1153 */ 1154 switch (ptr->rq_op) { 1155 case IBD_ASYNC_GETAH: 1156 ibd_async_acache(state, &ptr->rq_mac); 1157 break; 1158 case IBD_ASYNC_JOIN: 1159 case IBD_ASYNC_LEAVE: 1160 ibd_async_multicast(state, 1161 ptr->rq_gid, ptr->rq_op); 1162 break; 1163 case IBD_ASYNC_PROMON: 1164 ibd_async_setprom(state); 1165 break; 1166 case IBD_ASYNC_PROMOFF: 1167 ibd_async_unsetprom(state); 1168 break; 1169 case IBD_ASYNC_REAP: 1170 ibd_async_reap_group(state, 1171 ptr->rq_ptr, ptr->rq_gid, 1172 IB_MC_JSTATE_FULL); 1173 /* 1174 * the req buf contains in mce 1175 * structure, so we do not need 1176 * to free it here. 1177 */ 1178 ptr = NULL; 1179 break; 1180 case IBD_ASYNC_TRAP: 1181 ibd_async_trap(state, ptr); 1182 break; 1183 case IBD_ASYNC_SCHED: 1184 ibd_async_txsched(state); 1185 break; 1186 case IBD_ASYNC_LINK: 1187 ibd_async_link(state, ptr); 1188 break; 1189 case IBD_ASYNC_EXIT: 1190 mutex_enter(&state->id_acache_req_lock); 1191 #ifndef __lock_lint 1192 CALLB_CPR_EXIT(&cprinfo); 1193 #else 1194 mutex_exit(&state->id_acache_req_lock); 1195 #endif 1196 return; 1197 } 1198 if (ptr != NULL) 1199 kmem_cache_free(state->id_req_kmc, ptr); 1200 1201 mutex_enter(&state->id_acache_req_lock); 1202 } else { 1203 #ifndef __lock_lint 1204 /* 1205 * Nothing to do: wait till new request arrives. 1206 */ 1207 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1208 cv_wait(&state->id_acache_req_cv, 1209 &state->id_acache_req_lock); 1210 CALLB_CPR_SAFE_END(&cprinfo, 1211 &state->id_acache_req_lock); 1212 #endif 1213 } 1214 } 1215 1216 /*NOTREACHED*/ 1217 _NOTE(NOT_REACHED) 1218 } 1219 1220 /* 1221 * Return when it is safe to queue requests to the async daemon; primarily 1222 * for subnet trap and async event handling. Disallow requests before the 1223 * daemon is created, and when interface deinitilization starts. 1224 */ 1225 static boolean_t 1226 ibd_async_safe(ibd_state_t *state) 1227 { 1228 mutex_enter(&state->id_trap_lock); 1229 if (state->id_trap_stop) { 1230 mutex_exit(&state->id_trap_lock); 1231 return (B_FALSE); 1232 } 1233 state->id_trap_inprog++; 1234 mutex_exit(&state->id_trap_lock); 1235 return (B_TRUE); 1236 } 1237 1238 /* 1239 * Wake up ibd_drv_fini() if the detach code is waiting for pending subnet 1240 * trap or event handling to complete to kill the async thread and deconstruct 1241 * the mcg/ace list. 1242 */ 1243 static void 1244 ibd_async_done(ibd_state_t *state) 1245 { 1246 mutex_enter(&state->id_trap_lock); 1247 if (--state->id_trap_inprog == 0) 1248 cv_signal(&state->id_trap_cv); 1249 mutex_exit(&state->id_trap_lock); 1250 } 1251 1252 /* 1253 * Hash functions: 1254 * ibd_hash_by_id: Returns the qpn as the hash entry into bucket. 1255 * ibd_hash_key_cmp: Compares two keys, return 0 on success or else 1. 1256 * These operate on mac addresses input into ibd_send, but there is no 1257 * guarantee on the alignment of the ipoib_mac_t structure. 1258 */ 1259 /*ARGSUSED*/ 1260 static uint_t 1261 ibd_hash_by_id(void *hash_data, mod_hash_key_t key) 1262 { 1263 ulong_t ptraddr = (ulong_t)key; 1264 uint_t hval; 1265 1266 /* 1267 * If the input address is 4 byte aligned, we can just dereference 1268 * it. This is most common, since IP will send in a 4 byte aligned 1269 * IP header, which implies the 24 byte IPoIB psuedo header will be 1270 * 4 byte aligned too. 1271 */ 1272 if ((ptraddr & 3) == 0) 1273 return ((uint_t)((ipoib_mac_t *)key)->ipoib_qpn); 1274 1275 bcopy(&(((ipoib_mac_t *)key)->ipoib_qpn), &hval, sizeof (uint_t)); 1276 return (hval); 1277 } 1278 1279 static int 1280 ibd_hash_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1281 { 1282 if (bcmp((char *)key1, (char *)key2, IPOIB_ADDRL) == 0) 1283 return (0); 1284 else 1285 return (1); 1286 } 1287 1288 /* 1289 * Initialize all the per interface caches and lists; AH cache, 1290 * MCG list etc. 1291 */ 1292 static int 1293 ibd_acache_init(ibd_state_t *state) 1294 { 1295 ibd_ace_t *ce; 1296 int i; 1297 1298 mutex_init(&state->id_acache_req_lock, NULL, MUTEX_DRIVER, NULL); 1299 cv_init(&state->id_acache_req_cv, NULL, CV_DEFAULT, NULL); 1300 1301 mutex_init(&state->id_ac_mutex, NULL, MUTEX_DRIVER, NULL); 1302 mutex_init(&state->id_mc_mutex, NULL, MUTEX_DRIVER, NULL); 1303 list_create(&state->id_ah_free, sizeof (ibd_ace_t), 1304 offsetof(ibd_ace_t, ac_list)); 1305 list_create(&state->id_ah_active, sizeof (ibd_ace_t), 1306 offsetof(ibd_ace_t, ac_list)); 1307 state->id_ah_active_hash = mod_hash_create_extended("IBD AH hash", 1308 IBD_HASH_SIZE, mod_hash_null_keydtor, mod_hash_null_valdtor, 1309 ibd_hash_by_id, NULL, ibd_hash_key_cmp, KM_SLEEP); 1310 list_create(&state->id_mc_full, sizeof (ibd_mce_t), 1311 offsetof(ibd_mce_t, mc_list)); 1312 list_create(&state->id_mc_non, sizeof (ibd_mce_t), 1313 offsetof(ibd_mce_t, mc_list)); 1314 list_create(&state->id_req_list, sizeof (ibd_req_t), 1315 offsetof(ibd_req_t, rq_list)); 1316 1317 state->id_ac_list = ce = (ibd_ace_t *)kmem_zalloc(sizeof (ibd_ace_t) * 1318 IBD_NUM_AH, KM_SLEEP); 1319 for (i = 0; i < IBD_NUM_AH; i++, ce++) { 1320 if (ibt_alloc_ud_dest(state->id_hca_hdl, IBT_UD_DEST_NO_FLAGS, 1321 state->id_pd_hdl, &ce->ac_dest) != IBT_SUCCESS) { 1322 ibd_acache_fini(state); 1323 return (DDI_FAILURE); 1324 } else { 1325 CLEAR_REFCYCLE(ce); 1326 ce->ac_mce = NULL; 1327 IBD_ACACHE_INSERT_FREE(state, ce); 1328 } 1329 } 1330 return (DDI_SUCCESS); 1331 } 1332 1333 static void 1334 ibd_acache_fini(ibd_state_t *state) 1335 { 1336 ibd_ace_t *ptr; 1337 1338 mutex_enter(&state->id_ac_mutex); 1339 1340 while ((ptr = IBD_ACACHE_GET_ACTIVE(state)) != NULL) { 1341 ASSERT(GET_REF(ptr) == 0); 1342 (void) ibt_free_ud_dest(ptr->ac_dest); 1343 } 1344 1345 while ((ptr = IBD_ACACHE_GET_FREE(state)) != NULL) { 1346 ASSERT(GET_REF(ptr) == 0); 1347 (void) ibt_free_ud_dest(ptr->ac_dest); 1348 } 1349 1350 list_destroy(&state->id_ah_free); 1351 list_destroy(&state->id_ah_active); 1352 list_destroy(&state->id_mc_full); 1353 list_destroy(&state->id_mc_non); 1354 list_destroy(&state->id_req_list); 1355 kmem_free(state->id_ac_list, sizeof (ibd_ace_t) * IBD_NUM_AH); 1356 mutex_exit(&state->id_ac_mutex); 1357 mutex_destroy(&state->id_ac_mutex); 1358 mutex_destroy(&state->id_mc_mutex); 1359 mutex_destroy(&state->id_acache_req_lock); 1360 cv_destroy(&state->id_acache_req_cv); 1361 } 1362 1363 /* 1364 * Search AH active hash list for a cached path to input destination. 1365 * If we are "just looking", hold == F. When we are in the Tx path, 1366 * we set hold == T to grab a reference on the AH so that it can not 1367 * be recycled to a new destination while the Tx request is posted. 1368 */ 1369 static ibd_ace_t * 1370 ibd_acache_find(ibd_state_t *state, ipoib_mac_t *mac, boolean_t hold, int num) 1371 { 1372 ibd_ace_t *ptr; 1373 1374 ASSERT(mutex_owned(&state->id_ac_mutex)); 1375 1376 /* 1377 * Do hash search. 1378 */ 1379 if (mod_hash_find(state->id_ah_active_hash, 1380 (mod_hash_key_t)mac, (mod_hash_val_t)&ptr) == 0) { 1381 if (hold) 1382 INC_REF(ptr, num); 1383 return (ptr); 1384 } 1385 return (NULL); 1386 } 1387 1388 /* 1389 * This is called by the tx side; if an initialized AH is found in 1390 * the active list, it is locked down and can be used; if no entry 1391 * is found, an async request is queued to do path resolution. 1392 */ 1393 static ibd_ace_t * 1394 ibd_acache_lookup(ibd_state_t *state, ipoib_mac_t *mac, int *err, int numwqe) 1395 { 1396 ibd_ace_t *ptr; 1397 ibd_req_t *req; 1398 1399 /* 1400 * Only attempt to print when we can; in the mdt pattr case, the 1401 * address is not aligned properly. 1402 */ 1403 if (((ulong_t)mac & 3) == 0) { 1404 DPRINT(4, 1405 "ibd_acache_lookup : lookup for %08X:%08X:%08X:%08X:%08X", 1406 htonl(mac->ipoib_qpn), htonl(mac->ipoib_gidpref[0]), 1407 htonl(mac->ipoib_gidpref[1]), htonl(mac->ipoib_gidsuff[0]), 1408 htonl(mac->ipoib_gidsuff[1])); 1409 } 1410 1411 mutex_enter(&state->id_ac_mutex); 1412 1413 if ((ptr = ibd_acache_find(state, mac, B_TRUE, numwqe)) != NULL) { 1414 mutex_exit(&state->id_ac_mutex); 1415 return (ptr); 1416 } 1417 1418 /* 1419 * Implementation of a single outstanding async request; if 1420 * the operation is not started yet, queue a request and move 1421 * to ongoing state. Remember in id_ah_addr for which address 1422 * we are queueing the request, in case we need to flag an error; 1423 * Any further requests, for the same or different address, until 1424 * the operation completes, is sent back to GLDv3 to be retried. 1425 * The async thread will update id_ah_op with an error indication 1426 * or will set it to indicate the next look up can start; either 1427 * way, it will mac_tx_update() so that all blocked requests come 1428 * back here. 1429 */ 1430 *err = EAGAIN; 1431 if (state->id_ah_op == IBD_OP_NOTSTARTED) { 1432 req = kmem_cache_alloc(state->id_req_kmc, KM_NOSLEEP); 1433 if (req != NULL) { 1434 /* 1435 * We did not even find the entry; queue a request 1436 * for it. 1437 */ 1438 bcopy(mac, &(req->rq_mac), IPOIB_ADDRL); 1439 ibd_queue_work_slot(state, req, IBD_ASYNC_GETAH); 1440 state->id_ah_op = IBD_OP_ONGOING; 1441 bcopy(mac, &state->id_ah_addr, IPOIB_ADDRL); 1442 } 1443 } else if ((state->id_ah_op != IBD_OP_ONGOING) && 1444 (bcmp(&state->id_ah_addr, mac, IPOIB_ADDRL) == 0)) { 1445 /* 1446 * Check the status of the pathrecord lookup request 1447 * we had queued before. 1448 */ 1449 if (state->id_ah_op == IBD_OP_ERRORED) { 1450 *err = EFAULT; 1451 state->id_ah_error++; 1452 } else { 1453 /* 1454 * IBD_OP_ROUTERED case: We need to send to the 1455 * all-router MCG. If we can find the AH for 1456 * the mcg, the Tx will be attempted. If we 1457 * do not find the AH, we return NORESOURCES 1458 * to retry. 1459 */ 1460 ipoib_mac_t routermac; 1461 1462 (void) ibd_get_allroutergroup(state, mac, &routermac); 1463 ptr = ibd_acache_find(state, &routermac, B_TRUE, 1464 numwqe); 1465 } 1466 state->id_ah_op = IBD_OP_NOTSTARTED; 1467 } else if ((state->id_ah_op != IBD_OP_ONGOING) && 1468 (bcmp(&state->id_ah_addr, mac, IPOIB_ADDRL) != 0)) { 1469 /* 1470 * This case can happen when we get a higher band 1471 * packet. The easiest way is to reset the state machine 1472 * to accommodate the higher priority packet. 1473 */ 1474 state->id_ah_op = IBD_OP_NOTSTARTED; 1475 } 1476 mutex_exit(&state->id_ac_mutex); 1477 1478 return (ptr); 1479 } 1480 1481 /* 1482 * Grab a not-currently-in-use AH/PathRecord from the active 1483 * list to recycle to a new destination. Only the async thread 1484 * executes this code. 1485 */ 1486 static ibd_ace_t * 1487 ibd_acache_get_unref(ibd_state_t *state) 1488 { 1489 ibd_ace_t *ptr = list_head(&state->id_ah_active); 1490 1491 ASSERT(mutex_owned(&state->id_ac_mutex)); 1492 1493 /* 1494 * Do plain linear search. 1495 */ 1496 while (ptr != NULL) { 1497 /* 1498 * Note that it is possible that the "cycle" bit 1499 * is set on the AH w/o any reference count. The 1500 * mcg must have been deleted, and the tx cleanup 1501 * just decremented the reference count to 0, but 1502 * hasn't gotten around to grabbing the id_ac_mutex 1503 * to move the AH into the free list. 1504 */ 1505 if (GET_REF(ptr) == 0) { 1506 IBD_ACACHE_PULLOUT_ACTIVE(state, ptr); 1507 break; 1508 } 1509 ptr = list_next(&state->id_ah_active, ptr); 1510 } 1511 return (ptr); 1512 } 1513 1514 /* 1515 * Invoked to clean up AH from active list in case of multicast 1516 * disable and to handle sendonly memberships during mcg traps. 1517 * And for port up processing for multicast and unicast AHs. 1518 * Normally, the AH is taken off the active list, and put into 1519 * the free list to be recycled for a new destination. In case 1520 * Tx requests on the AH have not completed yet, the AH is marked 1521 * for reaping (which will put the AH on the free list) once the Tx's 1522 * complete; in this case, depending on the "force" input, we take 1523 * out the AH from the active list right now, or leave it also for 1524 * the reap operation. Returns TRUE if the AH is taken off the active 1525 * list (and either put into the free list right now, or arranged for 1526 * later), FALSE otherwise. 1527 */ 1528 static boolean_t 1529 ibd_acache_recycle(ibd_state_t *state, ipoib_mac_t *acmac, boolean_t force) 1530 { 1531 ibd_ace_t *acactive; 1532 boolean_t ret = B_TRUE; 1533 1534 ASSERT(mutex_owned(&state->id_ac_mutex)); 1535 1536 if ((acactive = ibd_acache_find(state, acmac, B_FALSE, 0)) != NULL) { 1537 1538 /* 1539 * Note that the AH might already have the cycle bit set 1540 * on it; this might happen if sequences of multicast 1541 * enables and disables are coming so fast, that posted 1542 * Tx's to the mcg have not completed yet, and the cycle 1543 * bit is set successively by each multicast disable. 1544 */ 1545 if (SET_CYCLE_IF_REF(acactive)) { 1546 if (!force) { 1547 /* 1548 * The ace is kept on the active list, further 1549 * Tx's can still grab a reference on it; the 1550 * ace is reaped when all pending Tx's 1551 * referencing the AH complete. 1552 */ 1553 ret = B_FALSE; 1554 } else { 1555 /* 1556 * In the mcg trap case, we always pull the 1557 * AH from the active list. And also the port 1558 * up multi/unicast case. 1559 */ 1560 IBD_ACACHE_PULLOUT_ACTIVE(state, acactive); 1561 acactive->ac_mce = NULL; 1562 } 1563 } else { 1564 /* 1565 * Determined the ref count is 0, thus reclaim 1566 * immediately after pulling out the ace from 1567 * the active list. 1568 */ 1569 IBD_ACACHE_PULLOUT_ACTIVE(state, acactive); 1570 acactive->ac_mce = NULL; 1571 IBD_ACACHE_INSERT_FREE(state, acactive); 1572 } 1573 1574 } 1575 return (ret); 1576 } 1577 1578 /* 1579 * Helper function for async path record lookup. If we are trying to 1580 * Tx to a MCG, check our membership, possibly trying to join the 1581 * group if required. If that fails, try to send the packet to the 1582 * all router group (indicated by the redirect output), pointing 1583 * the input mac address to the router mcg address. 1584 */ 1585 static ibd_mce_t * 1586 ibd_async_mcache(ibd_state_t *state, ipoib_mac_t *mac, boolean_t *redirect) 1587 { 1588 ib_gid_t mgid; 1589 ibd_mce_t *mce; 1590 ipoib_mac_t routermac; 1591 1592 *redirect = B_FALSE; 1593 ibd_n2h_gid(mac, &mgid); 1594 1595 /* 1596 * Check the FullMember+SendOnlyNonMember list. 1597 * Since we are the only one who manipulates the 1598 * id_mc_full list, no locks are needed. 1599 */ 1600 mce = IBD_MCACHE_FIND_FULL(state, mgid); 1601 if (mce != NULL) { 1602 DPRINT(4, "ibd_async_mcache : already joined to group"); 1603 return (mce); 1604 } 1605 1606 /* 1607 * Not found; try to join(SendOnlyNonMember) and attach. 1608 */ 1609 DPRINT(4, "ibd_async_mcache : not joined to group"); 1610 if ((mce = ibd_join_group(state, mgid, IB_MC_JSTATE_SEND_ONLY_NON)) != 1611 NULL) { 1612 DPRINT(4, "ibd_async_mcache : nonmem joined to group"); 1613 return (mce); 1614 } 1615 1616 /* 1617 * MCGroup not present; try to join the all-router group. If 1618 * any of the following steps succeed, we will be redirecting 1619 * to the all router group. 1620 */ 1621 DPRINT(4, "ibd_async_mcache : nonmem join failed"); 1622 if (!ibd_get_allroutergroup(state, mac, &routermac)) 1623 return (NULL); 1624 *redirect = B_TRUE; 1625 ibd_n2h_gid(&routermac, &mgid); 1626 bcopy(&routermac, mac, IPOIB_ADDRL); 1627 DPRINT(4, "ibd_async_mcache : router mgid : %016llx:%016llx\n", 1628 mgid.gid_prefix, mgid.gid_guid); 1629 1630 /* 1631 * Are we already joined to the router group? 1632 */ 1633 if ((mce = IBD_MCACHE_FIND_FULL(state, mgid)) != NULL) { 1634 DPRINT(4, "ibd_async_mcache : using already joined router" 1635 "group\n"); 1636 return (mce); 1637 } 1638 1639 /* 1640 * Can we join(SendOnlyNonMember) the router group? 1641 */ 1642 DPRINT(4, "ibd_async_mcache : attempting join to router grp"); 1643 if ((mce = ibd_join_group(state, mgid, IB_MC_JSTATE_SEND_ONLY_NON)) != 1644 NULL) { 1645 DPRINT(4, "ibd_async_mcache : joined to router grp"); 1646 return (mce); 1647 } 1648 1649 return (NULL); 1650 } 1651 1652 /* 1653 * Async path record lookup code. 1654 */ 1655 static void 1656 ibd_async_acache(ibd_state_t *state, ipoib_mac_t *mac) 1657 { 1658 ibd_ace_t *ce; 1659 ibd_mce_t *mce = NULL; 1660 ibt_path_attr_t path_attr; 1661 ibt_path_info_t path_info; 1662 ib_gid_t destgid; 1663 int ret = IBD_OP_NOTSTARTED; 1664 1665 DPRINT(4, "ibd_async_acache : %08X:%08X:%08X:%08X:%08X", 1666 htonl(mac->ipoib_qpn), htonl(mac->ipoib_gidpref[0]), 1667 htonl(mac->ipoib_gidpref[1]), htonl(mac->ipoib_gidsuff[0]), 1668 htonl(mac->ipoib_gidsuff[1])); 1669 1670 /* 1671 * Check whether we are trying to transmit to a MCG. 1672 * In that case, we need to make sure we are a member of 1673 * the MCG. 1674 */ 1675 if (mac->ipoib_qpn == htonl(IB_MC_QPN)) { 1676 boolean_t redirected; 1677 1678 /* 1679 * If we can not find or join the group or even 1680 * redirect, error out. 1681 */ 1682 if ((mce = ibd_async_mcache(state, mac, &redirected)) == 1683 NULL) { 1684 state->id_ah_op = IBD_OP_ERRORED; 1685 return; 1686 } 1687 1688 /* 1689 * If we got redirected, we need to determine whether 1690 * the AH for the new mcg is in the cache already, and 1691 * not pull it in then; otherwise proceed to get the 1692 * path for the new mcg. There is no guarantee that 1693 * if the AH is currently in the cache, it will still be 1694 * there when we look in ibd_acache_lookup(), but that's 1695 * okay, we will come back here. 1696 */ 1697 if (redirected) { 1698 ret = IBD_OP_ROUTERED; 1699 DPRINT(4, "ibd_async_acache : redirected to " 1700 "%08X:%08X:%08X:%08X:%08X", 1701 htonl(mac->ipoib_qpn), htonl(mac->ipoib_gidpref[0]), 1702 htonl(mac->ipoib_gidpref[1]), 1703 htonl(mac->ipoib_gidsuff[0]), 1704 htonl(mac->ipoib_gidsuff[1])); 1705 1706 mutex_enter(&state->id_ac_mutex); 1707 if (ibd_acache_find(state, mac, B_FALSE, 0) != NULL) { 1708 state->id_ah_op = IBD_OP_ROUTERED; 1709 mutex_exit(&state->id_ac_mutex); 1710 DPRINT(4, "ibd_async_acache : router AH found"); 1711 return; 1712 } 1713 mutex_exit(&state->id_ac_mutex); 1714 } 1715 } 1716 1717 /* 1718 * Get an AH from the free list. 1719 */ 1720 mutex_enter(&state->id_ac_mutex); 1721 if ((ce = IBD_ACACHE_GET_FREE(state)) == NULL) { 1722 /* 1723 * No free ones; try to grab an unreferenced active 1724 * one. Maybe we need to make the active list LRU, 1725 * but that will create more work for Tx callbacks. 1726 * Is there a way of not having to pull out the 1727 * entry from the active list, but just indicate it 1728 * is being recycled? Yes, but that creates one more 1729 * check in the fast lookup path. 1730 */ 1731 if ((ce = ibd_acache_get_unref(state)) == NULL) { 1732 /* 1733 * Pretty serious shortage now. 1734 */ 1735 state->id_ah_op = IBD_OP_NOTSTARTED; 1736 mutex_exit(&state->id_ac_mutex); 1737 DPRINT(10, "ibd_async_acache : failed to find AH " 1738 "slot\n"); 1739 return; 1740 } 1741 /* 1742 * We could check whether ac_mce points to a SendOnly 1743 * member and drop that membership now. Or do it lazily 1744 * at detach time. 1745 */ 1746 ce->ac_mce = NULL; 1747 } 1748 mutex_exit(&state->id_ac_mutex); 1749 ASSERT(ce->ac_mce == NULL); 1750 1751 /* 1752 * Update the entry. 1753 */ 1754 bcopy((char *)mac, &ce->ac_mac, IPOIB_ADDRL); 1755 1756 bzero(&path_info, sizeof (path_info)); 1757 bzero(&path_attr, sizeof (ibt_path_attr_t)); 1758 path_attr.pa_sgid = state->id_sgid; 1759 path_attr.pa_num_dgids = 1; 1760 ibd_n2h_gid(&ce->ac_mac, &destgid); 1761 path_attr.pa_dgids = &destgid; 1762 path_attr.pa_sl = state->id_mcinfo->mc_adds_vect.av_srvl; 1763 if (ibt_get_paths(state->id_ibt_hdl, IBT_PATH_NO_FLAGS, 1764 &path_attr, 1, &path_info, NULL) != IBT_SUCCESS) { 1765 DPRINT(10, "ibd_async_acache : failed in ibt_get_paths"); 1766 goto error; 1767 } 1768 if (ibt_modify_ud_dest(ce->ac_dest, state->id_mcinfo->mc_qkey, 1769 ntohl(ce->ac_mac.ipoib_qpn), 1770 &path_info.pi_prim_cep_path.cep_adds_vect) != IBT_SUCCESS) { 1771 DPRINT(10, "ibd_async_acache : failed in ibt_modify_ud_dest"); 1772 goto error; 1773 } 1774 1775 /* 1776 * mce is set whenever an AH is being associated with a 1777 * MCG; this will come in handy when we leave the MCG. The 1778 * lock protects Tx fastpath from scanning the active list. 1779 */ 1780 if (mce != NULL) 1781 ce->ac_mce = mce; 1782 mutex_enter(&state->id_ac_mutex); 1783 IBD_ACACHE_INSERT_ACTIVE(state, ce); 1784 state->id_ah_op = ret; 1785 mutex_exit(&state->id_ac_mutex); 1786 return; 1787 error: 1788 /* 1789 * We might want to drop SendOnly membership here if we 1790 * joined above. The lock protects Tx callbacks inserting 1791 * into the free list. 1792 */ 1793 mutex_enter(&state->id_ac_mutex); 1794 state->id_ah_op = IBD_OP_ERRORED; 1795 IBD_ACACHE_INSERT_FREE(state, ce); 1796 mutex_exit(&state->id_ac_mutex); 1797 } 1798 1799 /* 1800 * While restoring port's presence on the subnet on a port up, it is possible 1801 * that the port goes down again. 1802 */ 1803 static void 1804 ibd_async_link(ibd_state_t *state, ibd_req_t *req) 1805 { 1806 ibd_link_op_t opcode = (ibd_link_op_t)req->rq_ptr; 1807 link_state_t lstate = (opcode == IBD_LINK_DOWN) ? LINK_STATE_DOWN : 1808 LINK_STATE_UP; 1809 ibd_mce_t *mce, *pmce; 1810 ibd_ace_t *ace, *pace; 1811 1812 DPRINT(10, "ibd_async_link(): %d", opcode); 1813 1814 /* 1815 * On a link up, revalidate the link speed/width. No point doing 1816 * this on a link down, since we will be unable to do SA operations, 1817 * defaulting to the lowest speed. Also notice that we update our 1818 * notion of speed before calling mac_link_update(), which will do 1819 * neccesary higher level notifications for speed changes. 1820 */ 1821 if ((opcode == IBD_LINK_UP_ABSENT) || (opcode == IBD_LINK_UP)) { 1822 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*state)) 1823 state->id_link_speed = ibd_get_portspeed(state); 1824 _NOTE(NOW_VISIBLE_TO_OTHER_THREADS(*state)) 1825 } 1826 1827 /* 1828 * Do all the work required to establish our presence on 1829 * the subnet. 1830 */ 1831 if (opcode == IBD_LINK_UP_ABSENT) { 1832 /* 1833 * If in promiscuous mode ... 1834 */ 1835 if (state->id_prom_op == IBD_OP_COMPLETED) { 1836 /* 1837 * Drop all nonmembership. 1838 */ 1839 ibd_async_unsetprom(state); 1840 1841 /* 1842 * Then, try to regain nonmembership to all mcg's. 1843 */ 1844 ibd_async_setprom(state); 1845 1846 } 1847 1848 /* 1849 * Drop all sendonly membership (which also gets rid of the 1850 * AHs); try to reacquire all full membership. 1851 */ 1852 mce = list_head(&state->id_mc_full); 1853 while ((pmce = mce) != NULL) { 1854 mce = list_next(&state->id_mc_full, mce); 1855 if (pmce->mc_jstate == IB_MC_JSTATE_SEND_ONLY_NON) 1856 ibd_leave_group(state, 1857 pmce->mc_info.mc_adds_vect.av_dgid, 1858 IB_MC_JSTATE_SEND_ONLY_NON); 1859 else 1860 ibd_reacquire_group(state, pmce); 1861 } 1862 1863 /* 1864 * Recycle all active AHs to free list (and if there are 1865 * pending posts, make sure they will go into the free list 1866 * once the Tx's complete). Grab the lock to prevent 1867 * concurrent Tx's as well as Tx cleanups. 1868 */ 1869 mutex_enter(&state->id_ac_mutex); 1870 ace = list_head(&state->id_ah_active); 1871 while ((pace = ace) != NULL) { 1872 boolean_t cycled; 1873 1874 ace = list_next(&state->id_ah_active, ace); 1875 mce = pace->ac_mce; 1876 cycled = ibd_acache_recycle(state, &pace->ac_mac, 1877 B_TRUE); 1878 /* 1879 * If this is for an mcg, it must be for a fullmember, 1880 * since we got rid of send-only members above when 1881 * processing the mce list. 1882 */ 1883 ASSERT(cycled && ((mce == NULL) || (mce->mc_jstate == 1884 IB_MC_JSTATE_FULL))); 1885 1886 /* 1887 * Check if the fullmember mce needs to be torn down, 1888 * ie whether the DLPI disable has already been done. 1889 * If so, do some of the work of tx_cleanup, namely 1890 * causing leave (which will fail), detach and 1891 * mce-freeing. tx_cleanup will put the AH into free 1892 * list. The reason to duplicate some of this 1893 * tx_cleanup work is because we want to delete the 1894 * AH right now instead of waiting for tx_cleanup, to 1895 * force subsequent Tx's to reacquire an AH. 1896 */ 1897 if ((mce != NULL) && (mce->mc_fullreap)) 1898 ibd_async_reap_group(state, mce, 1899 mce->mc_info.mc_adds_vect.av_dgid, 1900 mce->mc_jstate); 1901 } 1902 mutex_exit(&state->id_ac_mutex); 1903 } 1904 1905 /* 1906 * mac handle is guaranteed to exist since driver does ibt_close_hca() 1907 * (which stops further events from being delivered) before 1908 * mac_unregister(). At this point, it is guaranteed that mac_register 1909 * has already been done. 1910 */ 1911 mutex_enter(&state->id_link_mutex); 1912 state->id_link_state = lstate; 1913 mac_link_update(state->id_mh, lstate); 1914 mutex_exit(&state->id_link_mutex); 1915 1916 ibd_async_done(state); 1917 } 1918 1919 /* 1920 * When the link is notified up, we need to do a few things, based 1921 * on the port's current p_init_type_reply claiming a reinit has been 1922 * done or not. The reinit steps are: 1923 * 1. If in InitTypeReply, NoLoadReply == PreserveContentReply == 0, verify 1924 * the old Pkey and GID0 are correct. 1925 * 2. Register for mcg traps (already done by ibmf). 1926 * 3. If PreservePresenceReply indicates the SM has restored port's presence 1927 * in subnet, nothing more to do. Else go to next steps (on async daemon). 1928 * 4. Give up all sendonly memberships. 1929 * 5. Acquire all full memberships. 1930 * 6. In promiscuous mode, acquire all non memberships. 1931 * 7. Recycle all AHs to free list. 1932 */ 1933 static void 1934 ibd_link_mod(ibd_state_t *state, ibt_async_code_t code) 1935 { 1936 ibt_hca_portinfo_t *port_infop; 1937 ibt_status_t ibt_status; 1938 uint_t psize, port_infosz; 1939 ibd_link_op_t opcode; 1940 ibd_req_t *req; 1941 1942 /* 1943 * Do not send a request to the async daemon if it has not 1944 * yet been created or is being destroyed. If the async 1945 * daemon has not yet been created, we still need to track 1946 * last known state of the link. If this code races with the 1947 * detach path, then we are assured that the detach path has 1948 * not yet done the ibt_close_hca (which waits for all async 1949 * events to complete). If the code races with the attach path, 1950 * we need to validate the pkey/gid (in the link_up case) if 1951 * the initialization path has already set these up and created 1952 * IBTF resources based on the values. 1953 */ 1954 mutex_enter(&state->id_link_mutex); 1955 1956 /* 1957 * If the init code in ibd_drv_init hasn't yet set up the 1958 * pkey/gid, nothing to do; that code will set the link state. 1959 */ 1960 if (state->id_link_state == LINK_STATE_UNKNOWN) { 1961 mutex_exit(&state->id_link_mutex); 1962 return; 1963 } 1964 1965 if (code == IBT_EVENT_PORT_UP) { 1966 uint8_t itreply; 1967 boolean_t badup = B_FALSE; 1968 1969 ibt_status = ibt_query_hca_ports(state->id_hca_hdl, 1970 state->id_port, &port_infop, &psize, &port_infosz); 1971 if ((ibt_status != IBT_SUCCESS) || (psize != 1)) { 1972 mutex_exit(&state->id_link_mutex); 1973 DPRINT(10, "ibd_link_up : failed in" 1974 " ibt_query_port()\n"); 1975 return; 1976 } 1977 1978 /* 1979 * If the link already went down by the time the handler gets 1980 * here, give up; we can not even validate pkey/gid since those 1981 * are not valid. 1982 */ 1983 if (port_infop->p_linkstate != IBT_PORT_ACTIVE) 1984 badup = B_TRUE; 1985 1986 itreply = port_infop->p_init_type_reply; 1987 1988 /* 1989 * In InitTypeReply, check if NoLoadReply == 1990 * PreserveContentReply == 0, in which case, verify Pkey/GID0. 1991 */ 1992 if (((itreply & SM_INIT_TYPE_REPLY_NO_LOAD_REPLY) == 0) && 1993 ((itreply & SM_INIT_TYPE_PRESERVE_CONTENT_REPLY) == 0) && 1994 (!badup)) { 1995 /* 1996 * Check that the subnet part of GID0 has not changed. 1997 */ 1998 if (bcmp(port_infop->p_sgid_tbl, &state->id_sgid, 1999 sizeof (ib_gid_t)) != 0) 2000 badup = B_TRUE; 2001 2002 /* 2003 * Check that Pkey/index mapping is still valid. 2004 */ 2005 if ((port_infop->p_pkey_tbl_sz <= state->id_pkix) || 2006 (port_infop->p_pkey_tbl[state->id_pkix] != 2007 state->id_pkey)) 2008 badup = B_TRUE; 2009 } 2010 2011 /* 2012 * In InitTypeReply, if PreservePresenceReply indicates the SM 2013 * has ensured that the port's presence in mcg, traps etc is 2014 * intact, nothing more to do. 2015 */ 2016 opcode = IBD_LINK_UP_ABSENT; 2017 if ((itreply & SM_INIT_TYPE_PRESERVE_PRESENCE_REPLY) == 2018 SM_INIT_TYPE_PRESERVE_PRESENCE_REPLY) 2019 opcode = IBD_LINK_UP; 2020 2021 if (badup) 2022 code = IBT_ERROR_PORT_DOWN; 2023 ibt_free_portinfo(port_infop, port_infosz); 2024 } 2025 2026 if (!ibd_async_safe(state)) { 2027 state->id_link_state = ((code == IBT_EVENT_PORT_UP) ? 2028 LINK_STATE_UP : LINK_STATE_DOWN); 2029 mutex_exit(&state->id_link_mutex); 2030 return; 2031 } 2032 mutex_exit(&state->id_link_mutex); 2033 2034 if (code == IBT_ERROR_PORT_DOWN) 2035 opcode = IBD_LINK_DOWN; 2036 2037 req = kmem_cache_alloc(state->id_req_kmc, KM_SLEEP); 2038 req->rq_ptr = (void *)opcode; 2039 ibd_queue_work_slot(state, req, IBD_ASYNC_LINK); 2040 } 2041 2042 /* 2043 * For the port up/down events, IBTL guarantees there will not be concurrent 2044 * invocations of the handler. IBTL might coalesce link transition events, 2045 * and not invoke the handler for _each_ up/down transition, but it will 2046 * invoke the handler with last known state 2047 */ 2048 static void 2049 ibd_async_handler(void *clnt_private, ibt_hca_hdl_t hca_hdl, 2050 ibt_async_code_t code, ibt_async_event_t *event) 2051 { 2052 ibd_state_t *state = (ibd_state_t *)clnt_private; 2053 2054 switch (code) { 2055 case IBT_ERROR_CATASTROPHIC_CHAN: 2056 ibd_print_warn(state, "catastrophic channel error"); 2057 break; 2058 case IBT_ERROR_CQ: 2059 ibd_print_warn(state, "completion queue error"); 2060 break; 2061 case IBT_ERROR_PORT_DOWN: 2062 case IBT_EVENT_PORT_UP: 2063 /* 2064 * Events will be delivered to all instances that have 2065 * done ibt_open_hca() but not yet done ibt_close_hca(). 2066 * Only need to do work for our port; IBTF will deliver 2067 * events for other ports on the hca we have ibt_open_hca'ed 2068 * too. Note that ibd_drv_init() initializes id_port before 2069 * doing ibt_open_hca(). 2070 */ 2071 ASSERT(state->id_hca_hdl == hca_hdl); 2072 if (state->id_port != event->ev_port) 2073 break; 2074 2075 ibd_link_mod(state, code); 2076 break; 2077 2078 case IBT_HCA_ATTACH_EVENT: 2079 case IBT_HCA_DETACH_EVENT: 2080 /* 2081 * When a new card is plugged to the system, attach_event is 2082 * invoked. Additionally, a cfgadm needs to be run to make the 2083 * card known to the system, and an ifconfig needs to be run to 2084 * plumb up any ibd interfaces on the card. In the case of card 2085 * unplug, a cfgadm is run that will trigger any RCM scripts to 2086 * unplumb the ibd interfaces on the card; when the card is 2087 * actually unplugged, the detach_event is invoked; 2088 * additionally, if any ibd instances are still active on the 2089 * card (eg there were no associated RCM scripts), driver's 2090 * detach routine is invoked. 2091 */ 2092 break; 2093 default: 2094 break; 2095 } 2096 } 2097 2098 /* 2099 * Attach device to the IO framework. 2100 */ 2101 static int 2102 ibd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2103 { 2104 mac_register_t *macp; 2105 ibd_state_t *state; 2106 int instance; 2107 int err; 2108 2109 switch (cmd) { 2110 case DDI_ATTACH: 2111 break; 2112 case DDI_RESUME: 2113 /* This driver does not support resume */ 2114 default: 2115 return (DDI_FAILURE); 2116 } 2117 2118 /* 2119 * Allocate soft device data structure 2120 */ 2121 instance = ddi_get_instance(dip); 2122 if (ddi_soft_state_zalloc(ibd_list, instance) == DDI_FAILURE) 2123 return (DDI_FAILURE); 2124 state = ddi_get_soft_state(ibd_list, instance); 2125 2126 /* pre ibt_attach() soft state initialization */ 2127 if (ibd_state_init(state, dip) != DDI_SUCCESS) { 2128 DPRINT(10, "ibd_attach : failed in ibd_state_init()"); 2129 goto attach_fail_state_init; 2130 } 2131 2132 /* alloc rx soft intr */ 2133 if ((ibd_rx_softintr == 1) && 2134 ddi_add_softintr(dip, DDI_SOFTINT_LOW, &state->id_rx, 2135 NULL, NULL, ibd_intr, (caddr_t)state) != DDI_SUCCESS) { 2136 DPRINT(10, "ibd_attach : failed in ddi_add_softintr()"); 2137 goto attach_fail_ddi_add_rx_softintr; 2138 } 2139 2140 /* alloc tx soft intr */ 2141 if ((ibd_tx_softintr == 1) && 2142 ddi_add_softintr(dip, DDI_SOFTINT_LOW, &state->id_tx, 2143 NULL, NULL, ibd_tx_recycle, (caddr_t)state) != DDI_SUCCESS) { 2144 DPRINT(10, "ibd_attach : failed in ddi_add_softintr()"); 2145 goto attach_fail_ddi_add_tx_softintr; 2146 } 2147 2148 /* "attach" to IBTL */ 2149 if (ibt_attach(&ibd_clnt_modinfo, dip, state, 2150 &state->id_ibt_hdl) != IBT_SUCCESS) { 2151 DPRINT(10, "ibd_attach : failed in ibt_attach()"); 2152 goto attach_fail_ibt_attach; 2153 } 2154 2155 /* Finish initializing this driver */ 2156 if (ibd_drv_init(state) != DDI_SUCCESS) { 2157 DPRINT(10, "ibd_attach : failed in ibd_drv_init()\n"); 2158 goto attach_fail_drv_init; 2159 } 2160 2161 /* 2162 * Initialize pointers to device specific functions which will be 2163 * used by the generic layer. 2164 */ 2165 if ((macp = mac_alloc(MAC_VERSION)) == NULL) { 2166 DPRINT(10, "ibd_attach : failed in mac_alloc()"); 2167 goto attach_fail_drv_init; 2168 } 2169 2170 macp->m_type_ident = MAC_PLUGIN_IDENT_IB; 2171 macp->m_driver = state; 2172 macp->m_dip = state->id_dip; 2173 macp->m_src_addr = (uint8_t *)&state->id_macaddr; 2174 macp->m_callbacks = &ib_m_callbacks; 2175 macp->m_min_sdu = 0; 2176 macp->m_max_sdu = state->id_mtu - IPOIB_HDRSIZE; 2177 2178 /* 2179 * Register ourselves with the GLDv3 interface 2180 */ 2181 err = mac_register(macp, &state->id_mh); 2182 mac_free(macp); 2183 if (err != 0) { 2184 DPRINT(10, "ibd_attach : failed in mac_register()"); 2185 goto attach_fail_mac_register; 2186 } 2187 2188 /* 2189 * Setup the handler we will use for regular DLPI stuff. Its important 2190 * to setup the recv handler after registering with gldv3. 2191 */ 2192 ibt_set_cq_handler(state->id_rcq_hdl, ibd_rcq_handler, state); 2193 if (ibt_enable_cq_notify(state->id_rcq_hdl, IBT_NEXT_COMPLETION) != 2194 IBT_SUCCESS) { 2195 DPRINT(10, "ibd_attach : failed in ibt_enable_cq_notify()\n"); 2196 goto attach_fail_setup_handler; 2197 } 2198 2199 /* 2200 * Setup the subnet notices handler after we initialize the a/mcaches 2201 * and start the async thread, both of which are required for the 2202 * trap handler to function properly. Enable the trap handler to 2203 * queue requests to the async thread after the mac_register, because 2204 * the async daemon invokes mac_tx_update(), which must be done after 2205 * mac_register(). 2206 */ 2207 ibt_register_subnet_notices(state->id_ibt_hdl, 2208 ibd_snet_notices_handler, state); 2209 mutex_enter(&state->id_trap_lock); 2210 state->id_trap_stop = B_FALSE; 2211 mutex_exit(&state->id_trap_lock); 2212 2213 /* 2214 * Indicate link status to GLDv3 and higher layers. By default, 2215 * we assume we are in up state (which must have been true at 2216 * least at the time the broadcast mcg's were probed); if there 2217 * were any up/down transitions till the time we come here, the 2218 * async handler will have updated last known state, which we 2219 * use to tell GLDv3. The async handler will not send any 2220 * notifications to GLDv3 till we reach here in the initialization 2221 * sequence. 2222 */ 2223 mac_link_update(state->id_mh, state->id_link_state); 2224 2225 return (DDI_SUCCESS); 2226 2227 /* Attach failure points, cleanup */ 2228 attach_fail_setup_handler: 2229 (void) mac_unregister(state->id_mh); 2230 2231 attach_fail_mac_register: 2232 ibd_drv_fini(state); 2233 2234 attach_fail_drv_init: 2235 if (ibt_detach(state->id_ibt_hdl) != IBT_SUCCESS) 2236 ibd_print_warn(state, "failed to free IB resources"); 2237 2238 attach_fail_ibt_attach: 2239 if (ibd_tx_softintr == 1) 2240 ddi_remove_softintr(state->id_tx); 2241 2242 attach_fail_ddi_add_tx_softintr: 2243 if (ibd_rx_softintr == 1) 2244 ddi_remove_softintr(state->id_rx); 2245 2246 attach_fail_ddi_add_rx_softintr: 2247 ibd_state_fini(state); 2248 2249 attach_fail_state_init: 2250 ddi_soft_state_free(ibd_list, instance); 2251 2252 return (DDI_FAILURE); 2253 } 2254 2255 /* 2256 * Detach device from the IO framework. 2257 */ 2258 static int 2259 ibd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2260 { 2261 ibd_state_t *state; 2262 int status; 2263 int instance; 2264 2265 switch (cmd) { 2266 case DDI_DETACH: 2267 break; 2268 case DDI_SUSPEND: 2269 default: 2270 return (DDI_FAILURE); 2271 } 2272 2273 instance = ddi_get_instance(dip); 2274 state = ddi_get_soft_state(ibd_list, instance); 2275 2276 /* 2277 * First, stop receive interrupts; this stops the 2278 * driver from handing up buffers to higher layers. 2279 * Wait for receive buffers to be returned; give up 2280 * after 5 seconds. 2281 */ 2282 ibt_set_cq_handler(state->id_rcq_hdl, 0, 0); 2283 status = 50; 2284 while (state->id_rx_list.dl_bufs_outstanding > 0) { 2285 delay(drv_usectohz(100000)); 2286 if (--status == 0) { 2287 DPRINT(2, "ibd_detach : reclaiming failed"); 2288 goto failed; 2289 } 2290 } 2291 2292 if (mac_unregister(state->id_mh) != DDI_SUCCESS) { 2293 DPRINT(10, "ibd_detach : failed in mac_unregister()"); 2294 goto failed; 2295 } 2296 2297 if (ibd_rx_softintr == 1) 2298 ddi_remove_softintr(state->id_rx); 2299 2300 if (ibd_tx_softintr == 1) 2301 ddi_remove_softintr(state->id_tx); 2302 2303 ibd_drv_fini(state); 2304 2305 if (ibt_detach(state->id_ibt_hdl) != IBT_SUCCESS) 2306 ibd_print_warn(state, "failed to free all IB resources at " 2307 "driver detach time"); 2308 2309 ibd_state_fini(state); 2310 ddi_soft_state_free(ibd_list, instance); 2311 return (DDI_SUCCESS); 2312 2313 failed: 2314 /* 2315 * Reap all the Tx/Rx completions that were posted since we 2316 * turned off the notification. Turn on notifications. There 2317 * is a race in that we do not reap completions that come in 2318 * after the poll and before notifications get turned on. That 2319 * is okay, the next rx/tx packet will trigger a completion 2320 * that will reap any missed completions. 2321 */ 2322 ibd_poll_compq(state, state->id_rcq_hdl); 2323 ibt_set_cq_handler(state->id_rcq_hdl, ibd_rcq_handler, state); 2324 return (DDI_FAILURE); 2325 } 2326 2327 /* 2328 * Pre ibt_attach() driver initialization 2329 */ 2330 static int 2331 ibd_state_init(ibd_state_t *state, dev_info_t *dip) 2332 { 2333 char buf[64]; 2334 2335 mutex_init(&state->id_link_mutex, NULL, MUTEX_DRIVER, NULL); 2336 state->id_link_state = LINK_STATE_UNKNOWN; 2337 2338 mutex_init(&state->id_trap_lock, NULL, MUTEX_DRIVER, NULL); 2339 cv_init(&state->id_trap_cv, NULL, CV_DEFAULT, NULL); 2340 state->id_trap_stop = B_TRUE; 2341 state->id_trap_inprog = 0; 2342 2343 mutex_init(&state->id_cq_poll_lock, NULL, MUTEX_DRIVER, NULL); 2344 state->id_dip = dip; 2345 2346 mutex_init(&state->id_sched_lock, NULL, MUTEX_DRIVER, NULL); 2347 2348 state->id_tx_list.dl_head = NULL; 2349 state->id_tx_list.dl_tail = NULL; 2350 state->id_tx_list.dl_pending_sends = B_FALSE; 2351 state->id_tx_list.dl_cnt = 0; 2352 mutex_init(&state->id_tx_list.dl_mutex, NULL, MUTEX_DRIVER, NULL); 2353 mutex_init(&state->id_txpost_lock, NULL, MUTEX_DRIVER, NULL); 2354 state->id_tx_busy = 0; 2355 2356 state->id_rx_list.dl_head = NULL; 2357 state->id_rx_list.dl_tail = NULL; 2358 state->id_rx_list.dl_bufs_outstanding = 0; 2359 state->id_rx_list.dl_cnt = 0; 2360 mutex_init(&state->id_rx_list.dl_mutex, NULL, MUTEX_DRIVER, NULL); 2361 mutex_init(&state->id_rxpost_lock, NULL, MUTEX_DRIVER, NULL); 2362 2363 (void) sprintf(buf, "ibd_req%d", ddi_get_instance(dip)); 2364 state->id_req_kmc = kmem_cache_create(buf, sizeof (ibd_req_t), 2365 0, NULL, NULL, NULL, NULL, NULL, 0); 2366 2367 #ifdef IBD_LOGGING 2368 mutex_init(&ibd_lbuf_lock, NULL, MUTEX_DRIVER, NULL); 2369 #endif 2370 2371 return (DDI_SUCCESS); 2372 } 2373 2374 /* 2375 * Post ibt_detach() driver deconstruction 2376 */ 2377 static void 2378 ibd_state_fini(ibd_state_t *state) 2379 { 2380 kmem_cache_destroy(state->id_req_kmc); 2381 2382 mutex_destroy(&state->id_rxpost_lock); 2383 mutex_destroy(&state->id_rx_list.dl_mutex); 2384 2385 mutex_destroy(&state->id_txpost_lock); 2386 mutex_destroy(&state->id_tx_list.dl_mutex); 2387 2388 mutex_destroy(&state->id_sched_lock); 2389 mutex_destroy(&state->id_cq_poll_lock); 2390 2391 cv_destroy(&state->id_trap_cv); 2392 mutex_destroy(&state->id_trap_lock); 2393 mutex_destroy(&state->id_link_mutex); 2394 2395 #ifdef IBD_LOGGING 2396 mutex_destroy(&ibd_lbuf_lock); 2397 #endif 2398 } 2399 2400 /* 2401 * Fetch IBA parameters for the network device from IB nexus. 2402 */ 2403 static int 2404 ibd_get_portpkey(ibd_state_t *state, ib_guid_t *hca_guid) 2405 { 2406 /* 2407 * Get the IBA Pkey ... allow only fullmembers, per IPoIB spec. 2408 * Note that the default partition is also allowed. 2409 */ 2410 state->id_pkey = ddi_prop_get_int(DDI_DEV_T_ANY, state->id_dip, 2411 0, "port-pkey", IB_PKEY_INVALID_LIMITED); 2412 if (state->id_pkey <= IB_PKEY_INVALID_FULL) { 2413 DPRINT(10, "ibd_get_portpkey : ERROR: IBport device has wrong" 2414 "partition\n"); 2415 return (DDI_FAILURE); 2416 } 2417 2418 /* 2419 * ... the IBA port ... 2420 */ 2421 state->id_port = ddi_prop_get_int(DDI_DEV_T_ANY, state->id_dip, 2422 0, "port-number", 0); 2423 if (state->id_port == 0) { 2424 DPRINT(10, "ibd_get_portpkey : ERROR: invalid port number\n"); 2425 return (DDI_FAILURE); 2426 } 2427 2428 /* 2429 * ... and HCA GUID. 2430 */ 2431 *hca_guid = ddi_prop_get_int64(DDI_DEV_T_ANY, state->id_dip, 2432 0, "hca-guid", 0); 2433 if (*hca_guid == 0) { 2434 DPRINT(10, "ibd_get_portpkey : ERROR: IBport hca has wrong " 2435 "guid\n"); 2436 return (DDI_FAILURE); 2437 } 2438 2439 return (DDI_SUCCESS); 2440 } 2441 2442 /* 2443 * Fetch link speed from SA for snmp ifspeed reporting. 2444 */ 2445 static uint64_t 2446 ibd_get_portspeed(ibd_state_t *state) 2447 { 2448 int ret; 2449 ibt_path_info_t path; 2450 ibt_path_attr_t path_attr; 2451 uint8_t num_paths; 2452 uint64_t ifspeed; 2453 2454 /* 2455 * Due to serdes 8b10b encoding on the wire, 2.5 Gbps on wire 2456 * translates to 2 Gbps data rate. Thus, 1X single data rate is 2457 * 2000000000. Start with that as default. 2458 */ 2459 ifspeed = 2000000000; 2460 2461 bzero(&path_attr, sizeof (path_attr)); 2462 2463 /* 2464 * Get the port speed from Loopback path information. 2465 */ 2466 path_attr.pa_dgids = &state->id_sgid; 2467 path_attr.pa_num_dgids = 1; 2468 path_attr.pa_sgid = state->id_sgid; 2469 2470 if (ibt_get_paths(state->id_ibt_hdl, IBT_PATH_NO_FLAGS, 2471 &path_attr, 1, &path, &num_paths) != IBT_SUCCESS) 2472 goto earlydone; 2473 2474 if (num_paths < 1) 2475 goto earlydone; 2476 2477 /* 2478 * In case SA does not return an expected value, report the default 2479 * speed as 1X. 2480 */ 2481 ret = 1; 2482 switch (path.pi_prim_cep_path.cep_adds_vect.av_srate) { 2483 case IBT_SRATE_2: /* 1X SDR i.e 2.5 Gbps */ 2484 ret = 1; 2485 break; 2486 case IBT_SRATE_10: /* 4X SDR or 1X QDR i.e 10 Gbps */ 2487 ret = 4; 2488 break; 2489 case IBT_SRATE_30: /* 12X SDR i.e 30 Gbps */ 2490 ret = 12; 2491 break; 2492 case IBT_SRATE_5: /* 1X DDR i.e 5 Gbps */ 2493 ret = 2; 2494 break; 2495 case IBT_SRATE_20: /* 4X DDR or 8X SDR i.e 20 Gbps */ 2496 ret = 8; 2497 break; 2498 case IBT_SRATE_40: /* 8X DDR or 4X QDR i.e 40 Gbps */ 2499 ret = 16; 2500 break; 2501 case IBT_SRATE_60: /* 12X DDR i.e 60 Gbps */ 2502 ret = 24; 2503 break; 2504 case IBT_SRATE_80: /* 8X QDR i.e 80 Gbps */ 2505 ret = 32; 2506 break; 2507 case IBT_SRATE_120: /* 12X QDR i.e 120 Gbps */ 2508 ret = 48; 2509 break; 2510 } 2511 2512 ifspeed *= ret; 2513 2514 earlydone: 2515 return (ifspeed); 2516 } 2517 2518 /* 2519 * Search input mcg list (id_mc_full or id_mc_non) for an entry 2520 * representing the input mcg mgid. 2521 */ 2522 static ibd_mce_t * 2523 ibd_mcache_find(ib_gid_t mgid, struct list *mlist) 2524 { 2525 ibd_mce_t *ptr = list_head(mlist); 2526 2527 /* 2528 * Do plain linear search. 2529 */ 2530 while (ptr != NULL) { 2531 if (bcmp(&mgid, &ptr->mc_info.mc_adds_vect.av_dgid, 2532 sizeof (ib_gid_t)) == 0) 2533 return (ptr); 2534 ptr = list_next(mlist, ptr); 2535 } 2536 return (NULL); 2537 } 2538 2539 /* 2540 * Execute IBA JOIN. 2541 */ 2542 static ibt_status_t 2543 ibd_iba_join(ibd_state_t *state, ib_gid_t mgid, ibd_mce_t *mce) 2544 { 2545 ibt_mcg_attr_t mcg_attr; 2546 2547 bzero(&mcg_attr, sizeof (ibt_mcg_attr_t)); 2548 mcg_attr.mc_qkey = state->id_mcinfo->mc_qkey; 2549 mcg_attr.mc_mgid = mgid; 2550 mcg_attr.mc_join_state = mce->mc_jstate; 2551 mcg_attr.mc_scope = state->id_scope; 2552 mcg_attr.mc_pkey = state->id_pkey; 2553 mcg_attr.mc_flow = state->id_mcinfo->mc_adds_vect.av_flow; 2554 mcg_attr.mc_sl = state->id_mcinfo->mc_adds_vect.av_srvl; 2555 mcg_attr.mc_tclass = state->id_mcinfo->mc_adds_vect.av_tclass; 2556 return (ibt_join_mcg(state->id_sgid, &mcg_attr, &mce->mc_info, 2557 NULL, NULL)); 2558 } 2559 2560 /* 2561 * This code JOINs the port in the proper way (depending on the join 2562 * state) so that IBA fabric will forward mcg packets to/from the port. 2563 * It also attaches the QPN to the mcg so it can receive those mcg 2564 * packets. This code makes sure not to attach the mcg to the QP if 2565 * that has been previously done due to the mcg being joined with a 2566 * different join state, even though this is not required by SWG_0216, 2567 * refid 3610. 2568 */ 2569 static ibd_mce_t * 2570 ibd_join_group(ibd_state_t *state, ib_gid_t mgid, uint8_t jstate) 2571 { 2572 ibt_status_t ibt_status; 2573 ibd_mce_t *mce, *tmce, *omce = NULL; 2574 boolean_t do_attach = B_TRUE; 2575 2576 DPRINT(2, "ibd_join_group : join_group state %d : %016llx:%016llx\n", 2577 jstate, mgid.gid_prefix, mgid.gid_guid); 2578 2579 /* 2580 * For enable_multicast Full member joins, we need to do some 2581 * extra work. If there is already an mce on the list that 2582 * indicates full membership, that means the membership has 2583 * not yet been dropped (since the disable_multicast was issued) 2584 * because there are pending Tx's to the mcg; in that case, just 2585 * mark the mce not to be reaped when the Tx completion queues 2586 * an async reap operation. 2587 * 2588 * If there is already an mce on the list indicating sendonly 2589 * membership, try to promote to full membership. Be careful 2590 * not to deallocate the old mce, since there might be an AH 2591 * pointing to it; instead, update the old mce with new data 2592 * that tracks the full membership. 2593 */ 2594 if ((jstate == IB_MC_JSTATE_FULL) && ((omce = 2595 IBD_MCACHE_FIND_FULL(state, mgid)) != NULL)) { 2596 if (omce->mc_jstate == IB_MC_JSTATE_FULL) { 2597 ASSERT(omce->mc_fullreap); 2598 omce->mc_fullreap = B_FALSE; 2599 return (omce); 2600 } else { 2601 ASSERT(omce->mc_jstate == IB_MC_JSTATE_SEND_ONLY_NON); 2602 } 2603 } 2604 2605 /* 2606 * Allocate the ibd_mce_t to track this JOIN. 2607 */ 2608 mce = kmem_zalloc(sizeof (ibd_mce_t), KM_SLEEP); 2609 mce->mc_fullreap = B_FALSE; 2610 mce->mc_jstate = jstate; 2611 2612 if ((ibt_status = ibd_iba_join(state, mgid, mce)) != IBT_SUCCESS) { 2613 DPRINT(10, "ibd_join_group : failed ibt_join_mcg() %d", 2614 ibt_status); 2615 kmem_free(mce, sizeof (ibd_mce_t)); 2616 return (NULL); 2617 } 2618 2619 /* 2620 * Is an IBA attach required? Not if the interface is already joined 2621 * to the mcg in a different appropriate join state. 2622 */ 2623 if (jstate == IB_MC_JSTATE_NON) { 2624 tmce = IBD_MCACHE_FIND_FULL(state, mgid); 2625 if ((tmce != NULL) && (tmce->mc_jstate == IB_MC_JSTATE_FULL)) 2626 do_attach = B_FALSE; 2627 } else if (jstate == IB_MC_JSTATE_FULL) { 2628 if (IBD_MCACHE_FIND_NON(state, mgid) != NULL) 2629 do_attach = B_FALSE; 2630 } else { /* jstate == IB_MC_JSTATE_SEND_ONLY_NON */ 2631 do_attach = B_FALSE; 2632 } 2633 2634 if (do_attach) { 2635 /* 2636 * Do the IBA attach. 2637 */ 2638 DPRINT(10, "ibd_join_group: ibt_attach_mcg \n"); 2639 if ((ibt_status = ibt_attach_mcg(state->id_chnl_hdl, 2640 &mce->mc_info)) != IBT_SUCCESS) { 2641 DPRINT(10, "ibd_join_group : failed qp attachment " 2642 "%d\n", ibt_status); 2643 /* 2644 * NOTE that we should probably preserve the join info 2645 * in the list and later try to leave again at detach 2646 * time. 2647 */ 2648 (void) ibt_leave_mcg(state->id_sgid, mgid, 2649 state->id_sgid, jstate); 2650 kmem_free(mce, sizeof (ibd_mce_t)); 2651 return (NULL); 2652 } 2653 } 2654 2655 /* 2656 * Insert the ibd_mce_t in the proper list. 2657 */ 2658 if (jstate == IB_MC_JSTATE_NON) { 2659 IBD_MCACHE_INSERT_NON(state, mce); 2660 } else { 2661 /* 2662 * Set up the mc_req fields used for reaping the 2663 * mcg in case of delayed tx completion (see 2664 * ibd_tx_cleanup()). Also done for sendonly join in 2665 * case we are promoted to fullmembership later and 2666 * keep using the same mce. 2667 */ 2668 mce->mc_req.rq_gid = mgid; 2669 mce->mc_req.rq_ptr = mce; 2670 /* 2671 * Check whether this is the case of trying to join 2672 * full member, and we were already joined send only. 2673 * We try to drop our SendOnly membership, but it is 2674 * possible that the mcg does not exist anymore (and 2675 * the subnet trap never reached us), so the leave 2676 * operation might fail. 2677 */ 2678 if (omce != NULL) { 2679 (void) ibt_leave_mcg(state->id_sgid, mgid, 2680 state->id_sgid, IB_MC_JSTATE_SEND_ONLY_NON); 2681 omce->mc_jstate = IB_MC_JSTATE_FULL; 2682 bcopy(&mce->mc_info, &omce->mc_info, 2683 sizeof (ibt_mcg_info_t)); 2684 kmem_free(mce, sizeof (ibd_mce_t)); 2685 return (omce); 2686 } 2687 mutex_enter(&state->id_mc_mutex); 2688 IBD_MCACHE_INSERT_FULL(state, mce); 2689 mutex_exit(&state->id_mc_mutex); 2690 } 2691 2692 return (mce); 2693 } 2694 2695 /* 2696 * Called during port up event handling to attempt to reacquire full 2697 * membership to an mcg. Stripped down version of ibd_join_group(). 2698 * Note that it is possible that the mcg might have gone away, and 2699 * gets recreated at this point. 2700 */ 2701 static void 2702 ibd_reacquire_group(ibd_state_t *state, ibd_mce_t *mce) 2703 { 2704 ib_gid_t mgid; 2705 2706 /* 2707 * If the mc_fullreap flag is set, or this join fails, a subsequent 2708 * reap/leave is going to try to leave the group. We could prevent 2709 * that by adding a boolean flag into ibd_mce_t, if required. 2710 */ 2711 if (mce->mc_fullreap) 2712 return; 2713 2714 mgid = mce->mc_info.mc_adds_vect.av_dgid; 2715 2716 DPRINT(2, "ibd_reacquire_group : %016llx:%016llx\n", mgid.gid_prefix, 2717 mgid.gid_guid); 2718 2719 if (ibd_iba_join(state, mgid, mce) != IBT_SUCCESS) 2720 ibd_print_warn(state, "Failure on port up to rejoin " 2721 "multicast gid %016llx:%016llx", 2722 (u_longlong_t)mgid.gid_prefix, 2723 (u_longlong_t)mgid.gid_guid); 2724 } 2725 2726 /* 2727 * This code handles delayed Tx completion cleanups for mcg's to which 2728 * disable_multicast has been issued, regular mcg related cleanups during 2729 * disable_multicast, disable_promiscous and mcg traps, as well as 2730 * cleanups during driver detach time. Depending on the join state, 2731 * it deletes the mce from the appropriate list and issues the IBA 2732 * leave/detach; except in the disable_multicast case when the mce 2733 * is left on the active list for a subsequent Tx completion cleanup. 2734 */ 2735 static void 2736 ibd_async_reap_group(ibd_state_t *state, ibd_mce_t *mce, ib_gid_t mgid, 2737 uint8_t jstate) 2738 { 2739 ibd_mce_t *tmce; 2740 boolean_t do_detach = B_TRUE; 2741 2742 /* 2743 * Before detaching, we must check whether the other list 2744 * contains the mcg; if we detach blindly, the consumer 2745 * who set up the other list will also stop receiving 2746 * traffic. 2747 */ 2748 if (jstate == IB_MC_JSTATE_FULL) { 2749 /* 2750 * The following check is only relevant while coming 2751 * from the Tx completion path in the reap case. 2752 */ 2753 if (!mce->mc_fullreap) 2754 return; 2755 mutex_enter(&state->id_mc_mutex); 2756 IBD_MCACHE_PULLOUT_FULL(state, mce); 2757 mutex_exit(&state->id_mc_mutex); 2758 if (IBD_MCACHE_FIND_NON(state, mgid) != NULL) 2759 do_detach = B_FALSE; 2760 } else if (jstate == IB_MC_JSTATE_NON) { 2761 IBD_MCACHE_PULLOUT_NON(state, mce); 2762 tmce = IBD_MCACHE_FIND_FULL(state, mgid); 2763 if ((tmce != NULL) && (tmce->mc_jstate == IB_MC_JSTATE_FULL)) 2764 do_detach = B_FALSE; 2765 } else { /* jstate == IB_MC_JSTATE_SEND_ONLY_NON */ 2766 mutex_enter(&state->id_mc_mutex); 2767 IBD_MCACHE_PULLOUT_FULL(state, mce); 2768 mutex_exit(&state->id_mc_mutex); 2769 do_detach = B_FALSE; 2770 } 2771 2772 /* 2773 * If we are reacting to a mcg trap and leaving our sendonly or 2774 * non membership, the mcg is possibly already gone, so attempting 2775 * to leave might fail. On the other hand, we must try to leave 2776 * anyway, since this might be a trap from long ago, and we could 2777 * have potentially sendonly joined to a recent incarnation of 2778 * the mcg and are about to loose track of this information. 2779 */ 2780 if (do_detach) { 2781 DPRINT(2, "ibd_async_reap_group : ibt_detach_mcg : " 2782 "%016llx:%016llx\n", mgid.gid_prefix, mgid.gid_guid); 2783 (void) ibt_detach_mcg(state->id_chnl_hdl, &mce->mc_info); 2784 } 2785 2786 (void) ibt_leave_mcg(state->id_sgid, mgid, state->id_sgid, jstate); 2787 kmem_free(mce, sizeof (ibd_mce_t)); 2788 } 2789 2790 /* 2791 * Async code executed due to multicast and promiscuous disable requests 2792 * and mcg trap handling; also executed during driver detach. Mostly, a 2793 * leave and detach is done; except for the fullmember case when Tx 2794 * requests are pending, whence arrangements are made for subsequent 2795 * cleanup on Tx completion. 2796 */ 2797 static void 2798 ibd_leave_group(ibd_state_t *state, ib_gid_t mgid, uint8_t jstate) 2799 { 2800 ipoib_mac_t mcmac; 2801 boolean_t recycled; 2802 ibd_mce_t *mce; 2803 2804 DPRINT(2, "ibd_leave_group : leave_group state %d : %016llx:%016llx\n", 2805 jstate, mgid.gid_prefix, mgid.gid_guid); 2806 2807 if (jstate == IB_MC_JSTATE_NON) { 2808 recycled = B_TRUE; 2809 mce = IBD_MCACHE_FIND_NON(state, mgid); 2810 /* 2811 * In case we are handling a mcg trap, we might not find 2812 * the mcg in the non list. 2813 */ 2814 if (mce == NULL) 2815 return; 2816 } else { 2817 mce = IBD_MCACHE_FIND_FULL(state, mgid); 2818 2819 /* 2820 * In case we are handling a mcg trap, make sure the trap 2821 * is not arriving late; if we have an mce that indicates 2822 * that we are already a fullmember, that would be a clear 2823 * indication that the trap arrived late (ie, is for a 2824 * previous incarnation of the mcg). 2825 */ 2826 if (jstate == IB_MC_JSTATE_SEND_ONLY_NON) { 2827 if ((mce == NULL) || (mce->mc_jstate == 2828 IB_MC_JSTATE_FULL)) 2829 return; 2830 } else { 2831 ASSERT(jstate == IB_MC_JSTATE_FULL); 2832 2833 /* 2834 * If join group failed, mce will be NULL here. 2835 * This is because in GLDv3 driver, set multicast 2836 * will always return success. 2837 */ 2838 if (mce == NULL) 2839 return; 2840 2841 mce->mc_fullreap = B_TRUE; 2842 } 2843 2844 /* 2845 * If no pending Tx's remain that reference the AH 2846 * for the mcg, recycle it from active to free list. 2847 * Else in the IB_MC_JSTATE_FULL case, just mark the AH, 2848 * so the last completing Tx will cause an async reap 2849 * operation to be invoked, at which time we will drop our 2850 * membership to the mcg so that the pending Tx's complete 2851 * successfully. Refer to comments on "AH and MCE active 2852 * list manipulation" at top of this file. The lock protects 2853 * against Tx fast path and Tx cleanup code. 2854 */ 2855 mutex_enter(&state->id_ac_mutex); 2856 ibd_h2n_mac(&mcmac, IB_MC_QPN, mgid.gid_prefix, mgid.gid_guid); 2857 recycled = ibd_acache_recycle(state, &mcmac, (jstate == 2858 IB_MC_JSTATE_SEND_ONLY_NON)); 2859 mutex_exit(&state->id_ac_mutex); 2860 } 2861 2862 if (recycled) { 2863 DPRINT(2, "ibd_leave_group : leave_group reaping : " 2864 "%016llx:%016llx\n", mgid.gid_prefix, mgid.gid_guid); 2865 ibd_async_reap_group(state, mce, mgid, jstate); 2866 } 2867 } 2868 2869 /* 2870 * Find the broadcast address as defined by IPoIB; implicitly 2871 * determines the IBA scope, mtu, tclass etc of the link the 2872 * interface is going to be a member of. 2873 */ 2874 static ibt_status_t 2875 ibd_find_bgroup(ibd_state_t *state) 2876 { 2877 ibt_mcg_attr_t mcg_attr; 2878 uint_t numg; 2879 uchar_t scopes[] = { IB_MC_SCOPE_SUBNET_LOCAL, 2880 IB_MC_SCOPE_SITE_LOCAL, IB_MC_SCOPE_ORG_LOCAL, 2881 IB_MC_SCOPE_GLOBAL }; 2882 int i, mcgmtu; 2883 boolean_t found = B_FALSE; 2884 2885 bzero(&mcg_attr, sizeof (ibt_mcg_attr_t)); 2886 mcg_attr.mc_pkey = state->id_pkey; 2887 state->id_mgid.gid_guid = IB_MGID_IPV4_LOWGRP_MASK; 2888 2889 for (i = 0; i < sizeof (scopes)/sizeof (scopes[0]); i++) { 2890 state->id_scope = mcg_attr.mc_scope = scopes[i]; 2891 2892 /* 2893 * Look for the IPoIB broadcast group. 2894 */ 2895 state->id_mgid.gid_prefix = 2896 (((uint64_t)IB_MCGID_IPV4_PREFIX << 32) | 2897 ((uint64_t)state->id_scope << 48) | 2898 ((uint32_t)(state->id_pkey << 16))); 2899 mcg_attr.mc_mgid = state->id_mgid; 2900 if (ibt_query_mcg(state->id_sgid, &mcg_attr, 1, 2901 &state->id_mcinfo, &numg) == IBT_SUCCESS) { 2902 found = B_TRUE; 2903 break; 2904 } 2905 2906 } 2907 2908 if (!found) { 2909 ibd_print_warn(state, "IPoIB broadcast group absent"); 2910 return (IBT_FAILURE); 2911 } 2912 2913 /* 2914 * Assert that the mcg mtu <= id_mtu. Fill in updated id_mtu. 2915 */ 2916 mcgmtu = (128 << state->id_mcinfo->mc_mtu); 2917 if (state->id_mtu < mcgmtu) { 2918 ibd_print_warn(state, "IPoIB broadcast group MTU %d " 2919 "greater than port's maximum MTU %d", mcgmtu, 2920 state->id_mtu); 2921 return (IBT_FAILURE); 2922 } 2923 state->id_mtu = mcgmtu; 2924 2925 return (IBT_SUCCESS); 2926 } 2927 2928 /* 2929 * Post ibt_attach() initialization. 2930 */ 2931 static int 2932 ibd_drv_init(ibd_state_t *state) 2933 { 2934 kthread_t *kht; 2935 ibt_ud_chan_alloc_args_t ud_alloc_attr; 2936 ibt_ud_chan_query_attr_t ud_chan_attr; 2937 ibt_hca_portinfo_t *port_infop; 2938 ibt_hca_attr_t hca_attrs; 2939 ibt_status_t ibt_status; 2940 ibt_cq_attr_t cq_attr; 2941 ib_guid_t hca_guid; 2942 uint32_t real_size; 2943 uint32_t *ptr; 2944 char pathname[OBP_MAXPATHLEN]; 2945 uint_t psize, port_infosz; 2946 2947 /* 2948 * Initialize id_port before ibt_open_hca because of 2949 * ordering requirements in port up/down handling. 2950 */ 2951 if (ibd_get_portpkey(state, &hca_guid) != DDI_SUCCESS) 2952 return (DDI_FAILURE); 2953 2954 if (ibt_open_hca(state->id_ibt_hdl, hca_guid, 2955 &state->id_hca_hdl) != IBT_SUCCESS) { 2956 DPRINT(10, "ibd_drv_init : failed in ibt_open_hca()\n"); 2957 return (DDI_FAILURE); 2958 } 2959 2960 mutex_enter(&state->id_link_mutex); 2961 ibt_status = ibt_query_hca_ports(state->id_hca_hdl, 2962 state->id_port, &port_infop, &psize, 2963 &port_infosz); 2964 if ((ibt_status != IBT_SUCCESS) || (psize != 1)) { 2965 mutex_exit(&state->id_link_mutex); 2966 DPRINT(10, "ibd_drv_init : failed in ibt_query_port()\n"); 2967 (void) ibt_close_hca(state->id_hca_hdl); 2968 return (DDI_FAILURE); 2969 } 2970 2971 /* 2972 * If the link already went down by the time we get here, give up; 2973 * we can not even get the gid since that is not valid. We would 2974 * fail in ibd_find_bgroup() anyway. 2975 */ 2976 if (port_infop->p_linkstate != IBT_PORT_ACTIVE) { 2977 mutex_exit(&state->id_link_mutex); 2978 ibt_free_portinfo(port_infop, port_infosz); 2979 (void) ibt_close_hca(state->id_hca_hdl); 2980 ibd_print_warn(state, "Port is not active"); 2981 return (DDI_FAILURE); 2982 } 2983 2984 /* 2985 * This verifies the Pkey ibnexus handed us is still valid. 2986 * This is also the point from which the pkey table for the 2987 * port must hold the exact pkey value at the exact index 2988 * across port up/downs. 2989 */ 2990 if (ibt_pkey2index(state->id_hca_hdl, state->id_port, 2991 state->id_pkey, &state->id_pkix) != IBT_SUCCESS) { 2992 mutex_exit(&state->id_link_mutex); 2993 ibt_free_portinfo(port_infop, port_infosz); 2994 DPRINT(10, "ibd_drv_init : failed in ibt_pkey2index()\n"); 2995 (void) ibt_close_hca(state->id_hca_hdl); 2996 return (DDI_FAILURE); 2997 } 2998 2999 state->id_mtu = (128 << port_infop->p_mtu); 3000 state->id_sgid = *port_infop->p_sgid_tbl; 3001 state->id_link_state = LINK_STATE_UP; 3002 mutex_exit(&state->id_link_mutex); 3003 3004 ibt_free_portinfo(port_infop, port_infosz); 3005 3006 state->id_link_speed = ibd_get_portspeed(state); 3007 3008 /* 3009 * Read drv conf and record what the policy is on enabling LSO 3010 */ 3011 if (ddi_prop_get_int(DDI_DEV_T_ANY, state->id_dip, 3012 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, IBD_PROP_LSO_POLICY, 1)) { 3013 state->id_lso_policy = B_TRUE; 3014 } else { 3015 state->id_lso_policy = B_FALSE; 3016 } 3017 3018 ibt_status = ibt_query_hca(state->id_hca_hdl, &hca_attrs); 3019 ASSERT(ibt_status == IBT_SUCCESS); 3020 3021 if (ibd_find_bgroup(state) != IBT_SUCCESS) { 3022 DPRINT(10, "ibd_drv_init : failed in ibd_find_bgroup\n"); 3023 goto drv_init_fail_find_bgroup; 3024 } 3025 3026 if (ibt_alloc_pd(state->id_hca_hdl, IBT_PD_NO_FLAGS, 3027 &state->id_pd_hdl) != IBT_SUCCESS) { 3028 DPRINT(10, "ibd_drv_init : failed in ibt_alloc_pd()\n"); 3029 goto drv_init_fail_alloc_pd; 3030 } 3031 3032 /* Initialize the parallel ARP cache and AHs */ 3033 if (ibd_acache_init(state) != DDI_SUCCESS) { 3034 DPRINT(10, "ibd_drv_init : failed in ibd_acache_init()\n"); 3035 goto drv_init_fail_acache; 3036 } 3037 3038 if ((hca_attrs.hca_flags2 & IBT_HCA2_RES_LKEY) == IBT_HCA2_RES_LKEY) { 3039 state->id_hca_res_lkey_capab = 1; 3040 state->id_res_lkey = hca_attrs.hca_reserved_lkey; 3041 } 3042 3043 /* 3044 * Check various tunable limits. 3045 */ 3046 3047 /* 3048 * See if extended sgl size information is provided by the hca; if yes, 3049 * use the correct one and set the maximum sqseg value. 3050 */ 3051 if (hca_attrs.hca_flags & IBT_HCA_WQE_SIZE_INFO) 3052 state->id_max_sqseg = hca_attrs.hca_ud_send_sgl_sz; 3053 else 3054 state->id_max_sqseg = hca_attrs.hca_max_sgl; 3055 3056 /* 3057 * Set LSO capability and maximum length 3058 */ 3059 if (hca_attrs.hca_max_lso_size > 0) { 3060 state->id_lso_capable = B_TRUE; 3061 if (hca_attrs.hca_max_lso_size > IBD_LSO_MAXLEN) 3062 state->id_lso_maxlen = IBD_LSO_MAXLEN; 3063 else 3064 state->id_lso_maxlen = hca_attrs.hca_max_lso_size; 3065 } else { 3066 state->id_lso_capable = B_FALSE; 3067 state->id_lso_maxlen = 0; 3068 } 3069 3070 3071 /* 3072 * Check #r/s wqes against max channel size. 3073 */ 3074 if (hca_attrs.hca_max_chan_sz < IBD_NUM_RWQE) 3075 state->id_num_rwqe = hca_attrs.hca_max_chan_sz; 3076 else 3077 state->id_num_rwqe = IBD_NUM_RWQE; 3078 3079 if (hca_attrs.hca_max_chan_sz < IBD_NUM_SWQE) 3080 state->id_num_swqe = hca_attrs.hca_max_chan_sz; 3081 else 3082 state->id_num_swqe = IBD_NUM_SWQE; 3083 3084 /* 3085 * Check the hardware checksum capability. Currently we only consider 3086 * full checksum offload. 3087 */ 3088 if ((hca_attrs.hca_flags & IBT_HCA_CKSUM_FULL) == IBT_HCA_CKSUM_FULL) { 3089 state->id_hwcksum_capab = IBT_HCA_CKSUM_FULL; 3090 } 3091 3092 /* 3093 * Allocate Rx/combined CQ: 3094 * Theoretically, there is no point in having more than #rwqe 3095 * plus #swqe cqe's, except that the CQ will be signalled for 3096 * overflow when the last wqe completes, if none of the previous 3097 * cqe's have been polled. Thus, we allocate just a few less wqe's 3098 * to make sure such overflow does not occur. 3099 */ 3100 cq_attr.cq_sched = NULL; 3101 cq_attr.cq_flags = IBT_CQ_NO_FLAGS; 3102 3103 if (ibd_separate_cqs == 1) { 3104 /* 3105 * Allocate Receive CQ. 3106 */ 3107 if (hca_attrs.hca_max_cq_sz >= (state->id_num_rwqe + 1)) { 3108 cq_attr.cq_size = state->id_num_rwqe + 1; 3109 } else { 3110 cq_attr.cq_size = hca_attrs.hca_max_cq_sz; 3111 state->id_num_rwqe = cq_attr.cq_size - 1; 3112 } 3113 3114 if (ibt_alloc_cq(state->id_hca_hdl, &cq_attr, 3115 &state->id_rcq_hdl, &real_size) != IBT_SUCCESS) { 3116 DPRINT(10, "ibd_drv_init : failed in ibt_alloc_cq()\n"); 3117 goto drv_init_fail_alloc_rcq; 3118 } 3119 3120 if (ibt_modify_cq(state->id_rcq_hdl, 3121 ibd_rxcomp_count, ibd_rxcomp_usec, 0) != IBT_SUCCESS) { 3122 DPRINT(10, "ibd_drv_init: Receive CQ interrupt " 3123 "moderation failed\n"); 3124 } 3125 3126 state->id_rxwcs_size = state->id_num_rwqe + 1; 3127 state->id_rxwcs = kmem_alloc(sizeof (ibt_wc_t) * 3128 state->id_rxwcs_size, KM_SLEEP); 3129 3130 /* 3131 * Allocate Send CQ. 3132 */ 3133 if (hca_attrs.hca_max_cq_sz >= (state->id_num_swqe + 1)) { 3134 cq_attr.cq_size = state->id_num_swqe + 1; 3135 } else { 3136 cq_attr.cq_size = hca_attrs.hca_max_cq_sz; 3137 state->id_num_swqe = cq_attr.cq_size - 1; 3138 } 3139 3140 if (ibt_alloc_cq(state->id_hca_hdl, &cq_attr, 3141 &state->id_scq_hdl, &real_size) != IBT_SUCCESS) { 3142 DPRINT(10, "ibd_drv_init : failed in ibt_alloc_cq()\n"); 3143 goto drv_init_fail_alloc_scq; 3144 } 3145 if (ibt_modify_cq(state->id_scq_hdl, 3146 10, 300, 0) != IBT_SUCCESS) { 3147 DPRINT(10, "ibd_drv_init: Send CQ interrupt " 3148 "moderation failed\n"); 3149 } 3150 3151 state->id_txwcs_size = state->id_num_swqe + 1; 3152 state->id_txwcs = kmem_alloc(sizeof (ibt_wc_t) * 3153 state->id_txwcs_size, KM_SLEEP); 3154 } else { 3155 /* 3156 * Allocate combined Send/Receive CQ. 3157 */ 3158 if (hca_attrs.hca_max_cq_sz >= (state->id_num_rwqe + 3159 state->id_num_swqe + 1)) { 3160 cq_attr.cq_size = state->id_num_rwqe + 3161 state->id_num_swqe + 1; 3162 } else { 3163 cq_attr.cq_size = hca_attrs.hca_max_cq_sz; 3164 state->id_num_rwqe = ((cq_attr.cq_size - 1) * 3165 state->id_num_rwqe) / (state->id_num_rwqe + 3166 state->id_num_swqe); 3167 state->id_num_swqe = cq_attr.cq_size - 1 - 3168 state->id_num_rwqe; 3169 } 3170 3171 state->id_rxwcs_size = cq_attr.cq_size; 3172 state->id_txwcs_size = state->id_rxwcs_size; 3173 3174 if (ibt_alloc_cq(state->id_hca_hdl, &cq_attr, 3175 &state->id_rcq_hdl, &real_size) != IBT_SUCCESS) { 3176 DPRINT(10, "ibd_drv_init : failed in ibt_alloc_cq()\n"); 3177 goto drv_init_fail_alloc_rcq; 3178 } 3179 state->id_scq_hdl = state->id_rcq_hdl; 3180 state->id_rxwcs = kmem_alloc(sizeof (ibt_wc_t) * 3181 state->id_rxwcs_size, KM_SLEEP); 3182 state->id_txwcs = state->id_rxwcs; 3183 } 3184 3185 /* 3186 * Print message in case we could not allocate as many wqe's 3187 * as was requested. Note that in the combined CQ case, we will 3188 * get the following message. 3189 */ 3190 if (state->id_num_rwqe != IBD_NUM_RWQE) 3191 ibd_print_warn(state, "Setting #rwqe = %d instead of default " 3192 "%d", state->id_num_rwqe, IBD_NUM_RWQE); 3193 if (state->id_num_swqe != IBD_NUM_SWQE) 3194 ibd_print_warn(state, "Setting #swqe = %d instead of default " 3195 "%d", state->id_num_swqe, IBD_NUM_SWQE); 3196 3197 ud_alloc_attr.ud_flags = IBT_WR_SIGNALED; 3198 if (state->id_hca_res_lkey_capab) 3199 ud_alloc_attr.ud_flags |= IBT_FAST_REG_RES_LKEY; 3200 if (state->id_lso_policy && state->id_lso_capable) 3201 ud_alloc_attr.ud_flags |= IBT_USES_LSO; 3202 3203 ud_alloc_attr.ud_hca_port_num = state->id_port; 3204 ud_alloc_attr.ud_sizes.cs_sq_sgl = state->id_max_sqseg; 3205 ud_alloc_attr.ud_sizes.cs_rq_sgl = IBD_MAX_RQSEG; 3206 ud_alloc_attr.ud_sizes.cs_sq = state->id_num_swqe; 3207 ud_alloc_attr.ud_sizes.cs_rq = state->id_num_rwqe; 3208 ud_alloc_attr.ud_qkey = state->id_mcinfo->mc_qkey; 3209 ud_alloc_attr.ud_scq = state->id_scq_hdl; 3210 ud_alloc_attr.ud_rcq = state->id_rcq_hdl; 3211 ud_alloc_attr.ud_pd = state->id_pd_hdl; 3212 ud_alloc_attr.ud_pkey_ix = state->id_pkix; 3213 ud_alloc_attr.ud_clone_chan = NULL; 3214 3215 if (ibt_alloc_ud_channel(state->id_hca_hdl, IBT_ACHAN_NO_FLAGS, 3216 &ud_alloc_attr, &state->id_chnl_hdl, NULL) != IBT_SUCCESS) { 3217 DPRINT(10, "ibd_drv_init : failed in ibt_alloc_ud_channel()" 3218 "\n"); 3219 goto drv_init_fail_alloc_chan; 3220 } 3221 3222 if (ibt_query_ud_channel(state->id_chnl_hdl, &ud_chan_attr) != 3223 DDI_SUCCESS) { 3224 DPRINT(10, "ibd_drv_init : failed in ibt_query_ud_channel()"); 3225 goto drv_init_fail_query_chan; 3226 } 3227 3228 state->id_qpnum = ud_chan_attr.ud_qpn; 3229 /* state->id_max_sqseg = ud_chan_attr.ud_chan_sizes.cs_sq_sgl; */ 3230 3231 if (state->id_max_sqseg > IBD_MAX_SQSEG) { 3232 state->id_max_sqseg = IBD_MAX_SQSEG; 3233 } else if (state->id_max_sqseg < IBD_MAX_SQSEG) { 3234 ibd_print_warn(state, "Set #sgl = %d instead of default %d", 3235 state->id_max_sqseg, IBD_MAX_SQSEG); 3236 } 3237 3238 /* Initialize the Transmit buffer list */ 3239 if (ibd_init_txlist(state) != DDI_SUCCESS) { 3240 DPRINT(10, "ibd_drv_init : failed in ibd_init_txlist()\n"); 3241 goto drv_init_fail_txlist_init; 3242 } 3243 3244 if ((ibd_separate_cqs == 1) && (ibd_txcomp_poll == 0)) { 3245 /* 3246 * Setup the handler we will use for regular DLPI stuff 3247 */ 3248 ibt_set_cq_handler(state->id_scq_hdl, ibd_scq_handler, state); 3249 if (ibt_enable_cq_notify(state->id_scq_hdl, 3250 IBT_NEXT_COMPLETION) != IBT_SUCCESS) { 3251 DPRINT(10, "ibd_drv_init : failed in" 3252 " ibt_enable_cq_notify()\n"); 3253 goto drv_init_fail_cq_notify; 3254 } 3255 } 3256 3257 /* Initialize the Receive buffer list */ 3258 if (ibd_init_rxlist(state) != DDI_SUCCESS) { 3259 DPRINT(10, "ibd_drv_init : failed in ibd_init_rxlist()\n"); 3260 goto drv_init_fail_rxlist_init; 3261 } 3262 3263 /* Join to IPoIB broadcast group as required by IPoIB */ 3264 if (ibd_join_group(state, state->id_mgid, IB_MC_JSTATE_FULL) == NULL) { 3265 DPRINT(10, "ibd_drv_init : failed in ibd_join_group\n"); 3266 goto drv_init_fail_join_group; 3267 } 3268 3269 /* 3270 * Create the async thread; thread_create never fails. 3271 */ 3272 kht = thread_create(NULL, 0, ibd_async_work, state, 0, &p0, 3273 TS_RUN, minclsyspri); 3274 3275 state->id_async_thrid = kht->t_did; 3276 3277 /* 3278 * The local mac address is now known. Create the IPoIB 3279 * address. 3280 */ 3281 ibd_h2n_mac(&state->id_macaddr, state->id_qpnum, 3282 state->id_sgid.gid_prefix, state->id_sgid.gid_guid); 3283 /* 3284 * Similarly, program in the broadcast mac address. 3285 */ 3286 ibd_h2n_mac(&state->id_bcaddr, IB_QPN_MASK, state->id_mgid.gid_prefix, 3287 state->id_mgid.gid_guid); 3288 3289 ptr = (uint32_t *)&state->id_macaddr; 3290 DPRINT(10, "ibd_drv_init : INFO: MAC %08X:%08X:%08X:%08X:%08X\n", 3291 *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4)); 3292 ptr = (uint32_t *)&state->id_bcaddr; 3293 DPRINT(10, "ibd_drv_init : INFO: BCMAC %08X:%08X:%08X:%08X:%08X\n", 3294 *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4)); 3295 DPRINT(10, "ibd_drv_init : INFO: Pkey 0x%x, Mgid %016llx%016llx\n", 3296 state->id_pkey, state->id_mgid.gid_prefix, 3297 state->id_mgid.gid_guid); 3298 DPRINT(10, "ibd_drv_init : INFO: GID %016llx%016llx\n", 3299 state->id_sgid.gid_prefix, state->id_sgid.gid_guid); 3300 DPRINT(10, "ibd_drv_init : INFO: PKEY %04x\n", state->id_pkey); 3301 DPRINT(10, "ibd_drv_init : INFO: MTU %d\n", state->id_mtu); 3302 (void) ddi_pathname(state->id_dip, pathname); 3303 DPRINT(10, "ibd_drv_init : INFO: Pathname %s\n", pathname); 3304 3305 return (DDI_SUCCESS); 3306 3307 drv_init_fail_join_group: 3308 ibd_fini_rxlist(state); 3309 3310 drv_init_fail_rxlist_init: 3311 drv_init_fail_cq_notify: 3312 ibd_fini_txlist(state); 3313 3314 drv_init_fail_txlist_init: 3315 drv_init_fail_query_chan: 3316 if (ibt_free_channel(state->id_chnl_hdl) != IBT_SUCCESS) 3317 DPRINT(10, "ibd_drv_init : failed in ibt_free_channel()"); 3318 3319 drv_init_fail_alloc_chan: 3320 if ((ibd_separate_cqs == 1) && (ibt_free_cq(state->id_scq_hdl) != 3321 IBT_SUCCESS)) 3322 DPRINT(10, "ibd_drv_init : Tx ibt_free_cq()"); 3323 3324 if (ibd_separate_cqs == 1) 3325 kmem_free(state->id_txwcs, sizeof (ibt_wc_t) * 3326 state->id_txwcs_size); 3327 3328 drv_init_fail_alloc_scq: 3329 if (ibt_free_cq(state->id_rcq_hdl) != IBT_SUCCESS) 3330 DPRINT(10, "ibd_drv_init : Rx ibt_free_cq()"); 3331 kmem_free(state->id_rxwcs, sizeof (ibt_wc_t) * state->id_rxwcs_size); 3332 3333 drv_init_fail_alloc_rcq: 3334 ibd_acache_fini(state); 3335 drv_init_fail_acache: 3336 if (ibt_free_pd(state->id_hca_hdl, state->id_pd_hdl) != IBT_SUCCESS) 3337 DPRINT(10, "ibd_drv_init : failed in ibt_free_pd()"); 3338 3339 drv_init_fail_alloc_pd: 3340 ibt_free_mcg_info(state->id_mcinfo, 1); 3341 drv_init_fail_find_bgroup: 3342 if (ibt_close_hca(state->id_hca_hdl) != IBT_SUCCESS) 3343 DPRINT(10, "ibd_drv_init : failed in ibt_close_hca()"); 3344 3345 return (DDI_FAILURE); 3346 } 3347 3348 3349 static int 3350 ibd_alloc_tx_copybufs(ibd_state_t *state) 3351 { 3352 ibt_mr_attr_t mem_attr; 3353 3354 /* 3355 * Allocate one big chunk for all regular tx copy bufs 3356 */ 3357 state->id_tx_buf_sz = state->id_mtu; 3358 if (state->id_lso_policy && state->id_lso_capable && 3359 (IBD_TX_BUF_SZ > state->id_mtu)) { 3360 state->id_tx_buf_sz = IBD_TX_BUF_SZ; 3361 } 3362 3363 state->id_tx_bufs = kmem_zalloc(state->id_num_swqe * 3364 state->id_tx_buf_sz, KM_SLEEP); 3365 3366 /* 3367 * Do one memory registration on the entire txbuf area 3368 */ 3369 mem_attr.mr_vaddr = (uint64_t)(uintptr_t)state->id_tx_bufs; 3370 mem_attr.mr_len = state->id_num_swqe * state->id_tx_buf_sz; 3371 mem_attr.mr_as = NULL; 3372 mem_attr.mr_flags = IBT_MR_SLEEP; 3373 if (ibt_register_mr(state->id_hca_hdl, state->id_pd_hdl, &mem_attr, 3374 &state->id_tx_mr_hdl, &state->id_tx_mr_desc) != IBT_SUCCESS) { 3375 DPRINT(10, "ibd_alloc_tx_copybufs: ibt_register_mr failed"); 3376 kmem_free(state->id_tx_bufs, 3377 state->id_num_swqe * state->id_tx_buf_sz); 3378 state->id_tx_bufs = NULL; 3379 return (DDI_FAILURE); 3380 } 3381 3382 return (DDI_SUCCESS); 3383 } 3384 3385 static int 3386 ibd_alloc_tx_lsobufs(ibd_state_t *state) 3387 { 3388 ibt_mr_attr_t mem_attr; 3389 ibd_lsobuf_t *buflist; 3390 ibd_lsobuf_t *lbufp; 3391 ibd_lsobuf_t *tail; 3392 ibd_lsobkt_t *bktp; 3393 uint8_t *membase; 3394 uint8_t *memp; 3395 uint_t memsz; 3396 int i; 3397 3398 /* 3399 * Allocate the lso bucket 3400 */ 3401 bktp = kmem_zalloc(sizeof (ibd_lsobkt_t), KM_SLEEP); 3402 3403 /* 3404 * Allocate the entire lso memory and register it 3405 */ 3406 memsz = IBD_NUM_LSO_BUFS * IBD_LSO_BUFSZ; 3407 membase = kmem_zalloc(memsz, KM_SLEEP); 3408 3409 mem_attr.mr_vaddr = (uint64_t)(uintptr_t)membase; 3410 mem_attr.mr_len = memsz; 3411 mem_attr.mr_as = NULL; 3412 mem_attr.mr_flags = IBT_MR_SLEEP; 3413 if (ibt_register_mr(state->id_hca_hdl, state->id_pd_hdl, 3414 &mem_attr, &bktp->bkt_mr_hdl, &bktp->bkt_mr_desc) != IBT_SUCCESS) { 3415 DPRINT(10, "ibd_alloc_tx_lsobufs: ibt_register_mr failed"); 3416 kmem_free(membase, memsz); 3417 kmem_free(bktp, sizeof (ibd_lsobkt_t)); 3418 return (DDI_FAILURE); 3419 } 3420 3421 /* 3422 * Now allocate the buflist. Note that the elements in the buflist and 3423 * the buffers in the lso memory have a permanent 1-1 relation, so we 3424 * can always derive the address of a buflist entry from the address of 3425 * an lso buffer. 3426 */ 3427 buflist = kmem_zalloc(IBD_NUM_LSO_BUFS * sizeof (ibd_lsobuf_t), 3428 KM_SLEEP); 3429 3430 /* 3431 * Set up the lso buf chain 3432 */ 3433 memp = membase; 3434 lbufp = buflist; 3435 for (i = 0; i < IBD_NUM_LSO_BUFS; i++) { 3436 lbufp->lb_isfree = 1; 3437 lbufp->lb_buf = memp; 3438 lbufp->lb_next = lbufp + 1; 3439 3440 tail = lbufp; 3441 3442 memp += IBD_LSO_BUFSZ; 3443 lbufp++; 3444 } 3445 tail->lb_next = NULL; 3446 3447 /* 3448 * Set up the LSO buffer information in ibd state 3449 */ 3450 bktp->bkt_bufl = buflist; 3451 bktp->bkt_free_head = buflist; 3452 bktp->bkt_mem = membase; 3453 bktp->bkt_nelem = IBD_NUM_LSO_BUFS; 3454 bktp->bkt_nfree = bktp->bkt_nelem; 3455 3456 state->id_lso = bktp; 3457 3458 return (DDI_SUCCESS); 3459 } 3460 3461 /* 3462 * Statically allocate Tx buffer list(s). 3463 */ 3464 static int 3465 ibd_init_txlist(ibd_state_t *state) 3466 { 3467 ibd_swqe_t *swqe; 3468 ibt_lkey_t lkey; 3469 int i; 3470 3471 if (ibd_alloc_tx_copybufs(state) != DDI_SUCCESS) 3472 return (DDI_FAILURE); 3473 3474 if (state->id_lso_policy && state->id_lso_capable) { 3475 if (ibd_alloc_tx_lsobufs(state) != DDI_SUCCESS) 3476 state->id_lso_policy = B_FALSE; 3477 } 3478 3479 /* 3480 * Allocate and setup the swqe list 3481 */ 3482 lkey = state->id_tx_mr_desc.md_lkey; 3483 for (i = 0; i < state->id_num_swqe; i++) { 3484 if (ibd_alloc_swqe(state, &swqe, i, lkey) != DDI_SUCCESS) { 3485 DPRINT(10, "ibd_init_txlist: ibd_alloc_swqe failed"); 3486 ibd_fini_txlist(state); 3487 return (DDI_FAILURE); 3488 } 3489 3490 /* add to list */ 3491 state->id_tx_list.dl_cnt++; 3492 if (state->id_tx_list.dl_head == NULL) { 3493 swqe->swqe_prev = NULL; 3494 swqe->swqe_next = NULL; 3495 state->id_tx_list.dl_head = SWQE_TO_WQE(swqe); 3496 state->id_tx_list.dl_tail = SWQE_TO_WQE(swqe); 3497 } else { 3498 swqe->swqe_prev = state->id_tx_list.dl_tail; 3499 swqe->swqe_next = NULL; 3500 state->id_tx_list.dl_tail->w_next = SWQE_TO_WQE(swqe); 3501 state->id_tx_list.dl_tail = SWQE_TO_WQE(swqe); 3502 } 3503 } 3504 3505 return (DDI_SUCCESS); 3506 } 3507 3508 static int 3509 ibd_acquire_lsobufs(ibd_state_t *state, uint_t req_sz, ibt_wr_ds_t *sgl_p, 3510 uint32_t *nds_p) 3511 { 3512 ibd_lsobkt_t *bktp; 3513 ibd_lsobuf_t *lbufp; 3514 ibd_lsobuf_t *nextp; 3515 ibt_lkey_t lso_lkey; 3516 uint_t frag_sz; 3517 uint_t num_needed; 3518 int i; 3519 3520 ASSERT(sgl_p != NULL); 3521 ASSERT(nds_p != NULL); 3522 ASSERT(req_sz != 0); 3523 3524 /* 3525 * Determine how many bufs we'd need for the size requested 3526 */ 3527 num_needed = req_sz / IBD_LSO_BUFSZ; 3528 if ((frag_sz = req_sz % IBD_LSO_BUFSZ) != 0) 3529 num_needed++; 3530 3531 mutex_enter(&state->id_lso_lock); 3532 3533 /* 3534 * If we don't have enough lso bufs, return failure 3535 */ 3536 ASSERT(state->id_lso != NULL); 3537 bktp = state->id_lso; 3538 if (bktp->bkt_nfree < num_needed) { 3539 mutex_exit(&state->id_lso_lock); 3540 return (-1); 3541 } 3542 3543 /* 3544 * Pick the first 'num_needed' bufs from the free list 3545 */ 3546 lso_lkey = bktp->bkt_mr_desc.md_lkey; 3547 lbufp = bktp->bkt_free_head; 3548 for (i = 0; i < num_needed; i++) { 3549 ASSERT(lbufp->lb_isfree != 0); 3550 ASSERT(lbufp->lb_buf != NULL); 3551 3552 nextp = lbufp->lb_next; 3553 3554 sgl_p[i].ds_va = (ib_vaddr_t)(uintptr_t)lbufp->lb_buf; 3555 sgl_p[i].ds_key = lso_lkey; 3556 sgl_p[i].ds_len = IBD_LSO_BUFSZ; 3557 3558 lbufp->lb_isfree = 0; 3559 lbufp->lb_next = NULL; 3560 3561 lbufp = nextp; 3562 } 3563 bktp->bkt_free_head = lbufp; 3564 3565 /* 3566 * If the requested size is not a multiple of IBD_LSO_BUFSZ, we need 3567 * to adjust the last sgl entry's length. Since we know we need atleast 3568 * one, the i-1 use below is ok. 3569 */ 3570 if (frag_sz) { 3571 sgl_p[i-1].ds_len = frag_sz; 3572 } 3573 3574 /* 3575 * Update nfree count and return 3576 */ 3577 bktp->bkt_nfree -= num_needed; 3578 3579 mutex_exit(&state->id_lso_lock); 3580 3581 *nds_p = num_needed; 3582 3583 return (0); 3584 } 3585 3586 static void 3587 ibd_release_lsobufs(ibd_state_t *state, ibt_wr_ds_t *sgl_p, uint32_t nds) 3588 { 3589 ibd_lsobkt_t *bktp; 3590 ibd_lsobuf_t *lbufp; 3591 uint8_t *lso_mem_end; 3592 uint_t ndx; 3593 int i; 3594 3595 mutex_enter(&state->id_lso_lock); 3596 3597 bktp = state->id_lso; 3598 ASSERT(bktp != NULL); 3599 3600 lso_mem_end = bktp->bkt_mem + bktp->bkt_nelem * IBD_LSO_BUFSZ; 3601 for (i = 0; i < nds; i++) { 3602 uint8_t *va; 3603 3604 va = (uint8_t *)(uintptr_t)sgl_p[i].ds_va; 3605 ASSERT(va >= bktp->bkt_mem && va < lso_mem_end); 3606 3607 /* 3608 * Figure out the buflist element this sgl buffer corresponds 3609 * to and put it back at the head 3610 */ 3611 ndx = (va - bktp->bkt_mem) / IBD_LSO_BUFSZ; 3612 lbufp = bktp->bkt_bufl + ndx; 3613 3614 ASSERT(lbufp->lb_isfree == 0); 3615 ASSERT(lbufp->lb_buf == va); 3616 3617 lbufp->lb_isfree = 1; 3618 lbufp->lb_next = bktp->bkt_free_head; 3619 bktp->bkt_free_head = lbufp; 3620 } 3621 bktp->bkt_nfree += nds; 3622 3623 mutex_exit(&state->id_lso_lock); 3624 } 3625 3626 static void 3627 ibd_free_tx_copybufs(ibd_state_t *state) 3628 { 3629 /* 3630 * Unregister txbuf mr 3631 */ 3632 if (ibt_deregister_mr(state->id_hca_hdl, 3633 state->id_tx_mr_hdl) != IBT_SUCCESS) { 3634 DPRINT(10, "ibd_free_tx_copybufs: ibt_deregister_mr failed"); 3635 } 3636 state->id_tx_mr_hdl = NULL; 3637 3638 /* 3639 * Free txbuf memory 3640 */ 3641 kmem_free(state->id_tx_bufs, state->id_num_swqe * state->id_tx_buf_sz); 3642 state->id_tx_bufs = NULL; 3643 } 3644 3645 static void 3646 ibd_free_tx_lsobufs(ibd_state_t *state) 3647 { 3648 ibd_lsobkt_t *bktp; 3649 3650 mutex_enter(&state->id_lso_lock); 3651 3652 if ((bktp = state->id_lso) == NULL) { 3653 mutex_exit(&state->id_lso_lock); 3654 return; 3655 } 3656 3657 /* 3658 * First, free the buflist 3659 */ 3660 ASSERT(bktp->bkt_bufl != NULL); 3661 kmem_free(bktp->bkt_bufl, bktp->bkt_nelem * sizeof (ibd_lsobuf_t)); 3662 3663 /* 3664 * Unregister the LSO memory and free it 3665 */ 3666 ASSERT(bktp->bkt_mr_hdl != NULL); 3667 if (ibt_deregister_mr(state->id_hca_hdl, 3668 bktp->bkt_mr_hdl) != IBT_SUCCESS) { 3669 DPRINT(10, 3670 "ibd_free_lsobufs: ibt_deregister_mr failed"); 3671 } 3672 ASSERT(bktp->bkt_mem); 3673 kmem_free(bktp->bkt_mem, bktp->bkt_nelem * IBD_LSO_BUFSZ); 3674 3675 /* 3676 * Finally free the bucket 3677 */ 3678 kmem_free(bktp, sizeof (ibd_lsobkt_t)); 3679 state->id_lso = NULL; 3680 3681 mutex_exit(&state->id_lso_lock); 3682 } 3683 3684 /* 3685 * Free the statically allocated Tx buffer list. 3686 */ 3687 static void 3688 ibd_fini_txlist(ibd_state_t *state) 3689 { 3690 ibd_swqe_t *node; 3691 3692 /* 3693 * Free the allocated swqes 3694 */ 3695 mutex_enter(&state->id_tx_list.dl_mutex); 3696 while (state->id_tx_list.dl_head != NULL) { 3697 node = WQE_TO_SWQE(state->id_tx_list.dl_head); 3698 state->id_tx_list.dl_head = node->swqe_next; 3699 state->id_tx_list.dl_cnt--; 3700 ASSERT(state->id_tx_list.dl_cnt >= 0); 3701 ibd_free_swqe(state, node); 3702 } 3703 mutex_exit(&state->id_tx_list.dl_mutex); 3704 3705 ibd_free_tx_lsobufs(state); 3706 ibd_free_tx_copybufs(state); 3707 } 3708 3709 /* 3710 * Allocate a single send wqe and register it so it is almost 3711 * ready to be posted to the hardware. 3712 */ 3713 static int 3714 ibd_alloc_swqe(ibd_state_t *state, ibd_swqe_t **wqe, int ndx, ibt_lkey_t lkey) 3715 { 3716 ibd_swqe_t *swqe; 3717 3718 swqe = kmem_zalloc(sizeof (ibd_swqe_t), KM_SLEEP); 3719 *wqe = swqe; 3720 3721 swqe->swqe_type = IBD_WQE_SEND; 3722 swqe->swqe_next = NULL; 3723 swqe->swqe_prev = NULL; 3724 swqe->swqe_im_mblk = NULL; 3725 3726 swqe->swqe_copybuf.ic_sgl.ds_va = (ib_vaddr_t)(uintptr_t) 3727 (state->id_tx_bufs + ndx * state->id_tx_buf_sz); 3728 swqe->swqe_copybuf.ic_sgl.ds_key = lkey; 3729 swqe->swqe_copybuf.ic_sgl.ds_len = 0; /* set in send */ 3730 3731 swqe->w_swr.wr_id = (ibt_wrid_t)(uintptr_t)swqe; 3732 swqe->w_swr.wr_flags = IBT_WR_SEND_SIGNAL; 3733 swqe->w_swr.wr_trans = IBT_UD_SRV; 3734 3735 /* These are set in send */ 3736 swqe->w_swr.wr_nds = 0; 3737 swqe->w_swr.wr_sgl = NULL; 3738 swqe->w_swr.wr_opcode = IBT_WRC_SEND; 3739 3740 return (DDI_SUCCESS); 3741 } 3742 3743 /* 3744 * Free an allocated send wqe. 3745 */ 3746 /*ARGSUSED*/ 3747 static void 3748 ibd_free_swqe(ibd_state_t *state, ibd_swqe_t *swqe) 3749 { 3750 kmem_free(swqe, sizeof (ibd_swqe_t)); 3751 } 3752 3753 /* 3754 * Post a rwqe to the hardware and add it to the Rx list. The 3755 * "recycle" parameter indicates whether an old rwqe is being 3756 * recycled, or this is a new one. 3757 */ 3758 static int 3759 ibd_post_rwqe(ibd_state_t *state, ibd_rwqe_t *rwqe, boolean_t recycle) 3760 { 3761 ibt_status_t ibt_status; 3762 3763 if (recycle == B_FALSE) { 3764 mutex_enter(&state->id_rx_list.dl_mutex); 3765 if (state->id_rx_list.dl_head == NULL) { 3766 rwqe->rwqe_prev = NULL; 3767 rwqe->rwqe_next = NULL; 3768 state->id_rx_list.dl_head = RWQE_TO_WQE(rwqe); 3769 state->id_rx_list.dl_tail = RWQE_TO_WQE(rwqe); 3770 } else { 3771 rwqe->rwqe_prev = state->id_rx_list.dl_tail; 3772 rwqe->rwqe_next = NULL; 3773 state->id_rx_list.dl_tail->w_next = RWQE_TO_WQE(rwqe); 3774 state->id_rx_list.dl_tail = RWQE_TO_WQE(rwqe); 3775 } 3776 mutex_exit(&state->id_rx_list.dl_mutex); 3777 } 3778 3779 mutex_enter(&state->id_rxpost_lock); 3780 if (state->id_rx_busy) { 3781 rwqe->w_post_link = NULL; 3782 if (state->id_rx_head) 3783 *(state->id_rx_tailp) = (ibd_wqe_t *)rwqe; 3784 else 3785 state->id_rx_head = rwqe; 3786 state->id_rx_tailp = &(rwqe->w_post_link); 3787 } else { 3788 state->id_rx_busy = 1; 3789 do { 3790 mutex_exit(&state->id_rxpost_lock); 3791 3792 /* 3793 * Here we should add dl_cnt before post recv, because 3794 * we would have to make sure dl_cnt is updated before 3795 * the corresponding ibd_process_rx() is called. 3796 */ 3797 atomic_add_32(&state->id_rx_list.dl_cnt, 1); 3798 3799 ibt_status = ibt_post_recv(state->id_chnl_hdl, 3800 &rwqe->w_rwr, 1, NULL); 3801 if (ibt_status != IBT_SUCCESS) { 3802 (void) atomic_add_32_nv( 3803 &state->id_rx_list.dl_cnt, -1); 3804 ibd_print_warn(state, "ibd_post_rwqe: " 3805 "posting failed, ret=%d", ibt_status); 3806 return (DDI_FAILURE); 3807 } 3808 3809 mutex_enter(&state->id_rxpost_lock); 3810 rwqe = state->id_rx_head; 3811 if (rwqe) { 3812 state->id_rx_head = 3813 (ibd_rwqe_t *)(rwqe->w_post_link); 3814 } 3815 } while (rwqe); 3816 state->id_rx_busy = 0; 3817 } 3818 mutex_exit(&state->id_rxpost_lock); 3819 3820 return (DDI_SUCCESS); 3821 } 3822 3823 /* 3824 * Allocate the statically allocated Rx buffer list. 3825 */ 3826 static int 3827 ibd_init_rxlist(ibd_state_t *state) 3828 { 3829 ibd_rwqe_t *rwqe; 3830 int i; 3831 3832 for (i = 0; i < state->id_num_rwqe; i++) { 3833 if (ibd_alloc_rwqe(state, &rwqe) != DDI_SUCCESS) { 3834 ibd_fini_rxlist(state); 3835 return (DDI_FAILURE); 3836 } 3837 3838 if (ibd_post_rwqe(state, rwqe, B_FALSE) == DDI_FAILURE) { 3839 ibd_free_rwqe(state, rwqe); 3840 ibd_fini_rxlist(state); 3841 return (DDI_FAILURE); 3842 } 3843 } 3844 3845 return (DDI_SUCCESS); 3846 } 3847 3848 /* 3849 * Free the statically allocated Rx buffer list. 3850 * 3851 */ 3852 static void 3853 ibd_fini_rxlist(ibd_state_t *state) 3854 { 3855 ibd_rwqe_t *node; 3856 3857 mutex_enter(&state->id_rx_list.dl_mutex); 3858 while (state->id_rx_list.dl_head != NULL) { 3859 node = WQE_TO_RWQE(state->id_rx_list.dl_head); 3860 state->id_rx_list.dl_head = state->id_rx_list.dl_head->w_next; 3861 state->id_rx_list.dl_cnt--; 3862 ASSERT(state->id_rx_list.dl_cnt >= 0); 3863 3864 ibd_free_rwqe(state, node); 3865 } 3866 mutex_exit(&state->id_rx_list.dl_mutex); 3867 } 3868 3869 /* 3870 * Allocate a single recv wqe and register it so it is almost 3871 * ready to be posted to the hardware. 3872 */ 3873 static int 3874 ibd_alloc_rwqe(ibd_state_t *state, ibd_rwqe_t **wqe) 3875 { 3876 ibt_mr_attr_t mem_attr; 3877 ibd_rwqe_t *rwqe; 3878 3879 if ((rwqe = kmem_zalloc(sizeof (ibd_rwqe_t), KM_NOSLEEP)) == NULL) { 3880 DPRINT(10, "ibd_alloc_rwqe: failed in kmem_alloc"); 3881 return (DDI_FAILURE); 3882 } 3883 *wqe = rwqe; 3884 rwqe->rwqe_type = IBD_WQE_RECV; 3885 rwqe->w_state = state; 3886 rwqe->rwqe_next = NULL; 3887 rwqe->rwqe_prev = NULL; 3888 rwqe->w_freeing_wqe = B_FALSE; 3889 rwqe->w_freemsg_cb.free_func = ibd_freemsg_cb; 3890 rwqe->w_freemsg_cb.free_arg = (char *)rwqe; 3891 3892 rwqe->rwqe_copybuf.ic_bufaddr = kmem_alloc(state->id_mtu + 3893 IPOIB_GRH_SIZE, KM_NOSLEEP); 3894 if (rwqe->rwqe_copybuf.ic_bufaddr == NULL) { 3895 DPRINT(10, "ibd_alloc_rwqe: failed in kmem_alloc"); 3896 kmem_free(rwqe, sizeof (ibd_rwqe_t)); 3897 return (DDI_FAILURE); 3898 } 3899 3900 if ((rwqe->rwqe_im_mblk = desballoc(rwqe->rwqe_copybuf.ic_bufaddr, 3901 state->id_mtu + IPOIB_GRH_SIZE, 0, &rwqe->w_freemsg_cb)) == 3902 NULL) { 3903 DPRINT(10, "ibd_alloc_rwqe : failed in desballoc()"); 3904 kmem_free(rwqe->rwqe_copybuf.ic_bufaddr, 3905 state->id_mtu + IPOIB_GRH_SIZE); 3906 rwqe->rwqe_copybuf.ic_bufaddr = NULL; 3907 kmem_free(rwqe, sizeof (ibd_rwqe_t)); 3908 return (DDI_FAILURE); 3909 } 3910 3911 mem_attr.mr_vaddr = (uint64_t)(uintptr_t)rwqe->rwqe_copybuf.ic_bufaddr; 3912 mem_attr.mr_len = state->id_mtu + IPOIB_GRH_SIZE; 3913 mem_attr.mr_as = NULL; 3914 mem_attr.mr_flags = IBT_MR_NOSLEEP | IBT_MR_ENABLE_LOCAL_WRITE; 3915 if (ibt_register_mr(state->id_hca_hdl, state->id_pd_hdl, &mem_attr, 3916 &rwqe->rwqe_copybuf.ic_mr_hdl, &rwqe->rwqe_copybuf.ic_mr_desc) != 3917 IBT_SUCCESS) { 3918 DPRINT(10, "ibd_alloc_rwqe : failed in ibt_register_mem()"); 3919 rwqe->w_freeing_wqe = B_TRUE; 3920 freemsg(rwqe->rwqe_im_mblk); 3921 kmem_free(rwqe->rwqe_copybuf.ic_bufaddr, 3922 state->id_mtu + IPOIB_GRH_SIZE); 3923 rwqe->rwqe_copybuf.ic_bufaddr = NULL; 3924 kmem_free(rwqe, sizeof (ibd_rwqe_t)); 3925 return (DDI_FAILURE); 3926 } 3927 3928 rwqe->rwqe_copybuf.ic_sgl.ds_va = 3929 (ib_vaddr_t)(uintptr_t)rwqe->rwqe_copybuf.ic_bufaddr; 3930 rwqe->rwqe_copybuf.ic_sgl.ds_key = 3931 rwqe->rwqe_copybuf.ic_mr_desc.md_lkey; 3932 rwqe->rwqe_copybuf.ic_sgl.ds_len = state->id_mtu + IPOIB_GRH_SIZE; 3933 rwqe->w_rwr.wr_id = (ibt_wrid_t)(uintptr_t)rwqe; 3934 rwqe->w_rwr.wr_nds = 1; 3935 rwqe->w_rwr.wr_sgl = &rwqe->rwqe_copybuf.ic_sgl; 3936 3937 return (DDI_SUCCESS); 3938 } 3939 3940 /* 3941 * Free an allocated recv wqe. 3942 */ 3943 static void 3944 ibd_free_rwqe(ibd_state_t *state, ibd_rwqe_t *rwqe) 3945 { 3946 if (ibt_deregister_mr(state->id_hca_hdl, 3947 rwqe->rwqe_copybuf.ic_mr_hdl) != IBT_SUCCESS) { 3948 DPRINT(10, "ibd_free_rwqe: failed in ibt_deregister_mr()"); 3949 return; 3950 } 3951 3952 /* 3953 * Indicate to the callback function that this rwqe/mblk 3954 * should not be recycled. The freemsg() will invoke 3955 * ibd_freemsg_cb(). 3956 */ 3957 if (rwqe->rwqe_im_mblk != NULL) { 3958 rwqe->w_freeing_wqe = B_TRUE; 3959 freemsg(rwqe->rwqe_im_mblk); 3960 } 3961 kmem_free(rwqe->rwqe_copybuf.ic_bufaddr, 3962 state->id_mtu + IPOIB_GRH_SIZE); 3963 rwqe->rwqe_copybuf.ic_bufaddr = NULL; 3964 kmem_free(rwqe, sizeof (ibd_rwqe_t)); 3965 } 3966 3967 /* 3968 * Delete the rwqe being freed from the rx list. 3969 */ 3970 static void 3971 ibd_delete_rwqe(ibd_state_t *state, ibd_rwqe_t *rwqe) 3972 { 3973 mutex_enter(&state->id_rx_list.dl_mutex); 3974 if (state->id_rx_list.dl_head == RWQE_TO_WQE(rwqe)) 3975 state->id_rx_list.dl_head = rwqe->rwqe_next; 3976 else 3977 rwqe->rwqe_prev->w_next = rwqe->rwqe_next; 3978 if (state->id_rx_list.dl_tail == RWQE_TO_WQE(rwqe)) 3979 state->id_rx_list.dl_tail = rwqe->rwqe_prev; 3980 else 3981 rwqe->rwqe_next->w_prev = rwqe->rwqe_prev; 3982 mutex_exit(&state->id_rx_list.dl_mutex); 3983 } 3984 3985 /* 3986 * Pre ibt_detach() deconstruction. 3987 */ 3988 static void 3989 ibd_drv_fini(ibd_state_t *state) 3990 { 3991 ib_gid_t mgid; 3992 ibd_mce_t *mce; 3993 ibt_status_t status; 3994 uint8_t jstate; 3995 3996 /* 3997 * Desubscribe from trap notices; we will be tearing down 3998 * the mcg lists soon. Make sure the trap handler does nothing 3999 * even if it is invoked (ie till we invoke ibt_detach()). 4000 */ 4001 ibt_register_subnet_notices(state->id_ibt_hdl, NULL, NULL); 4002 mutex_enter(&state->id_trap_lock); 4003 state->id_trap_stop = B_TRUE; 4004 while (state->id_trap_inprog > 0) 4005 cv_wait(&state->id_trap_cv, &state->id_trap_lock); 4006 mutex_exit(&state->id_trap_lock); 4007 4008 /* 4009 * Flushing the channel ensures that all pending WQE's 4010 * are marked with flush_error and handed to the CQ. It 4011 * does not guarantee the invocation of the CQ handler. 4012 * This call is guaranteed to return successfully for UD QPNs. 4013 */ 4014 status = ibt_flush_channel(state->id_chnl_hdl); 4015 ASSERT(status == IBT_SUCCESS); 4016 4017 /* 4018 * We possibly need a loop here to wait for all the Tx 4019 * callbacks to happen. The Tx handlers will retrieve 4020 * held resources like AH ac_ref count, registered memory 4021 * and possibly IBD_ASYNC_REAP requests. Rx interrupts were already 4022 * turned off (in ibd_detach()); turn off Tx interrupts and 4023 * poll. By the time the polling returns an empty indicator, 4024 * we are sure we have seen all pending Tx callbacks. Note 4025 * that after the ibt_set_cq_handler() returns, the old handler 4026 * is guaranteed not to be invoked anymore. 4027 */ 4028 if (ibd_separate_cqs == 1) 4029 ibt_set_cq_handler(state->id_scq_hdl, 0, 0); 4030 ibd_poll_compq(state, state->id_scq_hdl); 4031 4032 /* 4033 * No more async requests will be posted since the device has been 4034 * unregistered; completion handlers have been turned off, so Tx 4035 * handler will not cause any more IBD_ASYNC_REAP requests. Queue a 4036 * request for the async thread to exit, which will be serviced 4037 * after any pending ones. This can take a while, specially if the 4038 * SM is unreachable, since IBMF will slowly timeout each SM request 4039 * issued by the async thread. Reap the thread before continuing on, 4040 * we do not want it to be lingering in modunloaded code. 4041 */ 4042 ibd_queue_work_slot(state, &state->id_ah_req, IBD_ASYNC_EXIT); 4043 thread_join(state->id_async_thrid); 4044 4045 /* 4046 * We can not be in promiscuous mode anymore, upper layers 4047 * would have made a request to disable it (if ever set previously) 4048 * before the detach is allowed to progress to this point; and the 4049 * aysnc thread would have processed that request by now. Thus the 4050 * nonmember list is guaranteed empty at this point. 4051 */ 4052 ASSERT(state->id_prom_op != IBD_OP_COMPLETED); 4053 4054 /* 4055 * Drop all residual full/non membership. This includes full 4056 * membership to the broadcast group, and any nonmembership 4057 * acquired during transmits. We do this after the Tx completion 4058 * handlers are done, since those might result in some late 4059 * leaves; this also eliminates a potential race with that 4060 * path wrt the mc full list insert/delete. Trap handling 4061 * has also been suppressed at this point. Thus, no locks 4062 * are required while traversing the mc full list. 4063 */ 4064 DPRINT(2, "ibd_drv_fini : clear full cache entries"); 4065 mce = list_head(&state->id_mc_full); 4066 while (mce != NULL) { 4067 mgid = mce->mc_info.mc_adds_vect.av_dgid; 4068 jstate = mce->mc_jstate; 4069 mce = list_next(&state->id_mc_full, mce); 4070 ibd_leave_group(state, mgid, jstate); 4071 } 4072 4073 ibt_free_mcg_info(state->id_mcinfo, 1); 4074 4075 /* 4076 * Kill the channel now; guaranteed to return successfully 4077 * for UD QPNs. 4078 */ 4079 status = ibt_free_channel(state->id_chnl_hdl); 4080 ASSERT(status == IBT_SUCCESS); 4081 4082 /* 4083 * Kill the CQ; all completion handlers are guaranteed to 4084 * have terminated by the time this returns. Since we killed 4085 * the QPN above, we can not receive the IBT_CQ_BUSY error. 4086 */ 4087 status = ibt_free_cq(state->id_rcq_hdl); 4088 ASSERT(status == IBT_SUCCESS); 4089 kmem_free(state->id_rxwcs, sizeof (ibt_wc_t) * state->id_rxwcs_size); 4090 4091 if (ibd_separate_cqs == 1) { 4092 status = ibt_free_cq(state->id_scq_hdl); 4093 ASSERT(status == IBT_SUCCESS); 4094 kmem_free(state->id_txwcs, sizeof (ibt_wc_t) * 4095 state->id_txwcs_size); 4096 } 4097 4098 /* 4099 * Since these following will act on the Rx/Tx list, which 4100 * is also looked at by the Rx/Tx handlers, keep them around 4101 * till all handlers are guaranteed to have completed. 4102 */ 4103 ibd_fini_rxlist(state); 4104 ibd_fini_txlist(state); 4105 4106 /* 4107 * Clean up the active AH hash list. 4108 */ 4109 mod_hash_destroy_hash(state->id_ah_active_hash); 4110 4111 /* 4112 * Free parallel ARP cache and AHs; we are sure all of these 4113 * resources have been released by the Tx completion handler. 4114 */ 4115 ibd_acache_fini(state); 4116 4117 /* 4118 * We freed the QPN, all the MRs and AHs. This step should not 4119 * fail; print a warning message if it does fail, due to a bug 4120 * in the driver. 4121 */ 4122 if (ibt_free_pd(state->id_hca_hdl, state->id_pd_hdl) != IBT_SUCCESS) 4123 ibd_print_warn(state, "failed to free protection domain"); 4124 4125 if (ibt_close_hca(state->id_hca_hdl) != IBT_SUCCESS) 4126 ibd_print_warn(state, "failed to close HCA device"); 4127 } 4128 4129 /* 4130 * IBA Rx/Tx completion queue handler. Guaranteed to be single 4131 * threaded and nonreentrant for this CQ. When using combined CQ, 4132 * this handles Tx and Rx completions. With separate CQs, this handles 4133 * only Rx completions. 4134 */ 4135 /* ARGSUSED */ 4136 static void 4137 ibd_rcq_handler(ibt_cq_hdl_t cq_hdl, void *arg) 4138 { 4139 ibd_state_t *state = (ibd_state_t *)arg; 4140 4141 atomic_add_64(&state->id_num_intrs, 1); 4142 4143 if (ibd_rx_softintr == 1) 4144 ddi_trigger_softintr(state->id_rx); 4145 else 4146 (void) ibd_intr((char *)state); 4147 } 4148 4149 /* 4150 * Separate CQ handler for Tx completions, when the Tx CQ is in 4151 * interrupt driven mode. 4152 */ 4153 /* ARGSUSED */ 4154 static void 4155 ibd_scq_handler(ibt_cq_hdl_t cq_hdl, void *arg) 4156 { 4157 ibd_state_t *state = (ibd_state_t *)arg; 4158 4159 atomic_add_64(&state->id_num_intrs, 1); 4160 4161 if (ibd_tx_softintr == 1) 4162 ddi_trigger_softintr(state->id_tx); 4163 else 4164 (void) ibd_tx_recycle((char *)state); 4165 } 4166 4167 /* 4168 * Multicast group create/delete trap handler. These will be delivered 4169 * on a kernel thread (handling can thus block) and can be invoked 4170 * concurrently. The handler can be invoked anytime after it is 4171 * registered and before ibt_detach(). 4172 */ 4173 /* ARGSUSED */ 4174 static void 4175 ibd_snet_notices_handler(void *arg, ib_gid_t gid, ibt_subnet_event_code_t code, 4176 ibt_subnet_event_t *event) 4177 { 4178 ibd_state_t *state = (ibd_state_t *)arg; 4179 ibd_req_t *req; 4180 4181 /* 4182 * The trap handler will get invoked once for every event for 4183 * evert port. The input "gid" is the GID0 of the port the 4184 * trap came in on; we just need to act on traps that came 4185 * to our port, meaning the port on which the ipoib interface 4186 * resides. Since ipoib uses GID0 of the port, we just match 4187 * the gids to check whether we need to handle the trap. 4188 */ 4189 if (bcmp(&gid, &state->id_sgid, sizeof (ib_gid_t)) != 0) 4190 return; 4191 4192 DPRINT(10, "ibd_notices_handler : %d\n", code); 4193 4194 switch (code) { 4195 case IBT_SM_EVENT_UNAVAILABLE: 4196 /* 4197 * If we are in promiscuous mode or have 4198 * sendnonmembers, we need to print a warning 4199 * message right now. Else, just store the 4200 * information, print when we enter promiscuous 4201 * mode or attempt nonmember send. We might 4202 * also want to stop caching sendnonmember. 4203 */ 4204 ibd_print_warn(state, "IBA multicast support " 4205 "degraded due to unavailability of multicast " 4206 "traps"); 4207 break; 4208 case IBT_SM_EVENT_AVAILABLE: 4209 /* 4210 * If we printed a warning message above or 4211 * while trying to nonmember send or get into 4212 * promiscuous mode, print an okay message. 4213 */ 4214 ibd_print_warn(state, "IBA multicast support " 4215 "restored due to availability of multicast " 4216 "traps"); 4217 break; 4218 case IBT_SM_EVENT_MCG_CREATED: 4219 case IBT_SM_EVENT_MCG_DELETED: 4220 /* 4221 * Common processing of creation/deletion traps. 4222 * First check if the instance is being 4223 * [de]initialized; back off then, without doing 4224 * anything more, since we are not sure if the 4225 * async thread is around, or whether we might 4226 * be racing with the detach code in ibd_drv_fini() 4227 * that scans the mcg list. 4228 */ 4229 if (!ibd_async_safe(state)) 4230 return; 4231 4232 req = kmem_cache_alloc(state->id_req_kmc, KM_SLEEP); 4233 req->rq_gid = event->sm_notice_gid; 4234 req->rq_ptr = (void *)code; 4235 ibd_queue_work_slot(state, req, IBD_ASYNC_TRAP); 4236 break; 4237 } 4238 } 4239 4240 static void 4241 ibd_async_trap(ibd_state_t *state, ibd_req_t *req) 4242 { 4243 ib_gid_t mgid = req->rq_gid; 4244 ibt_subnet_event_code_t code = (ibt_subnet_event_code_t)req->rq_ptr; 4245 4246 DPRINT(10, "ibd_async_trap : %d\n", code); 4247 4248 /* 4249 * Atomically search the nonmember and sendonlymember lists and 4250 * delete. 4251 */ 4252 ibd_leave_group(state, mgid, IB_MC_JSTATE_SEND_ONLY_NON); 4253 4254 if (state->id_prom_op == IBD_OP_COMPLETED) { 4255 ibd_leave_group(state, mgid, IB_MC_JSTATE_NON); 4256 4257 /* 4258 * If in promiscuous mode, try to join/attach to the new 4259 * mcg. Given the unreliable out-of-order mode of trap 4260 * delivery, we can never be sure whether it is a problem 4261 * if the join fails. Thus, we warn the admin of a failure 4262 * if this was a creation trap. Note that the trap might 4263 * actually be reporting a long past event, and the mcg 4264 * might already have been deleted, thus we might be warning 4265 * in vain. 4266 */ 4267 if ((ibd_join_group(state, mgid, IB_MC_JSTATE_NON) == 4268 NULL) && (code == IBT_SM_EVENT_MCG_CREATED)) 4269 ibd_print_warn(state, "IBA promiscuous mode missed " 4270 "new multicast gid %016llx:%016llx", 4271 (u_longlong_t)mgid.gid_prefix, 4272 (u_longlong_t)mgid.gid_guid); 4273 } 4274 4275 /* 4276 * Free the request slot allocated by the subnet event thread. 4277 */ 4278 ibd_async_done(state); 4279 } 4280 4281 /* 4282 * GLDv3 entry point to get capabilities. 4283 */ 4284 static boolean_t 4285 ibd_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 4286 { 4287 ibd_state_t *state = arg; 4288 4289 switch (cap) { 4290 case MAC_CAPAB_HCKSUM: { 4291 uint32_t *txflags = cap_data; 4292 4293 /* 4294 * We either do full checksum or not do it at all 4295 */ 4296 if (state->id_hwcksum_capab & IBT_HCA_CKSUM_FULL) 4297 *txflags = HCK_FULLCKSUM | HCKSUM_INET_FULL_V4; 4298 else 4299 return (B_FALSE); 4300 break; 4301 } 4302 4303 case MAC_CAPAB_LSO: { 4304 mac_capab_lso_t *cap_lso = cap_data; 4305 4306 /* 4307 * In addition to the capability and policy, since LSO 4308 * relies on hw checksum, we'll not enable LSO if we 4309 * don't have hw checksum. Of course, if the HCA doesn't 4310 * provide the reserved lkey capability, enabling LSO will 4311 * actually affect performance adversely, so we'll disable 4312 * LSO even for that case. 4313 */ 4314 if (!state->id_lso_policy || !state->id_lso_capable) 4315 return (B_FALSE); 4316 4317 if ((state->id_hwcksum_capab & IBT_HCA_CKSUM_FULL) == 0) 4318 return (B_FALSE); 4319 4320 if (state->id_hca_res_lkey_capab == 0) { 4321 ibd_print_warn(state, "no reserved-lkey capability, " 4322 "disabling LSO"); 4323 return (B_FALSE); 4324 } 4325 4326 cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4; 4327 cap_lso->lso_basic_tcp_ipv4.lso_max = state->id_lso_maxlen - 1; 4328 break; 4329 } 4330 4331 default: 4332 return (B_FALSE); 4333 } 4334 4335 return (B_TRUE); 4336 } 4337 4338 /* 4339 * GLDv3 entry point to start hardware. 4340 */ 4341 /*ARGSUSED*/ 4342 static int 4343 ibd_m_start(void *arg) 4344 { 4345 return (0); 4346 } 4347 4348 /* 4349 * GLDv3 entry point to stop hardware from receiving packets. 4350 */ 4351 /*ARGSUSED*/ 4352 static void 4353 ibd_m_stop(void *arg) 4354 { 4355 } 4356 4357 /* 4358 * GLDv3 entry point to modify device's mac address. We do not 4359 * allow address modifications. 4360 */ 4361 static int 4362 ibd_m_unicst(void *arg, const uint8_t *macaddr) 4363 { 4364 ibd_state_t *state; 4365 4366 state = (ibd_state_t *)arg; 4367 if (bcmp(macaddr, &state->id_macaddr, IPOIB_ADDRL) == 0) 4368 return (0); 4369 else 4370 return (EINVAL); 4371 } 4372 4373 /* 4374 * The blocking part of the IBA join/leave operations are done out 4375 * of here on the async thread. 4376 */ 4377 static void 4378 ibd_async_multicast(ibd_state_t *state, ib_gid_t mgid, int op) 4379 { 4380 DPRINT(3, "ibd_async_multicast : async_setmc op %d :" 4381 "%016llx:%016llx\n", op, mgid.gid_prefix, mgid.gid_guid); 4382 4383 if (op == IBD_ASYNC_JOIN) { 4384 4385 if (ibd_join_group(state, mgid, IB_MC_JSTATE_FULL) == NULL) { 4386 ibd_print_warn(state, "Joint multicast group failed :" 4387 "%016llx:%016llx", mgid.gid_prefix, mgid.gid_guid); 4388 } 4389 } else { 4390 /* 4391 * Here, we must search for the proper mcg_info and 4392 * use that to leave the group. 4393 */ 4394 ibd_leave_group(state, mgid, IB_MC_JSTATE_FULL); 4395 } 4396 } 4397 4398 /* 4399 * GLDv3 entry point for multicast enable/disable requests. 4400 * This function queues the operation to the async thread and 4401 * return success for a valid multicast address. 4402 */ 4403 static int 4404 ibd_m_multicst(void *arg, boolean_t add, const uint8_t *mcmac) 4405 { 4406 ibd_state_t *state = (ibd_state_t *)arg; 4407 ipoib_mac_t maddr, *mcast; 4408 ib_gid_t mgid; 4409 ibd_req_t *req; 4410 4411 /* 4412 * The incoming multicast address might not be aligned properly 4413 * on a 4 byte boundary to be considered an ipoib_mac_t. We force 4414 * it to look like one though, to get the offsets of the mc gid, 4415 * since we know we are not going to dereference any values with 4416 * the ipoib_mac_t pointer. 4417 */ 4418 bcopy(mcmac, &maddr, sizeof (ipoib_mac_t)); 4419 mcast = &maddr; 4420 4421 /* 4422 * Check validity of MCG address. We could additionally check 4423 * that a enable/disable is not being issued on the "broadcast" 4424 * mcg, but since this operation is only invokable by priviledged 4425 * programs anyway, we allow the flexibility to those dlpi apps. 4426 * Note that we do not validate the "scope" of the IBA mcg. 4427 */ 4428 if ((ntohl(mcast->ipoib_qpn) & IB_QPN_MASK) != IB_MC_QPN) 4429 return (EINVAL); 4430 4431 /* 4432 * fill in multicast pkey and scope 4433 */ 4434 IBD_FILL_SCOPE_PKEY(mcast, state->id_scope, state->id_pkey); 4435 4436 /* 4437 * If someone is trying to JOIN/LEAVE the broadcast group, we do 4438 * nothing (ie we stay JOINed to the broadcast group done in 4439 * ibd_drv_init()), to mimic ethernet behavior. IPv4 specifically 4440 * requires to be joined to broadcast groups at all times. 4441 * ibd_join_group() has an ASSERT(omce->mc_fullreap) that also 4442 * depends on this. 4443 */ 4444 if (bcmp(mcast, &state->id_bcaddr, IPOIB_ADDRL) == 0) 4445 return (0); 4446 4447 ibd_n2h_gid(mcast, &mgid); 4448 req = kmem_cache_alloc(state->id_req_kmc, KM_NOSLEEP); 4449 if (req == NULL) 4450 return (ENOMEM); 4451 4452 req->rq_gid = mgid; 4453 4454 if (add) { 4455 DPRINT(1, "ibd_m_multicst : %016llx:%016llx\n", 4456 mgid.gid_prefix, mgid.gid_guid); 4457 ibd_queue_work_slot(state, req, IBD_ASYNC_JOIN); 4458 } else { 4459 DPRINT(1, "ibd_m_multicst : unset_multicast : " 4460 "%016llx:%016llx", mgid.gid_prefix, mgid.gid_guid); 4461 ibd_queue_work_slot(state, req, IBD_ASYNC_LEAVE); 4462 } 4463 return (0); 4464 } 4465 4466 /* 4467 * The blocking part of the IBA promiscuous operations are done 4468 * out of here on the async thread. The dlpireq parameter indicates 4469 * whether this invocation is due to a dlpi request or due to 4470 * a port up/down event. 4471 */ 4472 static void 4473 ibd_async_unsetprom(ibd_state_t *state) 4474 { 4475 ibd_mce_t *mce = list_head(&state->id_mc_non); 4476 ib_gid_t mgid; 4477 4478 DPRINT(2, "ibd_async_unsetprom : async_unset_promisc"); 4479 4480 while (mce != NULL) { 4481 mgid = mce->mc_info.mc_adds_vect.av_dgid; 4482 mce = list_next(&state->id_mc_non, mce); 4483 ibd_leave_group(state, mgid, IB_MC_JSTATE_NON); 4484 } 4485 state->id_prom_op = IBD_OP_NOTSTARTED; 4486 } 4487 4488 /* 4489 * The blocking part of the IBA promiscuous operations are done 4490 * out of here on the async thread. The dlpireq parameter indicates 4491 * whether this invocation is due to a dlpi request or due to 4492 * a port up/down event. 4493 */ 4494 static void 4495 ibd_async_setprom(ibd_state_t *state) 4496 { 4497 ibt_mcg_attr_t mcg_attr; 4498 ibt_mcg_info_t *mcg_info; 4499 ib_gid_t mgid; 4500 uint_t numg; 4501 int i, ret = IBD_OP_COMPLETED; 4502 4503 DPRINT(2, "ibd_async_setprom : async_set_promisc"); 4504 4505 /* 4506 * Obtain all active MC groups on the IB fabric with 4507 * specified criteria (scope + Pkey + Qkey + mtu). 4508 */ 4509 bzero(&mcg_attr, sizeof (mcg_attr)); 4510 mcg_attr.mc_pkey = state->id_pkey; 4511 mcg_attr.mc_scope = state->id_scope; 4512 mcg_attr.mc_qkey = state->id_mcinfo->mc_qkey; 4513 mcg_attr.mc_mtu_req.r_mtu = state->id_mcinfo->mc_mtu; 4514 mcg_attr.mc_mtu_req.r_selector = IBT_EQU; 4515 if (ibt_query_mcg(state->id_sgid, &mcg_attr, 0, &mcg_info, &numg) != 4516 IBT_SUCCESS) { 4517 ibd_print_warn(state, "Could not get list of IBA multicast " 4518 "groups"); 4519 ret = IBD_OP_ERRORED; 4520 goto done; 4521 } 4522 4523 /* 4524 * Iterate over the returned mcg's and join as NonMember 4525 * to the IP mcg's. 4526 */ 4527 for (i = 0; i < numg; i++) { 4528 /* 4529 * Do a NonMember JOIN on the MC group. 4530 */ 4531 mgid = mcg_info[i].mc_adds_vect.av_dgid; 4532 if (ibd_join_group(state, mgid, IB_MC_JSTATE_NON) == NULL) 4533 ibd_print_warn(state, "IBA promiscuous mode missed " 4534 "multicast gid %016llx:%016llx", 4535 (u_longlong_t)mgid.gid_prefix, 4536 (u_longlong_t)mgid.gid_guid); 4537 } 4538 4539 ibt_free_mcg_info(mcg_info, numg); 4540 DPRINT(4, "ibd_async_setprom : async_set_promisc completes"); 4541 done: 4542 state->id_prom_op = ret; 4543 } 4544 4545 /* 4546 * GLDv3 entry point for multicast promiscuous enable/disable requests. 4547 * GLDv3 assumes phys state receives more packets than multi state, 4548 * which is not true for IPoIB. Thus, treat the multi and phys 4549 * promiscuous states the same way to work with GLDv3's assumption. 4550 */ 4551 static int 4552 ibd_m_promisc(void *arg, boolean_t on) 4553 { 4554 ibd_state_t *state = (ibd_state_t *)arg; 4555 ibd_req_t *req; 4556 4557 req = kmem_cache_alloc(state->id_req_kmc, KM_NOSLEEP); 4558 if (req == NULL) 4559 return (ENOMEM); 4560 if (on) { 4561 DPRINT(1, "ibd_m_promisc : set_promisc : %d", on); 4562 ibd_queue_work_slot(state, req, IBD_ASYNC_PROMON); 4563 } else { 4564 DPRINT(1, "ibd_m_promisc : unset_promisc"); 4565 ibd_queue_work_slot(state, req, IBD_ASYNC_PROMOFF); 4566 } 4567 4568 return (0); 4569 } 4570 4571 /* 4572 * GLDv3 entry point for gathering statistics. 4573 */ 4574 static int 4575 ibd_m_stat(void *arg, uint_t stat, uint64_t *val) 4576 { 4577 ibd_state_t *state = (ibd_state_t *)arg; 4578 4579 switch (stat) { 4580 case MAC_STAT_IFSPEED: 4581 *val = state->id_link_speed; 4582 break; 4583 case MAC_STAT_MULTIRCV: 4584 *val = state->id_multi_rcv; 4585 break; 4586 case MAC_STAT_BRDCSTRCV: 4587 *val = state->id_brd_rcv; 4588 break; 4589 case MAC_STAT_MULTIXMT: 4590 *val = state->id_multi_xmt; 4591 break; 4592 case MAC_STAT_BRDCSTXMT: 4593 *val = state->id_brd_xmt; 4594 break; 4595 case MAC_STAT_RBYTES: 4596 *val = state->id_rcv_bytes; 4597 break; 4598 case MAC_STAT_IPACKETS: 4599 *val = state->id_rcv_pkt; 4600 break; 4601 case MAC_STAT_OBYTES: 4602 *val = state->id_xmt_bytes; 4603 break; 4604 case MAC_STAT_OPACKETS: 4605 *val = state->id_xmt_pkt; 4606 break; 4607 case MAC_STAT_OERRORS: 4608 *val = state->id_ah_error; /* failed AH translation */ 4609 break; 4610 case MAC_STAT_IERRORS: 4611 *val = 0; 4612 break; 4613 case MAC_STAT_NOXMTBUF: 4614 *val = state->id_tx_short; 4615 break; 4616 case MAC_STAT_NORCVBUF: 4617 default: 4618 return (ENOTSUP); 4619 } 4620 4621 return (0); 4622 } 4623 4624 static void 4625 ibd_async_txsched(ibd_state_t *state) 4626 { 4627 ibd_req_t *req; 4628 int ret; 4629 4630 if (ibd_txcomp_poll) 4631 ibd_poll_compq(state, state->id_scq_hdl); 4632 4633 ret = ibd_resume_transmission(state); 4634 if (ret && ibd_txcomp_poll) { 4635 if (req = kmem_cache_alloc(state->id_req_kmc, KM_NOSLEEP)) 4636 ibd_queue_work_slot(state, req, IBD_ASYNC_SCHED); 4637 else { 4638 ibd_print_warn(state, "ibd_async_txsched: " 4639 "no memory, can't schedule work slot"); 4640 } 4641 } 4642 } 4643 4644 static int 4645 ibd_resume_transmission(ibd_state_t *state) 4646 { 4647 int flag; 4648 int met_thresh = 0; 4649 int ret = -1; 4650 4651 mutex_enter(&state->id_sched_lock); 4652 if (state->id_sched_needed & IBD_RSRC_SWQE) { 4653 met_thresh = (state->id_tx_list.dl_cnt > 4654 IBD_FREE_SWQES_THRESH); 4655 flag = IBD_RSRC_SWQE; 4656 } else if (state->id_sched_needed & IBD_RSRC_LSOBUF) { 4657 ASSERT(state->id_lso != NULL); 4658 met_thresh = (state->id_lso->bkt_nfree > 4659 IBD_FREE_LSOS_THRESH); 4660 flag = IBD_RSRC_LSOBUF; 4661 } 4662 if (met_thresh) { 4663 state->id_sched_needed &= ~flag; 4664 ret = 0; 4665 } 4666 mutex_exit(&state->id_sched_lock); 4667 4668 if (ret == 0) 4669 mac_tx_update(state->id_mh); 4670 4671 return (ret); 4672 } 4673 4674 /* 4675 * Release the send wqe back into free list. 4676 */ 4677 static void 4678 ibd_release_swqe(ibd_state_t *state, ibd_swqe_t *swqe) 4679 { 4680 /* 4681 * Add back on Tx list for reuse. 4682 */ 4683 swqe->swqe_next = NULL; 4684 mutex_enter(&state->id_tx_list.dl_mutex); 4685 if (state->id_tx_list.dl_pending_sends) { 4686 state->id_tx_list.dl_pending_sends = B_FALSE; 4687 } 4688 if (state->id_tx_list.dl_head == NULL) { 4689 state->id_tx_list.dl_head = SWQE_TO_WQE(swqe); 4690 } else { 4691 state->id_tx_list.dl_tail->w_next = SWQE_TO_WQE(swqe); 4692 } 4693 state->id_tx_list.dl_tail = SWQE_TO_WQE(swqe); 4694 state->id_tx_list.dl_cnt++; 4695 mutex_exit(&state->id_tx_list.dl_mutex); 4696 } 4697 4698 /* 4699 * Acquire a send wqe from free list. 4700 * Returns error number and send wqe pointer. 4701 */ 4702 static int 4703 ibd_acquire_swqe(ibd_state_t *state, ibd_swqe_t **swqe) 4704 { 4705 int rc = 0; 4706 ibd_swqe_t *wqe; 4707 4708 /* 4709 * Check and reclaim some of the completed Tx requests. 4710 * If someone else is already in this code and pulling Tx 4711 * completions, no need to poll, since the current lock holder 4712 * will do the work anyway. Normally, we poll for completions 4713 * every few Tx attempts, but if we are short on Tx descriptors, 4714 * we always try to poll. 4715 */ 4716 if ((ibd_txcomp_poll == 1) && 4717 (state->id_tx_list.dl_cnt < IBD_TX_POLL_THRESH)) { 4718 ibd_poll_compq(state, state->id_scq_hdl); 4719 } 4720 4721 /* 4722 * Grab required transmit wqes. 4723 */ 4724 mutex_enter(&state->id_tx_list.dl_mutex); 4725 wqe = WQE_TO_SWQE(state->id_tx_list.dl_head); 4726 if (wqe != NULL) { 4727 state->id_tx_list.dl_cnt -= 1; 4728 state->id_tx_list.dl_head = wqe->swqe_next; 4729 if (state->id_tx_list.dl_tail == SWQE_TO_WQE(wqe)) 4730 state->id_tx_list.dl_tail = NULL; 4731 } else { 4732 /* 4733 * If we did not find the number we were looking for, flag 4734 * no resource. Adjust list appropriately in either case. 4735 */ 4736 rc = ENOENT; 4737 state->id_tx_list.dl_pending_sends = B_TRUE; 4738 DPRINT(5, "ibd_acquire_swqe: out of Tx wqe"); 4739 atomic_add_64(&state->id_tx_short, 1); 4740 } 4741 mutex_exit(&state->id_tx_list.dl_mutex); 4742 *swqe = wqe; 4743 4744 return (rc); 4745 } 4746 4747 static int 4748 ibd_setup_lso(ibd_swqe_t *node, mblk_t *mp, uint32_t mss, 4749 ibt_ud_dest_hdl_t ud_dest) 4750 { 4751 mblk_t *nmp; 4752 int iph_len, tcph_len; 4753 ibt_wr_lso_t *lso; 4754 uintptr_t ip_start, tcp_start; 4755 uint8_t *dst; 4756 uint_t pending, mblen; 4757 4758 /* 4759 * The code in ibd_send would've set 'wr.ud.udwr_dest' by default; 4760 * we need to adjust it here for lso. 4761 */ 4762 lso = &(node->w_swr.wr.ud_lso); 4763 lso->lso_ud_dest = ud_dest; 4764 lso->lso_mss = mss; 4765 4766 /* 4767 * Calculate the LSO header size and set it in the UD LSO structure. 4768 * Note that the only assumption we make is that each of the IPoIB, 4769 * IP and TCP headers will be contained in a single mblk fragment; 4770 * together, the headers may span multiple mblk fragments. 4771 */ 4772 nmp = mp; 4773 ip_start = (uintptr_t)(nmp->b_rptr) + IPOIB_HDRSIZE; 4774 if (ip_start >= (uintptr_t)(nmp->b_wptr)) { 4775 ip_start = (uintptr_t)nmp->b_cont->b_rptr 4776 + (ip_start - (uintptr_t)(nmp->b_wptr)); 4777 nmp = nmp->b_cont; 4778 4779 } 4780 iph_len = IPH_HDR_LENGTH((ipha_t *)ip_start); 4781 4782 tcp_start = ip_start + iph_len; 4783 if (tcp_start >= (uintptr_t)(nmp->b_wptr)) { 4784 tcp_start = (uintptr_t)nmp->b_cont->b_rptr 4785 + (tcp_start - (uintptr_t)(nmp->b_wptr)); 4786 nmp = nmp->b_cont; 4787 } 4788 tcph_len = TCP_HDR_LENGTH((tcph_t *)tcp_start); 4789 lso->lso_hdr_sz = IPOIB_HDRSIZE + iph_len + tcph_len; 4790 4791 /* 4792 * If the lso header fits entirely within a single mblk fragment, 4793 * we'll avoid an additional copy of the lso header here and just 4794 * pass the b_rptr of the mblk directly. 4795 * 4796 * If this isn't true, we'd have to allocate for it explicitly. 4797 */ 4798 if (lso->lso_hdr_sz <= MBLKL(mp)) { 4799 lso->lso_hdr = mp->b_rptr; 4800 } else { 4801 /* On work completion, remember to free this allocated hdr */ 4802 lso->lso_hdr = kmem_zalloc(lso->lso_hdr_sz, KM_NOSLEEP); 4803 if (lso->lso_hdr == NULL) { 4804 DPRINT(10, "ibd_setup_lso: couldn't allocate lso hdr, " 4805 "sz = %d", lso->lso_hdr_sz); 4806 lso->lso_hdr_sz = 0; 4807 lso->lso_mss = 0; 4808 return (-1); 4809 } 4810 } 4811 4812 /* 4813 * Copy in the lso header only if we need to 4814 */ 4815 if (lso->lso_hdr != mp->b_rptr) { 4816 dst = lso->lso_hdr; 4817 pending = lso->lso_hdr_sz; 4818 4819 for (nmp = mp; nmp && pending; nmp = nmp->b_cont) { 4820 mblen = MBLKL(nmp); 4821 if (pending > mblen) { 4822 bcopy(nmp->b_rptr, dst, mblen); 4823 dst += mblen; 4824 pending -= mblen; 4825 } else { 4826 bcopy(nmp->b_rptr, dst, pending); 4827 break; 4828 } 4829 } 4830 } 4831 4832 return (0); 4833 } 4834 4835 static void 4836 ibd_free_lsohdr(ibd_swqe_t *node, mblk_t *mp) 4837 { 4838 ibt_wr_lso_t *lso; 4839 4840 if ((!node) || (!mp)) 4841 return; 4842 4843 /* 4844 * Free any header space that we might've allocated if we 4845 * did an LSO 4846 */ 4847 if (node->w_swr.wr_opcode == IBT_WRC_SEND_LSO) { 4848 lso = &(node->w_swr.wr.ud_lso); 4849 if ((lso->lso_hdr) && (lso->lso_hdr != mp->b_rptr)) { 4850 kmem_free(lso->lso_hdr, lso->lso_hdr_sz); 4851 lso->lso_hdr = NULL; 4852 lso->lso_hdr_sz = 0; 4853 } 4854 } 4855 } 4856 4857 static void 4858 ibd_post_send(ibd_state_t *state, ibd_swqe_t *node) 4859 { 4860 uint_t i; 4861 uint_t num_posted; 4862 uint_t n_wrs; 4863 ibt_status_t ibt_status; 4864 ibt_send_wr_t wrs[IBD_MAX_POST_MULTIPLE]; 4865 ibd_swqe_t *elem; 4866 ibd_swqe_t *nodes[IBD_MAX_POST_MULTIPLE]; 4867 4868 node->swqe_next = NULL; 4869 4870 mutex_enter(&state->id_txpost_lock); 4871 4872 /* 4873 * Enqueue the new node in chain of wqes to send 4874 */ 4875 if (state->id_tx_head) { 4876 *(state->id_tx_tailp) = (ibd_wqe_t *)node; 4877 } else { 4878 state->id_tx_head = node; 4879 } 4880 state->id_tx_tailp = &(node->swqe_next); 4881 4882 /* 4883 * If someone else is helping out with the sends, 4884 * just go back 4885 */ 4886 if (state->id_tx_busy) { 4887 mutex_exit(&state->id_txpost_lock); 4888 return; 4889 } 4890 4891 /* 4892 * Otherwise, mark the flag to indicate that we'll be 4893 * doing the dispatch of what's there in the wqe chain 4894 */ 4895 state->id_tx_busy = 1; 4896 4897 while (state->id_tx_head) { 4898 /* 4899 * Collect pending requests, IBD_MAX_POST_MULTIPLE wrs 4900 * at a time if possible, and keep posting them. 4901 */ 4902 for (n_wrs = 0, elem = state->id_tx_head; 4903 (elem) && (n_wrs < IBD_MAX_POST_MULTIPLE); 4904 elem = WQE_TO_SWQE(elem->swqe_next), n_wrs++) { 4905 4906 nodes[n_wrs] = elem; 4907 wrs[n_wrs] = elem->w_swr; 4908 } 4909 state->id_tx_head = elem; 4910 4911 /* 4912 * Release the txpost lock before posting the 4913 * send request to the hca; if the posting fails 4914 * for some reason, we'll never receive completion 4915 * intimation, so we'll need to cleanup. 4916 */ 4917 mutex_exit(&state->id_txpost_lock); 4918 4919 ASSERT(n_wrs != 0); 4920 4921 /* 4922 * If posting fails for some reason, we'll never receive 4923 * completion intimation, so we'll need to cleanup. But 4924 * we need to make sure we don't clean up nodes whose 4925 * wrs have been successfully posted. We assume that the 4926 * hca driver returns on the first failure to post and 4927 * therefore the first 'num_posted' entries don't need 4928 * cleanup here. 4929 */ 4930 num_posted = 0; 4931 ibt_status = ibt_post_send(state->id_chnl_hdl, 4932 wrs, n_wrs, &num_posted); 4933 if (ibt_status != IBT_SUCCESS) { 4934 4935 ibd_print_warn(state, "ibd_post_send: " 4936 "posting multiple wrs failed: " 4937 "requested=%d, done=%d, ret=%d", 4938 n_wrs, num_posted, ibt_status); 4939 4940 for (i = num_posted; i < n_wrs; i++) 4941 ibd_tx_cleanup(state, nodes[i]); 4942 } 4943 4944 /* 4945 * Grab the mutex before we go and check the tx Q again 4946 */ 4947 mutex_enter(&state->id_txpost_lock); 4948 } 4949 4950 state->id_tx_busy = 0; 4951 mutex_exit(&state->id_txpost_lock); 4952 } 4953 4954 static int 4955 ibd_prepare_sgl(ibd_state_t *state, mblk_t *mp, ibd_swqe_t *node, 4956 uint_t lsohdr_sz) 4957 { 4958 ibt_wr_ds_t *sgl; 4959 ibt_status_t ibt_status; 4960 mblk_t *nmp; 4961 mblk_t *data_mp; 4962 uchar_t *bufp; 4963 size_t blksize; 4964 size_t skip; 4965 size_t avail; 4966 uint_t pktsize; 4967 uint_t frag_len; 4968 uint_t pending_hdr; 4969 uint_t hiwm; 4970 int nmblks; 4971 int i; 4972 4973 /* 4974 * Let's skip ahead to the data if this is LSO 4975 */ 4976 data_mp = mp; 4977 pending_hdr = 0; 4978 if (lsohdr_sz) { 4979 pending_hdr = lsohdr_sz; 4980 for (nmp = mp; nmp; nmp = nmp->b_cont) { 4981 frag_len = nmp->b_wptr - nmp->b_rptr; 4982 if (frag_len > pending_hdr) 4983 break; 4984 pending_hdr -= frag_len; 4985 } 4986 data_mp = nmp; /* start of data past lso header */ 4987 ASSERT(data_mp != NULL); 4988 } 4989 4990 /* 4991 * Calculate the size of message data and number of msg blocks 4992 */ 4993 pktsize = 0; 4994 for (nmblks = 0, nmp = data_mp; nmp != NULL; 4995 nmp = nmp->b_cont, nmblks++) { 4996 pktsize += MBLKL(nmp); 4997 } 4998 pktsize -= pending_hdr; 4999 5000 /* 5001 * Translating the virtual address regions into physical regions 5002 * for using the Reserved LKey feature results in a wr sgl that 5003 * is a little longer. Since failing ibt_map_mem_iov() is costly, 5004 * we'll fix a high-water mark (65%) for when we should stop. 5005 */ 5006 hiwm = (state->id_max_sqseg * 65) / 100; 5007 5008 /* 5009 * We only do ibt_map_mem_iov() if the pktsize is above the 5010 * "copy-threshold", and if the number of mp fragments is less than 5011 * the maximum acceptable. 5012 */ 5013 if ((state->id_hca_res_lkey_capab) && 5014 (pktsize > IBD_TX_COPY_THRESH) && 5015 (nmblks < hiwm)) { 5016 ibt_iov_t iov_arr[IBD_MAX_SQSEG]; 5017 ibt_iov_attr_t iov_attr; 5018 5019 iov_attr.iov_as = NULL; 5020 iov_attr.iov = iov_arr; 5021 iov_attr.iov_buf = NULL; 5022 iov_attr.iov_list_len = nmblks; 5023 iov_attr.iov_wr_nds = state->id_max_sqseg; 5024 iov_attr.iov_lso_hdr_sz = lsohdr_sz; 5025 iov_attr.iov_flags = IBT_IOV_SLEEP; 5026 5027 for (nmp = data_mp, i = 0; i < nmblks; i++, nmp = nmp->b_cont) { 5028 iov_arr[i].iov_addr = (caddr_t)(void *)nmp->b_rptr; 5029 iov_arr[i].iov_len = MBLKL(nmp); 5030 if (i == 0) { 5031 iov_arr[i].iov_addr += pending_hdr; 5032 iov_arr[i].iov_len -= pending_hdr; 5033 } 5034 } 5035 5036 node->w_buftype = IBD_WQE_MAPPED; 5037 node->w_swr.wr_sgl = node->w_sgl; 5038 5039 ibt_status = ibt_map_mem_iov(state->id_hca_hdl, &iov_attr, 5040 (ibt_all_wr_t *)&node->w_swr, &node->w_mi_hdl); 5041 if (ibt_status != IBT_SUCCESS) { 5042 ibd_print_warn(state, "ibd_send: ibt_map_mem_iov " 5043 "failed, nmblks=%d, ret=%d\n", nmblks, ibt_status); 5044 goto ibd_copy_path; 5045 } 5046 5047 return (0); 5048 } 5049 5050 ibd_copy_path: 5051 if (pktsize <= state->id_tx_buf_sz) { 5052 node->swqe_copybuf.ic_sgl.ds_len = pktsize; 5053 node->w_swr.wr_nds = 1; 5054 node->w_swr.wr_sgl = &node->swqe_copybuf.ic_sgl; 5055 node->w_buftype = IBD_WQE_TXBUF; 5056 5057 /* 5058 * Even though this is the copy path for transfers less than 5059 * id_tx_buf_sz, it could still be an LSO packet. If so, it 5060 * is possible the first data mblk fragment (data_mp) still 5061 * contains part of the LSO header that we need to skip. 5062 */ 5063 bufp = (uchar_t *)(uintptr_t)node->w_swr.wr_sgl->ds_va; 5064 for (nmp = data_mp; nmp != NULL; nmp = nmp->b_cont) { 5065 blksize = MBLKL(nmp) - pending_hdr; 5066 bcopy(nmp->b_rptr + pending_hdr, bufp, blksize); 5067 bufp += blksize; 5068 pending_hdr = 0; 5069 } 5070 5071 return (0); 5072 } 5073 5074 /* 5075 * Copy path for transfers greater than id_tx_buf_sz 5076 */ 5077 node->w_swr.wr_sgl = node->w_sgl; 5078 if (ibd_acquire_lsobufs(state, pktsize, 5079 node->w_swr.wr_sgl, &(node->w_swr.wr_nds)) != 0) { 5080 DPRINT(10, "ibd_prepare_sgl: lso bufs acquire failed"); 5081 return (-1); 5082 } 5083 node->w_buftype = IBD_WQE_LSOBUF; 5084 5085 /* 5086 * Copy the larger-than-id_tx_buf_sz packet into a set of 5087 * fixed-sized, pre-mapped LSO buffers. Note that we might 5088 * need to skip part of the LSO header in the first fragment 5089 * as before. 5090 */ 5091 nmp = data_mp; 5092 skip = pending_hdr; 5093 for (i = 0; i < node->w_swr.wr_nds; i++) { 5094 sgl = node->w_swr.wr_sgl + i; 5095 bufp = (uchar_t *)(uintptr_t)sgl->ds_va; 5096 avail = IBD_LSO_BUFSZ; 5097 while (nmp && avail) { 5098 blksize = MBLKL(nmp) - skip; 5099 if (blksize > avail) { 5100 bcopy(nmp->b_rptr + skip, bufp, avail); 5101 skip += avail; 5102 avail = 0; 5103 } else { 5104 bcopy(nmp->b_rptr + skip, bufp, blksize); 5105 skip = 0; 5106 avail -= blksize; 5107 bufp += blksize; 5108 nmp = nmp->b_cont; 5109 } 5110 } 5111 } 5112 5113 return (0); 5114 } 5115 5116 /* 5117 * Schedule a completion queue polling to reap the resource we're 5118 * short on. If we implement the change to reap tx completions 5119 * in a separate thread, we'll need to wake up that thread here. 5120 */ 5121 static int 5122 ibd_sched_poll(ibd_state_t *state, int resource_type, int q_flag) 5123 { 5124 ibd_req_t *req; 5125 5126 mutex_enter(&state->id_sched_lock); 5127 state->id_sched_needed |= resource_type; 5128 mutex_exit(&state->id_sched_lock); 5129 5130 /* 5131 * If we are asked to queue a work entry, we need to do it 5132 */ 5133 if (q_flag) { 5134 req = kmem_cache_alloc(state->id_req_kmc, KM_NOSLEEP); 5135 if (req == NULL) 5136 return (-1); 5137 5138 ibd_queue_work_slot(state, req, IBD_ASYNC_SCHED); 5139 } 5140 5141 return (0); 5142 } 5143 5144 /* 5145 * The passed in packet has this format: 5146 * IPOIB_ADDRL b dest addr :: 2b sap :: 2b 0's :: data 5147 */ 5148 static boolean_t 5149 ibd_send(ibd_state_t *state, mblk_t *mp) 5150 { 5151 ibd_ace_t *ace; 5152 ibd_swqe_t *node; 5153 ipoib_mac_t *dest; 5154 ib_header_info_t *ipibp; 5155 ip6_t *ip6h; 5156 uint_t pktsize; 5157 uint32_t mss; 5158 uint32_t hckflags; 5159 uint32_t lsoflags = 0; 5160 uint_t lsohdr_sz = 0; 5161 int ret, len; 5162 boolean_t dofree = B_FALSE; 5163 boolean_t rc; 5164 5165 node = NULL; 5166 if (ibd_acquire_swqe(state, &node) != 0) { 5167 /* 5168 * If we don't have an swqe available, schedule a transmit 5169 * completion queue cleanup and hold off on sending more 5170 * more packets until we have some free swqes 5171 */ 5172 if (ibd_sched_poll(state, IBD_RSRC_SWQE, ibd_txcomp_poll) == 0) 5173 return (B_FALSE); 5174 5175 /* 5176 * If a poll cannot be scheduled, we have no choice but 5177 * to drop this packet 5178 */ 5179 ibd_print_warn(state, "ibd_send: no swqe, pkt drop"); 5180 return (B_TRUE); 5181 } 5182 5183 /* 5184 * Initialize the commonly used fields in swqe to NULL to protect 5185 * against ibd_tx_cleanup accidentally misinterpreting these on a 5186 * failure. 5187 */ 5188 node->swqe_im_mblk = NULL; 5189 node->w_swr.wr_nds = 0; 5190 node->w_swr.wr_sgl = NULL; 5191 node->w_swr.wr_opcode = IBT_WRC_SEND; 5192 5193 /* 5194 * Obtain an address handle for the destination. 5195 */ 5196 ipibp = (ib_header_info_t *)mp->b_rptr; 5197 dest = (ipoib_mac_t *)&ipibp->ib_dst; 5198 if ((ntohl(dest->ipoib_qpn) & IB_QPN_MASK) == IB_MC_QPN) 5199 IBD_FILL_SCOPE_PKEY(dest, state->id_scope, state->id_pkey); 5200 5201 pktsize = msgsize(mp); 5202 5203 atomic_add_64(&state->id_xmt_bytes, pktsize); 5204 atomic_inc_64(&state->id_xmt_pkt); 5205 if (bcmp(&ipibp->ib_dst, &state->id_bcaddr, IPOIB_ADDRL) == 0) 5206 atomic_inc_64(&state->id_brd_xmt); 5207 else if ((ntohl(ipibp->ib_dst.ipoib_qpn) & IB_QPN_MASK) == IB_MC_QPN) 5208 atomic_inc_64(&state->id_multi_xmt); 5209 5210 if ((ace = ibd_acache_lookup(state, dest, &ret, 1)) != NULL) { 5211 node->w_ahandle = ace; 5212 node->w_swr.wr.ud.udwr_dest = ace->ac_dest; 5213 } else { 5214 DPRINT(5, 5215 "ibd_send: acache lookup %s for %08X:%08X:%08X:%08X:%08X", 5216 ((ret == EFAULT) ? "failed" : "queued"), 5217 htonl(dest->ipoib_qpn), htonl(dest->ipoib_gidpref[0]), 5218 htonl(dest->ipoib_gidpref[1]), 5219 htonl(dest->ipoib_gidsuff[0]), 5220 htonl(dest->ipoib_gidsuff[1])); 5221 node->w_ahandle = NULL; 5222 5223 /* 5224 * for the poll mode, it is probably some cqe pending in the 5225 * cq. So ibd has to poll cq here, otherwise acache probably 5226 * may not be recycled. 5227 */ 5228 if (ibd_txcomp_poll == 1) 5229 ibd_poll_compq(state, state->id_scq_hdl); 5230 5231 /* 5232 * Here if ibd_acache_lookup() returns EFAULT, it means ibd 5233 * can not find a path for the specific dest address. We 5234 * should get rid of this kind of packet. We also should get 5235 * rid of the packet if we cannot schedule a poll via the 5236 * async thread. For the normal case, ibd will return the 5237 * packet to upper layer and wait for AH creating. 5238 * 5239 * Note that we always queue a work slot entry for the async 5240 * thread when we fail AH lookup (even in intr mode); this is 5241 * due to the convoluted way the code currently looks for AH. 5242 */ 5243 if (ret == EFAULT) { 5244 dofree = B_TRUE; 5245 rc = B_TRUE; 5246 } else if (ibd_sched_poll(state, IBD_RSRC_SWQE, 1) != 0) { 5247 dofree = B_TRUE; 5248 rc = B_TRUE; 5249 } else { 5250 dofree = B_FALSE; 5251 rc = B_FALSE; 5252 } 5253 goto ibd_send_fail; 5254 } 5255 5256 /* 5257 * For ND6 packets, padding is at the front of the source lladdr. 5258 * Insert the padding at front. 5259 */ 5260 if (ntohs(ipibp->ipib_rhdr.ipoib_type) == IP6_DL_SAP) { 5261 if (MBLKL(mp) < sizeof (ib_header_info_t) + IPV6_HDR_LEN) { 5262 if (!pullupmsg(mp, IPV6_HDR_LEN + 5263 sizeof (ib_header_info_t))) { 5264 DPRINT(10, "ibd_send: pullupmsg failure "); 5265 dofree = B_TRUE; 5266 rc = B_TRUE; 5267 goto ibd_send_fail; 5268 } 5269 ipibp = (ib_header_info_t *)mp->b_rptr; 5270 } 5271 ip6h = (ip6_t *)((uchar_t *)ipibp + 5272 sizeof (ib_header_info_t)); 5273 len = ntohs(ip6h->ip6_plen); 5274 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 5275 mblk_t *pad; 5276 5277 pad = allocb(4, 0); 5278 pad->b_wptr = (uchar_t *)pad->b_rptr + 4; 5279 linkb(mp, pad); 5280 if (MBLKL(mp) < sizeof (ib_header_info_t) + 5281 IPV6_HDR_LEN + len + 4) { 5282 if (!pullupmsg(mp, sizeof (ib_header_info_t) + 5283 IPV6_HDR_LEN + len + 4)) { 5284 DPRINT(10, "ibd_send: pullupmsg " 5285 "failure "); 5286 dofree = B_TRUE; 5287 rc = B_TRUE; 5288 goto ibd_send_fail; 5289 } 5290 ip6h = (ip6_t *)((uchar_t *)mp->b_rptr + 5291 sizeof (ib_header_info_t)); 5292 } 5293 5294 /* LINTED: E_CONSTANT_CONDITION */ 5295 IBD_PAD_NSNA(ip6h, len, IBD_SEND); 5296 } 5297 } 5298 5299 mp->b_rptr += sizeof (ib_addrs_t); 5300 5301 /* 5302 * Do LSO and checksum related work here. For LSO send, adjust the 5303 * ud destination, the opcode and the LSO header information to the 5304 * work request. 5305 */ 5306 lso_info_get(mp, &mss, &lsoflags); 5307 if ((lsoflags & HW_LSO) != HW_LSO) { 5308 node->w_swr.wr_opcode = IBT_WRC_SEND; 5309 lsohdr_sz = 0; 5310 } else { 5311 if (ibd_setup_lso(node, mp, mss, ace->ac_dest) != 0) { 5312 /* 5313 * The routine can only fail if there's no memory; we 5314 * can only drop the packet if this happens 5315 */ 5316 ibd_print_warn(state, 5317 "ibd_send: no memory, lso posting failed"); 5318 dofree = B_TRUE; 5319 rc = B_TRUE; 5320 goto ibd_send_fail; 5321 } 5322 5323 node->w_swr.wr_opcode = IBT_WRC_SEND_LSO; 5324 lsohdr_sz = (node->w_swr.wr.ud_lso).lso_hdr_sz; 5325 } 5326 5327 hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &hckflags); 5328 if ((hckflags & HCK_FULLCKSUM) == HCK_FULLCKSUM) 5329 node->w_swr.wr_flags |= IBT_WR_SEND_CKSUM; 5330 else 5331 node->w_swr.wr_flags &= ~IBT_WR_SEND_CKSUM; 5332 5333 /* 5334 * Prepare the sgl for posting; the routine can only fail if there's 5335 * no lso buf available for posting. If this is the case, we should 5336 * probably resched for lso bufs to become available and then try again. 5337 */ 5338 if (ibd_prepare_sgl(state, mp, node, lsohdr_sz) != 0) { 5339 if (ibd_sched_poll(state, IBD_RSRC_LSOBUF, 1) != 0) { 5340 dofree = B_TRUE; 5341 rc = B_TRUE; 5342 } else { 5343 dofree = B_FALSE; 5344 rc = B_FALSE; 5345 } 5346 goto ibd_send_fail; 5347 } 5348 node->swqe_im_mblk = mp; 5349 5350 /* 5351 * Queue the wqe to hardware; since we can now simply queue a 5352 * post instead of doing it serially, we cannot assume anything 5353 * about the 'node' after ibd_post_send() returns. 5354 */ 5355 ibd_post_send(state, node); 5356 5357 return (B_TRUE); 5358 5359 ibd_send_fail: 5360 if (node && mp) 5361 ibd_free_lsohdr(node, mp); 5362 5363 if (dofree) 5364 freemsg(mp); 5365 5366 if (node != NULL) 5367 ibd_tx_cleanup(state, node); 5368 5369 return (rc); 5370 } 5371 5372 /* 5373 * GLDv3 entry point for transmitting datagram. 5374 */ 5375 static mblk_t * 5376 ibd_m_tx(void *arg, mblk_t *mp) 5377 { 5378 ibd_state_t *state = (ibd_state_t *)arg; 5379 mblk_t *next; 5380 5381 while (mp != NULL) { 5382 next = mp->b_next; 5383 mp->b_next = NULL; 5384 if (ibd_send(state, mp) == B_FALSE) { 5385 /* Send fail */ 5386 mp->b_next = next; 5387 break; 5388 } 5389 mp = next; 5390 } 5391 5392 return (mp); 5393 } 5394 5395 /* 5396 * this handles Tx and Rx completions. With separate CQs, this handles 5397 * only Rx completions. 5398 */ 5399 static uint_t 5400 ibd_intr(char *arg) 5401 { 5402 ibd_state_t *state = (ibd_state_t *)arg; 5403 5404 ibd_poll_compq(state, state->id_rcq_hdl); 5405 5406 return (DDI_INTR_CLAIMED); 5407 } 5408 5409 /* 5410 * Poll and drain the cq 5411 */ 5412 static uint_t 5413 ibd_drain_cq(ibd_state_t *state, ibt_cq_hdl_t cq_hdl, ibt_wc_t *wcs, 5414 uint_t numwcs) 5415 { 5416 ibd_wqe_t *wqe; 5417 ibt_wc_t *wc; 5418 uint_t total_polled = 0; 5419 uint_t num_polled; 5420 int i; 5421 5422 while (ibt_poll_cq(cq_hdl, wcs, numwcs, &num_polled) == IBT_SUCCESS) { 5423 total_polled += num_polled; 5424 for (i = 0, wc = wcs; i < num_polled; i++, wc++) { 5425 wqe = (ibd_wqe_t *)(uintptr_t)wc->wc_id; 5426 ASSERT((wqe->w_type == IBD_WQE_SEND) || 5427 (wqe->w_type == IBD_WQE_RECV)); 5428 if (wc->wc_status != IBT_WC_SUCCESS) { 5429 /* 5430 * Channel being torn down. 5431 */ 5432 if (wc->wc_status == IBT_WC_WR_FLUSHED_ERR) { 5433 DPRINT(5, "ibd_drain_cq: flush error"); 5434 /* 5435 * Only invoke the Tx handler to 5436 * release possibly held resources 5437 * like AH refcount etc. Can not 5438 * invoke Rx handler because it might 5439 * try adding buffers to the Rx pool 5440 * when we are trying to deinitialize. 5441 */ 5442 if (wqe->w_type == IBD_WQE_RECV) { 5443 continue; 5444 } else { 5445 DPRINT(10, "ibd_drain_cq: Bad " 5446 "status %d", wc->wc_status); 5447 } 5448 } 5449 } 5450 if (wqe->w_type == IBD_WQE_SEND) { 5451 ibd_tx_cleanup(state, WQE_TO_SWQE(wqe)); 5452 } else { 5453 ibd_process_rx(state, WQE_TO_RWQE(wqe), wc); 5454 } 5455 } 5456 } 5457 5458 return (total_polled); 5459 } 5460 5461 /* 5462 * Common code for interrupt handling as well as for polling 5463 * for all completed wqe's while detaching. 5464 */ 5465 static void 5466 ibd_poll_compq(ibd_state_t *state, ibt_cq_hdl_t cq_hdl) 5467 { 5468 ibt_wc_t *wcs; 5469 uint_t numwcs; 5470 int flag, redo_flag; 5471 int redo = 1; 5472 uint_t num_polled = 0; 5473 5474 if (ibd_separate_cqs == 1) { 5475 if (cq_hdl == state->id_rcq_hdl) { 5476 flag = IBD_RX_CQ_POLLING; 5477 redo_flag = IBD_REDO_RX_CQ_POLLING; 5478 } else { 5479 flag = IBD_TX_CQ_POLLING; 5480 redo_flag = IBD_REDO_TX_CQ_POLLING; 5481 } 5482 } else { 5483 flag = IBD_RX_CQ_POLLING | IBD_TX_CQ_POLLING; 5484 redo_flag = IBD_REDO_RX_CQ_POLLING | IBD_REDO_TX_CQ_POLLING; 5485 } 5486 5487 mutex_enter(&state->id_cq_poll_lock); 5488 if (state->id_cq_poll_busy & flag) { 5489 state->id_cq_poll_busy |= redo_flag; 5490 mutex_exit(&state->id_cq_poll_lock); 5491 return; 5492 } 5493 state->id_cq_poll_busy |= flag; 5494 mutex_exit(&state->id_cq_poll_lock); 5495 5496 /* 5497 * In some cases (eg detaching), this code can be invoked on 5498 * any cpu after disabling cq notification (thus no concurrency 5499 * exists). Apart from that, the following applies normally: 5500 * The receive completion handling is always on the Rx interrupt 5501 * cpu. Transmit completion handling could be from any cpu if 5502 * Tx CQ is poll driven, but always on Tx interrupt cpu if Tx CQ 5503 * is interrupt driven. Combined completion handling is always 5504 * on the interrupt cpu. Thus, lock accordingly and use the 5505 * proper completion array. 5506 */ 5507 if (ibd_separate_cqs == 1) { 5508 if (cq_hdl == state->id_rcq_hdl) { 5509 wcs = state->id_rxwcs; 5510 numwcs = state->id_rxwcs_size; 5511 } else { 5512 wcs = state->id_txwcs; 5513 numwcs = state->id_txwcs_size; 5514 } 5515 } else { 5516 wcs = state->id_rxwcs; 5517 numwcs = state->id_rxwcs_size; 5518 } 5519 5520 /* 5521 * Poll and drain the CQ 5522 */ 5523 num_polled = ibd_drain_cq(state, cq_hdl, wcs, numwcs); 5524 5525 /* 5526 * Enable CQ notifications and redrain the cq to catch any 5527 * completions we might have missed after the ibd_drain_cq() 5528 * above and before the ibt_enable_cq_notify() that follows. 5529 * Finally, service any new requests to poll the cq that 5530 * could've come in after the ibt_enable_cq_notify(). 5531 */ 5532 do { 5533 if (ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION) != 5534 IBT_SUCCESS) { 5535 DPRINT(10, "ibd_intr: ibt_enable_cq_notify() failed"); 5536 } 5537 5538 num_polled += ibd_drain_cq(state, cq_hdl, wcs, numwcs); 5539 5540 mutex_enter(&state->id_cq_poll_lock); 5541 if (state->id_cq_poll_busy & redo_flag) 5542 state->id_cq_poll_busy &= ~redo_flag; 5543 else { 5544 state->id_cq_poll_busy &= ~flag; 5545 redo = 0; 5546 } 5547 mutex_exit(&state->id_cq_poll_lock); 5548 5549 } while (redo); 5550 5551 /* 5552 * If we polled the receive cq and found anything, we need to flush 5553 * it out to the nw layer here. 5554 */ 5555 if ((flag & IBD_RX_CQ_POLLING) && (num_polled > 0)) { 5556 ibd_flush_rx(state, NULL); 5557 } 5558 } 5559 5560 /* 5561 * Unmap the memory area associated with a given swqe. 5562 */ 5563 static void 5564 ibd_unmap_mem(ibd_state_t *state, ibd_swqe_t *swqe) 5565 { 5566 ibt_status_t stat; 5567 5568 DPRINT(20, "ibd_unmap_mem: wqe=%p, seg=%d\n", swqe, swqe->w_swr.wr_nds); 5569 5570 if (swqe->w_mi_hdl) { 5571 if ((stat = ibt_unmap_mem_iov(state->id_hca_hdl, 5572 swqe->w_mi_hdl)) != IBT_SUCCESS) { 5573 DPRINT(10, 5574 "failed in ibt_unmap_mem_iov, ret=%d\n", stat); 5575 } 5576 swqe->w_mi_hdl = NULL; 5577 } 5578 swqe->w_swr.wr_nds = 0; 5579 } 5580 5581 /* 5582 * Common code that deals with clean ups after a successful or 5583 * erroneous transmission attempt. 5584 */ 5585 static void 5586 ibd_tx_cleanup(ibd_state_t *state, ibd_swqe_t *swqe) 5587 { 5588 ibd_ace_t *ace = swqe->w_ahandle; 5589 5590 DPRINT(20, "ibd_tx_cleanup %p\n", swqe); 5591 5592 /* 5593 * If this was a dynamic mapping in ibd_send(), we need to 5594 * unmap here. If this was an lso buffer we'd used for sending, 5595 * we need to release the lso buf to the pool, since the resource 5596 * is scarce. However, if this was simply a normal send using 5597 * the copybuf (present in each swqe), we don't need to release it. 5598 */ 5599 if (swqe->swqe_im_mblk != NULL) { 5600 if (swqe->w_buftype == IBD_WQE_MAPPED) { 5601 ibd_unmap_mem(state, swqe); 5602 } else if (swqe->w_buftype == IBD_WQE_LSOBUF) { 5603 ibd_release_lsobufs(state, 5604 swqe->w_swr.wr_sgl, swqe->w_swr.wr_nds); 5605 } 5606 ibd_free_lsohdr(swqe, swqe->swqe_im_mblk); 5607 freemsg(swqe->swqe_im_mblk); 5608 swqe->swqe_im_mblk = NULL; 5609 } 5610 5611 /* 5612 * Drop the reference count on the AH; it can be reused 5613 * now for a different destination if there are no more 5614 * posted sends that will use it. This can be eliminated 5615 * if we can always associate each Tx buffer with an AH. 5616 * The ace can be null if we are cleaning up from the 5617 * ibd_send() error path. 5618 */ 5619 if (ace != NULL) { 5620 /* 5621 * The recycling logic can be eliminated from here 5622 * and put into the async thread if we create another 5623 * list to hold ACE's for unjoined mcg's. 5624 */ 5625 if (DEC_REF_DO_CYCLE(ace)) { 5626 ibd_mce_t *mce; 5627 5628 /* 5629 * Check with the lock taken: we decremented 5630 * reference count without the lock, and some 5631 * transmitter might alreay have bumped the 5632 * reference count (possible in case of multicast 5633 * disable when we leave the AH on the active 5634 * list). If not still 0, get out, leaving the 5635 * recycle bit intact. 5636 * 5637 * Atomically transition the AH from active 5638 * to free list, and queue a work request to 5639 * leave the group and destroy the mce. No 5640 * transmitter can be looking at the AH or 5641 * the MCE in between, since we have the 5642 * ac_mutex lock. In the SendOnly reap case, 5643 * it is not neccesary to hold the ac_mutex 5644 * and recheck the ref count (since the AH was 5645 * taken off the active list), we just do it 5646 * to have uniform processing with the Full 5647 * reap case. 5648 */ 5649 mutex_enter(&state->id_ac_mutex); 5650 mce = ace->ac_mce; 5651 if (GET_REF_CYCLE(ace) == 0) { 5652 CLEAR_REFCYCLE(ace); 5653 /* 5654 * Identify the case of fullmember reap as 5655 * opposed to mcg trap reap. Also, port up 5656 * might set ac_mce to NULL to indicate Tx 5657 * cleanup should do no more than put the 5658 * AH in the free list (see ibd_async_link). 5659 */ 5660 if (mce != NULL) { 5661 ace->ac_mce = NULL; 5662 IBD_ACACHE_PULLOUT_ACTIVE(state, ace); 5663 /* 5664 * mc_req was initialized at mce 5665 * creation time. 5666 */ 5667 ibd_queue_work_slot(state, 5668 &mce->mc_req, IBD_ASYNC_REAP); 5669 } 5670 IBD_ACACHE_INSERT_FREE(state, ace); 5671 } 5672 mutex_exit(&state->id_ac_mutex); 5673 } 5674 } 5675 5676 /* 5677 * Release the send wqe for reuse. 5678 */ 5679 ibd_release_swqe(state, swqe); 5680 } 5681 5682 /* 5683 * Hand off the processed rx mp chain to mac_rx() 5684 */ 5685 static void 5686 ibd_flush_rx(ibd_state_t *state, mblk_t *mpc) 5687 { 5688 if (mpc == NULL) { 5689 mutex_enter(&state->id_rx_lock); 5690 5691 mpc = state->id_rx_mp; 5692 5693 state->id_rx_mp = NULL; 5694 state->id_rx_mp_tail = NULL; 5695 state->id_rx_mp_len = 0; 5696 5697 mutex_exit(&state->id_rx_lock); 5698 } 5699 5700 if (mpc) { 5701 mac_rx(state->id_mh, state->id_rh, mpc); 5702 } 5703 } 5704 5705 /* 5706 * Processing to be done after receipt of a packet; hand off to GLD 5707 * in the format expected by GLD. The received packet has this 5708 * format: 2b sap :: 00 :: data. 5709 */ 5710 static void 5711 ibd_process_rx(ibd_state_t *state, ibd_rwqe_t *rwqe, ibt_wc_t *wc) 5712 { 5713 ib_header_info_t *phdr; 5714 mblk_t *mp; 5715 mblk_t *mpc = NULL; 5716 ipoib_hdr_t *ipibp; 5717 ip6_t *ip6h; 5718 int rxcnt, len; 5719 5720 /* 5721 * Track number handed to upper layer, and number still 5722 * available to receive packets. 5723 */ 5724 rxcnt = atomic_add_32_nv(&state->id_rx_list.dl_cnt, -1); 5725 ASSERT(rxcnt >= 0); 5726 atomic_add_32(&state->id_rx_list.dl_bufs_outstanding, 1); 5727 5728 /* 5729 * Adjust write pointer depending on how much data came in. 5730 */ 5731 mp = rwqe->rwqe_im_mblk; 5732 mp->b_wptr = mp->b_rptr + wc->wc_bytes_xfer; 5733 5734 /* 5735 * Make sure this is NULL or we're in trouble. 5736 */ 5737 if (mp->b_next != NULL) { 5738 ibd_print_warn(state, 5739 "ibd_process_rx: got duplicate mp from rcq?"); 5740 mp->b_next = NULL; 5741 } 5742 5743 /* 5744 * the IB link will deliver one of the IB link layer 5745 * headers called, the Global Routing Header (GRH). 5746 * ibd driver uses the information in GRH to build the 5747 * Header_info structure and pass it with the datagram up 5748 * to GLDv3. 5749 * If the GRH is not valid, indicate to GLDv3 by setting 5750 * the VerTcFlow field to 0. 5751 */ 5752 phdr = (ib_header_info_t *)mp->b_rptr; 5753 if (wc->wc_flags & IBT_WC_GRH_PRESENT) { 5754 phdr->ib_grh.ipoib_sqpn = htonl(wc->wc_qpn); 5755 5756 /* if it is loop back packet, just drop it. */ 5757 if (bcmp(&phdr->ib_grh.ipoib_sqpn, &state->id_macaddr, 5758 IPOIB_ADDRL) == 0) { 5759 freemsg(mp); 5760 return; 5761 } 5762 5763 ovbcopy(&phdr->ib_grh.ipoib_sqpn, &phdr->ib_src, 5764 sizeof (ipoib_mac_t)); 5765 if (*(uint8_t *)(phdr->ib_grh.ipoib_dgid_pref) == 0xFF) { 5766 phdr->ib_dst.ipoib_qpn = htonl(IB_MC_QPN); 5767 IBD_CLEAR_SCOPE_PKEY(&phdr->ib_dst); 5768 } else { 5769 phdr->ib_dst.ipoib_qpn = state->id_macaddr.ipoib_qpn; 5770 } 5771 } else { 5772 /* 5773 * It can not be a IBA multicast packet. Must have been 5774 * unicast for us. Just copy the interface address to dst. 5775 */ 5776 phdr->ib_grh.ipoib_vertcflow = 0; 5777 ovbcopy(&state->id_macaddr, &phdr->ib_dst, 5778 sizeof (ipoib_mac_t)); 5779 } 5780 5781 /* 5782 * For ND6 packets, padding is at the front of the source/target 5783 * lladdr. However the inet6 layer is not aware of it, hence remove 5784 * the padding from such packets. 5785 */ 5786 ipibp = (ipoib_hdr_t *)((uchar_t *)mp->b_rptr + sizeof (ipoib_pgrh_t)); 5787 if (ntohs(ipibp->ipoib_type) == IP6_DL_SAP) { 5788 if (MBLKL(mp) < sizeof (ipoib_hdr_t) + IPV6_HDR_LEN) { 5789 if (!pullupmsg(mp, IPV6_HDR_LEN + 5790 sizeof (ipoib_hdr_t))) { 5791 DPRINT(10, "ibd_process_rx: pullupmsg failed"); 5792 freemsg(mp); 5793 return; 5794 } 5795 ipibp = (ipoib_hdr_t *)((uchar_t *)mp->b_rptr + 5796 sizeof (ipoib_pgrh_t)); 5797 } 5798 ip6h = (ip6_t *)((uchar_t *)ipibp + sizeof (ipoib_hdr_t)); 5799 len = ntohs(ip6h->ip6_plen); 5800 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 5801 if (MBLKL(mp) < sizeof (ipoib_hdr_t) + 5802 IPV6_HDR_LEN + len) { 5803 if (!pullupmsg(mp, sizeof (ipoib_hdr_t) + 5804 IPV6_HDR_LEN + len)) { 5805 DPRINT(10, "ibd_process_rx: pullupmsg" 5806 " failed"); 5807 freemsg(mp); 5808 return; 5809 } 5810 ip6h = (ip6_t *)((uchar_t *)mp->b_rptr + 5811 sizeof (ipoib_pgrh_t) + 5812 sizeof (ipoib_hdr_t)); 5813 } 5814 /* LINTED: E_CONSTANT_CONDITION */ 5815 IBD_PAD_NSNA(ip6h, len, IBD_RECV); 5816 } 5817 } 5818 5819 /* 5820 * Update statistics 5821 */ 5822 atomic_add_64(&state->id_rcv_bytes, wc->wc_bytes_xfer); 5823 atomic_inc_64(&state->id_rcv_pkt); 5824 if (bcmp(&phdr->ib_dst, &state->id_bcaddr, IPOIB_ADDRL) == 0) 5825 atomic_inc_64(&state->id_brd_rcv); 5826 else if ((ntohl(phdr->ib_dst.ipoib_qpn) & IB_QPN_MASK) == IB_MC_QPN) 5827 atomic_inc_64(&state->id_multi_rcv); 5828 5829 /* 5830 * Set receive checksum status in mp 5831 */ 5832 if ((wc->wc_flags & IBT_WC_CKSUM_OK) == IBT_WC_CKSUM_OK) { 5833 (void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, 5834 HCK_FULLCKSUM | HCK_FULLCKSUM_OK, 0); 5835 } 5836 5837 /* 5838 * Add this mp to the list of processed mp's to send to 5839 * the nw layer 5840 */ 5841 mutex_enter(&state->id_rx_lock); 5842 if (state->id_rx_mp) { 5843 ASSERT(state->id_rx_mp_tail != NULL); 5844 state->id_rx_mp_tail->b_next = mp; 5845 } else { 5846 ASSERT(state->id_rx_mp_tail == NULL); 5847 state->id_rx_mp = mp; 5848 } 5849 5850 state->id_rx_mp_tail = mp; 5851 state->id_rx_mp_len++; 5852 5853 if (state->id_rx_mp_len >= IBD_MAX_RX_MP_LEN) { 5854 mpc = state->id_rx_mp; 5855 5856 state->id_rx_mp = NULL; 5857 state->id_rx_mp_tail = NULL; 5858 state->id_rx_mp_len = 0; 5859 } 5860 5861 mutex_exit(&state->id_rx_lock); 5862 5863 if (mpc) { 5864 ibd_flush_rx(state, mpc); 5865 } 5866 } 5867 5868 /* 5869 * Callback code invoked from STREAMs when the receive data buffer is 5870 * free for recycling. 5871 */ 5872 static void 5873 ibd_freemsg_cb(char *arg) 5874 { 5875 ibd_rwqe_t *rwqe = (ibd_rwqe_t *)arg; 5876 ibd_state_t *state = rwqe->w_state; 5877 5878 /* 5879 * If the wqe is being destructed, do not attempt recycling. 5880 */ 5881 if (rwqe->w_freeing_wqe == B_TRUE) { 5882 DPRINT(6, "ibd_freemsg: wqe being freed"); 5883 return; 5884 } else { 5885 /* 5886 * Upper layer has released held mblk, so we have 5887 * no more use for keeping the old pointer in 5888 * our rwqe. 5889 */ 5890 rwqe->rwqe_im_mblk = NULL; 5891 } 5892 5893 rwqe->rwqe_im_mblk = desballoc(rwqe->rwqe_copybuf.ic_bufaddr, 5894 state->id_mtu + IPOIB_GRH_SIZE, 0, &rwqe->w_freemsg_cb); 5895 if (rwqe->rwqe_im_mblk == NULL) { 5896 ibd_delete_rwqe(state, rwqe); 5897 ibd_free_rwqe(state, rwqe); 5898 DPRINT(6, "ibd_freemsg: desballoc failed"); 5899 return; 5900 } 5901 5902 if (ibd_post_rwqe(state, rwqe, B_TRUE) == DDI_FAILURE) { 5903 ibd_delete_rwqe(state, rwqe); 5904 ibd_free_rwqe(state, rwqe); 5905 return; 5906 } 5907 5908 atomic_add_32(&state->id_rx_list.dl_bufs_outstanding, -1); 5909 } 5910 5911 static uint_t 5912 ibd_tx_recycle(char *arg) 5913 { 5914 ibd_state_t *state = (ibd_state_t *)arg; 5915 5916 /* 5917 * Poll for completed entries 5918 */ 5919 ibd_poll_compq(state, state->id_scq_hdl); 5920 5921 /* 5922 * Resume any blocked transmissions if possible 5923 */ 5924 (void) ibd_resume_transmission(state); 5925 5926 return (DDI_INTR_CLAIMED); 5927 } 5928 5929 #ifdef IBD_LOGGING 5930 static void 5931 ibd_log_init(void) 5932 { 5933 ibd_lbuf = kmem_zalloc(IBD_LOG_SZ, KM_SLEEP); 5934 ibd_lbuf_ndx = 0; 5935 } 5936 5937 static void 5938 ibd_log_fini(void) 5939 { 5940 if (ibd_lbuf) 5941 kmem_free(ibd_lbuf, IBD_LOG_SZ); 5942 ibd_lbuf_ndx = 0; 5943 ibd_lbuf = NULL; 5944 } 5945 5946 static void 5947 ibd_log(const char *fmt, ...) 5948 { 5949 va_list ap; 5950 uint32_t off; 5951 uint32_t msglen; 5952 char tmpbuf[IBD_DMAX_LINE]; 5953 5954 if (ibd_lbuf == NULL) 5955 return; 5956 5957 va_start(ap, fmt); 5958 msglen = vsnprintf(tmpbuf, IBD_DMAX_LINE, fmt, ap); 5959 va_end(ap); 5960 5961 if (msglen >= IBD_DMAX_LINE) 5962 msglen = IBD_DMAX_LINE - 1; 5963 5964 mutex_enter(&ibd_lbuf_lock); 5965 5966 off = ibd_lbuf_ndx; /* current msg should go here */ 5967 if ((ibd_lbuf_ndx) && (ibd_lbuf[ibd_lbuf_ndx-1] != '\n')) 5968 ibd_lbuf[ibd_lbuf_ndx-1] = '\n'; 5969 5970 ibd_lbuf_ndx += msglen; /* place where next msg should start */ 5971 ibd_lbuf[ibd_lbuf_ndx] = 0; /* current msg should terminate */ 5972 5973 if (ibd_lbuf_ndx >= (IBD_LOG_SZ - 2 * IBD_DMAX_LINE)) 5974 ibd_lbuf_ndx = 0; 5975 5976 mutex_exit(&ibd_lbuf_lock); 5977 5978 bcopy(tmpbuf, ibd_lbuf+off, msglen); /* no lock needed for this */ 5979 } 5980 #endif 5981