xref: /illumos-gate/usr/src/uts/common/io/i40e/i40e_main.c (revision 6bd8a07093bddc0edfc07bfda4ca600e31c02c03)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14  * Copyright 2016 Joyent, Inc.
15  */
16 
17 /*
18  * i40e - Intel 10/40 Gb Ethernet driver
19  *
20  * The i40e driver is the main software device driver for the Intel 40 Gb family
21  * of devices. Note that these devices come in many flavors with both 40 GbE
22  * ports and 10 GbE ports. This device is the successor to the 82599 family of
23  * devices (ixgbe).
24  *
25  * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
26  * devices defined in the XL710 controller (previously known as Fortville) are a
27  * rather different beast and have a small switch embedded inside of them. In
28  * addition, the way that most of the programming is done has been overhauled.
29  * As opposed to just using PCIe memory mapped registers, it also has an
30  * administrative queue which is used to communicate with firmware running on
31  * the chip.
32  *
33  * Each physical function in the hardware shows up as a device that this driver
34  * will bind to. The hardware splits many resources evenly across all of the
35  * physical functions present on the device, while other resources are instead
36  * shared across the entire card and its up to the device driver to
37  * intelligently partition them.
38  *
39  * ------------
40  * Organization
41  * ------------
42  *
43  * This driver is made up of several files which have their own theory
44  * statements spread across them. We'll touch on the high level purpose of each
45  * file here, and then we'll get into more discussion on how the device is
46  * generally modelled with respect to the interfaces in illumos.
47  *
48  * i40e_gld.c: This file contains all of the bindings to MAC and the networking
49  *             stack.
50  *
51  * i40e_intr.c: This file contains all of the interrupt service routines and
52  *              contains logic to enable and disable interrupts on the hardware.
53  *              It also contains the logic to map hardware resources such as the
54  *              rings to and from interrupts and controls their ability to fire.
55  *
56  *              There is a big theory statement on interrupts present there.
57  *
58  * i40e_main.c: The file that you're currently in. It interfaces with the
59  *              traditional OS DDI interfaces and is in charge of configuring
60  *              the device.
61  *
62  * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
63  *                  work with Intel's common code for the device.
64  *
65  * i40e_stats.c: This file contains the general work and logic around our
66  *               kstats. A theory statement on their organization and use of the
67  *               hardware exists there.
68  *
69  * i40e_sw.h: This header file contains all of the primary structure definitions
70  *            and constants that are used across the entire driver.
71  *
72  * i40e_transceiver.c: This file contains all of the logic for sending and
73  *                     receiving data. It contains all of the ring and DMA
74  *                     allocation logic, as well as, the actual interfaces to
75  *                     send and receive data.
76  *
77  *                     A big theory statement on ring management, descriptors,
78  *                     and how it ties into the OS is present there.
79  *
80  * --------------
81  * General Design
82  * --------------
83  *
84  * Before we go too far into the general way we've laid out data structures and
85  * the like, it's worth taking some time to explain how the hardware is
86  * organized. This organization informs a lot of how we do things at this time
87  * in the driver.
88  *
89  * Each physical device consists of a number of one or more ports, which are
90  * considered physical functions in the PCI sense and thus each get enumerated
91  * by the system, resulting in an instance being created and attached to. While
92  * there are many resources that are unique to each physical function eg.
93  * instance of the device, there are many that are shared across all of them.
94  * Several resources have an amount reserved for each Virtual Station Interface
95  * (VSI) and then a static pool of resources, available for all functions on the
96  * card.
97  *
98  * The most important resource in hardware are its transmit and receive queue
99  * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
100  * parlance. There are a set number of these on each device; however, they are
101  * statically partitioned among all of the different physical functions.
102  *
103  * 'Fortville' (the code name for this device family) is basically a switch. To
104  * map MAC addresses and other things to queues, we end up having to create
105  * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
106  * traffic to a queue. A VSI owns a collection of queues and has a series of
107  * forwarding rules that point to it. One way to think of this is to treat it
108  * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
109  * classification resources, that is a VSI in i40e.
110  *
111  * The sets of VSIs is shared across the entire device, though there may be some
112  * amount that are reserved to each PF. Because the GLDv3 does not let us change
113  * the number of groups dynamically, we instead statically divide this amount
114  * evenly between all the functions that exist. In addition, we have the same
115  * problem with the mac address forwarding rules. There are a static number that
116  * exist shared across all the functions.
117  *
118  * To handle both of these resources, what we end up doing is going through and
119  * determining which functions belong to the same device. Nominally one might do
120  * this by having a nexus driver; however, a prime requirement for a nexus
121  * driver is identifying the various children and activating them. While it is
122  * possible to get this information from NVRAM, we would end up duplicating a
123  * lot of the PCI enumeration logic. Really, at the end of the day, the device
124  * doesn't give us the traditional identification properties we want from a
125  * nexus driver.
126  *
127  * Instead, we rely on some properties that are guaranteed to be unique. While
128  * it might be tempting to leverage the PBA or serial number of the device from
129  * NVRAM, there is nothing that says that two devices can't be mis-programmed to
130  * have the same values in NVRAM. Instead, we uniquely identify a group of
131  * functions based on their parent in the /devices tree, their PCI bus and PCI
132  * function identifiers. Using either on their own may not be sufficient.
133  *
134  * For each unique PCI device that we encounter, we'll create a i40e_device_t.
135  * From there, because we don't have a good way to tell the GLDv3 about sharing
136  * resources between everything, we'll end up just dividing the resources
137  * evenly between all of the functions. Longer term, if we don't have to declare
138  * to the GLDv3 that these resources are shared, then we'll maintain a pool and
139  * hae each PF allocate from the pool in the device, thus if only two of four
140  * ports are being used, for example, then all of the resources can still be
141  * used.
142  *
143  * -------------------------------------------
144  * Transmit and Receive Queue Pair Allocations
145  * -------------------------------------------
146  *
147  * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
148  * queue pairs, we have no way of modifying it, only observing it. From there,
149  * it's up to us to map these queues to VSIs and VFs. Since we don't support any
150  * VFs at this time, we only focus on assignments to VSIs.
151  *
152  * At the moment, we used a static mapping of transmit/receive queue pairs to a
153  * given VSI (eg. rings to a group). Though in the fullness of time, we want to
154  * make this something which is fully dynamic and take advantage of documented,
155  * but not yet available functionality for adding filters based on VXLAN and
156  * other encapsulation technologies.
157  *
158  * -------------------------------------
159  * Broadcast, Multicast, and Promiscuous
160  * -------------------------------------
161  *
162  * As part of the GLDv3, we need to make sure that we can handle receiving
163  * broadcast and multicast traffic. As well as enabling promiscuous mode when
164  * requested. GLDv3 requires that all broadcast and multicast traffic be
165  * retrieved by the default group, eg. the first one. This is the same thing as
166  * the default VSI.
167  *
168  * To receieve broadcast traffic, we enable it through the admin queue, rather
169  * than use one of our filters for it. For multicast traffic, we reserve a
170  * certain number of the hash filters and assign them to a given PF. When we
171  * exceed those, we then switch to using promicuous mode for multicast traffic.
172  *
173  * More specifically, once we exceed the number of filters (indicated because
174  * the i40e_t`i40e_resources.ifr_nmcastfilt ==
175  * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
176  * promiscuous mode. If promiscuous mode is toggled then we keep track of the
177  * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
178  * That will stay enabled until that count reaches zero indicating that we have
179  * only added multicast addresses that we have a corresponding entry for.
180  *
181  * Because MAC itself wants to toggle promiscuous mode, which includes both
182  * unicast and multicast traffic, we go through and keep track of that
183  * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
184  * member.
185  *
186  * --------------
187  * VSI Management
188  * --------------
189  *
190  * At this time, we currently only support a single MAC group, and thus a single
191  * VSI. This VSI is considered the default VSI and should be the only one that
192  * exists after a reset. Currently it is stored as the member
193  * i40e_t`i40e_vsi_id. While this works for the moment and for an initial
194  * driver, it's not sufficient for the longer-term path of the driver. Instead,
195  * we'll want to actually have a unique i40e_vsi_t structure which is used
196  * everywhere. Note that this means that every place that uses the
197  * i40e_t`i40e_vsi_id will need to be refactored.
198  *
199  * ----------------
200  * Structure Layout
201  * ----------------
202  *
203  * The following images relates the core data structures together. The primary
204  * structure in the system is the i40e_t. It itself contains multiple rings,
205  * i40e_trqpair_t's which contain the various transmit and receive data. The
206  * receive data is stored outside of the i40e_trqpair_t and instead in the
207  * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
208  * track of per-physical device state. Finally, for every active descriptor,
209  * there is a corresponding control block, which is where the
210  * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
211  *
212  *   +-----------------------+       +-----------------------+
213  *   | Global i40e_t list    |       | Global Device list    |
214  *   |                       |    +--|                       |
215  *   | i40e_glist            |    |  | i40e_dlist            |
216  *   +-----------------------+    |  +-----------------------+
217  *       |                        v
218  *       |      +------------------------+      +-----------------------+
219  *       |      | Device-wide Structure  |----->| Device-wide Structure |--> ...
220  *       |      | i40e_device_t          |      | i40e_device_t         |
221  *       |      |                        |      +-----------------------+
222  *       |      | dev_info_t *     ------+--> Parent in devices tree.
223  *       |      | uint_t           ------+--> PCI bus number
224  *       |      | uint_t           ------+--> PCI device number
225  *       |      | uint_t           ------+--> Number of functions
226  *       |      | i40e_switch_rsrcs_t ---+--> Captured total switch resources
227  *       |      | list_t           ------+-------------+
228  *       |      +------------------------+             |
229  *       |                           ^                 |
230  *       |                           +--------+        |
231  *       |                                    |        v
232  *       |  +---------------------------+     |   +-------------------+
233  *       +->| GLDv3 Device, per PF      |-----|-->| GLDv3 Device (PF) |--> ...
234  *          | i40e_t                    |     |   | i40e_t            |
235  *          | **Primary Structure**     |     |   +-------------------+
236  *          |                           |     |
237  *          | i40e_device_t *         --+-----+
238  *          | i40e_state_t            --+---> Device State
239  *          | i40e_hw_t               --+---> Intel common code structure
240  *          | mac_handle_t            --+---> GLDv3 handle to MAC
241  *          | ddi_periodic_t          --+---> Link activity timer
242  *          | int (vsi_id)            --+---> VSI ID, main identifier
243  *          | i40e_func_rsrc_t        --+---> Available hardware resources
244  *          | i40e_switch_rsrc_t *    --+---> Switch resource snapshot
245  *          | i40e_sdu                --+---> Current MTU
246  *          | i40e_frame_max          --+---> Current HW frame size
247  *          | i40e_uaddr_t *          --+---> Array of assigned unicast MACs
248  *          | i40e_maddr_t *          --+---> Array of assigned multicast MACs
249  *          | i40e_mcast_promisccount --+---> Active multicast state
250  *          | i40e_promisc_on         --+---> Current promiscuous mode state
251  *          | int                     --+---> Number of transmit/receive pairs
252  *          | kstat_t *               --+---> PF kstats
253  *          | kstat_t *               --+---> VSI kstats
254  *          | i40e_pf_stats_t         --+---> PF kstat backing data
255  *          | i40e_vsi_stats_t        --+---> VSI kstat backing data
256  *          | i40e_trqpair_t *        --+---------+
257  *          +---------------------------+         |
258  *                                                |
259  *                                                v
260  *  +-------------------------------+       +-----------------------------+
261  *  | Transmit/Receive Queue Pair   |-------| Transmit/Receive Queue Pair |->...
262  *  | i40e_trqpair_t                |       | i40e_trqpair_t              |
263  *  + Ring Data Structure           |       +-----------------------------+
264  *  |                               |
265  *  | mac_ring_handle_t             +--> MAC RX ring handle
266  *  | mac_ring_handle_t             +--> MAC TX ring handle
267  *  | i40e_rxq_stat_t             --+--> RX Queue stats
268  *  | i40e_txq_stat_t             --+--> TX Queue stats
269  *  | uint32_t (tx ring size)       +--> TX Ring Size
270  *  | uint32_t (tx free list size)  +--> TX Free List Size
271  *  | i40e_dma_buffer_t     --------+--> TX Descriptor ring DMA
272  *  | i40e_tx_desc_t *      --------+--> TX descriptor ring
273  *  | volatile unt32_t *            +--> TX Write back head
274  *  | uint32_t               -------+--> TX ring head
275  *  | uint32_t               -------+--> TX ring tail
276  *  | uint32_t               -------+--> Num TX desc free
277  *  | i40e_tx_control_block_t *   --+--> TX control block array  ---+
278  *  | i40e_tx_control_block_t **  --+--> TCB work list          ----+
279  *  | i40e_tx_control_block_t **  --+--> TCB free list           ---+
280  *  | uint32_t               -------+--> Free TCB count             |
281  *  | i40e_rx_data_t *       -------+--+                            v
282  *  +-------------------------------+  |          +---------------------------+
283  *                                     |          | Per-TX Frame Metadata     |
284  *                                     |          | i40e_tx_control_block_t   |
285  *                +--------------------+          |                           |
286  *                |           mblk to transmit <--+---      mblk_t *          |
287  *                |           type of transmit <--+---      i40e_tx_type_t    |
288  *                |              TX DMA handle <--+---      ddi_dma_handle_t  |
289  *                v              TX DMA buffer <--+---      i40e_dma_buffer_t |
290  *    +------------------------------+            +---------------------------+
291  *    | Core Receive Data            |
292  *    | i40e_rx_data_t               |
293  *    |                              |
294  *    | i40e_dma_buffer_t          --+--> RX descriptor DMA Data
295  *    | i40e_rx_desc_t             --+--> RX descriptor ring
296  *    | uint32_t                   --+--> Next free desc.
297  *    | i40e_rx_control_block_t *  --+--> RX Control Block Array  ---+
298  *    | i40e_rx_control_block_t ** --+--> RCB work list           ---+
299  *    | i40e_rx_control_block_t ** --+--> RCB free list           ---+
300  *    +------------------------------+                               |
301  *                ^                                                  |
302  *                |     +---------------------------+                |
303  *                |     | Per-RX Frame Metadata     |<---------------+
304  *                |     | i40e_rx_control_block_t   |
305  *                |     |                           |
306  *                |     | mblk_t *              ----+--> Received mblk_t data
307  *                |     | uint32_t              ----+--> Reference count
308  *                |     | i40e_dma_buffer_t     ----+--> Receive data DMA info
309  *                |     | frtn_t                ----+--> mblk free function info
310  *                +-----+-- i40e_rx_data_t *        |
311  *                      +---------------------------+
312  *
313  * -------------
314  * Lock Ordering
315  * -------------
316  *
317  * In order to ensure that we don't deadlock, the following represents the
318  * lock order being used. When grabbing locks, follow the following order. Lower
319  * numbers are more important. Thus, the i40e_glock which is number 0, must be
320  * taken before any other locks in the driver. On the other hand, the
321  * i40e_t`i40e_stat_lock, has the highest number because it's the least
322  * important lock. Note, that just because one lock is higher than another does
323  * not mean that all intermediary locks are required.
324  *
325  * 0) i40e_glock
326  * 1) i40e_t`i40e_general_lock
327  *
328  * 2) i40e_trqpair_t`itrq_rx_lock
329  * 3) i40e_trqpair_t`itrq_tx_lock
330  * 4) i40e_t`i40e_rx_pending_lock
331  * 5) i40e_trqpair_t`itrq_tcb_lock
332  *
333  * 6) i40e_t`i40e_stat_lock
334  *
335  * Rules and expectations:
336  *
337  * 1) A thread holding locks belong to one PF should not hold locks belonging to
338  * a second. If for some reason this becomes necessary, locks should be grabbed
339  * based on the list order in the i40e_device_t, which implies that the
340  * i40e_glock is held.
341  *
342  * 2) When grabbing locks between multiple transmit and receive queues, the
343  * locks for the lowest number transmit/receive queue should be grabbed first.
344  *
345  * 3) When grabbing both the transmit and receive lock for a given queue, always
346  * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
347  *
348  * 4) The following pairs of locks are not expected to be held at the same time:
349  *
350  * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
351  *
352  * -----------
353  * Future Work
354  * -----------
355  *
356  * At the moment the i40e_t driver is rather bare bones, allowing us to start
357  * getting data flowing and folks using it while we develop additional features.
358  * While bugs have been filed to cover this future work, the following gives an
359  * overview of expected work:
360  *
361  *  o TSO support
362  *  o RSS / multiple ring support
363  *  o Multiple group support
364  *  o DMA binding and breaking up the locking in ring recycling.
365  *  o Enhanced detection of device errors
366  *  o Participation in IRM
367  *  o FMA device reset
368  *  o Stall detection, temperature error detection, etc.
369  *  o More dynamic resource pools
370  */
371 
372 #include "i40e_sw.h"
373 
374 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.0";
375 
376 /*
377  * The i40e_glock primarily protects the lists below and the i40e_device_t
378  * structures.
379  */
380 static kmutex_t i40e_glock;
381 static list_t i40e_glist;
382 static list_t i40e_dlist;
383 
384 /*
385  * Access attributes for register mapping.
386  */
387 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
388 	DDI_DEVICE_ATTR_V1,
389 	DDI_STRUCTURE_LE_ACC,
390 	DDI_STRICTORDER_ACC,
391 	DDI_FLAGERR_ACC
392 };
393 
394 /*
395  * Logging function for this driver.
396  */
397 static void
398 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
399     va_list ap)
400 {
401 	char buf[1024];
402 
403 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
404 
405 	if (i40e == NULL) {
406 		cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
407 		    I40E_MODULE_NAME, buf);
408 	} else {
409 		dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
410 		    buf);
411 	}
412 }
413 
414 /*
415  * Because there's the stupid trailing-comma problem with the C preprocessor
416  * and variable arguments, I need to instantiate these.	 Pardon the redundant
417  * code.
418  */
419 /*PRINTFLIKE2*/
420 void
421 i40e_error(i40e_t *i40e, const char *fmt, ...)
422 {
423 	va_list ap;
424 
425 	va_start(ap, fmt);
426 	i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
427 	va_end(ap);
428 }
429 
430 /*PRINTFLIKE2*/
431 void
432 i40e_log(i40e_t *i40e, const char *fmt, ...)
433 {
434 	va_list ap;
435 
436 	va_start(ap, fmt);
437 	i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
438 	va_end(ap);
439 }
440 
441 /*PRINTFLIKE2*/
442 void
443 i40e_notice(i40e_t *i40e, const char *fmt, ...)
444 {
445 	va_list ap;
446 
447 	va_start(ap, fmt);
448 	i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
449 	va_end(ap);
450 }
451 
452 static void
453 i40e_device_rele(i40e_t *i40e)
454 {
455 	i40e_device_t *idp = i40e->i40e_device;
456 
457 	if (idp == NULL)
458 		return;
459 
460 	mutex_enter(&i40e_glock);
461 	VERIFY(idp->id_nreg > 0);
462 	list_remove(&idp->id_i40e_list, i40e);
463 	idp->id_nreg--;
464 	if (idp->id_nreg == 0) {
465 		list_remove(&i40e_dlist, idp);
466 		list_destroy(&idp->id_i40e_list);
467 		kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
468 		    idp->id_rsrcs_alloc);
469 		kmem_free(idp, sizeof (i40e_device_t));
470 	}
471 	i40e->i40e_device = NULL;
472 	mutex_exit(&i40e_glock);
473 }
474 
475 static i40e_device_t *
476 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
477 {
478 	i40e_device_t *idp;
479 	mutex_enter(&i40e_glock);
480 	for (idp = list_head(&i40e_dlist); idp != NULL;
481 	    idp = list_next(&i40e_dlist, idp)) {
482 		if (idp->id_parent == parent && idp->id_pci_bus == bus &&
483 		    idp->id_pci_device == device) {
484 			break;
485 		}
486 	}
487 
488 	if (idp != NULL) {
489 		VERIFY(idp->id_nreg < idp->id_nfuncs);
490 		idp->id_nreg++;
491 	} else {
492 		i40e_hw_t *hw = &i40e->i40e_hw_space;
493 		ASSERT(hw->num_ports > 0);
494 		ASSERT(hw->num_partitions > 0);
495 
496 		/*
497 		 * The Intel common code doesn't exactly keep the number of PCI
498 		 * functions. But it calculates it during discovery of
499 		 * partitions and ports. So what we do is undo the calculation
500 		 * that it does originally, as functions are evenly spread
501 		 * across ports in the rare case of partitions.
502 		 */
503 		idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
504 		idp->id_parent = parent;
505 		idp->id_pci_bus = bus;
506 		idp->id_pci_device = device;
507 		idp->id_nfuncs = hw->num_ports * hw->num_partitions;
508 		idp->id_nreg = 1;
509 		idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
510 		idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
511 		idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
512 		    idp->id_rsrcs_alloc, KM_SLEEP);
513 		bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
514 		    sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
515 		list_create(&idp->id_i40e_list, sizeof (i40e_t),
516 		    offsetof(i40e_t, i40e_dlink));
517 
518 		list_insert_tail(&i40e_dlist, idp);
519 	}
520 
521 	list_insert_tail(&idp->id_i40e_list, i40e);
522 	mutex_exit(&i40e_glock);
523 
524 	return (idp);
525 }
526 
527 static void
528 i40e_link_state_set(i40e_t *i40e, link_state_t state)
529 {
530 	if (i40e->i40e_link_state == state)
531 		return;
532 
533 	i40e->i40e_link_state = state;
534 	mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
535 }
536 
537 /*
538  * This is a basic link check routine. Mostly we're using this just to see
539  * if we can get any accurate information about the state of the link being
540  * up or down, as well as updating the link state, speed, etc. information.
541  */
542 void
543 i40e_link_check(i40e_t *i40e)
544 {
545 	i40e_hw_t *hw = &i40e->i40e_hw_space;
546 	boolean_t ls;
547 	int ret;
548 
549 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
550 
551 	hw->phy.get_link_info = B_TRUE;
552 	if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
553 		i40e->i40e_s_link_status_errs++;
554 		i40e->i40e_s_link_status_lasterr = ret;
555 		return;
556 	}
557 
558 	/*
559 	 * Firmware abstracts all of the mac and phy information for us, so we
560 	 * can use i40e_get_link_status to determine the current state.
561 	 */
562 	if (ls == B_TRUE) {
563 		enum i40e_aq_link_speed speed;
564 
565 		speed = i40e_get_link_speed(hw);
566 
567 		/*
568 		 * Translate from an i40e value to a value in Mbits/s.
569 		 */
570 		switch (speed) {
571 		case I40E_LINK_SPEED_100MB:
572 			i40e->i40e_link_speed = 100;
573 			break;
574 		case I40E_LINK_SPEED_1GB:
575 			i40e->i40e_link_speed = 1000;
576 			break;
577 		case I40E_LINK_SPEED_10GB:
578 			i40e->i40e_link_speed = 10000;
579 			break;
580 		case I40E_LINK_SPEED_20GB:
581 			i40e->i40e_link_speed = 20000;
582 			break;
583 		case I40E_LINK_SPEED_40GB:
584 			i40e->i40e_link_speed = 40000;
585 			break;
586 		default:
587 			i40e->i40e_link_speed = 0;
588 			break;
589 		}
590 
591 		/*
592 		 * At this time, hardware does not support half-duplex
593 		 * operation, hence why we don't ask the hardware about our
594 		 * current speed.
595 		 */
596 		i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
597 		i40e_link_state_set(i40e, LINK_STATE_UP);
598 	} else {
599 		i40e->i40e_link_speed = 0;
600 		i40e->i40e_link_duplex = 0;
601 		i40e_link_state_set(i40e, LINK_STATE_DOWN);
602 	}
603 }
604 
605 static void
606 i40e_rem_intrs(i40e_t *i40e)
607 {
608 	int i, rc;
609 
610 	for (i = 0; i < i40e->i40e_intr_count; i++) {
611 		rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
612 		if (rc != DDI_SUCCESS) {
613 			i40e_log(i40e, "failed to free interrupt %d: %d",
614 			    i, rc);
615 		}
616 	}
617 
618 	kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
619 	i40e->i40e_intr_handles = NULL;
620 }
621 
622 static void
623 i40e_rem_intr_handlers(i40e_t *i40e)
624 {
625 	int i, rc;
626 
627 	for (i = 0; i < i40e->i40e_intr_count; i++) {
628 		rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
629 		if (rc != DDI_SUCCESS) {
630 			i40e_log(i40e, "failed to remove interrupt %d: %d",
631 			    i, rc);
632 		}
633 	}
634 }
635 
636 /*
637  * illumos Fault Management Architecture (FMA) support.
638  */
639 
640 int
641 i40e_check_acc_handle(ddi_acc_handle_t handle)
642 {
643 	ddi_fm_error_t de;
644 
645 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
646 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
647 	return (de.fme_status);
648 }
649 
650 int
651 i40e_check_dma_handle(ddi_dma_handle_t handle)
652 {
653 	ddi_fm_error_t de;
654 
655 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
656 	return (de.fme_status);
657 }
658 
659 /*
660  * Fault service error handling callback function.
661  */
662 /* ARGSUSED */
663 static int
664 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
665 {
666 	pci_ereport_post(dip, err, NULL);
667 	return (err->fme_status);
668 }
669 
670 static void
671 i40e_fm_init(i40e_t *i40e)
672 {
673 	ddi_iblock_cookie_t iblk;
674 
675 	i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
676 	    i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
677 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
678 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
679 
680 	if (i40e->i40e_fm_capabilities < 0) {
681 		i40e->i40e_fm_capabilities = 0;
682 	} else if (i40e->i40e_fm_capabilities > 0xf) {
683 		i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
684 		    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
685 		    DDI_FM_ERRCB_CAPABLE;
686 	}
687 
688 	/*
689 	 * Only register with IO Fault Services if we have some capability
690 	 */
691 	if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
692 		i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
693 	} else {
694 		i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
695 	}
696 
697 	if (i40e->i40e_fm_capabilities) {
698 		ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
699 
700 		if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
701 		    DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
702 			pci_ereport_setup(i40e->i40e_dip);
703 		}
704 
705 		if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
706 			ddi_fm_handler_register(i40e->i40e_dip,
707 			    i40e_fm_error_cb, (void*)i40e);
708 		}
709 	}
710 
711 	if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
712 		i40e_init_dma_attrs(i40e, B_TRUE);
713 	} else {
714 		i40e_init_dma_attrs(i40e, B_FALSE);
715 	}
716 }
717 
718 static void
719 i40e_fm_fini(i40e_t *i40e)
720 {
721 	if (i40e->i40e_fm_capabilities) {
722 
723 		if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
724 		    DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
725 			pci_ereport_teardown(i40e->i40e_dip);
726 
727 		if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
728 			ddi_fm_handler_unregister(i40e->i40e_dip);
729 
730 		ddi_fm_fini(i40e->i40e_dip);
731 	}
732 }
733 
734 void
735 i40e_fm_ereport(i40e_t *i40e, char *detail)
736 {
737 	uint64_t ena;
738 	char buf[FM_MAX_CLASS];
739 
740 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
741 	ena = fm_ena_generate(0, FM_ENA_FMT1);
742 	if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
743 		ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
744 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
745 	}
746 }
747 
748 /*
749  * Here we're trying to get the ID of the default VSI. In general, when we come
750  * through and look at this shortly after attach, we expect there to only be a
751  * single element present, which is the default VSI. Importantly, each PF seems
752  * to not see any other devices, in part because of the simple switch mode that
753  * we're using. If for some reason, we see more artifact, we'll need to revisit
754  * what we're doing here.
755  */
756 static int
757 i40e_get_vsi_id(i40e_t *i40e)
758 {
759 	i40e_hw_t *hw = &i40e->i40e_hw_space;
760 	struct i40e_aqc_get_switch_config_resp *sw_config;
761 	uint8_t aq_buf[I40E_AQ_LARGE_BUF];
762 	uint16_t next = 0;
763 	int rc;
764 
765 	/* LINTED: E_BAD_PTR_CAST_ALIGN */
766 	sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
767 	rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
768 	    NULL);
769 	if (rc != I40E_SUCCESS) {
770 		i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
771 		    rc, hw->aq.asq_last_status);
772 		return (-1);
773 	}
774 
775 	if (LE_16(sw_config->header.num_reported) != 1) {
776 		i40e_error(i40e, "encountered multiple (%d) switching units "
777 		    "during attach, not proceeding",
778 		    LE_16(sw_config->header.num_reported));
779 		return (-1);
780 	}
781 
782 	return (sw_config->element[0].seid);
783 }
784 
785 /*
786  * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
787  * must also provide the memory for it; however, we don't need to keep it around
788  * to the call to the common code. It takes it and parses it into an internal
789  * structure.
790  */
791 static boolean_t
792 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
793 {
794 	struct i40e_aqc_list_capabilities_element_resp *buf;
795 	int rc;
796 	size_t len;
797 	uint16_t needed;
798 	int nelems = I40E_HW_CAP_DEFAULT;
799 
800 	len = nelems * sizeof (*buf);
801 
802 	for (;;) {
803 		ASSERT(len > 0);
804 		buf = kmem_alloc(len, KM_SLEEP);
805 		rc = i40e_aq_discover_capabilities(hw, buf, len,
806 		    &needed, i40e_aqc_opc_list_func_capabilities, NULL);
807 		kmem_free(buf, len);
808 
809 		if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
810 		    nelems == I40E_HW_CAP_DEFAULT) {
811 			if (nelems == needed) {
812 				i40e_error(i40e, "Capability discovery failed "
813 				    "due to byzantine common code");
814 				return (B_FALSE);
815 			}
816 			len = needed;
817 			continue;
818 		} else if (rc != I40E_SUCCESS ||
819 		    hw->aq.asq_last_status != I40E_AQ_RC_OK) {
820 			i40e_error(i40e, "Capability discovery failed: %d", rc);
821 			return (B_FALSE);
822 		}
823 
824 		break;
825 	}
826 
827 	return (B_TRUE);
828 }
829 
830 /*
831  * Obtain the switch's capabilities as seen by this PF and keep it around for
832  * our later use.
833  */
834 static boolean_t
835 i40e_get_switch_resources(i40e_t *i40e)
836 {
837 	i40e_hw_t *hw = &i40e->i40e_hw_space;
838 	uint8_t cnt = 2;
839 	uint8_t act;
840 	size_t size;
841 	i40e_switch_rsrc_t *buf;
842 
843 	for (;;) {
844 		enum i40e_status_code ret;
845 		size = cnt * sizeof (i40e_switch_rsrc_t);
846 		ASSERT(size > 0);
847 		if (size > UINT16_MAX)
848 			return (B_FALSE);
849 		buf = kmem_alloc(size, KM_SLEEP);
850 
851 		ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
852 		    cnt, NULL);
853 		if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
854 		    hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
855 			kmem_free(buf, size);
856 			cnt += I40E_SWITCH_CAP_DEFAULT;
857 			continue;
858 		} else if (ret != I40E_SUCCESS) {
859 			kmem_free(buf, size);
860 			i40e_error(i40e,
861 			    "failed to retrieve switch statistics: %d", ret);
862 			return (B_FALSE);
863 		}
864 
865 		break;
866 	}
867 
868 	i40e->i40e_switch_rsrc_alloc = cnt;
869 	i40e->i40e_switch_rsrc_actual = act;
870 	i40e->i40e_switch_rsrcs = buf;
871 
872 	return (B_TRUE);
873 }
874 
875 static void
876 i40e_cleanup_resources(i40e_t *i40e)
877 {
878 	if (i40e->i40e_uaddrs != NULL) {
879 		kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
880 		    i40e->i40e_resources.ifr_nmacfilt);
881 		i40e->i40e_uaddrs = NULL;
882 	}
883 
884 	if (i40e->i40e_maddrs != NULL) {
885 		kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
886 		    i40e->i40e_resources.ifr_nmcastfilt);
887 		i40e->i40e_maddrs = NULL;
888 	}
889 
890 	if (i40e->i40e_switch_rsrcs != NULL) {
891 		size_t sz = sizeof (i40e_switch_rsrc_t) *
892 		    i40e->i40e_switch_rsrc_alloc;
893 		ASSERT(sz > 0);
894 		kmem_free(i40e->i40e_switch_rsrcs, sz);
895 		i40e->i40e_switch_rsrcs = NULL;
896 	}
897 
898 	if (i40e->i40e_device != NULL)
899 		i40e_device_rele(i40e);
900 }
901 
902 static boolean_t
903 i40e_get_available_resources(i40e_t *i40e)
904 {
905 	dev_info_t *parent;
906 	uint16_t bus, device, func;
907 	uint_t nregs;
908 	int *regs, i;
909 	i40e_device_t *idp;
910 	i40e_hw_t *hw = &i40e->i40e_hw_space;
911 
912 	parent = ddi_get_parent(i40e->i40e_dip);
913 
914 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
915 	    &regs, &nregs) != DDI_PROP_SUCCESS) {
916 		return (B_FALSE);
917 	}
918 
919 	if (nregs < 1) {
920 		ddi_prop_free(regs);
921 		return (B_FALSE);
922 	}
923 
924 	bus = PCI_REG_BUS_G(regs[0]);
925 	device = PCI_REG_DEV_G(regs[0]);
926 	func = PCI_REG_FUNC_G(regs[0]);
927 	ddi_prop_free(regs);
928 
929 	i40e->i40e_hw_space.bus.func = func;
930 	i40e->i40e_hw_space.bus.device = device;
931 
932 	if (i40e_get_switch_resources(i40e) == B_FALSE) {
933 		return (B_FALSE);
934 	}
935 
936 	/*
937 	 * To calculate the total amount of a resource we have available, we
938 	 * need to add how many our i40e_t thinks it has guaranteed, if any, and
939 	 * then we need to go through and divide the number of available on the
940 	 * device, which was snapshotted before anyone should have allocated
941 	 * anything, and use that to derive how many are available from the
942 	 * pool. Longer term, we may want to turn this into something that's
943 	 * more of a pool-like resource that everything can share (though that
944 	 * may require some more assistance from MAC).
945 	 *
946 	 * Though for transmit and receive queue pairs, we just have to ask
947 	 * firmware instead.
948 	 */
949 	idp = i40e_device_find(i40e, parent, bus, device);
950 	i40e->i40e_device = idp;
951 	i40e->i40e_resources.ifr_nvsis = 0;
952 	i40e->i40e_resources.ifr_nvsis_used = 0;
953 	i40e->i40e_resources.ifr_nmacfilt = 0;
954 	i40e->i40e_resources.ifr_nmacfilt_used = 0;
955 	i40e->i40e_resources.ifr_nmcastfilt = 0;
956 	i40e->i40e_resources.ifr_nmcastfilt_used = 0;
957 
958 	for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
959 		i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
960 
961 		switch (srp->resource_type) {
962 		case I40E_AQ_RESOURCE_TYPE_VSI:
963 			i40e->i40e_resources.ifr_nvsis +=
964 			    LE_16(srp->guaranteed);
965 			i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
966 			break;
967 		case I40E_AQ_RESOURCE_TYPE_MACADDR:
968 			i40e->i40e_resources.ifr_nmacfilt +=
969 			    LE_16(srp->guaranteed);
970 			i40e->i40e_resources.ifr_nmacfilt_used =
971 			    LE_16(srp->used);
972 			break;
973 		case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
974 			i40e->i40e_resources.ifr_nmcastfilt +=
975 			    LE_16(srp->guaranteed);
976 			i40e->i40e_resources.ifr_nmcastfilt_used =
977 			    LE_16(srp->used);
978 			break;
979 		default:
980 			break;
981 		}
982 	}
983 
984 	for (i = 0; i < idp->id_rsrcs_act; i++) {
985 		i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
986 		switch (srp->resource_type) {
987 		case I40E_AQ_RESOURCE_TYPE_VSI:
988 			i40e->i40e_resources.ifr_nvsis +=
989 			    LE_16(srp->total_unalloced) / idp->id_nfuncs;
990 			break;
991 		case I40E_AQ_RESOURCE_TYPE_MACADDR:
992 			i40e->i40e_resources.ifr_nmacfilt +=
993 			    LE_16(srp->total_unalloced) / idp->id_nfuncs;
994 			break;
995 		case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
996 			i40e->i40e_resources.ifr_nmcastfilt +=
997 			    LE_16(srp->total_unalloced) / idp->id_nfuncs;
998 		default:
999 			break;
1000 		}
1001 	}
1002 
1003 	i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1004 	i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1005 
1006 	i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1007 	    i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1008 	i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1009 	    i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1010 
1011 	/*
1012 	 * Initialize these as multicast addresses to indicate it's invalid for
1013 	 * sanity purposes. Think of it like 0xdeadbeef.
1014 	 */
1015 	for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1016 		i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1017 
1018 	return (B_TRUE);
1019 }
1020 
1021 static boolean_t
1022 i40e_enable_interrupts(i40e_t *i40e)
1023 {
1024 	int i, rc;
1025 
1026 	if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1027 		rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1028 		    i40e->i40e_intr_count);
1029 		if (rc != DDI_SUCCESS) {
1030 			i40e_error(i40e, "Interrupt block-enable failed: %d",
1031 			    rc);
1032 			return (B_FALSE);
1033 		}
1034 	} else {
1035 		for (i = 0; i < i40e->i40e_intr_count; i++) {
1036 			rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1037 			if (rc != DDI_SUCCESS) {
1038 				i40e_error(i40e,
1039 				    "Failed to enable interrupt %d: %d", i, rc);
1040 				while (--i >= 0) {
1041 					(void) ddi_intr_disable(
1042 					    i40e->i40e_intr_handles[i]);
1043 				}
1044 				return (B_FALSE);
1045 			}
1046 		}
1047 	}
1048 
1049 	return (B_TRUE);
1050 }
1051 
1052 static boolean_t
1053 i40e_disable_interrupts(i40e_t *i40e)
1054 {
1055 	int i, rc;
1056 
1057 	if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1058 		rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1059 		    i40e->i40e_intr_count);
1060 		if (rc != DDI_SUCCESS) {
1061 			i40e_error(i40e,
1062 			    "Interrupt block-disabled failed: %d", rc);
1063 			return (B_FALSE);
1064 		}
1065 	} else {
1066 		for (i = 0; i < i40e->i40e_intr_count; i++) {
1067 			rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1068 			if (rc != DDI_SUCCESS) {
1069 				i40e_error(i40e,
1070 				    "Failed to disable interrupt %d: %d",
1071 				    i, rc);
1072 				return (B_FALSE);
1073 			}
1074 		}
1075 	}
1076 
1077 	return (B_TRUE);
1078 }
1079 
1080 /*
1081  * Free receive & transmit rings.
1082  */
1083 static void
1084 i40e_free_trqpairs(i40e_t *i40e)
1085 {
1086 	int i;
1087 	i40e_trqpair_t *itrq;
1088 
1089 	if (i40e->i40e_trqpairs != NULL) {
1090 		for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1091 			itrq = &i40e->i40e_trqpairs[i];
1092 			mutex_destroy(&itrq->itrq_rx_lock);
1093 			mutex_destroy(&itrq->itrq_tx_lock);
1094 			mutex_destroy(&itrq->itrq_tcb_lock);
1095 
1096 			/*
1097 			 * Should have already been cleaned up by start/stop,
1098 			 * etc.
1099 			 */
1100 			ASSERT(itrq->itrq_txkstat == NULL);
1101 			ASSERT(itrq->itrq_rxkstat == NULL);
1102 		}
1103 
1104 		kmem_free(i40e->i40e_trqpairs,
1105 		    sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1106 		i40e->i40e_trqpairs = NULL;
1107 	}
1108 
1109 	cv_destroy(&i40e->i40e_rx_pending_cv);
1110 	mutex_destroy(&i40e->i40e_rx_pending_lock);
1111 	mutex_destroy(&i40e->i40e_general_lock);
1112 }
1113 
1114 /*
1115  * Allocate transmit and receive rings, as well as other data structures that we
1116  * need.
1117  */
1118 static boolean_t
1119 i40e_alloc_trqpairs(i40e_t *i40e)
1120 {
1121 	int i;
1122 	void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1123 
1124 	/*
1125 	 * Now that we have the priority for the interrupts, initialize
1126 	 * all relevant locks.
1127 	 */
1128 	mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1129 	mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1130 	cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1131 
1132 	i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1133 	    i40e->i40e_num_trqpairs, KM_SLEEP);
1134 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
1135 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1136 
1137 		itrq->itrq_i40e = i40e;
1138 		mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1139 		mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1140 		mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1141 		itrq->itrq_index = i;
1142 	}
1143 
1144 	return (B_TRUE);
1145 }
1146 
1147 
1148 
1149 /*
1150  * Unless a .conf file already overrode i40e_t structure values, they will
1151  * be 0, and need to be set in conjunction with the now-available HW report.
1152  *
1153  * However, at the moment, we cap all of these resources as we only support a
1154  * single receive ring and a single group.
1155  */
1156 /* ARGSUSED */
1157 static void
1158 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1159 {
1160 	if (i40e->i40e_num_trqpairs == 0) {
1161 		i40e->i40e_num_trqpairs = I40E_TRQPAIR_MAX;
1162 	}
1163 
1164 	if (i40e->i40e_num_rx_groups == 0) {
1165 		i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1166 	}
1167 }
1168 
1169 /*
1170  * Free any resources required by, or setup by, the Intel common code.
1171  */
1172 static void
1173 i40e_common_code_fini(i40e_t *i40e)
1174 {
1175 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1176 	int rc;
1177 
1178 	rc = i40e_shutdown_lan_hmc(hw);
1179 	if (rc != I40E_SUCCESS)
1180 		i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1181 
1182 	rc = i40e_shutdown_adminq(hw);
1183 	if (rc != I40E_SUCCESS)
1184 		i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1185 }
1186 
1187 /*
1188  * Initialize and call Intel common-code routines, includes some setup
1189  * the common code expects from the driver.  Also prints on failure, so
1190  * the caller doesn't have to.
1191  */
1192 static boolean_t
1193 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1194 {
1195 	int rc;
1196 
1197 	i40e_clear_hw(hw);
1198 	rc = i40e_pf_reset(hw);
1199 	if (rc != 0) {
1200 		i40e_error(i40e, "failed to reset hardware: %d", rc);
1201 		i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1202 		return (B_FALSE);
1203 	}
1204 
1205 	rc = i40e_init_shared_code(hw);
1206 	if (rc != 0) {
1207 		i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1208 		return (B_FALSE);
1209 	}
1210 
1211 	hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1212 	hw->aq.num_asq_entries =  I40E_DEF_ADMINQ_SIZE;
1213 	hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1214 	hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1215 
1216 	rc = i40e_init_adminq(hw);
1217 	if (rc != 0) {
1218 		i40e_error(i40e, "failed to initialize firmware admin queue: "
1219 		    "%d, potential firmware version mismatch", rc);
1220 		i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1221 		return (B_FALSE);
1222 	}
1223 
1224 	if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1225 	    hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) {
1226 		i40e_notice(i40e, "The driver for the device detected a newer "
1227 		    "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1228 		    "Please install the most recent version of the network "
1229 		    "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1230 		    I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
1231 	} else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1232 	    hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) {
1233 		i40e_notice(i40e, "The driver for the device detected an older"
1234 		    " version of the NVM image (%d.%d) than expected (%d.%d)."
1235 		    "\nPlease update the NVM image.\n",
1236 		    hw->aq.api_maj_ver, hw->aq.api_min_ver,
1237 		    I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR - 1);
1238 	}
1239 
1240 	i40e_clear_pxe_mode(hw);
1241 
1242 	/*
1243 	 * We need to call this so that the common code can discover
1244 	 * capabilities of the hardware, which it uses throughout the rest.
1245 	 */
1246 	if (!i40e_get_hw_capabilities(i40e, hw)) {
1247 		i40e_error(i40e, "failed to obtain hardware capabilities");
1248 		return (B_FALSE);
1249 	}
1250 
1251 	if (i40e_get_available_resources(i40e) == B_FALSE) {
1252 		i40e_error(i40e, "failed to obtain hardware resources");
1253 		return (B_FALSE);
1254 	}
1255 
1256 	i40e_hw_to_instance(i40e, hw);
1257 
1258 	rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1259 	    hw->func_caps.num_rx_qp, 0, 0);
1260 	if (rc != 0) {
1261 		i40e_error(i40e, "failed to initialize hardware memory cache: "
1262 		    "%d", rc);
1263 		return (B_FALSE);
1264 	}
1265 
1266 	rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1267 	if (rc != 0) {
1268 		i40e_error(i40e, "failed to configure hardware memory cache: "
1269 		    "%d", rc);
1270 		return (B_FALSE);
1271 	}
1272 
1273 	(void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1274 
1275 	rc = i40e_get_mac_addr(hw, hw->mac.addr);
1276 	if (rc != I40E_SUCCESS) {
1277 		i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1278 		    rc);
1279 		return (B_FALSE);
1280 	}
1281 
1282 	rc = i40e_validate_mac_addr(hw->mac.addr);
1283 	if (rc != 0) {
1284 		i40e_error(i40e, "failed to validate internal mac address: "
1285 		    "%d", rc);
1286 		return (B_FALSE);
1287 	}
1288 	bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1289 	if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1290 	    I40E_SUCCESS) {
1291 		i40e_error(i40e, "failed to retrieve port mac address: %d",
1292 		    rc);
1293 		return (B_FALSE);
1294 	}
1295 
1296 	/*
1297 	 * We need to obtain the Virtual Station ID (VSI) before we can
1298 	 * perform other operations on the device.
1299 	 */
1300 	i40e->i40e_vsi_id = i40e_get_vsi_id(i40e);
1301 	if (i40e->i40e_vsi_id == -1) {
1302 		i40e_error(i40e, "failed to obtain VSI ID");
1303 		return (B_FALSE);
1304 	}
1305 
1306 	return (B_TRUE);
1307 }
1308 
1309 static void
1310 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1311 {
1312 	int rc;
1313 
1314 	if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1315 		(void) i40e_disable_interrupts(i40e);
1316 
1317 	if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1318 	    i40e->i40e_periodic_id != 0) {
1319 		ddi_periodic_delete(i40e->i40e_periodic_id);
1320 		i40e->i40e_periodic_id = 0;
1321 	}
1322 
1323 	if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1324 		rc = mac_unregister(i40e->i40e_mac_hdl);
1325 		if (rc != 0) {
1326 			i40e_error(i40e, "failed to unregister from mac: %d",
1327 			    rc);
1328 		}
1329 	}
1330 
1331 	if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1332 		i40e_stats_fini(i40e);
1333 	}
1334 
1335 	if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1336 		i40e_rem_intr_handlers(i40e);
1337 
1338 	if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1339 		i40e_free_trqpairs(i40e);
1340 
1341 	if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1342 		i40e_rem_intrs(i40e);
1343 
1344 	if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1345 		i40e_common_code_fini(i40e);
1346 
1347 	i40e_cleanup_resources(i40e);
1348 
1349 	if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1350 		(void) ddi_prop_remove_all(devinfo);
1351 
1352 	if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1353 	    i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1354 		ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1355 		i40e->i40e_osdep_space.ios_reg_handle = NULL;
1356 	}
1357 
1358 	if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1359 	    i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1360 		pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1361 		i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1362 	}
1363 
1364 	if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1365 		i40e_fm_fini(i40e);
1366 
1367 	kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1368 	kmem_free(i40e, sizeof (i40e_t));
1369 
1370 	ddi_set_driver_private(devinfo, NULL);
1371 }
1372 
1373 static boolean_t
1374 i40e_final_init(i40e_t *i40e)
1375 {
1376 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1377 	struct i40e_osdep *osdep = OS_DEP(hw);
1378 	uint8_t pbanum[I40E_PBANUM_STRLEN];
1379 	enum i40e_status_code irc;
1380 	char buf[I40E_DDI_PROP_LEN];
1381 
1382 	pbanum[0] = '\0';
1383 	irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1384 	if (irc != I40E_SUCCESS) {
1385 		i40e_log(i40e, "failed to read PBA string: %d", irc);
1386 	} else {
1387 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1388 		    "printed-board-assembly", (char *)pbanum);
1389 	}
1390 
1391 #ifdef	DEBUG
1392 	ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1393 	    hw->aq.fw_min_ver) < sizeof (buf));
1394 	ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1395 	ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1396 	    hw->aq.api_min_ver) < sizeof (buf));
1397 #endif
1398 
1399 	(void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1400 	    hw->aq.fw_min_ver);
1401 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1402 	    "firmware-version", buf);
1403 	(void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1404 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1405 	    "firmware-build", buf);
1406 	(void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1407 	    hw->aq.api_min_ver);
1408 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1409 	    "api-version", buf);
1410 
1411 	if (!i40e_set_hw_bus_info(hw))
1412 		return (B_FALSE);
1413 
1414 	if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1415 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1416 		return (B_FALSE);
1417 	}
1418 
1419 	return (B_TRUE);
1420 }
1421 
1422 static boolean_t
1423 i40e_identify_hardware(i40e_t *i40e)
1424 {
1425 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1426 	struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1427 
1428 	hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1429 	hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1430 	hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1431 	    PCI_CONF_REVID);
1432 	hw->subsystem_device_id =
1433 	    pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1434 	hw->subsystem_vendor_id =
1435 	    pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1436 
1437 	/*
1438 	 * Note that we set the hardware's bus information later on, in
1439 	 * i40e_get_available_resources(). The common code doesn't seem to
1440 	 * require that it be set in any ways, it seems to be mostly for
1441 	 * book-keeping.
1442 	 */
1443 
1444 	/* Call common code to set the MAC type for this adapter. */
1445 	if (i40e_set_mac_type(hw) != I40E_SUCCESS)
1446 		return (B_FALSE);
1447 
1448 	return (B_TRUE);
1449 }
1450 
1451 static boolean_t
1452 i40e_regs_map(i40e_t *i40e)
1453 {
1454 	dev_info_t *devinfo = i40e->i40e_dip;
1455 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1456 	struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1457 	off_t memsize;
1458 	int ret;
1459 
1460 	if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1461 	    DDI_SUCCESS) {
1462 		i40e_error(i40e, "Used invalid register set to map PCIe regs");
1463 		return (B_FALSE);
1464 	}
1465 
1466 	if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1467 	    (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1468 	    &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1469 		i40e_error(i40e, "failed to map device registers: %d", ret);
1470 		return (B_FALSE);
1471 	}
1472 
1473 	osdep->ios_reg_size = memsize;
1474 	return (B_TRUE);
1475 }
1476 
1477 /*
1478  * Update parameters required when a new MTU has been configured.  Calculate the
1479  * maximum frame size, as well as, size our DMA buffers which we size in
1480  * increments of 1K.
1481  */
1482 void
1483 i40e_update_mtu(i40e_t *i40e)
1484 {
1485 	uint32_t rx, tx;
1486 
1487 	i40e->i40e_frame_max = i40e->i40e_sdu +
1488 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
1489 
1490 	rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1491 	i40e->i40e_rx_buf_size = ((rx >> 10) +
1492 	    ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1493 
1494 	tx = i40e->i40e_frame_max;
1495 	i40e->i40e_tx_buf_size = ((tx >> 10) +
1496 	    ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1497 }
1498 
1499 static int
1500 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1501 {
1502 	int val;
1503 
1504 	val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1505 	    prop, def);
1506 	if (val > max)
1507 		val = max;
1508 	if (val < min)
1509 		val = min;
1510 	return (val);
1511 }
1512 
1513 static void
1514 i40e_init_properties(i40e_t *i40e)
1515 {
1516 	i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1517 	    I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1518 
1519 	i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1520 	    I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1521 
1522 	i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1523 	    B_FALSE, B_TRUE, B_TRUE);
1524 
1525 	i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1526 	    I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1527 	    I40E_DEF_TX_RING_SIZE);
1528 	if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1529 		i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1530 		    I40E_DESC_ALIGN);
1531 	}
1532 
1533 	i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1534 	    I40E_MIN_TX_BLOCK_THRESH,
1535 	    i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1536 	    I40E_DEF_TX_BLOCK_THRESH);
1537 
1538 	i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1539 	    I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1540 	    I40E_DEF_RX_RING_SIZE);
1541 	if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1542 		i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1543 		    I40E_DESC_ALIGN);
1544 	}
1545 
1546 	i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1547 	    I40E_MIN_RX_LIMIT_PER_INTR,	I40E_MAX_RX_LIMIT_PER_INTR,
1548 	    I40E_DEF_RX_LIMIT_PER_INTR);
1549 
1550 	i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1551 	    B_FALSE, B_TRUE, B_TRUE);
1552 
1553 	i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1554 	    B_FALSE, B_TRUE, B_TRUE);
1555 
1556 	i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1557 	    I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1558 	    I40E_DEF_RX_DMA_THRESH);
1559 
1560 	i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1561 	    I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1562 	    I40E_DEF_TX_DMA_THRESH);
1563 
1564 	i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1565 	    I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1566 
1567 	i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1568 	    I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1569 
1570 	i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1571 	    I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1572 
1573 	if (!i40e->i40e_mr_enable) {
1574 		i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1575 		i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1576 	}
1577 
1578 	i40e_update_mtu(i40e);
1579 }
1580 
1581 /*
1582  * There are a few constraints on interrupts that we're currently imposing, some
1583  * of which are restrictions from hardware. For a fuller treatment, see
1584  * i40e_intr.c.
1585  *
1586  * Currently, to use MSI-X we require two interrupts be available though in
1587  * theory we should participate in IRM and happily use more interrupts.
1588  *
1589  * Hardware only supports a single MSI being programmed and therefore if we
1590  * don't have MSI-X interrupts available at this time, then we ratchet down the
1591  * number of rings and groups available. Obviously, we only bother with a single
1592  * fixed interrupt.
1593  */
1594 static boolean_t
1595 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1596 {
1597 	int request, count, actual, rc, min;
1598 
1599 	switch (intr_type) {
1600 	case DDI_INTR_TYPE_FIXED:
1601 	case DDI_INTR_TYPE_MSI:
1602 		request = 1;
1603 		min = 1;
1604 		break;
1605 	case DDI_INTR_TYPE_MSIX:
1606 		/*
1607 		 * At the moment, we always request two MSI-X while we still
1608 		 * only support a single interrupt. The upper bound on what's
1609 		 * supported by a given device is defined by MSI_X_PF_N in
1610 		 * GLPCI_CNF2. When we evolve, we should read it to determine
1611 		 * what the real max is.
1612 		 */
1613 		ASSERT(i40e->i40e_num_trqpairs == 1);
1614 		request = 2;
1615 		min = 2;
1616 		break;
1617 	default:
1618 		panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1619 		    "%d", intr_type);
1620 		return (B_FALSE);
1621 	}
1622 
1623 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1624 	if (rc != DDI_SUCCESS || count < min) {
1625 		i40e_log(i40e, "Get interrupt number failed, "
1626 		    "returned %d, count %d", rc, count);
1627 		return (B_FALSE);
1628 	}
1629 
1630 	rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1631 	if (rc != DDI_SUCCESS || count < min) {
1632 		i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1633 		    "returned %d, count %d", rc, count);
1634 		return (B_FALSE);
1635 	}
1636 
1637 	actual = 0;
1638 	i40e->i40e_intr_count = 0;
1639 	i40e->i40e_intr_count_max = 0;
1640 	i40e->i40e_intr_count_min = 0;
1641 
1642 	i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1643 	ASSERT(i40e->i40e_intr_size != 0);
1644 	i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1645 
1646 	rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1647 	    min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1648 	if (rc != DDI_SUCCESS) {
1649 		i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1650 		goto alloc_handle_fail;
1651 	}
1652 
1653 	i40e->i40e_intr_count = actual;
1654 	i40e->i40e_intr_count_max = request;
1655 	i40e->i40e_intr_count_min = min;
1656 
1657 	if (actual < min) {
1658 		i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1659 		    actual, min);
1660 		goto alloc_handle_fail;
1661 	}
1662 
1663 	/*
1664 	 * Record the priority and capabilities for our first vector.  Once
1665 	 * we have it, that's our priority until detach time.  Even if we
1666 	 * eventually participate in IRM, our priority shouldn't change.
1667 	 */
1668 	rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1669 	if (rc != DDI_SUCCESS) {
1670 		i40e_log(i40e,
1671 		    "Getting interrupt priority failed with %d.", rc);
1672 		goto alloc_handle_fail;
1673 	}
1674 
1675 	rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1676 	if (rc != DDI_SUCCESS) {
1677 		i40e_log(i40e,
1678 		    "Getting interrupt capabilities failed with %d.", rc);
1679 		goto alloc_handle_fail;
1680 	}
1681 
1682 	i40e->i40e_intr_type = intr_type;
1683 	return (B_TRUE);
1684 
1685 alloc_handle_fail:
1686 
1687 	i40e_rem_intrs(i40e);
1688 	return (B_FALSE);
1689 }
1690 
1691 static boolean_t
1692 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1693 {
1694 	int intr_types, rc;
1695 
1696 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1697 	if (rc != DDI_SUCCESS) {
1698 		i40e_error(i40e, "failed to get supported interrupt types: %d",
1699 		    rc);
1700 		return (B_FALSE);
1701 	}
1702 
1703 	i40e->i40e_intr_type = 0;
1704 
1705 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1706 	    i40e->i40e_intr_force <= I40E_INTR_MSIX) {
1707 		if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))
1708 			return (B_TRUE);
1709 	}
1710 
1711 	/*
1712 	 * We only use multiple transmit/receive pairs when MSI-X interrupts are
1713 	 * available due to the fact that the device basically only supports a
1714 	 * single MSI interrupt.
1715 	 */
1716 	i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1717 	i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1718 
1719 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
1720 	    (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1721 		if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1722 			return (B_TRUE);
1723 	}
1724 
1725 	if (intr_types & DDI_INTR_TYPE_FIXED) {
1726 		if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1727 			return (B_TRUE);
1728 	}
1729 
1730 	return (B_FALSE);
1731 }
1732 
1733 /*
1734  * Map different interrupts to MSI-X vectors.
1735  */
1736 static boolean_t
1737 i40e_map_intrs_to_vectors(i40e_t *i40e)
1738 {
1739 	if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1740 		return (B_TRUE);
1741 	}
1742 
1743 	/*
1744 	 * At the moment, we only have one queue and one interrupt thus both are
1745 	 * on that one interrupt. However, longer term we need to go back to
1746 	 * using the ixgbe style map of queues to vectors or walk the linked
1747 	 * list from the device to know what to go handle. Therefore for the
1748 	 * moment, since we need to map our single set of rings to the one
1749 	 * I/O interrupt that exists for MSI-X.
1750 	 */
1751 	ASSERT(i40e->i40e_intr_count == 2);
1752 	ASSERT(i40e->i40e_num_trqpairs == 1);
1753 
1754 	i40e->i40e_trqpairs[0].itrq_rx_intrvec = 1;
1755 	i40e->i40e_trqpairs[0].itrq_tx_intrvec = 1;
1756 
1757 	return (B_TRUE);
1758 }
1759 
1760 static boolean_t
1761 i40e_add_intr_handlers(i40e_t *i40e)
1762 {
1763 	int rc, vector;
1764 
1765 	switch (i40e->i40e_intr_type) {
1766 	case DDI_INTR_TYPE_MSIX:
1767 		for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1768 			rc = ddi_intr_add_handler(
1769 			    i40e->i40e_intr_handles[vector],
1770 			    (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1771 			    (void *)(uintptr_t)vector);
1772 			if (rc != DDI_SUCCESS) {
1773 				i40e_log(i40e, "Add interrupt handler (MSI-X) "
1774 				    "failed: return %d, vector %d", rc, vector);
1775 				for (vector--; vector >= 0; vector--) {
1776 					(void) ddi_intr_remove_handler(
1777 					    i40e->i40e_intr_handles[vector]);
1778 				}
1779 				return (B_FALSE);
1780 			}
1781 		}
1782 		break;
1783 	case DDI_INTR_TYPE_MSI:
1784 		rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1785 		    (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1786 		if (rc != DDI_SUCCESS) {
1787 			i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1788 			    "return %d", rc);
1789 			return (B_FALSE);
1790 		}
1791 		break;
1792 	case DDI_INTR_TYPE_FIXED:
1793 		rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1794 		    (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1795 		if (rc != DDI_SUCCESS) {
1796 			i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1797 			    " return %d", rc);
1798 			return (B_FALSE);
1799 		}
1800 		break;
1801 	default:
1802 		/* Cast to pacify lint */
1803 		panic("i40e_intr_type %p contains an unknown type: %d",
1804 		    (void *)i40e, i40e->i40e_intr_type);
1805 	}
1806 
1807 	return (B_TRUE);
1808 }
1809 
1810 /*
1811  * Perform periodic checks. Longer term, we should be thinking about additional
1812  * things here:
1813  *
1814  * o Stall Detection
1815  * o Temperature sensor detection
1816  * o Device resetting
1817  * o Statistics updating to avoid wraparound
1818  */
1819 static void
1820 i40e_timer(void *arg)
1821 {
1822 	i40e_t *i40e = arg;
1823 
1824 	mutex_enter(&i40e->i40e_general_lock);
1825 	i40e_link_check(i40e);
1826 	mutex_exit(&i40e->i40e_general_lock);
1827 }
1828 
1829 /*
1830  * Get the hardware state, and scribble away anything that needs scribbling.
1831  */
1832 static void
1833 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1834 {
1835 	int rc;
1836 
1837 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1838 
1839 	(void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1840 	i40e_link_check(i40e);
1841 
1842 	/*
1843 	 * Try and determine our PHY. Note that we may have to retry to and
1844 	 * delay to detect fiber correctly.
1845 	 */
1846 	rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
1847 	    NULL);
1848 	if (rc == I40E_ERR_UNKNOWN_PHY) {
1849 		i40e_msec_delay(200);
1850 		rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
1851 		    &i40e->i40e_phy, NULL);
1852 	}
1853 
1854 	if (rc != I40E_SUCCESS) {
1855 		if (rc == I40E_ERR_UNKNOWN_PHY) {
1856 			i40e_error(i40e, "encountered unknown PHY type, "
1857 			    "not attaching.");
1858 		} else {
1859 			i40e_error(i40e, "error getting physical capabilities: "
1860 			    "%d, %d", rc, hw->aq.asq_last_status);
1861 		}
1862 	}
1863 
1864 	rc = i40e_update_link_info(hw);
1865 	if (rc != I40E_SUCCESS) {
1866 		i40e_error(i40e, "failed to update link information: %d", rc);
1867 	}
1868 
1869 	/*
1870 	 * In general, we don't want to mask off (as in stop from being a cause)
1871 	 * any of the interrupts that the phy might be able to generate.
1872 	 */
1873 	rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
1874 	if (rc != I40E_SUCCESS) {
1875 		i40e_error(i40e, "failed to update phy link mask: %d", rc);
1876 	}
1877 }
1878 
1879 /*
1880  * Go through and re-initialize any existing filters that we may have set up for
1881  * this device. Note that we would only expect them to exist if hardware had
1882  * already been initialized and we had just reset it. While we're not
1883  * implementing this yet, we're keeping this around for when we add reset
1884  * capabilities, so this isn't forgotten.
1885  */
1886 /* ARGSUSED */
1887 static void
1888 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
1889 {
1890 }
1891 
1892 /*
1893  * Configure the hardware for the Virtual Station Interface (VSI).  Currently
1894  * we only support one, but in the future we could instantiate more than one
1895  * per attach-point.
1896  */
1897 static boolean_t
1898 i40e_config_vsi(i40e_t *i40e, i40e_hw_t *hw)
1899 {
1900 	struct i40e_vsi_context	context;
1901 	int err;
1902 
1903 	bzero(&context, sizeof (struct i40e_vsi_context));
1904 	context.seid = i40e->i40e_vsi_id;
1905 	context.pf_num = hw->pf_id;
1906 	err = i40e_aq_get_vsi_params(hw, &context, NULL);
1907 	if (err != I40E_SUCCESS) {
1908 		i40e_error(i40e, "get VSI params failed with %d", err);
1909 		return (B_FALSE);
1910 	}
1911 
1912 	/*
1913 	 * Set the queue and traffic class bits.  Keep it simple for now.
1914 	 */
1915 	context.info.valid_sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1916 	context.info.mapping_flags = I40E_AQ_VSI_QUE_MAP_CONTIG;
1917 	context.info.queue_mapping[0] = I40E_ASSIGN_ALL_QUEUES;
1918 	context.info.tc_mapping[0] = I40E_TRAFFIC_CLASS_NO_QUEUES;
1919 
1920 	context.info.valid_sections |= I40E_AQ_VSI_PROP_VLAN_VALID;
1921 	context.info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
1922 	    I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
1923 
1924 	context.flags = LE16_TO_CPU(I40E_AQ_VSI_TYPE_PF);
1925 
1926 	i40e->i40e_vsi_stat_id = LE16_TO_CPU(context.info.stat_counter_idx);
1927 	if (i40e_stat_vsi_init(i40e) == B_FALSE)
1928 		return (B_FALSE);
1929 
1930 	err = i40e_aq_update_vsi_params(hw, &context, NULL);
1931 	if (err != I40E_SUCCESS) {
1932 		i40e_error(i40e, "Update VSI params failed with %d", err);
1933 		return (B_FALSE);
1934 	}
1935 
1936 
1937 	return (B_TRUE);
1938 }
1939 
1940 /*
1941  * Wrapper to kick the chipset on.
1942  */
1943 static boolean_t
1944 i40e_chip_start(i40e_t *i40e)
1945 {
1946 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1947 	struct i40e_filter_control_settings filter;
1948 	int rc;
1949 
1950 	if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
1951 	    (hw->aq.fw_maj_ver < 4)) {
1952 		i40e_msec_delay(75);
1953 		if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
1954 		    I40E_SUCCESS) {
1955 			i40e_error(i40e, "failed to restart link: admin queue "
1956 			    "error: %d", hw->aq.asq_last_status);
1957 			return (B_FALSE);
1958 		}
1959 	}
1960 
1961 	/* Determine hardware state */
1962 	i40e_get_hw_state(i40e, hw);
1963 
1964 	/* Initialize mac addresses. */
1965 	i40e_init_macaddrs(i40e, hw);
1966 
1967 	/*
1968 	 * Set up the filter control.
1969 	 */
1970 	bzero(&filter, sizeof (filter));
1971 	filter.enable_ethtype = TRUE;
1972 	filter.enable_macvlan = TRUE;
1973 
1974 	rc = i40e_set_filter_control(hw, &filter);
1975 	if (rc != I40E_SUCCESS) {
1976 		i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
1977 		return (B_FALSE);
1978 	}
1979 
1980 	i40e_intr_chip_init(i40e);
1981 
1982 	if (!i40e_config_vsi(i40e, hw))
1983 		return (B_FALSE);
1984 
1985 	i40e_flush(hw);
1986 
1987 	return (B_TRUE);
1988 }
1989 
1990 /*
1991  * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
1992  */
1993 static void
1994 i40e_shutdown_rx_rings(i40e_t *i40e)
1995 {
1996 	int i;
1997 	uint32_t reg;
1998 
1999 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2000 
2001 	/*
2002 	 * Step 1. The interrupt linked list (see i40e_intr.c for more
2003 	 * information) should have already been cleared before calling this
2004 	 * function.
2005 	 */
2006 #ifdef	DEBUG
2007 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2008 		for (i = 1; i < i40e->i40e_intr_count; i++) {
2009 			reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2010 			VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2011 		}
2012 	} else {
2013 		reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2014 		VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2015 	}
2016 
2017 #endif	/* DEBUG */
2018 
2019 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2020 		/*
2021 		 * Step 1. Request the queue by clearing QENA_REQ. It may not be
2022 		 * set due to unwinding from failures and a partially enabled
2023 		 * ring set.
2024 		 */
2025 		reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2026 		if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2027 			continue;
2028 		VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2029 		    I40E_QRX_ENA_QENA_REQ_MASK);
2030 		reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2031 		I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2032 	}
2033 
2034 	/*
2035 	 * Step 2. Wait for the disable to take, by having QENA_STAT in the FPM
2036 	 * be cleared. Note that we could still receive data in the queue during
2037 	 * this time. We don't actually wait for this now and instead defer this
2038 	 * to i40e_shutdown_rings_wait(), after we've interleaved disabling the
2039 	 * TX queues as well.
2040 	 */
2041 }
2042 
2043 static void
2044 i40e_shutdown_tx_rings(i40e_t *i40e)
2045 {
2046 	int i;
2047 	uint32_t reg;
2048 
2049 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2050 
2051 	/*
2052 	 * Step 1. The interrupt linked list should already have been cleared.
2053 	 */
2054 #ifdef DEBUG
2055 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2056 		for (i = 1; i < i40e->i40e_intr_count; i++) {
2057 			reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2058 			VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2059 		}
2060 	} else {
2061 		reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2062 		VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2063 
2064 	}
2065 #endif	/* DEBUG */
2066 
2067 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2068 		/*
2069 		 * Step 2. Set the SET_QDIS flag for every queue.
2070 		 */
2071 		i40e_pre_tx_queue_cfg(hw, i, B_FALSE);
2072 	}
2073 
2074 	/*
2075 	 * Step 3. Wait at least 400 usec (can be done once for all queues).
2076 	 */
2077 	drv_usecwait(500);
2078 
2079 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2080 		/*
2081 		 * Step 4. Clear the QENA_REQ flag which tells hardware to
2082 		 * quiesce. If QENA_REQ is not already set then that means that
2083 		 * we likely already tried to disable this queue.
2084 		 */
2085 		reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2086 		if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK))
2087 			continue;
2088 		reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2089 		I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2090 	}
2091 
2092 	/*
2093 	 * Step 5. Wait for all drains to finish. This will be done by the
2094 	 * hardware removing the QENA_STAT flag from the queue. Rather than
2095 	 * waiting here, we interleave it with all the others in
2096 	 * i40e_shutdown_rings_wait().
2097 	 */
2098 }
2099 
2100 /*
2101  * Wait for all the rings to be shut down. e.g. Steps 2 and 5 from the above
2102  * functions.
2103  */
2104 static boolean_t
2105 i40e_shutdown_rings_wait(i40e_t *i40e)
2106 {
2107 	int i, try;
2108 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2109 
2110 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2111 		uint32_t reg;
2112 
2113 		for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2114 			reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2115 			if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2116 				break;
2117 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2118 		}
2119 
2120 		if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2121 			i40e_error(i40e, "timed out disabling rx queue %d",
2122 			    i);
2123 			return (B_FALSE);
2124 		}
2125 
2126 		for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2127 			reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2128 			if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2129 				break;
2130 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2131 		}
2132 
2133 		if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2134 			i40e_error(i40e, "timed out disabling tx queue %d",
2135 			    i);
2136 			return (B_FALSE);
2137 		}
2138 	}
2139 
2140 	return (B_TRUE);
2141 }
2142 
2143 static boolean_t
2144 i40e_shutdown_rings(i40e_t *i40e)
2145 {
2146 	i40e_shutdown_rx_rings(i40e);
2147 	i40e_shutdown_tx_rings(i40e);
2148 	return (i40e_shutdown_rings_wait(i40e));
2149 }
2150 
2151 static void
2152 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2153 {
2154 	int i;
2155 	i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2156 
2157 	for (i = 0; i < rxd->rxd_ring_size; i++) {
2158 		i40e_rx_control_block_t *rcb;
2159 		i40e_rx_desc_t *rdesc;
2160 
2161 		rcb = rxd->rxd_work_list[i];
2162 		rdesc = &rxd->rxd_desc_ring[i];
2163 
2164 		rdesc->read.pkt_addr =
2165 		    CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2166 		rdesc->read.hdr_addr = 0;
2167 	}
2168 }
2169 
2170 static boolean_t
2171 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2172 {
2173 	i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2174 	i40e_t *i40e = itrq->itrq_i40e;
2175 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2176 
2177 	struct i40e_hmc_obj_rxq rctx;
2178 	int err;
2179 
2180 	bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2181 	rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2182 	    I40E_HMC_RX_CTX_UNIT;
2183 	rctx.qlen = rxd->rxd_ring_size;
2184 	VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2185 	VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2186 	rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2187 	rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2188 	rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2189 	rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2190 	rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2191 	rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2192 	rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2193 	rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2194 	rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2195 	rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2196 	rctx.rxmax = i40e->i40e_frame_max;
2197 	rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2198 	rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2199 	rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2200 	rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2201 	rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2202 
2203 	/*
2204 	 * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2205 	 */
2206 	rctx.prefena = I40E_HMC_RX_PREFENA;
2207 
2208 	err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2209 	if (err != I40E_SUCCESS) {
2210 		i40e_error(i40e, "failed to clear rx queue %d context: %d",
2211 		    itrq->itrq_index, err);
2212 		return (B_FALSE);
2213 	}
2214 
2215 	err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2216 	if (err != I40E_SUCCESS) {
2217 		i40e_error(i40e, "failed to set rx queue %d context: %d",
2218 		    itrq->itrq_index, err);
2219 		return (B_FALSE);
2220 	}
2221 
2222 	return (B_TRUE);
2223 }
2224 
2225 /*
2226  * Take care of setting up the descriptor rings and actually programming the
2227  * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2228  * rx rings.
2229  */
2230 static boolean_t
2231 i40e_setup_rx_rings(i40e_t *i40e)
2232 {
2233 	int i;
2234 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2235 
2236 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2237 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2238 		i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2239 		uint32_t reg;
2240 
2241 		/*
2242 		 * Step 1. Program all receive ring descriptors.
2243 		 */
2244 		i40e_setup_rx_descs(itrq);
2245 
2246 		/*
2247 		 * Step 2. Program the queue's FPM/HMC context.
2248 		 */
2249 		if (i40e_setup_rx_hmc(itrq) == B_FALSE)
2250 			return (B_FALSE);
2251 
2252 		/*
2253 		 * Step 3. Clear the queue's tail pointer and set it to the end
2254 		 * of the space.
2255 		 */
2256 		I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), 0);
2257 		I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), rxd->rxd_ring_size - 1);
2258 
2259 		/*
2260 		 * Step 4. Enable the queue via the QENA_REQ.
2261 		 */
2262 		reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2263 		VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2264 		    I40E_QRX_ENA_QENA_STAT_MASK));
2265 		reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2266 		I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2267 	}
2268 
2269 	/*
2270 	 * Note, we wait for every queue to be enabled before we start checking.
2271 	 * This will hopefully cause most queues to be enabled at this point.
2272 	 */
2273 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2274 		uint32_t j, reg;
2275 
2276 		/*
2277 		 * Step 5. Verify that QENA_STAT has been set. It's promised
2278 		 * that this should occur within about 10 us, but like other
2279 		 * systems, we give the card a bit more time.
2280 		 */
2281 		for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2282 			reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2283 
2284 			if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2285 				break;
2286 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2287 		}
2288 
2289 		if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2290 			i40e_error(i40e, "failed to enable rx queue %d, timed "
2291 			    "out.", i);
2292 			return (B_FALSE);
2293 		}
2294 	}
2295 
2296 	return (B_TRUE);
2297 }
2298 
2299 static boolean_t
2300 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2301 {
2302 	i40e_t *i40e = itrq->itrq_i40e;
2303 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2304 
2305 	struct i40e_hmc_obj_txq tctx;
2306 	struct i40e_vsi_context	context;
2307 	int err;
2308 
2309 	bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2310 	tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2311 	tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2312 	    I40E_HMC_TX_CTX_UNIT;
2313 	tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2314 	tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2315 	tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2316 	tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2317 	tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2318 	tctx.qlen = itrq->itrq_tx_ring_size;
2319 	tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2320 	tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2321 	tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2322 	tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2323 	    sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2324 
2325 	/*
2326 	 * This field isn't actually documented, like crc, but it suggests that
2327 	 * it should be zeroed. We leave both of these here because of that for
2328 	 * now. We should check with Intel on why these are here even.
2329 	 */
2330 	tctx.crc = 0;
2331 	tctx.rdylist_act = 0;
2332 
2333 	/*
2334 	 * We're supposed to assign the rdylist field with the value of the
2335 	 * traffic class index for the first device. We query the VSI parameters
2336 	 * again to get what the handle is. Note that every queue is always
2337 	 * assigned to traffic class zero, because we don't actually use them.
2338 	 */
2339 	bzero(&context, sizeof (struct i40e_vsi_context));
2340 	context.seid = i40e->i40e_vsi_id;
2341 	context.pf_num = hw->pf_id;
2342 	err = i40e_aq_get_vsi_params(hw, &context, NULL);
2343 	if (err != I40E_SUCCESS) {
2344 		i40e_error(i40e, "get VSI params failed with %d", err);
2345 		return (B_FALSE);
2346 	}
2347 	tctx.rdylist = LE_16(context.info.qs_handle[0]);
2348 
2349 	err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2350 	if (err != I40E_SUCCESS) {
2351 		i40e_error(i40e, "failed to clear tx queue %d context: %d",
2352 		    itrq->itrq_index, err);
2353 		return (B_FALSE);
2354 	}
2355 
2356 	err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2357 	if (err != I40E_SUCCESS) {
2358 		i40e_error(i40e, "failed to set tx queue %d context: %d",
2359 		    itrq->itrq_index, err);
2360 		return (B_FALSE);
2361 	}
2362 
2363 	return (B_TRUE);
2364 }
2365 
2366 /*
2367  * Take care of setting up the descriptor rings and actually programming the
2368  * device. See 8.4.3.1.1 for what we need to do here.
2369  */
2370 static boolean_t
2371 i40e_setup_tx_rings(i40e_t *i40e)
2372 {
2373 	int i;
2374 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2375 
2376 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2377 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2378 		uint32_t reg;
2379 
2380 		/*
2381 		 * Step 1. Clear the queue disable flag and verify that the
2382 		 * index is set correctly.
2383 		 */
2384 		i40e_pre_tx_queue_cfg(hw, i, B_TRUE);
2385 
2386 		/*
2387 		 * Step 2. Prepare the queue's FPM/HMC context.
2388 		 */
2389 		if (i40e_setup_tx_hmc(itrq) == B_FALSE)
2390 			return (B_FALSE);
2391 
2392 		/*
2393 		 * Step 3. Verify that it's clear that this PF owns this queue.
2394 		 */
2395 		reg = I40E_QTX_CTL_PF_QUEUE;
2396 		reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2397 		    I40E_QTX_CTL_PF_INDX_MASK;
2398 		I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2399 		i40e_flush(hw);
2400 
2401 		/*
2402 		 * Step 4. Set the QENA_REQ flag.
2403 		 */
2404 		reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2405 		VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
2406 		    I40E_QTX_ENA_QENA_STAT_MASK));
2407 		reg |= I40E_QTX_ENA_QENA_REQ_MASK;
2408 		I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2409 	}
2410 
2411 	/*
2412 	 * Note, we wait for every queue to be enabled before we start checking.
2413 	 * This will hopefully cause most queues to be enabled at this point.
2414 	 */
2415 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2416 		uint32_t j, reg;
2417 
2418 		/*
2419 		 * Step 5. Verify that QENA_STAT has been set. It's promised
2420 		 * that this should occur within about 10 us, but like BSD,
2421 		 * we'll try for up to 100 ms for this queue.
2422 		 */
2423 		for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2424 			reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2425 
2426 			if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
2427 				break;
2428 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2429 		}
2430 
2431 		if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
2432 			i40e_error(i40e, "failed to enable tx queue %d, timed "
2433 			    "out", i);
2434 			return (B_FALSE);
2435 		}
2436 	}
2437 
2438 	return (B_TRUE);
2439 }
2440 
2441 void
2442 i40e_stop(i40e_t *i40e, boolean_t free_allocations)
2443 {
2444 	int i;
2445 
2446 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2447 
2448 	/*
2449 	 * Shutdown and drain the tx and rx pipeline. We do this using the
2450 	 * following steps.
2451 	 *
2452 	 * 1) Shutdown interrupts to all the queues (trying to keep the admin
2453 	 *    queue alive).
2454 	 *
2455 	 * 2) Remove all of the interrupt tx and rx causes by setting the
2456 	 *    interrupt linked lists to zero.
2457 	 *
2458 	 * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
2459 	 *    wait for all the queues to be disabled, once we reach that point
2460 	 *    it should be safe to free associated data.
2461 	 *
2462 	 * 4) Wait 50ms after all that is done. This ensures that the rings are
2463 	 *    ready for programming again and we don't have to think about this
2464 	 *    in other parts of the driver.
2465 	 *
2466 	 * 5) Disable remaining chip interrupts, (admin queue, etc.)
2467 	 *
2468 	 * 6) Verify that FM is happy with all the register accesses we
2469 	 *    performed.
2470 	 */
2471 	i40e_intr_io_disable_all(i40e);
2472 	i40e_intr_io_clear_cause(i40e);
2473 
2474 	if (i40e_shutdown_rings(i40e) == B_FALSE) {
2475 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2476 	}
2477 
2478 	delay(50 * drv_usectohz(1000));
2479 
2480 	i40e_intr_chip_fini(i40e);
2481 
2482 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2483 		mutex_enter(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2484 		mutex_enter(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2485 	}
2486 
2487 	/*
2488 	 * We should consider refactoring this to be part of the ring start /
2489 	 * stop routines at some point.
2490 	 */
2491 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2492 		i40e_stats_trqpair_fini(&i40e->i40e_trqpairs[i]);
2493 	}
2494 
2495 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2496 	    DDI_FM_OK) {
2497 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2498 	}
2499 
2500 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2501 		i40e_tx_cleanup_ring(&i40e->i40e_trqpairs[i]);
2502 	}
2503 
2504 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2505 		mutex_exit(&i40e->i40e_trqpairs[i].itrq_rx_lock);
2506 		mutex_exit(&i40e->i40e_trqpairs[i].itrq_tx_lock);
2507 	}
2508 
2509 	i40e_stat_vsi_fini(i40e);
2510 
2511 	i40e->i40e_link_speed = 0;
2512 	i40e->i40e_link_duplex = 0;
2513 	i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
2514 
2515 	if (free_allocations) {
2516 		i40e_free_ring_mem(i40e, B_FALSE);
2517 	}
2518 }
2519 
2520 boolean_t
2521 i40e_start(i40e_t *i40e, boolean_t alloc)
2522 {
2523 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2524 	boolean_t rc = B_TRUE;
2525 	int i, err;
2526 
2527 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2528 
2529 	if (alloc) {
2530 		if (i40e_alloc_ring_mem(i40e) == B_FALSE) {
2531 			i40e_error(i40e,
2532 			    "Failed to allocate ring memory");
2533 			return (B_FALSE);
2534 		}
2535 	}
2536 
2537 	/*
2538 	 * This should get refactored to be part of ring start and stop at
2539 	 * some point, along with most of the logic here.
2540 	 */
2541 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2542 		if (i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i]) ==
2543 		    B_FALSE) {
2544 			int j;
2545 
2546 			for (j = 0; j < i; j++) {
2547 				i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[j];
2548 				i40e_stats_trqpair_fini(itrq);
2549 			}
2550 			return (B_FALSE);
2551 		}
2552 	}
2553 
2554 	if (!i40e_chip_start(i40e)) {
2555 		i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
2556 		rc = B_FALSE;
2557 		goto done;
2558 	}
2559 
2560 	if (i40e_setup_rx_rings(i40e) == B_FALSE) {
2561 		rc = B_FALSE;
2562 		goto done;
2563 	}
2564 
2565 	if (i40e_setup_tx_rings(i40e) == B_FALSE) {
2566 		rc = B_FALSE;
2567 		goto done;
2568 	}
2569 
2570 	/*
2571 	 * Enable broadcast traffic; however, do not enable multicast traffic.
2572 	 * That's handle exclusively through MAC's mc_multicst routines.
2573 	 */
2574 	err = i40e_aq_set_vsi_broadcast(hw, i40e->i40e_vsi_id, B_TRUE, NULL);
2575 	if (err != I40E_SUCCESS) {
2576 		i40e_error(i40e, "failed to set default VSI: %d", err);
2577 		rc = B_FALSE;
2578 		goto done;
2579 	}
2580 
2581 	err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
2582 	if (err != I40E_SUCCESS) {
2583 		i40e_error(i40e, "failed to set MAC config: %d", err);
2584 		rc = B_FALSE;
2585 		goto done;
2586 	}
2587 
2588 	/*
2589 	 * Finally, make sure that we're happy from an FM perspective.
2590 	 */
2591 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
2592 	    DDI_FM_OK) {
2593 		rc = B_FALSE;
2594 		goto done;
2595 	}
2596 
2597 	/* Clear state bits prior to final interrupt enabling. */
2598 	atomic_and_32(&i40e->i40e_state,
2599 	    ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
2600 
2601 	i40e_intr_io_enable_all(i40e);
2602 
2603 done:
2604 	if (rc == B_FALSE) {
2605 		i40e_stop(i40e, B_FALSE);
2606 		if (alloc == B_TRUE) {
2607 			i40e_free_ring_mem(i40e, B_TRUE);
2608 		}
2609 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2610 	}
2611 
2612 	return (rc);
2613 }
2614 
2615 /*
2616  * We may have loaned up descriptors to the stack. As such, if we still have
2617  * them outstanding, then we will not continue with detach.
2618  */
2619 static boolean_t
2620 i40e_drain_rx(i40e_t *i40e)
2621 {
2622 	mutex_enter(&i40e->i40e_rx_pending_lock);
2623 	while (i40e->i40e_rx_pending > 0) {
2624 		if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
2625 		    &i40e->i40e_rx_pending_lock,
2626 		    drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
2627 			mutex_exit(&i40e->i40e_rx_pending_lock);
2628 			return (B_FALSE);
2629 		}
2630 	}
2631 	mutex_exit(&i40e->i40e_rx_pending_lock);
2632 
2633 	return (B_TRUE);
2634 }
2635 
2636 static int
2637 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2638 {
2639 	i40e_t *i40e;
2640 	struct i40e_osdep *osdep;
2641 	i40e_hw_t *hw;
2642 	int instance;
2643 
2644 	if (cmd != DDI_ATTACH)
2645 		return (DDI_FAILURE);
2646 
2647 	instance = ddi_get_instance(devinfo);
2648 	i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
2649 
2650 	i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
2651 	i40e->i40e_instance = instance;
2652 	i40e->i40e_dip = devinfo;
2653 
2654 	hw = &i40e->i40e_hw_space;
2655 	osdep = &i40e->i40e_osdep_space;
2656 	hw->back = osdep;
2657 	osdep->ios_i40e = i40e;
2658 
2659 	ddi_set_driver_private(devinfo, i40e);
2660 
2661 	i40e_fm_init(i40e);
2662 	i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
2663 
2664 	if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
2665 		i40e_error(i40e, "Failed to map PCI configurations.");
2666 		goto attach_fail;
2667 	}
2668 	i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
2669 
2670 	if (!i40e_identify_hardware(i40e)) {
2671 		i40e_error(i40e, "Failed to identify hardware");
2672 		goto attach_fail;
2673 	}
2674 
2675 	if (!i40e_regs_map(i40e)) {
2676 		i40e_error(i40e, "Failed to map device registers.");
2677 		goto attach_fail;
2678 	}
2679 	i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
2680 
2681 	i40e_init_properties(i40e);
2682 	i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
2683 
2684 	if (!i40e_common_code_init(i40e, hw))
2685 		goto attach_fail;
2686 	i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
2687 
2688 	/*
2689 	 * When we participate in IRM, we should make sure that we register
2690 	 * ourselves with it before callbacks.
2691 	 */
2692 	if (!i40e_alloc_intrs(i40e, devinfo)) {
2693 		i40e_error(i40e, "Failed to allocate interrupts.");
2694 		goto attach_fail;
2695 	}
2696 	i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
2697 
2698 	if (!i40e_alloc_trqpairs(i40e)) {
2699 		i40e_error(i40e,
2700 		    "Failed to allocate receive & transmit rings.");
2701 		goto attach_fail;
2702 	}
2703 	i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
2704 
2705 	if (!i40e_map_intrs_to_vectors(i40e)) {
2706 		i40e_error(i40e, "Failed to map interrupts to vectors.");
2707 		goto attach_fail;
2708 	}
2709 
2710 	if (!i40e_add_intr_handlers(i40e)) {
2711 		i40e_error(i40e, "Failed to add the interrupt handlers.");
2712 		goto attach_fail;
2713 	}
2714 	i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
2715 
2716 	if (!i40e_final_init(i40e)) {
2717 		i40e_error(i40e, "Final initialization failed.");
2718 		goto attach_fail;
2719 	}
2720 	i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
2721 
2722 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
2723 	    DDI_FM_OK) {
2724 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
2725 		goto attach_fail;
2726 	}
2727 
2728 	if (!i40e_stats_init(i40e)) {
2729 		i40e_error(i40e, "Stats initialization failed.");
2730 		goto attach_fail;
2731 	}
2732 	i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
2733 
2734 	if (!i40e_register_mac(i40e)) {
2735 		i40e_error(i40e, "Failed to register to MAC/GLDv3");
2736 		goto attach_fail;
2737 	}
2738 	i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
2739 
2740 	i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
2741 	    I40E_CYCLIC_PERIOD, DDI_IPL_0);
2742 	if (i40e->i40e_periodic_id == 0) {
2743 		i40e_error(i40e, "Failed to add the link-check timer");
2744 		goto attach_fail;
2745 	}
2746 	i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
2747 
2748 	if (!i40e_enable_interrupts(i40e)) {
2749 		i40e_error(i40e, "Failed to enable DDI interrupts");
2750 		goto attach_fail;
2751 	}
2752 	i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
2753 
2754 	atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
2755 
2756 	mutex_enter(&i40e_glock);
2757 	list_insert_tail(&i40e_glist, i40e);
2758 	mutex_exit(&i40e_glock);
2759 
2760 	return (DDI_SUCCESS);
2761 
2762 attach_fail:
2763 	i40e_unconfigure(devinfo, i40e);
2764 	return (DDI_FAILURE);
2765 }
2766 
2767 static int
2768 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2769 {
2770 	i40e_t *i40e;
2771 
2772 	if (cmd != DDI_DETACH)
2773 		return (DDI_FAILURE);
2774 
2775 	i40e = (i40e_t *)ddi_get_driver_private(devinfo);
2776 	if (i40e == NULL) {
2777 		i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
2778 		return (DDI_FAILURE);
2779 	}
2780 
2781 	if (i40e_drain_rx(i40e) == B_FALSE) {
2782 		i40e_log(i40e, "timed out draining DMA resources, %d buffers "
2783 		    "remain", i40e->i40e_rx_pending);
2784 		return (DDI_FAILURE);
2785 	}
2786 
2787 	mutex_enter(&i40e_glock);
2788 	list_remove(&i40e_glist, i40e);
2789 	mutex_exit(&i40e_glock);
2790 
2791 	i40e_unconfigure(devinfo, i40e);
2792 
2793 	return (DDI_SUCCESS);
2794 }
2795 
2796 static struct cb_ops i40e_cb_ops = {
2797 	nulldev,		/* cb_open */
2798 	nulldev,		/* cb_close */
2799 	nodev,			/* cb_strategy */
2800 	nodev,			/* cb_print */
2801 	nodev,			/* cb_dump */
2802 	nodev,			/* cb_read */
2803 	nodev,			/* cb_write */
2804 	nodev,			/* cb_ioctl */
2805 	nodev,			/* cb_devmap */
2806 	nodev,			/* cb_mmap */
2807 	nodev,			/* cb_segmap */
2808 	nochpoll,		/* cb_chpoll */
2809 	ddi_prop_op,		/* cb_prop_op */
2810 	NULL,			/* cb_stream */
2811 	D_MP | D_HOTPLUG,	/* cb_flag */
2812 	CB_REV,			/* cb_rev */
2813 	nodev,			/* cb_aread */
2814 	nodev			/* cb_awrite */
2815 };
2816 
2817 static struct dev_ops i40e_dev_ops = {
2818 	DEVO_REV,		/* devo_rev */
2819 	0,			/* devo_refcnt */
2820 	NULL,			/* devo_getinfo */
2821 	nulldev,		/* devo_identify */
2822 	nulldev,		/* devo_probe */
2823 	i40e_attach,		/* devo_attach */
2824 	i40e_detach,		/* devo_detach */
2825 	nodev,			/* devo_reset */
2826 	&i40e_cb_ops,		/* devo_cb_ops */
2827 	NULL,			/* devo_bus_ops */
2828 	ddi_power,		/* devo_power */
2829 	ddi_quiesce_not_supported /* devo_quiesce */
2830 };
2831 
2832 static struct modldrv i40e_modldrv = {
2833 	&mod_driverops,
2834 	i40e_ident,
2835 	&i40e_dev_ops
2836 };
2837 
2838 static struct modlinkage i40e_modlinkage = {
2839 	MODREV_1,
2840 	&i40e_modldrv,
2841 	NULL
2842 };
2843 
2844 /*
2845  * Module Initialization Functions.
2846  */
2847 int
2848 _init(void)
2849 {
2850 	int status;
2851 
2852 	list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
2853 	list_create(&i40e_dlist, sizeof (i40e_device_t),
2854 	    offsetof(i40e_device_t, id_link));
2855 	mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
2856 	mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
2857 
2858 	status = mod_install(&i40e_modlinkage);
2859 	if (status != DDI_SUCCESS) {
2860 		mac_fini_ops(&i40e_dev_ops);
2861 		mutex_destroy(&i40e_glock);
2862 		list_destroy(&i40e_dlist);
2863 		list_destroy(&i40e_glist);
2864 	}
2865 
2866 	return (status);
2867 }
2868 
2869 int
2870 _info(struct modinfo *modinfop)
2871 {
2872 	return (mod_info(&i40e_modlinkage, modinfop));
2873 }
2874 
2875 int
2876 _fini(void)
2877 {
2878 	int status;
2879 
2880 	status = mod_remove(&i40e_modlinkage);
2881 	if (status == DDI_SUCCESS) {
2882 		mac_fini_ops(&i40e_dev_ops);
2883 		mutex_destroy(&i40e_glock);
2884 		list_destroy(&i40e_dlist);
2885 		list_destroy(&i40e_glist);
2886 	}
2887 
2888 	return (status);
2889 }
2890