xref: /illumos-gate/usr/src/uts/common/io/i40e/i40e_main.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14  * Copyright 2019 Joyent, Inc.
15  * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
16  */
17 
18 /*
19  * i40e - Intel 10/40 Gb Ethernet driver
20  *
21  * The i40e driver is the main software device driver for the Intel 40 Gb family
22  * of devices. Note that these devices come in many flavors with both 40 GbE
23  * ports and 10 GbE ports. This device is the successor to the 82599 family of
24  * devices (ixgbe).
25  *
26  * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
27  * devices defined in the XL710 controller (previously known as Fortville) are a
28  * rather different beast and have a small switch embedded inside of them. In
29  * addition, the way that most of the programming is done has been overhauled.
30  * As opposed to just using PCIe memory mapped registers, it also has an
31  * administrative queue which is used to communicate with firmware running on
32  * the chip.
33  *
34  * Each physical function in the hardware shows up as a device that this driver
35  * will bind to. The hardware splits many resources evenly across all of the
36  * physical functions present on the device, while other resources are instead
37  * shared across the entire card and its up to the device driver to
38  * intelligently partition them.
39  *
40  * ------------
41  * Organization
42  * ------------
43  *
44  * This driver is made up of several files which have their own theory
45  * statements spread across them. We'll touch on the high level purpose of each
46  * file here, and then we'll get into more discussion on how the device is
47  * generally modelled with respect to the interfaces in illumos.
48  *
49  * i40e_gld.c: This file contains all of the bindings to MAC and the networking
50  *             stack.
51  *
52  * i40e_intr.c: This file contains all of the interrupt service routines and
53  *              contains logic to enable and disable interrupts on the hardware.
54  *              It also contains the logic to map hardware resources such as the
55  *              rings to and from interrupts and controls their ability to fire.
56  *
57  *              There is a big theory statement on interrupts present there.
58  *
59  * i40e_main.c: The file that you're currently in. It interfaces with the
60  *              traditional OS DDI interfaces and is in charge of configuring
61  *              the device.
62  *
63  * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
64  *                  work with Intel's common code for the device.
65  *
66  * i40e_stats.c: This file contains the general work and logic around our
67  *               kstats. A theory statement on their organization and use of the
68  *               hardware exists there.
69  *
70  * i40e_sw.h: This header file contains all of the primary structure definitions
71  *            and constants that are used across the entire driver.
72  *
73  * i40e_transceiver.c: This file contains all of the logic for sending and
74  *                     receiving data. It contains all of the ring and DMA
75  *                     allocation logic, as well as, the actual interfaces to
76  *                     send and receive data.
77  *
78  *                     A big theory statement on ring management, descriptors,
79  *                     and how it ties into the OS is present there.
80  *
81  * --------------
82  * General Design
83  * --------------
84  *
85  * Before we go too far into the general way we've laid out data structures and
86  * the like, it's worth taking some time to explain how the hardware is
87  * organized. This organization informs a lot of how we do things at this time
88  * in the driver.
89  *
90  * Each physical device consists of a number of one or more ports, which are
91  * considered physical functions in the PCI sense and thus each get enumerated
92  * by the system, resulting in an instance being created and attached to. While
93  * there are many resources that are unique to each physical function eg.
94  * instance of the device, there are many that are shared across all of them.
95  * Several resources have an amount reserved for each Virtual Station Interface
96  * (VSI) and then a static pool of resources, available for all functions on the
97  * card.
98  *
99  * The most important resource in hardware are its transmit and receive queue
100  * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
101  * parlance. There are a set number of these on each device; however, they are
102  * statically partitioned among all of the different physical functions.
103  *
104  * 'Fortville' (the code name for this device family) is basically a switch. To
105  * map MAC addresses and other things to queues, we end up having to create
106  * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
107  * traffic to a queue. A VSI owns a collection of queues and has a series of
108  * forwarding rules that point to it. One way to think of this is to treat it
109  * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
110  * classification resources, that is a VSI in i40e.
111  *
112  * The sets of VSIs is shared across the entire device, though there may be some
113  * amount that are reserved to each PF. Because the GLDv3 does not let us change
114  * the number of groups dynamically, we instead statically divide this amount
115  * evenly between all the functions that exist. In addition, we have the same
116  * problem with the mac address forwarding rules. There are a static number that
117  * exist shared across all the functions.
118  *
119  * To handle both of these resources, what we end up doing is going through and
120  * determining which functions belong to the same device. Nominally one might do
121  * this by having a nexus driver; however, a prime requirement for a nexus
122  * driver is identifying the various children and activating them. While it is
123  * possible to get this information from NVRAM, we would end up duplicating a
124  * lot of the PCI enumeration logic. Really, at the end of the day, the device
125  * doesn't give us the traditional identification properties we want from a
126  * nexus driver.
127  *
128  * Instead, we rely on some properties that are guaranteed to be unique. While
129  * it might be tempting to leverage the PBA or serial number of the device from
130  * NVRAM, there is nothing that says that two devices can't be mis-programmed to
131  * have the same values in NVRAM. Instead, we uniquely identify a group of
132  * functions based on their parent in the /devices tree, their PCI bus and PCI
133  * function identifiers. Using either on their own may not be sufficient.
134  *
135  * For each unique PCI device that we encounter, we'll create a i40e_device_t.
136  * From there, because we don't have a good way to tell the GLDv3 about sharing
137  * resources between everything, we'll end up just dividing the resources
138  * evenly between all of the functions. Longer term, if we don't have to declare
139  * to the GLDv3 that these resources are shared, then we'll maintain a pool and
140  * have each PF allocate from the pool in the device, thus if only two of four
141  * ports are being used, for example, then all of the resources can still be
142  * used.
143  *
144  * -------------------------------------------
145  * Transmit and Receive Queue Pair Allocations
146  * -------------------------------------------
147  *
148  * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
149  * queue pairs, we have no way of modifying it, only observing it. From there,
150  * it's up to us to map these queues to VSIs and VFs. Since we don't support any
151  * VFs at this time, we only focus on assignments to VSIs.
152  *
153  * At the moment, we used a static mapping of transmit/receive queue pairs to a
154  * given VSI (eg. rings to a group). Though in the fullness of time, we want to
155  * make this something which is fully dynamic and take advantage of documented,
156  * but not yet available functionality for adding filters based on VXLAN and
157  * other encapsulation technologies.
158  *
159  * -------------------------------------
160  * Broadcast, Multicast, and Promiscuous
161  * -------------------------------------
162  *
163  * As part of the GLDv3, we need to make sure that we can handle receiving
164  * broadcast and multicast traffic. As well as enabling promiscuous mode when
165  * requested. GLDv3 requires that all broadcast and multicast traffic be
166  * retrieved by the default group, eg. the first one. This is the same thing as
167  * the default VSI.
168  *
169  * To receieve broadcast traffic, we enable it through the admin queue, rather
170  * than use one of our filters for it. For multicast traffic, we reserve a
171  * certain number of the hash filters and assign them to a given PF. When we
172  * exceed those, we then switch to using promiscuous mode for multicast traffic.
173  *
174  * More specifically, once we exceed the number of filters (indicated because
175  * the i40e_t`i40e_resources.ifr_nmcastfilt ==
176  * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
177  * promiscuous mode. If promiscuous mode is toggled then we keep track of the
178  * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
179  * That will stay enabled until that count reaches zero indicating that we have
180  * only added multicast addresses that we have a corresponding entry for.
181  *
182  * Because MAC itself wants to toggle promiscuous mode, which includes both
183  * unicast and multicast traffic, we go through and keep track of that
184  * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
185  * member.
186  *
187  * --------------
188  * VSI Management
189  * --------------
190  *
191  * The PFs share 384 VSIs. The firmware creates one VSI per PF by default.
192  * During chip start we retrieve the SEID of this VSI and assign it as the
193  * default VSI for our VEB (one VEB per PF). We then add additional VSIs to
194  * the VEB up to the determined number of rx groups: i40e_t`i40e_num_rx_groups.
195  * We currently cap this number to I40E_GROUP_MAX to a) make sure all PFs can
196  * allocate the same number of VSIs, and b) to keep the interrupt multiplexing
197  * under control. In the future, when we improve the interrupt allocation, we
198  * may want to revisit this cap to make better use of the available VSIs. The
199  * VSI allocation and configuration can be found in i40e_chip_start().
200  *
201  * ----------------
202  * Structure Layout
203  * ----------------
204  *
205  * The following images relates the core data structures together. The primary
206  * structure in the system is the i40e_t. It itself contains multiple rings,
207  * i40e_trqpair_t's which contain the various transmit and receive data. The
208  * receive data is stored outside of the i40e_trqpair_t and instead in the
209  * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
210  * track of per-physical device state. Finally, for every active descriptor,
211  * there is a corresponding control block, which is where the
212  * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
213  *
214  *   +-----------------------+       +-----------------------+
215  *   | Global i40e_t list    |       | Global Device list    |
216  *   |                       |    +--|                       |
217  *   | i40e_glist            |    |  | i40e_dlist            |
218  *   +-----------------------+    |  +-----------------------+
219  *       |                        v
220  *       |      +------------------------+      +-----------------------+
221  *       |      | Device-wide Structure  |----->| Device-wide Structure |--> ...
222  *       |      | i40e_device_t          |      | i40e_device_t         |
223  *       |      |                        |      +-----------------------+
224  *       |      | dev_info_t *     ------+--> Parent in devices tree.
225  *       |      | uint_t           ------+--> PCI bus number
226  *       |      | uint_t           ------+--> PCI device number
227  *       |      | uint_t           ------+--> Number of functions
228  *       |      | i40e_switch_rsrcs_t ---+--> Captured total switch resources
229  *       |      | list_t           ------+-------------+
230  *       |      +------------------------+             |
231  *       |                           ^                 |
232  *       |                           +--------+        |
233  *       |                                    |        v
234  *       |  +---------------------------+     |   +-------------------+
235  *       +->| GLDv3 Device, per PF      |-----|-->| GLDv3 Device (PF) |--> ...
236  *          | i40e_t                    |     |   | i40e_t            |
237  *          | **Primary Structure**     |     |   +-------------------+
238  *          |                           |     |
239  *          | i40e_device_t *         --+-----+
240  *          | i40e_state_t            --+---> Device State
241  *          | i40e_hw_t               --+---> Intel common code structure
242  *          | mac_handle_t            --+---> GLDv3 handle to MAC
243  *          | ddi_periodic_t          --+---> Link activity timer
244  *          | i40e_vsi_t *            --+---> Array of VSIs
245  *          | i40e_func_rsrc_t        --+---> Available hardware resources
246  *          | i40e_switch_rsrc_t *    --+---> Switch resource snapshot
247  *          | i40e_sdu                --+---> Current MTU
248  *          | i40e_frame_max          --+---> Current HW frame size
249  *          | i40e_uaddr_t *          --+---> Array of assigned unicast MACs
250  *          | i40e_maddr_t *          --+---> Array of assigned multicast MACs
251  *          | i40e_mcast_promisccount --+---> Active multicast state
252  *          | i40e_promisc_on         --+---> Current promiscuous mode state
253  *          | uint_t                  --+---> Number of transmit/receive pairs
254  *          | i40e_rx_group_t *       --+---> Array of Rx groups
255  *          | kstat_t *               --+---> PF kstats
256  *          | i40e_pf_stats_t         --+---> PF kstat backing data
257  *          | i40e_trqpair_t *        --+---------+
258  *          +---------------------------+         |
259  *                                                |
260  *                                                v
261  *  +-------------------------------+       +-----------------------------+
262  *  | Transmit/Receive Queue Pair   |-------| Transmit/Receive Queue Pair |->...
263  *  | i40e_trqpair_t                |       | i40e_trqpair_t              |
264  *  + Ring Data Structure           |       +-----------------------------+
265  *  |                               |
266  *  | mac_ring_handle_t             +--> MAC RX ring handle
267  *  | mac_ring_handle_t             +--> MAC TX ring handle
268  *  | i40e_rxq_stat_t             --+--> RX Queue stats
269  *  | i40e_txq_stat_t             --+--> TX Queue stats
270  *  | uint32_t (tx ring size)       +--> TX Ring Size
271  *  | uint32_t (tx free list size)  +--> TX Free List Size
272  *  | i40e_dma_buffer_t     --------+--> TX Descriptor ring DMA
273  *  | i40e_tx_desc_t *      --------+--> TX descriptor ring
274  *  | volatile unt32_t *            +--> TX Write back head
275  *  | uint32_t               -------+--> TX ring head
276  *  | uint32_t               -------+--> TX ring tail
277  *  | uint32_t               -------+--> Num TX desc free
278  *  | i40e_tx_control_block_t *   --+--> TX control block array  ---+
279  *  | i40e_tx_control_block_t **  --+--> TCB work list          ----+
280  *  | i40e_tx_control_block_t **  --+--> TCB free list           ---+
281  *  | uint32_t               -------+--> Free TCB count             |
282  *  | i40e_rx_data_t *       -------+--+                            v
283  *  +-------------------------------+  |          +---------------------------+
284  *                                     |          | Per-TX Frame Metadata     |
285  *                                     |          | i40e_tx_control_block_t   |
286  *                +--------------------+          |                           |
287  *                |           mblk to transmit <--+---      mblk_t *          |
288  *                |           type of transmit <--+---      i40e_tx_type_t    |
289  *                |              TX DMA handle <--+---      ddi_dma_handle_t  |
290  *                v              TX DMA buffer <--+---      i40e_dma_buffer_t |
291  *    +------------------------------+            +---------------------------+
292  *    | Core Receive Data            |
293  *    | i40e_rx_data_t               |
294  *    |                              |
295  *    | i40e_dma_buffer_t          --+--> RX descriptor DMA Data
296  *    | i40e_rx_desc_t             --+--> RX descriptor ring
297  *    | uint32_t                   --+--> Next free desc.
298  *    | i40e_rx_control_block_t *  --+--> RX Control Block Array  ---+
299  *    | i40e_rx_control_block_t ** --+--> RCB work list           ---+
300  *    | i40e_rx_control_block_t ** --+--> RCB free list           ---+
301  *    +------------------------------+                               |
302  *                ^                                                  |
303  *                |     +---------------------------+                |
304  *                |     | Per-RX Frame Metadata     |<---------------+
305  *                |     | i40e_rx_control_block_t   |
306  *                |     |                           |
307  *                |     | mblk_t *              ----+--> Received mblk_t data
308  *                |     | uint32_t              ----+--> Reference count
309  *                |     | i40e_dma_buffer_t     ----+--> Receive data DMA info
310  *                |     | frtn_t                ----+--> mblk free function info
311  *                +-----+-- i40e_rx_data_t *        |
312  *                      +---------------------------+
313  *
314  * -------------
315  * Lock Ordering
316  * -------------
317  *
318  * In order to ensure that we don't deadlock, the following represents the
319  * lock order being used. When grabbing locks, follow the following order. Lower
320  * numbers are more important. Thus, the i40e_glock which is number 0, must be
321  * taken before any other locks in the driver. On the other hand, the
322  * i40e_t`i40e_stat_lock, has the highest number because it's the least
323  * important lock. Note, that just because one lock is higher than another does
324  * not mean that all intermediary locks are required.
325  *
326  * 0) i40e_glock
327  * 1) i40e_t`i40e_general_lock
328  *
329  * 2) i40e_trqpair_t`itrq_rx_lock
330  * 3) i40e_trqpair_t`itrq_tx_lock
331  * 4) i40e_t`i40e_rx_pending_lock
332  * 5) i40e_trqpair_t`itrq_tcb_lock
333  *
334  * 6) i40e_t`i40e_stat_lock
335  *
336  * Rules and expectations:
337  *
338  * 1) A thread holding locks belong to one PF should not hold locks belonging to
339  * a second. If for some reason this becomes necessary, locks should be grabbed
340  * based on the list order in the i40e_device_t, which implies that the
341  * i40e_glock is held.
342  *
343  * 2) When grabbing locks between multiple transmit and receive queues, the
344  * locks for the lowest number transmit/receive queue should be grabbed first.
345  *
346  * 3) When grabbing both the transmit and receive lock for a given queue, always
347  * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
348  *
349  * 4) The following pairs of locks are not expected to be held at the same time:
350  *
351  * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
352  *
353  * -----------
354  * Future Work
355  * -----------
356  *
357  * At the moment the i40e_t driver is rather bare bones, allowing us to start
358  * getting data flowing and folks using it while we develop additional features.
359  * While bugs have been filed to cover this future work, the following gives an
360  * overview of expected work:
361  *
362  *  o DMA binding and breaking up the locking in ring recycling.
363  *  o Enhanced detection of device errors
364  *  o Participation in IRM
365  *  o FMA device reset
366  *  o Stall detection, temperature error detection, etc.
367  *  o More dynamic resource pools
368  */
369 
370 #include "i40e_sw.h"
371 
372 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.3";
373 
374 /*
375  * The i40e_glock primarily protects the lists below and the i40e_device_t
376  * structures.
377  */
378 static kmutex_t i40e_glock;
379 static list_t i40e_glist;
380 static list_t i40e_dlist;
381 
382 /*
383  * Access attributes for register mapping.
384  */
385 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
386 	DDI_DEVICE_ATTR_V1,
387 	DDI_STRUCTURE_LE_ACC,
388 	DDI_STRICTORDER_ACC,
389 	DDI_FLAGERR_ACC
390 };
391 
392 /*
393  * Logging function for this driver.
394  */
395 static void
396 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
397     va_list ap)
398 {
399 	char buf[1024];
400 
401 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
402 
403 	if (i40e == NULL) {
404 		cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
405 		    I40E_MODULE_NAME, buf);
406 	} else {
407 		dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
408 		    buf);
409 	}
410 }
411 
412 /*
413  * Because there's the stupid trailing-comma problem with the C preprocessor
414  * and variable arguments, I need to instantiate these.	 Pardon the redundant
415  * code.
416  */
417 /*PRINTFLIKE2*/
418 void
419 i40e_error(i40e_t *i40e, const char *fmt, ...)
420 {
421 	va_list ap;
422 
423 	va_start(ap, fmt);
424 	i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
425 	va_end(ap);
426 }
427 
428 /*PRINTFLIKE2*/
429 void
430 i40e_log(i40e_t *i40e, const char *fmt, ...)
431 {
432 	va_list ap;
433 
434 	va_start(ap, fmt);
435 	i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
436 	va_end(ap);
437 }
438 
439 /*PRINTFLIKE2*/
440 void
441 i40e_notice(i40e_t *i40e, const char *fmt, ...)
442 {
443 	va_list ap;
444 
445 	va_start(ap, fmt);
446 	i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
447 	va_end(ap);
448 }
449 
450 /*
451  * Various parts of the driver need to know if the controller is from the X722
452  * family, which has a few additional capabilities and different programming
453  * means. We don't consider virtual functions as part of this as they are quite
454  * different and will require substantially more work.
455  */
456 static boolean_t
457 i40e_is_x722(i40e_t *i40e)
458 {
459 	return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
460 }
461 
462 static void
463 i40e_device_rele(i40e_t *i40e)
464 {
465 	i40e_device_t *idp = i40e->i40e_device;
466 
467 	if (idp == NULL)
468 		return;
469 
470 	mutex_enter(&i40e_glock);
471 	VERIFY(idp->id_nreg > 0);
472 	list_remove(&idp->id_i40e_list, i40e);
473 	idp->id_nreg--;
474 	if (idp->id_nreg == 0) {
475 		list_remove(&i40e_dlist, idp);
476 		list_destroy(&idp->id_i40e_list);
477 		kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
478 		    idp->id_rsrcs_alloc);
479 		kmem_free(idp, sizeof (i40e_device_t));
480 	}
481 	i40e->i40e_device = NULL;
482 	mutex_exit(&i40e_glock);
483 }
484 
485 static i40e_device_t *
486 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
487 {
488 	i40e_device_t *idp;
489 	mutex_enter(&i40e_glock);
490 	for (idp = list_head(&i40e_dlist); idp != NULL;
491 	    idp = list_next(&i40e_dlist, idp)) {
492 		if (idp->id_parent == parent && idp->id_pci_bus == bus &&
493 		    idp->id_pci_device == device) {
494 			break;
495 		}
496 	}
497 
498 	if (idp != NULL) {
499 		VERIFY(idp->id_nreg < idp->id_nfuncs);
500 		idp->id_nreg++;
501 	} else {
502 		i40e_hw_t *hw = &i40e->i40e_hw_space;
503 		ASSERT(hw->num_ports > 0);
504 		ASSERT(hw->num_partitions > 0);
505 
506 		/*
507 		 * The Intel common code doesn't exactly keep the number of PCI
508 		 * functions. But it calculates it during discovery of
509 		 * partitions and ports. So what we do is undo the calculation
510 		 * that it does originally, as functions are evenly spread
511 		 * across ports in the rare case of partitions.
512 		 */
513 		idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
514 		idp->id_parent = parent;
515 		idp->id_pci_bus = bus;
516 		idp->id_pci_device = device;
517 		idp->id_nfuncs = hw->num_ports * hw->num_partitions;
518 		idp->id_nreg = 1;
519 		idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
520 		idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
521 		idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
522 		    idp->id_rsrcs_alloc, KM_SLEEP);
523 		bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
524 		    sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
525 		list_create(&idp->id_i40e_list, sizeof (i40e_t),
526 		    offsetof(i40e_t, i40e_dlink));
527 
528 		list_insert_tail(&i40e_dlist, idp);
529 	}
530 
531 	list_insert_tail(&idp->id_i40e_list, i40e);
532 	mutex_exit(&i40e_glock);
533 
534 	return (idp);
535 }
536 
537 static void
538 i40e_link_state_set(i40e_t *i40e, link_state_t state)
539 {
540 	if (i40e->i40e_link_state == state)
541 		return;
542 
543 	i40e->i40e_link_state = state;
544 	mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
545 }
546 
547 /*
548  * This is a basic link check routine. Mostly we're using this just to see
549  * if we can get any accurate information about the state of the link being
550  * up or down, as well as updating the link state, speed, etc. information.
551  */
552 void
553 i40e_link_check(i40e_t *i40e)
554 {
555 	i40e_hw_t *hw = &i40e->i40e_hw_space;
556 	boolean_t ls;
557 	int ret;
558 
559 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
560 
561 	hw->phy.get_link_info = B_TRUE;
562 	if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
563 		i40e->i40e_s_link_status_errs++;
564 		i40e->i40e_s_link_status_lasterr = ret;
565 		return;
566 	}
567 
568 	/*
569 	 * Firmware abstracts all of the mac and phy information for us, so we
570 	 * can use i40e_get_link_status to determine the current state.
571 	 */
572 	if (ls == B_TRUE) {
573 		enum i40e_aq_link_speed speed;
574 
575 		speed = i40e_get_link_speed(hw);
576 
577 		/*
578 		 * Translate from an i40e value to a value in Mbits/s.
579 		 */
580 		switch (speed) {
581 		case I40E_LINK_SPEED_100MB:
582 			i40e->i40e_link_speed = 100;
583 			break;
584 		case I40E_LINK_SPEED_1GB:
585 			i40e->i40e_link_speed = 1000;
586 			break;
587 		case I40E_LINK_SPEED_10GB:
588 			i40e->i40e_link_speed = 10000;
589 			break;
590 		case I40E_LINK_SPEED_20GB:
591 			i40e->i40e_link_speed = 20000;
592 			break;
593 		case I40E_LINK_SPEED_40GB:
594 			i40e->i40e_link_speed = 40000;
595 			break;
596 		case I40E_LINK_SPEED_25GB:
597 			i40e->i40e_link_speed = 25000;
598 			break;
599 		default:
600 			i40e->i40e_link_speed = 0;
601 			break;
602 		}
603 
604 		/*
605 		 * At this time, hardware does not support half-duplex
606 		 * operation, hence why we don't ask the hardware about our
607 		 * current speed.
608 		 */
609 		i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
610 		i40e_link_state_set(i40e, LINK_STATE_UP);
611 	} else {
612 		i40e->i40e_link_speed = 0;
613 		i40e->i40e_link_duplex = 0;
614 		i40e_link_state_set(i40e, LINK_STATE_DOWN);
615 	}
616 }
617 
618 static void
619 i40e_rem_intrs(i40e_t *i40e)
620 {
621 	int i, rc;
622 
623 	for (i = 0; i < i40e->i40e_intr_count; i++) {
624 		rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
625 		if (rc != DDI_SUCCESS) {
626 			i40e_log(i40e, "failed to free interrupt %d: %d",
627 			    i, rc);
628 		}
629 	}
630 
631 	kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
632 	i40e->i40e_intr_handles = NULL;
633 }
634 
635 static void
636 i40e_rem_intr_handlers(i40e_t *i40e)
637 {
638 	int i, rc;
639 
640 	for (i = 0; i < i40e->i40e_intr_count; i++) {
641 		rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
642 		if (rc != DDI_SUCCESS) {
643 			i40e_log(i40e, "failed to remove interrupt %d: %d",
644 			    i, rc);
645 		}
646 	}
647 }
648 
649 /*
650  * illumos Fault Management Architecture (FMA) support.
651  */
652 
653 int
654 i40e_check_acc_handle(ddi_acc_handle_t handle)
655 {
656 	ddi_fm_error_t de;
657 
658 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
659 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
660 	return (de.fme_status);
661 }
662 
663 int
664 i40e_check_dma_handle(ddi_dma_handle_t handle)
665 {
666 	ddi_fm_error_t de;
667 
668 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
669 	return (de.fme_status);
670 }
671 
672 /*
673  * Fault service error handling callback function.
674  */
675 /* ARGSUSED */
676 static int
677 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
678 {
679 	pci_ereport_post(dip, err, NULL);
680 	return (err->fme_status);
681 }
682 
683 static void
684 i40e_fm_init(i40e_t *i40e)
685 {
686 	ddi_iblock_cookie_t iblk;
687 
688 	i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
689 	    i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
690 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
691 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
692 
693 	if (i40e->i40e_fm_capabilities < 0) {
694 		i40e->i40e_fm_capabilities = 0;
695 	} else if (i40e->i40e_fm_capabilities > 0xf) {
696 		i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
697 		    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
698 		    DDI_FM_ERRCB_CAPABLE;
699 	}
700 
701 	/*
702 	 * Only register with IO Fault Services if we have some capability
703 	 */
704 	if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
705 		i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
706 	} else {
707 		i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
708 	}
709 
710 	if (i40e->i40e_fm_capabilities) {
711 		ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
712 
713 		if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
714 		    DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
715 			pci_ereport_setup(i40e->i40e_dip);
716 		}
717 
718 		if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
719 			ddi_fm_handler_register(i40e->i40e_dip,
720 			    i40e_fm_error_cb, (void*)i40e);
721 		}
722 	}
723 
724 	if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
725 		i40e_init_dma_attrs(i40e, B_TRUE);
726 	} else {
727 		i40e_init_dma_attrs(i40e, B_FALSE);
728 	}
729 }
730 
731 static void
732 i40e_fm_fini(i40e_t *i40e)
733 {
734 	if (i40e->i40e_fm_capabilities) {
735 
736 		if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
737 		    DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
738 			pci_ereport_teardown(i40e->i40e_dip);
739 
740 		if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
741 			ddi_fm_handler_unregister(i40e->i40e_dip);
742 
743 		ddi_fm_fini(i40e->i40e_dip);
744 	}
745 }
746 
747 void
748 i40e_fm_ereport(i40e_t *i40e, char *detail)
749 {
750 	uint64_t ena;
751 	char buf[FM_MAX_CLASS];
752 
753 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
754 	ena = fm_ena_generate(0, FM_ENA_FMT1);
755 	if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
756 		ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
757 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
758 	}
759 }
760 
761 /*
762  * Here we're trying to set the SEID of the default VSI. In general,
763  * when we come through and look at this shortly after attach, we
764  * expect there to only be a single element present, which is the
765  * default VSI. Importantly, each PF seems to not see any other
766  * devices, in part because of the simple switch mode that we're
767  * using. If for some reason, we see more artifacts, we'll need to
768  * revisit what we're doing here.
769  */
770 static boolean_t
771 i40e_set_def_vsi_seid(i40e_t *i40e)
772 {
773 	i40e_hw_t *hw = &i40e->i40e_hw_space;
774 	struct i40e_aqc_get_switch_config_resp *sw_config;
775 	uint8_t aq_buf[I40E_AQ_LARGE_BUF];
776 	uint16_t next = 0;
777 	int rc;
778 
779 	/* LINTED: E_BAD_PTR_CAST_ALIGN */
780 	sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
781 	rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
782 	    NULL);
783 	if (rc != I40E_SUCCESS) {
784 		i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
785 		    rc, hw->aq.asq_last_status);
786 		return (B_FALSE);
787 	}
788 
789 	if (LE_16(sw_config->header.num_reported) != 1) {
790 		i40e_error(i40e, "encountered multiple (%d) switching units "
791 		    "during attach, not proceeding",
792 		    LE_16(sw_config->header.num_reported));
793 		return (B_FALSE);
794 	}
795 
796 	I40E_DEF_VSI_SEID(i40e) = sw_config->element[0].seid;
797 	return (B_TRUE);
798 }
799 
800 /*
801  * Get the SEID of the uplink MAC.
802  */
803 static int
804 i40e_get_mac_seid(i40e_t *i40e)
805 {
806 	i40e_hw_t *hw = &i40e->i40e_hw_space;
807 	struct i40e_aqc_get_switch_config_resp *sw_config;
808 	uint8_t aq_buf[I40E_AQ_LARGE_BUF];
809 	uint16_t next = 0;
810 	int rc;
811 
812 	/* LINTED: E_BAD_PTR_CAST_ALIGN */
813 	sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
814 	rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
815 	    NULL);
816 	if (rc != I40E_SUCCESS) {
817 		i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
818 		    rc, hw->aq.asq_last_status);
819 		return (-1);
820 	}
821 
822 	return (LE_16(sw_config->element[0].uplink_seid));
823 }
824 
825 /*
826  * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
827  * must also provide the memory for it; however, we don't need to keep it around
828  * to the call to the common code. It takes it and parses it into an internal
829  * structure.
830  */
831 static boolean_t
832 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
833 {
834 	struct i40e_aqc_list_capabilities_element_resp *buf;
835 	int rc;
836 	size_t len;
837 	uint16_t needed;
838 	int nelems = I40E_HW_CAP_DEFAULT;
839 
840 	len = nelems * sizeof (*buf);
841 
842 	for (;;) {
843 		ASSERT(len > 0);
844 		buf = kmem_alloc(len, KM_SLEEP);
845 		rc = i40e_aq_discover_capabilities(hw, buf, len,
846 		    &needed, i40e_aqc_opc_list_func_capabilities, NULL);
847 		kmem_free(buf, len);
848 
849 		if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
850 		    nelems == I40E_HW_CAP_DEFAULT) {
851 			if (nelems == needed) {
852 				i40e_error(i40e, "Capability discovery failed "
853 				    "due to byzantine common code");
854 				return (B_FALSE);
855 			}
856 			len = needed;
857 			continue;
858 		} else if (rc != I40E_SUCCESS ||
859 		    hw->aq.asq_last_status != I40E_AQ_RC_OK) {
860 			i40e_error(i40e, "Capability discovery failed: %d", rc);
861 			return (B_FALSE);
862 		}
863 
864 		break;
865 	}
866 
867 	return (B_TRUE);
868 }
869 
870 /*
871  * Obtain the switch's capabilities as seen by this PF and keep it around for
872  * our later use.
873  */
874 static boolean_t
875 i40e_get_switch_resources(i40e_t *i40e)
876 {
877 	i40e_hw_t *hw = &i40e->i40e_hw_space;
878 	uint8_t cnt = 2;
879 	uint8_t act;
880 	size_t size;
881 	i40e_switch_rsrc_t *buf;
882 
883 	for (;;) {
884 		enum i40e_status_code ret;
885 		size = cnt * sizeof (i40e_switch_rsrc_t);
886 		ASSERT(size > 0);
887 		if (size > UINT16_MAX)
888 			return (B_FALSE);
889 		buf = kmem_alloc(size, KM_SLEEP);
890 
891 		ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
892 		    cnt, NULL);
893 		if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
894 		    hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
895 			kmem_free(buf, size);
896 			cnt += I40E_SWITCH_CAP_DEFAULT;
897 			continue;
898 		} else if (ret != I40E_SUCCESS) {
899 			kmem_free(buf, size);
900 			i40e_error(i40e,
901 			    "failed to retrieve switch statistics: %d", ret);
902 			return (B_FALSE);
903 		}
904 
905 		break;
906 	}
907 
908 	i40e->i40e_switch_rsrc_alloc = cnt;
909 	i40e->i40e_switch_rsrc_actual = act;
910 	i40e->i40e_switch_rsrcs = buf;
911 
912 	return (B_TRUE);
913 }
914 
915 static void
916 i40e_cleanup_resources(i40e_t *i40e)
917 {
918 	if (i40e->i40e_uaddrs != NULL) {
919 		kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
920 		    i40e->i40e_resources.ifr_nmacfilt);
921 		i40e->i40e_uaddrs = NULL;
922 	}
923 
924 	if (i40e->i40e_maddrs != NULL) {
925 		kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
926 		    i40e->i40e_resources.ifr_nmcastfilt);
927 		i40e->i40e_maddrs = NULL;
928 	}
929 
930 	if (i40e->i40e_switch_rsrcs != NULL) {
931 		size_t sz = sizeof (i40e_switch_rsrc_t) *
932 		    i40e->i40e_switch_rsrc_alloc;
933 		ASSERT(sz > 0);
934 		kmem_free(i40e->i40e_switch_rsrcs, sz);
935 		i40e->i40e_switch_rsrcs = NULL;
936 	}
937 
938 	if (i40e->i40e_device != NULL)
939 		i40e_device_rele(i40e);
940 }
941 
942 static boolean_t
943 i40e_get_available_resources(i40e_t *i40e)
944 {
945 	dev_info_t *parent;
946 	uint16_t bus, device, func;
947 	uint_t nregs;
948 	int *regs, i;
949 	i40e_device_t *idp;
950 	i40e_hw_t *hw = &i40e->i40e_hw_space;
951 
952 	parent = ddi_get_parent(i40e->i40e_dip);
953 
954 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
955 	    &regs, &nregs) != DDI_PROP_SUCCESS) {
956 		return (B_FALSE);
957 	}
958 
959 	if (nregs < 1) {
960 		ddi_prop_free(regs);
961 		return (B_FALSE);
962 	}
963 
964 	bus = PCI_REG_BUS_G(regs[0]);
965 	device = PCI_REG_DEV_G(regs[0]);
966 	func = PCI_REG_FUNC_G(regs[0]);
967 	ddi_prop_free(regs);
968 
969 	i40e->i40e_hw_space.bus.func = func;
970 	i40e->i40e_hw_space.bus.device = device;
971 
972 	if (i40e_get_switch_resources(i40e) == B_FALSE) {
973 		return (B_FALSE);
974 	}
975 
976 	/*
977 	 * To calculate the total amount of a resource we have available, we
978 	 * need to add how many our i40e_t thinks it has guaranteed, if any, and
979 	 * then we need to go through and divide the number of available on the
980 	 * device, which was snapshotted before anyone should have allocated
981 	 * anything, and use that to derive how many are available from the
982 	 * pool. Longer term, we may want to turn this into something that's
983 	 * more of a pool-like resource that everything can share (though that
984 	 * may require some more assistance from MAC).
985 	 *
986 	 * Though for transmit and receive queue pairs, we just have to ask
987 	 * firmware instead.
988 	 */
989 	idp = i40e_device_find(i40e, parent, bus, device);
990 	i40e->i40e_device = idp;
991 	i40e->i40e_resources.ifr_nvsis = 0;
992 	i40e->i40e_resources.ifr_nvsis_used = 0;
993 	i40e->i40e_resources.ifr_nmacfilt = 0;
994 	i40e->i40e_resources.ifr_nmacfilt_used = 0;
995 	i40e->i40e_resources.ifr_nmcastfilt = 0;
996 	i40e->i40e_resources.ifr_nmcastfilt_used = 0;
997 
998 	for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
999 		i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1000 
1001 		switch (srp->resource_type) {
1002 		case I40E_AQ_RESOURCE_TYPE_VSI:
1003 			i40e->i40e_resources.ifr_nvsis +=
1004 			    LE_16(srp->guaranteed);
1005 			i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
1006 			break;
1007 		case I40E_AQ_RESOURCE_TYPE_MACADDR:
1008 			i40e->i40e_resources.ifr_nmacfilt +=
1009 			    LE_16(srp->guaranteed);
1010 			i40e->i40e_resources.ifr_nmacfilt_used =
1011 			    LE_16(srp->used);
1012 			break;
1013 		case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1014 			i40e->i40e_resources.ifr_nmcastfilt +=
1015 			    LE_16(srp->guaranteed);
1016 			i40e->i40e_resources.ifr_nmcastfilt_used =
1017 			    LE_16(srp->used);
1018 			break;
1019 		default:
1020 			break;
1021 		}
1022 	}
1023 
1024 	for (i = 0; i < idp->id_rsrcs_act; i++) {
1025 		i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1026 		switch (srp->resource_type) {
1027 		case I40E_AQ_RESOURCE_TYPE_VSI:
1028 			i40e->i40e_resources.ifr_nvsis +=
1029 			    LE_16(srp->total_unalloced) / idp->id_nfuncs;
1030 			break;
1031 		case I40E_AQ_RESOURCE_TYPE_MACADDR:
1032 			i40e->i40e_resources.ifr_nmacfilt +=
1033 			    LE_16(srp->total_unalloced) / idp->id_nfuncs;
1034 			break;
1035 		case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1036 			i40e->i40e_resources.ifr_nmcastfilt +=
1037 			    LE_16(srp->total_unalloced) / idp->id_nfuncs;
1038 		default:
1039 			break;
1040 		}
1041 	}
1042 
1043 	i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1044 	i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1045 
1046 	i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1047 	    i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1048 	i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1049 	    i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1050 
1051 	/*
1052 	 * Initialize these as multicast addresses to indicate it's invalid for
1053 	 * sanity purposes. Think of it like 0xdeadbeef.
1054 	 */
1055 	for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1056 		i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1057 
1058 	return (B_TRUE);
1059 }
1060 
1061 static boolean_t
1062 i40e_enable_interrupts(i40e_t *i40e)
1063 {
1064 	int i, rc;
1065 
1066 	if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1067 		rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1068 		    i40e->i40e_intr_count);
1069 		if (rc != DDI_SUCCESS) {
1070 			i40e_error(i40e, "Interrupt block-enable failed: %d",
1071 			    rc);
1072 			return (B_FALSE);
1073 		}
1074 	} else {
1075 		for (i = 0; i < i40e->i40e_intr_count; i++) {
1076 			rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1077 			if (rc != DDI_SUCCESS) {
1078 				i40e_error(i40e,
1079 				    "Failed to enable interrupt %d: %d", i, rc);
1080 				while (--i >= 0) {
1081 					(void) ddi_intr_disable(
1082 					    i40e->i40e_intr_handles[i]);
1083 				}
1084 				return (B_FALSE);
1085 			}
1086 		}
1087 	}
1088 
1089 	return (B_TRUE);
1090 }
1091 
1092 static boolean_t
1093 i40e_disable_interrupts(i40e_t *i40e)
1094 {
1095 	int i, rc;
1096 
1097 	if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1098 		rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1099 		    i40e->i40e_intr_count);
1100 		if (rc != DDI_SUCCESS) {
1101 			i40e_error(i40e,
1102 			    "Interrupt block-disabled failed: %d", rc);
1103 			return (B_FALSE);
1104 		}
1105 	} else {
1106 		for (i = 0; i < i40e->i40e_intr_count; i++) {
1107 			rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1108 			if (rc != DDI_SUCCESS) {
1109 				i40e_error(i40e,
1110 				    "Failed to disable interrupt %d: %d",
1111 				    i, rc);
1112 				return (B_FALSE);
1113 			}
1114 		}
1115 	}
1116 
1117 	return (B_TRUE);
1118 }
1119 
1120 /*
1121  * Free receive & transmit rings.
1122  */
1123 static void
1124 i40e_free_trqpairs(i40e_t *i40e)
1125 {
1126 	i40e_trqpair_t *itrq;
1127 
1128 	if (i40e->i40e_rx_groups != NULL) {
1129 		kmem_free(i40e->i40e_rx_groups,
1130 		    sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups);
1131 		i40e->i40e_rx_groups = NULL;
1132 	}
1133 
1134 	if (i40e->i40e_trqpairs != NULL) {
1135 		for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1136 			itrq = &i40e->i40e_trqpairs[i];
1137 			mutex_destroy(&itrq->itrq_rx_lock);
1138 			mutex_destroy(&itrq->itrq_tx_lock);
1139 			mutex_destroy(&itrq->itrq_tcb_lock);
1140 
1141 			/*
1142 			 * Should have already been cleaned up by start/stop,
1143 			 * etc.
1144 			 */
1145 			ASSERT(itrq->itrq_txkstat == NULL);
1146 			ASSERT(itrq->itrq_rxkstat == NULL);
1147 		}
1148 
1149 		kmem_free(i40e->i40e_trqpairs,
1150 		    sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1151 		i40e->i40e_trqpairs = NULL;
1152 	}
1153 
1154 	cv_destroy(&i40e->i40e_rx_pending_cv);
1155 	mutex_destroy(&i40e->i40e_rx_pending_lock);
1156 	mutex_destroy(&i40e->i40e_general_lock);
1157 }
1158 
1159 /*
1160  * Allocate transmit and receive rings, as well as other data structures that we
1161  * need.
1162  */
1163 static boolean_t
1164 i40e_alloc_trqpairs(i40e_t *i40e)
1165 {
1166 	void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1167 
1168 	/*
1169 	 * Now that we have the priority for the interrupts, initialize
1170 	 * all relevant locks.
1171 	 */
1172 	mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1173 	mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1174 	cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1175 
1176 	i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1177 	    i40e->i40e_num_trqpairs, KM_SLEEP);
1178 	for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1179 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1180 
1181 		itrq->itrq_i40e = i40e;
1182 		mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1183 		mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1184 		mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1185 		itrq->itrq_index = i;
1186 	}
1187 
1188 	i40e->i40e_rx_groups = kmem_zalloc(sizeof (i40e_rx_group_t) *
1189 	    i40e->i40e_num_rx_groups, KM_SLEEP);
1190 
1191 	for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
1192 		i40e_rx_group_t *rxg = &i40e->i40e_rx_groups[i];
1193 
1194 		rxg->irg_index = i;
1195 		rxg->irg_i40e = i40e;
1196 	}
1197 
1198 	return (B_TRUE);
1199 }
1200 
1201 
1202 
1203 /*
1204  * Unless a .conf file already overrode i40e_t structure values, they will
1205  * be 0, and need to be set in conjunction with the now-available HW report.
1206  */
1207 /* ARGSUSED */
1208 static void
1209 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1210 {
1211 	if (i40e->i40e_num_trqpairs_per_vsi == 0) {
1212 		if (i40e_is_x722(i40e)) {
1213 			i40e->i40e_num_trqpairs_per_vsi =
1214 			    I40E_722_MAX_TC_QUEUES;
1215 		} else {
1216 			i40e->i40e_num_trqpairs_per_vsi =
1217 			    I40E_710_MAX_TC_QUEUES;
1218 		}
1219 	}
1220 
1221 	if (i40e->i40e_num_rx_groups == 0) {
1222 		i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1223 	}
1224 }
1225 
1226 /*
1227  * Free any resources required by, or setup by, the Intel common code.
1228  */
1229 static void
1230 i40e_common_code_fini(i40e_t *i40e)
1231 {
1232 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1233 	int rc;
1234 
1235 	rc = i40e_shutdown_lan_hmc(hw);
1236 	if (rc != I40E_SUCCESS)
1237 		i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1238 
1239 	rc = i40e_shutdown_adminq(hw);
1240 	if (rc != I40E_SUCCESS)
1241 		i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1242 }
1243 
1244 /*
1245  * Initialize and call Intel common-code routines, includes some setup
1246  * the common code expects from the driver.  Also prints on failure, so
1247  * the caller doesn't have to.
1248  */
1249 static boolean_t
1250 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1251 {
1252 	int rc;
1253 
1254 	i40e_clear_hw(hw);
1255 	rc = i40e_pf_reset(hw);
1256 	if (rc != 0) {
1257 		i40e_error(i40e, "failed to reset hardware: %d", rc);
1258 		i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1259 		return (B_FALSE);
1260 	}
1261 
1262 	rc = i40e_init_shared_code(hw);
1263 	if (rc != 0) {
1264 		i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1265 		return (B_FALSE);
1266 	}
1267 
1268 	hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1269 	hw->aq.num_asq_entries =  I40E_DEF_ADMINQ_SIZE;
1270 	hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1271 	hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1272 
1273 	rc = i40e_init_adminq(hw);
1274 	if (rc != 0) {
1275 		i40e_error(i40e, "failed to initialize firmware admin queue: "
1276 		    "%d, potential firmware version mismatch", rc);
1277 		i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1278 		return (B_FALSE);
1279 	}
1280 
1281 	if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1282 	    hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) {
1283 		i40e_log(i40e, "The driver for the device detected a newer "
1284 		    "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1285 		    "Please install the most recent version of the network "
1286 		    "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1287 		    I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
1288 	} else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1289 	    hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) {
1290 		i40e_log(i40e, "The driver for the device detected an older"
1291 		    " version of the NVM image (%d.%d) than expected (%d.%d)."
1292 		    "\nPlease update the NVM image.\n",
1293 		    hw->aq.api_maj_ver, hw->aq.api_min_ver,
1294 		    I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR - 1);
1295 	}
1296 
1297 	i40e_clear_pxe_mode(hw);
1298 
1299 	/*
1300 	 * We need to call this so that the common code can discover
1301 	 * capabilities of the hardware, which it uses throughout the rest.
1302 	 */
1303 	if (!i40e_get_hw_capabilities(i40e, hw)) {
1304 		i40e_error(i40e, "failed to obtain hardware capabilities");
1305 		return (B_FALSE);
1306 	}
1307 
1308 	if (i40e_get_available_resources(i40e) == B_FALSE) {
1309 		i40e_error(i40e, "failed to obtain hardware resources");
1310 		return (B_FALSE);
1311 	}
1312 
1313 	i40e_hw_to_instance(i40e, hw);
1314 
1315 	rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1316 	    hw->func_caps.num_rx_qp, 0, 0);
1317 	if (rc != 0) {
1318 		i40e_error(i40e, "failed to initialize hardware memory cache: "
1319 		    "%d", rc);
1320 		return (B_FALSE);
1321 	}
1322 
1323 	rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1324 	if (rc != 0) {
1325 		i40e_error(i40e, "failed to configure hardware memory cache: "
1326 		    "%d", rc);
1327 		return (B_FALSE);
1328 	}
1329 
1330 	(void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1331 
1332 	rc = i40e_get_mac_addr(hw, hw->mac.addr);
1333 	if (rc != I40E_SUCCESS) {
1334 		i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1335 		    rc);
1336 		return (B_FALSE);
1337 	}
1338 
1339 	rc = i40e_validate_mac_addr(hw->mac.addr);
1340 	if (rc != 0) {
1341 		i40e_error(i40e, "failed to validate internal mac address: "
1342 		    "%d", rc);
1343 		return (B_FALSE);
1344 	}
1345 	bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1346 	if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1347 	    I40E_SUCCESS) {
1348 		i40e_error(i40e, "failed to retrieve port mac address: %d",
1349 		    rc);
1350 		return (B_FALSE);
1351 	}
1352 
1353 	/*
1354 	 * We need to obtain the Default Virtual Station SEID (VSI)
1355 	 * before we can perform other operations on the device.
1356 	 */
1357 	if (!i40e_set_def_vsi_seid(i40e)) {
1358 		i40e_error(i40e, "failed to obtain Default VSI SEID");
1359 		return (B_FALSE);
1360 	}
1361 
1362 	return (B_TRUE);
1363 }
1364 
1365 static void
1366 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1367 {
1368 	int rc;
1369 
1370 	if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1371 		(void) i40e_disable_interrupts(i40e);
1372 
1373 	if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1374 	    i40e->i40e_periodic_id != 0) {
1375 		ddi_periodic_delete(i40e->i40e_periodic_id);
1376 		i40e->i40e_periodic_id = 0;
1377 	}
1378 
1379 	if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1380 		rc = mac_unregister(i40e->i40e_mac_hdl);
1381 		if (rc != 0) {
1382 			i40e_error(i40e, "failed to unregister from mac: %d",
1383 			    rc);
1384 		}
1385 	}
1386 
1387 	if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1388 		i40e_stats_fini(i40e);
1389 	}
1390 
1391 	if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1392 		i40e_rem_intr_handlers(i40e);
1393 
1394 	if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1395 		i40e_free_trqpairs(i40e);
1396 
1397 	if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1398 		i40e_rem_intrs(i40e);
1399 
1400 	if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1401 		i40e_common_code_fini(i40e);
1402 
1403 	i40e_cleanup_resources(i40e);
1404 
1405 	if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1406 		(void) ddi_prop_remove_all(devinfo);
1407 
1408 	if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1409 	    i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1410 		ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1411 		i40e->i40e_osdep_space.ios_reg_handle = NULL;
1412 	}
1413 
1414 	if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1415 	    i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1416 		pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1417 		i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1418 	}
1419 
1420 	if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1421 		i40e_fm_fini(i40e);
1422 
1423 	if (i40e->i40e_attach_progress & I40E_ATTACH_UFM_INIT)
1424 		ddi_ufm_fini(i40e->i40e_ufmh);
1425 
1426 	kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1427 	kmem_free(i40e, sizeof (i40e_t));
1428 
1429 	ddi_set_driver_private(devinfo, NULL);
1430 }
1431 
1432 static boolean_t
1433 i40e_final_init(i40e_t *i40e)
1434 {
1435 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1436 	struct i40e_osdep *osdep = OS_DEP(hw);
1437 	uint8_t pbanum[I40E_PBANUM_STRLEN];
1438 	enum i40e_status_code irc;
1439 	char buf[I40E_DDI_PROP_LEN];
1440 
1441 	pbanum[0] = '\0';
1442 	irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1443 	if (irc != I40E_SUCCESS) {
1444 		i40e_log(i40e, "failed to read PBA string: %d", irc);
1445 	} else {
1446 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1447 		    "printed-board-assembly", (char *)pbanum);
1448 	}
1449 
1450 #ifdef	DEBUG
1451 	ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1452 	    hw->aq.fw_min_ver) < sizeof (buf));
1453 	ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1454 	ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1455 	    hw->aq.api_min_ver) < sizeof (buf));
1456 #endif
1457 
1458 	(void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1459 	    hw->aq.fw_min_ver);
1460 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1461 	    "firmware-version", buf);
1462 	(void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1463 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1464 	    "firmware-build", buf);
1465 	(void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1466 	    hw->aq.api_min_ver);
1467 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1468 	    "api-version", buf);
1469 
1470 	if (!i40e_set_hw_bus_info(hw))
1471 		return (B_FALSE);
1472 
1473 	if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1474 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1475 		return (B_FALSE);
1476 	}
1477 
1478 	return (B_TRUE);
1479 }
1480 
1481 static void
1482 i40e_identify_hardware(i40e_t *i40e)
1483 {
1484 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1485 	struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1486 
1487 	hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1488 	hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1489 	hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1490 	    PCI_CONF_REVID);
1491 	hw->subsystem_device_id =
1492 	    pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1493 	hw->subsystem_vendor_id =
1494 	    pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1495 
1496 	/*
1497 	 * Note that we set the hardware's bus information later on, in
1498 	 * i40e_get_available_resources(). The common code doesn't seem to
1499 	 * require that it be set in any ways, it seems to be mostly for
1500 	 * book-keeping.
1501 	 */
1502 }
1503 
1504 static boolean_t
1505 i40e_regs_map(i40e_t *i40e)
1506 {
1507 	dev_info_t *devinfo = i40e->i40e_dip;
1508 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1509 	struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1510 	off_t memsize;
1511 	int ret;
1512 
1513 	if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1514 	    DDI_SUCCESS) {
1515 		i40e_error(i40e, "Used invalid register set to map PCIe regs");
1516 		return (B_FALSE);
1517 	}
1518 
1519 	if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1520 	    (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1521 	    &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1522 		i40e_error(i40e, "failed to map device registers: %d", ret);
1523 		return (B_FALSE);
1524 	}
1525 
1526 	osdep->ios_reg_size = memsize;
1527 	return (B_TRUE);
1528 }
1529 
1530 /*
1531  * Update parameters required when a new MTU has been configured.  Calculate the
1532  * maximum frame size, as well as, size our DMA buffers which we size in
1533  * increments of 1K.
1534  */
1535 void
1536 i40e_update_mtu(i40e_t *i40e)
1537 {
1538 	uint32_t rx, tx;
1539 
1540 	i40e->i40e_frame_max = i40e->i40e_sdu +
1541 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
1542 
1543 	rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1544 	i40e->i40e_rx_buf_size = ((rx >> 10) +
1545 	    ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1546 
1547 	tx = i40e->i40e_frame_max;
1548 	i40e->i40e_tx_buf_size = ((tx >> 10) +
1549 	    ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1550 }
1551 
1552 static int
1553 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1554 {
1555 	int val;
1556 
1557 	val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1558 	    prop, def);
1559 	if (val > max)
1560 		val = max;
1561 	if (val < min)
1562 		val = min;
1563 	return (val);
1564 }
1565 
1566 static void
1567 i40e_init_properties(i40e_t *i40e)
1568 {
1569 	i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1570 	    I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1571 
1572 	i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1573 	    I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1574 
1575 	i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1576 	    B_FALSE, B_TRUE, B_TRUE);
1577 
1578 	i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1579 	    I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1580 	    I40E_DEF_TX_RING_SIZE);
1581 	if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1582 		i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1583 		    I40E_DESC_ALIGN);
1584 	}
1585 
1586 	i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1587 	    I40E_MIN_TX_BLOCK_THRESH,
1588 	    i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1589 	    I40E_DEF_TX_BLOCK_THRESH);
1590 
1591 	i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1592 	    I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1593 	    I40E_DEF_RX_RING_SIZE);
1594 	if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1595 		i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1596 		    I40E_DESC_ALIGN);
1597 	}
1598 
1599 	i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1600 	    I40E_MIN_RX_LIMIT_PER_INTR,	I40E_MAX_RX_LIMIT_PER_INTR,
1601 	    I40E_DEF_RX_LIMIT_PER_INTR);
1602 
1603 	i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1604 	    B_FALSE, B_TRUE, B_TRUE);
1605 
1606 	i40e->i40e_tx_lso_enable = i40e_get_prop(i40e, "tx_lso_enable",
1607 	    B_FALSE, B_TRUE, B_TRUE);
1608 
1609 	i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1610 	    B_FALSE, B_TRUE, B_TRUE);
1611 
1612 	i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1613 	    I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1614 	    I40E_DEF_RX_DMA_THRESH);
1615 
1616 	i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1617 	    I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1618 	    I40E_DEF_TX_DMA_THRESH);
1619 
1620 	i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1621 	    I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1622 
1623 	i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1624 	    I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1625 
1626 	i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1627 	    I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1628 
1629 	if (!i40e->i40e_mr_enable) {
1630 		i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1631 		i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1632 	}
1633 
1634 	i40e_update_mtu(i40e);
1635 }
1636 
1637 /*
1638  * There are a few constraints on interrupts that we're currently imposing, some
1639  * of which are restrictions from hardware. For a fuller treatment, see
1640  * i40e_intr.c.
1641  *
1642  * Currently, to use MSI-X we require two interrupts be available though in
1643  * theory we should participate in IRM and happily use more interrupts.
1644  *
1645  * Hardware only supports a single MSI being programmed and therefore if we
1646  * don't have MSI-X interrupts available at this time, then we ratchet down the
1647  * number of rings and groups available. Obviously, we only bother with a single
1648  * fixed interrupt.
1649  */
1650 static boolean_t
1651 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1652 {
1653 	i40e_hw_t *hw = &i40e->i40e_hw_space;
1654 	ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1655 	int request, count, actual, rc, min;
1656 	uint32_t reg;
1657 
1658 	switch (intr_type) {
1659 	case DDI_INTR_TYPE_FIXED:
1660 	case DDI_INTR_TYPE_MSI:
1661 		request = 1;
1662 		min = 1;
1663 		break;
1664 	case DDI_INTR_TYPE_MSIX:
1665 		min = 2;
1666 		if (!i40e->i40e_mr_enable) {
1667 			request = 2;
1668 			break;
1669 		}
1670 		reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1671 		/*
1672 		 * Should this read fail, we will drop back to using
1673 		 * MSI or fixed interrupts.
1674 		 */
1675 		if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1676 			ddi_fm_service_impact(i40e->i40e_dip,
1677 			    DDI_SERVICE_DEGRADED);
1678 			return (B_FALSE);
1679 		}
1680 		request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1681 		    I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1682 		request++;	/* the register value is n - 1 */
1683 		break;
1684 	default:
1685 		panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1686 		    "%d", intr_type);
1687 	}
1688 
1689 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1690 	if (rc != DDI_SUCCESS || count < min) {
1691 		i40e_log(i40e, "Get interrupt number failed, "
1692 		    "returned %d, count %d", rc, count);
1693 		return (B_FALSE);
1694 	}
1695 
1696 	rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1697 	if (rc != DDI_SUCCESS || count < min) {
1698 		i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1699 		    "returned %d, count %d", rc, count);
1700 		return (B_FALSE);
1701 	}
1702 
1703 	actual = 0;
1704 	i40e->i40e_intr_count = 0;
1705 	i40e->i40e_intr_count_max = 0;
1706 	i40e->i40e_intr_count_min = 0;
1707 
1708 	i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1709 	ASSERT(i40e->i40e_intr_size != 0);
1710 	i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1711 
1712 	rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1713 	    min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1714 	if (rc != DDI_SUCCESS) {
1715 		i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1716 		goto alloc_handle_fail;
1717 	}
1718 
1719 	i40e->i40e_intr_count = actual;
1720 	i40e->i40e_intr_count_max = request;
1721 	i40e->i40e_intr_count_min = min;
1722 
1723 	if (actual < min) {
1724 		i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1725 		    actual, min);
1726 		goto alloc_handle_fail;
1727 	}
1728 
1729 	/*
1730 	 * Record the priority and capabilities for our first vector.  Once
1731 	 * we have it, that's our priority until detach time.  Even if we
1732 	 * eventually participate in IRM, our priority shouldn't change.
1733 	 */
1734 	rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1735 	if (rc != DDI_SUCCESS) {
1736 		i40e_log(i40e,
1737 		    "Getting interrupt priority failed with %d.", rc);
1738 		goto alloc_handle_fail;
1739 	}
1740 
1741 	rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1742 	if (rc != DDI_SUCCESS) {
1743 		i40e_log(i40e,
1744 		    "Getting interrupt capabilities failed with %d.", rc);
1745 		goto alloc_handle_fail;
1746 	}
1747 
1748 	i40e->i40e_intr_type = intr_type;
1749 	return (B_TRUE);
1750 
1751 alloc_handle_fail:
1752 
1753 	i40e_rem_intrs(i40e);
1754 	return (B_FALSE);
1755 }
1756 
1757 static boolean_t
1758 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1759 {
1760 	int intr_types, rc;
1761 	uint_t max_trqpairs;
1762 
1763 	if (i40e_is_x722(i40e)) {
1764 		max_trqpairs = I40E_722_MAX_TC_QUEUES;
1765 	} else {
1766 		max_trqpairs = I40E_710_MAX_TC_QUEUES;
1767 	}
1768 
1769 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1770 	if (rc != DDI_SUCCESS) {
1771 		i40e_error(i40e, "failed to get supported interrupt types: %d",
1772 		    rc);
1773 		return (B_FALSE);
1774 	}
1775 
1776 	i40e->i40e_intr_type = 0;
1777 	i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1778 
1779 	/*
1780 	 * We need to determine the number of queue pairs per traffic
1781 	 * class. We only have one traffic class (TC0), so we'll base
1782 	 * this off the number of interrupts provided. Furthermore,
1783 	 * since we only use one traffic class, the number of queues
1784 	 * per traffic class and per VSI are the same.
1785 	 */
1786 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1787 	    (i40e->i40e_intr_force <= I40E_INTR_MSIX) &&
1788 	    (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))) {
1789 		uint32_t n;
1790 
1791 		/*
1792 		 * While we want the number of queue pairs to match
1793 		 * the number of interrupts, we must keep stay in
1794 		 * bounds of the maximum number of queues per traffic
1795 		 * class. We subtract one from i40e_intr_count to
1796 		 * account for interrupt zero; which is currently
1797 		 * restricted to admin queue commands and other
1798 		 * interrupt causes.
1799 		 */
1800 		n = MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1801 		ASSERT3U(n, >, 0);
1802 
1803 		/*
1804 		 * Round up to the nearest power of two to ensure that
1805 		 * the QBASE aligns with the TC size which must be
1806 		 * programmed as a power of two. See the queue mapping
1807 		 * description in section 7.4.9.5.5.1.
1808 		 *
1809 		 * If i40e_intr_count - 1 is not a power of two then
1810 		 * some queue pairs on the same VSI will have to share
1811 		 * an interrupt.
1812 		 *
1813 		 * We may want to revisit this logic in a future where
1814 		 * we have more interrupts and more VSIs. Otherwise,
1815 		 * each VSI will use as many interrupts as possible.
1816 		 * Using more QPs per VSI means better RSS for each
1817 		 * group, but at the same time may require more
1818 		 * sharing of interrupts across VSIs. This may be a
1819 		 * good candidate for a .conf tunable.
1820 		 */
1821 		n = 0x1 << ddi_fls(n);
1822 		i40e->i40e_num_trqpairs_per_vsi = n;
1823 		ASSERT3U(i40e->i40e_num_rx_groups, >, 0);
1824 		i40e->i40e_num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1825 		    i40e->i40e_num_rx_groups;
1826 		return (B_TRUE);
1827 	}
1828 
1829 	/*
1830 	 * We only use multiple transmit/receive pairs when MSI-X interrupts are
1831 	 * available due to the fact that the device basically only supports a
1832 	 * single MSI interrupt.
1833 	 */
1834 	i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1835 	i40e->i40e_num_trqpairs_per_vsi = i40e->i40e_num_trqpairs;
1836 	i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1837 
1838 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
1839 	    (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1840 		if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1841 			return (B_TRUE);
1842 	}
1843 
1844 	if (intr_types & DDI_INTR_TYPE_FIXED) {
1845 		if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1846 			return (B_TRUE);
1847 	}
1848 
1849 	return (B_FALSE);
1850 }
1851 
1852 /*
1853  * Map different interrupts to MSI-X vectors.
1854  */
1855 static boolean_t
1856 i40e_map_intrs_to_vectors(i40e_t *i40e)
1857 {
1858 	if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1859 		return (B_TRUE);
1860 	}
1861 
1862 	/*
1863 	 * Each queue pair is mapped to a single interrupt, so
1864 	 * transmit and receive interrupts for a given queue share the
1865 	 * same vector. Vector zero is reserved for the admin queue.
1866 	 */
1867 	for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1868 		uint_t vector = i % (i40e->i40e_intr_count - 1);
1869 
1870 		i40e->i40e_trqpairs[i].itrq_rx_intrvec = vector + 1;
1871 		i40e->i40e_trqpairs[i].itrq_tx_intrvec = vector + 1;
1872 	}
1873 
1874 	return (B_TRUE);
1875 }
1876 
1877 static boolean_t
1878 i40e_add_intr_handlers(i40e_t *i40e)
1879 {
1880 	int rc, vector;
1881 
1882 	switch (i40e->i40e_intr_type) {
1883 	case DDI_INTR_TYPE_MSIX:
1884 		for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1885 			rc = ddi_intr_add_handler(
1886 			    i40e->i40e_intr_handles[vector],
1887 			    (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1888 			    (void *)(uintptr_t)vector);
1889 			if (rc != DDI_SUCCESS) {
1890 				i40e_log(i40e, "Add interrupt handler (MSI-X) "
1891 				    "failed: return %d, vector %d", rc, vector);
1892 				for (vector--; vector >= 0; vector--) {
1893 					(void) ddi_intr_remove_handler(
1894 					    i40e->i40e_intr_handles[vector]);
1895 				}
1896 				return (B_FALSE);
1897 			}
1898 		}
1899 		break;
1900 	case DDI_INTR_TYPE_MSI:
1901 		rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1902 		    (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1903 		if (rc != DDI_SUCCESS) {
1904 			i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1905 			    "return %d", rc);
1906 			return (B_FALSE);
1907 		}
1908 		break;
1909 	case DDI_INTR_TYPE_FIXED:
1910 		rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1911 		    (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1912 		if (rc != DDI_SUCCESS) {
1913 			i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1914 			    " return %d", rc);
1915 			return (B_FALSE);
1916 		}
1917 		break;
1918 	default:
1919 		/* Cast to pacify lint */
1920 		panic("i40e_intr_type %p contains an unknown type: %d",
1921 		    (void *)i40e, i40e->i40e_intr_type);
1922 	}
1923 
1924 	return (B_TRUE);
1925 }
1926 
1927 /*
1928  * Perform periodic checks. Longer term, we should be thinking about additional
1929  * things here:
1930  *
1931  * o Stall Detection
1932  * o Temperature sensor detection
1933  * o Device resetting
1934  * o Statistics updating to avoid wraparound
1935  */
1936 static void
1937 i40e_timer(void *arg)
1938 {
1939 	i40e_t *i40e = arg;
1940 
1941 	mutex_enter(&i40e->i40e_general_lock);
1942 	i40e_link_check(i40e);
1943 	mutex_exit(&i40e->i40e_general_lock);
1944 }
1945 
1946 /*
1947  * Get the hardware state, and scribble away anything that needs scribbling.
1948  */
1949 static void
1950 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1951 {
1952 	int rc;
1953 
1954 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1955 
1956 	(void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1957 	i40e_link_check(i40e);
1958 
1959 	/*
1960 	 * Try and determine our PHY. Note that we may have to retry to and
1961 	 * delay to detect fiber correctly.
1962 	 */
1963 	rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
1964 	    NULL);
1965 	if (rc == I40E_ERR_UNKNOWN_PHY) {
1966 		i40e_msec_delay(200);
1967 		rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
1968 		    &i40e->i40e_phy, NULL);
1969 	}
1970 
1971 	if (rc != I40E_SUCCESS) {
1972 		if (rc == I40E_ERR_UNKNOWN_PHY) {
1973 			i40e_error(i40e, "encountered unknown PHY type, "
1974 			    "not attaching.");
1975 		} else {
1976 			i40e_error(i40e, "error getting physical capabilities: "
1977 			    "%d, %d", rc, hw->aq.asq_last_status);
1978 		}
1979 	}
1980 
1981 	rc = i40e_update_link_info(hw);
1982 	if (rc != I40E_SUCCESS) {
1983 		i40e_error(i40e, "failed to update link information: %d", rc);
1984 	}
1985 
1986 	/*
1987 	 * In general, we don't want to mask off (as in stop from being a cause)
1988 	 * any of the interrupts that the phy might be able to generate.
1989 	 */
1990 	rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
1991 	if (rc != I40E_SUCCESS) {
1992 		i40e_error(i40e, "failed to update phy link mask: %d", rc);
1993 	}
1994 }
1995 
1996 /*
1997  * Go through and re-initialize any existing filters that we may have set up for
1998  * this device. Note that we would only expect them to exist if hardware had
1999  * already been initialized and we had just reset it. While we're not
2000  * implementing this yet, we're keeping this around for when we add reset
2001  * capabilities, so this isn't forgotten.
2002  */
2003 /* ARGSUSED */
2004 static void
2005 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
2006 {
2007 }
2008 
2009 /*
2010  * Set the properties which have common values across all the VSIs.
2011  * Consult the "Add VSI" command section (7.4.9.5.5.1) for a
2012  * complete description of these properties.
2013  */
2014 static void
2015 i40e_set_shared_vsi_props(i40e_t *i40e,
2016     struct i40e_aqc_vsi_properties_data *info, uint_t vsi_idx)
2017 {
2018 	uint_t tc_queues;
2019 	uint16_t vsi_qp_base;
2020 
2021 	/*
2022 	 * It's important that we use bitwise-OR here; callers to this
2023 	 * function might enable other sections before calling this
2024 	 * function.
2025 	 */
2026 	info->valid_sections |= LE_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID |
2027 	    I40E_AQ_VSI_PROP_VLAN_VALID);
2028 
2029 	/*
2030 	 * Calculate the starting QP index for this VSI. This base is
2031 	 * relative to the PF queue space; so a value of 0 for PF#1
2032 	 * represents the absolute index PFLAN_QALLOC_FIRSTQ for PF#1.
2033 	 */
2034 	vsi_qp_base = vsi_idx * i40e->i40e_num_trqpairs_per_vsi;
2035 	info->mapping_flags = LE_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2036 	info->queue_mapping[0] =
2037 	    LE_16((vsi_qp_base << I40E_AQ_VSI_QUEUE_SHIFT) &
2038 	    I40E_AQ_VSI_QUEUE_MASK);
2039 
2040 	/*
2041 	 * tc_queues determines the size of the traffic class, where
2042 	 * the size is 2^^tc_queues to a maximum of 64 for the X710
2043 	 * and 128 for the X722.
2044 	 *
2045 	 * Some examples:
2046 	 *	i40e_num_trqpairs_per_vsi == 1 =>  tc_queues = 0, 2^^0 = 1.
2047 	 *	i40e_num_trqpairs_per_vsi == 7 =>  tc_queues = 3, 2^^3 = 8.
2048 	 *	i40e_num_trqpairs_per_vsi == 8 =>  tc_queues = 3, 2^^3 = 8.
2049 	 *	i40e_num_trqpairs_per_vsi == 9 =>  tc_queues = 4, 2^^4 = 16.
2050 	 *	i40e_num_trqpairs_per_vsi == 17 => tc_queues = 5, 2^^5 = 32.
2051 	 *	i40e_num_trqpairs_per_vsi == 64 => tc_queues = 6, 2^^6 = 64.
2052 	 */
2053 	tc_queues = ddi_fls(i40e->i40e_num_trqpairs_per_vsi - 1);
2054 
2055 	/*
2056 	 * The TC queue mapping is in relation to the VSI queue space.
2057 	 * Since we are only using one traffic class (TC0) we always
2058 	 * start at queue offset 0.
2059 	 */
2060 	info->tc_mapping[0] =
2061 	    LE_16(((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
2062 	    I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
2063 	    ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
2064 	    I40E_AQ_VSI_TC_QUE_NUMBER_MASK));
2065 
2066 	/*
2067 	 * I40E_AQ_VSI_PVLAN_MODE_ALL ("VLAN driver insertion mode")
2068 	 *
2069 	 *	Allow tagged and untagged packets to be sent to this
2070 	 *	VSI from the host.
2071 	 *
2072 	 * I40E_AQ_VSI_PVLAN_EMOD_NOTHING ("VLAN and UP expose mode")
2073 	 *
2074 	 *	Leave the tag on the frame and place no VLAN
2075 	 *	information in the descriptor. We want this mode
2076 	 *	because our MAC layer will take care of the VLAN tag,
2077 	 *	if there is one.
2078 	 */
2079 	info->port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2080 	    I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2081 }
2082 
2083 /*
2084  * Delete the VSI at this index, if one exists. We assume there is no
2085  * action we can take if this command fails but to log the failure.
2086  */
2087 static void
2088 i40e_delete_vsi(i40e_t *i40e, uint_t idx)
2089 {
2090 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
2091 	uint16_t	seid = i40e->i40e_vsis[idx].iv_seid;
2092 
2093 	if (seid != 0) {
2094 		int rc;
2095 
2096 		rc = i40e_aq_delete_element(hw, seid, NULL);
2097 
2098 		if (rc != I40E_SUCCESS) {
2099 			i40e_error(i40e, "Failed to delete VSI %d: %d",
2100 			    rc, hw->aq.asq_last_status);
2101 		}
2102 
2103 		i40e->i40e_vsis[idx].iv_seid = 0;
2104 	}
2105 }
2106 
2107 /*
2108  * Add a new VSI.
2109  */
2110 static boolean_t
2111 i40e_add_vsi(i40e_t *i40e, i40e_hw_t *hw, uint_t idx)
2112 {
2113 	struct i40e_vsi_context	ctx;
2114 	i40e_rx_group_t		*rxg;
2115 	int			rc;
2116 
2117 	/*
2118 	 * The default VSI is created by the controller. This function
2119 	 * creates new, non-defualt VSIs only.
2120 	 */
2121 	ASSERT3U(idx, !=, 0);
2122 
2123 	bzero(&ctx, sizeof (struct i40e_vsi_context));
2124 	ctx.uplink_seid = i40e->i40e_veb_seid;
2125 	ctx.pf_num = hw->pf_id;
2126 	ctx.flags = I40E_AQ_VSI_TYPE_PF;
2127 	ctx.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
2128 	i40e_set_shared_vsi_props(i40e, &ctx.info, idx);
2129 
2130 	rc = i40e_aq_add_vsi(hw, &ctx, NULL);
2131 	if (rc != I40E_SUCCESS) {
2132 		i40e_error(i40e, "i40e_aq_add_vsi() failed %d: %d", rc,
2133 		    hw->aq.asq_last_status);
2134 		return (B_FALSE);
2135 	}
2136 
2137 	rxg = &i40e->i40e_rx_groups[idx];
2138 	rxg->irg_vsi_seid = ctx.seid;
2139 	i40e->i40e_vsis[idx].iv_number = ctx.vsi_number;
2140 	i40e->i40e_vsis[idx].iv_seid = ctx.seid;
2141 	i40e->i40e_vsis[idx].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2142 
2143 	if (i40e_stat_vsi_init(i40e, idx) == B_FALSE)
2144 		return (B_FALSE);
2145 
2146 	return (B_TRUE);
2147 }
2148 
2149 /*
2150  * Configure the hardware for the Default Virtual Station Interface (VSI).
2151  */
2152 static boolean_t
2153 i40e_config_def_vsi(i40e_t *i40e, i40e_hw_t *hw)
2154 {
2155 	struct i40e_vsi_context	ctx;
2156 	i40e_rx_group_t *def_rxg;
2157 	int err;
2158 	struct i40e_aqc_remove_macvlan_element_data filt;
2159 
2160 	bzero(&ctx, sizeof (struct i40e_vsi_context));
2161 	ctx.seid = I40E_DEF_VSI_SEID(i40e);
2162 	ctx.pf_num = hw->pf_id;
2163 	err = i40e_aq_get_vsi_params(hw, &ctx, NULL);
2164 	if (err != I40E_SUCCESS) {
2165 		i40e_error(i40e, "get VSI params failed with %d", err);
2166 		return (B_FALSE);
2167 	}
2168 
2169 	ctx.info.valid_sections = 0;
2170 	i40e->i40e_vsis[0].iv_number = ctx.vsi_number;
2171 	i40e->i40e_vsis[0].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2172 	if (i40e_stat_vsi_init(i40e, 0) == B_FALSE)
2173 		return (B_FALSE);
2174 
2175 	i40e_set_shared_vsi_props(i40e, &ctx.info, I40E_DEF_VSI_IDX);
2176 
2177 	err = i40e_aq_update_vsi_params(hw, &ctx, NULL);
2178 	if (err != I40E_SUCCESS) {
2179 		i40e_error(i40e, "Update VSI params failed with %d", err);
2180 		return (B_FALSE);
2181 	}
2182 
2183 	def_rxg = &i40e->i40e_rx_groups[0];
2184 	def_rxg->irg_vsi_seid = I40E_DEF_VSI_SEID(i40e);
2185 
2186 	/*
2187 	 * We have seen three different behaviors in regards to the
2188 	 * Default VSI and its implicit L2 MAC+VLAN filter.
2189 	 *
2190 	 * 1. It has an implicit filter for the factory MAC address
2191 	 *    and this filter counts against 'ifr_nmacfilt_used'.
2192 	 *
2193 	 * 2. It has an implicit filter for the factory MAC address
2194 	 *    and this filter DOES NOT count against 'ifr_nmacfilt_used'.
2195 	 *
2196 	 * 3. It DOES NOT have an implicit filter.
2197 	 *
2198 	 * All three of these cases are accounted for below. If we
2199 	 * fail to remove the L2 filter (ENOENT) then we assume there
2200 	 * wasn't one. Otherwise, if we successfully remove the
2201 	 * filter, we make sure to update the 'ifr_nmacfilt_used'
2202 	 * count accordingly.
2203 	 *
2204 	 * We remove this filter to prevent duplicate delivery of
2205 	 * packets destined for the primary MAC address as DLS will
2206 	 * create the same filter on a non-default VSI for the primary
2207 	 * MAC client.
2208 	 *
2209 	 * If you change the following code please test it across as
2210 	 * many X700 series controllers and firmware revisions as you
2211 	 * can.
2212 	 */
2213 	bzero(&filt, sizeof (filt));
2214 	bcopy(hw->mac.port_addr, filt.mac_addr, ETHERADDRL);
2215 	filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2216 	filt.vlan_tag = 0;
2217 
2218 	ASSERT3U(i40e->i40e_resources.ifr_nmacfilt_used, <=, 1);
2219 	i40e_log(i40e, "Num L2 filters: %u",
2220 	    i40e->i40e_resources.ifr_nmacfilt_used);
2221 
2222 	err = i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1,
2223 	    NULL);
2224 	if (err == I40E_SUCCESS) {
2225 		i40e_log(i40e,
2226 		    "Removed L2 filter from Default VSI with SEID %u",
2227 		    I40E_DEF_VSI_SEID(i40e));
2228 	} else if (hw->aq.asq_last_status == ENOENT) {
2229 		i40e_log(i40e,
2230 		    "No L2 filter for Default VSI with SEID %u",
2231 		    I40E_DEF_VSI_SEID(i40e));
2232 	} else {
2233 		i40e_error(i40e, "Failed to remove L2 filter from"
2234 		    " Default VSI with SEID %u: %d (%d)",
2235 		    I40E_DEF_VSI_SEID(i40e), err, hw->aq.asq_last_status);
2236 
2237 		return (B_FALSE);
2238 	}
2239 
2240 	/*
2241 	 *  As mentioned above, the controller created an implicit L2
2242 	 *  filter for the primary MAC. We want to remove both the
2243 	 *  filter and decrement the filter count. However, not all
2244 	 *  controllers count this implicit filter against the total
2245 	 *  MAC filter count. So here we are making sure it is either
2246 	 *  one or zero. If it is one, then we know it is for the
2247 	 *  implicit filter and we should decrement since we just
2248 	 *  removed the filter above. If it is zero then we know the
2249 	 *  controller that does not count the implicit filter, and it
2250 	 *  was enough to just remove it; we leave the count alone.
2251 	 *  But if it is neither, then we have never seen a controller
2252 	 *  like this before and we should fail to attach.
2253 	 *
2254 	 *  It is unfortunate that this code must exist but the
2255 	 *  behavior of this implicit L2 filter and its corresponding
2256 	 *  count were dicovered through empirical testing. The
2257 	 *  programming manuals hint at this filter but do not
2258 	 *  explicitly call out the exact behavior.
2259 	 */
2260 	if (i40e->i40e_resources.ifr_nmacfilt_used == 1) {
2261 		i40e->i40e_resources.ifr_nmacfilt_used--;
2262 	} else {
2263 		if (i40e->i40e_resources.ifr_nmacfilt_used != 0) {
2264 			i40e_error(i40e, "Unexpected L2 filter count: %u"
2265 			    " (expected 0)",
2266 			    i40e->i40e_resources.ifr_nmacfilt_used);
2267 			return (B_FALSE);
2268 		}
2269 	}
2270 
2271 	return (B_TRUE);
2272 }
2273 
2274 static boolean_t
2275 i40e_config_rss_key_x722(i40e_t *i40e, i40e_hw_t *hw)
2276 {
2277 	for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
2278 		uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2279 		struct i40e_aqc_get_set_rss_key_data key;
2280 		const char *u8seed;
2281 		enum i40e_status_code status;
2282 		uint16_t vsi_number = i40e->i40e_vsis[i].iv_number;
2283 
2284 		(void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2285 		u8seed = (char *)seed;
2286 
2287 		CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2288 		    sizeof (key.extended_hash_key)));
2289 
2290 		bcopy(u8seed, key.standard_rss_key,
2291 		    sizeof (key.standard_rss_key));
2292 		bcopy(&u8seed[sizeof (key.standard_rss_key)],
2293 		    key.extended_hash_key, sizeof (key.extended_hash_key));
2294 
2295 		ASSERT3U(vsi_number, !=, 0);
2296 		status = i40e_aq_set_rss_key(hw, vsi_number, &key);
2297 
2298 		if (status != I40E_SUCCESS) {
2299 			i40e_error(i40e, "failed to set RSS key for VSI %u: %d",
2300 			    vsi_number, status);
2301 			return (B_FALSE);
2302 		}
2303 	}
2304 
2305 	return (B_TRUE);
2306 }
2307 
2308 /*
2309  * Configure the RSS key. For the X710 controller family, this is set on a
2310  * per-PF basis via registers. For the X722, this is done on a per-VSI basis
2311  * through the admin queue.
2312  */
2313 static boolean_t
2314 i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2315 {
2316 	if (i40e_is_x722(i40e)) {
2317 		if (!i40e_config_rss_key_x722(i40e, hw))
2318 			return (B_FALSE);
2319 	} else {
2320 		uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2321 
2322 		(void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2323 		for (uint_t i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2324 			i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2325 	}
2326 
2327 	return (B_TRUE);
2328 }
2329 
2330 /*
2331  * Populate the LUT. The size of each entry in the LUT depends on the controller
2332  * family, with the X722 using a known 7-bit width. On the X710 controller, this
2333  * is programmed through its control registers where as on the X722 this is
2334  * configured through the admin queue. Also of note, the X722 allows the LUT to
2335  * be set on a per-PF or VSI basis. At this time we use the PF setting. If we
2336  * decide to use the per-VSI LUT in the future, then we will need to modify the
2337  * i40e_add_vsi() function to set the RSS LUT bits in the queueing section.
2338  *
2339  * We populate the LUT in a round robin fashion with the rx queue indices from 0
2340  * to i40e_num_trqpairs_per_vsi - 1.
2341  */
2342 static boolean_t
2343 i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2344 {
2345 	uint32_t *hlut;
2346 	uint8_t lut_mask;
2347 	uint_t i;
2348 	boolean_t ret = B_FALSE;
2349 
2350 	/*
2351 	 * We always configure the PF with a table size of 512 bytes in
2352 	 * i40e_chip_start().
2353 	 */
2354 	hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2355 	if (hlut == NULL) {
2356 		i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2357 		return (B_FALSE);
2358 	}
2359 
2360 	/*
2361 	 * The width of the X722 is apparently defined to be 7 bits, regardless
2362 	 * of the capability.
2363 	 */
2364 	if (i40e_is_x722(i40e)) {
2365 		lut_mask = (1 << 7) - 1;
2366 	} else {
2367 		lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2368 	}
2369 
2370 	for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++) {
2371 		((uint8_t *)hlut)[i] =
2372 		    (i % i40e->i40e_num_trqpairs_per_vsi) & lut_mask;
2373 	}
2374 
2375 	if (i40e_is_x722(i40e)) {
2376 		enum i40e_status_code status;
2377 
2378 		status = i40e_aq_set_rss_lut(hw, 0, B_TRUE, (uint8_t *)hlut,
2379 		    I40E_HLUT_TABLE_SIZE);
2380 
2381 		if (status != I40E_SUCCESS) {
2382 			i40e_error(i40e, "failed to set RSS LUT %d: %d",
2383 			    status, hw->aq.asq_last_status);
2384 			goto out;
2385 		}
2386 	} else {
2387 		for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2388 			I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2389 		}
2390 	}
2391 	ret = B_TRUE;
2392 out:
2393 	kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2394 	return (ret);
2395 }
2396 
2397 /*
2398  * Set up RSS.
2399  *	1. Seed the hash key.
2400  *	2. Enable PCTYPEs for the hash filter.
2401  *	3. Populate the LUT.
2402  */
2403 static boolean_t
2404 i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2405 {
2406 	uint64_t hena;
2407 
2408 	/*
2409 	 * 1. Seed the hash key
2410 	 */
2411 	if (!i40e_config_rss_key(i40e, hw))
2412 		return (B_FALSE);
2413 
2414 	/*
2415 	 * 2. Configure PCTYPES
2416 	 */
2417 	hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2418 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2419 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2420 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2421 	    (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2422 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2423 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2424 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2425 	    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2426 	    (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2427 	    (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2428 
2429 	/*
2430 	 * Add additional types supported by the X722 controller.
2431 	 */
2432 	if (i40e_is_x722(i40e)) {
2433 		hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2434 		    (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2435 		    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2436 		    (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2437 		    (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2438 		    (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2439 	}
2440 
2441 	i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2442 	i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2443 
2444 	/*
2445 	 * 3. Populate LUT
2446 	 */
2447 	return (i40e_config_rss_hlut(i40e, hw));
2448 }
2449 
2450 /*
2451  * Wrapper to kick the chipset on.
2452  */
2453 static boolean_t
2454 i40e_chip_start(i40e_t *i40e)
2455 {
2456 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2457 	struct i40e_filter_control_settings filter;
2458 	int rc;
2459 	uint8_t err;
2460 
2461 	if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2462 	    (hw->aq.fw_maj_ver < 4)) {
2463 		i40e_msec_delay(75);
2464 		if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2465 		    I40E_SUCCESS) {
2466 			i40e_error(i40e, "failed to restart link: admin queue "
2467 			    "error: %d", hw->aq.asq_last_status);
2468 			return (B_FALSE);
2469 		}
2470 	}
2471 
2472 	/* Determine hardware state */
2473 	i40e_get_hw_state(i40e, hw);
2474 
2475 	/* For now, we always disable Ethernet Flow Control. */
2476 	hw->fc.requested_mode = I40E_FC_NONE;
2477 	rc = i40e_set_fc(hw, &err, B_TRUE);
2478 	if (rc != I40E_SUCCESS) {
2479 		i40e_error(i40e, "Setting flow control failed, returned %d"
2480 		    " with error: 0x%x", rc, err);
2481 		return (B_FALSE);
2482 	}
2483 
2484 	/* Initialize mac addresses. */
2485 	i40e_init_macaddrs(i40e, hw);
2486 
2487 	/*
2488 	 * Set up the filter control. If the hash lut size is changed from
2489 	 * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2490 	 * i40e_config_rss_hlut() will need to be updated.
2491 	 */
2492 	bzero(&filter, sizeof (filter));
2493 	filter.enable_ethtype = TRUE;
2494 	filter.enable_macvlan = TRUE;
2495 	filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2496 
2497 	rc = i40e_set_filter_control(hw, &filter);
2498 	if (rc != I40E_SUCCESS) {
2499 		i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2500 		return (B_FALSE);
2501 	}
2502 
2503 	i40e_intr_chip_init(i40e);
2504 
2505 	rc = i40e_get_mac_seid(i40e);
2506 	if (rc == -1) {
2507 		i40e_error(i40e, "failed to obtain MAC Uplink SEID");
2508 		return (B_FALSE);
2509 	}
2510 	i40e->i40e_mac_seid = (uint16_t)rc;
2511 
2512 	/*
2513 	 * Create a VEB in order to support multiple VSIs. Each VSI
2514 	 * functions as a MAC group. This call sets the PF's MAC as
2515 	 * the uplink port and the PF's default VSI as the default
2516 	 * downlink port.
2517 	 */
2518 	rc = i40e_aq_add_veb(hw, i40e->i40e_mac_seid, I40E_DEF_VSI_SEID(i40e),
2519 	    0x1, B_TRUE, &i40e->i40e_veb_seid, B_FALSE, NULL);
2520 	if (rc != I40E_SUCCESS) {
2521 		i40e_error(i40e, "i40e_aq_add_veb() failed %d: %d", rc,
2522 		    hw->aq.asq_last_status);
2523 		return (B_FALSE);
2524 	}
2525 
2526 	if (!i40e_config_def_vsi(i40e, hw))
2527 		return (B_FALSE);
2528 
2529 	for (uint_t i = 1; i < i40e->i40e_num_rx_groups; i++) {
2530 		if (!i40e_add_vsi(i40e, hw, i))
2531 			return (B_FALSE);
2532 	}
2533 
2534 	if (!i40e_config_rss(i40e, hw))
2535 		return (B_FALSE);
2536 
2537 	i40e_flush(hw);
2538 
2539 	return (B_TRUE);
2540 }
2541 
2542 /*
2543  * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2544  */
2545 static void
2546 i40e_shutdown_rx_rings(i40e_t *i40e)
2547 {
2548 	int i;
2549 	uint32_t reg;
2550 
2551 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2552 
2553 	/*
2554 	 * Step 1. The interrupt linked list (see i40e_intr.c for more
2555 	 * information) should have already been cleared before calling this
2556 	 * function.
2557 	 */
2558 #ifdef	DEBUG
2559 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2560 		for (i = 1; i < i40e->i40e_intr_count; i++) {
2561 			reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2562 			VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2563 		}
2564 	} else {
2565 		reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2566 		VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2567 	}
2568 
2569 #endif	/* DEBUG */
2570 
2571 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2572 		/*
2573 		 * Step 1. Request the queue by clearing QENA_REQ. It may not be
2574 		 * set due to unwinding from failures and a partially enabled
2575 		 * ring set.
2576 		 */
2577 		reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2578 		if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2579 			continue;
2580 		VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2581 		    I40E_QRX_ENA_QENA_REQ_MASK);
2582 		reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2583 		I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2584 	}
2585 
2586 	/*
2587 	 * Step 2. Wait for the disable to take, by having QENA_STAT in the FPM
2588 	 * be cleared. Note that we could still receive data in the queue during
2589 	 * this time. We don't actually wait for this now and instead defer this
2590 	 * to i40e_shutdown_rings_wait(), after we've interleaved disabling the
2591 	 * TX queues as well.
2592 	 */
2593 }
2594 
2595 static void
2596 i40e_shutdown_tx_rings(i40e_t *i40e)
2597 {
2598 	int i;
2599 	uint32_t reg;
2600 
2601 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2602 
2603 	/*
2604 	 * Step 1. The interrupt linked list should already have been cleared.
2605 	 */
2606 #ifdef DEBUG
2607 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2608 		for (i = 1; i < i40e->i40e_intr_count; i++) {
2609 			reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2610 			VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2611 		}
2612 	} else {
2613 		reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2614 		VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2615 
2616 	}
2617 #endif	/* DEBUG */
2618 
2619 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2620 		/*
2621 		 * Step 2. Set the SET_QDIS flag for every queue.
2622 		 */
2623 		i40e_pre_tx_queue_cfg(hw, i, B_FALSE);
2624 	}
2625 
2626 	/*
2627 	 * Step 3. Wait at least 400 usec (can be done once for all queues).
2628 	 */
2629 	drv_usecwait(500);
2630 
2631 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2632 		/*
2633 		 * Step 4. Clear the QENA_REQ flag which tells hardware to
2634 		 * quiesce. If QENA_REQ is not already set then that means that
2635 		 * we likely already tried to disable this queue.
2636 		 */
2637 		reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2638 		if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK))
2639 			continue;
2640 		reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2641 		I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2642 	}
2643 
2644 	/*
2645 	 * Step 5. Wait for all drains to finish. This will be done by the
2646 	 * hardware removing the QENA_STAT flag from the queue. Rather than
2647 	 * waiting here, we interleave it with all the others in
2648 	 * i40e_shutdown_rings_wait().
2649 	 */
2650 }
2651 
2652 /*
2653  * Wait for all the rings to be shut down. e.g. Steps 2 and 5 from the above
2654  * functions.
2655  */
2656 static boolean_t
2657 i40e_shutdown_rings_wait(i40e_t *i40e)
2658 {
2659 	int i, try;
2660 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2661 
2662 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2663 		uint32_t reg;
2664 
2665 		for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2666 			reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2667 			if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2668 				break;
2669 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2670 		}
2671 
2672 		if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2673 			i40e_error(i40e, "timed out disabling rx queue %d",
2674 			    i);
2675 			return (B_FALSE);
2676 		}
2677 
2678 		for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2679 			reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2680 			if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2681 				break;
2682 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2683 		}
2684 
2685 		if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2686 			i40e_error(i40e, "timed out disabling tx queue %d",
2687 			    i);
2688 			return (B_FALSE);
2689 		}
2690 	}
2691 
2692 	return (B_TRUE);
2693 }
2694 
2695 static boolean_t
2696 i40e_shutdown_rings(i40e_t *i40e)
2697 {
2698 	i40e_shutdown_rx_rings(i40e);
2699 	i40e_shutdown_tx_rings(i40e);
2700 	return (i40e_shutdown_rings_wait(i40e));
2701 }
2702 
2703 static void
2704 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2705 {
2706 	int i;
2707 	i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2708 
2709 	for (i = 0; i < rxd->rxd_ring_size; i++) {
2710 		i40e_rx_control_block_t *rcb;
2711 		i40e_rx_desc_t *rdesc;
2712 
2713 		rcb = rxd->rxd_work_list[i];
2714 		rdesc = &rxd->rxd_desc_ring[i];
2715 
2716 		rdesc->read.pkt_addr =
2717 		    CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2718 		rdesc->read.hdr_addr = 0;
2719 	}
2720 }
2721 
2722 static boolean_t
2723 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2724 {
2725 	i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2726 	i40e_t *i40e = itrq->itrq_i40e;
2727 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2728 
2729 	struct i40e_hmc_obj_rxq rctx;
2730 	int err;
2731 
2732 	bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2733 	rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2734 	    I40E_HMC_RX_CTX_UNIT;
2735 	rctx.qlen = rxd->rxd_ring_size;
2736 	VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2737 	VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2738 	rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2739 	rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2740 	rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2741 	rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2742 	rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2743 	rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2744 	rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2745 	rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2746 	rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2747 	rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2748 	rctx.rxmax = i40e->i40e_frame_max;
2749 	rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2750 	rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2751 	rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2752 	rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2753 	rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2754 
2755 	/*
2756 	 * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2757 	 */
2758 	rctx.prefena = I40E_HMC_RX_PREFENA;
2759 
2760 	err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2761 	if (err != I40E_SUCCESS) {
2762 		i40e_error(i40e, "failed to clear rx queue %d context: %d",
2763 		    itrq->itrq_index, err);
2764 		return (B_FALSE);
2765 	}
2766 
2767 	err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2768 	if (err != I40E_SUCCESS) {
2769 		i40e_error(i40e, "failed to set rx queue %d context: %d",
2770 		    itrq->itrq_index, err);
2771 		return (B_FALSE);
2772 	}
2773 
2774 	return (B_TRUE);
2775 }
2776 
2777 /*
2778  * Take care of setting up the descriptor rings and actually programming the
2779  * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2780  * rx rings.
2781  */
2782 static boolean_t
2783 i40e_setup_rx_rings(i40e_t *i40e)
2784 {
2785 	int i;
2786 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2787 
2788 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2789 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2790 		i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2791 		uint32_t reg;
2792 
2793 		/*
2794 		 * Step 1. Program all receive ring descriptors.
2795 		 */
2796 		i40e_setup_rx_descs(itrq);
2797 
2798 		/*
2799 		 * Step 2. Program the queue's FPM/HMC context.
2800 		 */
2801 		if (i40e_setup_rx_hmc(itrq) == B_FALSE)
2802 			return (B_FALSE);
2803 
2804 		/*
2805 		 * Step 3. Clear the queue's tail pointer and set it to the end
2806 		 * of the space.
2807 		 */
2808 		I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), 0);
2809 		I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), rxd->rxd_ring_size - 1);
2810 
2811 		/*
2812 		 * Step 4. Enable the queue via the QENA_REQ.
2813 		 */
2814 		reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2815 		VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2816 		    I40E_QRX_ENA_QENA_STAT_MASK));
2817 		reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2818 		I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2819 	}
2820 
2821 	/*
2822 	 * Note, we wait for every queue to be enabled before we start checking.
2823 	 * This will hopefully cause most queues to be enabled at this point.
2824 	 */
2825 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2826 		uint32_t j, reg;
2827 
2828 		/*
2829 		 * Step 5. Verify that QENA_STAT has been set. It's promised
2830 		 * that this should occur within about 10 us, but like other
2831 		 * systems, we give the card a bit more time.
2832 		 */
2833 		for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2834 			reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2835 
2836 			if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2837 				break;
2838 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2839 		}
2840 
2841 		if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2842 			i40e_error(i40e, "failed to enable rx queue %d, timed "
2843 			    "out.", i);
2844 			return (B_FALSE);
2845 		}
2846 	}
2847 
2848 	return (B_TRUE);
2849 }
2850 
2851 static boolean_t
2852 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2853 {
2854 	i40e_t *i40e = itrq->itrq_i40e;
2855 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2856 
2857 	struct i40e_hmc_obj_txq tctx;
2858 	struct i40e_vsi_context	context;
2859 	int err;
2860 
2861 	bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2862 	tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2863 	tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2864 	    I40E_HMC_TX_CTX_UNIT;
2865 	tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2866 	tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2867 	tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2868 	tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2869 	tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2870 	tctx.qlen = itrq->itrq_tx_ring_size;
2871 	tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2872 	tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2873 	tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2874 	tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2875 	    sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2876 
2877 	/*
2878 	 * This field isn't actually documented, like crc, but it suggests that
2879 	 * it should be zeroed. We leave both of these here because of that for
2880 	 * now. We should check with Intel on why these are here even.
2881 	 */
2882 	tctx.crc = 0;
2883 	tctx.rdylist_act = 0;
2884 
2885 	/*
2886 	 * We're supposed to assign the rdylist field with the value of the
2887 	 * traffic class index for the first device. We query the VSI parameters
2888 	 * again to get what the handle is. Note that every queue is always
2889 	 * assigned to traffic class zero, because we don't actually use them.
2890 	 */
2891 	bzero(&context, sizeof (struct i40e_vsi_context));
2892 	context.seid = I40E_DEF_VSI_SEID(i40e);
2893 	context.pf_num = hw->pf_id;
2894 	err = i40e_aq_get_vsi_params(hw, &context, NULL);
2895 	if (err != I40E_SUCCESS) {
2896 		i40e_error(i40e, "get VSI params failed with %d", err);
2897 		return (B_FALSE);
2898 	}
2899 	tctx.rdylist = LE_16(context.info.qs_handle[0]);
2900 
2901 	err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2902 	if (err != I40E_SUCCESS) {
2903 		i40e_error(i40e, "failed to clear tx queue %d context: %d",
2904 		    itrq->itrq_index, err);
2905 		return (B_FALSE);
2906 	}
2907 
2908 	err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2909 	if (err != I40E_SUCCESS) {
2910 		i40e_error(i40e, "failed to set tx queue %d context: %d",
2911 		    itrq->itrq_index, err);
2912 		return (B_FALSE);
2913 	}
2914 
2915 	return (B_TRUE);
2916 }
2917 
2918 /*
2919  * Take care of setting up the descriptor rings and actually programming the
2920  * device. See 8.4.3.1.1 for what we need to do here.
2921  */
2922 static boolean_t
2923 i40e_setup_tx_rings(i40e_t *i40e)
2924 {
2925 	int i;
2926 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2927 
2928 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2929 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2930 		uint32_t reg;
2931 
2932 		/*
2933 		 * Step 1. Clear the queue disable flag and verify that the
2934 		 * index is set correctly.
2935 		 */
2936 		i40e_pre_tx_queue_cfg(hw, i, B_TRUE);
2937 
2938 		/*
2939 		 * Step 2. Prepare the queue's FPM/HMC context.
2940 		 */
2941 		if (i40e_setup_tx_hmc(itrq) == B_FALSE)
2942 			return (B_FALSE);
2943 
2944 		/*
2945 		 * Step 3. Verify that it's clear that this PF owns this queue.
2946 		 */
2947 		reg = I40E_QTX_CTL_PF_QUEUE;
2948 		reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2949 		    I40E_QTX_CTL_PF_INDX_MASK;
2950 		I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2951 		i40e_flush(hw);
2952 
2953 		/*
2954 		 * Step 4. Set the QENA_REQ flag.
2955 		 */
2956 		reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2957 		VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
2958 		    I40E_QTX_ENA_QENA_STAT_MASK));
2959 		reg |= I40E_QTX_ENA_QENA_REQ_MASK;
2960 		I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2961 	}
2962 
2963 	/*
2964 	 * Note, we wait for every queue to be enabled before we start checking.
2965 	 * This will hopefully cause most queues to be enabled at this point.
2966 	 */
2967 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2968 		uint32_t j, reg;
2969 
2970 		/*
2971 		 * Step 5. Verify that QENA_STAT has been set. It's promised
2972 		 * that this should occur within about 10 us, but like BSD,
2973 		 * we'll try for up to 100 ms for this queue.
2974 		 */
2975 		for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2976 			reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2977 
2978 			if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
2979 				break;
2980 			i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2981 		}
2982 
2983 		if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
2984 			i40e_error(i40e, "failed to enable tx queue %d, timed "
2985 			    "out", i);
2986 			return (B_FALSE);
2987 		}
2988 	}
2989 
2990 	return (B_TRUE);
2991 }
2992 
2993 void
2994 i40e_stop(i40e_t *i40e, boolean_t free_allocations)
2995 {
2996 	uint_t i;
2997 	i40e_hw_t *hw = &i40e->i40e_hw_space;
2998 
2999 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3000 
3001 	/*
3002 	 * Shutdown and drain the tx and rx pipeline. We do this using the
3003 	 * following steps.
3004 	 *
3005 	 * 1) Shutdown interrupts to all the queues (trying to keep the admin
3006 	 *    queue alive).
3007 	 *
3008 	 * 2) Remove all of the interrupt tx and rx causes by setting the
3009 	 *    interrupt linked lists to zero.
3010 	 *
3011 	 * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
3012 	 *    wait for all the queues to be disabled, once we reach that point
3013 	 *    it should be safe to free associated data.
3014 	 *
3015 	 * 4) Wait 50ms after all that is done. This ensures that the rings are
3016 	 *    ready for programming again and we don't have to think about this
3017 	 *    in other parts of the driver.
3018 	 *
3019 	 * 5) Disable remaining chip interrupts, (admin queue, etc.)
3020 	 *
3021 	 * 6) Verify that FM is happy with all the register accesses we
3022 	 *    performed.
3023 	 */
3024 	i40e_intr_io_disable_all(i40e);
3025 	i40e_intr_io_clear_cause(i40e);
3026 
3027 	if (i40e_shutdown_rings(i40e) == B_FALSE) {
3028 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3029 	}
3030 
3031 	delay(50 * drv_usectohz(1000));
3032 
3033 	/*
3034 	 * We don't delete the default VSI because it replaces the VEB
3035 	 * after VEB deletion (see the "Delete Element" section).
3036 	 * Furthermore, since the default VSI is provided by the
3037 	 * firmware, we never attempt to delete it.
3038 	 */
3039 	for (i = 1; i < i40e->i40e_num_rx_groups; i++) {
3040 		i40e_delete_vsi(i40e, i);
3041 	}
3042 
3043 	if (i40e->i40e_veb_seid != 0) {
3044 		int rc = i40e_aq_delete_element(hw, i40e->i40e_veb_seid, NULL);
3045 
3046 		if (rc != I40E_SUCCESS) {
3047 			i40e_error(i40e, "Failed to delete VEB %d: %d", rc,
3048 			    hw->aq.asq_last_status);
3049 		}
3050 
3051 		i40e->i40e_veb_seid = 0;
3052 	}
3053 
3054 	i40e_intr_chip_fini(i40e);
3055 
3056 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3057 		mutex_enter(&i40e->i40e_trqpairs[i].itrq_rx_lock);
3058 		mutex_enter(&i40e->i40e_trqpairs[i].itrq_tx_lock);
3059 	}
3060 
3061 	/*
3062 	 * We should consider refactoring this to be part of the ring start /
3063 	 * stop routines at some point.
3064 	 */
3065 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3066 		i40e_stats_trqpair_fini(&i40e->i40e_trqpairs[i]);
3067 	}
3068 
3069 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3070 	    DDI_FM_OK) {
3071 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3072 	}
3073 
3074 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3075 		i40e_tx_cleanup_ring(&i40e->i40e_trqpairs[i]);
3076 	}
3077 
3078 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3079 		mutex_exit(&i40e->i40e_trqpairs[i].itrq_rx_lock);
3080 		mutex_exit(&i40e->i40e_trqpairs[i].itrq_tx_lock);
3081 	}
3082 
3083 	for (i = 0; i < i40e->i40e_num_rx_groups; i++) {
3084 		i40e_stat_vsi_fini(i40e, i);
3085 	}
3086 
3087 	i40e->i40e_link_speed = 0;
3088 	i40e->i40e_link_duplex = 0;
3089 	i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
3090 
3091 	if (free_allocations) {
3092 		i40e_free_ring_mem(i40e, B_FALSE);
3093 	}
3094 }
3095 
3096 boolean_t
3097 i40e_start(i40e_t *i40e, boolean_t alloc)
3098 {
3099 	i40e_hw_t *hw = &i40e->i40e_hw_space;
3100 	boolean_t rc = B_TRUE;
3101 	int i, err;
3102 
3103 	ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3104 
3105 	if (alloc) {
3106 		if (i40e_alloc_ring_mem(i40e) == B_FALSE) {
3107 			i40e_error(i40e,
3108 			    "Failed to allocate ring memory");
3109 			return (B_FALSE);
3110 		}
3111 	}
3112 
3113 	/*
3114 	 * This should get refactored to be part of ring start and stop at
3115 	 * some point, along with most of the logic here.
3116 	 */
3117 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3118 		if (i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i]) ==
3119 		    B_FALSE) {
3120 			int j;
3121 
3122 			for (j = 0; j < i; j++) {
3123 				i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[j];
3124 				i40e_stats_trqpair_fini(itrq);
3125 			}
3126 			return (B_FALSE);
3127 		}
3128 	}
3129 
3130 	if (!i40e_chip_start(i40e)) {
3131 		i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
3132 		rc = B_FALSE;
3133 		goto done;
3134 	}
3135 
3136 	if (i40e_setup_rx_rings(i40e) == B_FALSE) {
3137 		rc = B_FALSE;
3138 		goto done;
3139 	}
3140 
3141 	if (i40e_setup_tx_rings(i40e) == B_FALSE) {
3142 		rc = B_FALSE;
3143 		goto done;
3144 	}
3145 
3146 	/*
3147 	 * Enable broadcast traffic; however, do not enable multicast traffic.
3148 	 * That's handle exclusively through MAC's mc_multicst routines.
3149 	 */
3150 	err = i40e_aq_set_vsi_broadcast(hw, I40E_DEF_VSI_SEID(i40e), B_TRUE,
3151 	    NULL);
3152 	if (err != I40E_SUCCESS) {
3153 		i40e_error(i40e, "failed to set default VSI: %d", err);
3154 		rc = B_FALSE;
3155 		goto done;
3156 	}
3157 
3158 	err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
3159 	if (err != I40E_SUCCESS) {
3160 		i40e_error(i40e, "failed to set MAC config: %d", err);
3161 		rc = B_FALSE;
3162 		goto done;
3163 	}
3164 
3165 	/*
3166 	 * Finally, make sure that we're happy from an FM perspective.
3167 	 */
3168 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3169 	    DDI_FM_OK) {
3170 		rc = B_FALSE;
3171 		goto done;
3172 	}
3173 
3174 	/* Clear state bits prior to final interrupt enabling. */
3175 	atomic_and_32(&i40e->i40e_state,
3176 	    ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
3177 
3178 	i40e_intr_io_enable_all(i40e);
3179 
3180 done:
3181 	if (rc == B_FALSE) {
3182 		i40e_stop(i40e, B_FALSE);
3183 		if (alloc == B_TRUE) {
3184 			i40e_free_ring_mem(i40e, B_TRUE);
3185 		}
3186 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3187 	}
3188 
3189 	return (rc);
3190 }
3191 
3192 /*
3193  * We may have loaned up descriptors to the stack. As such, if we still have
3194  * them outstanding, then we will not continue with detach.
3195  */
3196 static boolean_t
3197 i40e_drain_rx(i40e_t *i40e)
3198 {
3199 	mutex_enter(&i40e->i40e_rx_pending_lock);
3200 	while (i40e->i40e_rx_pending > 0) {
3201 		if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
3202 		    &i40e->i40e_rx_pending_lock,
3203 		    drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
3204 			mutex_exit(&i40e->i40e_rx_pending_lock);
3205 			return (B_FALSE);
3206 		}
3207 	}
3208 	mutex_exit(&i40e->i40e_rx_pending_lock);
3209 
3210 	return (B_TRUE);
3211 }
3212 
3213 /*
3214  * DDI UFM Callbacks
3215  */
3216 static int
3217 i40e_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3218     ddi_ufm_image_t *img)
3219 {
3220 	if (imgno != 0)
3221 		return (EINVAL);
3222 
3223 	ddi_ufm_image_set_desc(img, "Firmware");
3224 	ddi_ufm_image_set_nslots(img, 1);
3225 
3226 	return (0);
3227 }
3228 
3229 static int
3230 i40e_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3231     uint_t slotno, ddi_ufm_slot_t *slot)
3232 {
3233 	i40e_t *i40e = (i40e_t *)arg;
3234 	char *fw_ver = NULL, *fw_bld = NULL, *api_ver = NULL;
3235 	nvlist_t *misc = NULL;
3236 	uint_t flags = DDI_PROP_DONTPASS;
3237 	int err;
3238 
3239 	if (imgno != 0 || slotno != 0 ||
3240 	    ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3241 	    "firmware-version", &fw_ver) != DDI_PROP_SUCCESS ||
3242 	    ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3243 	    "firmware-build", &fw_bld) != DDI_PROP_SUCCESS ||
3244 	    ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3245 	    "api-version", &api_ver) != DDI_PROP_SUCCESS) {
3246 		err = EINVAL;
3247 		goto err;
3248 	}
3249 
3250 	ddi_ufm_slot_set_attrs(slot, DDI_UFM_ATTR_ACTIVE);
3251 	ddi_ufm_slot_set_version(slot, fw_ver);
3252 
3253 	(void) nvlist_alloc(&misc, NV_UNIQUE_NAME, KM_SLEEP);
3254 	if ((err = nvlist_add_string(misc, "firmware-build", fw_bld)) != 0 ||
3255 	    (err = nvlist_add_string(misc, "api-version", api_ver)) != 0) {
3256 		goto err;
3257 	}
3258 	ddi_ufm_slot_set_misc(slot, misc);
3259 
3260 	ddi_prop_free(fw_ver);
3261 	ddi_prop_free(fw_bld);
3262 	ddi_prop_free(api_ver);
3263 
3264 	return (0);
3265 err:
3266 	nvlist_free(misc);
3267 	if (fw_ver != NULL)
3268 		ddi_prop_free(fw_ver);
3269 	if (fw_bld != NULL)
3270 		ddi_prop_free(fw_bld);
3271 	if (api_ver != NULL)
3272 		ddi_prop_free(api_ver);
3273 
3274 	return (err);
3275 }
3276 
3277 static int
3278 i40e_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
3279 {
3280 	*caps = DDI_UFM_CAP_REPORT;
3281 
3282 	return (0);
3283 }
3284 
3285 static ddi_ufm_ops_t i40e_ufm_ops = {
3286 	NULL,
3287 	i40e_ufm_fill_image,
3288 	i40e_ufm_fill_slot,
3289 	i40e_ufm_getcaps
3290 };
3291 
3292 static int
3293 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3294 {
3295 	i40e_t *i40e;
3296 	struct i40e_osdep *osdep;
3297 	i40e_hw_t *hw;
3298 	int instance;
3299 
3300 	if (cmd != DDI_ATTACH)
3301 		return (DDI_FAILURE);
3302 
3303 	instance = ddi_get_instance(devinfo);
3304 	i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
3305 
3306 	i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
3307 	i40e->i40e_instance = instance;
3308 	i40e->i40e_dip = devinfo;
3309 
3310 	hw = &i40e->i40e_hw_space;
3311 	osdep = &i40e->i40e_osdep_space;
3312 	hw->back = osdep;
3313 	osdep->ios_i40e = i40e;
3314 
3315 	ddi_set_driver_private(devinfo, i40e);
3316 
3317 	i40e_fm_init(i40e);
3318 	i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
3319 
3320 	if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
3321 		i40e_error(i40e, "Failed to map PCI configurations.");
3322 		goto attach_fail;
3323 	}
3324 	i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
3325 
3326 	i40e_identify_hardware(i40e);
3327 
3328 	if (!i40e_regs_map(i40e)) {
3329 		i40e_error(i40e, "Failed to map device registers.");
3330 		goto attach_fail;
3331 	}
3332 	i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
3333 
3334 	i40e_init_properties(i40e);
3335 	i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
3336 
3337 	if (!i40e_common_code_init(i40e, hw))
3338 		goto attach_fail;
3339 	i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
3340 
3341 	/*
3342 	 * When we participate in IRM, we should make sure that we register
3343 	 * ourselves with it before callbacks.
3344 	 */
3345 	if (!i40e_alloc_intrs(i40e, devinfo)) {
3346 		i40e_error(i40e, "Failed to allocate interrupts.");
3347 		goto attach_fail;
3348 	}
3349 	i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
3350 
3351 	if (!i40e_alloc_trqpairs(i40e)) {
3352 		i40e_error(i40e,
3353 		    "Failed to allocate receive & transmit rings.");
3354 		goto attach_fail;
3355 	}
3356 	i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
3357 
3358 	if (!i40e_map_intrs_to_vectors(i40e)) {
3359 		i40e_error(i40e, "Failed to map interrupts to vectors.");
3360 		goto attach_fail;
3361 	}
3362 
3363 	if (!i40e_add_intr_handlers(i40e)) {
3364 		i40e_error(i40e, "Failed to add the interrupt handlers.");
3365 		goto attach_fail;
3366 	}
3367 	i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
3368 
3369 	if (!i40e_final_init(i40e)) {
3370 		i40e_error(i40e, "Final initialization failed.");
3371 		goto attach_fail;
3372 	}
3373 	i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
3374 
3375 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3376 	    DDI_FM_OK) {
3377 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3378 		goto attach_fail;
3379 	}
3380 
3381 	if (!i40e_stats_init(i40e)) {
3382 		i40e_error(i40e, "Stats initialization failed.");
3383 		goto attach_fail;
3384 	}
3385 	i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
3386 
3387 	if (!i40e_register_mac(i40e)) {
3388 		i40e_error(i40e, "Failed to register to MAC/GLDv3");
3389 		goto attach_fail;
3390 	}
3391 	i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
3392 
3393 	i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
3394 	    I40E_CYCLIC_PERIOD, DDI_IPL_0);
3395 	if (i40e->i40e_periodic_id == 0) {
3396 		i40e_error(i40e, "Failed to add the link-check timer");
3397 		goto attach_fail;
3398 	}
3399 	i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
3400 
3401 	if (!i40e_enable_interrupts(i40e)) {
3402 		i40e_error(i40e, "Failed to enable DDI interrupts");
3403 		goto attach_fail;
3404 	}
3405 	i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
3406 
3407 	if (ddi_ufm_init(i40e->i40e_dip, DDI_UFM_CURRENT_VERSION, &i40e_ufm_ops,
3408 	    &i40e->i40e_ufmh, i40e) != 0) {
3409 		i40e_error(i40e, "failed to initialize UFM subsystem");
3410 		goto attach_fail;
3411 	}
3412 	ddi_ufm_update(i40e->i40e_ufmh);
3413 	i40e->i40e_attach_progress |= I40E_ATTACH_UFM_INIT;
3414 
3415 	atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
3416 
3417 	mutex_enter(&i40e_glock);
3418 	list_insert_tail(&i40e_glist, i40e);
3419 	mutex_exit(&i40e_glock);
3420 
3421 	return (DDI_SUCCESS);
3422 
3423 attach_fail:
3424 	i40e_unconfigure(devinfo, i40e);
3425 	return (DDI_FAILURE);
3426 }
3427 
3428 static int
3429 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3430 {
3431 	i40e_t *i40e;
3432 
3433 	if (cmd != DDI_DETACH)
3434 		return (DDI_FAILURE);
3435 
3436 	i40e = (i40e_t *)ddi_get_driver_private(devinfo);
3437 	if (i40e == NULL) {
3438 		i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
3439 		return (DDI_FAILURE);
3440 	}
3441 
3442 	if (i40e_drain_rx(i40e) == B_FALSE) {
3443 		i40e_log(i40e, "timed out draining DMA resources, %d buffers "
3444 		    "remain", i40e->i40e_rx_pending);
3445 		return (DDI_FAILURE);
3446 	}
3447 
3448 	mutex_enter(&i40e_glock);
3449 	list_remove(&i40e_glist, i40e);
3450 	mutex_exit(&i40e_glock);
3451 
3452 	i40e_unconfigure(devinfo, i40e);
3453 
3454 	return (DDI_SUCCESS);
3455 }
3456 
3457 static struct cb_ops i40e_cb_ops = {
3458 	nulldev,		/* cb_open */
3459 	nulldev,		/* cb_close */
3460 	nodev,			/* cb_strategy */
3461 	nodev,			/* cb_print */
3462 	nodev,			/* cb_dump */
3463 	nodev,			/* cb_read */
3464 	nodev,			/* cb_write */
3465 	nodev,			/* cb_ioctl */
3466 	nodev,			/* cb_devmap */
3467 	nodev,			/* cb_mmap */
3468 	nodev,			/* cb_segmap */
3469 	nochpoll,		/* cb_chpoll */
3470 	ddi_prop_op,		/* cb_prop_op */
3471 	NULL,			/* cb_stream */
3472 	D_MP | D_HOTPLUG,	/* cb_flag */
3473 	CB_REV,			/* cb_rev */
3474 	nodev,			/* cb_aread */
3475 	nodev			/* cb_awrite */
3476 };
3477 
3478 static struct dev_ops i40e_dev_ops = {
3479 	DEVO_REV,		/* devo_rev */
3480 	0,			/* devo_refcnt */
3481 	NULL,			/* devo_getinfo */
3482 	nulldev,		/* devo_identify */
3483 	nulldev,		/* devo_probe */
3484 	i40e_attach,		/* devo_attach */
3485 	i40e_detach,		/* devo_detach */
3486 	nodev,			/* devo_reset */
3487 	&i40e_cb_ops,		/* devo_cb_ops */
3488 	NULL,			/* devo_bus_ops */
3489 	ddi_power,		/* devo_power */
3490 	ddi_quiesce_not_supported /* devo_quiesce */
3491 };
3492 
3493 static struct modldrv i40e_modldrv = {
3494 	&mod_driverops,
3495 	i40e_ident,
3496 	&i40e_dev_ops
3497 };
3498 
3499 static struct modlinkage i40e_modlinkage = {
3500 	MODREV_1,
3501 	&i40e_modldrv,
3502 	NULL
3503 };
3504 
3505 /*
3506  * Module Initialization Functions.
3507  */
3508 int
3509 _init(void)
3510 {
3511 	int status;
3512 
3513 	list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3514 	list_create(&i40e_dlist, sizeof (i40e_device_t),
3515 	    offsetof(i40e_device_t, id_link));
3516 	mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3517 	mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3518 
3519 	status = mod_install(&i40e_modlinkage);
3520 	if (status != DDI_SUCCESS) {
3521 		mac_fini_ops(&i40e_dev_ops);
3522 		mutex_destroy(&i40e_glock);
3523 		list_destroy(&i40e_dlist);
3524 		list_destroy(&i40e_glist);
3525 	}
3526 
3527 	return (status);
3528 }
3529 
3530 int
3531 _info(struct modinfo *modinfop)
3532 {
3533 	return (mod_info(&i40e_modlinkage, modinfop));
3534 }
3535 
3536 int
3537 _fini(void)
3538 {
3539 	int status;
3540 
3541 	status = mod_remove(&i40e_modlinkage);
3542 	if (status == DDI_SUCCESS) {
3543 		mac_fini_ops(&i40e_dev_ops);
3544 		mutex_destroy(&i40e_glock);
3545 		list_destroy(&i40e_dlist);
3546 		list_destroy(&i40e_glist);
3547 	}
3548 
3549 	return (status);
3550 }
3551