1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2017, Joyent, Inc. 14 * Copyright 2017 Tegile Systems, Inc. All rights reserved. 15 */ 16 17 /* 18 * ------------------------- 19 * Interrupt Handling Theory 20 * ------------------------- 21 * 22 * There are a couple different sets of interrupts that we need to worry about: 23 * 24 * - Interrupts from receive queues 25 * - Interrupts from transmit queues 26 * - 'Other Interrupts', such as the administrative queue 27 * 28 * 'Other Interrupts' are asynchronous events such as a link status change event 29 * being posted to the administrative queue, unrecoverable ECC errors, and more. 30 * If we have something being posted to the administrative queue, then we go 31 * through and process it, because it's generally enabled as a separate logical 32 * interrupt. Note, we may need to do more here eventually. To re-enable the 33 * interrupts from the 'Other Interrupts' section, we need to clear the PBA and 34 * write ENA to PFINT_ICR0. 35 * 36 * Interrupts from the transmit and receive queues indicates that our requests 37 * have been processed. In the rx case, it means that we have data that we 38 * should take a look at and send up the stack. In the tx case, it means that 39 * data which we got from MAC has now been sent out on the wire and we can free 40 * the associated data. Most of the logic for acting upon the presence of this 41 * data can be found in i40e_transciever.c which handles all of the DMA, rx, and 42 * tx operations. This file is dedicated to handling and dealing with interrupt 43 * processing. 44 * 45 * All devices supported by this driver support three kinds of interrupts: 46 * 47 * o Extended Message Signaled Interrupts (MSI-X) 48 * o Message Signaled Interrupts (MSI) 49 * o Legacy PCI interrupts (INTx) 50 * 51 * Generally speaking the hardware logically handles MSI and INTx the same and 52 * restricts us to only using a single interrupt, which isn't the interesting 53 * case. With MSI-X available, each physical function of the device provides the 54 * opportunity for multiple interrupts which is what we'll focus on. 55 * 56 * -------------------- 57 * Interrupt Management 58 * -------------------- 59 * 60 * By default, the admin queue, which consists of the asynchronous other 61 * interrupts is always bound to MSI-X vector zero. Next, we spread out all of 62 * the other interrupts that we have available to us over the remaining 63 * interrupt vectors. 64 * 65 * This means that there may be multiple queues, both tx and rx, which are 66 * mapped to the same interrupt. When the interrupt fires, we'll have to check 67 * all of them for servicing, before we go through and indicate that the 68 * interrupt is claimed. 69 * 70 * The hardware provides the means of mapping various queues to MSI-X interrupts 71 * by programming the I40E_QINT_RQCTL() and I4OE_QINT_TQCTL() registers. These 72 * registers can also be used to enable and disable whether or not the queue is 73 * a source of interrupts. As part of this, the hardware requires that we 74 * maintain a linked list of queues for each interrupt vector. While it may seem 75 * like this is only there for the purproses of ITRs, that's not the case. The 76 * first queue must be programmed in I40E_QINT_LNKLSTN(%vector) register. Each 77 * queue defines the next one in either the I40E_QINT_RQCTL or I40E_QINT_TQCTL 78 * register. 79 * 80 * Finally, the individual interrupt vector itself has the ability to be enabled 81 * and disabled. The overall interrupt is controlled through the 82 * I40E_PFINT_DYN_CTLN() register. This is used to turn on and off the interrupt 83 * as a whole. 84 * 85 * Note that this means that both the individual queue and the interrupt as a 86 * whole can be toggled and re-enabled. 87 * 88 * ------------------- 89 * Non-MSIX Management 90 * ------------------- 91 * 92 * We may have a case where the Operating System is unable to actually allocate 93 * any MSI-X to the system. In such a world, there is only one transmit/receive 94 * queue pair and it is bound to the same interrupt with index zero. The 95 * hardware doesn't allow us access to additional interrupt vectors in these 96 * modes. Note that technically we could support more transmit/receive queues if 97 * we wanted. 98 * 99 * In this world, because the interrupts for the admin queue and traffic are 100 * mixed together, we have to consult ICR0 to determine what has occurred. The 101 * QINT_TQCTL and QINT_RQCTL registers have a field, 'MSI-X 0 index' which 102 * allows us to set a specific bit in ICR0. There are up to seven such bits; 103 * however, we only use the bit 0 and 1 for the rx and tx queue respectively. 104 * These are contained by the I40E_INTR_NOTX_{R|T}X_QUEUE and 105 * I40E_INTR_NOTX_{R|T}X_MASK registers respectively. 106 * 107 * Unfortunately, these corresponding queue bits have no corresponding entry in 108 * the ICR0_ENA register. So instead, when enabling interrupts on the queues, we 109 * end up enabling it on the queue registers rather than on the MSI-X registers. 110 * In the MSI-X world, because they can be enabled and disabled, this is 111 * different and the queues can always be enabled and disabled, but the 112 * interrupts themselves are toggled (ignoring the question of interrupt 113 * blanking for polling on rings). 114 * 115 * Finally, we still have to set up the interrupt linked list, but the list is 116 * instead rooted at the register I40E_PFINT_LNKLST0, rather than being tied to 117 * one of the other MSI-X registers. 118 * 119 * -------------------- 120 * Interrupt Moderation 121 * -------------------- 122 * 123 * The XL710 hardware has three different interrupt moderation registers per 124 * interrupt. Unsurprisingly, we use these for: 125 * 126 * o RX interrupts 127 * o TX interrupts 128 * o 'Other interrupts' (link status change, admin queue, etc.) 129 * 130 * By default, we throttle 'other interrupts' the most, then TX interrupts, and 131 * then RX interrupts. The default values for these were based on trying to 132 * reason about both the importance and frequency of events. Generally speaking 133 * 'other interrupts' are not very frequent and they're not important for the 134 * I/O data path in and of itself (though they may indicate issues with the I/O 135 * data path). 136 * 137 * On the flip side, when we're not polling, RX interrupts are very important. 138 * The longer we wait for them, the more latency that we inject into the system. 139 * However, if we allow interrupts to occur too frequently, we risk a few 140 * problems: 141 * 142 * 1) Abusing system resources. Without proper interrupt blanking and polling, 143 * we can see upwards of 200k-300k interrupts per second on the system. 144 * 145 * 2) Not enough data coalescing to enable polling. In other words, the more 146 * data that we allow to build up, the more likely we'll be able to enable 147 * polling mode and allowing us to better handle bulk data. 148 * 149 * In-between the 'other interrupts' and the TX interrupts we have the 150 * reclamation of TX buffers. This operation is not quite as important as we 151 * generally size the ring large enough that we should be able to reclaim a 152 * substantial amount of the descriptors that we have used per interrupt. So 153 * while it's important that this interrupt occur, we don't necessarily need it 154 * firing as frequently as RX; it doesn't, on its own, induce additional latency 155 * into the system. 156 * 157 * Based on all this we currently assign static ITR values for the system. While 158 * we could move to a dynamic system (the hardware supports that), we'd want to 159 * make sure that we're seeing problems from this that we believe would be 160 * generally helped by the added complexity. 161 * 162 * Based on this, the default values that we have allow for the following 163 * interrupt thresholds: 164 * 165 * o 20k interrupts/s for RX 166 * o 5k interrupts/s for TX 167 * o 2k interupts/s for 'Other Interrupts' 168 */ 169 170 #include "i40e_sw.h" 171 172 #define I40E_INTR_NOTX_QUEUE 0 173 #define I40E_INTR_NOTX_INTR 0 174 #define I40E_INTR_NOTX_RX_QUEUE 0 175 #define I40E_INTR_NOTX_RX_MASK (1 << I40E_PFINT_ICR0_QUEUE_0_SHIFT) 176 #define I40E_INTR_NOTX_TX_QUEUE 1 177 #define I40E_INTR_NOTX_TX_MASK (1 << I40E_PFINT_ICR0_QUEUE_1_SHIFT) 178 179 void 180 i40e_intr_set_itr(i40e_t *i40e, i40e_itr_index_t itr, uint_t val) 181 { 182 int i; 183 i40e_hw_t *hw = &i40e->i40e_hw_space; 184 185 VERIFY3U(val, <=, I40E_MAX_ITR); 186 VERIFY3U(itr, <, I40E_ITR_INDEX_NONE); 187 188 /* 189 * No matter the interrupt mode, the ITR for other interrupts is always 190 * on interrupt zero and the same is true if we're not using MSI-X. 191 */ 192 if (itr == I40E_ITR_INDEX_OTHER || 193 i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) { 194 I40E_WRITE_REG(hw, I40E_PFINT_ITR0(itr), val); 195 return; 196 } 197 198 for (i = 0; i < i40e->i40e_num_trqpairs; i++) { 199 I40E_WRITE_REG(hw, I40E_PFINT_ITRN(itr, i), val); 200 } 201 } 202 203 /* 204 * Re-enable the adminq. Note that the adminq doesn't have a traditional queue 205 * associated with it from an interrupt perspective and just lives on ICR0. 206 * However when MSI-X interrupts are not being used, then this also enables and 207 * disables those interrupts. 208 */ 209 static void 210 i40e_intr_adminq_enable(i40e_t *i40e) 211 { 212 i40e_hw_t *hw = &i40e->i40e_hw_space; 213 uint32_t reg; 214 215 reg = I40E_PFINT_DYN_CTL0_INTENA_MASK | 216 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 217 (I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 218 I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, reg); 219 i40e_flush(hw); 220 } 221 222 static void 223 i40e_intr_adminq_disable(i40e_t *i40e) 224 { 225 i40e_hw_t *hw = &i40e->i40e_hw_space; 226 uint32_t reg; 227 228 reg = I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT; 229 I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, reg); 230 } 231 232 static void 233 i40e_intr_io_enable(i40e_t *i40e, int vector) 234 { 235 uint32_t reg; 236 i40e_hw_t *hw = &i40e->i40e_hw_space; 237 238 reg = I40E_PFINT_DYN_CTLN_INTENA_MASK | 239 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK | 240 (I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 241 I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vector - 1), reg); 242 } 243 244 static void 245 i40e_intr_io_disable(i40e_t *i40e, int vector) 246 { 247 uint32_t reg; 248 i40e_hw_t *hw = &i40e->i40e_hw_space; 249 250 reg = I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT; 251 I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vector - 1), reg); 252 } 253 254 /* 255 * When MSI-X interrupts are being used, then we can enable the actual 256 * interrupts themselves. However, when they are not, we instead have to turn 257 * towards the queue's CAUSE_ENA bit and enable that. 258 */ 259 void 260 i40e_intr_io_enable_all(i40e_t *i40e) 261 { 262 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) { 263 int i; 264 265 for (i = 1; i < i40e->i40e_intr_count; i++) { 266 i40e_intr_io_enable(i40e, i); 267 } 268 } else { 269 uint32_t reg; 270 i40e_hw_t *hw = &i40e->i40e_hw_space; 271 272 reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE)); 273 reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK; 274 I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg); 275 276 reg = I40E_READ_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE)); 277 reg |= I40E_QINT_TQCTL_CAUSE_ENA_MASK; 278 I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg); 279 } 280 } 281 282 /* 283 * When MSI-X interrupts are being used, then we can disable the actual 284 * interrupts themselves. However, when they are not, we instead have to turn 285 * towards the queue's CAUSE_ENA bit and disable that. 286 */ 287 void 288 i40e_intr_io_disable_all(i40e_t *i40e) 289 { 290 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) { 291 int i; 292 293 for (i = 1; i < i40e->i40e_intr_count; i++) { 294 i40e_intr_io_disable(i40e, i); 295 } 296 } else { 297 uint32_t reg; 298 i40e_hw_t *hw = &i40e->i40e_hw_space; 299 300 reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE)); 301 reg &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 302 I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg); 303 304 reg = I40E_READ_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE)); 305 reg &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 306 I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg); 307 } 308 } 309 310 /* 311 * As part of disabling the tx and rx queue's we're technically supposed to 312 * remove the linked list entries. The simplest way is to clear the LNKLSTN 313 * register by setting it to I40E_QUEUE_TYPE_EOL (0x7FF). 314 * 315 * Note all of the FM register access checks are performed by the caller. 316 */ 317 void 318 i40e_intr_io_clear_cause(i40e_t *i40e) 319 { 320 int i; 321 i40e_hw_t *hw = &i40e->i40e_hw_space; 322 323 if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) { 324 uint32_t reg; 325 reg = I40E_QUEUE_TYPE_EOL; 326 I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, reg); 327 return; 328 } 329 330 for (i = 0; i < i40e->i40e_num_trqpairs; i++) { 331 uint32_t reg; 332 #ifdef DEBUG 333 /* 334 * Verify that the interrupt in question is disabled. This is a 335 * prerequisite of modifying the data in question. 336 */ 337 reg = I40E_READ_REG(hw, I40E_PFINT_DYN_CTLN(i)); 338 VERIFY0(reg & I40E_PFINT_DYN_CTLN_INTENA_MASK); 339 #endif 340 reg = I40E_QUEUE_TYPE_EOL; 341 I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(i), reg); 342 } 343 344 i40e_flush(hw); 345 } 346 347 /* 348 * Finalize interrupt handling. Mostly this disables the admin queue. 349 */ 350 void 351 i40e_intr_chip_fini(i40e_t *i40e) 352 { 353 #ifdef DEBUG 354 int i; 355 uint32_t reg; 356 357 i40e_hw_t *hw = &i40e->i40e_hw_space; 358 359 /* 360 * Take a look and verify that all other interrupts have been disabled 361 * and the interrupt linked lists have been zeroed. 362 */ 363 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) { 364 for (i = 0; i < i40e->i40e_num_trqpairs; i++) { 365 reg = I40E_READ_REG(hw, I40E_PFINT_DYN_CTLN(i)); 366 VERIFY0(reg & I40E_PFINT_DYN_CTLN_INTENA_MASK); 367 368 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i)); 369 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL); 370 } 371 } 372 #endif 373 374 i40e_intr_adminq_disable(i40e); 375 } 376 377 /* 378 * Enable all of the queues and set the corresponding LNKLSTN registers. Note 379 * that we always enable queues as interrupt sources, even though we don't 380 * enable the MSI-X interrupt vectors. 381 */ 382 static void 383 i40e_intr_init_queue_msix(i40e_t *i40e) 384 { 385 i40e_hw_t *hw = &i40e->i40e_hw_space; 386 uint32_t reg; 387 int i; 388 389 /* 390 * Map queues to MSI-X interrupts. Queue i is mapped to vector i + 1. 391 * Note that we skip the ITR logic for the moment, just to make our 392 * lives as explicit and simple as possible. 393 */ 394 for (i = 0; i < i40e->i40e_num_trqpairs; i++) { 395 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i]; 396 397 reg = (i << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT) | 398 (I40E_QUEUE_TYPE_RX << 399 I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT); 400 I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(i), reg); 401 402 reg = 403 (itrq->itrq_rx_intrvec << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 404 (I40E_ITR_INDEX_RX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 405 (i << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 406 (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) | 407 I40E_QINT_RQCTL_CAUSE_ENA_MASK; 408 409 I40E_WRITE_REG(hw, I40E_QINT_RQCTL(i), reg); 410 411 reg = 412 (itrq->itrq_tx_intrvec << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 413 (I40E_ITR_INDEX_TX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 414 (I40E_QUEUE_TYPE_EOL << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 415 (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT) | 416 I40E_QINT_TQCTL_CAUSE_ENA_MASK; 417 418 I40E_WRITE_REG(hw, I40E_QINT_TQCTL(i), reg); 419 } 420 421 } 422 423 /* 424 * Set up a single queue to share the admin queue interrupt in the non-MSI-X 425 * world. Note we do not enable the queue as an interrupt cause at this time. We 426 * don't have any other vector of control here, unlike with the MSI-X interrupt 427 * case. 428 */ 429 static void 430 i40e_intr_init_queue_shared(i40e_t *i40e) 431 { 432 i40e_hw_t *hw = &i40e->i40e_hw_space; 433 uint32_t reg; 434 435 VERIFY(i40e->i40e_intr_type == DDI_INTR_TYPE_FIXED || 436 i40e->i40e_intr_type == DDI_INTR_TYPE_MSI); 437 438 reg = (I40E_INTR_NOTX_QUEUE << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT) | 439 (I40E_QUEUE_TYPE_RX << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT); 440 I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, reg); 441 442 reg = (I40E_INTR_NOTX_INTR << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 443 (I40E_ITR_INDEX_RX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 444 (I40E_INTR_NOTX_RX_QUEUE << I40E_QINT_RQCTL_MSIX0_INDX_SHIFT) | 445 (I40E_INTR_NOTX_QUEUE << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 446 (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 447 448 I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg); 449 450 reg = (I40E_INTR_NOTX_INTR << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 451 (I40E_ITR_INDEX_TX << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 452 (I40E_INTR_NOTX_TX_QUEUE << I40E_QINT_TQCTL_MSIX0_INDX_SHIFT) | 453 (I40E_QUEUE_TYPE_EOL << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 454 (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 455 456 I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg); 457 } 458 459 /* 460 * Enable the specified queue as a valid source of interrupts. Note, this should 461 * only be used as part of the GLDv3's interrupt blanking routines. The debug 462 * build assertions are specific to that. 463 */ 464 void 465 i40e_intr_rx_queue_enable(i40e_trqpair_t *itrq) 466 { 467 uint32_t reg; 468 uint_t queue = itrq->itrq_index; 469 i40e_hw_t *hw = &itrq->itrq_i40e->i40e_hw_space; 470 471 ASSERT(MUTEX_HELD(&itrq->itrq_rx_lock)); 472 ASSERT(queue < itrq->itrq_i40e->i40e_num_trqpairs); 473 474 reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(queue)); 475 ASSERT0(reg & I40E_QINT_RQCTL_CAUSE_ENA_MASK); 476 reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK; 477 I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg); 478 } 479 480 /* 481 * Disable the specified queue as a valid source of interrupts. Note, this 482 * should only be used as part of the GLDv3's interrupt blanking routines. The 483 * debug build assertions are specific to that. 484 */ 485 void 486 i40e_intr_rx_queue_disable(i40e_trqpair_t *itrq) 487 { 488 uint32_t reg; 489 uint_t queue = itrq->itrq_index; 490 i40e_hw_t *hw = &itrq->itrq_i40e->i40e_hw_space; 491 492 ASSERT(MUTEX_HELD(&itrq->itrq_rx_lock)); 493 ASSERT(queue < itrq->itrq_i40e->i40e_num_trqpairs); 494 495 reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(queue)); 496 ASSERT3U(reg & I40E_QINT_RQCTL_CAUSE_ENA_MASK, ==, 497 I40E_QINT_RQCTL_CAUSE_ENA_MASK); 498 reg &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 499 I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg); 500 } 501 502 /* 503 * Start up the various chip's interrupt handling. We not only configure the 504 * adminq here, but we also go through and configure all of the actual queues, 505 * the interrupt linked lists, and others. 506 */ 507 void 508 i40e_intr_chip_init(i40e_t *i40e) 509 { 510 i40e_hw_t *hw = &i40e->i40e_hw_space; 511 uint32_t reg; 512 513 /* 514 * Ensure that all non adminq interrupts are disabled at the chip level. 515 */ 516 i40e_intr_io_disable_all(i40e); 517 518 I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, 0); 519 (void) I40E_READ_REG(hw, I40E_PFINT_ICR0); 520 521 /* 522 * Always enable all of the other-class interrupts to be on their own 523 * ITR. This only needs to be set on interrupt zero, which has its own 524 * special setting. 525 */ 526 reg = I40E_ITR_INDEX_OTHER << I40E_PFINT_STAT_CTL0_OTHER_ITR_INDX_SHIFT; 527 I40E_WRITE_REG(hw, I40E_PFINT_STAT_CTL0, reg); 528 529 /* 530 * Enable interrupt types we expect to receive. At the moment, this 531 * is limited to the adminq; however, we'll want to review 11.2.2.9.22 532 * for more types here as we add support for detecting them, handling 533 * them, and resetting the device as appropriate. 534 */ 535 reg = I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 536 I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, reg); 537 538 /* 539 * Always set the interrupt linked list to empty. We'll come back and 540 * change this if MSI-X are actually on the scene. 541 */ 542 I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_TYPE_EOL); 543 544 i40e_intr_adminq_enable(i40e); 545 546 /* 547 * Set up all of the queues and map them to interrupts based on the bit 548 * assignments. 549 */ 550 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) { 551 i40e_intr_init_queue_msix(i40e); 552 } else { 553 i40e_intr_init_queue_shared(i40e); 554 } 555 556 /* 557 * Finally set all of the default ITRs for the interrupts. Note that the 558 * queues will have been set up above. 559 */ 560 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr); 561 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr); 562 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER, i40e->i40e_other_itr); 563 } 564 565 static void 566 i40e_intr_adminq_work(i40e_t *i40e) 567 { 568 struct i40e_hw *hw = &i40e->i40e_hw_space; 569 struct i40e_arq_event_info evt; 570 uint16_t remain = 1; 571 572 bzero(&evt, sizeof (struct i40e_arq_event_info)); 573 evt.buf_len = I40E_ADMINQ_BUFSZ; 574 evt.msg_buf = i40e->i40e_aqbuf; 575 576 while (remain != 0) { 577 enum i40e_status_code ret; 578 uint16_t opcode; 579 580 /* 581 * At the moment, the only error code that seems to be returned 582 * is one saying that there's no work. In such a case we leave 583 * this be. 584 */ 585 ret = i40e_clean_arq_element(hw, &evt, &remain); 586 if (ret != I40E_SUCCESS) 587 break; 588 589 opcode = LE_16(evt.desc.opcode); 590 switch (opcode) { 591 case i40e_aqc_opc_get_link_status: 592 mutex_enter(&i40e->i40e_general_lock); 593 i40e_link_check(i40e); 594 mutex_exit(&i40e->i40e_general_lock); 595 break; 596 default: 597 /* 598 * Longer term we'll want to enable other causes here 599 * and get these cleaned up and doing something. 600 */ 601 break; 602 } 603 } 604 } 605 606 static void 607 i40e_intr_rx_work(i40e_t *i40e, int queue) 608 { 609 mblk_t *mp = NULL; 610 i40e_trqpair_t *itrq; 611 612 ASSERT(queue < i40e->i40e_num_trqpairs); 613 itrq = &i40e->i40e_trqpairs[queue]; 614 615 mutex_enter(&itrq->itrq_rx_lock); 616 if (!itrq->itrq_intr_poll) 617 mp = i40e_ring_rx(itrq, I40E_POLL_NULL); 618 mutex_exit(&itrq->itrq_rx_lock); 619 620 if (mp != NULL) { 621 mac_rx_ring(i40e->i40e_mac_hdl, itrq->itrq_macrxring, mp, 622 itrq->itrq_rxgen); 623 } 624 } 625 626 static void 627 i40e_intr_tx_work(i40e_t *i40e, int queue) 628 { 629 i40e_trqpair_t *itrq; 630 631 itrq = &i40e->i40e_trqpairs[queue]; 632 i40e_tx_recycle_ring(itrq); 633 } 634 635 /* 636 * At the moment, the only 'other' interrupt on ICR0 that we handle is the 637 * adminq. We should go through and support the other notifications at some 638 * point. 639 */ 640 static void 641 i40e_intr_other_work(i40e_t *i40e) 642 { 643 struct i40e_hw *hw = &i40e->i40e_hw_space; 644 uint32_t reg; 645 646 reg = I40E_READ_REG(hw, I40E_PFINT_ICR0); 647 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) != 648 DDI_FM_OK) { 649 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED); 650 atomic_or_32(&i40e->i40e_state, I40E_ERROR); 651 return; 652 } 653 654 if (reg & I40E_PFINT_ICR0_ADMINQ_MASK) 655 i40e_intr_adminq_work(i40e); 656 657 /* 658 * Make sure that the adminq interrupt is not masked and then explicitly 659 * enable the adminq and thus the other interrupt. 660 */ 661 reg = I40E_READ_REG(hw, I40E_PFINT_ICR0_ENA); 662 reg |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 663 I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, reg); 664 665 i40e_intr_adminq_enable(i40e); 666 } 667 668 uint_t 669 i40e_intr_msix(void *arg1, void *arg2) 670 { 671 i40e_t *i40e = (i40e_t *)arg1; 672 int vector_idx = (int)(uintptr_t)arg2; 673 674 /* 675 * When using MSI-X interrupts, vector 0 is always reserved for the 676 * adminq at this time. Though longer term, we'll want to also bridge 677 * some I/O to them. 678 */ 679 if (vector_idx == 0) { 680 i40e_intr_other_work(i40e); 681 return (DDI_INTR_CLAIMED); 682 } 683 684 i40e_intr_rx_work(i40e, vector_idx - 1); 685 i40e_intr_tx_work(i40e, vector_idx - 1); 686 i40e_intr_io_enable(i40e, vector_idx); 687 688 return (DDI_INTR_CLAIMED); 689 } 690 691 static uint_t 692 i40e_intr_notx(i40e_t *i40e, boolean_t shared) 693 { 694 i40e_hw_t *hw = &i40e->i40e_hw_space; 695 uint32_t reg; 696 int ret = DDI_INTR_CLAIMED; 697 698 if (shared == B_TRUE) { 699 mutex_enter(&i40e->i40e_general_lock); 700 if (i40e->i40e_state & I40E_SUSPENDED) { 701 mutex_exit(&i40e->i40e_general_lock); 702 return (DDI_INTR_UNCLAIMED); 703 } 704 mutex_exit(&i40e->i40e_general_lock); 705 } 706 707 reg = I40E_READ_REG(hw, I40E_PFINT_ICR0); 708 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) != 709 DDI_FM_OK) { 710 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED); 711 atomic_or_32(&i40e->i40e_state, I40E_ERROR); 712 return (DDI_INTR_CLAIMED); 713 } 714 715 if (reg == 0) { 716 if (shared == B_TRUE) 717 ret = DDI_INTR_UNCLAIMED; 718 goto done; 719 } 720 721 if (reg & I40E_PFINT_ICR0_ADMINQ_MASK) 722 i40e_intr_adminq_work(i40e); 723 724 if (reg & I40E_INTR_NOTX_RX_MASK) 725 i40e_intr_rx_work(i40e, 0); 726 727 if (reg & I40E_INTR_NOTX_TX_MASK) 728 i40e_intr_tx_work(i40e, 0); 729 730 done: 731 i40e_intr_adminq_enable(i40e); 732 return (ret); 733 734 } 735 736 /* ARGSUSED */ 737 uint_t 738 i40e_intr_msi(void *arg1, void *arg2) 739 { 740 i40e_t *i40e = (i40e_t *)arg1; 741 742 return (i40e_intr_notx(i40e, B_FALSE)); 743 } 744 745 /* ARGSUSED */ 746 uint_t 747 i40e_intr_legacy(void *arg1, void *arg2) 748 { 749 i40e_t *i40e = (i40e_t *)arg1; 750 751 return (i40e_intr_notx(i40e, B_TRUE)); 752 } 753