xref: /illumos-gate/usr/src/uts/common/io/i40e/i40e_intr.c (revision dbdc225a81ccef01e9d416169099b09ddbc06ea1)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2019 Joyent, Inc.
14  * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
15  */
16 
17 /*
18  * -------------------------
19  * Interrupt Handling Theory
20  * -------------------------
21  *
22  * There are a couple different sets of interrupts that we need to worry about:
23  *
24  *   - Interrupts from receive queues
25  *   - Interrupts from transmit queues
26  *   - 'Other Interrupts', such as the administrative queue
27  *
28  * 'Other Interrupts' are asynchronous events such as a link status change event
29  * being posted to the administrative queue, unrecoverable ECC errors, and more.
30  * If we have something being posted to the administrative queue, then we go
31  * through and process it, because it's generally enabled as a separate logical
32  * interrupt. Note, we may need to do more here eventually. To re-enable the
33  * interrupts from the 'Other Interrupts' section, we need to clear the PBA and
34  * write ENA to PFINT_ICR0.
35  *
36  * Interrupts from the transmit and receive queues indicates that our requests
37  * have been processed. In the rx case, it means that we have data that we
38  * should take a look at and send up the stack. In the tx case, it means that
39  * data which we got from MAC has now been sent out on the wire and we can free
40  * the associated data. Most of the logic for acting upon the presence of this
41  * data can be found in i40e_transciever.c which handles all of the DMA, rx, and
42  * tx operations. This file is dedicated to handling and dealing with interrupt
43  * processing.
44  *
45  * All devices supported by this driver support three kinds of interrupts:
46  *
47  *   o Extended Message Signaled Interrupts (MSI-X)
48  *   o Message Signaled Interrupts (MSI)
49  *   o Legacy PCI interrupts (INTx)
50  *
51  * Generally speaking the hardware logically handles MSI and INTx the same and
52  * restricts us to only using a single interrupt, which isn't the interesting
53  * case. With MSI-X available, each physical function of the device provides the
54  * opportunity for multiple interrupts which is what we'll focus on.
55  *
56  * --------------------
57  * Interrupt Management
58  * --------------------
59  *
60  * By default, the admin queue, which consists of the asynchronous other
61  * interrupts is always bound to MSI-X vector zero. Next, we spread out all of
62  * the other interrupts that we have available to us over the remaining
63  * interrupt vectors.
64  *
65  * This means that there may be multiple queues, both tx and rx, which are
66  * mapped to the same interrupt. When the interrupt fires, we'll have to check
67  * all of them for servicing, before we go through and indicate that the
68  * interrupt is claimed.
69  *
70  * The hardware provides the means of mapping various queues to MSI-X interrupts
71  * by programming the I40E_QINT_RQCTL() and I4OE_QINT_TQCTL() registers. These
72  * registers can also be used to enable and disable whether or not the queue is
73  * a source of interrupts. As part of this, the hardware requires that we
74  * maintain a linked list of queues for each interrupt vector. While it may seem
75  * like this is only there for the purproses of ITRs, that's not the case. The
76  * first queue must be programmed in I40E_QINT_LNKLSTN(%vector) register. Each
77  * queue defines the next one in either the I40E_QINT_RQCTL or I40E_QINT_TQCTL
78  * register.
79  *
80  * Finally, the individual interrupt vector itself has the ability to be enabled
81  * and disabled. The overall interrupt is controlled through the
82  * I40E_PFINT_DYN_CTLN() register. This is used to turn on and off the interrupt
83  * as a whole.
84  *
85  * Note that this means that both the individual queue and the interrupt as a
86  * whole can be toggled and re-enabled.
87  *
88  * -------------------
89  * Non-MSIX Management
90  * -------------------
91  *
92  * We may have a case where the Operating System is unable to actually allocate
93  * any MSI-X to the system. In such a world, there is only one transmit/receive
94  * queue pair and it is bound to the same interrupt with index zero. The
95  * hardware doesn't allow us access to additional interrupt vectors in these
96  * modes. Note that technically we could support more transmit/receive queues if
97  * we wanted.
98  *
99  * In this world, because the interrupts for the admin queue and traffic are
100  * mixed together, we have to consult ICR0 to determine what has occurred. The
101  * QINT_TQCTL and QINT_RQCTL registers have a field, 'MSI-X 0 index' which
102  * allows us to set a specific bit in ICR0. There are up to seven such bits;
103  * however, we only use the bit 0 and 1 for the rx and tx queue respectively.
104  * These are contained by the I40E_INTR_NOTX_{R|T}X_QUEUE and
105  * I40E_INTR_NOTX_{R|T}X_MASK registers respectively.
106  *
107  * Unfortunately, these corresponding queue bits have no corresponding entry in
108  * the ICR0_ENA register. So instead, when enabling interrupts on the queues, we
109  * end up enabling it on the queue registers rather than on the MSI-X registers.
110  * In the MSI-X world, because they can be enabled and disabled, this is
111  * different and the queues can always be enabled and disabled, but the
112  * interrupts themselves are toggled (ignoring the question of interrupt
113  * blanking for polling on rings).
114  *
115  * Finally, we still have to set up the interrupt linked list, but the list is
116  * instead rooted at the register I40E_PFINT_LNKLST0, rather than being tied to
117  * one of the other MSI-X registers.
118  *
119  * --------------------
120  * Interrupt Moderation
121  * --------------------
122  *
123  * The XL710 hardware has three different interrupt moderation registers per
124  * interrupt. Unsurprisingly, we use these for:
125  *
126  *   o RX interrupts
127  *   o TX interrupts
128  *   o 'Other interrupts' (link status change, admin queue, etc.)
129  *
130  * By default, we throttle 'other interrupts' the most, then TX interrupts, and
131  * then RX interrupts. The default values for these were based on trying to
132  * reason about both the importance and frequency of events. Generally speaking
133  * 'other interrupts' are not very frequent and they're not important for the
134  * I/O data path in and of itself (though they may indicate issues with the I/O
135  * data path).
136  *
137  * On the flip side, when we're not polling, RX interrupts are very important.
138  * The longer we wait for them, the more latency that we inject into the system.
139  * However, if we allow interrupts to occur too frequently, we risk a few
140  * problems:
141  *
142  *  1) Abusing system resources. Without proper interrupt blanking and polling,
143  *     we can see upwards of 200k-300k interrupts per second on the system.
144  *
145  *  2) Not enough data coalescing to enable polling. In other words, the more
146  *     data that we allow to build up, the more likely we'll be able to enable
147  *     polling mode and allowing us to better handle bulk data.
148  *
149  * In-between the 'other interrupts' and the TX interrupts we have the
150  * reclamation of TX buffers. This operation is not quite as important as we
151  * generally size the ring large enough that we should be able to reclaim a
152  * substantial amount of the descriptors that we have used per interrupt. So
153  * while it's important that this interrupt occur, we don't necessarily need it
154  * firing as frequently as RX; it doesn't, on its own, induce additional latency
155  * into the system.
156  *
157  * Based on all this we currently assign static ITR values for the system. While
158  * we could move to a dynamic system (the hardware supports that), we'd want to
159  * make sure that we're seeing problems from this that we believe would be
160  * generally helped by the added complexity.
161  *
162  * Based on this, the default values that we have allow for the following
163  * interrupt thresholds:
164  *
165  *    o 20k interrupts/s for RX
166  *    o 5k interrupts/s for TX
167  *    o 2k interupts/s for 'Other Interrupts'
168  */
169 
170 #include "i40e_sw.h"
171 
172 #define	I40E_INTR_NOTX_QUEUE	0
173 #define	I40E_INTR_NOTX_INTR	0
174 #define	I40E_INTR_NOTX_RX_QUEUE	0
175 #define	I40E_INTR_NOTX_RX_MASK	(1 << I40E_PFINT_ICR0_QUEUE_0_SHIFT)
176 #define	I40E_INTR_NOTX_TX_QUEUE	1
177 #define	I40E_INTR_NOTX_TX_MASK	(1 << I40E_PFINT_ICR0_QUEUE_1_SHIFT)
178 
179 void
180 i40e_intr_set_itr(i40e_t *i40e, i40e_itr_index_t itr, uint_t val)
181 {
182 	int i;
183 	i40e_hw_t *hw = &i40e->i40e_hw_space;
184 
185 	VERIFY3U(val, <=, I40E_MAX_ITR);
186 	VERIFY3U(itr, <, I40E_ITR_INDEX_NONE);
187 
188 	/*
189 	 * No matter the interrupt mode, the ITR for other interrupts is always
190 	 * on interrupt zero and the same is true if we're not using MSI-X.
191 	 */
192 	if (itr == I40E_ITR_INDEX_OTHER ||
193 	    i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
194 		I40E_WRITE_REG(hw, I40E_PFINT_ITR0(itr), val);
195 		return;
196 	}
197 
198 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
199 		I40E_WRITE_REG(hw, I40E_PFINT_ITRN(itr, i), val);
200 	}
201 }
202 
203 /*
204  * Re-enable the adminq. Note that the adminq doesn't have a traditional queue
205  * associated with it from an interrupt perspective and just lives on ICR0.
206  * However when MSI-X interrupts are not being used, then this also enables and
207  * disables those interrupts.
208  */
209 static void
210 i40e_intr_adminq_enable(i40e_t *i40e)
211 {
212 	i40e_hw_t *hw = &i40e->i40e_hw_space;
213 	uint32_t reg;
214 
215 	reg = I40E_PFINT_DYN_CTL0_INTENA_MASK |
216 	    I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
217 	    (I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
218 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, reg);
219 	i40e_flush(hw);
220 }
221 
222 static void
223 i40e_intr_adminq_disable(i40e_t *i40e)
224 {
225 	i40e_hw_t *hw = &i40e->i40e_hw_space;
226 	uint32_t reg;
227 
228 	reg = I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT;
229 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, reg);
230 }
231 
232 /*
233  * The next two functions enable/disable the reception of interrupts
234  * on the given vector. Only vectors 1..N are programmed by these
235  * functions; vector 0 is special and handled by a different register.
236  * We must subtract one from the vector because i40e implicitly adds
237  * one to the vector value. See section 10.2.2.10.13 for more details.
238  */
239 static void
240 i40e_intr_io_enable(i40e_t *i40e, int vector)
241 {
242 	uint32_t reg;
243 	i40e_hw_t *hw = &i40e->i40e_hw_space;
244 
245 	ASSERT3S(vector, >, 0);
246 	reg = I40E_PFINT_DYN_CTLN_INTENA_MASK |
247 	    I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
248 	    (I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
249 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vector - 1), reg);
250 }
251 
252 static void
253 i40e_intr_io_disable(i40e_t *i40e, int vector)
254 {
255 	uint32_t reg;
256 	i40e_hw_t *hw = &i40e->i40e_hw_space;
257 
258 	ASSERT3S(vector, >, 0);
259 	reg = I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
260 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vector - 1), reg);
261 }
262 
263 /*
264  * When MSI-X interrupts are being used, then we can enable the actual
265  * interrupts themselves. However, when they are not, we instead have to turn
266  * towards the queue's CAUSE_ENA bit and enable that.
267  */
268 void
269 i40e_intr_io_enable_all(i40e_t *i40e)
270 {
271 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
272 		int i;
273 
274 		for (i = 1; i < i40e->i40e_intr_count; i++) {
275 			i40e_intr_io_enable(i40e, i);
276 		}
277 	} else {
278 		uint32_t reg;
279 		i40e_hw_t *hw = &i40e->i40e_hw_space;
280 
281 		reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE));
282 		reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
283 		I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg);
284 
285 		reg = I40E_READ_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE));
286 		reg |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
287 		I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg);
288 	}
289 }
290 
291 /*
292  * When MSI-X interrupts are being used, then we can disable the actual
293  * interrupts themselves. However, when they are not, we instead have to turn
294  * towards the queue's CAUSE_ENA bit and disable that.
295  */
296 void
297 i40e_intr_io_disable_all(i40e_t *i40e)
298 {
299 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
300 		int i;
301 
302 		for (i = 1; i < i40e->i40e_intr_count; i++) {
303 			i40e_intr_io_disable(i40e, i);
304 		}
305 	} else {
306 		uint32_t reg;
307 		i40e_hw_t *hw = &i40e->i40e_hw_space;
308 
309 		reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE));
310 		reg &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
311 		I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg);
312 
313 		reg = I40E_READ_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE));
314 		reg &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
315 		I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg);
316 	}
317 }
318 
319 /*
320  * As part of disabling the tx and rx queue's we're technically supposed to
321  * remove the linked list entries. The simplest way is to clear the LNKLSTN
322  * register by setting it to I40E_QUEUE_TYPE_EOL (0x7FF).
323  *
324  * Note all of the FM register access checks are performed by the caller.
325  */
326 void
327 i40e_intr_io_clear_cause(i40e_t *i40e)
328 {
329 	uint32_t i;
330 	i40e_hw_t *hw = &i40e->i40e_hw_space;
331 
332 	if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
333 		uint32_t reg;
334 		reg = I40E_QUEUE_TYPE_EOL;
335 		I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, reg);
336 		return;
337 	}
338 
339 	for (i = 0; i < i40e->i40e_intr_count - 1; i++) {
340 		uint32_t reg;
341 
342 		reg = I40E_QUEUE_TYPE_EOL;
343 		I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(i), reg);
344 	}
345 
346 	i40e_flush(hw);
347 }
348 
349 /*
350  * Finalize interrupt handling. Mostly this disables the admin queue.
351  */
352 void
353 i40e_intr_chip_fini(i40e_t *i40e)
354 {
355 #ifdef DEBUG
356 	int i;
357 	uint32_t reg;
358 
359 	i40e_hw_t *hw = &i40e->i40e_hw_space;
360 
361 	/*
362 	 * Take a look and verify that all other interrupts have been disabled
363 	 * and the interrupt linked lists have been zeroed.
364 	 */
365 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
366 		for (i = 0; i < i40e->i40e_intr_count - 1; i++) {
367 			reg = I40E_READ_REG(hw, I40E_PFINT_DYN_CTLN(i));
368 			VERIFY0(reg & I40E_PFINT_DYN_CTLN_INTENA_MASK);
369 
370 			reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i));
371 			VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
372 		}
373 	}
374 #endif
375 
376 	i40e_intr_adminq_disable(i40e);
377 }
378 
379 /*
380  * Set the head of the interrupt linked list. The PFINT_LNKLSTN[N]
381  * register actually refers to the 'N + 1' interrupt vector. E.g.,
382  * PFINT_LNKLSTN[0] refers to interrupt vector 1.
383  */
384 static void
385 i40e_set_lnklstn(i40e_t *i40e, uint_t vector, uint_t queue)
386 {
387 	uint32_t	reg;
388 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
389 
390 	reg = (queue << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT) |
391 	    (I40E_QUEUE_TYPE_RX << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT);
392 
393 	I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(vector), reg);
394 	DEBUGOUT2("PFINT_LNKLSTN[%u] = 0x%x", vector, reg);
395 }
396 
397 /*
398  * Set the QINT_RQCTL[queue] register. The next queue is always the Tx
399  * queue associated with this Rx queue. Unlike PFINT_LNKLSTN, the
400  * vector should be the actual vector this queue is on -- i.e., it
401  * should be equal to itrq_rx_intrvec.
402  */
403 static void
404 i40e_set_rqctl(i40e_t *i40e, uint_t vector, uint_t queue)
405 {
406 	uint32_t	reg;
407 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
408 
409 	ASSERT3U(vector, ==, i40e->i40e_trqpairs[queue].itrq_rx_intrvec);
410 
411 	reg = (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
412 	    (I40E_ITR_INDEX_RX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
413 	    (queue << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
414 	    (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) |
415 	    I40E_QINT_RQCTL_CAUSE_ENA_MASK;
416 
417 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg);
418 	DEBUGOUT2("QINT_RQCTL[%u] = 0x%x", queue, reg);
419 }
420 
421 /*
422  * Like i40e_set_rqctl(), but for QINT_TQCTL[queue]. The next queue is
423  * either the Rx queue of another TRQP, or EOL.
424  */
425 static void
426 i40e_set_tqctl(i40e_t *i40e, uint_t vector, uint_t queue, uint_t next_queue)
427 {
428 	uint32_t	reg;
429 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
430 
431 	ASSERT3U(vector, ==, i40e->i40e_trqpairs[queue].itrq_tx_intrvec);
432 
433 	reg = (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
434 	    (I40E_ITR_INDEX_TX << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
435 	    (next_queue << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
436 	    (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT) |
437 	    I40E_QINT_TQCTL_CAUSE_ENA_MASK;
438 
439 	I40E_WRITE_REG(hw, I40E_QINT_TQCTL(queue), reg);
440 	DEBUGOUT2("QINT_TQCTL[%u] = 0x%x", queue, reg);
441 }
442 
443 /*
444  * Program the interrupt linked list. Each vector has a linked list of
445  * queues which act as event sources for that vector. When one of
446  * those sources has an event the associated interrupt vector is
447  * fired. This mapping must match the mapping found in
448  * i40e_map_intrs_to_vectors().
449  *
450  * See section 7.5.3 for more information about the configuration of
451  * the interrupt linked list.
452  */
453 static void
454 i40e_intr_init_queue_msix(i40e_t *i40e)
455 {
456 	uint_t intr_count;
457 
458 	/*
459 	 * The 0th vector is for 'Other Interrupts' only (subject to
460 	 * change in the future).
461 	 */
462 	intr_count = i40e->i40e_intr_count - 1;
463 
464 	for (uint_t vec = 0; vec < intr_count; vec++) {
465 		boolean_t head = B_TRUE;
466 
467 		for (uint_t qidx = vec; qidx < i40e->i40e_num_trqpairs;
468 		    qidx += intr_count) {
469 			uint_t next_qidx = qidx + intr_count;
470 
471 			next_qidx = (next_qidx > i40e->i40e_num_trqpairs) ?
472 			    I40E_QUEUE_TYPE_EOL : next_qidx;
473 
474 			if (head) {
475 				i40e_set_lnklstn(i40e, vec, qidx);
476 				head = B_FALSE;
477 			}
478 
479 			i40e_set_rqctl(i40e, vec + 1, qidx);
480 			i40e_set_tqctl(i40e, vec + 1, qidx, next_qidx);
481 		}
482 	}
483 }
484 
485 /*
486  * Set up a single queue to share the admin queue interrupt in the non-MSI-X
487  * world. Note we do not enable the queue as an interrupt cause at this time. We
488  * don't have any other vector of control here, unlike with the MSI-X interrupt
489  * case.
490  */
491 static void
492 i40e_intr_init_queue_shared(i40e_t *i40e)
493 {
494 	i40e_hw_t *hw = &i40e->i40e_hw_space;
495 	uint32_t reg;
496 
497 	VERIFY(i40e->i40e_intr_type == DDI_INTR_TYPE_FIXED ||
498 	    i40e->i40e_intr_type == DDI_INTR_TYPE_MSI);
499 
500 	reg = (I40E_INTR_NOTX_QUEUE << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT) |
501 	    (I40E_QUEUE_TYPE_RX << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT);
502 	I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, reg);
503 
504 	reg = (I40E_INTR_NOTX_INTR << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
505 	    (I40E_ITR_INDEX_RX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
506 	    (I40E_INTR_NOTX_RX_QUEUE << I40E_QINT_RQCTL_MSIX0_INDX_SHIFT) |
507 	    (I40E_INTR_NOTX_QUEUE << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
508 	    (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
509 
510 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg);
511 
512 	reg = (I40E_INTR_NOTX_INTR << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
513 	    (I40E_ITR_INDEX_TX << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
514 	    (I40E_INTR_NOTX_TX_QUEUE << I40E_QINT_TQCTL_MSIX0_INDX_SHIFT) |
515 	    (I40E_QUEUE_TYPE_EOL << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
516 	    (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
517 
518 	I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg);
519 }
520 
521 /*
522  * Enable the specified queue as a valid source of interrupts. Note, this should
523  * only be used as part of the GLDv3's interrupt blanking routines. The debug
524  * build assertions are specific to that.
525  */
526 void
527 i40e_intr_rx_queue_enable(i40e_trqpair_t *itrq)
528 {
529 	uint32_t reg;
530 	uint_t queue = itrq->itrq_index;
531 	i40e_hw_t *hw = &itrq->itrq_i40e->i40e_hw_space;
532 
533 	ASSERT(MUTEX_HELD(&itrq->itrq_rx_lock));
534 	ASSERT(queue < itrq->itrq_i40e->i40e_num_trqpairs);
535 
536 	reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(queue));
537 	ASSERT0(reg & I40E_QINT_RQCTL_CAUSE_ENA_MASK);
538 	reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
539 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg);
540 }
541 
542 /*
543  * Disable the specified queue as a valid source of interrupts. Note, this
544  * should only be used as part of the GLDv3's interrupt blanking routines. The
545  * debug build assertions are specific to that.
546  */
547 void
548 i40e_intr_rx_queue_disable(i40e_trqpair_t *itrq)
549 {
550 	uint32_t reg;
551 	uint_t queue = itrq->itrq_index;
552 	i40e_hw_t *hw = &itrq->itrq_i40e->i40e_hw_space;
553 
554 	ASSERT(MUTEX_HELD(&itrq->itrq_rx_lock));
555 	ASSERT(queue < itrq->itrq_i40e->i40e_num_trqpairs);
556 
557 	reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(queue));
558 	ASSERT3U(reg & I40E_QINT_RQCTL_CAUSE_ENA_MASK, ==,
559 	    I40E_QINT_RQCTL_CAUSE_ENA_MASK);
560 	reg &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
561 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg);
562 }
563 
564 /*
565  * Start up the various chip's interrupt handling. We not only configure the
566  * adminq here, but we also go through and configure all of the actual queues,
567  * the interrupt linked lists, and others.
568  */
569 void
570 i40e_intr_chip_init(i40e_t *i40e)
571 {
572 	i40e_hw_t *hw = &i40e->i40e_hw_space;
573 	uint32_t reg;
574 
575 	/*
576 	 * Ensure that all non adminq interrupts are disabled at the chip level.
577 	 */
578 	i40e_intr_io_disable_all(i40e);
579 
580 	I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, 0);
581 	(void) I40E_READ_REG(hw, I40E_PFINT_ICR0);
582 
583 	/*
584 	 * Always enable all of the other-class interrupts to be on their own
585 	 * ITR. This only needs to be set on interrupt zero, which has its own
586 	 * special setting.
587 	 */
588 	reg = I40E_ITR_INDEX_OTHER << I40E_PFINT_STAT_CTL0_OTHER_ITR_INDX_SHIFT;
589 	I40E_WRITE_REG(hw, I40E_PFINT_STAT_CTL0, reg);
590 
591 	/*
592 	 * Enable interrupt types we expect to receive. At the moment, this
593 	 * is limited to the adminq; however, we'll want to review 11.2.2.9.22
594 	 * for more types here as we add support for detecting them, handling
595 	 * them, and resetting the device as appropriate.
596 	 */
597 	reg = I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
598 	I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, reg);
599 
600 	/*
601 	 * Always set the interrupt linked list to empty. We'll come back and
602 	 * change this if MSI-X are actually on the scene.
603 	 */
604 	I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_TYPE_EOL);
605 
606 	i40e_intr_adminq_enable(i40e);
607 
608 	/*
609 	 * Set up all of the queues and map them to interrupts based on the bit
610 	 * assignments.
611 	 */
612 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
613 		i40e_intr_init_queue_msix(i40e);
614 	} else {
615 		i40e_intr_init_queue_shared(i40e);
616 	}
617 
618 	/*
619 	 * Finally set all of the default ITRs for the interrupts. Note that the
620 	 * queues will have been set up above.
621 	 */
622 	i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr);
623 	i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr);
624 	i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER, i40e->i40e_other_itr);
625 }
626 
627 static void
628 i40e_intr_adminq_work(i40e_t *i40e)
629 {
630 	struct i40e_hw *hw = &i40e->i40e_hw_space;
631 	struct i40e_arq_event_info evt;
632 	uint16_t remain = 1;
633 
634 	bzero(&evt, sizeof (struct i40e_arq_event_info));
635 	evt.buf_len = I40E_ADMINQ_BUFSZ;
636 	evt.msg_buf = i40e->i40e_aqbuf;
637 
638 	while (remain != 0) {
639 		enum i40e_status_code ret;
640 		uint16_t opcode;
641 
642 		/*
643 		 * At the moment, the only error code that seems to be returned
644 		 * is one saying that there's no work. In such a case we leave
645 		 * this be.
646 		 */
647 		ret = i40e_clean_arq_element(hw, &evt, &remain);
648 		if (ret != I40E_SUCCESS)
649 			break;
650 
651 		opcode = LE_16(evt.desc.opcode);
652 		switch (opcode) {
653 		case i40e_aqc_opc_get_link_status:
654 			mutex_enter(&i40e->i40e_general_lock);
655 			i40e_link_check(i40e);
656 			mutex_exit(&i40e->i40e_general_lock);
657 			break;
658 		default:
659 			/*
660 			 * Longer term we'll want to enable other causes here
661 			 * and get these cleaned up and doing something.
662 			 */
663 			break;
664 		}
665 	}
666 }
667 
668 static void
669 i40e_intr_rx_work(i40e_t *i40e, i40e_trqpair_t *itrq)
670 {
671 	mblk_t *mp = NULL;
672 
673 	mutex_enter(&itrq->itrq_rx_lock);
674 	if (!itrq->itrq_intr_poll)
675 		mp = i40e_ring_rx(itrq, I40E_POLL_NULL);
676 	mutex_exit(&itrq->itrq_rx_lock);
677 
678 	if (mp == NULL)
679 		return;
680 
681 	mac_rx_ring(i40e->i40e_mac_hdl, itrq->itrq_macrxring, mp,
682 	    itrq->itrq_rxgen);
683 }
684 
685 /* ARGSUSED */
686 static void
687 i40e_intr_tx_work(i40e_t *i40e, i40e_trqpair_t *itrq)
688 {
689 	i40e_tx_recycle_ring(itrq);
690 }
691 
692 /*
693  * At the moment, the only 'other' interrupt on ICR0 that we handle is the
694  * adminq. We should go through and support the other notifications at some
695  * point.
696  */
697 static void
698 i40e_intr_other_work(i40e_t *i40e)
699 {
700 	struct i40e_hw *hw = &i40e->i40e_hw_space;
701 	uint32_t reg;
702 
703 	reg = I40E_READ_REG(hw, I40E_PFINT_ICR0);
704 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
705 	    DDI_FM_OK) {
706 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED);
707 		atomic_or_32(&i40e->i40e_state, I40E_ERROR);
708 		return;
709 	}
710 
711 	if (reg & I40E_PFINT_ICR0_ADMINQ_MASK)
712 		i40e_intr_adminq_work(i40e);
713 
714 	/*
715 	 * Make sure that the adminq interrupt is not masked and then explicitly
716 	 * enable the adminq and thus the other interrupt.
717 	 */
718 	reg = I40E_READ_REG(hw, I40E_PFINT_ICR0_ENA);
719 	reg |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
720 	I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, reg);
721 
722 	i40e_intr_adminq_enable(i40e);
723 }
724 
725 /*
726  * Handle an MSI-X interrupt. See section 7.5.1.3 for an overview of
727  * the MSI-X interrupt sequence.
728  */
729 uint_t
730 i40e_intr_msix(void *arg1, void *arg2)
731 {
732 	i40e_t *i40e = (i40e_t *)arg1;
733 	uint_t vector_idx = (uint_t)(uintptr_t)arg2;
734 
735 	ASSERT3U(vector_idx, <, i40e->i40e_intr_count);
736 
737 	/*
738 	 * When using MSI-X interrupts, vector 0 is always reserved for the
739 	 * adminq at this time. Though longer term, we'll want to also bridge
740 	 * some I/O to them.
741 	 */
742 	if (vector_idx == 0) {
743 		i40e_intr_other_work(i40e);
744 		return (DDI_INTR_CLAIMED);
745 	}
746 
747 	ASSERT3U(vector_idx, >, 0);
748 
749 	/*
750 	 * We determine the queue indexes via simple arithmetic (as
751 	 * opposed to keeping explicit state like a bitmap). While
752 	 * conveinent, it does mean that i40e_map_intrs_to_vectors(),
753 	 * i40e_intr_init_queue_msix(), and this function must be
754 	 * modified as a unit.
755 	 *
756 	 * We subtract 1 from the vector to offset the addition we
757 	 * performed during i40e_map_intrs_to_vectors().
758 	 */
759 	for (uint_t i = vector_idx - 1; i < i40e->i40e_num_trqpairs;
760 	    i += (i40e->i40e_intr_count - 1)) {
761 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
762 
763 		ASSERT3U(i, <, i40e->i40e_num_trqpairs);
764 		ASSERT3P(itrq, !=, NULL);
765 		i40e_intr_rx_work(i40e, itrq);
766 		i40e_intr_tx_work(i40e, itrq);
767 	}
768 
769 	i40e_intr_io_enable(i40e, vector_idx);
770 	return (DDI_INTR_CLAIMED);
771 }
772 
773 static uint_t
774 i40e_intr_notx(i40e_t *i40e, boolean_t shared)
775 {
776 	i40e_hw_t *hw = &i40e->i40e_hw_space;
777 	uint32_t reg;
778 	i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[0];
779 	int ret = DDI_INTR_CLAIMED;
780 
781 	if (shared == B_TRUE) {
782 		mutex_enter(&i40e->i40e_general_lock);
783 		if (i40e->i40e_state & I40E_SUSPENDED) {
784 			mutex_exit(&i40e->i40e_general_lock);
785 			return (DDI_INTR_UNCLAIMED);
786 		}
787 		mutex_exit(&i40e->i40e_general_lock);
788 	}
789 
790 	reg = I40E_READ_REG(hw, I40E_PFINT_ICR0);
791 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
792 	    DDI_FM_OK) {
793 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED);
794 		atomic_or_32(&i40e->i40e_state, I40E_ERROR);
795 		return (DDI_INTR_CLAIMED);
796 	}
797 
798 	if (reg == 0) {
799 		if (shared == B_TRUE)
800 			ret = DDI_INTR_UNCLAIMED;
801 		goto done;
802 	}
803 
804 	if (reg & I40E_PFINT_ICR0_ADMINQ_MASK)
805 		i40e_intr_adminq_work(i40e);
806 
807 	if (reg & I40E_INTR_NOTX_RX_MASK)
808 		i40e_intr_rx_work(i40e, itrq);
809 
810 	if (reg & I40E_INTR_NOTX_TX_MASK)
811 		i40e_intr_tx_work(i40e, itrq);
812 
813 done:
814 	i40e_intr_adminq_enable(i40e);
815 	return (ret);
816 
817 }
818 
819 /* ARGSUSED */
820 uint_t
821 i40e_intr_msi(void *arg1, void *arg2)
822 {
823 	i40e_t *i40e = (i40e_t *)arg1;
824 
825 	return (i40e_intr_notx(i40e, B_FALSE));
826 }
827 
828 /* ARGSUSED */
829 uint_t
830 i40e_intr_legacy(void *arg1, void *arg2)
831 {
832 	i40e_t *i40e = (i40e_t *)arg1;
833 
834 	return (i40e_intr_notx(i40e, B_TRUE));
835 }
836