xref: /illumos-gate/usr/src/uts/common/io/i40e/i40e_intr.c (revision 933570f627898c6867ac217abb204a88321ead57)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2019 Joyent, Inc.
14  * Copyright 2017 Tegile Systems, Inc.  All rights reserved.
15  * Copyright 2020 RackTop Systems, Inc.
16  */
17 
18 /*
19  * -------------------------
20  * Interrupt Handling Theory
21  * -------------------------
22  *
23  * There are a couple different sets of interrupts that we need to worry about:
24  *
25  *   - Interrupts from receive queues
26  *   - Interrupts from transmit queues
27  *   - 'Other Interrupts', such as the administrative queue
28  *
29  * 'Other Interrupts' are asynchronous events such as a link status change event
30  * being posted to the administrative queue, unrecoverable ECC errors, and more.
31  * If we have something being posted to the administrative queue, then we go
32  * through and process it, because it's generally enabled as a separate logical
33  * interrupt. Note, we may need to do more here eventually. To re-enable the
34  * interrupts from the 'Other Interrupts' section, we need to clear the PBA and
35  * write ENA to PFINT_ICR0.
36  *
37  * Interrupts from the transmit and receive queues indicates that our requests
38  * have been processed. In the rx case, it means that we have data that we
39  * should take a look at and send up the stack. In the tx case, it means that
40  * data which we got from MAC has now been sent out on the wire and we can free
41  * the associated data. Most of the logic for acting upon the presence of this
42  * data can be found in i40e_transciever.c which handles all of the DMA, rx, and
43  * tx operations. This file is dedicated to handling and dealing with interrupt
44  * processing.
45  *
46  * All devices supported by this driver support three kinds of interrupts:
47  *
48  *   o Extended Message Signaled Interrupts (MSI-X)
49  *   o Message Signaled Interrupts (MSI)
50  *   o Legacy PCI interrupts (INTx)
51  *
52  * Generally speaking the hardware logically handles MSI and INTx the same and
53  * restricts us to only using a single interrupt, which isn't the interesting
54  * case. With MSI-X available, each physical function of the device provides the
55  * opportunity for multiple interrupts which is what we'll focus on.
56  *
57  * --------------------
58  * Interrupt Management
59  * --------------------
60  *
61  * By default, the admin queue, which consists of the asynchronous other
62  * interrupts is always bound to MSI-X vector zero. Next, we spread out all of
63  * the other interrupts that we have available to us over the remaining
64  * interrupt vectors.
65  *
66  * This means that there may be multiple queues, both tx and rx, which are
67  * mapped to the same interrupt. When the interrupt fires, we'll have to check
68  * all of them for servicing, before we go through and indicate that the
69  * interrupt is claimed.
70  *
71  * The hardware provides the means of mapping various queues to MSI-X interrupts
72  * by programming the I40E_QINT_RQCTL() and I4OE_QINT_TQCTL() registers. These
73  * registers can also be used to enable and disable whether or not the queue is
74  * a source of interrupts. As part of this, the hardware requires that we
75  * maintain a linked list of queues for each interrupt vector. While it may seem
76  * like this is only there for the purproses of ITRs, that's not the case. The
77  * first queue must be programmed in I40E_QINT_LNKLSTN(%vector) register. Each
78  * queue defines the next one in either the I40E_QINT_RQCTL or I40E_QINT_TQCTL
79  * register.
80  *
81  * Finally, the individual interrupt vector itself has the ability to be enabled
82  * and disabled. The overall interrupt is controlled through the
83  * I40E_PFINT_DYN_CTLN() register. This is used to turn on and off the interrupt
84  * as a whole.
85  *
86  * Note that this means that both the individual queue and the interrupt as a
87  * whole can be toggled and re-enabled.
88  *
89  * -------------------
90  * Non-MSIX Management
91  * -------------------
92  *
93  * We may have a case where the Operating System is unable to actually allocate
94  * any MSI-X to the system. In such a world, there is only one transmit/receive
95  * queue pair and it is bound to the same interrupt with index zero. The
96  * hardware doesn't allow us access to additional interrupt vectors in these
97  * modes. Note that technically we could support more transmit/receive queues if
98  * we wanted.
99  *
100  * In this world, because the interrupts for the admin queue and traffic are
101  * mixed together, we have to consult ICR0 to determine what has occurred. The
102  * QINT_TQCTL and QINT_RQCTL registers have a field, 'MSI-X 0 index' which
103  * allows us to set a specific bit in ICR0. There are up to seven such bits;
104  * however, we only use the bit 0 and 1 for the rx and tx queue respectively.
105  * These are contained by the I40E_INTR_NOTX_{R|T}X_QUEUE and
106  * I40E_INTR_NOTX_{R|T}X_MASK registers respectively.
107  *
108  * Unfortunately, these corresponding queue bits have no corresponding entry in
109  * the ICR0_ENA register. So instead, when enabling interrupts on the queues, we
110  * end up enabling it on the queue registers rather than on the MSI-X registers.
111  * In the MSI-X world, because they can be enabled and disabled, this is
112  * different and the queues can always be enabled and disabled, but the
113  * interrupts themselves are toggled (ignoring the question of interrupt
114  * blanking for polling on rings).
115  *
116  * Finally, we still have to set up the interrupt linked list, but the list is
117  * instead rooted at the register I40E_PFINT_LNKLST0, rather than being tied to
118  * one of the other MSI-X registers.
119  *
120  * --------------------
121  * Interrupt Moderation
122  * --------------------
123  *
124  * The XL710 hardware has three different interrupt moderation registers per
125  * interrupt. Unsurprisingly, we use these for:
126  *
127  *   o RX interrupts
128  *   o TX interrupts
129  *   o 'Other interrupts' (link status change, admin queue, etc.)
130  *
131  * By default, we throttle 'other interrupts' the most, then TX interrupts, and
132  * then RX interrupts. The default values for these were based on trying to
133  * reason about both the importance and frequency of events. Generally speaking
134  * 'other interrupts' are not very frequent and they're not important for the
135  * I/O data path in and of itself (though they may indicate issues with the I/O
136  * data path).
137  *
138  * On the flip side, when we're not polling, RX interrupts are very important.
139  * The longer we wait for them, the more latency that we inject into the system.
140  * However, if we allow interrupts to occur too frequently, we risk a few
141  * problems:
142  *
143  *  1) Abusing system resources. Without proper interrupt blanking and polling,
144  *     we can see upwards of 200k-300k interrupts per second on the system.
145  *
146  *  2) Not enough data coalescing to enable polling. In other words, the more
147  *     data that we allow to build up, the more likely we'll be able to enable
148  *     polling mode and allowing us to better handle bulk data.
149  *
150  * In-between the 'other interrupts' and the TX interrupts we have the
151  * reclamation of TX buffers. This operation is not quite as important as we
152  * generally size the ring large enough that we should be able to reclaim a
153  * substantial amount of the descriptors that we have used per interrupt. So
154  * while it's important that this interrupt occur, we don't necessarily need it
155  * firing as frequently as RX; it doesn't, on its own, induce additional latency
156  * into the system.
157  *
158  * Based on all this we currently assign static ITR values for the system. While
159  * we could move to a dynamic system (the hardware supports that), we'd want to
160  * make sure that we're seeing problems from this that we believe would be
161  * generally helped by the added complexity.
162  *
163  * Based on this, the default values that we have allow for the following
164  * interrupt thresholds:
165  *
166  *    o 20k interrupts/s for RX
167  *    o 5k interrupts/s for TX
168  *    o 2k interupts/s for 'Other Interrupts'
169  */
170 
171 #include "i40e_sw.h"
172 
173 #define	I40E_INTR_NOTX_QUEUE	0
174 #define	I40E_INTR_NOTX_INTR	0
175 #define	I40E_INTR_NOTX_RX_QUEUE	0
176 #define	I40E_INTR_NOTX_RX_MASK	(1 << I40E_PFINT_ICR0_QUEUE_0_SHIFT)
177 #define	I40E_INTR_NOTX_TX_QUEUE	1
178 #define	I40E_INTR_NOTX_TX_MASK	(1 << I40E_PFINT_ICR0_QUEUE_1_SHIFT)
179 
180 void
181 i40e_intr_set_itr(i40e_t *i40e, i40e_itr_index_t itr, uint_t val)
182 {
183 	int i;
184 	i40e_hw_t *hw = &i40e->i40e_hw_space;
185 
186 	VERIFY3U(val, <=, I40E_MAX_ITR);
187 	VERIFY3U(itr, <, I40E_ITR_INDEX_NONE);
188 
189 	/*
190 	 * No matter the interrupt mode, the ITR for other interrupts is always
191 	 * on interrupt zero and the same is true if we're not using MSI-X.
192 	 */
193 	if (itr == I40E_ITR_INDEX_OTHER ||
194 	    i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
195 		I40E_WRITE_REG(hw, I40E_PFINT_ITR0(itr), val);
196 		return;
197 	}
198 
199 	for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
200 		I40E_WRITE_REG(hw, I40E_PFINT_ITRN(itr, i), val);
201 	}
202 }
203 
204 /*
205  * Re-enable the adminq. Note that the adminq doesn't have a traditional queue
206  * associated with it from an interrupt perspective and just lives on ICR0.
207  * However when MSI-X interrupts are not being used, then this also enables and
208  * disables those interrupts.
209  */
210 static void
211 i40e_intr_adminq_enable(i40e_t *i40e)
212 {
213 	i40e_hw_t *hw = &i40e->i40e_hw_space;
214 	uint32_t reg;
215 
216 	reg = I40E_PFINT_DYN_CTL0_INTENA_MASK |
217 	    I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
218 	    (I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
219 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, reg);
220 	i40e_flush(hw);
221 }
222 
223 static void
224 i40e_intr_adminq_disable(i40e_t *i40e)
225 {
226 	i40e_hw_t *hw = &i40e->i40e_hw_space;
227 	uint32_t reg;
228 
229 	reg = I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT;
230 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, reg);
231 }
232 
233 /*
234  * The next two functions enable/disable the reception of interrupts
235  * on the given vector. Only vectors 1..N are programmed by these
236  * functions; vector 0 is special and handled by a different register.
237  * We must subtract one from the vector because i40e implicitly adds
238  * one to the vector value. See section 10.2.2.10.13 for more details.
239  */
240 static void
241 i40e_intr_io_enable(i40e_t *i40e, int vector)
242 {
243 	uint32_t reg;
244 	i40e_hw_t *hw = &i40e->i40e_hw_space;
245 
246 	ASSERT3S(vector, >, 0);
247 	reg = I40E_PFINT_DYN_CTLN_INTENA_MASK |
248 	    I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
249 	    (I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
250 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vector - 1), reg);
251 }
252 
253 static void
254 i40e_intr_io_disable(i40e_t *i40e, int vector)
255 {
256 	uint32_t reg;
257 	i40e_hw_t *hw = &i40e->i40e_hw_space;
258 
259 	ASSERT3S(vector, >, 0);
260 	reg = I40E_ITR_INDEX_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
261 	I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vector - 1), reg);
262 }
263 
264 /*
265  * When MSI-X interrupts are being used, then we can enable the actual
266  * interrupts themselves. However, when they are not, we instead have to turn
267  * towards the queue's CAUSE_ENA bit and enable that.
268  */
269 void
270 i40e_intr_io_enable_all(i40e_t *i40e)
271 {
272 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
273 		int i;
274 
275 		for (i = 1; i < i40e->i40e_intr_count; i++) {
276 			i40e_intr_io_enable(i40e, i);
277 		}
278 	} else {
279 		uint32_t reg;
280 		i40e_hw_t *hw = &i40e->i40e_hw_space;
281 
282 		reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE));
283 		reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
284 		I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg);
285 
286 		reg = I40E_READ_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE));
287 		reg |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
288 		I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg);
289 	}
290 }
291 
292 /*
293  * When MSI-X interrupts are being used, then we can disable the actual
294  * interrupts themselves. However, when they are not, we instead have to turn
295  * towards the queue's CAUSE_ENA bit and disable that.
296  */
297 void
298 i40e_intr_io_disable_all(i40e_t *i40e)
299 {
300 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
301 		int i;
302 
303 		for (i = 1; i < i40e->i40e_intr_count; i++) {
304 			i40e_intr_io_disable(i40e, i);
305 		}
306 	} else {
307 		uint32_t reg;
308 		i40e_hw_t *hw = &i40e->i40e_hw_space;
309 
310 		reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE));
311 		reg &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
312 		I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg);
313 
314 		reg = I40E_READ_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE));
315 		reg &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
316 		I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg);
317 	}
318 }
319 
320 /*
321  * As part of disabling the tx and rx queue's we're technically supposed to
322  * remove the linked list entries. The simplest way is to clear the LNKLSTN
323  * register by setting it to I40E_QUEUE_TYPE_EOL (0x7FF).
324  *
325  * Note all of the FM register access checks are performed by the caller.
326  */
327 void
328 i40e_intr_io_clear_cause(i40e_t *i40e)
329 {
330 	uint32_t i;
331 	i40e_hw_t *hw = &i40e->i40e_hw_space;
332 
333 	if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
334 		uint32_t reg;
335 		reg = I40E_QUEUE_TYPE_EOL;
336 		I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, reg);
337 		return;
338 	}
339 
340 	for (i = 0; i < i40e->i40e_intr_count - 1; i++) {
341 		uint32_t reg;
342 
343 		reg = I40E_QUEUE_TYPE_EOL;
344 		I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(i), reg);
345 	}
346 
347 	i40e_flush(hw);
348 }
349 
350 /*
351  * Finalize interrupt handling. Mostly this disables the admin queue.
352  */
353 void
354 i40e_intr_chip_fini(i40e_t *i40e)
355 {
356 #ifdef DEBUG
357 	int i;
358 	uint32_t reg;
359 
360 	i40e_hw_t *hw = &i40e->i40e_hw_space;
361 
362 	/*
363 	 * Take a look and verify that all other interrupts have been disabled
364 	 * and the interrupt linked lists have been zeroed.
365 	 */
366 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
367 		for (i = 0; i < i40e->i40e_intr_count - 1; i++) {
368 			reg = I40E_READ_REG(hw, I40E_PFINT_DYN_CTLN(i));
369 			VERIFY0(reg & I40E_PFINT_DYN_CTLN_INTENA_MASK);
370 
371 			reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i));
372 			VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
373 		}
374 	}
375 #endif
376 
377 	i40e_intr_adminq_disable(i40e);
378 }
379 
380 /*
381  * Set the head of the interrupt linked list. The PFINT_LNKLSTN[N]
382  * register actually refers to the 'N + 1' interrupt vector. E.g.,
383  * PFINT_LNKLSTN[0] refers to interrupt vector 1.
384  */
385 static void
386 i40e_set_lnklstn(i40e_t *i40e, uint_t vector, uint_t queue)
387 {
388 	uint32_t	reg;
389 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
390 
391 	reg = (queue << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT) |
392 	    (I40E_QUEUE_TYPE_RX << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT);
393 
394 	I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(vector), reg);
395 	DEBUGOUT2("PFINT_LNKLSTN[%u] = 0x%x", vector, reg);
396 }
397 
398 /*
399  * Set the QINT_RQCTL[queue] register. The next queue is always the Tx
400  * queue associated with this Rx queue. Unlike PFINT_LNKLSTN, the
401  * vector should be the actual vector this queue is on -- i.e., it
402  * should be equal to itrq_rx_intrvec.
403  */
404 static void
405 i40e_set_rqctl(i40e_t *i40e, uint_t vector, uint_t queue)
406 {
407 	uint32_t	reg;
408 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
409 
410 	ASSERT3U(vector, ==, i40e->i40e_trqpairs[queue].itrq_rx_intrvec);
411 
412 	reg = (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
413 	    (I40E_ITR_INDEX_RX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
414 	    (queue << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
415 	    (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) |
416 	    I40E_QINT_RQCTL_CAUSE_ENA_MASK;
417 
418 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg);
419 	DEBUGOUT2("QINT_RQCTL[%u] = 0x%x", queue, reg);
420 }
421 
422 /*
423  * Like i40e_set_rqctl(), but for QINT_TQCTL[queue]. The next queue is
424  * either the Rx queue of another TRQP, or EOL.
425  */
426 static void
427 i40e_set_tqctl(i40e_t *i40e, uint_t vector, uint_t queue, uint_t next_queue)
428 {
429 	uint32_t	reg;
430 	i40e_hw_t	*hw = &i40e->i40e_hw_space;
431 
432 	ASSERT3U(vector, ==, i40e->i40e_trqpairs[queue].itrq_tx_intrvec);
433 
434 	reg = (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
435 	    (I40E_ITR_INDEX_TX << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
436 	    (next_queue << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
437 	    (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT) |
438 	    I40E_QINT_TQCTL_CAUSE_ENA_MASK;
439 
440 	I40E_WRITE_REG(hw, I40E_QINT_TQCTL(queue), reg);
441 	DEBUGOUT2("QINT_TQCTL[%u] = 0x%x", queue, reg);
442 }
443 
444 /*
445  * Program the interrupt linked list. Each vector has a linked list of
446  * queues which act as event sources for that vector. When one of
447  * those sources has an event the associated interrupt vector is
448  * fired. This mapping must match the mapping found in
449  * i40e_map_intrs_to_vectors().
450  *
451  * See section 7.5.3 for more information about the configuration of
452  * the interrupt linked list.
453  */
454 static void
455 i40e_intr_init_queue_msix(i40e_t *i40e)
456 {
457 	uint_t intr_count;
458 
459 	/*
460 	 * The 0th vector is for 'Other Interrupts' only (subject to
461 	 * change in the future).
462 	 */
463 	intr_count = i40e->i40e_intr_count - 1;
464 
465 	for (uint_t vec = 0; vec < intr_count; vec++) {
466 		boolean_t head = B_TRUE;
467 
468 		for (uint_t qidx = vec; qidx < i40e->i40e_num_trqpairs;
469 		    qidx += intr_count) {
470 			uint_t next_qidx = qidx + intr_count;
471 
472 			next_qidx = (next_qidx > i40e->i40e_num_trqpairs) ?
473 			    I40E_QUEUE_TYPE_EOL : next_qidx;
474 
475 			if (head) {
476 				i40e_set_lnklstn(i40e, vec, qidx);
477 				head = B_FALSE;
478 			}
479 
480 			i40e_set_rqctl(i40e, vec + 1, qidx);
481 			i40e_set_tqctl(i40e, vec + 1, qidx, next_qidx);
482 		}
483 	}
484 }
485 
486 /*
487  * Set up a single queue to share the admin queue interrupt in the non-MSI-X
488  * world. Note we do not enable the queue as an interrupt cause at this time. We
489  * don't have any other vector of control here, unlike with the MSI-X interrupt
490  * case.
491  */
492 static void
493 i40e_intr_init_queue_shared(i40e_t *i40e)
494 {
495 	i40e_hw_t *hw = &i40e->i40e_hw_space;
496 	uint32_t reg;
497 
498 	VERIFY(i40e->i40e_intr_type == DDI_INTR_TYPE_FIXED ||
499 	    i40e->i40e_intr_type == DDI_INTR_TYPE_MSI);
500 
501 	reg = (I40E_INTR_NOTX_QUEUE << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT) |
502 	    (I40E_QUEUE_TYPE_RX << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT);
503 	I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, reg);
504 
505 	reg = (I40E_INTR_NOTX_INTR << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
506 	    (I40E_ITR_INDEX_RX << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
507 	    (I40E_INTR_NOTX_RX_QUEUE << I40E_QINT_RQCTL_MSIX0_INDX_SHIFT) |
508 	    (I40E_INTR_NOTX_QUEUE << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
509 	    (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
510 
511 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(I40E_INTR_NOTX_QUEUE), reg);
512 
513 	reg = (I40E_INTR_NOTX_INTR << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
514 	    (I40E_ITR_INDEX_TX << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
515 	    (I40E_INTR_NOTX_TX_QUEUE << I40E_QINT_TQCTL_MSIX0_INDX_SHIFT) |
516 	    (I40E_QUEUE_TYPE_EOL << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
517 	    (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
518 
519 	I40E_WRITE_REG(hw, I40E_QINT_TQCTL(I40E_INTR_NOTX_QUEUE), reg);
520 }
521 
522 /*
523  * Enable the specified queue as a valid source of interrupts. Note, this should
524  * only be used as part of the GLDv3's interrupt blanking routines. The debug
525  * build assertions are specific to that.
526  */
527 void
528 i40e_intr_rx_queue_enable(i40e_trqpair_t *itrq)
529 {
530 	uint32_t reg;
531 	uint_t queue = itrq->itrq_index;
532 	i40e_hw_t *hw = &itrq->itrq_i40e->i40e_hw_space;
533 
534 	ASSERT(MUTEX_HELD(&itrq->itrq_rx_lock));
535 	ASSERT(queue < itrq->itrq_i40e->i40e_num_trqpairs);
536 
537 	reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(queue));
538 	ASSERT0(reg & I40E_QINT_RQCTL_CAUSE_ENA_MASK);
539 	reg |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
540 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg);
541 }
542 
543 /*
544  * Disable the specified queue as a valid source of interrupts. Note, this
545  * should only be used as part of the GLDv3's interrupt blanking routines. The
546  * debug build assertions are specific to that.
547  */
548 void
549 i40e_intr_rx_queue_disable(i40e_trqpair_t *itrq)
550 {
551 	uint32_t reg;
552 	uint_t queue = itrq->itrq_index;
553 	i40e_hw_t *hw = &itrq->itrq_i40e->i40e_hw_space;
554 
555 	ASSERT(MUTEX_HELD(&itrq->itrq_rx_lock));
556 	ASSERT(queue < itrq->itrq_i40e->i40e_num_trqpairs);
557 
558 	reg = I40E_READ_REG(hw, I40E_QINT_RQCTL(queue));
559 	ASSERT3U(reg & I40E_QINT_RQCTL_CAUSE_ENA_MASK, ==,
560 	    I40E_QINT_RQCTL_CAUSE_ENA_MASK);
561 	reg &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
562 	I40E_WRITE_REG(hw, I40E_QINT_RQCTL(queue), reg);
563 }
564 
565 /*
566  * Start up the various chip's interrupt handling. We not only configure the
567  * adminq here, but we also go through and configure all of the actual queues,
568  * the interrupt linked lists, and others.
569  */
570 void
571 i40e_intr_chip_init(i40e_t *i40e)
572 {
573 	i40e_hw_t *hw = &i40e->i40e_hw_space;
574 	uint32_t reg;
575 
576 	/*
577 	 * Ensure that all non adminq interrupts are disabled at the chip level.
578 	 */
579 	i40e_intr_io_disable_all(i40e);
580 
581 	I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, 0);
582 	(void) I40E_READ_REG(hw, I40E_PFINT_ICR0);
583 
584 	/*
585 	 * Always enable all of the other-class interrupts to be on their own
586 	 * ITR. This only needs to be set on interrupt zero, which has its own
587 	 * special setting.
588 	 */
589 	reg = I40E_ITR_INDEX_OTHER << I40E_PFINT_STAT_CTL0_OTHER_ITR_INDX_SHIFT;
590 	I40E_WRITE_REG(hw, I40E_PFINT_STAT_CTL0, reg);
591 
592 	/*
593 	 * Enable interrupt types we expect to receive. At the moment, this
594 	 * is limited to the adminq; however, we'll want to review 11.2.2.9.22
595 	 * for more types here as we add support for detecting them, handling
596 	 * them, and resetting the device as appropriate.
597 	 */
598 	reg = I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
599 	I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, reg);
600 
601 	/*
602 	 * Always set the interrupt linked list to empty. We'll come back and
603 	 * change this if MSI-X are actually on the scene.
604 	 */
605 	I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_TYPE_EOL);
606 
607 	i40e_intr_adminq_enable(i40e);
608 
609 	/*
610 	 * Set up all of the queues and map them to interrupts based on the bit
611 	 * assignments.
612 	 */
613 	if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
614 		i40e_intr_init_queue_msix(i40e);
615 	} else {
616 		i40e_intr_init_queue_shared(i40e);
617 	}
618 
619 	/*
620 	 * Finally set all of the default ITRs for the interrupts. Note that the
621 	 * queues will have been set up above.
622 	 */
623 	i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr);
624 	i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr);
625 	i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER, i40e->i40e_other_itr);
626 }
627 
628 static void
629 i40e_intr_adminq_work(i40e_t *i40e)
630 {
631 	struct i40e_hw *hw = &i40e->i40e_hw_space;
632 	struct i40e_arq_event_info evt;
633 	uint16_t remain = 1;
634 
635 	bzero(&evt, sizeof (struct i40e_arq_event_info));
636 	evt.buf_len = I40E_ADMINQ_BUFSZ;
637 	evt.msg_buf = i40e->i40e_aqbuf;
638 
639 	while (remain != 0) {
640 		enum i40e_status_code ret;
641 		uint16_t opcode;
642 
643 		/*
644 		 * At the moment, the only error code that seems to be returned
645 		 * is one saying that there's no work. In such a case we leave
646 		 * this be.
647 		 */
648 		ret = i40e_clean_arq_element(hw, &evt, &remain);
649 		if (ret != I40E_SUCCESS)
650 			break;
651 
652 		opcode = LE_16(evt.desc.opcode);
653 		switch (opcode) {
654 		case i40e_aqc_opc_get_link_status:
655 			mutex_enter(&i40e->i40e_general_lock);
656 			i40e_link_check(i40e);
657 			mutex_exit(&i40e->i40e_general_lock);
658 			break;
659 		default:
660 			/*
661 			 * Longer term we'll want to enable other causes here
662 			 * and get these cleaned up and doing something.
663 			 */
664 			break;
665 		}
666 	}
667 }
668 
669 static void
670 i40e_intr_rx_work(i40e_t *i40e, i40e_trqpair_t *itrq)
671 {
672 	mblk_t *mp = NULL;
673 
674 	mutex_enter(&itrq->itrq_rx_lock);
675 	if (!itrq->itrq_intr_poll)
676 		mp = i40e_ring_rx(itrq, I40E_POLL_NULL);
677 	mutex_exit(&itrq->itrq_rx_lock);
678 
679 	if (mp == NULL)
680 		return;
681 
682 	mac_rx_ring(i40e->i40e_mac_hdl, itrq->itrq_macrxring, mp,
683 	    itrq->itrq_rxgen);
684 }
685 
686 /* ARGSUSED */
687 static void
688 i40e_intr_tx_work(i40e_t *i40e, i40e_trqpair_t *itrq)
689 {
690 	i40e_tx_recycle_ring(itrq);
691 }
692 
693 /*
694  * At the moment, the only 'other' interrupt on ICR0 that we handle is the
695  * adminq. We should go through and support the other notifications at some
696  * point.
697  */
698 static void
699 i40e_intr_other_work(i40e_t *i40e)
700 {
701 	struct i40e_hw *hw = &i40e->i40e_hw_space;
702 	uint32_t reg;
703 
704 	reg = I40E_READ_REG(hw, I40E_PFINT_ICR0);
705 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
706 	    DDI_FM_OK) {
707 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED);
708 		atomic_or_32(&i40e->i40e_state, I40E_ERROR);
709 		return;
710 	}
711 
712 	if (reg & I40E_PFINT_ICR0_ADMINQ_MASK)
713 		i40e_intr_adminq_work(i40e);
714 
715 	/*
716 	 * Make sure that the adminq interrupt is not masked and then explicitly
717 	 * enable the adminq and thus the other interrupt.
718 	 */
719 	reg = I40E_READ_REG(hw, I40E_PFINT_ICR0_ENA);
720 	reg |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
721 	I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, reg);
722 
723 	i40e_intr_adminq_enable(i40e);
724 }
725 
726 /*
727  * The prolog/epilog pair of functions ensure the integrity of the trqpair
728  * across ring stop/start operations.
729  *
730  * A ring stop operation will wait whilst an interrupt is processing a
731  * trqpair, and when a ring is stopped the interrupt handler will skip
732  * the trqpair.
733  */
734 static boolean_t
735 i40e_intr_trqpair_prolog(i40e_trqpair_t *itrq)
736 {
737 	boolean_t enabled;
738 
739 	mutex_enter(&itrq->itrq_intr_lock);
740 	enabled = !itrq->itrq_intr_quiesce;
741 	if (enabled)
742 		itrq->itrq_intr_busy = B_TRUE;
743 	mutex_exit(&itrq->itrq_intr_lock);
744 
745 	return (enabled);
746 }
747 
748 static void
749 i40e_intr_trqpair_epilog(i40e_trqpair_t *itrq)
750 {
751 	mutex_enter(&itrq->itrq_intr_lock);
752 	itrq->itrq_intr_busy = B_FALSE;
753 	if (itrq->itrq_intr_quiesce)
754 		cv_signal(&itrq->itrq_intr_cv);
755 	mutex_exit(&itrq->itrq_intr_lock);
756 }
757 
758 /*
759  * Tell any active interrupt vectors the ring is quiescing, then
760  * wait until any active interrupt thread has finished with this
761  * trqpair.
762  */
763 void
764 i40e_intr_quiesce(i40e_trqpair_t *itrq)
765 {
766 	mutex_enter(&itrq->itrq_intr_lock);
767 	itrq->itrq_intr_quiesce = B_TRUE;
768 	while (itrq->itrq_intr_busy)
769 		cv_wait(&itrq->itrq_intr_cv, &itrq->itrq_intr_lock);
770 	mutex_exit(&itrq->itrq_intr_lock);
771 }
772 
773 /*
774  * Handle an MSI-X interrupt. See section 7.5.1.3 for an overview of
775  * the MSI-X interrupt sequence.
776  */
777 uint_t
778 i40e_intr_msix(void *arg1, void *arg2)
779 {
780 	i40e_t *i40e = (i40e_t *)arg1;
781 	uint_t vector_idx = (uint_t)(uintptr_t)arg2;
782 
783 	ASSERT3U(vector_idx, <, i40e->i40e_intr_count);
784 
785 	/*
786 	 * When using MSI-X interrupts, vector 0 is always reserved for the
787 	 * adminq at this time. Though longer term, we'll want to also bridge
788 	 * some I/O to them.
789 	 */
790 	if (vector_idx == 0) {
791 		i40e_intr_other_work(i40e);
792 		return (DDI_INTR_CLAIMED);
793 	}
794 
795 	ASSERT3U(vector_idx, >, 0);
796 
797 	/*
798 	 * We determine the queue indexes via simple arithmetic (as
799 	 * opposed to keeping explicit state like a bitmap). While
800 	 * conveinent, it does mean that i40e_map_intrs_to_vectors(),
801 	 * i40e_intr_init_queue_msix(), and this function must be
802 	 * modified as a unit.
803 	 *
804 	 * We subtract 1 from the vector to offset the addition we
805 	 * performed during i40e_map_intrs_to_vectors().
806 	 */
807 	for (uint_t i = vector_idx - 1; i < i40e->i40e_num_trqpairs;
808 	    i += (i40e->i40e_intr_count - 1)) {
809 		i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
810 
811 		ASSERT3U(i, <, i40e->i40e_num_trqpairs);
812 		ASSERT3P(itrq, !=, NULL);
813 		if (!i40e_intr_trqpair_prolog(itrq))
814 			continue;
815 
816 		i40e_intr_rx_work(i40e, itrq);
817 		i40e_intr_tx_work(i40e, itrq);
818 
819 		i40e_intr_trqpair_epilog(itrq);
820 	}
821 
822 	i40e_intr_io_enable(i40e, vector_idx);
823 	return (DDI_INTR_CLAIMED);
824 }
825 
826 static uint_t
827 i40e_intr_notx(i40e_t *i40e, boolean_t shared)
828 {
829 	i40e_hw_t *hw = &i40e->i40e_hw_space;
830 	uint32_t reg;
831 	i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[0];
832 	int ret = DDI_INTR_CLAIMED;
833 
834 	if (shared == B_TRUE) {
835 		mutex_enter(&i40e->i40e_general_lock);
836 		if (i40e->i40e_state & I40E_SUSPENDED) {
837 			mutex_exit(&i40e->i40e_general_lock);
838 			return (DDI_INTR_UNCLAIMED);
839 		}
840 		mutex_exit(&i40e->i40e_general_lock);
841 	}
842 
843 	reg = I40E_READ_REG(hw, I40E_PFINT_ICR0);
844 	if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
845 	    DDI_FM_OK) {
846 		ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED);
847 		atomic_or_32(&i40e->i40e_state, I40E_ERROR);
848 		return (DDI_INTR_CLAIMED);
849 	}
850 
851 	if (reg == 0) {
852 		if (shared == B_TRUE)
853 			ret = DDI_INTR_UNCLAIMED;
854 		goto done;
855 	}
856 
857 	if (reg & I40E_PFINT_ICR0_ADMINQ_MASK)
858 		i40e_intr_adminq_work(i40e);
859 
860 	if (i40e_intr_trqpair_prolog(itrq)) {
861 		if (reg & I40E_INTR_NOTX_RX_MASK)
862 			i40e_intr_rx_work(i40e, itrq);
863 
864 		if (reg & I40E_INTR_NOTX_TX_MASK)
865 			i40e_intr_tx_work(i40e, itrq);
866 
867 		i40e_intr_trqpair_epilog(itrq);
868 	}
869 
870 done:
871 	i40e_intr_adminq_enable(i40e);
872 	return (ret);
873 
874 }
875 
876 /* ARGSUSED */
877 uint_t
878 i40e_intr_msi(void *arg1, void *arg2)
879 {
880 	i40e_t *i40e = (i40e_t *)arg1;
881 
882 	return (i40e_intr_notx(i40e, B_FALSE));
883 }
884 
885 /* ARGSUSED */
886 uint_t
887 i40e_intr_legacy(void *arg1, void *arg2)
888 {
889 	i40e_t *i40e = (i40e_t *)arg1;
890 
891 	return (i40e_intr_notx(i40e, B_TRUE));
892 }
893