1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved. 14 * Copyright 2016 Joyent, Inc. 15 * Copyright 2017 Tegile Systems, Inc. All rights reserved. 16 */ 17 18 /* 19 * For more information, please see the big theory statement in i40e_main.c. 20 */ 21 22 #include "i40e_sw.h" 23 24 #define I40E_PROP_RX_DMA_THRESH "_rx_dma_threshold" 25 #define I40E_PROP_TX_DMA_THRESH "_tx_dma_threshold" 26 #define I40E_PROP_RX_ITR "_rx_intr_throttle" 27 #define I40E_PROP_TX_ITR "_tx_intr_throttle" 28 #define I40E_PROP_OTHER_ITR "_other_intr_throttle" 29 30 char *i40e_priv_props[] = { 31 I40E_PROP_RX_DMA_THRESH, 32 I40E_PROP_TX_DMA_THRESH, 33 I40E_PROP_RX_ITR, 34 I40E_PROP_TX_ITR, 35 I40E_PROP_OTHER_ITR, 36 NULL 37 }; 38 39 static int 40 i40e_group_remove_mac(void *arg, const uint8_t *mac_addr) 41 { 42 i40e_t *i40e = arg; 43 struct i40e_aqc_remove_macvlan_element_data filt; 44 struct i40e_hw *hw = &i40e->i40e_hw_space; 45 int ret, i, last; 46 i40e_uaddr_t *iua; 47 48 if (I40E_IS_MULTICAST(mac_addr)) 49 return (EINVAL); 50 51 mutex_enter(&i40e->i40e_general_lock); 52 53 if (i40e->i40e_state & I40E_SUSPENDED) { 54 ret = ECANCELED; 55 goto done; 56 } 57 58 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) { 59 if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac, 60 ETHERADDRL) == 0) 61 break; 62 } 63 64 if (i == i40e->i40e_resources.ifr_nmacfilt_used) { 65 ret = ENOENT; 66 goto done; 67 } 68 69 iua = &i40e->i40e_uaddrs[i]; 70 ASSERT(i40e->i40e_resources.ifr_nmacfilt_used > 0); 71 72 bzero(&filt, sizeof (filt)); 73 bcopy(mac_addr, filt.mac_addr, ETHERADDRL); 74 filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 75 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 76 77 if (i40e_aq_remove_macvlan(hw, iua->iua_vsi, &filt, 1, NULL) != 78 I40E_SUCCESS) { 79 i40e_error(i40e, "failed to remove mac address " 80 "%2x:%2x:%2x:%2x:%2x:%2x from unicast filter: %d", 81 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 82 mac_addr[4], mac_addr[5], filt.error_code); 83 ret = EIO; 84 goto done; 85 } 86 87 last = i40e->i40e_resources.ifr_nmacfilt_used - 1; 88 if (i != last) { 89 i40e_uaddr_t *src = &i40e->i40e_uaddrs[last]; 90 bcopy(src, iua, sizeof (i40e_uaddr_t)); 91 } 92 93 /* 94 * Set the multicast bit in the last one to indicate to ourselves that 95 * it's invalid. 96 */ 97 bzero(&i40e->i40e_uaddrs[last], sizeof (i40e_uaddr_t)); 98 i40e->i40e_uaddrs[last].iua_mac[0] = 0x01; 99 i40e->i40e_resources.ifr_nmacfilt_used--; 100 ret = 0; 101 done: 102 mutex_exit(&i40e->i40e_general_lock); 103 104 return (ret); 105 } 106 107 static int 108 i40e_group_add_mac(void *arg, const uint8_t *mac_addr) 109 { 110 i40e_t *i40e = arg; 111 struct i40e_hw *hw = &i40e->i40e_hw_space; 112 int i, ret; 113 i40e_uaddr_t *iua; 114 struct i40e_aqc_add_macvlan_element_data filt; 115 116 if (I40E_IS_MULTICAST(mac_addr)) 117 return (EINVAL); 118 119 mutex_enter(&i40e->i40e_general_lock); 120 if (i40e->i40e_state & I40E_SUSPENDED) { 121 ret = ECANCELED; 122 goto done; 123 } 124 125 if (i40e->i40e_resources.ifr_nmacfilt == 126 i40e->i40e_resources.ifr_nmacfilt_used) { 127 ret = ENOSPC; 128 goto done; 129 } 130 131 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) { 132 if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac, 133 ETHERADDRL) == 0) { 134 ret = EEXIST; 135 goto done; 136 } 137 } 138 139 /* 140 * Note, the general use of the i40e_vsi_id will have to be refactored 141 * when we have proper group support. 142 */ 143 bzero(&filt, sizeof (filt)); 144 bcopy(mac_addr, filt.mac_addr, ETHERADDRL); 145 filt.flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH | 146 I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 147 148 if ((ret = i40e_aq_add_macvlan(hw, i40e->i40e_vsi_id, &filt, 1, 149 NULL)) != I40E_SUCCESS) { 150 i40e_error(i40e, "failed to add mac address " 151 "%2x:%2x:%2x:%2x:%2x:%2x to unicast filter: %d", 152 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 153 mac_addr[4], mac_addr[5], ret); 154 ret = EIO; 155 goto done; 156 } 157 158 iua = &i40e->i40e_uaddrs[i40e->i40e_resources.ifr_nmacfilt_used]; 159 bcopy(mac_addr, iua->iua_mac, ETHERADDRL); 160 iua->iua_vsi = i40e->i40e_vsi_id; 161 i40e->i40e_resources.ifr_nmacfilt_used++; 162 ASSERT(i40e->i40e_resources.ifr_nmacfilt_used <= 163 i40e->i40e_resources.ifr_nmacfilt); 164 ret = 0; 165 done: 166 mutex_exit(&i40e->i40e_general_lock); 167 return (ret); 168 } 169 170 static int 171 i40e_m_start(void *arg) 172 { 173 i40e_t *i40e = arg; 174 int rc = 0; 175 176 mutex_enter(&i40e->i40e_general_lock); 177 if (i40e->i40e_state & I40E_SUSPENDED) { 178 rc = ECANCELED; 179 goto done; 180 } 181 182 if (!i40e_start(i40e, B_TRUE)) { 183 rc = EIO; 184 goto done; 185 } 186 187 atomic_or_32(&i40e->i40e_state, I40E_STARTED); 188 done: 189 mutex_exit(&i40e->i40e_general_lock); 190 191 return (rc); 192 } 193 194 static void 195 i40e_m_stop(void *arg) 196 { 197 i40e_t *i40e = arg; 198 199 mutex_enter(&i40e->i40e_general_lock); 200 201 if (i40e->i40e_state & I40E_SUSPENDED) 202 goto done; 203 204 atomic_and_32(&i40e->i40e_state, ~I40E_STARTED); 205 i40e_stop(i40e, B_TRUE); 206 done: 207 mutex_exit(&i40e->i40e_general_lock); 208 } 209 210 /* 211 * Enable and disable promiscuous mode as requested. We have to toggle both 212 * unicast and multicast. Note that multicast may already be enabled due to the 213 * i40e_m_multicast may toggle it itself. See i40e_main.c for more information 214 * on this. 215 */ 216 static int 217 i40e_m_promisc(void *arg, boolean_t on) 218 { 219 i40e_t *i40e = arg; 220 struct i40e_hw *hw = &i40e->i40e_hw_space; 221 int ret = 0, err = 0; 222 223 mutex_enter(&i40e->i40e_general_lock); 224 if (i40e->i40e_state & I40E_SUSPENDED) { 225 ret = ECANCELED; 226 goto done; 227 } 228 229 230 ret = i40e_aq_set_vsi_unicast_promiscuous(hw, i40e->i40e_vsi_id, 231 on, NULL, B_FALSE); 232 if (ret != I40E_SUCCESS) { 233 i40e_error(i40e, "failed to %s unicast promiscuity on " 234 "the default VSI: %d", on == B_TRUE ? "enable" : "disable", 235 ret); 236 err = EIO; 237 goto done; 238 } 239 240 /* 241 * If we have a non-zero mcast_promisc_count, then it has already been 242 * enabled or we need to leave it that way and not touch it. 243 */ 244 if (i40e->i40e_mcast_promisc_count > 0) { 245 i40e->i40e_promisc_on = on; 246 goto done; 247 } 248 249 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, i40e->i40e_vsi_id, 250 on, NULL); 251 if (ret != I40E_SUCCESS) { 252 i40e_error(i40e, "failed to %s multicast promiscuity on " 253 "the default VSI: %d", on == B_TRUE ? "enable" : "disable", 254 ret); 255 256 /* 257 * Try our best to put us back into a state that MAC expects us 258 * to be in. 259 */ 260 ret = i40e_aq_set_vsi_unicast_promiscuous(hw, i40e->i40e_vsi_id, 261 !on, NULL, B_FALSE); 262 if (ret != I40E_SUCCESS) { 263 i40e_error(i40e, "failed to %s unicast promiscuity on " 264 "the default VSI after toggling multicast failed: " 265 "%d", on == B_TRUE ? "disable" : "enable", ret); 266 } 267 268 err = EIO; 269 goto done; 270 } else { 271 i40e->i40e_promisc_on = on; 272 } 273 274 done: 275 mutex_exit(&i40e->i40e_general_lock); 276 return (err); 277 } 278 279 /* 280 * See the big theory statement in i40e_main.c for multicast address management. 281 */ 282 static int 283 i40e_multicast_add(i40e_t *i40e, const uint8_t *multicast_address) 284 { 285 struct i40e_hw *hw = &i40e->i40e_hw_space; 286 struct i40e_aqc_add_macvlan_element_data filt; 287 i40e_maddr_t *mc; 288 int ret; 289 290 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 291 292 if (i40e->i40e_resources.ifr_nmcastfilt_used == 293 i40e->i40e_resources.ifr_nmcastfilt) { 294 if (i40e->i40e_mcast_promisc_count == 0 && 295 i40e->i40e_promisc_on == B_FALSE) { 296 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, 297 i40e->i40e_vsi_id, B_TRUE, NULL); 298 if (ret != I40E_SUCCESS) { 299 i40e_error(i40e, "failed to enable multicast " 300 "promiscuous mode on VSI %d: %d", 301 i40e->i40e_vsi_id, ret); 302 return (EIO); 303 } 304 } 305 i40e->i40e_mcast_promisc_count++; 306 return (0); 307 } 308 309 mc = &i40e->i40e_maddrs[i40e->i40e_resources.ifr_nmcastfilt_used]; 310 bzero(&filt, sizeof (filt)); 311 bcopy(multicast_address, filt.mac_addr, ETHERADDRL); 312 filt.flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH | 313 I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 314 315 if ((ret = i40e_aq_add_macvlan(hw, i40e->i40e_vsi_id, &filt, 1, 316 NULL)) != I40E_SUCCESS) { 317 i40e_error(i40e, "failed to add mac address " 318 "%2x:%2x:%2x:%2x:%2x:%2x to multicast filter: %d", 319 multicast_address[0], multicast_address[1], 320 multicast_address[2], multicast_address[3], 321 multicast_address[4], multicast_address[5], 322 ret); 323 return (EIO); 324 } 325 326 bcopy(multicast_address, mc->ima_mac, ETHERADDRL); 327 i40e->i40e_resources.ifr_nmcastfilt_used++; 328 return (0); 329 } 330 331 /* 332 * See the big theory statement in i40e_main.c for multicast address management. 333 */ 334 static int 335 i40e_multicast_remove(i40e_t *i40e, const uint8_t *multicast_address) 336 { 337 int i, ret; 338 struct i40e_hw *hw = &i40e->i40e_hw_space; 339 340 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 341 342 for (i = 0; i < i40e->i40e_resources.ifr_nmcastfilt_used; i++) { 343 struct i40e_aqc_remove_macvlan_element_data filt; 344 int last; 345 346 if (bcmp(multicast_address, i40e->i40e_maddrs[i].ima_mac, 347 ETHERADDRL) != 0) { 348 continue; 349 } 350 351 bzero(&filt, sizeof (filt)); 352 bcopy(multicast_address, filt.mac_addr, ETHERADDRL); 353 filt.flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH | 354 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 355 356 if (i40e_aq_remove_macvlan(hw, i40e->i40e_vsi_id, 357 &filt, 1, NULL) != I40E_SUCCESS) { 358 i40e_error(i40e, "failed to remove mac address " 359 "%2x:%2x:%2x:%2x:%2x:%2x from multicast " 360 "filter: %d", 361 multicast_address[0], multicast_address[1], 362 multicast_address[2], multicast_address[3], 363 multicast_address[4], multicast_address[5], 364 filt.error_code); 365 return (EIO); 366 } 367 368 last = i40e->i40e_resources.ifr_nmcastfilt_used - 1; 369 if (i != last) { 370 bcopy(&i40e->i40e_maddrs[last], &i40e->i40e_maddrs[i], 371 sizeof (i40e_maddr_t)); 372 bzero(&i40e->i40e_maddrs[last], sizeof (i40e_maddr_t)); 373 } 374 375 ASSERT(i40e->i40e_resources.ifr_nmcastfilt_used > 0); 376 i40e->i40e_resources.ifr_nmcastfilt_used--; 377 return (0); 378 } 379 380 if (i40e->i40e_mcast_promisc_count > 0) { 381 if (i40e->i40e_mcast_promisc_count == 1 && 382 i40e->i40e_promisc_on == B_FALSE) { 383 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, 384 i40e->i40e_vsi_id, B_FALSE, NULL); 385 if (ret != I40E_SUCCESS) { 386 i40e_error(i40e, "failed to disable " 387 "multicast promiscuous mode on VSI %d: %d", 388 i40e->i40e_vsi_id, ret); 389 return (EIO); 390 } 391 } 392 i40e->i40e_mcast_promisc_count--; 393 394 return (0); 395 } 396 397 return (ENOENT); 398 } 399 400 static int 401 i40e_m_multicast(void *arg, boolean_t add, const uint8_t *multicast_address) 402 { 403 i40e_t *i40e = arg; 404 int rc; 405 406 mutex_enter(&i40e->i40e_general_lock); 407 408 if (i40e->i40e_state & I40E_SUSPENDED) { 409 mutex_exit(&i40e->i40e_general_lock); 410 return (ECANCELED); 411 } 412 413 if (add == B_TRUE) { 414 rc = i40e_multicast_add(i40e, multicast_address); 415 } else { 416 rc = i40e_multicast_remove(i40e, multicast_address); 417 } 418 419 mutex_exit(&i40e->i40e_general_lock); 420 return (rc); 421 } 422 423 /* ARGSUSED */ 424 static void 425 i40e_m_ioctl(void *arg, queue_t *q, mblk_t *mp) 426 { 427 /* 428 * At this time, we don't support toggling i40e into loopback mode. It's 429 * questionable how much value this has when there's no clear way to 430 * toggle this behavior from a supported way in userland. 431 */ 432 miocnak(q, mp, 0, EINVAL); 433 } 434 435 static int 436 i40e_ring_start(mac_ring_driver_t rh, uint64_t gen_num) 437 { 438 i40e_trqpair_t *itrq = (i40e_trqpair_t *)rh; 439 440 /* 441 * GLDv3 requires we keep track of a generation number, as it uses 442 * that number to keep track of whether or not a ring is active. 443 */ 444 mutex_enter(&itrq->itrq_rx_lock); 445 itrq->itrq_rxgen = gen_num; 446 mutex_exit(&itrq->itrq_rx_lock); 447 return (0); 448 } 449 450 /* ARGSUSED */ 451 static int 452 i40e_rx_ring_intr_enable(mac_intr_handle_t intrh) 453 { 454 i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh; 455 i40e_t *i40e = itrq->itrq_i40e; 456 457 mutex_enter(&itrq->itrq_rx_lock); 458 ASSERT(itrq->itrq_intr_poll == B_TRUE); 459 i40e_intr_rx_queue_enable(i40e, itrq->itrq_index); 460 itrq->itrq_intr_poll = B_FALSE; 461 mutex_exit(&itrq->itrq_rx_lock); 462 463 return (0); 464 } 465 466 /* ARGSUSED */ 467 static int 468 i40e_rx_ring_intr_disable(mac_intr_handle_t intrh) 469 { 470 i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh; 471 i40e_t *i40e = itrq->itrq_i40e; 472 473 mutex_enter(&itrq->itrq_rx_lock); 474 i40e_intr_rx_queue_disable(i40e, itrq->itrq_index); 475 itrq->itrq_intr_poll = B_TRUE; 476 mutex_exit(&itrq->itrq_rx_lock); 477 478 return (0); 479 } 480 481 /* ARGSUSED */ 482 static void 483 i40e_fill_tx_ring(void *arg, mac_ring_type_t rtype, const int group_index, 484 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh) 485 { 486 i40e_t *i40e = arg; 487 mac_intr_t *mintr = &infop->mri_intr; 488 i40e_trqpair_t *itrq = &(i40e->i40e_trqpairs[ring_index]); 489 490 /* 491 * Note the group index here is expected to be -1 due to the fact that 492 * we're not actually grouping things tx-wise at this time. 493 */ 494 ASSERT(group_index == -1); 495 ASSERT(ring_index < i40e->i40e_num_trqpairs); 496 497 itrq->itrq_mactxring = rh; 498 infop->mri_driver = (mac_ring_driver_t)itrq; 499 infop->mri_start = NULL; 500 infop->mri_stop = NULL; 501 infop->mri_tx = i40e_ring_tx; 502 infop->mri_stat = i40e_tx_ring_stat; 503 504 /* 505 * We only provide the handle in cases where we have MSI-X interrupts, 506 * to indicate that we'd actually support retargetting. 507 */ 508 if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) { 509 mintr->mi_ddi_handle = 510 i40e->i40e_intr_handles[itrq->itrq_tx_intrvec]; 511 } 512 } 513 514 /* ARGSUSED */ 515 static void 516 i40e_fill_rx_ring(void *arg, mac_ring_type_t rtype, const int group_index, 517 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh) 518 { 519 i40e_t *i40e = arg; 520 mac_intr_t *mintr = &infop->mri_intr; 521 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[ring_index]; 522 523 /* 524 * We assert the group number and ring index to help sanity check 525 * ourselves and mark that we'll need to rework this when we have 526 * multiple groups. 527 */ 528 ASSERT3S(group_index, ==, 0); 529 ASSERT3S(ring_index, <, i40e->i40e_num_trqpairs); 530 531 itrq->itrq_macrxring = rh; 532 infop->mri_driver = (mac_ring_driver_t)itrq; 533 infop->mri_start = i40e_ring_start; 534 infop->mri_stop = NULL; 535 infop->mri_poll = i40e_ring_rx_poll; 536 infop->mri_stat = i40e_rx_ring_stat; 537 mintr->mi_handle = (mac_intr_handle_t)itrq; 538 mintr->mi_enable = i40e_rx_ring_intr_enable; 539 mintr->mi_disable = i40e_rx_ring_intr_disable; 540 541 /* 542 * We only provide the handle in cases where we have MSI-X interrupts, 543 * to indicate that we'd actually support retargetting. 544 */ 545 if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) { 546 mintr->mi_ddi_handle = 547 i40e->i40e_intr_handles[itrq->itrq_rx_intrvec]; 548 } 549 } 550 551 /* ARGSUSED */ 552 static void 553 i40e_fill_rx_group(void *arg, mac_ring_type_t rtype, const int index, 554 mac_group_info_t *infop, mac_group_handle_t gh) 555 { 556 i40e_t *i40e = arg; 557 558 if (rtype != MAC_RING_TYPE_RX) 559 return; 560 561 /* 562 * Note, this is a simplified view of a group, given that we only have a 563 * single group and a single ring at the moment. We'll want to expand 564 * upon this as we leverage more hardware functionality. 565 */ 566 i40e->i40e_rx_group_handle = gh; 567 infop->mgi_driver = (mac_group_driver_t)i40e; 568 infop->mgi_start = NULL; 569 infop->mgi_stop = NULL; 570 infop->mgi_addmac = i40e_group_add_mac; 571 infop->mgi_remmac = i40e_group_remove_mac; 572 573 ASSERT(i40e->i40e_num_rx_groups == I40E_GROUP_MAX); 574 infop->mgi_count = i40e->i40e_num_trqpairs; 575 } 576 577 static boolean_t 578 i40e_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 579 { 580 i40e_t *i40e = arg; 581 mac_capab_rings_t *cap_rings; 582 583 switch (cap) { 584 case MAC_CAPAB_HCKSUM: { 585 uint32_t *txflags = cap_data; 586 587 *txflags = 0; 588 if (i40e->i40e_tx_hcksum_enable == B_TRUE) 589 *txflags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; 590 break; 591 } 592 593 case MAC_CAPAB_RINGS: 594 cap_rings = cap_data; 595 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; 596 switch (cap_rings->mr_type) { 597 case MAC_RING_TYPE_TX: 598 /* 599 * Note, saying we have no rings, but some number of 600 * groups indicates to MAC that it should create 601 * psuedo-groups with one for each TX ring. This may not 602 * be the long term behavior we want, but it'll work for 603 * now. 604 */ 605 cap_rings->mr_gnum = 0; 606 cap_rings->mr_rnum = i40e->i40e_num_trqpairs; 607 cap_rings->mr_rget = i40e_fill_tx_ring; 608 cap_rings->mr_gget = NULL; 609 cap_rings->mr_gaddring = NULL; 610 cap_rings->mr_gremring = NULL; 611 break; 612 case MAC_RING_TYPE_RX: 613 cap_rings->mr_rnum = i40e->i40e_num_trqpairs; 614 cap_rings->mr_rget = i40e_fill_rx_ring; 615 cap_rings->mr_gnum = I40E_GROUP_MAX; 616 cap_rings->mr_gget = i40e_fill_rx_group; 617 cap_rings->mr_gaddring = NULL; 618 cap_rings->mr_gremring = NULL; 619 break; 620 default: 621 return (B_FALSE); 622 } 623 break; 624 default: 625 return (B_FALSE); 626 } 627 628 return (B_TRUE); 629 } 630 631 /* ARGSUSED */ 632 static int 633 i40e_m_setprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize, 634 const void *pr_val) 635 { 636 int ret; 637 long val; 638 char *eptr; 639 640 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 641 642 if ((ret = ddi_strtol(pr_val, &eptr, 10, &val)) != 0 || 643 *eptr != '\0') { 644 return (ret); 645 } 646 647 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) { 648 if (val < I40E_MIN_RX_DMA_THRESH || 649 val > I40E_MAX_RX_DMA_THRESH) { 650 return (EINVAL); 651 } 652 i40e->i40e_rx_dma_min = (uint32_t)val; 653 return (0); 654 } 655 656 if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) { 657 if (val < I40E_MIN_TX_DMA_THRESH || 658 val > I40E_MAX_TX_DMA_THRESH) { 659 return (EINVAL); 660 } 661 i40e->i40e_tx_dma_min = (uint32_t)val; 662 return (0); 663 } 664 665 if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) { 666 if (val < I40E_MIN_ITR || 667 val > I40E_MAX_ITR) { 668 return (EINVAL); 669 } 670 i40e->i40e_rx_itr = (uint32_t)val; 671 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr); 672 return (0); 673 } 674 675 if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) { 676 if (val < I40E_MIN_ITR || 677 val > I40E_MAX_ITR) { 678 return (EINVAL); 679 } 680 i40e->i40e_tx_itr = (uint32_t)val; 681 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr); 682 return (0); 683 } 684 685 if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) { 686 if (val < I40E_MIN_ITR || 687 val > I40E_MAX_ITR) { 688 return (EINVAL); 689 } 690 i40e->i40e_tx_itr = (uint32_t)val; 691 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER, 692 i40e->i40e_other_itr); 693 return (0); 694 } 695 696 return (ENOTSUP); 697 } 698 699 static int 700 i40e_m_getprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize, 701 void *pr_val) 702 { 703 uint32_t val; 704 705 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 706 707 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) { 708 val = i40e->i40e_rx_dma_min; 709 } else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) { 710 val = i40e->i40e_tx_dma_min; 711 } else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) { 712 val = i40e->i40e_rx_itr; 713 } else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) { 714 val = i40e->i40e_tx_itr; 715 } else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) { 716 val = i40e->i40e_other_itr; 717 } else { 718 return (ENOTSUP); 719 } 720 721 if (snprintf(pr_val, pr_valsize, "%d", val) >= pr_valsize) 722 return (ERANGE); 723 return (0); 724 } 725 726 /* 727 * Annoyingly for private properties MAC seems to ignore default values that 728 * aren't strings. That means that we have to translate all of these into 729 * uint32_t's and instead we size the buffer to be large enough to hold a 730 * uint32_t. 731 */ 732 /* ARGSUSED */ 733 static void 734 i40e_m_propinfo_private(i40e_t *i40e, const char *pr_name, 735 mac_prop_info_handle_t prh) 736 { 737 char buf[64]; 738 uint32_t def; 739 740 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) { 741 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 742 def = I40E_DEF_RX_DMA_THRESH; 743 mac_prop_info_set_range_uint32(prh, 744 I40E_MIN_RX_DMA_THRESH, 745 I40E_MAX_RX_DMA_THRESH); 746 } else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) { 747 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 748 def = I40E_DEF_TX_DMA_THRESH; 749 mac_prop_info_set_range_uint32(prh, 750 I40E_MIN_TX_DMA_THRESH, 751 I40E_MAX_TX_DMA_THRESH); 752 } else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) { 753 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 754 def = I40E_DEF_RX_ITR; 755 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR); 756 } else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) { 757 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 758 def = I40E_DEF_TX_ITR; 759 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR); 760 } else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) { 761 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 762 def = I40E_DEF_OTHER_ITR; 763 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR); 764 } else { 765 return; 766 } 767 768 (void) snprintf(buf, sizeof (buf), "%d", def); 769 mac_prop_info_set_default_str(prh, buf); 770 } 771 772 static int 773 i40e_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, 774 uint_t pr_valsize, const void *pr_val) 775 { 776 uint32_t new_mtu; 777 i40e_t *i40e = arg; 778 int ret = 0; 779 780 mutex_enter(&i40e->i40e_general_lock); 781 if (i40e->i40e_state & I40E_SUSPENDED) { 782 mutex_exit(&i40e->i40e_general_lock); 783 return (ECANCELED); 784 } 785 786 switch (pr_num) { 787 /* 788 * These properties are always read-only across every device. 789 */ 790 case MAC_PROP_DUPLEX: 791 case MAC_PROP_SPEED: 792 case MAC_PROP_STATUS: 793 case MAC_PROP_ADV_100FDX_CAP: 794 case MAC_PROP_ADV_1000FDX_CAP: 795 case MAC_PROP_ADV_10GFDX_CAP: 796 case MAC_PROP_ADV_25GFDX_CAP: 797 case MAC_PROP_ADV_40GFDX_CAP: 798 ret = ENOTSUP; 799 break; 800 /* 801 * These are read-only at this time as we don't support configuring 802 * auto-negotiation. See the theory statement in i40e_main.c. 803 */ 804 case MAC_PROP_EN_100FDX_CAP: 805 case MAC_PROP_EN_1000FDX_CAP: 806 case MAC_PROP_EN_10GFDX_CAP: 807 case MAC_PROP_EN_25GFDX_CAP: 808 case MAC_PROP_EN_40GFDX_CAP: 809 case MAC_PROP_AUTONEG: 810 case MAC_PROP_FLOWCTRL: 811 ret = ENOTSUP; 812 break; 813 814 case MAC_PROP_MTU: 815 bcopy(pr_val, &new_mtu, sizeof (new_mtu)); 816 if (new_mtu == i40e->i40e_sdu) 817 break; 818 819 if (new_mtu < I40E_MIN_MTU || 820 new_mtu > I40E_MAX_MTU) { 821 ret = EINVAL; 822 break; 823 } 824 825 if (i40e->i40e_state & I40E_STARTED) { 826 ret = EBUSY; 827 break; 828 } 829 830 ret = mac_maxsdu_update(i40e->i40e_mac_hdl, new_mtu); 831 if (ret == 0) { 832 i40e->i40e_sdu = new_mtu; 833 i40e_update_mtu(i40e); 834 } 835 break; 836 837 case MAC_PROP_PRIVATE: 838 ret = i40e_m_setprop_private(i40e, pr_name, pr_valsize, pr_val); 839 break; 840 default: 841 ret = ENOTSUP; 842 break; 843 } 844 845 mutex_exit(&i40e->i40e_general_lock); 846 return (ret); 847 } 848 849 static int 850 i40e_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, 851 uint_t pr_valsize, void *pr_val) 852 { 853 i40e_t *i40e = arg; 854 uint64_t speed; 855 int ret = 0; 856 uint8_t *u8; 857 link_flowctrl_t fctl; 858 859 mutex_enter(&i40e->i40e_general_lock); 860 861 switch (pr_num) { 862 case MAC_PROP_DUPLEX: 863 if (pr_valsize < sizeof (link_duplex_t)) { 864 ret = EOVERFLOW; 865 break; 866 } 867 bcopy(&i40e->i40e_link_duplex, pr_val, sizeof (link_duplex_t)); 868 break; 869 case MAC_PROP_SPEED: 870 if (pr_valsize < sizeof (uint64_t)) { 871 ret = EOVERFLOW; 872 break; 873 } 874 speed = i40e->i40e_link_speed * 1000000ULL; 875 bcopy(&speed, pr_val, sizeof (speed)); 876 break; 877 case MAC_PROP_STATUS: 878 if (pr_valsize < sizeof (link_state_t)) { 879 ret = EOVERFLOW; 880 break; 881 } 882 bcopy(&i40e->i40e_link_state, pr_val, sizeof (link_state_t)); 883 break; 884 case MAC_PROP_AUTONEG: 885 if (pr_valsize < sizeof (uint8_t)) { 886 ret = EOVERFLOW; 887 break; 888 } 889 u8 = pr_val; 890 *u8 = 1; 891 break; 892 case MAC_PROP_FLOWCTRL: 893 /* 894 * Because we don't currently support hardware flow control, we 895 * just hardcode this to be none. 896 */ 897 if (pr_valsize < sizeof (link_flowctrl_t)) { 898 ret = EOVERFLOW; 899 break; 900 } 901 fctl = LINK_FLOWCTRL_NONE; 902 bcopy(&fctl, pr_val, sizeof (link_flowctrl_t)); 903 break; 904 case MAC_PROP_MTU: 905 if (pr_valsize < sizeof (uint32_t)) { 906 ret = EOVERFLOW; 907 break; 908 } 909 bcopy(&i40e->i40e_sdu, pr_val, sizeof (uint32_t)); 910 break; 911 912 /* 913 * Because we don't let users control the speeds we may auto-negotiate 914 * to, the values of the ADV_ and EN_ will always be the same. 915 */ 916 case MAC_PROP_ADV_100FDX_CAP: 917 case MAC_PROP_EN_100FDX_CAP: 918 if (pr_valsize < sizeof (uint8_t)) { 919 ret = EOVERFLOW; 920 break; 921 } 922 u8 = pr_val; 923 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0; 924 break; 925 case MAC_PROP_ADV_1000FDX_CAP: 926 case MAC_PROP_EN_1000FDX_CAP: 927 if (pr_valsize < sizeof (uint8_t)) { 928 ret = EOVERFLOW; 929 break; 930 } 931 u8 = pr_val; 932 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0; 933 break; 934 case MAC_PROP_ADV_10GFDX_CAP: 935 case MAC_PROP_EN_10GFDX_CAP: 936 if (pr_valsize < sizeof (uint8_t)) { 937 ret = EOVERFLOW; 938 break; 939 } 940 u8 = pr_val; 941 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0; 942 break; 943 case MAC_PROP_ADV_25GFDX_CAP: 944 case MAC_PROP_EN_25GFDX_CAP: 945 if (pr_valsize < sizeof (uint8_t)) { 946 ret = EOVERFLOW; 947 break; 948 } 949 u8 = pr_val; 950 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0; 951 break; 952 case MAC_PROP_ADV_40GFDX_CAP: 953 case MAC_PROP_EN_40GFDX_CAP: 954 if (pr_valsize < sizeof (uint8_t)) { 955 ret = EOVERFLOW; 956 break; 957 } 958 u8 = pr_val; 959 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0; 960 break; 961 case MAC_PROP_PRIVATE: 962 ret = i40e_m_getprop_private(i40e, pr_name, pr_valsize, pr_val); 963 break; 964 default: 965 ret = ENOTSUP; 966 break; 967 } 968 969 mutex_exit(&i40e->i40e_general_lock); 970 971 return (ret); 972 } 973 974 static void 975 i40e_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num, 976 mac_prop_info_handle_t prh) 977 { 978 i40e_t *i40e = arg; 979 980 mutex_enter(&i40e->i40e_general_lock); 981 982 switch (pr_num) { 983 case MAC_PROP_DUPLEX: 984 case MAC_PROP_SPEED: 985 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 986 break; 987 case MAC_PROP_FLOWCTRL: 988 /* 989 * At the moment, the driver doesn't support flow control, hence 990 * why this is set to read-only and none. 991 */ 992 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 993 mac_prop_info_set_default_link_flowctrl(prh, 994 LINK_FLOWCTRL_NONE); 995 break; 996 case MAC_PROP_MTU: 997 mac_prop_info_set_range_uint32(prh, I40E_MIN_MTU, I40E_MAX_MTU); 998 break; 999 1000 /* 1001 * We set the defaults for these based upon the phy's ability to 1002 * support the speeds. Note, auto-negotiation is required for fiber, 1003 * hence it is read-only and always enabled. When we have access to 1004 * copper phys we can revisit this. 1005 */ 1006 case MAC_PROP_AUTONEG: 1007 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1008 mac_prop_info_set_default_uint8(prh, 1); 1009 break; 1010 case MAC_PROP_ADV_100FDX_CAP: 1011 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1012 mac_prop_info_set_default_uint8(prh, 1013 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0); 1014 break; 1015 case MAC_PROP_EN_100FDX_CAP: 1016 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1017 mac_prop_info_set_default_uint8(prh, 1018 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0); 1019 break; 1020 case MAC_PROP_ADV_1000FDX_CAP: 1021 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1022 mac_prop_info_set_default_uint8(prh, 1023 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0); 1024 break; 1025 case MAC_PROP_EN_1000FDX_CAP: 1026 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1027 mac_prop_info_set_default_uint8(prh, 1028 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0); 1029 break; 1030 case MAC_PROP_ADV_10GFDX_CAP: 1031 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1032 mac_prop_info_set_default_uint8(prh, 1033 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0); 1034 break; 1035 case MAC_PROP_EN_10GFDX_CAP: 1036 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1037 mac_prop_info_set_default_uint8(prh, 1038 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0); 1039 break; 1040 case MAC_PROP_ADV_25GFDX_CAP: 1041 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1042 mac_prop_info_set_default_uint8(prh, 1043 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0); 1044 break; 1045 case MAC_PROP_EN_25GFDX_CAP: 1046 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1047 mac_prop_info_set_default_uint8(prh, 1048 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0); 1049 break; 1050 case MAC_PROP_ADV_40GFDX_CAP: 1051 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1052 mac_prop_info_set_default_uint8(prh, 1053 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0); 1054 break; 1055 case MAC_PROP_EN_40GFDX_CAP: 1056 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1057 mac_prop_info_set_default_uint8(prh, 1058 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0); 1059 break; 1060 case MAC_PROP_PRIVATE: 1061 i40e_m_propinfo_private(i40e, pr_name, prh); 1062 break; 1063 default: 1064 break; 1065 } 1066 1067 mutex_exit(&i40e->i40e_general_lock); 1068 } 1069 1070 #define I40E_M_CALLBACK_FLAGS \ 1071 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO) 1072 1073 static mac_callbacks_t i40e_m_callbacks = { 1074 I40E_M_CALLBACK_FLAGS, 1075 i40e_m_stat, 1076 i40e_m_start, 1077 i40e_m_stop, 1078 i40e_m_promisc, 1079 i40e_m_multicast, 1080 NULL, 1081 NULL, 1082 NULL, 1083 i40e_m_ioctl, 1084 i40e_m_getcapab, 1085 NULL, 1086 NULL, 1087 i40e_m_setprop, 1088 i40e_m_getprop, 1089 i40e_m_propinfo 1090 }; 1091 1092 boolean_t 1093 i40e_register_mac(i40e_t *i40e) 1094 { 1095 struct i40e_hw *hw = &i40e->i40e_hw_space; 1096 int status; 1097 mac_register_t *mac = mac_alloc(MAC_VERSION); 1098 1099 if (mac == NULL) 1100 return (B_FALSE); 1101 1102 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 1103 mac->m_driver = i40e; 1104 mac->m_dip = i40e->i40e_dip; 1105 mac->m_src_addr = hw->mac.addr; 1106 mac->m_callbacks = &i40e_m_callbacks; 1107 mac->m_min_sdu = 0; 1108 mac->m_max_sdu = i40e->i40e_sdu; 1109 mac->m_margin = VLAN_TAGSZ; 1110 mac->m_priv_props = i40e_priv_props; 1111 mac->m_v12n = MAC_VIRT_LEVEL1; 1112 1113 status = mac_register(mac, &i40e->i40e_mac_hdl); 1114 if (status != 0) 1115 i40e_error(i40e, "mac_register() returned %d", status); 1116 mac_free(mac); 1117 1118 return (status == 0); 1119 } 1120