1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved. 14 * Copyright (c) 2017, Joyent, Inc. 15 * Copyright 2017 Tegile Systems, Inc. All rights reserved. 16 */ 17 18 /* 19 * For more information, please see the big theory statement in i40e_main.c. 20 */ 21 22 #include "i40e_sw.h" 23 24 #define I40E_PROP_RX_DMA_THRESH "_rx_dma_threshold" 25 #define I40E_PROP_TX_DMA_THRESH "_tx_dma_threshold" 26 #define I40E_PROP_RX_ITR "_rx_intr_throttle" 27 #define I40E_PROP_TX_ITR "_tx_intr_throttle" 28 #define I40E_PROP_OTHER_ITR "_other_intr_throttle" 29 30 char *i40e_priv_props[] = { 31 I40E_PROP_RX_DMA_THRESH, 32 I40E_PROP_TX_DMA_THRESH, 33 I40E_PROP_RX_ITR, 34 I40E_PROP_TX_ITR, 35 I40E_PROP_OTHER_ITR, 36 NULL 37 }; 38 39 static int 40 i40e_group_remove_mac(void *arg, const uint8_t *mac_addr) 41 { 42 i40e_t *i40e = arg; 43 struct i40e_aqc_remove_macvlan_element_data filt; 44 struct i40e_hw *hw = &i40e->i40e_hw_space; 45 int ret, i, last; 46 i40e_uaddr_t *iua; 47 48 if (I40E_IS_MULTICAST(mac_addr)) 49 return (EINVAL); 50 51 mutex_enter(&i40e->i40e_general_lock); 52 53 if (i40e->i40e_state & I40E_SUSPENDED) { 54 ret = ECANCELED; 55 goto done; 56 } 57 58 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) { 59 if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac, 60 ETHERADDRL) == 0) 61 break; 62 } 63 64 if (i == i40e->i40e_resources.ifr_nmacfilt_used) { 65 ret = ENOENT; 66 goto done; 67 } 68 69 iua = &i40e->i40e_uaddrs[i]; 70 ASSERT(i40e->i40e_resources.ifr_nmacfilt_used > 0); 71 72 bzero(&filt, sizeof (filt)); 73 bcopy(mac_addr, filt.mac_addr, ETHERADDRL); 74 filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 75 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 76 77 if (i40e_aq_remove_macvlan(hw, iua->iua_vsi, &filt, 1, NULL) != 78 I40E_SUCCESS) { 79 i40e_error(i40e, "failed to remove mac address " 80 "%2x:%2x:%2x:%2x:%2x:%2x from unicast filter: %d", 81 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 82 mac_addr[4], mac_addr[5], filt.error_code); 83 ret = EIO; 84 goto done; 85 } 86 87 last = i40e->i40e_resources.ifr_nmacfilt_used - 1; 88 if (i != last) { 89 i40e_uaddr_t *src = &i40e->i40e_uaddrs[last]; 90 bcopy(src, iua, sizeof (i40e_uaddr_t)); 91 } 92 93 /* 94 * Set the multicast bit in the last one to indicate to ourselves that 95 * it's invalid. 96 */ 97 bzero(&i40e->i40e_uaddrs[last], sizeof (i40e_uaddr_t)); 98 i40e->i40e_uaddrs[last].iua_mac[0] = 0x01; 99 i40e->i40e_resources.ifr_nmacfilt_used--; 100 ret = 0; 101 done: 102 mutex_exit(&i40e->i40e_general_lock); 103 104 return (ret); 105 } 106 107 static int 108 i40e_group_add_mac(void *arg, const uint8_t *mac_addr) 109 { 110 i40e_t *i40e = arg; 111 struct i40e_hw *hw = &i40e->i40e_hw_space; 112 int i, ret; 113 i40e_uaddr_t *iua; 114 struct i40e_aqc_add_macvlan_element_data filt; 115 116 if (I40E_IS_MULTICAST(mac_addr)) 117 return (EINVAL); 118 119 mutex_enter(&i40e->i40e_general_lock); 120 if (i40e->i40e_state & I40E_SUSPENDED) { 121 ret = ECANCELED; 122 goto done; 123 } 124 125 if (i40e->i40e_resources.ifr_nmacfilt == 126 i40e->i40e_resources.ifr_nmacfilt_used) { 127 ret = ENOSPC; 128 goto done; 129 } 130 131 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt_used; i++) { 132 if (bcmp(mac_addr, i40e->i40e_uaddrs[i].iua_mac, 133 ETHERADDRL) == 0) { 134 ret = EEXIST; 135 goto done; 136 } 137 } 138 139 /* 140 * Note, the general use of the i40e_vsi_id will have to be refactored 141 * when we have proper group support. 142 */ 143 bzero(&filt, sizeof (filt)); 144 bcopy(mac_addr, filt.mac_addr, ETHERADDRL); 145 filt.flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH | 146 I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 147 148 if ((ret = i40e_aq_add_macvlan(hw, i40e->i40e_vsi_id, &filt, 1, 149 NULL)) != I40E_SUCCESS) { 150 i40e_error(i40e, "failed to add mac address " 151 "%2x:%2x:%2x:%2x:%2x:%2x to unicast filter: %d", 152 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 153 mac_addr[4], mac_addr[5], ret); 154 ret = EIO; 155 goto done; 156 } 157 158 iua = &i40e->i40e_uaddrs[i40e->i40e_resources.ifr_nmacfilt_used]; 159 bcopy(mac_addr, iua->iua_mac, ETHERADDRL); 160 iua->iua_vsi = i40e->i40e_vsi_id; 161 i40e->i40e_resources.ifr_nmacfilt_used++; 162 ASSERT(i40e->i40e_resources.ifr_nmacfilt_used <= 163 i40e->i40e_resources.ifr_nmacfilt); 164 ret = 0; 165 done: 166 mutex_exit(&i40e->i40e_general_lock); 167 return (ret); 168 } 169 170 static int 171 i40e_m_start(void *arg) 172 { 173 i40e_t *i40e = arg; 174 int rc = 0; 175 176 mutex_enter(&i40e->i40e_general_lock); 177 if (i40e->i40e_state & I40E_SUSPENDED) { 178 rc = ECANCELED; 179 goto done; 180 } 181 182 if (!i40e_start(i40e, B_TRUE)) { 183 rc = EIO; 184 goto done; 185 } 186 187 atomic_or_32(&i40e->i40e_state, I40E_STARTED); 188 done: 189 mutex_exit(&i40e->i40e_general_lock); 190 191 return (rc); 192 } 193 194 static void 195 i40e_m_stop(void *arg) 196 { 197 i40e_t *i40e = arg; 198 199 mutex_enter(&i40e->i40e_general_lock); 200 201 if (i40e->i40e_state & I40E_SUSPENDED) 202 goto done; 203 204 atomic_and_32(&i40e->i40e_state, ~I40E_STARTED); 205 i40e_stop(i40e, B_TRUE); 206 done: 207 mutex_exit(&i40e->i40e_general_lock); 208 } 209 210 /* 211 * Enable and disable promiscuous mode as requested. We have to toggle both 212 * unicast and multicast. Note that multicast may already be enabled due to the 213 * i40e_m_multicast may toggle it itself. See i40e_main.c for more information 214 * on this. 215 */ 216 static int 217 i40e_m_promisc(void *arg, boolean_t on) 218 { 219 i40e_t *i40e = arg; 220 struct i40e_hw *hw = &i40e->i40e_hw_space; 221 int ret = 0, err = 0; 222 223 mutex_enter(&i40e->i40e_general_lock); 224 if (i40e->i40e_state & I40E_SUSPENDED) { 225 ret = ECANCELED; 226 goto done; 227 } 228 229 230 ret = i40e_aq_set_vsi_unicast_promiscuous(hw, i40e->i40e_vsi_id, 231 on, NULL, B_FALSE); 232 if (ret != I40E_SUCCESS) { 233 i40e_error(i40e, "failed to %s unicast promiscuity on " 234 "the default VSI: %d", on == B_TRUE ? "enable" : "disable", 235 ret); 236 err = EIO; 237 goto done; 238 } 239 240 /* 241 * If we have a non-zero mcast_promisc_count, then it has already been 242 * enabled or we need to leave it that way and not touch it. 243 */ 244 if (i40e->i40e_mcast_promisc_count > 0) { 245 i40e->i40e_promisc_on = on; 246 goto done; 247 } 248 249 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, i40e->i40e_vsi_id, 250 on, NULL); 251 if (ret != I40E_SUCCESS) { 252 i40e_error(i40e, "failed to %s multicast promiscuity on " 253 "the default VSI: %d", on == B_TRUE ? "enable" : "disable", 254 ret); 255 256 /* 257 * Try our best to put us back into a state that MAC expects us 258 * to be in. 259 */ 260 ret = i40e_aq_set_vsi_unicast_promiscuous(hw, i40e->i40e_vsi_id, 261 !on, NULL, B_FALSE); 262 if (ret != I40E_SUCCESS) { 263 i40e_error(i40e, "failed to %s unicast promiscuity on " 264 "the default VSI after toggling multicast failed: " 265 "%d", on == B_TRUE ? "disable" : "enable", ret); 266 } 267 268 err = EIO; 269 goto done; 270 } else { 271 i40e->i40e_promisc_on = on; 272 } 273 274 done: 275 mutex_exit(&i40e->i40e_general_lock); 276 return (err); 277 } 278 279 /* 280 * See the big theory statement in i40e_main.c for multicast address management. 281 */ 282 static int 283 i40e_multicast_add(i40e_t *i40e, const uint8_t *multicast_address) 284 { 285 struct i40e_hw *hw = &i40e->i40e_hw_space; 286 struct i40e_aqc_add_macvlan_element_data filt; 287 i40e_maddr_t *mc; 288 int ret; 289 290 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 291 292 if (i40e->i40e_resources.ifr_nmcastfilt_used == 293 i40e->i40e_resources.ifr_nmcastfilt) { 294 if (i40e->i40e_mcast_promisc_count == 0 && 295 i40e->i40e_promisc_on == B_FALSE) { 296 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, 297 i40e->i40e_vsi_id, B_TRUE, NULL); 298 if (ret != I40E_SUCCESS) { 299 i40e_error(i40e, "failed to enable multicast " 300 "promiscuous mode on VSI %d: %d", 301 i40e->i40e_vsi_id, ret); 302 return (EIO); 303 } 304 } 305 i40e->i40e_mcast_promisc_count++; 306 return (0); 307 } 308 309 mc = &i40e->i40e_maddrs[i40e->i40e_resources.ifr_nmcastfilt_used]; 310 bzero(&filt, sizeof (filt)); 311 bcopy(multicast_address, filt.mac_addr, ETHERADDRL); 312 filt.flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH | 313 I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 314 315 if ((ret = i40e_aq_add_macvlan(hw, i40e->i40e_vsi_id, &filt, 1, 316 NULL)) != I40E_SUCCESS) { 317 i40e_error(i40e, "failed to add mac address " 318 "%2x:%2x:%2x:%2x:%2x:%2x to multicast filter: %d", 319 multicast_address[0], multicast_address[1], 320 multicast_address[2], multicast_address[3], 321 multicast_address[4], multicast_address[5], 322 ret); 323 return (EIO); 324 } 325 326 bcopy(multicast_address, mc->ima_mac, ETHERADDRL); 327 i40e->i40e_resources.ifr_nmcastfilt_used++; 328 return (0); 329 } 330 331 /* 332 * See the big theory statement in i40e_main.c for multicast address management. 333 */ 334 static int 335 i40e_multicast_remove(i40e_t *i40e, const uint8_t *multicast_address) 336 { 337 int i, ret; 338 struct i40e_hw *hw = &i40e->i40e_hw_space; 339 340 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 341 342 for (i = 0; i < i40e->i40e_resources.ifr_nmcastfilt_used; i++) { 343 struct i40e_aqc_remove_macvlan_element_data filt; 344 int last; 345 346 if (bcmp(multicast_address, i40e->i40e_maddrs[i].ima_mac, 347 ETHERADDRL) != 0) { 348 continue; 349 } 350 351 bzero(&filt, sizeof (filt)); 352 bcopy(multicast_address, filt.mac_addr, ETHERADDRL); 353 filt.flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH | 354 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 355 356 if (i40e_aq_remove_macvlan(hw, i40e->i40e_vsi_id, 357 &filt, 1, NULL) != I40E_SUCCESS) { 358 i40e_error(i40e, "failed to remove mac address " 359 "%2x:%2x:%2x:%2x:%2x:%2x from multicast " 360 "filter: %d", 361 multicast_address[0], multicast_address[1], 362 multicast_address[2], multicast_address[3], 363 multicast_address[4], multicast_address[5], 364 filt.error_code); 365 return (EIO); 366 } 367 368 last = i40e->i40e_resources.ifr_nmcastfilt_used - 1; 369 if (i != last) { 370 bcopy(&i40e->i40e_maddrs[last], &i40e->i40e_maddrs[i], 371 sizeof (i40e_maddr_t)); 372 bzero(&i40e->i40e_maddrs[last], sizeof (i40e_maddr_t)); 373 } 374 375 ASSERT(i40e->i40e_resources.ifr_nmcastfilt_used > 0); 376 i40e->i40e_resources.ifr_nmcastfilt_used--; 377 return (0); 378 } 379 380 if (i40e->i40e_mcast_promisc_count > 0) { 381 if (i40e->i40e_mcast_promisc_count == 1 && 382 i40e->i40e_promisc_on == B_FALSE) { 383 ret = i40e_aq_set_vsi_multicast_promiscuous(hw, 384 i40e->i40e_vsi_id, B_FALSE, NULL); 385 if (ret != I40E_SUCCESS) { 386 i40e_error(i40e, "failed to disable " 387 "multicast promiscuous mode on VSI %d: %d", 388 i40e->i40e_vsi_id, ret); 389 return (EIO); 390 } 391 } 392 i40e->i40e_mcast_promisc_count--; 393 394 return (0); 395 } 396 397 return (ENOENT); 398 } 399 400 static int 401 i40e_m_multicast(void *arg, boolean_t add, const uint8_t *multicast_address) 402 { 403 i40e_t *i40e = arg; 404 int rc; 405 406 mutex_enter(&i40e->i40e_general_lock); 407 408 if (i40e->i40e_state & I40E_SUSPENDED) { 409 mutex_exit(&i40e->i40e_general_lock); 410 return (ECANCELED); 411 } 412 413 if (add == B_TRUE) { 414 rc = i40e_multicast_add(i40e, multicast_address); 415 } else { 416 rc = i40e_multicast_remove(i40e, multicast_address); 417 } 418 419 mutex_exit(&i40e->i40e_general_lock); 420 return (rc); 421 } 422 423 /* ARGSUSED */ 424 static void 425 i40e_m_ioctl(void *arg, queue_t *q, mblk_t *mp) 426 { 427 /* 428 * At this time, we don't support toggling i40e into loopback mode. It's 429 * questionable how much value this has when there's no clear way to 430 * toggle this behavior from a supported way in userland. 431 */ 432 miocnak(q, mp, 0, EINVAL); 433 } 434 435 static int 436 i40e_ring_start(mac_ring_driver_t rh, uint64_t gen_num) 437 { 438 i40e_trqpair_t *itrq = (i40e_trqpair_t *)rh; 439 440 /* 441 * GLDv3 requires we keep track of a generation number, as it uses 442 * that number to keep track of whether or not a ring is active. 443 */ 444 mutex_enter(&itrq->itrq_rx_lock); 445 itrq->itrq_rxgen = gen_num; 446 mutex_exit(&itrq->itrq_rx_lock); 447 return (0); 448 } 449 450 /* ARGSUSED */ 451 static int 452 i40e_rx_ring_intr_enable(mac_intr_handle_t intrh) 453 { 454 i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh; 455 456 mutex_enter(&itrq->itrq_rx_lock); 457 ASSERT(itrq->itrq_intr_poll == B_TRUE); 458 i40e_intr_rx_queue_enable(itrq); 459 itrq->itrq_intr_poll = B_FALSE; 460 mutex_exit(&itrq->itrq_rx_lock); 461 462 return (0); 463 } 464 465 /* ARGSUSED */ 466 static int 467 i40e_rx_ring_intr_disable(mac_intr_handle_t intrh) 468 { 469 i40e_trqpair_t *itrq = (i40e_trqpair_t *)intrh; 470 471 mutex_enter(&itrq->itrq_rx_lock); 472 i40e_intr_rx_queue_disable(itrq); 473 itrq->itrq_intr_poll = B_TRUE; 474 mutex_exit(&itrq->itrq_rx_lock); 475 476 return (0); 477 } 478 479 /* ARGSUSED */ 480 static void 481 i40e_fill_tx_ring(void *arg, mac_ring_type_t rtype, const int group_index, 482 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh) 483 { 484 i40e_t *i40e = arg; 485 mac_intr_t *mintr = &infop->mri_intr; 486 i40e_trqpair_t *itrq = &(i40e->i40e_trqpairs[ring_index]); 487 488 /* 489 * Note the group index here is expected to be -1 due to the fact that 490 * we're not actually grouping things tx-wise at this time. 491 */ 492 ASSERT(group_index == -1); 493 ASSERT(ring_index < i40e->i40e_num_trqpairs); 494 495 itrq->itrq_mactxring = rh; 496 infop->mri_driver = (mac_ring_driver_t)itrq; 497 infop->mri_start = NULL; 498 infop->mri_stop = NULL; 499 infop->mri_tx = i40e_ring_tx; 500 infop->mri_stat = i40e_tx_ring_stat; 501 502 /* 503 * We only provide the handle in cases where we have MSI-X interrupts, 504 * to indicate that we'd actually support retargetting. 505 */ 506 if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) { 507 mintr->mi_ddi_handle = 508 i40e->i40e_intr_handles[itrq->itrq_tx_intrvec]; 509 } 510 } 511 512 /* ARGSUSED */ 513 static void 514 i40e_fill_rx_ring(void *arg, mac_ring_type_t rtype, const int group_index, 515 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh) 516 { 517 i40e_t *i40e = arg; 518 mac_intr_t *mintr = &infop->mri_intr; 519 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[ring_index]; 520 521 /* 522 * We assert the group number and ring index to help sanity check 523 * ourselves and mark that we'll need to rework this when we have 524 * multiple groups. 525 */ 526 ASSERT3S(group_index, ==, 0); 527 ASSERT3S(ring_index, <, i40e->i40e_num_trqpairs); 528 529 itrq->itrq_macrxring = rh; 530 infop->mri_driver = (mac_ring_driver_t)itrq; 531 infop->mri_start = i40e_ring_start; 532 infop->mri_stop = NULL; 533 infop->mri_poll = i40e_ring_rx_poll; 534 infop->mri_stat = i40e_rx_ring_stat; 535 mintr->mi_handle = (mac_intr_handle_t)itrq; 536 mintr->mi_enable = i40e_rx_ring_intr_enable; 537 mintr->mi_disable = i40e_rx_ring_intr_disable; 538 539 /* 540 * We only provide the handle in cases where we have MSI-X interrupts, 541 * to indicate that we'd actually support retargetting. 542 */ 543 if (i40e->i40e_intr_type & DDI_INTR_TYPE_MSIX) { 544 mintr->mi_ddi_handle = 545 i40e->i40e_intr_handles[itrq->itrq_rx_intrvec]; 546 } 547 } 548 549 /* ARGSUSED */ 550 static void 551 i40e_fill_rx_group(void *arg, mac_ring_type_t rtype, const int index, 552 mac_group_info_t *infop, mac_group_handle_t gh) 553 { 554 i40e_t *i40e = arg; 555 556 if (rtype != MAC_RING_TYPE_RX) 557 return; 558 559 /* 560 * Note, this is a simplified view of a group, given that we only have a 561 * single group and a single ring at the moment. We'll want to expand 562 * upon this as we leverage more hardware functionality. 563 */ 564 i40e->i40e_rx_group_handle = gh; 565 infop->mgi_driver = (mac_group_driver_t)i40e; 566 infop->mgi_start = NULL; 567 infop->mgi_stop = NULL; 568 infop->mgi_addmac = i40e_group_add_mac; 569 infop->mgi_remmac = i40e_group_remove_mac; 570 571 ASSERT(i40e->i40e_num_rx_groups == I40E_GROUP_MAX); 572 infop->mgi_count = i40e->i40e_num_trqpairs; 573 } 574 575 static int 576 i40e_transceiver_info(void *arg, uint_t id, mac_transceiver_info_t *infop) 577 { 578 boolean_t present, usable; 579 i40e_t *i40e = arg; 580 581 if (id != 0 || infop == NULL) 582 return (EINVAL); 583 584 mutex_enter(&i40e->i40e_general_lock); 585 present = !!(i40e->i40e_hw_space.phy.link_info.link_info & 586 I40E_AQ_MEDIA_AVAILABLE); 587 if (present) { 588 usable = !!(i40e->i40e_hw_space.phy.link_info.an_info & 589 I40E_AQ_QUALIFIED_MODULE); 590 } else { 591 usable = B_FALSE; 592 } 593 mutex_exit(&i40e->i40e_general_lock); 594 595 mac_transceiver_info_set_usable(infop, usable); 596 mac_transceiver_info_set_present(infop, present); 597 598 return (0); 599 } 600 601 static int 602 i40e_gld_led_set(void *arg, mac_led_mode_t mode, uint_t flags) 603 { 604 i40e_t *i40e = arg; 605 struct i40e_hw *hw = &i40e->i40e_hw_space; 606 607 if (flags != 0) 608 return (EINVAL); 609 610 if (mode != MAC_LED_DEFAULT && 611 mode != MAC_LED_IDENT && 612 mode != MAC_LED_OFF && 613 mode != MAC_LED_ON) 614 return (ENOTSUP); 615 616 if (mode != MAC_LED_DEFAULT && !i40e->i40e_led_saved) { 617 i40e->i40e_led_status = i40e_led_get(hw); 618 i40e->i40e_led_saved = B_TRUE; 619 } 620 621 switch (mode) { 622 case MAC_LED_DEFAULT: 623 if (i40e->i40e_led_saved) { 624 i40e_led_set(hw, i40e->i40e_led_status, B_FALSE); 625 i40e->i40e_led_status = 0; 626 i40e->i40e_led_saved = B_FALSE; 627 } 628 break; 629 case MAC_LED_IDENT: 630 i40e_led_set(hw, 0xf, B_TRUE); 631 break; 632 case MAC_LED_OFF: 633 i40e_led_set(hw, 0x0, B_FALSE); 634 break; 635 case MAC_LED_ON: 636 i40e_led_set(hw, 0xf, B_FALSE); 637 break; 638 default: 639 return (ENOTSUP); 640 } 641 642 return (0); 643 } 644 645 static boolean_t 646 i40e_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 647 { 648 i40e_t *i40e = arg; 649 mac_capab_rings_t *cap_rings; 650 mac_capab_transceiver_t *mct; 651 mac_capab_led_t *mcl; 652 653 switch (cap) { 654 case MAC_CAPAB_HCKSUM: { 655 uint32_t *txflags = cap_data; 656 657 *txflags = 0; 658 if (i40e->i40e_tx_hcksum_enable == B_TRUE) 659 *txflags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; 660 break; 661 } 662 663 case MAC_CAPAB_RINGS: 664 cap_rings = cap_data; 665 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; 666 switch (cap_rings->mr_type) { 667 case MAC_RING_TYPE_TX: 668 /* 669 * Note, saying we have no rings, but some number of 670 * groups indicates to MAC that it should create 671 * psuedo-groups with one for each TX ring. This may not 672 * be the long term behavior we want, but it'll work for 673 * now. 674 */ 675 cap_rings->mr_gnum = 0; 676 cap_rings->mr_rnum = i40e->i40e_num_trqpairs; 677 cap_rings->mr_rget = i40e_fill_tx_ring; 678 cap_rings->mr_gget = NULL; 679 cap_rings->mr_gaddring = NULL; 680 cap_rings->mr_gremring = NULL; 681 break; 682 case MAC_RING_TYPE_RX: 683 cap_rings->mr_rnum = i40e->i40e_num_trqpairs; 684 cap_rings->mr_rget = i40e_fill_rx_ring; 685 cap_rings->mr_gnum = I40E_GROUP_MAX; 686 cap_rings->mr_gget = i40e_fill_rx_group; 687 cap_rings->mr_gaddring = NULL; 688 cap_rings->mr_gremring = NULL; 689 break; 690 default: 691 return (B_FALSE); 692 } 693 break; 694 case MAC_CAPAB_TRANSCEIVER: 695 mct = cap_data; 696 697 /* 698 * Firmware doesn't have a great way of telling us in advance 699 * whether we'd expect a SFF transceiver. As such, we always 700 * advertise the support for this capability. 701 */ 702 mct->mct_flags = 0; 703 mct->mct_ntransceivers = 1; 704 mct->mct_info = i40e_transceiver_info; 705 mct->mct_read = NULL; 706 707 return (B_TRUE); 708 case MAC_CAPAB_LED: 709 mcl = cap_data; 710 711 mcl->mcl_flags = 0; 712 mcl->mcl_modes = MAC_LED_DEFAULT | MAC_LED_IDENT | MAC_LED_OFF | 713 MAC_LED_ON; 714 mcl->mcl_set = i40e_gld_led_set; 715 break; 716 717 default: 718 return (B_FALSE); 719 } 720 721 return (B_TRUE); 722 } 723 724 /* ARGSUSED */ 725 static int 726 i40e_m_setprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize, 727 const void *pr_val) 728 { 729 int ret; 730 long val; 731 char *eptr; 732 733 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 734 735 if ((ret = ddi_strtol(pr_val, &eptr, 10, &val)) != 0 || 736 *eptr != '\0') { 737 return (ret); 738 } 739 740 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) { 741 if (val < I40E_MIN_RX_DMA_THRESH || 742 val > I40E_MAX_RX_DMA_THRESH) { 743 return (EINVAL); 744 } 745 i40e->i40e_rx_dma_min = (uint32_t)val; 746 return (0); 747 } 748 749 if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) { 750 if (val < I40E_MIN_TX_DMA_THRESH || 751 val > I40E_MAX_TX_DMA_THRESH) { 752 return (EINVAL); 753 } 754 i40e->i40e_tx_dma_min = (uint32_t)val; 755 return (0); 756 } 757 758 if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) { 759 if (val < I40E_MIN_ITR || 760 val > I40E_MAX_ITR) { 761 return (EINVAL); 762 } 763 i40e->i40e_rx_itr = (uint32_t)val; 764 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_RX, i40e->i40e_rx_itr); 765 return (0); 766 } 767 768 if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) { 769 if (val < I40E_MIN_ITR || 770 val > I40E_MAX_ITR) { 771 return (EINVAL); 772 } 773 i40e->i40e_tx_itr = (uint32_t)val; 774 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_TX, i40e->i40e_tx_itr); 775 return (0); 776 } 777 778 if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) { 779 if (val < I40E_MIN_ITR || 780 val > I40E_MAX_ITR) { 781 return (EINVAL); 782 } 783 i40e->i40e_tx_itr = (uint32_t)val; 784 i40e_intr_set_itr(i40e, I40E_ITR_INDEX_OTHER, 785 i40e->i40e_other_itr); 786 return (0); 787 } 788 789 return (ENOTSUP); 790 } 791 792 static int 793 i40e_m_getprop_private(i40e_t *i40e, const char *pr_name, uint_t pr_valsize, 794 void *pr_val) 795 { 796 uint32_t val; 797 798 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); 799 800 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) { 801 val = i40e->i40e_rx_dma_min; 802 } else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) { 803 val = i40e->i40e_tx_dma_min; 804 } else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) { 805 val = i40e->i40e_rx_itr; 806 } else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) { 807 val = i40e->i40e_tx_itr; 808 } else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) { 809 val = i40e->i40e_other_itr; 810 } else { 811 return (ENOTSUP); 812 } 813 814 if (snprintf(pr_val, pr_valsize, "%d", val) >= pr_valsize) 815 return (ERANGE); 816 return (0); 817 } 818 819 /* 820 * Annoyingly for private properties MAC seems to ignore default values that 821 * aren't strings. That means that we have to translate all of these into 822 * uint32_t's and instead we size the buffer to be large enough to hold a 823 * uint32_t. 824 */ 825 /* ARGSUSED */ 826 static void 827 i40e_m_propinfo_private(i40e_t *i40e, const char *pr_name, 828 mac_prop_info_handle_t prh) 829 { 830 char buf[64]; 831 uint32_t def; 832 833 if (strcmp(pr_name, I40E_PROP_RX_DMA_THRESH) == 0) { 834 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 835 def = I40E_DEF_RX_DMA_THRESH; 836 mac_prop_info_set_range_uint32(prh, 837 I40E_MIN_RX_DMA_THRESH, 838 I40E_MAX_RX_DMA_THRESH); 839 } else if (strcmp(pr_name, I40E_PROP_TX_DMA_THRESH) == 0) { 840 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 841 def = I40E_DEF_TX_DMA_THRESH; 842 mac_prop_info_set_range_uint32(prh, 843 I40E_MIN_TX_DMA_THRESH, 844 I40E_MAX_TX_DMA_THRESH); 845 } else if (strcmp(pr_name, I40E_PROP_RX_ITR) == 0) { 846 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 847 def = I40E_DEF_RX_ITR; 848 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR); 849 } else if (strcmp(pr_name, I40E_PROP_TX_ITR) == 0) { 850 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 851 def = I40E_DEF_TX_ITR; 852 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR); 853 } else if (strcmp(pr_name, I40E_PROP_OTHER_ITR) == 0) { 854 mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); 855 def = I40E_DEF_OTHER_ITR; 856 mac_prop_info_set_range_uint32(prh, I40E_MIN_ITR, I40E_MAX_ITR); 857 } else { 858 return; 859 } 860 861 (void) snprintf(buf, sizeof (buf), "%d", def); 862 mac_prop_info_set_default_str(prh, buf); 863 } 864 865 static int 866 i40e_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, 867 uint_t pr_valsize, const void *pr_val) 868 { 869 uint32_t new_mtu; 870 i40e_t *i40e = arg; 871 int ret = 0; 872 873 mutex_enter(&i40e->i40e_general_lock); 874 if (i40e->i40e_state & I40E_SUSPENDED) { 875 mutex_exit(&i40e->i40e_general_lock); 876 return (ECANCELED); 877 } 878 879 switch (pr_num) { 880 /* 881 * These properties are always read-only across every device. 882 */ 883 case MAC_PROP_DUPLEX: 884 case MAC_PROP_SPEED: 885 case MAC_PROP_STATUS: 886 case MAC_PROP_ADV_100FDX_CAP: 887 case MAC_PROP_ADV_1000FDX_CAP: 888 case MAC_PROP_ADV_10GFDX_CAP: 889 case MAC_PROP_ADV_25GFDX_CAP: 890 case MAC_PROP_ADV_40GFDX_CAP: 891 ret = ENOTSUP; 892 break; 893 /* 894 * These are read-only at this time as we don't support configuring 895 * auto-negotiation. See the theory statement in i40e_main.c. 896 */ 897 case MAC_PROP_EN_100FDX_CAP: 898 case MAC_PROP_EN_1000FDX_CAP: 899 case MAC_PROP_EN_10GFDX_CAP: 900 case MAC_PROP_EN_25GFDX_CAP: 901 case MAC_PROP_EN_40GFDX_CAP: 902 case MAC_PROP_AUTONEG: 903 case MAC_PROP_FLOWCTRL: 904 ret = ENOTSUP; 905 break; 906 907 case MAC_PROP_MTU: 908 bcopy(pr_val, &new_mtu, sizeof (new_mtu)); 909 if (new_mtu == i40e->i40e_sdu) 910 break; 911 912 if (new_mtu < I40E_MIN_MTU || 913 new_mtu > I40E_MAX_MTU) { 914 ret = EINVAL; 915 break; 916 } 917 918 if (i40e->i40e_state & I40E_STARTED) { 919 ret = EBUSY; 920 break; 921 } 922 923 ret = mac_maxsdu_update(i40e->i40e_mac_hdl, new_mtu); 924 if (ret == 0) { 925 i40e->i40e_sdu = new_mtu; 926 i40e_update_mtu(i40e); 927 } 928 break; 929 930 case MAC_PROP_PRIVATE: 931 ret = i40e_m_setprop_private(i40e, pr_name, pr_valsize, pr_val); 932 break; 933 default: 934 ret = ENOTSUP; 935 break; 936 } 937 938 mutex_exit(&i40e->i40e_general_lock); 939 return (ret); 940 } 941 942 static int 943 i40e_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, 944 uint_t pr_valsize, void *pr_val) 945 { 946 i40e_t *i40e = arg; 947 uint64_t speed; 948 int ret = 0; 949 uint8_t *u8; 950 link_flowctrl_t fctl; 951 952 mutex_enter(&i40e->i40e_general_lock); 953 954 switch (pr_num) { 955 case MAC_PROP_DUPLEX: 956 if (pr_valsize < sizeof (link_duplex_t)) { 957 ret = EOVERFLOW; 958 break; 959 } 960 bcopy(&i40e->i40e_link_duplex, pr_val, sizeof (link_duplex_t)); 961 break; 962 case MAC_PROP_SPEED: 963 if (pr_valsize < sizeof (uint64_t)) { 964 ret = EOVERFLOW; 965 break; 966 } 967 speed = i40e->i40e_link_speed * 1000000ULL; 968 bcopy(&speed, pr_val, sizeof (speed)); 969 break; 970 case MAC_PROP_STATUS: 971 if (pr_valsize < sizeof (link_state_t)) { 972 ret = EOVERFLOW; 973 break; 974 } 975 bcopy(&i40e->i40e_link_state, pr_val, sizeof (link_state_t)); 976 break; 977 case MAC_PROP_AUTONEG: 978 if (pr_valsize < sizeof (uint8_t)) { 979 ret = EOVERFLOW; 980 break; 981 } 982 u8 = pr_val; 983 *u8 = 1; 984 break; 985 case MAC_PROP_FLOWCTRL: 986 /* 987 * Because we don't currently support hardware flow control, we 988 * just hardcode this to be none. 989 */ 990 if (pr_valsize < sizeof (link_flowctrl_t)) { 991 ret = EOVERFLOW; 992 break; 993 } 994 fctl = LINK_FLOWCTRL_NONE; 995 bcopy(&fctl, pr_val, sizeof (link_flowctrl_t)); 996 break; 997 case MAC_PROP_MTU: 998 if (pr_valsize < sizeof (uint32_t)) { 999 ret = EOVERFLOW; 1000 break; 1001 } 1002 bcopy(&i40e->i40e_sdu, pr_val, sizeof (uint32_t)); 1003 break; 1004 1005 /* 1006 * Because we don't let users control the speeds we may auto-negotiate 1007 * to, the values of the ADV_ and EN_ will always be the same. 1008 */ 1009 case MAC_PROP_ADV_100FDX_CAP: 1010 case MAC_PROP_EN_100FDX_CAP: 1011 if (pr_valsize < sizeof (uint8_t)) { 1012 ret = EOVERFLOW; 1013 break; 1014 } 1015 u8 = pr_val; 1016 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0; 1017 break; 1018 case MAC_PROP_ADV_1000FDX_CAP: 1019 case MAC_PROP_EN_1000FDX_CAP: 1020 if (pr_valsize < sizeof (uint8_t)) { 1021 ret = EOVERFLOW; 1022 break; 1023 } 1024 u8 = pr_val; 1025 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0; 1026 break; 1027 case MAC_PROP_ADV_10GFDX_CAP: 1028 case MAC_PROP_EN_10GFDX_CAP: 1029 if (pr_valsize < sizeof (uint8_t)) { 1030 ret = EOVERFLOW; 1031 break; 1032 } 1033 u8 = pr_val; 1034 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0; 1035 break; 1036 case MAC_PROP_ADV_25GFDX_CAP: 1037 case MAC_PROP_EN_25GFDX_CAP: 1038 if (pr_valsize < sizeof (uint8_t)) { 1039 ret = EOVERFLOW; 1040 break; 1041 } 1042 u8 = pr_val; 1043 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0; 1044 break; 1045 case MAC_PROP_ADV_40GFDX_CAP: 1046 case MAC_PROP_EN_40GFDX_CAP: 1047 if (pr_valsize < sizeof (uint8_t)) { 1048 ret = EOVERFLOW; 1049 break; 1050 } 1051 u8 = pr_val; 1052 *u8 = (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0; 1053 break; 1054 case MAC_PROP_PRIVATE: 1055 ret = i40e_m_getprop_private(i40e, pr_name, pr_valsize, pr_val); 1056 break; 1057 default: 1058 ret = ENOTSUP; 1059 break; 1060 } 1061 1062 mutex_exit(&i40e->i40e_general_lock); 1063 1064 return (ret); 1065 } 1066 1067 static void 1068 i40e_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num, 1069 mac_prop_info_handle_t prh) 1070 { 1071 i40e_t *i40e = arg; 1072 1073 mutex_enter(&i40e->i40e_general_lock); 1074 1075 switch (pr_num) { 1076 case MAC_PROP_DUPLEX: 1077 case MAC_PROP_SPEED: 1078 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1079 break; 1080 case MAC_PROP_FLOWCTRL: 1081 /* 1082 * At the moment, the driver doesn't support flow control, hence 1083 * why this is set to read-only and none. 1084 */ 1085 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1086 mac_prop_info_set_default_link_flowctrl(prh, 1087 LINK_FLOWCTRL_NONE); 1088 break; 1089 case MAC_PROP_MTU: 1090 mac_prop_info_set_range_uint32(prh, I40E_MIN_MTU, I40E_MAX_MTU); 1091 break; 1092 1093 /* 1094 * We set the defaults for these based upon the phy's ability to 1095 * support the speeds. Note, auto-negotiation is required for fiber, 1096 * hence it is read-only and always enabled. When we have access to 1097 * copper phys we can revisit this. 1098 */ 1099 case MAC_PROP_AUTONEG: 1100 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1101 mac_prop_info_set_default_uint8(prh, 1); 1102 break; 1103 case MAC_PROP_ADV_100FDX_CAP: 1104 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1105 mac_prop_info_set_default_uint8(prh, 1106 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0); 1107 break; 1108 case MAC_PROP_EN_100FDX_CAP: 1109 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1110 mac_prop_info_set_default_uint8(prh, 1111 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_100MB) != 0); 1112 break; 1113 case MAC_PROP_ADV_1000FDX_CAP: 1114 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1115 mac_prop_info_set_default_uint8(prh, 1116 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0); 1117 break; 1118 case MAC_PROP_EN_1000FDX_CAP: 1119 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1120 mac_prop_info_set_default_uint8(prh, 1121 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_1GB) != 0); 1122 break; 1123 case MAC_PROP_ADV_10GFDX_CAP: 1124 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1125 mac_prop_info_set_default_uint8(prh, 1126 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0); 1127 break; 1128 case MAC_PROP_EN_10GFDX_CAP: 1129 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1130 mac_prop_info_set_default_uint8(prh, 1131 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_10GB) != 0); 1132 break; 1133 case MAC_PROP_ADV_25GFDX_CAP: 1134 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1135 mac_prop_info_set_default_uint8(prh, 1136 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0); 1137 break; 1138 case MAC_PROP_EN_25GFDX_CAP: 1139 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1140 mac_prop_info_set_default_uint8(prh, 1141 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_25GB) != 0); 1142 break; 1143 case MAC_PROP_ADV_40GFDX_CAP: 1144 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1145 mac_prop_info_set_default_uint8(prh, 1146 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0); 1147 break; 1148 case MAC_PROP_EN_40GFDX_CAP: 1149 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); 1150 mac_prop_info_set_default_uint8(prh, 1151 (i40e->i40e_phy.link_speed & I40E_LINK_SPEED_40GB) != 0); 1152 break; 1153 case MAC_PROP_PRIVATE: 1154 i40e_m_propinfo_private(i40e, pr_name, prh); 1155 break; 1156 default: 1157 break; 1158 } 1159 1160 mutex_exit(&i40e->i40e_general_lock); 1161 } 1162 1163 #define I40E_M_CALLBACK_FLAGS \ 1164 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO) 1165 1166 static mac_callbacks_t i40e_m_callbacks = { 1167 I40E_M_CALLBACK_FLAGS, 1168 i40e_m_stat, 1169 i40e_m_start, 1170 i40e_m_stop, 1171 i40e_m_promisc, 1172 i40e_m_multicast, 1173 NULL, 1174 NULL, 1175 NULL, 1176 i40e_m_ioctl, 1177 i40e_m_getcapab, 1178 NULL, 1179 NULL, 1180 i40e_m_setprop, 1181 i40e_m_getprop, 1182 i40e_m_propinfo 1183 }; 1184 1185 boolean_t 1186 i40e_register_mac(i40e_t *i40e) 1187 { 1188 struct i40e_hw *hw = &i40e->i40e_hw_space; 1189 int status; 1190 mac_register_t *mac = mac_alloc(MAC_VERSION); 1191 1192 if (mac == NULL) 1193 return (B_FALSE); 1194 1195 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 1196 mac->m_driver = i40e; 1197 mac->m_dip = i40e->i40e_dip; 1198 mac->m_src_addr = hw->mac.addr; 1199 mac->m_callbacks = &i40e_m_callbacks; 1200 mac->m_min_sdu = 0; 1201 mac->m_max_sdu = i40e->i40e_sdu; 1202 mac->m_margin = VLAN_TAGSZ; 1203 mac->m_priv_props = i40e_priv_props; 1204 mac->m_v12n = MAC_VIRT_LEVEL1; 1205 1206 status = mac_register(mac, &i40e->i40e_mac_hdl); 1207 if (status != 0) 1208 i40e_error(i40e, "mac_register() returned %d", status); 1209 mac_free(mac); 1210 1211 return (status == 0); 1212 } 1213