1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 #include <sys/debug.h> 28 #include <sys/types.h> 29 #include <sys/file.h> 30 #include <sys/errno.h> 31 #include <sys/uio.h> 32 #include <sys/open.h> 33 #include <sys/cred.h> 34 #include <sys/kmem.h> 35 #include <sys/conf.h> 36 #include <sys/cmn_err.h> 37 #include <sys/modctl.h> 38 #include <sys/disp.h> 39 #include <sys/atomic.h> 40 #include <sys/filio.h> 41 #include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */ 42 #include <sys/kstat.h> 43 44 #include <sys/ddi.h> 45 #include <sys/devops.h> 46 #include <sys/sunddi.h> 47 #include <sys/esunddi.h> 48 #include <sys/priv_names.h> 49 50 #include <sys/fssnap.h> 51 #include <sys/fssnap_if.h> 52 53 /* 54 * This module implements the file system snapshot code, which provides a 55 * point-in-time image of a file system for the purposes of online backup. 56 * There are essentially two parts to this project: the driver half and the 57 * file system half. The driver half is a pseudo device driver called 58 * "fssnap" that represents the snapshot. Each snapshot is assigned a 59 * number that corresponds to the minor number of the device, and a control 60 * device with a high minor number is used to initiate snapshot creation and 61 * deletion. For all practical purposes the driver half acts like a 62 * read-only disk device whose contents are exactly the same as the master 63 * file system at the time the snapshot was created. 64 * 65 * The file system half provides interfaces necessary for performing the 66 * file system dependent operations required to create and delete snapshots 67 * and a special driver strategy routine that must always be used by the file 68 * system for snapshots to work correctly. 69 * 70 * When a snapshot is to be created, the user utility will send an ioctl to 71 * the control device of the driver half specifying the file system to be 72 * snapshotted, the file descriptor of a backing-store file which is used to 73 * hold old data before it is overwritten, and other snapshot parameters. 74 * This ioctl is passed on to the file system specified in the original 75 * ioctl request. The file system is expected to be able to flush 76 * everything out to make the file system consistent and lock it to ensure 77 * no changes occur while the snapshot is being created. It then calls 78 * fssnap_create() to create state for a new snapshot, from which an opaque 79 * handle is returned with the snapshot locked. Next, the file system must 80 * populate the "candidate bitmap", which tells the snapshot code which 81 * "chunks" should be considered for copy-on-write (a chunk is the unit of 82 * granularity used for copy-on-write, which is independent of the device 83 * and file system block sizes). This is typically done by scanning the 84 * file system allocation bitmaps to determine which chunks contain 85 * allocated blocks in the file system at the time the snapshot was created. 86 * If a chunk has no allocated blocks, it does not need to be copied before 87 * being written to. Once the candidate bitmap is populated with 88 * fssnap_set_candidate(), the file system calls fssnap_create_done() to 89 * complete the snapshot creation and unlock the snapshot. The file system 90 * may now be unlocked and modifications to it resumed. 91 * 92 * Once a snapshot is created, the file system must perform all writes 93 * through a special strategy routine, fssnap_strategy(). This strategy 94 * routine determines whether the chunks contained by the write must be 95 * copied before being overwritten by consulting the candidate bitmap 96 * described above, and the "hastrans bitmap" which tells it whether the chunk 97 * has been copied already or not. If the chunk is a candidate but has not 98 * been copied, it reads the old data in and adds it to a queue. The 99 * old data can then be overwritten with the new data. An asynchronous 100 * task queue is dispatched for each old chunk read in which writes the old 101 * data to the backing file specified at snapshot creation time. The 102 * backing file is a sparse file the same size as the file system that 103 * contains the old data at the offset that data originally had in the 104 * file system. If the queue containing in-memory chunks gets too large, 105 * writes to the file system may be throttled by a semaphore until the 106 * task queues have a chance to push some of the chunks to the backing file. 107 * 108 * With the candidate bitmap, the hastrans bitmap, the data on the master 109 * file system, and the old data in memory and in the backing file, the 110 * snapshot pseudo-driver can piece together the original file system 111 * information to satisfy read requests. If the requested chunk is not a 112 * candidate, it returns a zeroed buffer. If the chunk is a candidate but 113 * has not been copied it reads it from the master file system. If it is a 114 * candidate and has been copied, it either copies the data from the 115 * in-memory queue or it reads it in from the backing file. The result is 116 * a replication of the original file system that can be backed up, mounted, 117 * or manipulated by other file system utilities that work on a read-only 118 * device. 119 * 120 * This module is divided into three roughly logical sections: 121 * 122 * - The snapshot driver, which is a character/block driver 123 * representing the snapshot itself. These routines are 124 * prefixed with "snap_". 125 * 126 * - The library routines that are defined in fssnap_if.h that 127 * are used by file systems that use this snapshot implementation. 128 * These functions are prefixed with "fssnap_" and are called through 129 * a function vector from the file system. 130 * 131 * - The helper routines used by the snapshot driver and the fssnap 132 * library routines for managing the translation table and other 133 * useful functions. These routines are all static and are 134 * prefixed with either "fssnap_" or "transtbl_" if they 135 * are specifically used for translation table activities. 136 */ 137 138 static dev_info_t *fssnap_dip = NULL; 139 static struct snapshot_id *snapshot = NULL; 140 static struct snapshot_id snap_ctl; 141 static int num_snapshots = 0; 142 static kmutex_t snapshot_mutex; 143 static char snapname[] = SNAP_NAME; 144 145 /* "tunable" parameters */ 146 static int fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS; 147 static uint_t fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS; 148 static int fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS; 149 150 /* static function prototypes */ 151 152 /* snapshot driver */ 153 static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 154 static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 155 static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 156 static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred); 157 static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred); 158 static int snap_strategy(struct buf *bp); 159 static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp); 160 static int snap_print(dev_t dev, char *str); 161 static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, 162 cred_t *credp, int *rvalp); 163 static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 164 int flags, char *name, caddr_t valuep, int *lengthp); 165 static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, 166 int offset, int len, char *buffer); 167 168 169 /* fssnap interface implementations (see fssnap_if.h) */ 170 static void fssnap_strategy_impl(void *, struct buf *); 171 static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t, 172 struct vnode *, int, struct vnode **, char *, u_offset_t); 173 static void fssnap_set_candidate_impl(void *, chunknumber_t); 174 static int fssnap_is_candidate_impl(void *, u_offset_t); 175 static int fssnap_create_done_impl(void *); 176 static int fssnap_delete_impl(void *); 177 178 /* fssnap interface support routines */ 179 static int fssnap_translate(struct snapshot_id **, struct buf *); 180 static void fssnap_write_taskq(void *); 181 static void fssnap_create_kstats(snapshot_id_t *, int, const char *, 182 const char *); 183 static int fssnap_update_kstat_num(kstat_t *, int); 184 static void fssnap_delete_kstats(struct cow_info *); 185 186 /* translation table prototypes */ 187 static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t); 188 static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t); 189 static void transtbl_delete(cow_map_t *, cow_map_node_t *); 190 static void transtbl_free(cow_map_t *); 191 192 static kstat_t *fssnap_highwater_kstat; 193 194 /* ************************************************************************ */ 195 196 /* Device and Module Structures */ 197 198 static struct cb_ops snap_cb_ops = { 199 snap_open, 200 snap_close, 201 snap_strategy, 202 snap_print, 203 nodev, /* no snap_dump */ 204 snap_read, 205 nodev, /* no snap_write */ 206 snap_ioctl, 207 nodev, /* no snap_devmap */ 208 nodev, /* no snap_mmap */ 209 nodev, /* no snap_segmap */ 210 nochpoll, 211 snap_prop_op, 212 NULL, /* streamtab */ 213 D_64BIT | D_NEW | D_MP, /* driver compatibility */ 214 CB_REV, 215 nodev, /* async I/O read entry point */ 216 nodev /* async I/O write entry point */ 217 }; 218 219 static struct dev_ops snap_ops = { 220 DEVO_REV, 221 0, /* ref count */ 222 snap_getinfo, 223 nulldev, /* snap_identify obsolete */ 224 nulldev, /* no snap_probe */ 225 snap_attach, 226 snap_detach, 227 nodev, /* no snap_reset */ 228 &snap_cb_ops, 229 (struct bus_ops *)NULL, 230 nulldev, /* no snap_power() */ 231 ddi_quiesce_not_needed, /* quiesce */ 232 }; 233 234 extern struct mod_ops mod_driverops; 235 236 static struct modldrv md = { 237 &mod_driverops, /* Type of module. This is a driver */ 238 "snapshot driver", /* Name of the module */ 239 &snap_ops, 240 }; 241 242 static struct modlinkage ml = { 243 MODREV_1, 244 &md, 245 NULL 246 }; 247 248 static void *statep; 249 250 int 251 _init(void) 252 { 253 int error; 254 kstat_t *ksp; 255 kstat_named_t *ksdata; 256 257 error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1); 258 if (error) { 259 cmn_err(CE_WARN, "_init: failed to init ddi_soft_state."); 260 return (error); 261 } 262 263 error = mod_install(&ml); 264 265 if (error) { 266 cmn_err(CE_WARN, "_init: failed to mod_install."); 267 ddi_soft_state_fini(&statep); 268 return (error); 269 } 270 271 /* 272 * Fill in the snapshot operations vector for file systems 273 * (defined in fssnap_if.c) 274 */ 275 276 snapops.fssnap_create = fssnap_create_impl; 277 snapops.fssnap_set_candidate = fssnap_set_candidate_impl; 278 snapops.fssnap_is_candidate = fssnap_is_candidate_impl; 279 snapops.fssnap_create_done = fssnap_create_done_impl; 280 snapops.fssnap_delete = fssnap_delete_impl; 281 snapops.fssnap_strategy = fssnap_strategy_impl; 282 283 mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL); 284 285 /* 286 * Initialize the fssnap highwater kstat 287 */ 288 ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc", 289 KSTAT_TYPE_NAMED, 1, 0); 290 if (ksp != NULL) { 291 ksdata = (kstat_named_t *)ksp->ks_data; 292 kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER, 293 KSTAT_DATA_UINT32); 294 ksdata->value.ui32 = 0; 295 kstat_install(ksp); 296 } else { 297 cmn_err(CE_WARN, "_init: failed to create highwater kstat."); 298 } 299 fssnap_highwater_kstat = ksp; 300 301 return (0); 302 } 303 304 int 305 _info(struct modinfo *modinfop) 306 { 307 return (mod_info(&ml, modinfop)); 308 } 309 310 int 311 _fini(void) 312 { 313 int error; 314 315 error = mod_remove(&ml); 316 if (error) 317 return (error); 318 ddi_soft_state_fini(&statep); 319 320 /* 321 * delete the fssnap highwater kstat 322 */ 323 kstat_delete(fssnap_highwater_kstat); 324 325 mutex_destroy(&snapshot_mutex); 326 327 /* Clear out the file system operations vector */ 328 snapops.fssnap_create = NULL; 329 snapops.fssnap_set_candidate = NULL; 330 snapops.fssnap_create_done = NULL; 331 snapops.fssnap_delete = NULL; 332 snapops.fssnap_strategy = NULL; 333 334 return (0); 335 } 336 337 /* ************************************************************************ */ 338 339 /* 340 * Snapshot Driver Routines 341 * 342 * This section implements the snapshot character and block drivers. The 343 * device will appear to be a consistent read-only file system to 344 * applications that wish to back it up or mount it. The snapshot driver 345 * communicates with the file system through the translation table, which 346 * tells the snapshot driver where to find the data necessary to piece 347 * together the frozen file system. The data may either be on the master 348 * device (no translation exists), in memory (a translation exists but has 349 * not been flushed to the backing store), or in the backing store file. 350 * The read request may require the snapshot driver to retrieve data from 351 * several different places and piece it together to look like a single 352 * contiguous read. 353 * 354 * The device minor number corresponds to the snapshot number in the list of 355 * snapshot identifiers. The soft state for each minor number is simply a 356 * pointer to the snapshot id, which holds all of the snapshot state. One 357 * minor number is designated as the control device. All snapshot create 358 * and delete requests go through the control device to ensure this module 359 * is properly loaded and attached before the file system starts calling 360 * routines defined here. 361 */ 362 363 364 /* 365 * snap_getinfo() - snapshot driver getinfo(9E) routine 366 * 367 */ 368 /*ARGSUSED*/ 369 static int 370 snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 371 { 372 switch (infocmd) { 373 case DDI_INFO_DEVT2DEVINFO: 374 *result = fssnap_dip; 375 return (DDI_SUCCESS); 376 case DDI_INFO_DEVT2INSTANCE: 377 *result = 0; /* we only have one instance */ 378 return (DDI_SUCCESS); 379 } 380 return (DDI_FAILURE); 381 } 382 383 /* 384 * snap_attach() - snapshot driver attach(9E) routine 385 * 386 * sets up snapshot control device and control state. The control state 387 * is a pointer to an "anonymous" snapshot_id for tracking opens and closes 388 */ 389 static int 390 snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 391 { 392 int error; 393 394 switch (cmd) { 395 case DDI_ATTACH: 396 /* create the control device */ 397 error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR, 398 SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV, 399 PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666); 400 if (error == DDI_FAILURE) { 401 return (DDI_FAILURE); 402 } 403 404 rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL); 405 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 406 fssnap_dip = dip; 407 snap_ctl.sid_snapnumber = SNAP_CTL_MINOR; 408 /* the control sid is not linked into the snapshot list */ 409 snap_ctl.sid_next = NULL; 410 snap_ctl.sid_cowinfo = NULL; 411 snap_ctl.sid_flags = 0; 412 rw_exit(&snap_ctl.sid_rwlock); 413 ddi_report_dev(dip); 414 415 return (DDI_SUCCESS); 416 case DDI_PM_RESUME: 417 return (DDI_SUCCESS); 418 419 case DDI_RESUME: 420 return (DDI_SUCCESS); 421 422 default: 423 return (DDI_FAILURE); 424 } 425 } 426 427 /* 428 * snap_detach() - snapshot driver detach(9E) routine 429 * 430 * destroys snapshot control device and control state. If any snapshots 431 * are active (ie. num_snapshots != 0), the device will refuse to detach. 432 */ 433 static int 434 snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 435 { 436 struct snapshot_id *sidp, *sidnextp; 437 438 switch (cmd) { 439 case DDI_DETACH: 440 /* do not detach if the device is active */ 441 mutex_enter(&snapshot_mutex); 442 if ((num_snapshots != 0) || 443 ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) { 444 mutex_exit(&snapshot_mutex); 445 return (DDI_FAILURE); 446 } 447 448 /* free up the snapshot list */ 449 for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { 450 ASSERT(SID_AVAILABLE(sidp) && 451 !RW_LOCK_HELD(&sidp->sid_rwlock)); 452 sidnextp = sidp->sid_next; 453 rw_destroy(&sidp->sid_rwlock); 454 kmem_free(sidp, sizeof (struct snapshot_id)); 455 } 456 snapshot = NULL; 457 458 /* delete the control device */ 459 ddi_remove_minor_node(dip, SNAP_CTL_NODE); 460 fssnap_dip = NULL; 461 462 ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0); 463 rw_destroy(&snap_ctl.sid_rwlock); 464 mutex_exit(&snapshot_mutex); 465 466 return (DDI_SUCCESS); 467 468 default: 469 return (DDI_FAILURE); 470 } 471 } 472 473 /* 474 * snap_open() - snapshot driver open(9E) routine 475 * 476 * marks the snapshot id as busy so it will not be recycled when deleted 477 * until the snapshot is closed. 478 */ 479 /* ARGSUSED */ 480 static int 481 snap_open(dev_t *devp, int flag, int otyp, cred_t *cred) 482 { 483 minor_t minor; 484 struct snapshot_id **sidpp, *sidp; 485 486 /* snapshots are read-only */ 487 if (flag & FWRITE) 488 return (EROFS); 489 490 minor = getminor(*devp); 491 492 if (minor == SNAP_CTL_MINOR) { 493 /* control device must be opened exclusively */ 494 if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) 495 return (EINVAL); 496 497 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 498 if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) { 499 rw_exit(&snap_ctl.sid_rwlock); 500 return (EBUSY); 501 } 502 503 snap_ctl.sid_flags |= SID_CHAR_BUSY; 504 rw_exit(&snap_ctl.sid_rwlock); 505 506 return (0); 507 } 508 509 sidpp = ddi_get_soft_state(statep, minor); 510 if (sidpp == NULL || *sidpp == NULL) 511 return (ENXIO); 512 sidp = *sidpp; 513 rw_enter(&sidp->sid_rwlock, RW_WRITER); 514 515 if ((flag & FEXCL) && SID_BUSY(sidp)) { 516 rw_exit(&sidp->sid_rwlock); 517 return (EAGAIN); 518 } 519 520 ASSERT(sidpp != NULL && sidp != NULL); 521 /* check to see if this snapshot has been killed on us */ 522 if (SID_INACTIVE(sidp)) { 523 cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.", 524 minor); 525 rw_exit(&sidp->sid_rwlock); 526 return (ENXIO); 527 } 528 529 switch (otyp) { 530 case OTYP_CHR: 531 sidp->sid_flags |= SID_CHAR_BUSY; 532 break; 533 case OTYP_BLK: 534 sidp->sid_flags |= SID_BLOCK_BUSY; 535 break; 536 default: 537 rw_exit(&sidp->sid_rwlock); 538 return (EINVAL); 539 } 540 541 rw_exit(&sidp->sid_rwlock); 542 543 /* 544 * at this point if a valid snapshot was found then it has 545 * been marked busy and we can use it. 546 */ 547 return (0); 548 } 549 550 /* 551 * snap_close() - snapshot driver close(9E) routine 552 * 553 * unsets the busy bits in the snapshot id. If the snapshot has been 554 * deleted while the snapshot device was open, the close call will clean 555 * up the remaining state information. 556 */ 557 /* ARGSUSED */ 558 static int 559 snap_close(dev_t dev, int flag, int otyp, cred_t *cred) 560 { 561 struct snapshot_id **sidpp, *sidp; 562 minor_t minor; 563 char name[20]; 564 565 minor = getminor(dev); 566 567 /* if this is the control device, close it and return */ 568 if (minor == SNAP_CTL_MINOR) { 569 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 570 snap_ctl.sid_flags &= ~(SID_CHAR_BUSY); 571 rw_exit(&snap_ctl.sid_rwlock); 572 return (0); 573 } 574 575 sidpp = ddi_get_soft_state(statep, minor); 576 if (sidpp == NULL || *sidpp == NULL) { 577 cmn_err(CE_WARN, "snap_close: could not find state for " 578 "snapshot %d.", minor); 579 return (ENXIO); 580 } 581 sidp = *sidpp; 582 mutex_enter(&snapshot_mutex); 583 rw_enter(&sidp->sid_rwlock, RW_WRITER); 584 585 /* Mark the snapshot as not being busy anymore */ 586 switch (otyp) { 587 case OTYP_CHR: 588 sidp->sid_flags &= ~(SID_CHAR_BUSY); 589 break; 590 case OTYP_BLK: 591 sidp->sid_flags &= ~(SID_BLOCK_BUSY); 592 break; 593 default: 594 mutex_exit(&snapshot_mutex); 595 rw_exit(&sidp->sid_rwlock); 596 return (EINVAL); 597 } 598 599 if (SID_AVAILABLE(sidp)) { 600 /* 601 * if this is the last close on a snapshot that has been 602 * deleted, then free up the soft state. The snapdelete 603 * ioctl does not free this when the device is in use so 604 * we do it here after the last reference goes away. 605 */ 606 607 /* remove the device nodes */ 608 ASSERT(fssnap_dip != NULL); 609 (void) snprintf(name, sizeof (name), "%d", 610 sidp->sid_snapnumber); 611 ddi_remove_minor_node(fssnap_dip, name); 612 (void) snprintf(name, sizeof (name), "%d,raw", 613 sidp->sid_snapnumber); 614 ddi_remove_minor_node(fssnap_dip, name); 615 616 /* delete the state structure */ 617 ddi_soft_state_free(statep, sidp->sid_snapnumber); 618 num_snapshots--; 619 } 620 621 mutex_exit(&snapshot_mutex); 622 rw_exit(&sidp->sid_rwlock); 623 624 return (0); 625 } 626 627 /* 628 * snap_read() - snapshot driver read(9E) routine 629 * 630 * reads data from the snapshot by calling snap_strategy() through physio() 631 */ 632 /* ARGSUSED */ 633 static int 634 snap_read(dev_t dev, struct uio *uiop, cred_t *credp) 635 { 636 minor_t minor; 637 struct snapshot_id **sidpp; 638 639 minor = getminor(dev); 640 sidpp = ddi_get_soft_state(statep, minor); 641 if (sidpp == NULL || *sidpp == NULL) { 642 cmn_err(CE_WARN, 643 "snap_read: could not find state for snapshot %d.", minor); 644 return (ENXIO); 645 } 646 return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop)); 647 } 648 649 /* 650 * snap_strategy() - snapshot driver strategy(9E) routine 651 * 652 * cycles through each chunk in the requested buffer and calls 653 * snap_getchunk() on each chunk to retrieve it from the appropriate 654 * place. Once all of the parts are put together the requested buffer 655 * is returned. The snapshot driver is read-only, so a write is invalid. 656 */ 657 static int 658 snap_strategy(struct buf *bp) 659 { 660 struct snapshot_id **sidpp, *sidp; 661 minor_t minor; 662 chunknumber_t chunk; 663 int off, len; 664 u_longlong_t reqptr; 665 int error = 0; 666 size_t chunksz; 667 caddr_t buf; 668 669 /* snapshot device is read-only */ 670 if (bp->b_flags & B_WRITE) { 671 bioerror(bp, EROFS); 672 bp->b_resid = bp->b_bcount; 673 biodone(bp); 674 return (0); 675 } 676 677 minor = getminor(bp->b_edev); 678 sidpp = ddi_get_soft_state(statep, minor); 679 if (sidpp == NULL || *sidpp == NULL) { 680 cmn_err(CE_WARN, 681 "snap_strategy: could not find state for snapshot %d.", 682 minor); 683 bioerror(bp, ENXIO); 684 bp->b_resid = bp->b_bcount; 685 biodone(bp); 686 return (0); 687 } 688 sidp = *sidpp; 689 ASSERT(sidp); 690 rw_enter(&sidp->sid_rwlock, RW_READER); 691 692 if (SID_INACTIVE(sidp)) { 693 bioerror(bp, ENXIO); 694 bp->b_resid = bp->b_bcount; 695 biodone(bp); 696 rw_exit(&sidp->sid_rwlock); 697 return (0); 698 } 699 700 if (bp->b_flags & (B_PAGEIO|B_PHYS)) 701 bp_mapin(bp); 702 703 bp->b_resid = bp->b_bcount; 704 ASSERT(bp->b_un.b_addr); 705 buf = bp->b_un.b_addr; 706 707 chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz; 708 709 /* reqptr is the current DEV_BSIZE offset into the device */ 710 /* chunk is the chunk containing reqptr */ 711 /* len is the length of the request (in the current chunk) in bytes */ 712 /* off is the byte offset into the current chunk */ 713 reqptr = bp->b_lblkno; 714 while (bp->b_resid > 0) { 715 chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr); 716 off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT; 717 len = min(chunksz - off, bp->b_resid); 718 ASSERT((off + len) <= chunksz); 719 720 if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) { 721 /* 722 * EINVAL means the user tried to go out of range. 723 * Anything else means it's likely that we're 724 * confused. 725 */ 726 if (error != EINVAL) { 727 cmn_err(CE_WARN, "snap_strategy: error " 728 "calling snap_getchunk, chunk = %llu, " 729 "offset = %d, len = %d, resid = %lu, " 730 "error = %d.", 731 chunk, off, len, bp->b_resid, error); 732 } 733 bioerror(bp, error); 734 biodone(bp); 735 rw_exit(&sidp->sid_rwlock); 736 return (0); 737 } 738 bp->b_resid -= len; 739 reqptr += (len >> DEV_BSHIFT); 740 buf += len; 741 } 742 743 ASSERT(bp->b_resid == 0); 744 biodone(bp); 745 746 rw_exit(&sidp->sid_rwlock); 747 return (0); 748 } 749 750 /* 751 * snap_getchunk() - helper function for snap_strategy() 752 * 753 * gets the requested data from the appropriate place and fills in the 754 * buffer. chunk is the chunk number of the request, offset is the 755 * offset into that chunk and must be less than the chunk size. len is 756 * the length of the request starting at offset, and must not exceed a 757 * chunk boundary. buffer is the address to copy the data to. len 758 * bytes are copied into the buffer starting at the location specified. 759 * 760 * A chunk is located according to the following algorithm: 761 * - If the chunk does not have a translation or is not a candidate 762 * for translation, it is read straight from the master device. 763 * - If the chunk does have a translation, then it is either on 764 * disk or in memory: 765 * o If it is in memory the requested data is simply copied out 766 * of the in-memory buffer. 767 * o If it is in the backing store, it is read from there. 768 * 769 * This function does the real work of the snapshot driver. 770 */ 771 static int 772 snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset, 773 int len, char *buffer) 774 { 775 cow_map_t *cmap = &sidp->sid_cowinfo->cow_map; 776 cow_map_node_t *cmn; 777 struct buf *snapbuf; 778 int error = 0; 779 char *newbuffer; 780 int newlen = 0; 781 int partial = 0; 782 783 ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); 784 ASSERT(offset + len <= cmap->cmap_chunksz); 785 786 /* 787 * Check if the chunk number is out of range and if so bail out 788 */ 789 if (chunk >= (cmap->cmap_bmsize * NBBY)) { 790 return (EINVAL); 791 } 792 793 /* 794 * If the chunk is not a candidate for translation, then the chunk 795 * was not allocated when the snapshot was taken. Since it does 796 * not contain data associated with this snapshot, just return a 797 * zero buffer instead. 798 */ 799 if (isclr(cmap->cmap_candidate, chunk)) { 800 bzero(buffer, len); 801 return (0); 802 } 803 804 /* 805 * if the chunk is a candidate for translation but a 806 * translation does not exist, then read through to the 807 * original file system. The rwlock is held until the read 808 * completes if it hasn't been translated to make sure the 809 * file system does not translate the block before we 810 * access it. If it has already been translated we don't 811 * need the lock, because the translation will never go away. 812 */ 813 rw_enter(&cmap->cmap_rwlock, RW_READER); 814 if (isclr(cmap->cmap_hastrans, chunk)) { 815 snapbuf = getrbuf(KM_SLEEP); 816 /* 817 * Reading into the buffer saves having to do a copy, 818 * but gets tricky if the request size is not a 819 * multiple of DEV_BSIZE. However, we are filling the 820 * buffer left to right, so future reads will write 821 * over any extra data we might have read. 822 */ 823 824 partial = len % DEV_BSIZE; 825 826 snapbuf->b_bcount = len; 827 snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset); 828 snapbuf->b_un.b_addr = buffer; 829 830 snapbuf->b_iodone = NULL; 831 snapbuf->b_proc = NULL; /* i.e. the kernel */ 832 snapbuf->b_flags = B_READ | B_BUSY; 833 snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev; 834 835 if (partial) { 836 /* 837 * Partial block read in progress. 838 * This is bad as modules further down the line 839 * assume buf's are exact multiples of DEV_BSIZE 840 * and we end up with fewer, or zero, bytes read. 841 * To get round this we need to round up to the 842 * nearest full block read and then return only 843 * len bytes. 844 */ 845 newlen = (len - partial) + DEV_BSIZE; 846 newbuffer = kmem_alloc(newlen, KM_SLEEP); 847 848 snapbuf->b_bcount = newlen; 849 snapbuf->b_un.b_addr = newbuffer; 850 } 851 852 (void) bdev_strategy(snapbuf); 853 (void) biowait(snapbuf); 854 855 error = geterror(snapbuf); 856 857 if (partial) { 858 /* 859 * Partial block read. Now we need to bcopy the 860 * correct number of bytes back into the 861 * supplied buffer, and tidy up our temp 862 * buffer. 863 */ 864 bcopy(newbuffer, buffer, len); 865 kmem_free(newbuffer, newlen); 866 } 867 868 freerbuf(snapbuf); 869 rw_exit(&cmap->cmap_rwlock); 870 871 return (error); 872 } 873 874 /* 875 * finally, if the chunk is a candidate for translation and it 876 * has been translated, then we clone the chunk of the buffer 877 * that was copied aside by the file system. 878 * The cmap_rwlock does not need to be held after we know the 879 * data has already been copied. Once a chunk has been copied 880 * to the backing file, it is stable read only data. 881 */ 882 cmn = transtbl_get(cmap, chunk); 883 884 /* check whether the data is in memory or in the backing file */ 885 if (cmn != NULL) { 886 ASSERT(cmn->cmn_buf); 887 /* already in memory */ 888 bcopy(cmn->cmn_buf + offset, buffer, len); 889 rw_exit(&cmap->cmap_rwlock); 890 } else { 891 ssize_t resid = len; 892 int bf_index; 893 /* 894 * can cause deadlock with writer if we don't drop the 895 * cmap_rwlock before trying to get the backing store file 896 * vnode rwlock. 897 */ 898 rw_exit(&cmap->cmap_rwlock); 899 900 bf_index = chunk / cmap->cmap_chunksperbf; 901 902 /* read buffer from backing file */ 903 error = vn_rdwr(UIO_READ, 904 (sidp->sid_cowinfo->cow_backfile_array)[bf_index], 905 buffer, len, ((chunk % cmap->cmap_chunksperbf) * 906 cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0, 907 RLIM64_INFINITY, kcred, &resid); 908 } 909 910 return (error); 911 } 912 913 /* 914 * snap_print() - snapshot driver print(9E) routine 915 * 916 * prints the device identification string. 917 */ 918 static int 919 snap_print(dev_t dev, char *str) 920 { 921 struct snapshot_id **sidpp; 922 minor_t minor; 923 924 minor = getminor(dev); 925 sidpp = ddi_get_soft_state(statep, minor); 926 if (sidpp == NULL || *sidpp == NULL) { 927 cmn_err(CE_WARN, 928 "snap_print: could not find state for snapshot %d.", minor); 929 return (ENXIO); 930 } 931 932 cmn_err(CE_NOTE, "snap_print: snapshot %d: %s", minor, str); 933 934 return (0); 935 } 936 937 /* 938 * snap_prop_op() - snapshot driver prop_op(9E) routine 939 * 940 * get 32-bit and 64-bit values for size (character driver) and nblocks 941 * (block driver). 942 */ 943 static int 944 snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 945 int flags, char *name, caddr_t valuep, int *lengthp) 946 { 947 int minor; 948 struct snapshot_id **sidpp; 949 dev_t mdev; 950 dev_info_t *mdip; 951 int error; 952 953 minor = getminor(dev); 954 955 /* 956 * If this is the control device just check for .conf properties, 957 * if the wildcard DDI_DEV_T_ANY was passed in via the dev_t 958 * just fall back to the defaults. 959 */ 960 if ((minor == SNAP_CTL_MINOR) || (dev == DDI_DEV_T_ANY)) 961 return (ddi_prop_op(dev, dip, prop_op, flags, name, 962 valuep, lengthp)); 963 964 /* check to see if there is a master device plumbed */ 965 sidpp = ddi_get_soft_state(statep, minor); 966 if (sidpp == NULL || *sidpp == NULL) { 967 cmn_err(CE_WARN, 968 "snap_prop_op: could not find state for " 969 "snapshot %d.", minor); 970 return (DDI_PROP_NOT_FOUND); 971 } 972 973 if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL)) 974 return (ddi_prop_op(dev, dip, prop_op, flags, name, 975 valuep, lengthp)); 976 977 /* hold master device and pass operation down */ 978 mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev; 979 if (mdip = e_ddi_hold_devi_by_dev(mdev, 0)) { 980 981 /* get size information from the master device. */ 982 error = cdev_prop_op(mdev, mdip, 983 prop_op, flags, name, valuep, lengthp); 984 ddi_release_devi(mdip); 985 if (error == DDI_PROP_SUCCESS) 986 return (error); 987 } 988 989 /* master device did not service the request, try framework */ 990 return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); 991 992 } 993 994 /* 995 * snap_ioctl() - snapshot driver ioctl(9E) routine 996 * 997 * only applies to the control device. The control device accepts two 998 * ioctl requests: create a snapshot or delete a snapshot. In either 999 * case, the vnode for the requested file system is extracted, and the 1000 * request is passed on to the file system via the same ioctl. The file 1001 * system is responsible for doing the things necessary for creating or 1002 * destroying a snapshot, including any file system specific operations 1003 * that must be performed as well as setting up and deleting the snapshot 1004 * state through the fssnap interfaces. 1005 */ 1006 static int 1007 snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1008 int *rvalp) 1009 { 1010 minor_t minor; 1011 int error = 0; 1012 1013 minor = getminor(dev); 1014 1015 if (minor != SNAP_CTL_MINOR) { 1016 return (EINVAL); 1017 } 1018 1019 switch (cmd) { 1020 case _FIOSNAPSHOTCREATE: 1021 { 1022 struct fiosnapcreate fc; 1023 struct file *fp; 1024 struct vnode *vp; 1025 1026 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1027 return (EFAULT); 1028 1029 /* get vnode for file system mount point */ 1030 if ((fp = getf(fc.rootfiledesc)) == NULL) 1031 return (EBADF); 1032 1033 ASSERT(fp->f_vnode); 1034 vp = fp->f_vnode; 1035 VN_HOLD(vp); 1036 releasef(fc.rootfiledesc); 1037 1038 /* pass ioctl request to file system */ 1039 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1040 VN_RELE(vp); 1041 break; 1042 } 1043 case _FIOSNAPSHOTCREATE_MULTI: 1044 { 1045 struct fiosnapcreate_multi fc; 1046 struct file *fp; 1047 struct vnode *vp; 1048 1049 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1050 return (EFAULT); 1051 1052 /* get vnode for file system mount point */ 1053 if ((fp = getf(fc.rootfiledesc)) == NULL) 1054 return (EBADF); 1055 1056 ASSERT(fp->f_vnode); 1057 vp = fp->f_vnode; 1058 VN_HOLD(vp); 1059 releasef(fc.rootfiledesc); 1060 1061 /* pass ioctl request to file system */ 1062 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1063 VN_RELE(vp); 1064 break; 1065 } 1066 case _FIOSNAPSHOTDELETE: 1067 { 1068 major_t major; 1069 struct fiosnapdelete fc; 1070 snapshot_id_t *sidp = NULL; 1071 snapshot_id_t *sidnextp = NULL; 1072 struct file *fp = NULL; 1073 struct vnode *vp = NULL; 1074 struct vfs *vfsp = NULL; 1075 vfsops_t *vfsops = EIO_vfsops; 1076 1077 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1078 return (EFAULT); 1079 1080 /* get vnode for file system mount point */ 1081 if ((fp = getf(fc.rootfiledesc)) == NULL) 1082 return (EBADF); 1083 1084 ASSERT(fp->f_vnode); 1085 vp = fp->f_vnode; 1086 VN_HOLD(vp); 1087 releasef(fc.rootfiledesc); 1088 /* 1089 * Test for two formats of delete and set correct minor/vp: 1090 * pseudo device: 1091 * fssnap -d [/dev/fssnap/x] 1092 * or 1093 * mount point: 1094 * fssnap -d [/mntpt] 1095 * Note that minor is verified to be equal to SNAP_CTL_MINOR 1096 * at this point which is an invalid minor number. 1097 */ 1098 ASSERT(fssnap_dip != NULL); 1099 major = ddi_driver_major(fssnap_dip); 1100 mutex_enter(&snapshot_mutex); 1101 for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { 1102 rw_enter(&sidp->sid_rwlock, RW_READER); 1103 sidnextp = sidp->sid_next; 1104 /* pseudo device: */ 1105 if (major == getmajor(vp->v_rdev)) { 1106 minor = getminor(vp->v_rdev); 1107 if (sidp->sid_snapnumber == (uint_t)minor && 1108 sidp->sid_fvp) { 1109 VN_RELE(vp); 1110 vp = sidp->sid_fvp; 1111 VN_HOLD(vp); 1112 rw_exit(&sidp->sid_rwlock); 1113 break; 1114 } 1115 /* Mount point: */ 1116 } else { 1117 if (sidp->sid_fvp == vp) { 1118 minor = sidp->sid_snapnumber; 1119 rw_exit(&sidp->sid_rwlock); 1120 break; 1121 } 1122 } 1123 rw_exit(&sidp->sid_rwlock); 1124 } 1125 mutex_exit(&snapshot_mutex); 1126 /* Verify minor got set correctly above */ 1127 if (minor == SNAP_CTL_MINOR) { 1128 VN_RELE(vp); 1129 return (EINVAL); 1130 } 1131 dev = makedevice(major, minor); 1132 /* 1133 * Create dummy vfs entry 1134 * to use as a locking semaphore across the IOCTL 1135 * for mount in progress cases... 1136 */ 1137 vfsp = vfs_alloc(KM_SLEEP); 1138 VFS_INIT(vfsp, vfsops, NULL); 1139 VFS_HOLD(vfsp); 1140 vfs_addmip(dev, vfsp); 1141 if ((vfs_devmounting(dev, vfsp)) || 1142 (vfs_devismounted(dev))) { 1143 vfs_delmip(vfsp); 1144 VFS_RELE(vfsp); 1145 VN_RELE(vp); 1146 return (EBUSY); 1147 } 1148 /* 1149 * Nobody mounted but do not release mount in progress lock 1150 * until IOCTL complete to prohibit a mount sneaking 1151 * in 1152 */ 1153 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1154 vfs_delmip(vfsp); 1155 VFS_RELE(vfsp); 1156 VN_RELE(vp); 1157 break; 1158 } 1159 default: 1160 cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.", 1161 cmd, minor); 1162 return (EINVAL); 1163 } 1164 1165 return (error); 1166 } 1167 1168 1169 /* ************************************************************************ */ 1170 1171 /* 1172 * Translation Table Routines 1173 * 1174 * These support routines implement a simple doubly linked list 1175 * to keep track of chunks that are currently in memory. The maximum 1176 * size of the list is determined by the fssnap_max_mem_chunks variable. 1177 * The cmap_rwlock is used to protect the linkage of the list. 1178 */ 1179 1180 /* 1181 * transtbl_add() - add a node to the translation table 1182 * 1183 * allocates a new node and points it at the buffer passed in. The node 1184 * is added to the beginning of the doubly linked list and the head of 1185 * the list is moved. The cmap_rwlock must be held as a writer through 1186 * this operation. 1187 */ 1188 static cow_map_node_t * 1189 transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf) 1190 { 1191 cow_map_node_t *cmnode; 1192 1193 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1194 1195 cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP); 1196 1197 /* 1198 * insert new translations at the beginning so cmn_table is always 1199 * the first node. 1200 */ 1201 cmnode->cmn_chunk = chunk; 1202 cmnode->cmn_buf = buf; 1203 cmnode->cmn_prev = NULL; 1204 cmnode->cmn_next = cmap->cmap_table; 1205 if (cmnode->cmn_next) 1206 cmnode->cmn_next->cmn_prev = cmnode; 1207 cmap->cmap_table = cmnode; 1208 1209 return (cmnode); 1210 } 1211 1212 /* 1213 * transtbl_get() - look up a node in the translation table 1214 * 1215 * called by the snapshot driver to find data that has been translated. 1216 * The lookup is done by the chunk number, and the node is returned. 1217 * If the node was not found, NULL is returned. 1218 */ 1219 static cow_map_node_t * 1220 transtbl_get(cow_map_t *cmap, chunknumber_t chunk) 1221 { 1222 cow_map_node_t *cmn; 1223 1224 ASSERT(RW_READ_HELD(&cmap->cmap_rwlock)); 1225 ASSERT(cmap); 1226 1227 /* search the translation table */ 1228 for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) { 1229 if (cmn->cmn_chunk == chunk) 1230 return (cmn); 1231 } 1232 1233 /* not found */ 1234 return (NULL); 1235 } 1236 1237 /* 1238 * transtbl_delete() - delete a node from the translation table 1239 * 1240 * called when a node's data has been written out to disk. The 1241 * cmap_rwlock must be held as a writer for this operation. If the node 1242 * being deleted is the head of the list, then the head is moved to the 1243 * next node. Both the node's data and the node itself are freed. 1244 */ 1245 static void 1246 transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn) 1247 { 1248 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1249 ASSERT(cmn); 1250 ASSERT(cmap->cmap_table); 1251 1252 /* if the head of the list is being deleted, then move the head up */ 1253 if (cmap->cmap_table == cmn) { 1254 ASSERT(cmn->cmn_prev == NULL); 1255 cmap->cmap_table = cmn->cmn_next; 1256 } 1257 1258 1259 /* make previous node's next pointer skip over current node */ 1260 if (cmn->cmn_prev != NULL) { 1261 ASSERT(cmn->cmn_prev->cmn_next == cmn); 1262 cmn->cmn_prev->cmn_next = cmn->cmn_next; 1263 } 1264 1265 /* make next node's previous pointer skip over current node */ 1266 if (cmn->cmn_next != NULL) { 1267 ASSERT(cmn->cmn_next->cmn_prev == cmn); 1268 cmn->cmn_next->cmn_prev = cmn->cmn_prev; 1269 } 1270 1271 /* free the data and the node */ 1272 ASSERT(cmn->cmn_buf); 1273 kmem_free(cmn->cmn_buf, cmap->cmap_chunksz); 1274 kmem_free(cmn, sizeof (cow_map_node_t)); 1275 } 1276 1277 /* 1278 * transtbl_free() - free the entire translation table 1279 * 1280 * called when the snapshot is deleted. This frees all of the nodes in 1281 * the translation table (but not the bitmaps). 1282 */ 1283 static void 1284 transtbl_free(cow_map_t *cmap) 1285 { 1286 cow_map_node_t *curnode; 1287 cow_map_node_t *tempnode; 1288 1289 for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) { 1290 tempnode = curnode->cmn_next; 1291 1292 kmem_free(curnode->cmn_buf, cmap->cmap_chunksz); 1293 kmem_free(curnode, sizeof (cow_map_node_t)); 1294 } 1295 } 1296 1297 1298 /* ************************************************************************ */ 1299 1300 /* 1301 * Interface Implementation Routines 1302 * 1303 * The following functions implement snapshot interface routines that are 1304 * called by the file system to create, delete, and use a snapshot. The 1305 * interfaces are defined in fssnap_if.c and are filled in by this driver 1306 * when it is loaded. This technique allows the file system to depend on 1307 * the interface module without having to load the full implementation and 1308 * snapshot device drivers. 1309 */ 1310 1311 /* 1312 * fssnap_strategy_impl() - strategy routine called by the file system 1313 * 1314 * called by the file system to handle copy-on-write when necessary. All 1315 * reads and writes that the file system performs should go through this 1316 * function. If the file system calls the underlying device's strategy 1317 * routine without going through fssnap_strategy() (eg. by calling 1318 * bdev_strategy()), the snapshot may not be consistent. 1319 * 1320 * This function starts by doing significant sanity checking to insure 1321 * the snapshot was not deleted out from under it or deleted and then 1322 * recreated. To do this, it checks the actual pointer passed into it 1323 * (ie. the handle held by the file system). NOTE that the parameter is 1324 * a POINTER TO A POINTER to the snapshot id. Once the snapshot id is 1325 * locked, it knows things are ok and that this snapshot is really for 1326 * this file system. 1327 * 1328 * If the request is a write, fssnap_translate() is called to determine 1329 * whether a copy-on-write is required. If it is a read, the read is 1330 * simply passed on to the underlying device. 1331 */ 1332 static void 1333 fssnap_strategy_impl(void *snapshot_id, buf_t *bp) 1334 { 1335 struct snapshot_id **sidpp; 1336 struct snapshot_id *sidp; 1337 int error; 1338 1339 /* read requests are always passed through */ 1340 if (bp->b_flags & B_READ) { 1341 (void) bdev_strategy(bp); 1342 return; 1343 } 1344 1345 /* 1346 * Because we were not able to take the snapshot read lock BEFORE 1347 * checking for a snapshot back in the file system, things may have 1348 * drastically changed out from under us. For instance, the snapshot 1349 * may have been deleted, deleted and recreated, or worse yet, deleted 1350 * for this file system but now the snapshot number is in use by another 1351 * file system. 1352 * 1353 * Having a pointer to the file system's snapshot id pointer allows us 1354 * to sanity check most of this, though it assumes the file system is 1355 * keeping track of a pointer to the snapshot_id somewhere. 1356 */ 1357 sidpp = (struct snapshot_id **)snapshot_id; 1358 sidp = *sidpp; 1359 1360 /* 1361 * if this file system's snapshot was disabled, just pass the 1362 * request through. 1363 */ 1364 if (sidp == NULL) { 1365 (void) bdev_strategy(bp); 1366 return; 1367 } 1368 1369 /* 1370 * Once we have the reader lock the snapshot will not magically go 1371 * away. But things may have changed on us before this so double check. 1372 */ 1373 rw_enter(&sidp->sid_rwlock, RW_READER); 1374 1375 /* 1376 * if an error was founds somewhere the DELETE flag will be 1377 * set to indicate the snapshot should be deleted and no new 1378 * translations should occur. 1379 */ 1380 if (sidp->sid_flags & SID_DELETE) { 1381 rw_exit(&sidp->sid_rwlock); 1382 (void) fssnap_delete_impl(sidpp); 1383 (void) bdev_strategy(bp); 1384 return; 1385 } 1386 1387 /* 1388 * If the file system is no longer pointing to the snapshot we were 1389 * called with, then it should not attempt to translate this buffer as 1390 * it may be going to a snapshot for a different file system. 1391 * Even if the file system snapshot pointer is still the same, the 1392 * snapshot may have been disabled before we got the reader lock. 1393 */ 1394 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1395 rw_exit(&sidp->sid_rwlock); 1396 (void) bdev_strategy(bp); 1397 return; 1398 } 1399 1400 /* 1401 * At this point we're sure the snapshot will not go away while the 1402 * reader lock is held, and we are reasonably certain that we are 1403 * writing to the correct snapshot. 1404 */ 1405 if ((error = fssnap_translate(sidpp, bp)) != 0) { 1406 /* 1407 * fssnap_translate can release the reader lock if it 1408 * has to wait for a semaphore. In this case it is possible 1409 * for the snapshot to be deleted in this time frame. If this 1410 * happens just sent the buf thru to the filesystems device. 1411 */ 1412 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1413 rw_exit(&sidp->sid_rwlock); 1414 (void) bdev_strategy(bp); 1415 return; 1416 } 1417 bioerror(bp, error); 1418 biodone(bp); 1419 } 1420 rw_exit(&sidp->sid_rwlock); 1421 } 1422 1423 /* 1424 * fssnap_translate() - helper function for fssnap_strategy() 1425 * 1426 * performs the actual copy-on-write for write requests, if required. 1427 * This function does the real work of the file system side of things. 1428 * 1429 * It first checks the candidate bitmap to quickly determine whether any 1430 * action is necessary. If the candidate bitmap indicates the chunk was 1431 * allocated when the snapshot was created, then it checks to see whether 1432 * a translation already exists. If a translation already exists then no 1433 * action is required. If the chunk is a candidate for copy-on-write, 1434 * and a translation does not already exist, then the chunk is read in 1435 * and a node is added to the translation table. 1436 * 1437 * Once all of the chunks in the request range have been copied (if they 1438 * needed to be), then the original request can be satisfied and the old 1439 * data can be overwritten. 1440 */ 1441 static int 1442 fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp) 1443 { 1444 snapshot_id_t *sidp = *sidpp; 1445 struct buf *oldbp; /* buffer to store old data in */ 1446 struct cow_info *cowp = sidp->sid_cowinfo; 1447 cow_map_t *cmap = &cowp->cow_map; 1448 cow_map_node_t *cmn; 1449 chunknumber_t cowchunk, startchunk, endchunk; 1450 int error; 1451 int throttle_write = 0; 1452 1453 /* make sure the snapshot is active */ 1454 ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); 1455 1456 startchunk = dbtocowchunk(cmap, wbp->b_lblkno); 1457 endchunk = dbtocowchunk(cmap, wbp->b_lblkno + 1458 ((wbp->b_bcount-1) >> DEV_BSHIFT)); 1459 1460 /* 1461 * Do not throttle the writes of the fssnap taskq thread and 1462 * the log roll (trans_roll) thread. Furthermore the writes to 1463 * the on-disk log are also not subject to throttling. 1464 * The fssnap_write_taskq thread's write can block on the throttling 1465 * semaphore which leads to self-deadlock as this same thread 1466 * releases the throttling semaphore after completing the IO. 1467 * If the trans_roll thread's write is throttled then we can deadlock 1468 * because the fssnap_taskq_thread which releases the throttling 1469 * semaphore can block waiting for log space which can only be 1470 * released by the trans_roll thread. 1471 */ 1472 1473 throttle_write = !(taskq_member(cowp->cow_taskq, curthread) || 1474 tsd_get(bypass_snapshot_throttle_key)); 1475 1476 /* 1477 * Iterate through all chunks covered by this write and perform the 1478 * copy-aside if necessary. Once all chunks have been safely 1479 * stowed away, the new data may be written in a single sweep. 1480 * 1481 * For each chunk in the range, the following sequence is performed: 1482 * - Is the chunk a candidate for translation? 1483 * o If not, then no translation is necessary, continue 1484 * - If it is a candidate, then does it already have a translation? 1485 * o If so, then no translation is necessary, continue 1486 * - If it is a candidate, but does not yet have a translation, 1487 * then read the old data and schedule an asynchronous taskq 1488 * to write the old data to the backing file. 1489 * 1490 * Once this has been performed over the entire range of chunks, then 1491 * it is safe to overwrite the data that is there. 1492 * 1493 * Note that no lock is required to check the candidate bitmap because 1494 * it never changes once the snapshot is created. The reader lock is 1495 * taken to check the hastrans bitmap since it may change. If it 1496 * turns out a copy is required, then the lock is upgraded to a 1497 * writer, and the bitmap is re-checked as it may have changed while 1498 * the lock was released. Finally, the write lock is held while 1499 * reading the old data to make sure it is not translated out from 1500 * under us. 1501 * 1502 * This locking mechanism should be sufficient to handle multiple 1503 * threads writing to overlapping chunks simultaneously. 1504 */ 1505 for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) { 1506 /* 1507 * If the cowchunk is outside of the range of our 1508 * candidate maps, then simply break out of the 1509 * loop and pass the I/O through to bdev_strategy. 1510 * This would occur if the file system has grown 1511 * larger since the snapshot was taken. 1512 */ 1513 if (cowchunk >= (cmap->cmap_bmsize * NBBY)) 1514 break; 1515 1516 /* 1517 * If no disk blocks were allocated in this chunk when the 1518 * snapshot was created then no copy-on-write will be 1519 * required. Since this bitmap is read-only no locks are 1520 * necessary. 1521 */ 1522 if (isclr(cmap->cmap_candidate, cowchunk)) { 1523 continue; 1524 } 1525 1526 /* 1527 * If a translation already exists, the data can be written 1528 * through since the old data has already been saved off. 1529 */ 1530 if (isset(cmap->cmap_hastrans, cowchunk)) { 1531 continue; 1532 } 1533 1534 1535 /* 1536 * Throttle translations if there are too many outstanding 1537 * chunks in memory. The semaphore is sema_v'd by the taskq. 1538 * 1539 * You can't keep the sid_rwlock if you would go to sleep. 1540 * This will result in deadlock when someone tries to delete 1541 * the snapshot (wants the sid_rwlock as a writer, but can't 1542 * get it). 1543 */ 1544 if (throttle_write) { 1545 if (sema_tryp(&cmap->cmap_throttle_sem) == 0) { 1546 rw_exit(&sidp->sid_rwlock); 1547 atomic_inc_32(&cmap->cmap_waiters); 1548 sema_p(&cmap->cmap_throttle_sem); 1549 atomic_dec_32(&cmap->cmap_waiters); 1550 rw_enter(&sidp->sid_rwlock, RW_READER); 1551 1552 /* 1553 * Now since we released the sid_rwlock the state may 1554 * have transitioned underneath us. so check that again. 1555 */ 1556 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1557 sema_v(&cmap->cmap_throttle_sem); 1558 return (ENXIO); 1559 } 1560 } 1561 } 1562 1563 /* 1564 * Acquire the lock as a writer and check to see if a 1565 * translation has been added in the meantime. 1566 */ 1567 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1568 if (isset(cmap->cmap_hastrans, cowchunk)) { 1569 if (throttle_write) 1570 sema_v(&cmap->cmap_throttle_sem); 1571 rw_exit(&cmap->cmap_rwlock); 1572 continue; /* go to the next chunk */ 1573 } 1574 1575 /* 1576 * read a full chunk of data from the requested offset rounded 1577 * down to the nearest chunk size. 1578 */ 1579 oldbp = getrbuf(KM_SLEEP); 1580 oldbp->b_lblkno = cowchunktodb(cmap, cowchunk); 1581 oldbp->b_edev = wbp->b_edev; 1582 oldbp->b_bcount = cmap->cmap_chunksz; 1583 oldbp->b_bufsize = cmap->cmap_chunksz; 1584 oldbp->b_iodone = NULL; 1585 oldbp->b_proc = NULL; 1586 oldbp->b_flags = B_READ; 1587 oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP); 1588 1589 (void) bdev_strategy(oldbp); 1590 (void) biowait(oldbp); 1591 1592 /* 1593 * It's ok to bail in the middle of translating the range 1594 * because the extra copy-asides will not hurt anything 1595 * (except by using extra space in the backing store). 1596 */ 1597 if ((error = geterror(oldbp)) != 0) { 1598 cmn_err(CE_WARN, "fssnap_translate: error reading " 1599 "old data for snapshot %d, chunk %llu, disk block " 1600 "%lld, size %lu, error %d.", sidp->sid_snapnumber, 1601 cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error); 1602 kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz); 1603 freerbuf(oldbp); 1604 rw_exit(&cmap->cmap_rwlock); 1605 if (throttle_write) 1606 sema_v(&cmap->cmap_throttle_sem); 1607 return (error); 1608 } 1609 1610 /* 1611 * add the node to the translation table and save a reference 1612 * to pass to the taskq for writing out to the backing file 1613 */ 1614 cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr); 1615 freerbuf(oldbp); 1616 1617 /* 1618 * Add a reference to the snapshot id so the lower level 1619 * processing (ie. the taskq) can get back to the state 1620 * information. 1621 */ 1622 cmn->cmn_sid = sidp; 1623 cmn->release_sem = throttle_write; 1624 setbit(cmap->cmap_hastrans, cowchunk); 1625 1626 rw_exit(&cmap->cmap_rwlock); 1627 1628 /* 1629 * schedule the asynchronous write to the backing file 1630 */ 1631 if (cowp->cow_backfile_array != NULL) 1632 (void) taskq_dispatch(cowp->cow_taskq, 1633 fssnap_write_taskq, cmn, TQ_SLEEP); 1634 } 1635 1636 /* 1637 * Write new data in place of the old data. At this point all of the 1638 * chunks touched by this write have been copied aside and so the new 1639 * data can be written out all at once. 1640 */ 1641 (void) bdev_strategy(wbp); 1642 1643 return (0); 1644 } 1645 1646 /* 1647 * fssnap_write_taskq() - write in-memory translations to the backing file 1648 * 1649 * writes in-memory translations to the backing file asynchronously. A 1650 * task is dispatched each time a new translation is created. The task 1651 * writes the data to the backing file and removes it from the memory 1652 * list. The throttling semaphore is released only if the particular 1653 * translation was throttled in fssnap_translate. 1654 */ 1655 static void 1656 fssnap_write_taskq(void *arg) 1657 { 1658 cow_map_node_t *cmn = (cow_map_node_t *)arg; 1659 snapshot_id_t *sidp = cmn->cmn_sid; 1660 cow_info_t *cowp = sidp->sid_cowinfo; 1661 cow_map_t *cmap = &cowp->cow_map; 1662 int error; 1663 int bf_index; 1664 int release_sem = cmn->release_sem; 1665 1666 /* 1667 * The sid_rwlock does not need to be held here because the taskqs 1668 * are destroyed explicitly by fssnap_delete (with the sid_rwlock 1669 * held as a writer). taskq_destroy() will flush all of the tasks 1670 * out before fssnap_delete frees up all of the structures. 1671 */ 1672 1673 /* if the snapshot was disabled from under us, drop the request. */ 1674 rw_enter(&sidp->sid_rwlock, RW_READER); 1675 if (SID_INACTIVE(sidp)) { 1676 rw_exit(&sidp->sid_rwlock); 1677 if (release_sem) 1678 sema_v(&cmap->cmap_throttle_sem); 1679 return; 1680 } 1681 rw_exit(&sidp->sid_rwlock); 1682 1683 atomic_inc_64((uint64_t *)&cmap->cmap_nchunks); 1684 1685 if ((cmap->cmap_maxsize != 0) && 1686 ((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) { 1687 cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has " 1688 "reached the maximum backing file size specified (%llu " 1689 "bytes) and will be deleted.", sidp->sid_snapnumber, 1690 (char *)cowp->cow_kstat_mntpt->ks_data, 1691 cmap->cmap_maxsize); 1692 if (release_sem) 1693 sema_v(&cmap->cmap_throttle_sem); 1694 atomic_or_uint(&sidp->sid_flags, SID_DELETE); 1695 return; 1696 } 1697 1698 /* perform the write */ 1699 bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf; 1700 1701 if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index], 1702 cmn->cmn_buf, cmap->cmap_chunksz, 1703 (cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz, 1704 UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) { 1705 cmn_err(CE_WARN, "fssnap_write_taskq: error writing to " 1706 "backing file. DELETING SNAPSHOT %d, backing file path " 1707 "%s, offset %llu bytes, error %d.", sidp->sid_snapnumber, 1708 (char *)cowp->cow_kstat_bfname->ks_data, 1709 cmn->cmn_chunk * cmap->cmap_chunksz, error); 1710 if (release_sem) 1711 sema_v(&cmap->cmap_throttle_sem); 1712 atomic_or_uint(&sidp->sid_flags, SID_DELETE); 1713 return; 1714 } 1715 1716 /* 1717 * now remove the node and buffer from memory 1718 */ 1719 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1720 transtbl_delete(cmap, cmn); 1721 rw_exit(&cmap->cmap_rwlock); 1722 1723 /* Allow more translations */ 1724 if (release_sem) 1725 sema_v(&cmap->cmap_throttle_sem); 1726 1727 } 1728 1729 /* 1730 * fssnap_create_impl() - called from the file system to create a new snapshot 1731 * 1732 * allocates and initializes the structures needed for a new snapshot. 1733 * This is called by the file system when it receives an ioctl request to 1734 * create a new snapshot. An unused snapshot identifier is either found 1735 * or created, and eventually returned as the opaque handle the file 1736 * system will use to identify this snapshot. The snapshot number 1737 * associated with the snapshot identifier is the same as the minor 1738 * number for the snapshot device that is used to access that snapshot. 1739 * 1740 * The snapshot can not be used until the candidate bitmap is populated 1741 * by the file system (see fssnap_set_candidate_impl()), and the file 1742 * system finishes the setup process by calling fssnap_create_done(). 1743 * Nearly all of the snapshot locks are held for the duration of the 1744 * create, and are not released until fssnap_create_done is called(). 1745 */ 1746 static void * 1747 fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize, 1748 struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath, 1749 u_offset_t max_backfile_size) 1750 { 1751 refstr_t *mountpoint; 1752 char taskqname[50]; 1753 struct cow_info *cowp; 1754 struct cow_map *cmap; 1755 struct snapshot_id *sidp; 1756 int lastsnap; 1757 1758 /* 1759 * Sanity check the parameters we care about 1760 * (we don't care about the informational parameters) 1761 */ 1762 if ((nchunks == 0) || 1763 ((chunksz % DEV_BSIZE) != 0) || 1764 (bfvpp == NULL)) { 1765 return (NULL); 1766 } 1767 1768 /* 1769 * Look for unused snapshot identifiers. Snapshot ids are never 1770 * freed, but deleted snapshot ids will be recycled as needed. 1771 */ 1772 mutex_enter(&snapshot_mutex); 1773 1774 findagain: 1775 lastsnap = 0; 1776 for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) { 1777 if (sidp->sid_snapnumber > lastsnap) 1778 lastsnap = sidp->sid_snapnumber; 1779 1780 /* 1781 * The sid_rwlock is taken as a reader initially so that 1782 * activity on each snapshot is not stalled while searching 1783 * for a free snapshot id. 1784 */ 1785 rw_enter(&sidp->sid_rwlock, RW_READER); 1786 1787 /* 1788 * If the snapshot has been deleted and nobody is using the 1789 * snapshot device than we can reuse this snapshot_id. If 1790 * the snapshot is marked to be deleted (SID_DELETE), then 1791 * it hasn't been deleted yet so don't reuse it. 1792 */ 1793 if (SID_AVAILABLE(sidp)) 1794 break; /* This spot is unused, so take it */ 1795 rw_exit(&sidp->sid_rwlock); 1796 } 1797 1798 /* 1799 * add a new snapshot identifier if there are no deleted 1800 * entries. Since it doesn't matter what order the entries 1801 * are in we can just add it to the beginning of the list. 1802 */ 1803 if (sidp) { 1804 if (rw_tryupgrade(&sidp->sid_rwlock) == 0) { 1805 /* someone else grabbed it as a writer, try again */ 1806 rw_exit(&sidp->sid_rwlock); 1807 goto findagain; 1808 } 1809 } else { 1810 /* Create a new node if we didn't find an unused one */ 1811 sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP); 1812 rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL); 1813 rw_enter(&sidp->sid_rwlock, RW_WRITER); 1814 sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1; 1815 sidp->sid_cowinfo = NULL; 1816 sidp->sid_flags = 0; 1817 sidp->sid_next = snapshot; 1818 snapshot = sidp; 1819 } 1820 1821 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 1822 ASSERT(sidp->sid_cowinfo == NULL); 1823 ASSERT(sidp->sid_snapnumber <= (lastsnap + 1)); 1824 1825 sidp->sid_flags |= SID_CREATING; 1826 /* The root vnode is held until snap_delete_impl() is called */ 1827 VN_HOLD(fsvp); 1828 sidp->sid_fvp = fsvp; 1829 num_snapshots++; 1830 1831 /* allocate and initialize structures */ 1832 1833 cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP); 1834 1835 cowp->cow_backfile_array = bfvpp; 1836 cowp->cow_backcount = backfilecount; 1837 cowp->cow_backfile_sz = max_backfile_size; 1838 1839 /* 1840 * Initialize task queues for this snapshot. Only a small number 1841 * of threads are required because they will be serialized on the 1842 * backing file's reader/writer lock anyway. 1843 */ 1844 (void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname, 1845 sidp->sid_snapnumber); 1846 cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads, 1847 minclsyspri, 1, fssnap_taskq_maxtasks, 0); 1848 1849 /* don't allow tasks to start until after everything is ready */ 1850 taskq_suspend(cowp->cow_taskq); 1851 1852 /* initialize translation table */ 1853 cmap = &cowp->cow_map; 1854 rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL); 1855 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1856 1857 sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL, 1858 SEMA_DEFAULT, NULL); 1859 1860 cmap->cmap_chunksz = chunksz; 1861 cmap->cmap_maxsize = maxsize; 1862 cmap->cmap_chunksperbf = max_backfile_size / chunksz; 1863 1864 /* 1865 * allocate one bit per chunk for the bitmaps, round up 1866 */ 1867 cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY; 1868 cmap->cmap_hastrans = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); 1869 cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); 1870 1871 sidp->sid_cowinfo = cowp; 1872 1873 /* initialize kstats for this snapshot */ 1874 mountpoint = vfs_getmntpoint(fsvp->v_vfsp); 1875 fssnap_create_kstats(sidp, sidp->sid_snapnumber, 1876 refstr_value(mountpoint), backpath); 1877 refstr_rele(mountpoint); 1878 1879 mutex_exit(&snapshot_mutex); 1880 1881 /* 1882 * return with snapshot id rwlock held as a writer until 1883 * fssnap_create_done is called 1884 */ 1885 return (sidp); 1886 } 1887 1888 /* 1889 * fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write 1890 * 1891 * sets a bit in the candidate bitmap that indicates that a chunk is a 1892 * candidate for copy-on-write. Typically, chunks that are allocated on 1893 * the file system at the time the snapshot is taken are candidates, 1894 * while chunks that have no allocated data do not need to be copied. 1895 * Chunks containing metadata must be marked as candidates as well. 1896 */ 1897 static void 1898 fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber) 1899 { 1900 struct snapshot_id *sid = snapshot_id; 1901 struct cow_info *cowp = sid->sid_cowinfo; 1902 struct cow_map *cmap = &cowp->cow_map; 1903 1904 /* simple bitmap operation for now */ 1905 ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); 1906 setbit(cmap->cmap_candidate, chunknumber); 1907 } 1908 1909 /* 1910 * fssnap_is_candidate_impl() - check whether a chunk is a candidate 1911 * 1912 * returns 0 if the chunk is not a candidate and 1 if the chunk is a 1913 * candidate. This can be used by the file system to change behavior for 1914 * chunks that might induce a copy-on-write. The offset is specified in 1915 * bytes since the chunk size may not be known by the file system. 1916 */ 1917 static int 1918 fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off) 1919 { 1920 struct snapshot_id *sid = snapshot_id; 1921 struct cow_info *cowp = sid->sid_cowinfo; 1922 struct cow_map *cmap = &cowp->cow_map; 1923 ulong_t chunknumber = off / cmap->cmap_chunksz; 1924 1925 /* simple bitmap operation for now */ 1926 ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); 1927 return (isset(cmap->cmap_candidate, chunknumber)); 1928 } 1929 1930 /* 1931 * fssnap_create_done_impl() - complete the snapshot setup process 1932 * 1933 * called when the file system is done populating the candidate bitmap 1934 * and it is ready to start using the snapshot. This routine releases 1935 * the snapshot locks, allows taskq tasks to start processing, and 1936 * creates the device minor nodes associated with the snapshot. 1937 */ 1938 static int 1939 fssnap_create_done_impl(void *snapshot_id) 1940 { 1941 struct snapshot_id **sidpp, *sidp = snapshot_id; 1942 struct cow_info *cowp; 1943 struct cow_map *cmap; 1944 int snapnumber = -1; 1945 char name[20]; 1946 1947 /* sid rwlock and cmap rwlock should be taken from fssnap_create */ 1948 ASSERT(sidp); 1949 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 1950 ASSERT(sidp->sid_cowinfo); 1951 1952 cowp = sidp->sid_cowinfo; 1953 cmap = &cowp->cow_map; 1954 1955 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1956 1957 sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED); 1958 snapnumber = sidp->sid_snapnumber; 1959 1960 /* allocate state structure and find new snapshot id */ 1961 if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) { 1962 cmn_err(CE_WARN, 1963 "snap_ioctl: create: could not allocate " 1964 "state for snapshot %d.", snapnumber); 1965 snapnumber = -1; 1966 goto out; 1967 } 1968 1969 sidpp = ddi_get_soft_state(statep, snapnumber); 1970 *sidpp = sidp; 1971 1972 /* create minor node based on snapshot number */ 1973 ASSERT(fssnap_dip != NULL); 1974 (void) snprintf(name, sizeof (name), "%d", snapnumber); 1975 if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK, 1976 snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { 1977 cmn_err(CE_WARN, "snap_ioctl: could not create " 1978 "block minor node for snapshot %d.", snapnumber); 1979 snapnumber = -1; 1980 goto out; 1981 } 1982 1983 (void) snprintf(name, sizeof (name), "%d,raw", snapnumber); 1984 if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR, 1985 snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { 1986 cmn_err(CE_WARN, "snap_ioctl: could not create " 1987 "character minor node for snapshot %d.", snapnumber); 1988 snapnumber = -1; 1989 } 1990 1991 out: 1992 rw_exit(&sidp->sid_rwlock); 1993 rw_exit(&cmap->cmap_rwlock); 1994 1995 /* let the taskq threads start processing */ 1996 taskq_resume(cowp->cow_taskq); 1997 1998 return (snapnumber); 1999 } 2000 2001 /* 2002 * fssnap_delete_impl() - delete a snapshot 2003 * 2004 * used when a snapshot is no longer needed. This is called by the file 2005 * system when it receives an ioctl request to delete a snapshot. It is 2006 * also called internally when error conditions such as disk full, errors 2007 * writing to the backing file, or backing file maxsize exceeded occur. 2008 * If the snapshot device is busy when the delete request is received, 2009 * all state will be deleted except for the soft state and device files 2010 * associated with the snapshot; they will be deleted when the snapshot 2011 * device is closed. 2012 * 2013 * NOTE this function takes a POINTER TO A POINTER to the snapshot id, 2014 * and expects to be able to set the handle held by the file system to 2015 * NULL. This depends on the file system checking that variable for NULL 2016 * before calling fssnap_strategy(). 2017 */ 2018 static int 2019 fssnap_delete_impl(void *snapshot_id) 2020 { 2021 struct snapshot_id **sidpp = (struct snapshot_id **)snapshot_id; 2022 struct snapshot_id *sidp; 2023 struct snapshot_id **statesidpp; 2024 struct cow_info *cowp; 2025 struct cow_map *cmap; 2026 char name[20]; 2027 int snapnumber = -1; 2028 vnode_t **vpp; 2029 2030 /* 2031 * sidp is guaranteed to be valid if sidpp is valid because 2032 * the snapshot list is append-only. 2033 */ 2034 if (sidpp == NULL) { 2035 return (-1); 2036 } 2037 2038 sidp = *sidpp; 2039 rw_enter(&sidp->sid_rwlock, RW_WRITER); 2040 2041 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 2042 2043 /* 2044 * double check that the snapshot is still valid for THIS file system 2045 */ 2046 if (*sidpp == NULL) { 2047 rw_exit(&sidp->sid_rwlock); 2048 return (-1); 2049 } 2050 2051 /* 2052 * Now we know the snapshot is still valid and will not go away 2053 * because we have the write lock. Once the state is transitioned 2054 * to "disabling", the sid_rwlock can be released. Any pending I/O 2055 * waiting for the lock as a reader will check for this state and 2056 * abort without touching data that may be getting freed. 2057 */ 2058 sidp->sid_flags |= SID_DISABLING; 2059 if (sidp->sid_flags & SID_DELETE) { 2060 cmn_err(CE_WARN, "Snapshot %d automatically deleted.", 2061 sidp->sid_snapnumber); 2062 sidp->sid_flags &= ~(SID_DELETE); 2063 } 2064 2065 2066 /* 2067 * This is pointing into file system specific data! The assumption is 2068 * that fssnap_strategy() gets called from the file system based on 2069 * whether this reference to the snapshot_id is NULL or not. So 2070 * setting this to NULL should disable snapshots for the file system. 2071 */ 2072 *sidpp = NULL; 2073 2074 /* remove cowinfo */ 2075 cowp = sidp->sid_cowinfo; 2076 if (cowp == NULL) { 2077 rw_exit(&sidp->sid_rwlock); 2078 return (-1); 2079 } 2080 rw_exit(&sidp->sid_rwlock); 2081 2082 /* destroy task queues first so they don't reference freed data. */ 2083 if (cowp->cow_taskq) { 2084 taskq_destroy(cowp->cow_taskq); 2085 cowp->cow_taskq = NULL; 2086 } 2087 2088 if (cowp->cow_backfile_array != NULL) { 2089 for (vpp = cowp->cow_backfile_array; *vpp; vpp++) 2090 VN_RELE(*vpp); 2091 kmem_free(cowp->cow_backfile_array, 2092 (cowp->cow_backcount + 1) * sizeof (vnode_t *)); 2093 cowp->cow_backfile_array = NULL; 2094 } 2095 2096 sidp->sid_cowinfo = NULL; 2097 2098 /* remove cmap */ 2099 cmap = &cowp->cow_map; 2100 ASSERT(cmap); 2101 2102 if (cmap->cmap_candidate) 2103 kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize); 2104 2105 if (cmap->cmap_hastrans) 2106 kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize); 2107 2108 if (cmap->cmap_table) 2109 transtbl_free(&cowp->cow_map); 2110 2111 rw_destroy(&cmap->cmap_rwlock); 2112 2113 while (cmap->cmap_waiters) { 2114 sema_p(&cmap->cmap_throttle_sem); 2115 sema_v(&cmap->cmap_throttle_sem); 2116 } 2117 sema_destroy(&cmap->cmap_throttle_sem); 2118 2119 /* remove kstats */ 2120 fssnap_delete_kstats(cowp); 2121 2122 kmem_free(cowp, sizeof (struct cow_info)); 2123 2124 statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber); 2125 if (statesidpp == NULL || *statesidpp == NULL) { 2126 cmn_err(CE_WARN, 2127 "fssnap_delete_impl: could not find state for snapshot %d.", 2128 sidp->sid_snapnumber); 2129 } 2130 ASSERT(*statesidpp == sidp); 2131 2132 /* 2133 * Leave the node in the list marked DISABLED so it can be reused 2134 * and avoid many race conditions. Return the snapshot number 2135 * that was deleted. 2136 */ 2137 mutex_enter(&snapshot_mutex); 2138 rw_enter(&sidp->sid_rwlock, RW_WRITER); 2139 sidp->sid_flags &= ~(SID_DISABLING); 2140 sidp->sid_flags |= SID_DISABLED; 2141 VN_RELE(sidp->sid_fvp); 2142 sidp->sid_fvp = NULL; 2143 snapnumber = sidp->sid_snapnumber; 2144 2145 /* 2146 * If the snapshot is not busy, free the device info now. Otherwise 2147 * the device nodes are freed in snap_close() when the device is 2148 * closed. The sid will not be reused until the device is not busy. 2149 */ 2150 if (SID_AVAILABLE(sidp)) { 2151 /* remove the device nodes */ 2152 ASSERT(fssnap_dip != NULL); 2153 (void) snprintf(name, sizeof (name), "%d", 2154 sidp->sid_snapnumber); 2155 ddi_remove_minor_node(fssnap_dip, name); 2156 (void) snprintf(name, sizeof (name), "%d,raw", 2157 sidp->sid_snapnumber); 2158 ddi_remove_minor_node(fssnap_dip, name); 2159 2160 /* delete the state structure */ 2161 ddi_soft_state_free(statep, sidp->sid_snapnumber); 2162 num_snapshots--; 2163 } 2164 2165 mutex_exit(&snapshot_mutex); 2166 rw_exit(&sidp->sid_rwlock); 2167 2168 return (snapnumber); 2169 } 2170 2171 /* 2172 * fssnap_create_kstats() - allocate and initialize snapshot kstats 2173 * 2174 */ 2175 static void 2176 fssnap_create_kstats(snapshot_id_t *sidp, int snapnum, 2177 const char *mountpoint, const char *backfilename) 2178 { 2179 kstat_t *num, *mntpoint, *bfname; 2180 kstat_named_t *hw; 2181 struct cow_info *cowp = sidp->sid_cowinfo; 2182 struct cow_kstat_num *stats; 2183 2184 /* update the high water mark */ 2185 if (fssnap_highwater_kstat == NULL) { 2186 cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup " 2187 "high water mark kstat."); 2188 return; 2189 } 2190 2191 hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data; 2192 if (hw->value.ui32 < snapnum) 2193 hw->value.ui32 = snapnum; 2194 2195 /* initialize the mount point kstat */ 2196 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT); 2197 2198 if (mountpoint != NULL) { 2199 mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT, 2200 "misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0); 2201 if (mntpoint == NULL) { 2202 cowp->cow_kstat_mntpt = NULL; 2203 cmn_err(CE_WARN, "fssnap_create_kstats: failed to " 2204 "create mount point kstat"); 2205 } else { 2206 (void) strncpy(mntpoint->ks_data, mountpoint, 2207 strlen(mountpoint)); 2208 cowp->cow_kstat_mntpt = mntpoint; 2209 kstat_install(mntpoint); 2210 } 2211 } else { 2212 cowp->cow_kstat_mntpt = NULL; 2213 cmn_err(CE_WARN, "fssnap_create_kstats: mount point not " 2214 "specified."); 2215 } 2216 2217 /* initialize the backing file kstat */ 2218 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME); 2219 2220 if (backfilename == NULL) { 2221 cowp->cow_kstat_bfname = NULL; 2222 } else { 2223 bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME, 2224 "misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0); 2225 if (bfname != NULL) { 2226 (void) strncpy(bfname->ks_data, backfilename, 2227 strlen(backfilename)); 2228 cowp->cow_kstat_bfname = bfname; 2229 kstat_install(bfname); 2230 } else { 2231 cowp->cow_kstat_bfname = NULL; 2232 cmn_err(CE_WARN, "fssnap_create_kstats: failed to " 2233 "create backing file name kstat"); 2234 } 2235 } 2236 2237 /* initialize numeric kstats */ 2238 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM); 2239 2240 num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM, 2241 "misc", KSTAT_TYPE_NAMED, 2242 sizeof (struct cow_kstat_num) / sizeof (kstat_named_t), 2243 0); 2244 if (num == NULL) { 2245 cmn_err(CE_WARN, "fssnap_create_kstats: failed to create " 2246 "numeric kstats"); 2247 cowp->cow_kstat_num = NULL; 2248 return; 2249 } 2250 2251 cowp->cow_kstat_num = num; 2252 stats = num->ks_data; 2253 num->ks_update = fssnap_update_kstat_num; 2254 num->ks_private = sidp; 2255 2256 kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE, 2257 KSTAT_DATA_INT32); 2258 kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE, 2259 KSTAT_DATA_UINT64); 2260 kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE, 2261 KSTAT_DATA_UINT64); 2262 kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME, 2263 KSTAT_DATA_LONG); 2264 kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE, 2265 KSTAT_DATA_UINT32); 2266 2267 /* initialize the static kstats */ 2268 stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz; 2269 stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize; 2270 stats->ckn_createtime.value.l = gethrestime_sec(); 2271 2272 kstat_install(num); 2273 } 2274 2275 /* 2276 * fssnap_update_kstat_num() - update a numerical snapshot kstat value 2277 * 2278 */ 2279 int 2280 fssnap_update_kstat_num(kstat_t *ksp, int rw) 2281 { 2282 snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private; 2283 struct cow_info *cowp = sidp->sid_cowinfo; 2284 struct cow_kstat_num *stats = ksp->ks_data; 2285 2286 if (rw == KSTAT_WRITE) 2287 return (EACCES); 2288 2289 /* state */ 2290 if (sidp->sid_flags & SID_CREATING) 2291 stats->ckn_state.value.i32 = COWSTATE_CREATING; 2292 else if (SID_INACTIVE(sidp)) 2293 stats->ckn_state.value.i32 = COWSTATE_DISABLED; 2294 else if (SID_BUSY(sidp)) 2295 stats->ckn_state.value.i32 = COWSTATE_ACTIVE; 2296 else 2297 stats->ckn_state.value.i32 = COWSTATE_IDLE; 2298 2299 /* bfsize */ 2300 stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks * 2301 cowp->cow_map.cmap_chunksz; 2302 2303 return (0); 2304 } 2305 2306 /* 2307 * fssnap_delete_kstats() - deallocate snapshot kstats 2308 * 2309 */ 2310 void 2311 fssnap_delete_kstats(struct cow_info *cowp) 2312 { 2313 if (cowp->cow_kstat_num != NULL) { 2314 kstat_delete(cowp->cow_kstat_num); 2315 cowp->cow_kstat_num = NULL; 2316 } 2317 if (cowp->cow_kstat_mntpt != NULL) { 2318 kstat_delete(cowp->cow_kstat_mntpt); 2319 cowp->cow_kstat_mntpt = NULL; 2320 } 2321 if (cowp->cow_kstat_bfname != NULL) { 2322 kstat_delete(cowp->cow_kstat_bfname); 2323 cowp->cow_kstat_bfname = NULL; 2324 } 2325 } 2326